Snapshot of upstream SQLite 3.25.0
[sqlcipher.git] / ext / rbu / sqlite3rbu.c
blob065b13c7fa6175419a5b26056c7d1b67027039f5
1 /*
2 ** 2014 August 30
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
14 ** OVERVIEW
16 ** The RBU extension requires that the RBU update be packaged as an
17 ** SQLite database. The tables it expects to find are described in
18 ** sqlite3rbu.h. Essentially, for each table xyz in the target database
19 ** that the user wishes to write to, a corresponding data_xyz table is
20 ** created in the RBU database and populated with one row for each row to
21 ** update, insert or delete from the target table.
22 **
23 ** The update proceeds in three stages:
24 **
25 ** 1) The database is updated. The modified database pages are written
26 ** to a *-oal file. A *-oal file is just like a *-wal file, except
27 ** that it is named "<database>-oal" instead of "<database>-wal".
28 ** Because regular SQLite clients do not look for file named
29 ** "<database>-oal", they go on using the original database in
30 ** rollback mode while the *-oal file is being generated.
31 **
32 ** During this stage RBU does not update the database by writing
33 ** directly to the target tables. Instead it creates "imposter"
34 ** tables using the SQLITE_TESTCTRL_IMPOSTER interface that it uses
35 ** to update each b-tree individually. All updates required by each
36 ** b-tree are completed before moving on to the next, and all
37 ** updates are done in sorted key order.
38 **
39 ** 2) The "<database>-oal" file is moved to the equivalent "<database>-wal"
40 ** location using a call to rename(2). Before doing this the RBU
41 ** module takes an EXCLUSIVE lock on the database file, ensuring
42 ** that there are no other active readers.
43 **
44 ** Once the EXCLUSIVE lock is released, any other database readers
45 ** detect the new *-wal file and read the database in wal mode. At
46 ** this point they see the new version of the database - including
47 ** the updates made as part of the RBU update.
48 **
49 ** 3) The new *-wal file is checkpointed. This proceeds in the same way
50 ** as a regular database checkpoint, except that a single frame is
51 ** checkpointed each time sqlite3rbu_step() is called. If the RBU
52 ** handle is closed before the entire *-wal file is checkpointed,
53 ** the checkpoint progress is saved in the RBU database and the
54 ** checkpoint can be resumed by another RBU client at some point in
55 ** the future.
57 ** POTENTIAL PROBLEMS
58 **
59 ** The rename() call might not be portable. And RBU is not currently
60 ** syncing the directory after renaming the file.
62 ** When state is saved, any commit to the *-oal file and the commit to
63 ** the RBU update database are not atomic. So if the power fails at the
64 ** wrong moment they might get out of sync. As the main database will be
65 ** committed before the RBU update database this will likely either just
66 ** pass unnoticed, or result in SQLITE_CONSTRAINT errors (due to UNIQUE
67 ** constraint violations).
69 ** If some client does modify the target database mid RBU update, or some
70 ** other error occurs, the RBU extension will keep throwing errors. It's
71 ** not really clear how to get out of this state. The system could just
72 ** by delete the RBU update database and *-oal file and have the device
73 ** download the update again and start over.
75 ** At present, for an UPDATE, both the new.* and old.* records are
76 ** collected in the rbu_xyz table. And for both UPDATEs and DELETEs all
77 ** fields are collected. This means we're probably writing a lot more
78 ** data to disk when saving the state of an ongoing update to the RBU
79 ** update database than is strictly necessary.
80 **
83 #include <assert.h>
84 #include <string.h>
85 #include <stdio.h>
87 #include "sqlite3.h"
89 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RBU)
90 #include "sqlite3rbu.h"
92 #if defined(_WIN32_WCE)
93 #include "windows.h"
94 #endif
96 /* Maximum number of prepared UPDATE statements held by this module */
97 #define SQLITE_RBU_UPDATE_CACHESIZE 16
99 /* Delta checksums disabled by default. Compile with -DRBU_ENABLE_DELTA_CKSUM
100 ** to enable checksum verification.
102 #ifndef RBU_ENABLE_DELTA_CKSUM
103 # define RBU_ENABLE_DELTA_CKSUM 0
104 #endif
107 ** Swap two objects of type TYPE.
109 #if !defined(SQLITE_AMALGAMATION)
110 # define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
111 #endif
114 ** The rbu_state table is used to save the state of a partially applied
115 ** update so that it can be resumed later. The table consists of integer
116 ** keys mapped to values as follows:
118 ** RBU_STATE_STAGE:
119 ** May be set to integer values 1, 2, 4 or 5. As follows:
120 ** 1: the *-rbu file is currently under construction.
121 ** 2: the *-rbu file has been constructed, but not yet moved
122 ** to the *-wal path.
123 ** 4: the checkpoint is underway.
124 ** 5: the rbu update has been checkpointed.
126 ** RBU_STATE_TBL:
127 ** Only valid if STAGE==1. The target database name of the table
128 ** currently being written.
130 ** RBU_STATE_IDX:
131 ** Only valid if STAGE==1. The target database name of the index
132 ** currently being written, or NULL if the main table is currently being
133 ** updated.
135 ** RBU_STATE_ROW:
136 ** Only valid if STAGE==1. Number of rows already processed for the current
137 ** table/index.
139 ** RBU_STATE_PROGRESS:
140 ** Trbul number of sqlite3rbu_step() calls made so far as part of this
141 ** rbu update.
143 ** RBU_STATE_CKPT:
144 ** Valid if STAGE==4. The 64-bit checksum associated with the wal-index
145 ** header created by recovering the *-wal file. This is used to detect
146 ** cases when another client appends frames to the *-wal file in the
147 ** middle of an incremental checkpoint (an incremental checkpoint cannot
148 ** be continued if this happens).
150 ** RBU_STATE_COOKIE:
151 ** Valid if STAGE==1. The current change-counter cookie value in the
152 ** target db file.
154 ** RBU_STATE_OALSZ:
155 ** Valid if STAGE==1. The size in bytes of the *-oal file.
157 ** RBU_STATE_DATATBL:
158 ** Only valid if STAGE==1. The RBU database name of the table
159 ** currently being read.
161 #define RBU_STATE_STAGE 1
162 #define RBU_STATE_TBL 2
163 #define RBU_STATE_IDX 3
164 #define RBU_STATE_ROW 4
165 #define RBU_STATE_PROGRESS 5
166 #define RBU_STATE_CKPT 6
167 #define RBU_STATE_COOKIE 7
168 #define RBU_STATE_OALSZ 8
169 #define RBU_STATE_PHASEONESTEP 9
170 #define RBU_STATE_DATATBL 10
172 #define RBU_STAGE_OAL 1
173 #define RBU_STAGE_MOVE 2
174 #define RBU_STAGE_CAPTURE 3
175 #define RBU_STAGE_CKPT 4
176 #define RBU_STAGE_DONE 5
179 #define RBU_CREATE_STATE \
180 "CREATE TABLE IF NOT EXISTS %s.rbu_state(k INTEGER PRIMARY KEY, v)"
182 typedef struct RbuFrame RbuFrame;
183 typedef struct RbuObjIter RbuObjIter;
184 typedef struct RbuState RbuState;
185 typedef struct rbu_vfs rbu_vfs;
186 typedef struct rbu_file rbu_file;
187 typedef struct RbuUpdateStmt RbuUpdateStmt;
189 #if !defined(SQLITE_AMALGAMATION)
190 typedef unsigned int u32;
191 typedef unsigned short u16;
192 typedef unsigned char u8;
193 typedef sqlite3_int64 i64;
194 #endif
197 ** These values must match the values defined in wal.c for the equivalent
198 ** locks. These are not magic numbers as they are part of the SQLite file
199 ** format.
201 #define WAL_LOCK_WRITE 0
202 #define WAL_LOCK_CKPT 1
203 #define WAL_LOCK_READ0 3
205 #define SQLITE_FCNTL_RBUCNT 5149216
208 ** A structure to store values read from the rbu_state table in memory.
210 struct RbuState {
211 int eStage;
212 char *zTbl;
213 char *zDataTbl;
214 char *zIdx;
215 i64 iWalCksum;
216 int nRow;
217 i64 nProgress;
218 u32 iCookie;
219 i64 iOalSz;
220 i64 nPhaseOneStep;
223 struct RbuUpdateStmt {
224 char *zMask; /* Copy of update mask used with pUpdate */
225 sqlite3_stmt *pUpdate; /* Last update statement (or NULL) */
226 RbuUpdateStmt *pNext;
230 ** An iterator of this type is used to iterate through all objects in
231 ** the target database that require updating. For each such table, the
232 ** iterator visits, in order:
234 ** * the table itself,
235 ** * each index of the table (zero or more points to visit), and
236 ** * a special "cleanup table" state.
238 ** abIndexed:
239 ** If the table has no indexes on it, abIndexed is set to NULL. Otherwise,
240 ** it points to an array of flags nTblCol elements in size. The flag is
241 ** set for each column that is either a part of the PK or a part of an
242 ** index. Or clear otherwise.
245 struct RbuObjIter {
246 sqlite3_stmt *pTblIter; /* Iterate through tables */
247 sqlite3_stmt *pIdxIter; /* Index iterator */
248 int nTblCol; /* Size of azTblCol[] array */
249 char **azTblCol; /* Array of unquoted target column names */
250 char **azTblType; /* Array of target column types */
251 int *aiSrcOrder; /* src table col -> target table col */
252 u8 *abTblPk; /* Array of flags, set on target PK columns */
253 u8 *abNotNull; /* Array of flags, set on NOT NULL columns */
254 u8 *abIndexed; /* Array of flags, set on indexed & PK cols */
255 int eType; /* Table type - an RBU_PK_XXX value */
257 /* Output variables. zTbl==0 implies EOF. */
258 int bCleanup; /* True in "cleanup" state */
259 const char *zTbl; /* Name of target db table */
260 const char *zDataTbl; /* Name of rbu db table (or null) */
261 const char *zIdx; /* Name of target db index (or null) */
262 int iTnum; /* Root page of current object */
263 int iPkTnum; /* If eType==EXTERNAL, root of PK index */
264 int bUnique; /* Current index is unique */
265 int nIndex; /* Number of aux. indexes on table zTbl */
267 /* Statements created by rbuObjIterPrepareAll() */
268 int nCol; /* Number of columns in current object */
269 sqlite3_stmt *pSelect; /* Source data */
270 sqlite3_stmt *pInsert; /* Statement for INSERT operations */
271 sqlite3_stmt *pDelete; /* Statement for DELETE ops */
272 sqlite3_stmt *pTmpInsert; /* Insert into rbu_tmp_$zDataTbl */
274 /* Last UPDATE used (for PK b-tree updates only), or NULL. */
275 RbuUpdateStmt *pRbuUpdate;
279 ** Values for RbuObjIter.eType
281 ** 0: Table does not exist (error)
282 ** 1: Table has an implicit rowid.
283 ** 2: Table has an explicit IPK column.
284 ** 3: Table has an external PK index.
285 ** 4: Table is WITHOUT ROWID.
286 ** 5: Table is a virtual table.
288 #define RBU_PK_NOTABLE 0
289 #define RBU_PK_NONE 1
290 #define RBU_PK_IPK 2
291 #define RBU_PK_EXTERNAL 3
292 #define RBU_PK_WITHOUT_ROWID 4
293 #define RBU_PK_VTAB 5
297 ** Within the RBU_STAGE_OAL stage, each call to sqlite3rbu_step() performs
298 ** one of the following operations.
300 #define RBU_INSERT 1 /* Insert on a main table b-tree */
301 #define RBU_DELETE 2 /* Delete a row from a main table b-tree */
302 #define RBU_REPLACE 3 /* Delete and then insert a row */
303 #define RBU_IDX_DELETE 4 /* Delete a row from an aux. index b-tree */
304 #define RBU_IDX_INSERT 5 /* Insert on an aux. index b-tree */
306 #define RBU_UPDATE 6 /* Update a row in a main table b-tree */
309 ** A single step of an incremental checkpoint - frame iWalFrame of the wal
310 ** file should be copied to page iDbPage of the database file.
312 struct RbuFrame {
313 u32 iDbPage;
314 u32 iWalFrame;
318 ** RBU handle.
320 ** nPhaseOneStep:
321 ** If the RBU database contains an rbu_count table, this value is set to
322 ** a running estimate of the number of b-tree operations required to
323 ** finish populating the *-oal file. This allows the sqlite3_bp_progress()
324 ** API to calculate the permyriadage progress of populating the *-oal file
325 ** using the formula:
327 ** permyriadage = (10000 * nProgress) / nPhaseOneStep
329 ** nPhaseOneStep is initialized to the sum of:
331 ** nRow * (nIndex + 1)
333 ** for all source tables in the RBU database, where nRow is the number
334 ** of rows in the source table and nIndex the number of indexes on the
335 ** corresponding target database table.
337 ** This estimate is accurate if the RBU update consists entirely of
338 ** INSERT operations. However, it is inaccurate if:
340 ** * the RBU update contains any UPDATE operations. If the PK specified
341 ** for an UPDATE operation does not exist in the target table, then
342 ** no b-tree operations are required on index b-trees. Or if the
343 ** specified PK does exist, then (nIndex*2) such operations are
344 ** required (one delete and one insert on each index b-tree).
346 ** * the RBU update contains any DELETE operations for which the specified
347 ** PK does not exist. In this case no operations are required on index
348 ** b-trees.
350 ** * the RBU update contains REPLACE operations. These are similar to
351 ** UPDATE operations.
353 ** nPhaseOneStep is updated to account for the conditions above during the
354 ** first pass of each source table. The updated nPhaseOneStep value is
355 ** stored in the rbu_state table if the RBU update is suspended.
357 struct sqlite3rbu {
358 int eStage; /* Value of RBU_STATE_STAGE field */
359 sqlite3 *dbMain; /* target database handle */
360 sqlite3 *dbRbu; /* rbu database handle */
361 char *zTarget; /* Path to target db */
362 char *zRbu; /* Path to rbu db */
363 char *zState; /* Path to state db (or NULL if zRbu) */
364 char zStateDb[5]; /* Db name for state ("stat" or "main") */
365 int rc; /* Value returned by last rbu_step() call */
366 char *zErrmsg; /* Error message if rc!=SQLITE_OK */
367 int nStep; /* Rows processed for current object */
368 int nProgress; /* Rows processed for all objects */
369 RbuObjIter objiter; /* Iterator for skipping through tbl/idx */
370 const char *zVfsName; /* Name of automatically created rbu vfs */
371 rbu_file *pTargetFd; /* File handle open on target db */
372 int nPagePerSector; /* Pages per sector for pTargetFd */
373 i64 iOalSz;
374 i64 nPhaseOneStep;
376 /* The following state variables are used as part of the incremental
377 ** checkpoint stage (eStage==RBU_STAGE_CKPT). See comments surrounding
378 ** function rbuSetupCheckpoint() for details. */
379 u32 iMaxFrame; /* Largest iWalFrame value in aFrame[] */
380 u32 mLock;
381 int nFrame; /* Entries in aFrame[] array */
382 int nFrameAlloc; /* Allocated size of aFrame[] array */
383 RbuFrame *aFrame;
384 int pgsz;
385 u8 *aBuf;
386 i64 iWalCksum;
387 i64 szTemp; /* Current size of all temp files in use */
388 i64 szTempLimit; /* Total size limit for temp files */
390 /* Used in RBU vacuum mode only */
391 int nRbu; /* Number of RBU VFS in the stack */
392 rbu_file *pRbuFd; /* Fd for main db of dbRbu */
396 ** An rbu VFS is implemented using an instance of this structure.
398 ** Variable pRbu is only non-NULL for automatically created RBU VFS objects.
399 ** It is NULL for RBU VFS objects created explicitly using
400 ** sqlite3rbu_create_vfs(). It is used to track the total amount of temp
401 ** space used by the RBU handle.
403 struct rbu_vfs {
404 sqlite3_vfs base; /* rbu VFS shim methods */
405 sqlite3_vfs *pRealVfs; /* Underlying VFS */
406 sqlite3_mutex *mutex; /* Mutex to protect pMain */
407 sqlite3rbu *pRbu; /* Owner RBU object */
408 rbu_file *pMain; /* Linked list of main db files */
412 ** Each file opened by an rbu VFS is represented by an instance of
413 ** the following structure.
415 ** If this is a temporary file (pRbu!=0 && flags&DELETE_ON_CLOSE), variable
416 ** "sz" is set to the current size of the database file.
418 struct rbu_file {
419 sqlite3_file base; /* sqlite3_file methods */
420 sqlite3_file *pReal; /* Underlying file handle */
421 rbu_vfs *pRbuVfs; /* Pointer to the rbu_vfs object */
422 sqlite3rbu *pRbu; /* Pointer to rbu object (rbu target only) */
423 i64 sz; /* Size of file in bytes (temp only) */
425 int openFlags; /* Flags this file was opened with */
426 u32 iCookie; /* Cookie value for main db files */
427 u8 iWriteVer; /* "write-version" value for main db files */
428 u8 bNolock; /* True to fail EXCLUSIVE locks */
430 int nShm; /* Number of entries in apShm[] array */
431 char **apShm; /* Array of mmap'd *-shm regions */
432 char *zDel; /* Delete this when closing file */
434 const char *zWal; /* Wal filename for this main db file */
435 rbu_file *pWalFd; /* Wal file descriptor for this main db */
436 rbu_file *pMainNext; /* Next MAIN_DB file */
440 ** True for an RBU vacuum handle, or false otherwise.
442 #define rbuIsVacuum(p) ((p)->zTarget==0)
445 /*************************************************************************
446 ** The following three functions, found below:
448 ** rbuDeltaGetInt()
449 ** rbuDeltaChecksum()
450 ** rbuDeltaApply()
452 ** are lifted from the fossil source code (http://fossil-scm.org). They
453 ** are used to implement the scalar SQL function rbu_fossil_delta().
457 ** Read bytes from *pz and convert them into a positive integer. When
458 ** finished, leave *pz pointing to the first character past the end of
459 ** the integer. The *pLen parameter holds the length of the string
460 ** in *pz and is decremented once for each character in the integer.
462 static unsigned int rbuDeltaGetInt(const char **pz, int *pLen){
463 static const signed char zValue[] = {
464 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
465 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
466 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
467 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1,
468 -1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
469 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, -1, -1, -1, -1, 36,
470 -1, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
471 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, -1, -1, -1, 63, -1,
473 unsigned int v = 0;
474 int c;
475 unsigned char *z = (unsigned char*)*pz;
476 unsigned char *zStart = z;
477 while( (c = zValue[0x7f&*(z++)])>=0 ){
478 v = (v<<6) + c;
480 z--;
481 *pLen -= z - zStart;
482 *pz = (char*)z;
483 return v;
486 #if RBU_ENABLE_DELTA_CKSUM
488 ** Compute a 32-bit checksum on the N-byte buffer. Return the result.
490 static unsigned int rbuDeltaChecksum(const char *zIn, size_t N){
491 const unsigned char *z = (const unsigned char *)zIn;
492 unsigned sum0 = 0;
493 unsigned sum1 = 0;
494 unsigned sum2 = 0;
495 unsigned sum3 = 0;
496 while(N >= 16){
497 sum0 += ((unsigned)z[0] + z[4] + z[8] + z[12]);
498 sum1 += ((unsigned)z[1] + z[5] + z[9] + z[13]);
499 sum2 += ((unsigned)z[2] + z[6] + z[10]+ z[14]);
500 sum3 += ((unsigned)z[3] + z[7] + z[11]+ z[15]);
501 z += 16;
502 N -= 16;
504 while(N >= 4){
505 sum0 += z[0];
506 sum1 += z[1];
507 sum2 += z[2];
508 sum3 += z[3];
509 z += 4;
510 N -= 4;
512 sum3 += (sum2 << 8) + (sum1 << 16) + (sum0 << 24);
513 switch(N){
514 case 3: sum3 += (z[2] << 8);
515 case 2: sum3 += (z[1] << 16);
516 case 1: sum3 += (z[0] << 24);
517 default: ;
519 return sum3;
521 #endif
524 ** Apply a delta.
526 ** The output buffer should be big enough to hold the whole output
527 ** file and a NUL terminator at the end. The delta_output_size()
528 ** routine will determine this size for you.
530 ** The delta string should be null-terminated. But the delta string
531 ** may contain embedded NUL characters (if the input and output are
532 ** binary files) so we also have to pass in the length of the delta in
533 ** the lenDelta parameter.
535 ** This function returns the size of the output file in bytes (excluding
536 ** the final NUL terminator character). Except, if the delta string is
537 ** malformed or intended for use with a source file other than zSrc,
538 ** then this routine returns -1.
540 ** Refer to the delta_create() documentation above for a description
541 ** of the delta file format.
543 static int rbuDeltaApply(
544 const char *zSrc, /* The source or pattern file */
545 int lenSrc, /* Length of the source file */
546 const char *zDelta, /* Delta to apply to the pattern */
547 int lenDelta, /* Length of the delta */
548 char *zOut /* Write the output into this preallocated buffer */
550 unsigned int limit;
551 unsigned int total = 0;
552 #if RBU_ENABLE_DELTA_CKSUM
553 char *zOrigOut = zOut;
554 #endif
556 limit = rbuDeltaGetInt(&zDelta, &lenDelta);
557 if( *zDelta!='\n' ){
558 /* ERROR: size integer not terminated by "\n" */
559 return -1;
561 zDelta++; lenDelta--;
562 while( *zDelta && lenDelta>0 ){
563 unsigned int cnt, ofst;
564 cnt = rbuDeltaGetInt(&zDelta, &lenDelta);
565 switch( zDelta[0] ){
566 case '@': {
567 zDelta++; lenDelta--;
568 ofst = rbuDeltaGetInt(&zDelta, &lenDelta);
569 if( lenDelta>0 && zDelta[0]!=',' ){
570 /* ERROR: copy command not terminated by ',' */
571 return -1;
573 zDelta++; lenDelta--;
574 total += cnt;
575 if( total>limit ){
576 /* ERROR: copy exceeds output file size */
577 return -1;
579 if( (int)(ofst+cnt) > lenSrc ){
580 /* ERROR: copy extends past end of input */
581 return -1;
583 memcpy(zOut, &zSrc[ofst], cnt);
584 zOut += cnt;
585 break;
587 case ':': {
588 zDelta++; lenDelta--;
589 total += cnt;
590 if( total>limit ){
591 /* ERROR: insert command gives an output larger than predicted */
592 return -1;
594 if( (int)cnt>lenDelta ){
595 /* ERROR: insert count exceeds size of delta */
596 return -1;
598 memcpy(zOut, zDelta, cnt);
599 zOut += cnt;
600 zDelta += cnt;
601 lenDelta -= cnt;
602 break;
604 case ';': {
605 zDelta++; lenDelta--;
606 zOut[0] = 0;
607 #if RBU_ENABLE_DELTA_CKSUM
608 if( cnt!=rbuDeltaChecksum(zOrigOut, total) ){
609 /* ERROR: bad checksum */
610 return -1;
612 #endif
613 if( total!=limit ){
614 /* ERROR: generated size does not match predicted size */
615 return -1;
617 return total;
619 default: {
620 /* ERROR: unknown delta operator */
621 return -1;
625 /* ERROR: unterminated delta */
626 return -1;
629 static int rbuDeltaOutputSize(const char *zDelta, int lenDelta){
630 int size;
631 size = rbuDeltaGetInt(&zDelta, &lenDelta);
632 if( *zDelta!='\n' ){
633 /* ERROR: size integer not terminated by "\n" */
634 return -1;
636 return size;
640 ** End of code taken from fossil.
641 *************************************************************************/
644 ** Implementation of SQL scalar function rbu_fossil_delta().
646 ** This function applies a fossil delta patch to a blob. Exactly two
647 ** arguments must be passed to this function. The first is the blob to
648 ** patch and the second the patch to apply. If no error occurs, this
649 ** function returns the patched blob.
651 static void rbuFossilDeltaFunc(
652 sqlite3_context *context,
653 int argc,
654 sqlite3_value **argv
656 const char *aDelta;
657 int nDelta;
658 const char *aOrig;
659 int nOrig;
661 int nOut;
662 int nOut2;
663 char *aOut;
665 assert( argc==2 );
667 nOrig = sqlite3_value_bytes(argv[0]);
668 aOrig = (const char*)sqlite3_value_blob(argv[0]);
669 nDelta = sqlite3_value_bytes(argv[1]);
670 aDelta = (const char*)sqlite3_value_blob(argv[1]);
672 /* Figure out the size of the output */
673 nOut = rbuDeltaOutputSize(aDelta, nDelta);
674 if( nOut<0 ){
675 sqlite3_result_error(context, "corrupt fossil delta", -1);
676 return;
679 aOut = sqlite3_malloc(nOut+1);
680 if( aOut==0 ){
681 sqlite3_result_error_nomem(context);
682 }else{
683 nOut2 = rbuDeltaApply(aOrig, nOrig, aDelta, nDelta, aOut);
684 if( nOut2!=nOut ){
685 sqlite3_result_error(context, "corrupt fossil delta", -1);
686 }else{
687 sqlite3_result_blob(context, aOut, nOut, sqlite3_free);
694 ** Prepare the SQL statement in buffer zSql against database handle db.
695 ** If successful, set *ppStmt to point to the new statement and return
696 ** SQLITE_OK.
698 ** Otherwise, if an error does occur, set *ppStmt to NULL and return
699 ** an SQLite error code. Additionally, set output variable *pzErrmsg to
700 ** point to a buffer containing an error message. It is the responsibility
701 ** of the caller to (eventually) free this buffer using sqlite3_free().
703 static int prepareAndCollectError(
704 sqlite3 *db,
705 sqlite3_stmt **ppStmt,
706 char **pzErrmsg,
707 const char *zSql
709 int rc = sqlite3_prepare_v2(db, zSql, -1, ppStmt, 0);
710 if( rc!=SQLITE_OK ){
711 *pzErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(db));
712 *ppStmt = 0;
714 return rc;
718 ** Reset the SQL statement passed as the first argument. Return a copy
719 ** of the value returned by sqlite3_reset().
721 ** If an error has occurred, then set *pzErrmsg to point to a buffer
722 ** containing an error message. It is the responsibility of the caller
723 ** to eventually free this buffer using sqlite3_free().
725 static int resetAndCollectError(sqlite3_stmt *pStmt, char **pzErrmsg){
726 int rc = sqlite3_reset(pStmt);
727 if( rc!=SQLITE_OK ){
728 *pzErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(sqlite3_db_handle(pStmt)));
730 return rc;
734 ** Unless it is NULL, argument zSql points to a buffer allocated using
735 ** sqlite3_malloc containing an SQL statement. This function prepares the SQL
736 ** statement against database db and frees the buffer. If statement
737 ** compilation is successful, *ppStmt is set to point to the new statement
738 ** handle and SQLITE_OK is returned.
740 ** Otherwise, if an error occurs, *ppStmt is set to NULL and an error code
741 ** returned. In this case, *pzErrmsg may also be set to point to an error
742 ** message. It is the responsibility of the caller to free this error message
743 ** buffer using sqlite3_free().
745 ** If argument zSql is NULL, this function assumes that an OOM has occurred.
746 ** In this case SQLITE_NOMEM is returned and *ppStmt set to NULL.
748 static int prepareFreeAndCollectError(
749 sqlite3 *db,
750 sqlite3_stmt **ppStmt,
751 char **pzErrmsg,
752 char *zSql
754 int rc;
755 assert( *pzErrmsg==0 );
756 if( zSql==0 ){
757 rc = SQLITE_NOMEM;
758 *ppStmt = 0;
759 }else{
760 rc = prepareAndCollectError(db, ppStmt, pzErrmsg, zSql);
761 sqlite3_free(zSql);
763 return rc;
767 ** Free the RbuObjIter.azTblCol[] and RbuObjIter.abTblPk[] arrays allocated
768 ** by an earlier call to rbuObjIterCacheTableInfo().
770 static void rbuObjIterFreeCols(RbuObjIter *pIter){
771 int i;
772 for(i=0; i<pIter->nTblCol; i++){
773 sqlite3_free(pIter->azTblCol[i]);
774 sqlite3_free(pIter->azTblType[i]);
776 sqlite3_free(pIter->azTblCol);
777 pIter->azTblCol = 0;
778 pIter->azTblType = 0;
779 pIter->aiSrcOrder = 0;
780 pIter->abTblPk = 0;
781 pIter->abNotNull = 0;
782 pIter->nTblCol = 0;
783 pIter->eType = 0; /* Invalid value */
787 ** Finalize all statements and free all allocations that are specific to
788 ** the current object (table/index pair).
790 static void rbuObjIterClearStatements(RbuObjIter *pIter){
791 RbuUpdateStmt *pUp;
793 sqlite3_finalize(pIter->pSelect);
794 sqlite3_finalize(pIter->pInsert);
795 sqlite3_finalize(pIter->pDelete);
796 sqlite3_finalize(pIter->pTmpInsert);
797 pUp = pIter->pRbuUpdate;
798 while( pUp ){
799 RbuUpdateStmt *pTmp = pUp->pNext;
800 sqlite3_finalize(pUp->pUpdate);
801 sqlite3_free(pUp);
802 pUp = pTmp;
805 pIter->pSelect = 0;
806 pIter->pInsert = 0;
807 pIter->pDelete = 0;
808 pIter->pRbuUpdate = 0;
809 pIter->pTmpInsert = 0;
810 pIter->nCol = 0;
814 ** Clean up any resources allocated as part of the iterator object passed
815 ** as the only argument.
817 static void rbuObjIterFinalize(RbuObjIter *pIter){
818 rbuObjIterClearStatements(pIter);
819 sqlite3_finalize(pIter->pTblIter);
820 sqlite3_finalize(pIter->pIdxIter);
821 rbuObjIterFreeCols(pIter);
822 memset(pIter, 0, sizeof(RbuObjIter));
826 ** Advance the iterator to the next position.
828 ** If no error occurs, SQLITE_OK is returned and the iterator is left
829 ** pointing to the next entry. Otherwise, an error code and message is
830 ** left in the RBU handle passed as the first argument. A copy of the
831 ** error code is returned.
833 static int rbuObjIterNext(sqlite3rbu *p, RbuObjIter *pIter){
834 int rc = p->rc;
835 if( rc==SQLITE_OK ){
837 /* Free any SQLite statements used while processing the previous object */
838 rbuObjIterClearStatements(pIter);
839 if( pIter->zIdx==0 ){
840 rc = sqlite3_exec(p->dbMain,
841 "DROP TRIGGER IF EXISTS temp.rbu_insert_tr;"
842 "DROP TRIGGER IF EXISTS temp.rbu_update1_tr;"
843 "DROP TRIGGER IF EXISTS temp.rbu_update2_tr;"
844 "DROP TRIGGER IF EXISTS temp.rbu_delete_tr;"
845 , 0, 0, &p->zErrmsg
849 if( rc==SQLITE_OK ){
850 if( pIter->bCleanup ){
851 rbuObjIterFreeCols(pIter);
852 pIter->bCleanup = 0;
853 rc = sqlite3_step(pIter->pTblIter);
854 if( rc!=SQLITE_ROW ){
855 rc = resetAndCollectError(pIter->pTblIter, &p->zErrmsg);
856 pIter->zTbl = 0;
857 }else{
858 pIter->zTbl = (const char*)sqlite3_column_text(pIter->pTblIter, 0);
859 pIter->zDataTbl = (const char*)sqlite3_column_text(pIter->pTblIter,1);
860 rc = (pIter->zDataTbl && pIter->zTbl) ? SQLITE_OK : SQLITE_NOMEM;
862 }else{
863 if( pIter->zIdx==0 ){
864 sqlite3_stmt *pIdx = pIter->pIdxIter;
865 rc = sqlite3_bind_text(pIdx, 1, pIter->zTbl, -1, SQLITE_STATIC);
867 if( rc==SQLITE_OK ){
868 rc = sqlite3_step(pIter->pIdxIter);
869 if( rc!=SQLITE_ROW ){
870 rc = resetAndCollectError(pIter->pIdxIter, &p->zErrmsg);
871 pIter->bCleanup = 1;
872 pIter->zIdx = 0;
873 }else{
874 pIter->zIdx = (const char*)sqlite3_column_text(pIter->pIdxIter, 0);
875 pIter->iTnum = sqlite3_column_int(pIter->pIdxIter, 1);
876 pIter->bUnique = sqlite3_column_int(pIter->pIdxIter, 2);
877 rc = pIter->zIdx ? SQLITE_OK : SQLITE_NOMEM;
884 if( rc!=SQLITE_OK ){
885 rbuObjIterFinalize(pIter);
886 p->rc = rc;
888 return rc;
893 ** The implementation of the rbu_target_name() SQL function. This function
894 ** accepts one or two arguments. The first argument is the name of a table -
895 ** the name of a table in the RBU database. The second, if it is present, is 1
896 ** for a view or 0 for a table.
898 ** For a non-vacuum RBU handle, if the table name matches the pattern:
900 ** data[0-9]_<name>
902 ** where <name> is any sequence of 1 or more characters, <name> is returned.
903 ** Otherwise, if the only argument does not match the above pattern, an SQL
904 ** NULL is returned.
906 ** "data_t1" -> "t1"
907 ** "data0123_t2" -> "t2"
908 ** "dataAB_t3" -> NULL
910 ** For an rbu vacuum handle, a copy of the first argument is returned if
911 ** the second argument is either missing or 0 (not a view).
913 static void rbuTargetNameFunc(
914 sqlite3_context *pCtx,
915 int argc,
916 sqlite3_value **argv
918 sqlite3rbu *p = sqlite3_user_data(pCtx);
919 const char *zIn;
920 assert( argc==1 || argc==2 );
922 zIn = (const char*)sqlite3_value_text(argv[0]);
923 if( zIn ){
924 if( rbuIsVacuum(p) ){
925 if( argc==1 || 0==sqlite3_value_int(argv[1]) ){
926 sqlite3_result_text(pCtx, zIn, -1, SQLITE_STATIC);
928 }else{
929 if( strlen(zIn)>4 && memcmp("data", zIn, 4)==0 ){
930 int i;
931 for(i=4; zIn[i]>='0' && zIn[i]<='9'; i++);
932 if( zIn[i]=='_' && zIn[i+1] ){
933 sqlite3_result_text(pCtx, &zIn[i+1], -1, SQLITE_STATIC);
941 ** Initialize the iterator structure passed as the second argument.
943 ** If no error occurs, SQLITE_OK is returned and the iterator is left
944 ** pointing to the first entry. Otherwise, an error code and message is
945 ** left in the RBU handle passed as the first argument. A copy of the
946 ** error code is returned.
948 static int rbuObjIterFirst(sqlite3rbu *p, RbuObjIter *pIter){
949 int rc;
950 memset(pIter, 0, sizeof(RbuObjIter));
952 rc = prepareFreeAndCollectError(p->dbRbu, &pIter->pTblIter, &p->zErrmsg,
953 sqlite3_mprintf(
954 "SELECT rbu_target_name(name, type='view') AS target, name "
955 "FROM sqlite_master "
956 "WHERE type IN ('table', 'view') AND target IS NOT NULL "
957 " %s "
958 "ORDER BY name"
959 , rbuIsVacuum(p) ? "AND rootpage!=0 AND rootpage IS NOT NULL" : ""));
961 if( rc==SQLITE_OK ){
962 rc = prepareAndCollectError(p->dbMain, &pIter->pIdxIter, &p->zErrmsg,
963 "SELECT name, rootpage, sql IS NULL OR substr(8, 6)=='UNIQUE' "
964 " FROM main.sqlite_master "
965 " WHERE type='index' AND tbl_name = ?"
969 pIter->bCleanup = 1;
970 p->rc = rc;
971 return rbuObjIterNext(p, pIter);
975 ** This is a wrapper around "sqlite3_mprintf(zFmt, ...)". If an OOM occurs,
976 ** an error code is stored in the RBU handle passed as the first argument.
978 ** If an error has already occurred (p->rc is already set to something other
979 ** than SQLITE_OK), then this function returns NULL without modifying the
980 ** stored error code. In this case it still calls sqlite3_free() on any
981 ** printf() parameters associated with %z conversions.
983 static char *rbuMPrintf(sqlite3rbu *p, const char *zFmt, ...){
984 char *zSql = 0;
985 va_list ap;
986 va_start(ap, zFmt);
987 zSql = sqlite3_vmprintf(zFmt, ap);
988 if( p->rc==SQLITE_OK ){
989 if( zSql==0 ) p->rc = SQLITE_NOMEM;
990 }else{
991 sqlite3_free(zSql);
992 zSql = 0;
994 va_end(ap);
995 return zSql;
999 ** Argument zFmt is a sqlite3_mprintf() style format string. The trailing
1000 ** arguments are the usual subsitution values. This function performs
1001 ** the printf() style substitutions and executes the result as an SQL
1002 ** statement on the RBU handles database.
1004 ** If an error occurs, an error code and error message is stored in the
1005 ** RBU handle. If an error has already occurred when this function is
1006 ** called, it is a no-op.
1008 static int rbuMPrintfExec(sqlite3rbu *p, sqlite3 *db, const char *zFmt, ...){
1009 va_list ap;
1010 char *zSql;
1011 va_start(ap, zFmt);
1012 zSql = sqlite3_vmprintf(zFmt, ap);
1013 if( p->rc==SQLITE_OK ){
1014 if( zSql==0 ){
1015 p->rc = SQLITE_NOMEM;
1016 }else{
1017 p->rc = sqlite3_exec(db, zSql, 0, 0, &p->zErrmsg);
1020 sqlite3_free(zSql);
1021 va_end(ap);
1022 return p->rc;
1026 ** Attempt to allocate and return a pointer to a zeroed block of nByte
1027 ** bytes.
1029 ** If an error (i.e. an OOM condition) occurs, return NULL and leave an
1030 ** error code in the rbu handle passed as the first argument. Or, if an
1031 ** error has already occurred when this function is called, return NULL
1032 ** immediately without attempting the allocation or modifying the stored
1033 ** error code.
1035 static void *rbuMalloc(sqlite3rbu *p, int nByte){
1036 void *pRet = 0;
1037 if( p->rc==SQLITE_OK ){
1038 assert( nByte>0 );
1039 pRet = sqlite3_malloc64(nByte);
1040 if( pRet==0 ){
1041 p->rc = SQLITE_NOMEM;
1042 }else{
1043 memset(pRet, 0, nByte);
1046 return pRet;
1051 ** Allocate and zero the pIter->azTblCol[] and abTblPk[] arrays so that
1052 ** there is room for at least nCol elements. If an OOM occurs, store an
1053 ** error code in the RBU handle passed as the first argument.
1055 static void rbuAllocateIterArrays(sqlite3rbu *p, RbuObjIter *pIter, int nCol){
1056 int nByte = (2*sizeof(char*) + sizeof(int) + 3*sizeof(u8)) * nCol;
1057 char **azNew;
1059 azNew = (char**)rbuMalloc(p, nByte);
1060 if( azNew ){
1061 pIter->azTblCol = azNew;
1062 pIter->azTblType = &azNew[nCol];
1063 pIter->aiSrcOrder = (int*)&pIter->azTblType[nCol];
1064 pIter->abTblPk = (u8*)&pIter->aiSrcOrder[nCol];
1065 pIter->abNotNull = (u8*)&pIter->abTblPk[nCol];
1066 pIter->abIndexed = (u8*)&pIter->abNotNull[nCol];
1071 ** The first argument must be a nul-terminated string. This function
1072 ** returns a copy of the string in memory obtained from sqlite3_malloc().
1073 ** It is the responsibility of the caller to eventually free this memory
1074 ** using sqlite3_free().
1076 ** If an OOM condition is encountered when attempting to allocate memory,
1077 ** output variable (*pRc) is set to SQLITE_NOMEM before returning. Otherwise,
1078 ** if the allocation succeeds, (*pRc) is left unchanged.
1080 static char *rbuStrndup(const char *zStr, int *pRc){
1081 char *zRet = 0;
1083 assert( *pRc==SQLITE_OK );
1084 if( zStr ){
1085 size_t nCopy = strlen(zStr) + 1;
1086 zRet = (char*)sqlite3_malloc64(nCopy);
1087 if( zRet ){
1088 memcpy(zRet, zStr, nCopy);
1089 }else{
1090 *pRc = SQLITE_NOMEM;
1094 return zRet;
1098 ** Finalize the statement passed as the second argument.
1100 ** If the sqlite3_finalize() call indicates that an error occurs, and the
1101 ** rbu handle error code is not already set, set the error code and error
1102 ** message accordingly.
1104 static void rbuFinalize(sqlite3rbu *p, sqlite3_stmt *pStmt){
1105 sqlite3 *db = sqlite3_db_handle(pStmt);
1106 int rc = sqlite3_finalize(pStmt);
1107 if( p->rc==SQLITE_OK && rc!=SQLITE_OK ){
1108 p->rc = rc;
1109 p->zErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(db));
1113 /* Determine the type of a table.
1115 ** peType is of type (int*), a pointer to an output parameter of type
1116 ** (int). This call sets the output parameter as follows, depending
1117 ** on the type of the table specified by parameters dbName and zTbl.
1119 ** RBU_PK_NOTABLE: No such table.
1120 ** RBU_PK_NONE: Table has an implicit rowid.
1121 ** RBU_PK_IPK: Table has an explicit IPK column.
1122 ** RBU_PK_EXTERNAL: Table has an external PK index.
1123 ** RBU_PK_WITHOUT_ROWID: Table is WITHOUT ROWID.
1124 ** RBU_PK_VTAB: Table is a virtual table.
1126 ** Argument *piPk is also of type (int*), and also points to an output
1127 ** parameter. Unless the table has an external primary key index
1128 ** (i.e. unless *peType is set to 3), then *piPk is set to zero. Or,
1129 ** if the table does have an external primary key index, then *piPk
1130 ** is set to the root page number of the primary key index before
1131 ** returning.
1133 ** ALGORITHM:
1135 ** if( no entry exists in sqlite_master ){
1136 ** return RBU_PK_NOTABLE
1137 ** }else if( sql for the entry starts with "CREATE VIRTUAL" ){
1138 ** return RBU_PK_VTAB
1139 ** }else if( "PRAGMA index_list()" for the table contains a "pk" index ){
1140 ** if( the index that is the pk exists in sqlite_master ){
1141 ** *piPK = rootpage of that index.
1142 ** return RBU_PK_EXTERNAL
1143 ** }else{
1144 ** return RBU_PK_WITHOUT_ROWID
1145 ** }
1146 ** }else if( "PRAGMA table_info()" lists one or more "pk" columns ){
1147 ** return RBU_PK_IPK
1148 ** }else{
1149 ** return RBU_PK_NONE
1150 ** }
1152 static void rbuTableType(
1153 sqlite3rbu *p,
1154 const char *zTab,
1155 int *peType,
1156 int *piTnum,
1157 int *piPk
1160 ** 0) SELECT count(*) FROM sqlite_master where name=%Q AND IsVirtual(%Q)
1161 ** 1) PRAGMA index_list = ?
1162 ** 2) SELECT count(*) FROM sqlite_master where name=%Q
1163 ** 3) PRAGMA table_info = ?
1165 sqlite3_stmt *aStmt[4] = {0, 0, 0, 0};
1167 *peType = RBU_PK_NOTABLE;
1168 *piPk = 0;
1170 assert( p->rc==SQLITE_OK );
1171 p->rc = prepareFreeAndCollectError(p->dbMain, &aStmt[0], &p->zErrmsg,
1172 sqlite3_mprintf(
1173 "SELECT (sql LIKE 'create virtual%%'), rootpage"
1174 " FROM sqlite_master"
1175 " WHERE name=%Q", zTab
1177 if( p->rc!=SQLITE_OK || sqlite3_step(aStmt[0])!=SQLITE_ROW ){
1178 /* Either an error, or no such table. */
1179 goto rbuTableType_end;
1181 if( sqlite3_column_int(aStmt[0], 0) ){
1182 *peType = RBU_PK_VTAB; /* virtual table */
1183 goto rbuTableType_end;
1185 *piTnum = sqlite3_column_int(aStmt[0], 1);
1187 p->rc = prepareFreeAndCollectError(p->dbMain, &aStmt[1], &p->zErrmsg,
1188 sqlite3_mprintf("PRAGMA index_list=%Q",zTab)
1190 if( p->rc ) goto rbuTableType_end;
1191 while( sqlite3_step(aStmt[1])==SQLITE_ROW ){
1192 const u8 *zOrig = sqlite3_column_text(aStmt[1], 3);
1193 const u8 *zIdx = sqlite3_column_text(aStmt[1], 1);
1194 if( zOrig && zIdx && zOrig[0]=='p' ){
1195 p->rc = prepareFreeAndCollectError(p->dbMain, &aStmt[2], &p->zErrmsg,
1196 sqlite3_mprintf(
1197 "SELECT rootpage FROM sqlite_master WHERE name = %Q", zIdx
1199 if( p->rc==SQLITE_OK ){
1200 if( sqlite3_step(aStmt[2])==SQLITE_ROW ){
1201 *piPk = sqlite3_column_int(aStmt[2], 0);
1202 *peType = RBU_PK_EXTERNAL;
1203 }else{
1204 *peType = RBU_PK_WITHOUT_ROWID;
1207 goto rbuTableType_end;
1211 p->rc = prepareFreeAndCollectError(p->dbMain, &aStmt[3], &p->zErrmsg,
1212 sqlite3_mprintf("PRAGMA table_info=%Q",zTab)
1214 if( p->rc==SQLITE_OK ){
1215 while( sqlite3_step(aStmt[3])==SQLITE_ROW ){
1216 if( sqlite3_column_int(aStmt[3],5)>0 ){
1217 *peType = RBU_PK_IPK; /* explicit IPK column */
1218 goto rbuTableType_end;
1221 *peType = RBU_PK_NONE;
1224 rbuTableType_end: {
1225 unsigned int i;
1226 for(i=0; i<sizeof(aStmt)/sizeof(aStmt[0]); i++){
1227 rbuFinalize(p, aStmt[i]);
1233 ** This is a helper function for rbuObjIterCacheTableInfo(). It populates
1234 ** the pIter->abIndexed[] array.
1236 static void rbuObjIterCacheIndexedCols(sqlite3rbu *p, RbuObjIter *pIter){
1237 sqlite3_stmt *pList = 0;
1238 int bIndex = 0;
1240 if( p->rc==SQLITE_OK ){
1241 memcpy(pIter->abIndexed, pIter->abTblPk, sizeof(u8)*pIter->nTblCol);
1242 p->rc = prepareFreeAndCollectError(p->dbMain, &pList, &p->zErrmsg,
1243 sqlite3_mprintf("PRAGMA main.index_list = %Q", pIter->zTbl)
1247 pIter->nIndex = 0;
1248 while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pList) ){
1249 const char *zIdx = (const char*)sqlite3_column_text(pList, 1);
1250 sqlite3_stmt *pXInfo = 0;
1251 if( zIdx==0 ) break;
1252 p->rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg,
1253 sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", zIdx)
1255 while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){
1256 int iCid = sqlite3_column_int(pXInfo, 1);
1257 if( iCid>=0 ) pIter->abIndexed[iCid] = 1;
1259 rbuFinalize(p, pXInfo);
1260 bIndex = 1;
1261 pIter->nIndex++;
1264 if( pIter->eType==RBU_PK_WITHOUT_ROWID ){
1265 /* "PRAGMA index_list" includes the main PK b-tree */
1266 pIter->nIndex--;
1269 rbuFinalize(p, pList);
1270 if( bIndex==0 ) pIter->abIndexed = 0;
1275 ** If they are not already populated, populate the pIter->azTblCol[],
1276 ** pIter->abTblPk[], pIter->nTblCol and pIter->bRowid variables according to
1277 ** the table (not index) that the iterator currently points to.
1279 ** Return SQLITE_OK if successful, or an SQLite error code otherwise. If
1280 ** an error does occur, an error code and error message are also left in
1281 ** the RBU handle.
1283 static int rbuObjIterCacheTableInfo(sqlite3rbu *p, RbuObjIter *pIter){
1284 if( pIter->azTblCol==0 ){
1285 sqlite3_stmt *pStmt = 0;
1286 int nCol = 0;
1287 int i; /* for() loop iterator variable */
1288 int bRbuRowid = 0; /* If input table has column "rbu_rowid" */
1289 int iOrder = 0;
1290 int iTnum = 0;
1292 /* Figure out the type of table this step will deal with. */
1293 assert( pIter->eType==0 );
1294 rbuTableType(p, pIter->zTbl, &pIter->eType, &iTnum, &pIter->iPkTnum);
1295 if( p->rc==SQLITE_OK && pIter->eType==RBU_PK_NOTABLE ){
1296 p->rc = SQLITE_ERROR;
1297 p->zErrmsg = sqlite3_mprintf("no such table: %s", pIter->zTbl);
1299 if( p->rc ) return p->rc;
1300 if( pIter->zIdx==0 ) pIter->iTnum = iTnum;
1302 assert( pIter->eType==RBU_PK_NONE || pIter->eType==RBU_PK_IPK
1303 || pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_WITHOUT_ROWID
1304 || pIter->eType==RBU_PK_VTAB
1307 /* Populate the azTblCol[] and nTblCol variables based on the columns
1308 ** of the input table. Ignore any input table columns that begin with
1309 ** "rbu_". */
1310 p->rc = prepareFreeAndCollectError(p->dbRbu, &pStmt, &p->zErrmsg,
1311 sqlite3_mprintf("SELECT * FROM '%q'", pIter->zDataTbl)
1313 if( p->rc==SQLITE_OK ){
1314 nCol = sqlite3_column_count(pStmt);
1315 rbuAllocateIterArrays(p, pIter, nCol);
1317 for(i=0; p->rc==SQLITE_OK && i<nCol; i++){
1318 const char *zName = (const char*)sqlite3_column_name(pStmt, i);
1319 if( sqlite3_strnicmp("rbu_", zName, 4) ){
1320 char *zCopy = rbuStrndup(zName, &p->rc);
1321 pIter->aiSrcOrder[pIter->nTblCol] = pIter->nTblCol;
1322 pIter->azTblCol[pIter->nTblCol++] = zCopy;
1324 else if( 0==sqlite3_stricmp("rbu_rowid", zName) ){
1325 bRbuRowid = 1;
1328 sqlite3_finalize(pStmt);
1329 pStmt = 0;
1331 if( p->rc==SQLITE_OK
1332 && rbuIsVacuum(p)==0
1333 && bRbuRowid!=(pIter->eType==RBU_PK_VTAB || pIter->eType==RBU_PK_NONE)
1335 p->rc = SQLITE_ERROR;
1336 p->zErrmsg = sqlite3_mprintf(
1337 "table %q %s rbu_rowid column", pIter->zDataTbl,
1338 (bRbuRowid ? "may not have" : "requires")
1342 /* Check that all non-HIDDEN columns in the destination table are also
1343 ** present in the input table. Populate the abTblPk[], azTblType[] and
1344 ** aiTblOrder[] arrays at the same time. */
1345 if( p->rc==SQLITE_OK ){
1346 p->rc = prepareFreeAndCollectError(p->dbMain, &pStmt, &p->zErrmsg,
1347 sqlite3_mprintf("PRAGMA table_info(%Q)", pIter->zTbl)
1350 while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
1351 const char *zName = (const char*)sqlite3_column_text(pStmt, 1);
1352 if( zName==0 ) break; /* An OOM - finalize() below returns S_NOMEM */
1353 for(i=iOrder; i<pIter->nTblCol; i++){
1354 if( 0==strcmp(zName, pIter->azTblCol[i]) ) break;
1356 if( i==pIter->nTblCol ){
1357 p->rc = SQLITE_ERROR;
1358 p->zErrmsg = sqlite3_mprintf("column missing from %q: %s",
1359 pIter->zDataTbl, zName
1361 }else{
1362 int iPk = sqlite3_column_int(pStmt, 5);
1363 int bNotNull = sqlite3_column_int(pStmt, 3);
1364 const char *zType = (const char*)sqlite3_column_text(pStmt, 2);
1366 if( i!=iOrder ){
1367 SWAP(int, pIter->aiSrcOrder[i], pIter->aiSrcOrder[iOrder]);
1368 SWAP(char*, pIter->azTblCol[i], pIter->azTblCol[iOrder]);
1371 pIter->azTblType[iOrder] = rbuStrndup(zType, &p->rc);
1372 pIter->abTblPk[iOrder] = (iPk!=0);
1373 pIter->abNotNull[iOrder] = (u8)bNotNull || (iPk!=0);
1374 iOrder++;
1378 rbuFinalize(p, pStmt);
1379 rbuObjIterCacheIndexedCols(p, pIter);
1380 assert( pIter->eType!=RBU_PK_VTAB || pIter->abIndexed==0 );
1381 assert( pIter->eType!=RBU_PK_VTAB || pIter->nIndex==0 );
1384 return p->rc;
1388 ** This function constructs and returns a pointer to a nul-terminated
1389 ** string containing some SQL clause or list based on one or more of the
1390 ** column names currently stored in the pIter->azTblCol[] array.
1392 static char *rbuObjIterGetCollist(
1393 sqlite3rbu *p, /* RBU object */
1394 RbuObjIter *pIter /* Object iterator for column names */
1396 char *zList = 0;
1397 const char *zSep = "";
1398 int i;
1399 for(i=0; i<pIter->nTblCol; i++){
1400 const char *z = pIter->azTblCol[i];
1401 zList = rbuMPrintf(p, "%z%s\"%w\"", zList, zSep, z);
1402 zSep = ", ";
1404 return zList;
1408 ** This function is used to create a SELECT list (the list of SQL
1409 ** expressions that follows a SELECT keyword) for a SELECT statement
1410 ** used to read from an data_xxx or rbu_tmp_xxx table while updating the
1411 ** index object currently indicated by the iterator object passed as the
1412 ** second argument. A "PRAGMA index_xinfo = <idxname>" statement is used
1413 ** to obtain the required information.
1415 ** If the index is of the following form:
1417 ** CREATE INDEX i1 ON t1(c, b COLLATE nocase);
1419 ** and "t1" is a table with an explicit INTEGER PRIMARY KEY column
1420 ** "ipk", the returned string is:
1422 ** "`c` COLLATE 'BINARY', `b` COLLATE 'NOCASE', `ipk` COLLATE 'BINARY'"
1424 ** As well as the returned string, three other malloc'd strings are
1425 ** returned via output parameters. As follows:
1427 ** pzImposterCols: ...
1428 ** pzImposterPk: ...
1429 ** pzWhere: ...
1431 static char *rbuObjIterGetIndexCols(
1432 sqlite3rbu *p, /* RBU object */
1433 RbuObjIter *pIter, /* Object iterator for column names */
1434 char **pzImposterCols, /* OUT: Columns for imposter table */
1435 char **pzImposterPk, /* OUT: Imposter PK clause */
1436 char **pzWhere, /* OUT: WHERE clause */
1437 int *pnBind /* OUT: Trbul number of columns */
1439 int rc = p->rc; /* Error code */
1440 int rc2; /* sqlite3_finalize() return code */
1441 char *zRet = 0; /* String to return */
1442 char *zImpCols = 0; /* String to return via *pzImposterCols */
1443 char *zImpPK = 0; /* String to return via *pzImposterPK */
1444 char *zWhere = 0; /* String to return via *pzWhere */
1445 int nBind = 0; /* Value to return via *pnBind */
1446 const char *zCom = ""; /* Set to ", " later on */
1447 const char *zAnd = ""; /* Set to " AND " later on */
1448 sqlite3_stmt *pXInfo = 0; /* PRAGMA index_xinfo = ? */
1450 if( rc==SQLITE_OK ){
1451 assert( p->zErrmsg==0 );
1452 rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg,
1453 sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", pIter->zIdx)
1457 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){
1458 int iCid = sqlite3_column_int(pXInfo, 1);
1459 int bDesc = sqlite3_column_int(pXInfo, 3);
1460 const char *zCollate = (const char*)sqlite3_column_text(pXInfo, 4);
1461 const char *zCol;
1462 const char *zType;
1464 if( iCid<0 ){
1465 /* An integer primary key. If the table has an explicit IPK, use
1466 ** its name. Otherwise, use "rbu_rowid". */
1467 if( pIter->eType==RBU_PK_IPK ){
1468 int i;
1469 for(i=0; pIter->abTblPk[i]==0; i++);
1470 assert( i<pIter->nTblCol );
1471 zCol = pIter->azTblCol[i];
1472 }else if( rbuIsVacuum(p) ){
1473 zCol = "_rowid_";
1474 }else{
1475 zCol = "rbu_rowid";
1477 zType = "INTEGER";
1478 }else{
1479 zCol = pIter->azTblCol[iCid];
1480 zType = pIter->azTblType[iCid];
1483 zRet = sqlite3_mprintf("%z%s\"%w\" COLLATE %Q", zRet, zCom, zCol, zCollate);
1484 if( pIter->bUnique==0 || sqlite3_column_int(pXInfo, 5) ){
1485 const char *zOrder = (bDesc ? " DESC" : "");
1486 zImpPK = sqlite3_mprintf("%z%s\"rbu_imp_%d%w\"%s",
1487 zImpPK, zCom, nBind, zCol, zOrder
1490 zImpCols = sqlite3_mprintf("%z%s\"rbu_imp_%d%w\" %s COLLATE %Q",
1491 zImpCols, zCom, nBind, zCol, zType, zCollate
1493 zWhere = sqlite3_mprintf(
1494 "%z%s\"rbu_imp_%d%w\" IS ?", zWhere, zAnd, nBind, zCol
1496 if( zRet==0 || zImpPK==0 || zImpCols==0 || zWhere==0 ) rc = SQLITE_NOMEM;
1497 zCom = ", ";
1498 zAnd = " AND ";
1499 nBind++;
1502 rc2 = sqlite3_finalize(pXInfo);
1503 if( rc==SQLITE_OK ) rc = rc2;
1505 if( rc!=SQLITE_OK ){
1506 sqlite3_free(zRet);
1507 sqlite3_free(zImpCols);
1508 sqlite3_free(zImpPK);
1509 sqlite3_free(zWhere);
1510 zRet = 0;
1511 zImpCols = 0;
1512 zImpPK = 0;
1513 zWhere = 0;
1514 p->rc = rc;
1517 *pzImposterCols = zImpCols;
1518 *pzImposterPk = zImpPK;
1519 *pzWhere = zWhere;
1520 *pnBind = nBind;
1521 return zRet;
1525 ** Assuming the current table columns are "a", "b" and "c", and the zObj
1526 ** paramter is passed "old", return a string of the form:
1528 ** "old.a, old.b, old.b"
1530 ** With the column names escaped.
1532 ** For tables with implicit rowids - RBU_PK_EXTERNAL and RBU_PK_NONE, append
1533 ** the text ", old._rowid_" to the returned value.
1535 static char *rbuObjIterGetOldlist(
1536 sqlite3rbu *p,
1537 RbuObjIter *pIter,
1538 const char *zObj
1540 char *zList = 0;
1541 if( p->rc==SQLITE_OK && pIter->abIndexed ){
1542 const char *zS = "";
1543 int i;
1544 for(i=0; i<pIter->nTblCol; i++){
1545 if( pIter->abIndexed[i] ){
1546 const char *zCol = pIter->azTblCol[i];
1547 zList = sqlite3_mprintf("%z%s%s.\"%w\"", zList, zS, zObj, zCol);
1548 }else{
1549 zList = sqlite3_mprintf("%z%sNULL", zList, zS);
1551 zS = ", ";
1552 if( zList==0 ){
1553 p->rc = SQLITE_NOMEM;
1554 break;
1558 /* For a table with implicit rowids, append "old._rowid_" to the list. */
1559 if( pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE ){
1560 zList = rbuMPrintf(p, "%z, %s._rowid_", zList, zObj);
1563 return zList;
1567 ** Return an expression that can be used in a WHERE clause to match the
1568 ** primary key of the current table. For example, if the table is:
1570 ** CREATE TABLE t1(a, b, c, PRIMARY KEY(b, c));
1572 ** Return the string:
1574 ** "b = ?1 AND c = ?2"
1576 static char *rbuObjIterGetWhere(
1577 sqlite3rbu *p,
1578 RbuObjIter *pIter
1580 char *zList = 0;
1581 if( pIter->eType==RBU_PK_VTAB || pIter->eType==RBU_PK_NONE ){
1582 zList = rbuMPrintf(p, "_rowid_ = ?%d", pIter->nTblCol+1);
1583 }else if( pIter->eType==RBU_PK_EXTERNAL ){
1584 const char *zSep = "";
1585 int i;
1586 for(i=0; i<pIter->nTblCol; i++){
1587 if( pIter->abTblPk[i] ){
1588 zList = rbuMPrintf(p, "%z%sc%d=?%d", zList, zSep, i, i+1);
1589 zSep = " AND ";
1592 zList = rbuMPrintf(p,
1593 "_rowid_ = (SELECT id FROM rbu_imposter2 WHERE %z)", zList
1596 }else{
1597 const char *zSep = "";
1598 int i;
1599 for(i=0; i<pIter->nTblCol; i++){
1600 if( pIter->abTblPk[i] ){
1601 const char *zCol = pIter->azTblCol[i];
1602 zList = rbuMPrintf(p, "%z%s\"%w\"=?%d", zList, zSep, zCol, i+1);
1603 zSep = " AND ";
1607 return zList;
1611 ** The SELECT statement iterating through the keys for the current object
1612 ** (p->objiter.pSelect) currently points to a valid row. However, there
1613 ** is something wrong with the rbu_control value in the rbu_control value
1614 ** stored in the (p->nCol+1)'th column. Set the error code and error message
1615 ** of the RBU handle to something reflecting this.
1617 static void rbuBadControlError(sqlite3rbu *p){
1618 p->rc = SQLITE_ERROR;
1619 p->zErrmsg = sqlite3_mprintf("invalid rbu_control value");
1624 ** Return a nul-terminated string containing the comma separated list of
1625 ** assignments that should be included following the "SET" keyword of
1626 ** an UPDATE statement used to update the table object that the iterator
1627 ** passed as the second argument currently points to if the rbu_control
1628 ** column of the data_xxx table entry is set to zMask.
1630 ** The memory for the returned string is obtained from sqlite3_malloc().
1631 ** It is the responsibility of the caller to eventually free it using
1632 ** sqlite3_free().
1634 ** If an OOM error is encountered when allocating space for the new
1635 ** string, an error code is left in the rbu handle passed as the first
1636 ** argument and NULL is returned. Or, if an error has already occurred
1637 ** when this function is called, NULL is returned immediately, without
1638 ** attempting the allocation or modifying the stored error code.
1640 static char *rbuObjIterGetSetlist(
1641 sqlite3rbu *p,
1642 RbuObjIter *pIter,
1643 const char *zMask
1645 char *zList = 0;
1646 if( p->rc==SQLITE_OK ){
1647 int i;
1649 if( (int)strlen(zMask)!=pIter->nTblCol ){
1650 rbuBadControlError(p);
1651 }else{
1652 const char *zSep = "";
1653 for(i=0; i<pIter->nTblCol; i++){
1654 char c = zMask[pIter->aiSrcOrder[i]];
1655 if( c=='x' ){
1656 zList = rbuMPrintf(p, "%z%s\"%w\"=?%d",
1657 zList, zSep, pIter->azTblCol[i], i+1
1659 zSep = ", ";
1661 else if( c=='d' ){
1662 zList = rbuMPrintf(p, "%z%s\"%w\"=rbu_delta(\"%w\", ?%d)",
1663 zList, zSep, pIter->azTblCol[i], pIter->azTblCol[i], i+1
1665 zSep = ", ";
1667 else if( c=='f' ){
1668 zList = rbuMPrintf(p, "%z%s\"%w\"=rbu_fossil_delta(\"%w\", ?%d)",
1669 zList, zSep, pIter->azTblCol[i], pIter->azTblCol[i], i+1
1671 zSep = ", ";
1676 return zList;
1680 ** Return a nul-terminated string consisting of nByte comma separated
1681 ** "?" expressions. For example, if nByte is 3, return a pointer to
1682 ** a buffer containing the string "?,?,?".
1684 ** The memory for the returned string is obtained from sqlite3_malloc().
1685 ** It is the responsibility of the caller to eventually free it using
1686 ** sqlite3_free().
1688 ** If an OOM error is encountered when allocating space for the new
1689 ** string, an error code is left in the rbu handle passed as the first
1690 ** argument and NULL is returned. Or, if an error has already occurred
1691 ** when this function is called, NULL is returned immediately, without
1692 ** attempting the allocation or modifying the stored error code.
1694 static char *rbuObjIterGetBindlist(sqlite3rbu *p, int nBind){
1695 char *zRet = 0;
1696 int nByte = nBind*2 + 1;
1698 zRet = (char*)rbuMalloc(p, nByte);
1699 if( zRet ){
1700 int i;
1701 for(i=0; i<nBind; i++){
1702 zRet[i*2] = '?';
1703 zRet[i*2+1] = (i+1==nBind) ? '\0' : ',';
1706 return zRet;
1710 ** The iterator currently points to a table (not index) of type
1711 ** RBU_PK_WITHOUT_ROWID. This function creates the PRIMARY KEY
1712 ** declaration for the corresponding imposter table. For example,
1713 ** if the iterator points to a table created as:
1715 ** CREATE TABLE t1(a, b, c, PRIMARY KEY(b, a DESC)) WITHOUT ROWID
1717 ** this function returns:
1719 ** PRIMARY KEY("b", "a" DESC)
1721 static char *rbuWithoutRowidPK(sqlite3rbu *p, RbuObjIter *pIter){
1722 char *z = 0;
1723 assert( pIter->zIdx==0 );
1724 if( p->rc==SQLITE_OK ){
1725 const char *zSep = "PRIMARY KEY(";
1726 sqlite3_stmt *pXList = 0; /* PRAGMA index_list = (pIter->zTbl) */
1727 sqlite3_stmt *pXInfo = 0; /* PRAGMA index_xinfo = <pk-index> */
1729 p->rc = prepareFreeAndCollectError(p->dbMain, &pXList, &p->zErrmsg,
1730 sqlite3_mprintf("PRAGMA main.index_list = %Q", pIter->zTbl)
1732 while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXList) ){
1733 const char *zOrig = (const char*)sqlite3_column_text(pXList,3);
1734 if( zOrig && strcmp(zOrig, "pk")==0 ){
1735 const char *zIdx = (const char*)sqlite3_column_text(pXList,1);
1736 if( zIdx ){
1737 p->rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg,
1738 sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", zIdx)
1741 break;
1744 rbuFinalize(p, pXList);
1746 while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){
1747 if( sqlite3_column_int(pXInfo, 5) ){
1748 /* int iCid = sqlite3_column_int(pXInfo, 0); */
1749 const char *zCol = (const char*)sqlite3_column_text(pXInfo, 2);
1750 const char *zDesc = sqlite3_column_int(pXInfo, 3) ? " DESC" : "";
1751 z = rbuMPrintf(p, "%z%s\"%w\"%s", z, zSep, zCol, zDesc);
1752 zSep = ", ";
1755 z = rbuMPrintf(p, "%z)", z);
1756 rbuFinalize(p, pXInfo);
1758 return z;
1762 ** This function creates the second imposter table used when writing to
1763 ** a table b-tree where the table has an external primary key. If the
1764 ** iterator passed as the second argument does not currently point to
1765 ** a table (not index) with an external primary key, this function is a
1766 ** no-op.
1768 ** Assuming the iterator does point to a table with an external PK, this
1769 ** function creates a WITHOUT ROWID imposter table named "rbu_imposter2"
1770 ** used to access that PK index. For example, if the target table is
1771 ** declared as follows:
1773 ** CREATE TABLE t1(a, b TEXT, c REAL, PRIMARY KEY(b, c));
1775 ** then the imposter table schema is:
1777 ** CREATE TABLE rbu_imposter2(c1 TEXT, c2 REAL, id INTEGER) WITHOUT ROWID;
1780 static void rbuCreateImposterTable2(sqlite3rbu *p, RbuObjIter *pIter){
1781 if( p->rc==SQLITE_OK && pIter->eType==RBU_PK_EXTERNAL ){
1782 int tnum = pIter->iPkTnum; /* Root page of PK index */
1783 sqlite3_stmt *pQuery = 0; /* SELECT name ... WHERE rootpage = $tnum */
1784 const char *zIdx = 0; /* Name of PK index */
1785 sqlite3_stmt *pXInfo = 0; /* PRAGMA main.index_xinfo = $zIdx */
1786 const char *zComma = "";
1787 char *zCols = 0; /* Used to build up list of table cols */
1788 char *zPk = 0; /* Used to build up table PK declaration */
1790 /* Figure out the name of the primary key index for the current table.
1791 ** This is needed for the argument to "PRAGMA index_xinfo". Set
1792 ** zIdx to point to a nul-terminated string containing this name. */
1793 p->rc = prepareAndCollectError(p->dbMain, &pQuery, &p->zErrmsg,
1794 "SELECT name FROM sqlite_master WHERE rootpage = ?"
1796 if( p->rc==SQLITE_OK ){
1797 sqlite3_bind_int(pQuery, 1, tnum);
1798 if( SQLITE_ROW==sqlite3_step(pQuery) ){
1799 zIdx = (const char*)sqlite3_column_text(pQuery, 0);
1802 if( zIdx ){
1803 p->rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg,
1804 sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", zIdx)
1807 rbuFinalize(p, pQuery);
1809 while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){
1810 int bKey = sqlite3_column_int(pXInfo, 5);
1811 if( bKey ){
1812 int iCid = sqlite3_column_int(pXInfo, 1);
1813 int bDesc = sqlite3_column_int(pXInfo, 3);
1814 const char *zCollate = (const char*)sqlite3_column_text(pXInfo, 4);
1815 zCols = rbuMPrintf(p, "%z%sc%d %s COLLATE %Q", zCols, zComma,
1816 iCid, pIter->azTblType[iCid], zCollate
1818 zPk = rbuMPrintf(p, "%z%sc%d%s", zPk, zComma, iCid, bDesc?" DESC":"");
1819 zComma = ", ";
1822 zCols = rbuMPrintf(p, "%z, id INTEGER", zCols);
1823 rbuFinalize(p, pXInfo);
1825 sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 1, tnum);
1826 rbuMPrintfExec(p, p->dbMain,
1827 "CREATE TABLE rbu_imposter2(%z, PRIMARY KEY(%z)) WITHOUT ROWID",
1828 zCols, zPk
1830 sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 0);
1835 ** If an error has already occurred when this function is called, it
1836 ** immediately returns zero (without doing any work). Or, if an error
1837 ** occurs during the execution of this function, it sets the error code
1838 ** in the sqlite3rbu object indicated by the first argument and returns
1839 ** zero.
1841 ** The iterator passed as the second argument is guaranteed to point to
1842 ** a table (not an index) when this function is called. This function
1843 ** attempts to create any imposter table required to write to the main
1844 ** table b-tree of the table before returning. Non-zero is returned if
1845 ** an imposter table are created, or zero otherwise.
1847 ** An imposter table is required in all cases except RBU_PK_VTAB. Only
1848 ** virtual tables are written to directly. The imposter table has the
1849 ** same schema as the actual target table (less any UNIQUE constraints).
1850 ** More precisely, the "same schema" means the same columns, types,
1851 ** collation sequences. For tables that do not have an external PRIMARY
1852 ** KEY, it also means the same PRIMARY KEY declaration.
1854 static void rbuCreateImposterTable(sqlite3rbu *p, RbuObjIter *pIter){
1855 if( p->rc==SQLITE_OK && pIter->eType!=RBU_PK_VTAB ){
1856 int tnum = pIter->iTnum;
1857 const char *zComma = "";
1858 char *zSql = 0;
1859 int iCol;
1860 sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 1);
1862 for(iCol=0; p->rc==SQLITE_OK && iCol<pIter->nTblCol; iCol++){
1863 const char *zPk = "";
1864 const char *zCol = pIter->azTblCol[iCol];
1865 const char *zColl = 0;
1867 p->rc = sqlite3_table_column_metadata(
1868 p->dbMain, "main", pIter->zTbl, zCol, 0, &zColl, 0, 0, 0
1871 if( pIter->eType==RBU_PK_IPK && pIter->abTblPk[iCol] ){
1872 /* If the target table column is an "INTEGER PRIMARY KEY", add
1873 ** "PRIMARY KEY" to the imposter table column declaration. */
1874 zPk = "PRIMARY KEY ";
1876 zSql = rbuMPrintf(p, "%z%s\"%w\" %s %sCOLLATE %Q%s",
1877 zSql, zComma, zCol, pIter->azTblType[iCol], zPk, zColl,
1878 (pIter->abNotNull[iCol] ? " NOT NULL" : "")
1880 zComma = ", ";
1883 if( pIter->eType==RBU_PK_WITHOUT_ROWID ){
1884 char *zPk = rbuWithoutRowidPK(p, pIter);
1885 if( zPk ){
1886 zSql = rbuMPrintf(p, "%z, %z", zSql, zPk);
1890 sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 1, tnum);
1891 rbuMPrintfExec(p, p->dbMain, "CREATE TABLE \"rbu_imp_%w\"(%z)%s",
1892 pIter->zTbl, zSql,
1893 (pIter->eType==RBU_PK_WITHOUT_ROWID ? " WITHOUT ROWID" : "")
1895 sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 0);
1900 ** Prepare a statement used to insert rows into the "rbu_tmp_xxx" table.
1901 ** Specifically a statement of the form:
1903 ** INSERT INTO rbu_tmp_xxx VALUES(?, ?, ? ...);
1905 ** The number of bound variables is equal to the number of columns in
1906 ** the target table, plus one (for the rbu_control column), plus one more
1907 ** (for the rbu_rowid column) if the target table is an implicit IPK or
1908 ** virtual table.
1910 static void rbuObjIterPrepareTmpInsert(
1911 sqlite3rbu *p,
1912 RbuObjIter *pIter,
1913 const char *zCollist,
1914 const char *zRbuRowid
1916 int bRbuRowid = (pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE);
1917 char *zBind = rbuObjIterGetBindlist(p, pIter->nTblCol + 1 + bRbuRowid);
1918 if( zBind ){
1919 assert( pIter->pTmpInsert==0 );
1920 p->rc = prepareFreeAndCollectError(
1921 p->dbRbu, &pIter->pTmpInsert, &p->zErrmsg, sqlite3_mprintf(
1922 "INSERT INTO %s.'rbu_tmp_%q'(rbu_control,%s%s) VALUES(%z)",
1923 p->zStateDb, pIter->zDataTbl, zCollist, zRbuRowid, zBind
1928 static void rbuTmpInsertFunc(
1929 sqlite3_context *pCtx,
1930 int nVal,
1931 sqlite3_value **apVal
1933 sqlite3rbu *p = sqlite3_user_data(pCtx);
1934 int rc = SQLITE_OK;
1935 int i;
1937 assert( sqlite3_value_int(apVal[0])!=0
1938 || p->objiter.eType==RBU_PK_EXTERNAL
1939 || p->objiter.eType==RBU_PK_NONE
1941 if( sqlite3_value_int(apVal[0])!=0 ){
1942 p->nPhaseOneStep += p->objiter.nIndex;
1945 for(i=0; rc==SQLITE_OK && i<nVal; i++){
1946 rc = sqlite3_bind_value(p->objiter.pTmpInsert, i+1, apVal[i]);
1948 if( rc==SQLITE_OK ){
1949 sqlite3_step(p->objiter.pTmpInsert);
1950 rc = sqlite3_reset(p->objiter.pTmpInsert);
1953 if( rc!=SQLITE_OK ){
1954 sqlite3_result_error_code(pCtx, rc);
1959 ** Ensure that the SQLite statement handles required to update the
1960 ** target database object currently indicated by the iterator passed
1961 ** as the second argument are available.
1963 static int rbuObjIterPrepareAll(
1964 sqlite3rbu *p,
1965 RbuObjIter *pIter,
1966 int nOffset /* Add "LIMIT -1 OFFSET $nOffset" to SELECT */
1968 assert( pIter->bCleanup==0 );
1969 if( pIter->pSelect==0 && rbuObjIterCacheTableInfo(p, pIter)==SQLITE_OK ){
1970 const int tnum = pIter->iTnum;
1971 char *zCollist = 0; /* List of indexed columns */
1972 char **pz = &p->zErrmsg;
1973 const char *zIdx = pIter->zIdx;
1974 char *zLimit = 0;
1976 if( nOffset ){
1977 zLimit = sqlite3_mprintf(" LIMIT -1 OFFSET %d", nOffset);
1978 if( !zLimit ) p->rc = SQLITE_NOMEM;
1981 if( zIdx ){
1982 const char *zTbl = pIter->zTbl;
1983 char *zImposterCols = 0; /* Columns for imposter table */
1984 char *zImposterPK = 0; /* Primary key declaration for imposter */
1985 char *zWhere = 0; /* WHERE clause on PK columns */
1986 char *zBind = 0;
1987 int nBind = 0;
1989 assert( pIter->eType!=RBU_PK_VTAB );
1990 zCollist = rbuObjIterGetIndexCols(
1991 p, pIter, &zImposterCols, &zImposterPK, &zWhere, &nBind
1993 zBind = rbuObjIterGetBindlist(p, nBind);
1995 /* Create the imposter table used to write to this index. */
1996 sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 1);
1997 sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 1,tnum);
1998 rbuMPrintfExec(p, p->dbMain,
1999 "CREATE TABLE \"rbu_imp_%w\"( %s, PRIMARY KEY( %s ) ) WITHOUT ROWID",
2000 zTbl, zImposterCols, zImposterPK
2002 sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 0);
2004 /* Create the statement to insert index entries */
2005 pIter->nCol = nBind;
2006 if( p->rc==SQLITE_OK ){
2007 p->rc = prepareFreeAndCollectError(
2008 p->dbMain, &pIter->pInsert, &p->zErrmsg,
2009 sqlite3_mprintf("INSERT INTO \"rbu_imp_%w\" VALUES(%s)", zTbl, zBind)
2013 /* And to delete index entries */
2014 if( rbuIsVacuum(p)==0 && p->rc==SQLITE_OK ){
2015 p->rc = prepareFreeAndCollectError(
2016 p->dbMain, &pIter->pDelete, &p->zErrmsg,
2017 sqlite3_mprintf("DELETE FROM \"rbu_imp_%w\" WHERE %s", zTbl, zWhere)
2021 /* Create the SELECT statement to read keys in sorted order */
2022 if( p->rc==SQLITE_OK ){
2023 char *zSql;
2024 if( rbuIsVacuum(p) ){
2025 zSql = sqlite3_mprintf(
2026 "SELECT %s, 0 AS rbu_control FROM '%q' ORDER BY %s%s",
2027 zCollist,
2028 pIter->zDataTbl,
2029 zCollist, zLimit
2031 }else
2033 if( pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE ){
2034 zSql = sqlite3_mprintf(
2035 "SELECT %s, rbu_control FROM %s.'rbu_tmp_%q' ORDER BY %s%s",
2036 zCollist, p->zStateDb, pIter->zDataTbl,
2037 zCollist, zLimit
2039 }else{
2040 zSql = sqlite3_mprintf(
2041 "SELECT %s, rbu_control FROM %s.'rbu_tmp_%q' "
2042 "UNION ALL "
2043 "SELECT %s, rbu_control FROM '%q' "
2044 "WHERE typeof(rbu_control)='integer' AND rbu_control!=1 "
2045 "ORDER BY %s%s",
2046 zCollist, p->zStateDb, pIter->zDataTbl,
2047 zCollist, pIter->zDataTbl,
2048 zCollist, zLimit
2051 p->rc = prepareFreeAndCollectError(p->dbRbu, &pIter->pSelect, pz, zSql);
2054 sqlite3_free(zImposterCols);
2055 sqlite3_free(zImposterPK);
2056 sqlite3_free(zWhere);
2057 sqlite3_free(zBind);
2058 }else{
2059 int bRbuRowid = (pIter->eType==RBU_PK_VTAB)
2060 ||(pIter->eType==RBU_PK_NONE)
2061 ||(pIter->eType==RBU_PK_EXTERNAL && rbuIsVacuum(p));
2062 const char *zTbl = pIter->zTbl; /* Table this step applies to */
2063 const char *zWrite; /* Imposter table name */
2065 char *zBindings = rbuObjIterGetBindlist(p, pIter->nTblCol + bRbuRowid);
2066 char *zWhere = rbuObjIterGetWhere(p, pIter);
2067 char *zOldlist = rbuObjIterGetOldlist(p, pIter, "old");
2068 char *zNewlist = rbuObjIterGetOldlist(p, pIter, "new");
2070 zCollist = rbuObjIterGetCollist(p, pIter);
2071 pIter->nCol = pIter->nTblCol;
2073 /* Create the imposter table or tables (if required). */
2074 rbuCreateImposterTable(p, pIter);
2075 rbuCreateImposterTable2(p, pIter);
2076 zWrite = (pIter->eType==RBU_PK_VTAB ? "" : "rbu_imp_");
2078 /* Create the INSERT statement to write to the target PK b-tree */
2079 if( p->rc==SQLITE_OK ){
2080 p->rc = prepareFreeAndCollectError(p->dbMain, &pIter->pInsert, pz,
2081 sqlite3_mprintf(
2082 "INSERT INTO \"%s%w\"(%s%s) VALUES(%s)",
2083 zWrite, zTbl, zCollist, (bRbuRowid ? ", _rowid_" : ""), zBindings
2088 /* Create the DELETE statement to write to the target PK b-tree.
2089 ** Because it only performs INSERT operations, this is not required for
2090 ** an rbu vacuum handle. */
2091 if( rbuIsVacuum(p)==0 && p->rc==SQLITE_OK ){
2092 p->rc = prepareFreeAndCollectError(p->dbMain, &pIter->pDelete, pz,
2093 sqlite3_mprintf(
2094 "DELETE FROM \"%s%w\" WHERE %s", zWrite, zTbl, zWhere
2099 if( rbuIsVacuum(p)==0 && pIter->abIndexed ){
2100 const char *zRbuRowid = "";
2101 if( pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE ){
2102 zRbuRowid = ", rbu_rowid";
2105 /* Create the rbu_tmp_xxx table and the triggers to populate it. */
2106 rbuMPrintfExec(p, p->dbRbu,
2107 "CREATE TABLE IF NOT EXISTS %s.'rbu_tmp_%q' AS "
2108 "SELECT *%s FROM '%q' WHERE 0;"
2109 , p->zStateDb, pIter->zDataTbl
2110 , (pIter->eType==RBU_PK_EXTERNAL ? ", 0 AS rbu_rowid" : "")
2111 , pIter->zDataTbl
2114 rbuMPrintfExec(p, p->dbMain,
2115 "CREATE TEMP TRIGGER rbu_delete_tr BEFORE DELETE ON \"%s%w\" "
2116 "BEGIN "
2117 " SELECT rbu_tmp_insert(3, %s);"
2118 "END;"
2120 "CREATE TEMP TRIGGER rbu_update1_tr BEFORE UPDATE ON \"%s%w\" "
2121 "BEGIN "
2122 " SELECT rbu_tmp_insert(3, %s);"
2123 "END;"
2125 "CREATE TEMP TRIGGER rbu_update2_tr AFTER UPDATE ON \"%s%w\" "
2126 "BEGIN "
2127 " SELECT rbu_tmp_insert(4, %s);"
2128 "END;",
2129 zWrite, zTbl, zOldlist,
2130 zWrite, zTbl, zOldlist,
2131 zWrite, zTbl, zNewlist
2134 if( pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE ){
2135 rbuMPrintfExec(p, p->dbMain,
2136 "CREATE TEMP TRIGGER rbu_insert_tr AFTER INSERT ON \"%s%w\" "
2137 "BEGIN "
2138 " SELECT rbu_tmp_insert(0, %s);"
2139 "END;",
2140 zWrite, zTbl, zNewlist
2144 rbuObjIterPrepareTmpInsert(p, pIter, zCollist, zRbuRowid);
2147 /* Create the SELECT statement to read keys from data_xxx */
2148 if( p->rc==SQLITE_OK ){
2149 const char *zRbuRowid = "";
2150 if( bRbuRowid ){
2151 zRbuRowid = rbuIsVacuum(p) ? ",_rowid_ " : ",rbu_rowid";
2153 p->rc = prepareFreeAndCollectError(p->dbRbu, &pIter->pSelect, pz,
2154 sqlite3_mprintf(
2155 "SELECT %s,%s rbu_control%s FROM '%q'%s",
2156 zCollist,
2157 (rbuIsVacuum(p) ? "0 AS " : ""),
2158 zRbuRowid,
2159 pIter->zDataTbl, zLimit
2164 sqlite3_free(zWhere);
2165 sqlite3_free(zOldlist);
2166 sqlite3_free(zNewlist);
2167 sqlite3_free(zBindings);
2169 sqlite3_free(zCollist);
2170 sqlite3_free(zLimit);
2173 return p->rc;
2177 ** Set output variable *ppStmt to point to an UPDATE statement that may
2178 ** be used to update the imposter table for the main table b-tree of the
2179 ** table object that pIter currently points to, assuming that the
2180 ** rbu_control column of the data_xyz table contains zMask.
2182 ** If the zMask string does not specify any columns to update, then this
2183 ** is not an error. Output variable *ppStmt is set to NULL in this case.
2185 static int rbuGetUpdateStmt(
2186 sqlite3rbu *p, /* RBU handle */
2187 RbuObjIter *pIter, /* Object iterator */
2188 const char *zMask, /* rbu_control value ('x.x.') */
2189 sqlite3_stmt **ppStmt /* OUT: UPDATE statement handle */
2191 RbuUpdateStmt **pp;
2192 RbuUpdateStmt *pUp = 0;
2193 int nUp = 0;
2195 /* In case an error occurs */
2196 *ppStmt = 0;
2198 /* Search for an existing statement. If one is found, shift it to the front
2199 ** of the LRU queue and return immediately. Otherwise, leave nUp pointing
2200 ** to the number of statements currently in the cache and pUp to the
2201 ** last object in the list. */
2202 for(pp=&pIter->pRbuUpdate; *pp; pp=&((*pp)->pNext)){
2203 pUp = *pp;
2204 if( strcmp(pUp->zMask, zMask)==0 ){
2205 *pp = pUp->pNext;
2206 pUp->pNext = pIter->pRbuUpdate;
2207 pIter->pRbuUpdate = pUp;
2208 *ppStmt = pUp->pUpdate;
2209 return SQLITE_OK;
2211 nUp++;
2213 assert( pUp==0 || pUp->pNext==0 );
2215 if( nUp>=SQLITE_RBU_UPDATE_CACHESIZE ){
2216 for(pp=&pIter->pRbuUpdate; *pp!=pUp; pp=&((*pp)->pNext));
2217 *pp = 0;
2218 sqlite3_finalize(pUp->pUpdate);
2219 pUp->pUpdate = 0;
2220 }else{
2221 pUp = (RbuUpdateStmt*)rbuMalloc(p, sizeof(RbuUpdateStmt)+pIter->nTblCol+1);
2224 if( pUp ){
2225 char *zWhere = rbuObjIterGetWhere(p, pIter);
2226 char *zSet = rbuObjIterGetSetlist(p, pIter, zMask);
2227 char *zUpdate = 0;
2229 pUp->zMask = (char*)&pUp[1];
2230 memcpy(pUp->zMask, zMask, pIter->nTblCol);
2231 pUp->pNext = pIter->pRbuUpdate;
2232 pIter->pRbuUpdate = pUp;
2234 if( zSet ){
2235 const char *zPrefix = "";
2237 if( pIter->eType!=RBU_PK_VTAB ) zPrefix = "rbu_imp_";
2238 zUpdate = sqlite3_mprintf("UPDATE \"%s%w\" SET %s WHERE %s",
2239 zPrefix, pIter->zTbl, zSet, zWhere
2241 p->rc = prepareFreeAndCollectError(
2242 p->dbMain, &pUp->pUpdate, &p->zErrmsg, zUpdate
2244 *ppStmt = pUp->pUpdate;
2246 sqlite3_free(zWhere);
2247 sqlite3_free(zSet);
2250 return p->rc;
2253 static sqlite3 *rbuOpenDbhandle(
2254 sqlite3rbu *p,
2255 const char *zName,
2256 int bUseVfs
2258 sqlite3 *db = 0;
2259 if( p->rc==SQLITE_OK ){
2260 const int flags = SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_URI;
2261 p->rc = sqlite3_open_v2(zName, &db, flags, bUseVfs ? p->zVfsName : 0);
2262 if( p->rc ){
2263 p->zErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(db));
2264 sqlite3_close(db);
2265 db = 0;
2268 return db;
2272 ** Free an RbuState object allocated by rbuLoadState().
2274 static void rbuFreeState(RbuState *p){
2275 if( p ){
2276 sqlite3_free(p->zTbl);
2277 sqlite3_free(p->zDataTbl);
2278 sqlite3_free(p->zIdx);
2279 sqlite3_free(p);
2284 ** Allocate an RbuState object and load the contents of the rbu_state
2285 ** table into it. Return a pointer to the new object. It is the
2286 ** responsibility of the caller to eventually free the object using
2287 ** sqlite3_free().
2289 ** If an error occurs, leave an error code and message in the rbu handle
2290 ** and return NULL.
2292 static RbuState *rbuLoadState(sqlite3rbu *p){
2293 RbuState *pRet = 0;
2294 sqlite3_stmt *pStmt = 0;
2295 int rc;
2296 int rc2;
2298 pRet = (RbuState*)rbuMalloc(p, sizeof(RbuState));
2299 if( pRet==0 ) return 0;
2301 rc = prepareFreeAndCollectError(p->dbRbu, &pStmt, &p->zErrmsg,
2302 sqlite3_mprintf("SELECT k, v FROM %s.rbu_state", p->zStateDb)
2304 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
2305 switch( sqlite3_column_int(pStmt, 0) ){
2306 case RBU_STATE_STAGE:
2307 pRet->eStage = sqlite3_column_int(pStmt, 1);
2308 if( pRet->eStage!=RBU_STAGE_OAL
2309 && pRet->eStage!=RBU_STAGE_MOVE
2310 && pRet->eStage!=RBU_STAGE_CKPT
2312 p->rc = SQLITE_CORRUPT;
2314 break;
2316 case RBU_STATE_TBL:
2317 pRet->zTbl = rbuStrndup((char*)sqlite3_column_text(pStmt, 1), &rc);
2318 break;
2320 case RBU_STATE_IDX:
2321 pRet->zIdx = rbuStrndup((char*)sqlite3_column_text(pStmt, 1), &rc);
2322 break;
2324 case RBU_STATE_ROW:
2325 pRet->nRow = sqlite3_column_int(pStmt, 1);
2326 break;
2328 case RBU_STATE_PROGRESS:
2329 pRet->nProgress = sqlite3_column_int64(pStmt, 1);
2330 break;
2332 case RBU_STATE_CKPT:
2333 pRet->iWalCksum = sqlite3_column_int64(pStmt, 1);
2334 break;
2336 case RBU_STATE_COOKIE:
2337 pRet->iCookie = (u32)sqlite3_column_int64(pStmt, 1);
2338 break;
2340 case RBU_STATE_OALSZ:
2341 pRet->iOalSz = (u32)sqlite3_column_int64(pStmt, 1);
2342 break;
2344 case RBU_STATE_PHASEONESTEP:
2345 pRet->nPhaseOneStep = sqlite3_column_int64(pStmt, 1);
2346 break;
2348 case RBU_STATE_DATATBL:
2349 pRet->zDataTbl = rbuStrndup((char*)sqlite3_column_text(pStmt, 1), &rc);
2350 break;
2352 default:
2353 rc = SQLITE_CORRUPT;
2354 break;
2357 rc2 = sqlite3_finalize(pStmt);
2358 if( rc==SQLITE_OK ) rc = rc2;
2360 p->rc = rc;
2361 return pRet;
2366 ** Open the database handle and attach the RBU database as "rbu". If an
2367 ** error occurs, leave an error code and message in the RBU handle.
2369 static void rbuOpenDatabase(sqlite3rbu *p, int *pbRetry){
2370 assert( p->rc || (p->dbMain==0 && p->dbRbu==0) );
2371 assert( p->rc || rbuIsVacuum(p) || p->zTarget!=0 );
2373 /* Open the RBU database */
2374 p->dbRbu = rbuOpenDbhandle(p, p->zRbu, 1);
2376 if( p->rc==SQLITE_OK && rbuIsVacuum(p) ){
2377 sqlite3_file_control(p->dbRbu, "main", SQLITE_FCNTL_RBUCNT, (void*)p);
2378 if( p->zState==0 ){
2379 const char *zFile = sqlite3_db_filename(p->dbRbu, "main");
2380 p->zState = rbuMPrintf(p, "file://%s-vacuum?modeof=%s", zFile, zFile);
2384 /* If using separate RBU and state databases, attach the state database to
2385 ** the RBU db handle now. */
2386 if( p->zState ){
2387 rbuMPrintfExec(p, p->dbRbu, "ATTACH %Q AS stat", p->zState);
2388 memcpy(p->zStateDb, "stat", 4);
2389 }else{
2390 memcpy(p->zStateDb, "main", 4);
2393 #if 0
2394 if( p->rc==SQLITE_OK && rbuIsVacuum(p) ){
2395 p->rc = sqlite3_exec(p->dbRbu, "BEGIN", 0, 0, 0);
2397 #endif
2399 /* If it has not already been created, create the rbu_state table */
2400 rbuMPrintfExec(p, p->dbRbu, RBU_CREATE_STATE, p->zStateDb);
2402 #if 0
2403 if( rbuIsVacuum(p) ){
2404 if( p->rc==SQLITE_OK ){
2405 int rc2;
2406 int bOk = 0;
2407 sqlite3_stmt *pCnt = 0;
2408 p->rc = prepareAndCollectError(p->dbRbu, &pCnt, &p->zErrmsg,
2409 "SELECT count(*) FROM stat.sqlite_master"
2411 if( p->rc==SQLITE_OK
2412 && sqlite3_step(pCnt)==SQLITE_ROW
2413 && 1==sqlite3_column_int(pCnt, 0)
2415 bOk = 1;
2417 rc2 = sqlite3_finalize(pCnt);
2418 if( p->rc==SQLITE_OK ) p->rc = rc2;
2420 if( p->rc==SQLITE_OK && bOk==0 ){
2421 p->rc = SQLITE_ERROR;
2422 p->zErrmsg = sqlite3_mprintf("invalid state database");
2425 if( p->rc==SQLITE_OK ){
2426 p->rc = sqlite3_exec(p->dbRbu, "COMMIT", 0, 0, 0);
2430 #endif
2432 if( p->rc==SQLITE_OK && rbuIsVacuum(p) ){
2433 int bOpen = 0;
2434 int rc;
2435 p->nRbu = 0;
2436 p->pRbuFd = 0;
2437 rc = sqlite3_file_control(p->dbRbu, "main", SQLITE_FCNTL_RBUCNT, (void*)p);
2438 if( rc!=SQLITE_NOTFOUND ) p->rc = rc;
2439 if( p->eStage>=RBU_STAGE_MOVE ){
2440 bOpen = 1;
2441 }else{
2442 RbuState *pState = rbuLoadState(p);
2443 if( pState ){
2444 bOpen = (pState->eStage>=RBU_STAGE_MOVE);
2445 rbuFreeState(pState);
2448 if( bOpen ) p->dbMain = rbuOpenDbhandle(p, p->zRbu, p->nRbu<=1);
2451 p->eStage = 0;
2452 if( p->rc==SQLITE_OK && p->dbMain==0 ){
2453 if( !rbuIsVacuum(p) ){
2454 p->dbMain = rbuOpenDbhandle(p, p->zTarget, 1);
2455 }else if( p->pRbuFd->pWalFd ){
2456 if( pbRetry ){
2457 p->pRbuFd->bNolock = 0;
2458 sqlite3_close(p->dbRbu);
2459 sqlite3_close(p->dbMain);
2460 p->dbMain = 0;
2461 p->dbRbu = 0;
2462 *pbRetry = 1;
2463 return;
2465 p->rc = SQLITE_ERROR;
2466 p->zErrmsg = sqlite3_mprintf("cannot vacuum wal mode database");
2467 }else{
2468 char *zTarget;
2469 char *zExtra = 0;
2470 if( strlen(p->zRbu)>=5 && 0==memcmp("file:", p->zRbu, 5) ){
2471 zExtra = &p->zRbu[5];
2472 while( *zExtra ){
2473 if( *zExtra++=='?' ) break;
2475 if( *zExtra=='\0' ) zExtra = 0;
2478 zTarget = sqlite3_mprintf("file:%s-vacuum?rbu_memory=1%s%s",
2479 sqlite3_db_filename(p->dbRbu, "main"),
2480 (zExtra==0 ? "" : "&"), (zExtra==0 ? "" : zExtra)
2483 if( zTarget==0 ){
2484 p->rc = SQLITE_NOMEM;
2485 return;
2487 p->dbMain = rbuOpenDbhandle(p, zTarget, p->nRbu<=1);
2488 sqlite3_free(zTarget);
2492 if( p->rc==SQLITE_OK ){
2493 p->rc = sqlite3_create_function(p->dbMain,
2494 "rbu_tmp_insert", -1, SQLITE_UTF8, (void*)p, rbuTmpInsertFunc, 0, 0
2498 if( p->rc==SQLITE_OK ){
2499 p->rc = sqlite3_create_function(p->dbMain,
2500 "rbu_fossil_delta", 2, SQLITE_UTF8, 0, rbuFossilDeltaFunc, 0, 0
2504 if( p->rc==SQLITE_OK ){
2505 p->rc = sqlite3_create_function(p->dbRbu,
2506 "rbu_target_name", -1, SQLITE_UTF8, (void*)p, rbuTargetNameFunc, 0, 0
2510 if( p->rc==SQLITE_OK ){
2511 p->rc = sqlite3_file_control(p->dbMain, "main", SQLITE_FCNTL_RBU, (void*)p);
2513 rbuMPrintfExec(p, p->dbMain, "SELECT * FROM sqlite_master");
2515 /* Mark the database file just opened as an RBU target database. If
2516 ** this call returns SQLITE_NOTFOUND, then the RBU vfs is not in use.
2517 ** This is an error. */
2518 if( p->rc==SQLITE_OK ){
2519 p->rc = sqlite3_file_control(p->dbMain, "main", SQLITE_FCNTL_RBU, (void*)p);
2522 if( p->rc==SQLITE_NOTFOUND ){
2523 p->rc = SQLITE_ERROR;
2524 p->zErrmsg = sqlite3_mprintf("rbu vfs not found");
2529 ** This routine is a copy of the sqlite3FileSuffix3() routine from the core.
2530 ** It is a no-op unless SQLITE_ENABLE_8_3_NAMES is defined.
2532 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
2533 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
2534 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
2535 ** three characters, then shorten the suffix on z[] to be the last three
2536 ** characters of the original suffix.
2538 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
2539 ** do the suffix shortening regardless of URI parameter.
2541 ** Examples:
2543 ** test.db-journal => test.nal
2544 ** test.db-wal => test.wal
2545 ** test.db-shm => test.shm
2546 ** test.db-mj7f3319fa => test.9fa
2548 static void rbuFileSuffix3(const char *zBase, char *z){
2549 #ifdef SQLITE_ENABLE_8_3_NAMES
2550 #if SQLITE_ENABLE_8_3_NAMES<2
2551 if( sqlite3_uri_boolean(zBase, "8_3_names", 0) )
2552 #endif
2554 int i, sz;
2555 sz = (int)strlen(z)&0xffffff;
2556 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
2557 if( z[i]=='.' && sz>i+4 ) memmove(&z[i+1], &z[sz-3], 4);
2559 #endif
2563 ** Return the current wal-index header checksum for the target database
2564 ** as a 64-bit integer.
2566 ** The checksum is store in the first page of xShmMap memory as an 8-byte
2567 ** blob starting at byte offset 40.
2569 static i64 rbuShmChecksum(sqlite3rbu *p){
2570 i64 iRet = 0;
2571 if( p->rc==SQLITE_OK ){
2572 sqlite3_file *pDb = p->pTargetFd->pReal;
2573 u32 volatile *ptr;
2574 p->rc = pDb->pMethods->xShmMap(pDb, 0, 32*1024, 0, (void volatile**)&ptr);
2575 if( p->rc==SQLITE_OK ){
2576 iRet = ((i64)ptr[10] << 32) + ptr[11];
2579 return iRet;
2583 ** This function is called as part of initializing or reinitializing an
2584 ** incremental checkpoint.
2586 ** It populates the sqlite3rbu.aFrame[] array with the set of
2587 ** (wal frame -> db page) copy operations required to checkpoint the
2588 ** current wal file, and obtains the set of shm locks required to safely
2589 ** perform the copy operations directly on the file-system.
2591 ** If argument pState is not NULL, then the incremental checkpoint is
2592 ** being resumed. In this case, if the checksum of the wal-index-header
2593 ** following recovery is not the same as the checksum saved in the RbuState
2594 ** object, then the rbu handle is set to DONE state. This occurs if some
2595 ** other client appends a transaction to the wal file in the middle of
2596 ** an incremental checkpoint.
2598 static void rbuSetupCheckpoint(sqlite3rbu *p, RbuState *pState){
2600 /* If pState is NULL, then the wal file may not have been opened and
2601 ** recovered. Running a read-statement here to ensure that doing so
2602 ** does not interfere with the "capture" process below. */
2603 if( pState==0 ){
2604 p->eStage = 0;
2605 if( p->rc==SQLITE_OK ){
2606 p->rc = sqlite3_exec(p->dbMain, "SELECT * FROM sqlite_master", 0, 0, 0);
2610 /* Assuming no error has occurred, run a "restart" checkpoint with the
2611 ** sqlite3rbu.eStage variable set to CAPTURE. This turns on the following
2612 ** special behaviour in the rbu VFS:
2614 ** * If the exclusive shm WRITER or READ0 lock cannot be obtained,
2615 ** the checkpoint fails with SQLITE_BUSY (normally SQLite would
2616 ** proceed with running a passive checkpoint instead of failing).
2618 ** * Attempts to read from the *-wal file or write to the database file
2619 ** do not perform any IO. Instead, the frame/page combinations that
2620 ** would be read/written are recorded in the sqlite3rbu.aFrame[]
2621 ** array.
2623 ** * Calls to xShmLock(UNLOCK) to release the exclusive shm WRITER,
2624 ** READ0 and CHECKPOINT locks taken as part of the checkpoint are
2625 ** no-ops. These locks will not be released until the connection
2626 ** is closed.
2628 ** * Attempting to xSync() the database file causes an SQLITE_INTERNAL
2629 ** error.
2631 ** As a result, unless an error (i.e. OOM or SQLITE_BUSY) occurs, the
2632 ** checkpoint below fails with SQLITE_INTERNAL, and leaves the aFrame[]
2633 ** array populated with a set of (frame -> page) mappings. Because the
2634 ** WRITER, CHECKPOINT and READ0 locks are still held, it is safe to copy
2635 ** data from the wal file into the database file according to the
2636 ** contents of aFrame[].
2638 if( p->rc==SQLITE_OK ){
2639 int rc2;
2640 p->eStage = RBU_STAGE_CAPTURE;
2641 rc2 = sqlite3_exec(p->dbMain, "PRAGMA main.wal_checkpoint=restart", 0, 0,0);
2642 if( rc2!=SQLITE_INTERNAL ) p->rc = rc2;
2645 if( p->rc==SQLITE_OK && p->nFrame>0 ){
2646 p->eStage = RBU_STAGE_CKPT;
2647 p->nStep = (pState ? pState->nRow : 0);
2648 p->aBuf = rbuMalloc(p, p->pgsz);
2649 p->iWalCksum = rbuShmChecksum(p);
2652 if( p->rc==SQLITE_OK ){
2653 if( p->nFrame==0 || (pState && pState->iWalCksum!=p->iWalCksum) ){
2654 p->rc = SQLITE_DONE;
2655 p->eStage = RBU_STAGE_DONE;
2656 }else{
2657 int nSectorSize;
2658 sqlite3_file *pDb = p->pTargetFd->pReal;
2659 sqlite3_file *pWal = p->pTargetFd->pWalFd->pReal;
2660 assert( p->nPagePerSector==0 );
2661 nSectorSize = pDb->pMethods->xSectorSize(pDb);
2662 if( nSectorSize>p->pgsz ){
2663 p->nPagePerSector = nSectorSize / p->pgsz;
2664 }else{
2665 p->nPagePerSector = 1;
2668 /* Call xSync() on the wal file. This causes SQLite to sync the
2669 ** directory in which the target database and the wal file reside, in
2670 ** case it has not been synced since the rename() call in
2671 ** rbuMoveOalFile(). */
2672 p->rc = pWal->pMethods->xSync(pWal, SQLITE_SYNC_NORMAL);
2678 ** Called when iAmt bytes are read from offset iOff of the wal file while
2679 ** the rbu object is in capture mode. Record the frame number of the frame
2680 ** being read in the aFrame[] array.
2682 static int rbuCaptureWalRead(sqlite3rbu *pRbu, i64 iOff, int iAmt){
2683 const u32 mReq = (1<<WAL_LOCK_WRITE)|(1<<WAL_LOCK_CKPT)|(1<<WAL_LOCK_READ0);
2684 u32 iFrame;
2686 if( pRbu->mLock!=mReq ){
2687 pRbu->rc = SQLITE_BUSY;
2688 return SQLITE_INTERNAL;
2691 pRbu->pgsz = iAmt;
2692 if( pRbu->nFrame==pRbu->nFrameAlloc ){
2693 int nNew = (pRbu->nFrameAlloc ? pRbu->nFrameAlloc : 64) * 2;
2694 RbuFrame *aNew;
2695 aNew = (RbuFrame*)sqlite3_realloc64(pRbu->aFrame, nNew * sizeof(RbuFrame));
2696 if( aNew==0 ) return SQLITE_NOMEM;
2697 pRbu->aFrame = aNew;
2698 pRbu->nFrameAlloc = nNew;
2701 iFrame = (u32)((iOff-32) / (i64)(iAmt+24)) + 1;
2702 if( pRbu->iMaxFrame<iFrame ) pRbu->iMaxFrame = iFrame;
2703 pRbu->aFrame[pRbu->nFrame].iWalFrame = iFrame;
2704 pRbu->aFrame[pRbu->nFrame].iDbPage = 0;
2705 pRbu->nFrame++;
2706 return SQLITE_OK;
2710 ** Called when a page of data is written to offset iOff of the database
2711 ** file while the rbu handle is in capture mode. Record the page number
2712 ** of the page being written in the aFrame[] array.
2714 static int rbuCaptureDbWrite(sqlite3rbu *pRbu, i64 iOff){
2715 pRbu->aFrame[pRbu->nFrame-1].iDbPage = (u32)(iOff / pRbu->pgsz) + 1;
2716 return SQLITE_OK;
2720 ** This is called as part of an incremental checkpoint operation. Copy
2721 ** a single frame of data from the wal file into the database file, as
2722 ** indicated by the RbuFrame object.
2724 static void rbuCheckpointFrame(sqlite3rbu *p, RbuFrame *pFrame){
2725 sqlite3_file *pWal = p->pTargetFd->pWalFd->pReal;
2726 sqlite3_file *pDb = p->pTargetFd->pReal;
2727 i64 iOff;
2729 assert( p->rc==SQLITE_OK );
2730 iOff = (i64)(pFrame->iWalFrame-1) * (p->pgsz + 24) + 32 + 24;
2731 p->rc = pWal->pMethods->xRead(pWal, p->aBuf, p->pgsz, iOff);
2732 if( p->rc ) return;
2734 iOff = (i64)(pFrame->iDbPage-1) * p->pgsz;
2735 p->rc = pDb->pMethods->xWrite(pDb, p->aBuf, p->pgsz, iOff);
2740 ** Take an EXCLUSIVE lock on the database file.
2742 static void rbuLockDatabase(sqlite3rbu *p){
2743 sqlite3_file *pReal = p->pTargetFd->pReal;
2744 assert( p->rc==SQLITE_OK );
2745 p->rc = pReal->pMethods->xLock(pReal, SQLITE_LOCK_SHARED);
2746 if( p->rc==SQLITE_OK ){
2747 p->rc = pReal->pMethods->xLock(pReal, SQLITE_LOCK_EXCLUSIVE);
2751 #if defined(_WIN32_WCE)
2752 static LPWSTR rbuWinUtf8ToUnicode(const char *zFilename){
2753 int nChar;
2754 LPWSTR zWideFilename;
2756 nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, NULL, 0);
2757 if( nChar==0 ){
2758 return 0;
2760 zWideFilename = sqlite3_malloc64( nChar*sizeof(zWideFilename[0]) );
2761 if( zWideFilename==0 ){
2762 return 0;
2764 memset(zWideFilename, 0, nChar*sizeof(zWideFilename[0]));
2765 nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, zWideFilename,
2766 nChar);
2767 if( nChar==0 ){
2768 sqlite3_free(zWideFilename);
2769 zWideFilename = 0;
2771 return zWideFilename;
2773 #endif
2776 ** The RBU handle is currently in RBU_STAGE_OAL state, with a SHARED lock
2777 ** on the database file. This proc moves the *-oal file to the *-wal path,
2778 ** then reopens the database file (this time in vanilla, non-oal, WAL mode).
2779 ** If an error occurs, leave an error code and error message in the rbu
2780 ** handle.
2782 static void rbuMoveOalFile(sqlite3rbu *p){
2783 const char *zBase = sqlite3_db_filename(p->dbMain, "main");
2784 const char *zMove = zBase;
2785 char *zOal;
2786 char *zWal;
2788 if( rbuIsVacuum(p) ){
2789 zMove = sqlite3_db_filename(p->dbRbu, "main");
2791 zOal = sqlite3_mprintf("%s-oal", zMove);
2792 zWal = sqlite3_mprintf("%s-wal", zMove);
2794 assert( p->eStage==RBU_STAGE_MOVE );
2795 assert( p->rc==SQLITE_OK && p->zErrmsg==0 );
2796 if( zWal==0 || zOal==0 ){
2797 p->rc = SQLITE_NOMEM;
2798 }else{
2799 /* Move the *-oal file to *-wal. At this point connection p->db is
2800 ** holding a SHARED lock on the target database file (because it is
2801 ** in WAL mode). So no other connection may be writing the db.
2803 ** In order to ensure that there are no database readers, an EXCLUSIVE
2804 ** lock is obtained here before the *-oal is moved to *-wal.
2806 rbuLockDatabase(p);
2807 if( p->rc==SQLITE_OK ){
2808 rbuFileSuffix3(zBase, zWal);
2809 rbuFileSuffix3(zBase, zOal);
2811 /* Re-open the databases. */
2812 rbuObjIterFinalize(&p->objiter);
2813 sqlite3_close(p->dbRbu);
2814 sqlite3_close(p->dbMain);
2815 p->dbMain = 0;
2816 p->dbRbu = 0;
2818 #if defined(_WIN32_WCE)
2820 LPWSTR zWideOal;
2821 LPWSTR zWideWal;
2823 zWideOal = rbuWinUtf8ToUnicode(zOal);
2824 if( zWideOal ){
2825 zWideWal = rbuWinUtf8ToUnicode(zWal);
2826 if( zWideWal ){
2827 if( MoveFileW(zWideOal, zWideWal) ){
2828 p->rc = SQLITE_OK;
2829 }else{
2830 p->rc = SQLITE_IOERR;
2832 sqlite3_free(zWideWal);
2833 }else{
2834 p->rc = SQLITE_IOERR_NOMEM;
2836 sqlite3_free(zWideOal);
2837 }else{
2838 p->rc = SQLITE_IOERR_NOMEM;
2841 #else
2842 p->rc = rename(zOal, zWal) ? SQLITE_IOERR : SQLITE_OK;
2843 #endif
2845 if( p->rc==SQLITE_OK ){
2846 rbuOpenDatabase(p, 0);
2847 rbuSetupCheckpoint(p, 0);
2852 sqlite3_free(zWal);
2853 sqlite3_free(zOal);
2857 ** The SELECT statement iterating through the keys for the current object
2858 ** (p->objiter.pSelect) currently points to a valid row. This function
2859 ** determines the type of operation requested by this row and returns
2860 ** one of the following values to indicate the result:
2862 ** * RBU_INSERT
2863 ** * RBU_DELETE
2864 ** * RBU_IDX_DELETE
2865 ** * RBU_UPDATE
2867 ** If RBU_UPDATE is returned, then output variable *pzMask is set to
2868 ** point to the text value indicating the columns to update.
2870 ** If the rbu_control field contains an invalid value, an error code and
2871 ** message are left in the RBU handle and zero returned.
2873 static int rbuStepType(sqlite3rbu *p, const char **pzMask){
2874 int iCol = p->objiter.nCol; /* Index of rbu_control column */
2875 int res = 0; /* Return value */
2877 switch( sqlite3_column_type(p->objiter.pSelect, iCol) ){
2878 case SQLITE_INTEGER: {
2879 int iVal = sqlite3_column_int(p->objiter.pSelect, iCol);
2880 switch( iVal ){
2881 case 0: res = RBU_INSERT; break;
2882 case 1: res = RBU_DELETE; break;
2883 case 2: res = RBU_REPLACE; break;
2884 case 3: res = RBU_IDX_DELETE; break;
2885 case 4: res = RBU_IDX_INSERT; break;
2887 break;
2890 case SQLITE_TEXT: {
2891 const unsigned char *z = sqlite3_column_text(p->objiter.pSelect, iCol);
2892 if( z==0 ){
2893 p->rc = SQLITE_NOMEM;
2894 }else{
2895 *pzMask = (const char*)z;
2897 res = RBU_UPDATE;
2899 break;
2902 default:
2903 break;
2906 if( res==0 ){
2907 rbuBadControlError(p);
2909 return res;
2912 #ifdef SQLITE_DEBUG
2914 ** Assert that column iCol of statement pStmt is named zName.
2916 static void assertColumnName(sqlite3_stmt *pStmt, int iCol, const char *zName){
2917 const char *zCol = sqlite3_column_name(pStmt, iCol);
2918 assert( 0==sqlite3_stricmp(zName, zCol) );
2920 #else
2921 # define assertColumnName(x,y,z)
2922 #endif
2925 ** Argument eType must be one of RBU_INSERT, RBU_DELETE, RBU_IDX_INSERT or
2926 ** RBU_IDX_DELETE. This function performs the work of a single
2927 ** sqlite3rbu_step() call for the type of operation specified by eType.
2929 static void rbuStepOneOp(sqlite3rbu *p, int eType){
2930 RbuObjIter *pIter = &p->objiter;
2931 sqlite3_value *pVal;
2932 sqlite3_stmt *pWriter;
2933 int i;
2935 assert( p->rc==SQLITE_OK );
2936 assert( eType!=RBU_DELETE || pIter->zIdx==0 );
2937 assert( eType==RBU_DELETE || eType==RBU_IDX_DELETE
2938 || eType==RBU_INSERT || eType==RBU_IDX_INSERT
2941 /* If this is a delete, decrement nPhaseOneStep by nIndex. If the DELETE
2942 ** statement below does actually delete a row, nPhaseOneStep will be
2943 ** incremented by the same amount when SQL function rbu_tmp_insert()
2944 ** is invoked by the trigger. */
2945 if( eType==RBU_DELETE ){
2946 p->nPhaseOneStep -= p->objiter.nIndex;
2949 if( eType==RBU_IDX_DELETE || eType==RBU_DELETE ){
2950 pWriter = pIter->pDelete;
2951 }else{
2952 pWriter = pIter->pInsert;
2955 for(i=0; i<pIter->nCol; i++){
2956 /* If this is an INSERT into a table b-tree and the table has an
2957 ** explicit INTEGER PRIMARY KEY, check that this is not an attempt
2958 ** to write a NULL into the IPK column. That is not permitted. */
2959 if( eType==RBU_INSERT
2960 && pIter->zIdx==0 && pIter->eType==RBU_PK_IPK && pIter->abTblPk[i]
2961 && sqlite3_column_type(pIter->pSelect, i)==SQLITE_NULL
2963 p->rc = SQLITE_MISMATCH;
2964 p->zErrmsg = sqlite3_mprintf("datatype mismatch");
2965 return;
2968 if( eType==RBU_DELETE && pIter->abTblPk[i]==0 ){
2969 continue;
2972 pVal = sqlite3_column_value(pIter->pSelect, i);
2973 p->rc = sqlite3_bind_value(pWriter, i+1, pVal);
2974 if( p->rc ) return;
2976 if( pIter->zIdx==0 ){
2977 if( pIter->eType==RBU_PK_VTAB
2978 || pIter->eType==RBU_PK_NONE
2979 || (pIter->eType==RBU_PK_EXTERNAL && rbuIsVacuum(p))
2981 /* For a virtual table, or a table with no primary key, the
2982 ** SELECT statement is:
2984 ** SELECT <cols>, rbu_control, rbu_rowid FROM ....
2986 ** Hence column_value(pIter->nCol+1).
2988 assertColumnName(pIter->pSelect, pIter->nCol+1,
2989 rbuIsVacuum(p) ? "rowid" : "rbu_rowid"
2991 pVal = sqlite3_column_value(pIter->pSelect, pIter->nCol+1);
2992 p->rc = sqlite3_bind_value(pWriter, pIter->nCol+1, pVal);
2995 if( p->rc==SQLITE_OK ){
2996 sqlite3_step(pWriter);
2997 p->rc = resetAndCollectError(pWriter, &p->zErrmsg);
3002 ** This function does the work for an sqlite3rbu_step() call.
3004 ** The object-iterator (p->objiter) currently points to a valid object,
3005 ** and the input cursor (p->objiter.pSelect) currently points to a valid
3006 ** input row. Perform whatever processing is required and return.
3008 ** If no error occurs, SQLITE_OK is returned. Otherwise, an error code
3009 ** and message is left in the RBU handle and a copy of the error code
3010 ** returned.
3012 static int rbuStep(sqlite3rbu *p){
3013 RbuObjIter *pIter = &p->objiter;
3014 const char *zMask = 0;
3015 int eType = rbuStepType(p, &zMask);
3017 if( eType ){
3018 assert( eType==RBU_INSERT || eType==RBU_DELETE
3019 || eType==RBU_REPLACE || eType==RBU_IDX_DELETE
3020 || eType==RBU_IDX_INSERT || eType==RBU_UPDATE
3022 assert( eType!=RBU_UPDATE || pIter->zIdx==0 );
3024 if( pIter->zIdx==0 && (eType==RBU_IDX_DELETE || eType==RBU_IDX_INSERT) ){
3025 rbuBadControlError(p);
3027 else if( eType==RBU_REPLACE ){
3028 if( pIter->zIdx==0 ){
3029 p->nPhaseOneStep += p->objiter.nIndex;
3030 rbuStepOneOp(p, RBU_DELETE);
3032 if( p->rc==SQLITE_OK ) rbuStepOneOp(p, RBU_INSERT);
3034 else if( eType!=RBU_UPDATE ){
3035 rbuStepOneOp(p, eType);
3037 else{
3038 sqlite3_value *pVal;
3039 sqlite3_stmt *pUpdate = 0;
3040 assert( eType==RBU_UPDATE );
3041 p->nPhaseOneStep -= p->objiter.nIndex;
3042 rbuGetUpdateStmt(p, pIter, zMask, &pUpdate);
3043 if( pUpdate ){
3044 int i;
3045 for(i=0; p->rc==SQLITE_OK && i<pIter->nCol; i++){
3046 char c = zMask[pIter->aiSrcOrder[i]];
3047 pVal = sqlite3_column_value(pIter->pSelect, i);
3048 if( pIter->abTblPk[i] || c!='.' ){
3049 p->rc = sqlite3_bind_value(pUpdate, i+1, pVal);
3052 if( p->rc==SQLITE_OK
3053 && (pIter->eType==RBU_PK_VTAB || pIter->eType==RBU_PK_NONE)
3055 /* Bind the rbu_rowid value to column _rowid_ */
3056 assertColumnName(pIter->pSelect, pIter->nCol+1, "rbu_rowid");
3057 pVal = sqlite3_column_value(pIter->pSelect, pIter->nCol+1);
3058 p->rc = sqlite3_bind_value(pUpdate, pIter->nCol+1, pVal);
3060 if( p->rc==SQLITE_OK ){
3061 sqlite3_step(pUpdate);
3062 p->rc = resetAndCollectError(pUpdate, &p->zErrmsg);
3067 return p->rc;
3071 ** Increment the schema cookie of the main database opened by p->dbMain.
3073 ** Or, if this is an RBU vacuum, set the schema cookie of the main db
3074 ** opened by p->dbMain to one more than the schema cookie of the main
3075 ** db opened by p->dbRbu.
3077 static void rbuIncrSchemaCookie(sqlite3rbu *p){
3078 if( p->rc==SQLITE_OK ){
3079 sqlite3 *dbread = (rbuIsVacuum(p) ? p->dbRbu : p->dbMain);
3080 int iCookie = 1000000;
3081 sqlite3_stmt *pStmt;
3083 p->rc = prepareAndCollectError(dbread, &pStmt, &p->zErrmsg,
3084 "PRAGMA schema_version"
3086 if( p->rc==SQLITE_OK ){
3087 /* Coverage: it may be that this sqlite3_step() cannot fail. There
3088 ** is already a transaction open, so the prepared statement cannot
3089 ** throw an SQLITE_SCHEMA exception. The only database page the
3090 ** statement reads is page 1, which is guaranteed to be in the cache.
3091 ** And no memory allocations are required. */
3092 if( SQLITE_ROW==sqlite3_step(pStmt) ){
3093 iCookie = sqlite3_column_int(pStmt, 0);
3095 rbuFinalize(p, pStmt);
3097 if( p->rc==SQLITE_OK ){
3098 rbuMPrintfExec(p, p->dbMain, "PRAGMA schema_version = %d", iCookie+1);
3104 ** Update the contents of the rbu_state table within the rbu database. The
3105 ** value stored in the RBU_STATE_STAGE column is eStage. All other values
3106 ** are determined by inspecting the rbu handle passed as the first argument.
3108 static void rbuSaveState(sqlite3rbu *p, int eStage){
3109 if( p->rc==SQLITE_OK || p->rc==SQLITE_DONE ){
3110 sqlite3_stmt *pInsert = 0;
3111 rbu_file *pFd = (rbuIsVacuum(p) ? p->pRbuFd : p->pTargetFd);
3112 int rc;
3114 assert( p->zErrmsg==0 );
3115 rc = prepareFreeAndCollectError(p->dbRbu, &pInsert, &p->zErrmsg,
3116 sqlite3_mprintf(
3117 "INSERT OR REPLACE INTO %s.rbu_state(k, v) VALUES "
3118 "(%d, %d), "
3119 "(%d, %Q), "
3120 "(%d, %Q), "
3121 "(%d, %d), "
3122 "(%d, %d), "
3123 "(%d, %lld), "
3124 "(%d, %lld), "
3125 "(%d, %lld), "
3126 "(%d, %lld), "
3127 "(%d, %Q) ",
3128 p->zStateDb,
3129 RBU_STATE_STAGE, eStage,
3130 RBU_STATE_TBL, p->objiter.zTbl,
3131 RBU_STATE_IDX, p->objiter.zIdx,
3132 RBU_STATE_ROW, p->nStep,
3133 RBU_STATE_PROGRESS, p->nProgress,
3134 RBU_STATE_CKPT, p->iWalCksum,
3135 RBU_STATE_COOKIE, (i64)pFd->iCookie,
3136 RBU_STATE_OALSZ, p->iOalSz,
3137 RBU_STATE_PHASEONESTEP, p->nPhaseOneStep,
3138 RBU_STATE_DATATBL, p->objiter.zDataTbl
3141 assert( pInsert==0 || rc==SQLITE_OK );
3143 if( rc==SQLITE_OK ){
3144 sqlite3_step(pInsert);
3145 rc = sqlite3_finalize(pInsert);
3147 if( rc!=SQLITE_OK ) p->rc = rc;
3153 ** The second argument passed to this function is the name of a PRAGMA
3154 ** setting - "page_size", "auto_vacuum", "user_version" or "application_id".
3155 ** This function executes the following on sqlite3rbu.dbRbu:
3157 ** "PRAGMA main.$zPragma"
3159 ** where $zPragma is the string passed as the second argument, then
3160 ** on sqlite3rbu.dbMain:
3162 ** "PRAGMA main.$zPragma = $val"
3164 ** where $val is the value returned by the first PRAGMA invocation.
3166 ** In short, it copies the value of the specified PRAGMA setting from
3167 ** dbRbu to dbMain.
3169 static void rbuCopyPragma(sqlite3rbu *p, const char *zPragma){
3170 if( p->rc==SQLITE_OK ){
3171 sqlite3_stmt *pPragma = 0;
3172 p->rc = prepareFreeAndCollectError(p->dbRbu, &pPragma, &p->zErrmsg,
3173 sqlite3_mprintf("PRAGMA main.%s", zPragma)
3175 if( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pPragma) ){
3176 p->rc = rbuMPrintfExec(p, p->dbMain, "PRAGMA main.%s = %d",
3177 zPragma, sqlite3_column_int(pPragma, 0)
3180 rbuFinalize(p, pPragma);
3185 ** The RBU handle passed as the only argument has just been opened and
3186 ** the state database is empty. If this RBU handle was opened for an
3187 ** RBU vacuum operation, create the schema in the target db.
3189 static void rbuCreateTargetSchema(sqlite3rbu *p){
3190 sqlite3_stmt *pSql = 0;
3191 sqlite3_stmt *pInsert = 0;
3193 assert( rbuIsVacuum(p) );
3194 p->rc = sqlite3_exec(p->dbMain, "PRAGMA writable_schema=1", 0,0, &p->zErrmsg);
3195 if( p->rc==SQLITE_OK ){
3196 p->rc = prepareAndCollectError(p->dbRbu, &pSql, &p->zErrmsg,
3197 "SELECT sql FROM sqlite_master WHERE sql!='' AND rootpage!=0"
3198 " AND name!='sqlite_sequence' "
3199 " ORDER BY type DESC"
3203 while( p->rc==SQLITE_OK && sqlite3_step(pSql)==SQLITE_ROW ){
3204 const char *zSql = (const char*)sqlite3_column_text(pSql, 0);
3205 p->rc = sqlite3_exec(p->dbMain, zSql, 0, 0, &p->zErrmsg);
3207 rbuFinalize(p, pSql);
3208 if( p->rc!=SQLITE_OK ) return;
3210 if( p->rc==SQLITE_OK ){
3211 p->rc = prepareAndCollectError(p->dbRbu, &pSql, &p->zErrmsg,
3212 "SELECT * FROM sqlite_master WHERE rootpage=0 OR rootpage IS NULL"
3216 if( p->rc==SQLITE_OK ){
3217 p->rc = prepareAndCollectError(p->dbMain, &pInsert, &p->zErrmsg,
3218 "INSERT INTO sqlite_master VALUES(?,?,?,?,?)"
3222 while( p->rc==SQLITE_OK && sqlite3_step(pSql)==SQLITE_ROW ){
3223 int i;
3224 for(i=0; i<5; i++){
3225 sqlite3_bind_value(pInsert, i+1, sqlite3_column_value(pSql, i));
3227 sqlite3_step(pInsert);
3228 p->rc = sqlite3_reset(pInsert);
3230 if( p->rc==SQLITE_OK ){
3231 p->rc = sqlite3_exec(p->dbMain, "PRAGMA writable_schema=0",0,0,&p->zErrmsg);
3234 rbuFinalize(p, pSql);
3235 rbuFinalize(p, pInsert);
3239 ** Step the RBU object.
3241 int sqlite3rbu_step(sqlite3rbu *p){
3242 if( p ){
3243 switch( p->eStage ){
3244 case RBU_STAGE_OAL: {
3245 RbuObjIter *pIter = &p->objiter;
3247 /* If this is an RBU vacuum operation and the state table was empty
3248 ** when this handle was opened, create the target database schema. */
3249 if( rbuIsVacuum(p) && p->nProgress==0 && p->rc==SQLITE_OK ){
3250 rbuCreateTargetSchema(p);
3251 rbuCopyPragma(p, "user_version");
3252 rbuCopyPragma(p, "application_id");
3255 while( p->rc==SQLITE_OK && pIter->zTbl ){
3257 if( pIter->bCleanup ){
3258 /* Clean up the rbu_tmp_xxx table for the previous table. It
3259 ** cannot be dropped as there are currently active SQL statements.
3260 ** But the contents can be deleted. */
3261 if( rbuIsVacuum(p)==0 && pIter->abIndexed ){
3262 rbuMPrintfExec(p, p->dbRbu,
3263 "DELETE FROM %s.'rbu_tmp_%q'", p->zStateDb, pIter->zDataTbl
3266 }else{
3267 rbuObjIterPrepareAll(p, pIter, 0);
3269 /* Advance to the next row to process. */
3270 if( p->rc==SQLITE_OK ){
3271 int rc = sqlite3_step(pIter->pSelect);
3272 if( rc==SQLITE_ROW ){
3273 p->nProgress++;
3274 p->nStep++;
3275 return rbuStep(p);
3277 p->rc = sqlite3_reset(pIter->pSelect);
3278 p->nStep = 0;
3282 rbuObjIterNext(p, pIter);
3285 if( p->rc==SQLITE_OK ){
3286 assert( pIter->zTbl==0 );
3287 rbuSaveState(p, RBU_STAGE_MOVE);
3288 rbuIncrSchemaCookie(p);
3289 if( p->rc==SQLITE_OK ){
3290 p->rc = sqlite3_exec(p->dbMain, "COMMIT", 0, 0, &p->zErrmsg);
3292 if( p->rc==SQLITE_OK ){
3293 p->rc = sqlite3_exec(p->dbRbu, "COMMIT", 0, 0, &p->zErrmsg);
3295 p->eStage = RBU_STAGE_MOVE;
3297 break;
3300 case RBU_STAGE_MOVE: {
3301 if( p->rc==SQLITE_OK ){
3302 rbuMoveOalFile(p);
3303 p->nProgress++;
3305 break;
3308 case RBU_STAGE_CKPT: {
3309 if( p->rc==SQLITE_OK ){
3310 if( p->nStep>=p->nFrame ){
3311 sqlite3_file *pDb = p->pTargetFd->pReal;
3313 /* Sync the db file */
3314 p->rc = pDb->pMethods->xSync(pDb, SQLITE_SYNC_NORMAL);
3316 /* Update nBackfill */
3317 if( p->rc==SQLITE_OK ){
3318 void volatile *ptr;
3319 p->rc = pDb->pMethods->xShmMap(pDb, 0, 32*1024, 0, &ptr);
3320 if( p->rc==SQLITE_OK ){
3321 ((u32 volatile*)ptr)[24] = p->iMaxFrame;
3325 if( p->rc==SQLITE_OK ){
3326 p->eStage = RBU_STAGE_DONE;
3327 p->rc = SQLITE_DONE;
3329 }else{
3330 /* At one point the following block copied a single frame from the
3331 ** wal file to the database file. So that one call to sqlite3rbu_step()
3332 ** checkpointed a single frame.
3334 ** However, if the sector-size is larger than the page-size, and the
3335 ** application calls sqlite3rbu_savestate() or close() immediately
3336 ** after this step, then rbu_step() again, then a power failure occurs,
3337 ** then the database page written here may be damaged. Work around
3338 ** this by checkpointing frames until the next page in the aFrame[]
3339 ** lies on a different disk sector to the current one. */
3340 u32 iSector;
3342 RbuFrame *pFrame = &p->aFrame[p->nStep];
3343 iSector = (pFrame->iDbPage-1) / p->nPagePerSector;
3344 rbuCheckpointFrame(p, pFrame);
3345 p->nStep++;
3346 }while( p->nStep<p->nFrame
3347 && iSector==((p->aFrame[p->nStep].iDbPage-1) / p->nPagePerSector)
3348 && p->rc==SQLITE_OK
3351 p->nProgress++;
3353 break;
3356 default:
3357 break;
3359 return p->rc;
3360 }else{
3361 return SQLITE_NOMEM;
3366 ** Compare strings z1 and z2, returning 0 if they are identical, or non-zero
3367 ** otherwise. Either or both argument may be NULL. Two NULL values are
3368 ** considered equal, and NULL is considered distinct from all other values.
3370 static int rbuStrCompare(const char *z1, const char *z2){
3371 if( z1==0 && z2==0 ) return 0;
3372 if( z1==0 || z2==0 ) return 1;
3373 return (sqlite3_stricmp(z1, z2)!=0);
3377 ** This function is called as part of sqlite3rbu_open() when initializing
3378 ** an rbu handle in OAL stage. If the rbu update has not started (i.e.
3379 ** the rbu_state table was empty) it is a no-op. Otherwise, it arranges
3380 ** things so that the next call to sqlite3rbu_step() continues on from
3381 ** where the previous rbu handle left off.
3383 ** If an error occurs, an error code and error message are left in the
3384 ** rbu handle passed as the first argument.
3386 static void rbuSetupOal(sqlite3rbu *p, RbuState *pState){
3387 assert( p->rc==SQLITE_OK );
3388 if( pState->zTbl ){
3389 RbuObjIter *pIter = &p->objiter;
3390 int rc = SQLITE_OK;
3392 while( rc==SQLITE_OK && pIter->zTbl && (pIter->bCleanup
3393 || rbuStrCompare(pIter->zIdx, pState->zIdx)
3394 || (pState->zDataTbl==0 && rbuStrCompare(pIter->zTbl, pState->zTbl))
3395 || (pState->zDataTbl && rbuStrCompare(pIter->zDataTbl, pState->zDataTbl))
3397 rc = rbuObjIterNext(p, pIter);
3400 if( rc==SQLITE_OK && !pIter->zTbl ){
3401 rc = SQLITE_ERROR;
3402 p->zErrmsg = sqlite3_mprintf("rbu_state mismatch error");
3405 if( rc==SQLITE_OK ){
3406 p->nStep = pState->nRow;
3407 rc = rbuObjIterPrepareAll(p, &p->objiter, p->nStep);
3410 p->rc = rc;
3415 ** If there is a "*-oal" file in the file-system corresponding to the
3416 ** target database in the file-system, delete it. If an error occurs,
3417 ** leave an error code and error message in the rbu handle.
3419 static void rbuDeleteOalFile(sqlite3rbu *p){
3420 char *zOal = rbuMPrintf(p, "%s-oal", p->zTarget);
3421 if( zOal ){
3422 sqlite3_vfs *pVfs = sqlite3_vfs_find(0);
3423 assert( pVfs && p->rc==SQLITE_OK && p->zErrmsg==0 );
3424 pVfs->xDelete(pVfs, zOal, 0);
3425 sqlite3_free(zOal);
3430 ** Allocate a private rbu VFS for the rbu handle passed as the only
3431 ** argument. This VFS will be used unless the call to sqlite3rbu_open()
3432 ** specified a URI with a vfs=? option in place of a target database
3433 ** file name.
3435 static void rbuCreateVfs(sqlite3rbu *p){
3436 int rnd;
3437 char zRnd[64];
3439 assert( p->rc==SQLITE_OK );
3440 sqlite3_randomness(sizeof(int), (void*)&rnd);
3441 sqlite3_snprintf(sizeof(zRnd), zRnd, "rbu_vfs_%d", rnd);
3442 p->rc = sqlite3rbu_create_vfs(zRnd, 0);
3443 if( p->rc==SQLITE_OK ){
3444 sqlite3_vfs *pVfs = sqlite3_vfs_find(zRnd);
3445 assert( pVfs );
3446 p->zVfsName = pVfs->zName;
3447 ((rbu_vfs*)pVfs)->pRbu = p;
3452 ** Destroy the private VFS created for the rbu handle passed as the only
3453 ** argument by an earlier call to rbuCreateVfs().
3455 static void rbuDeleteVfs(sqlite3rbu *p){
3456 if( p->zVfsName ){
3457 sqlite3rbu_destroy_vfs(p->zVfsName);
3458 p->zVfsName = 0;
3463 ** This user-defined SQL function is invoked with a single argument - the
3464 ** name of a table expected to appear in the target database. It returns
3465 ** the number of auxilliary indexes on the table.
3467 static void rbuIndexCntFunc(
3468 sqlite3_context *pCtx,
3469 int nVal,
3470 sqlite3_value **apVal
3472 sqlite3rbu *p = (sqlite3rbu*)sqlite3_user_data(pCtx);
3473 sqlite3_stmt *pStmt = 0;
3474 char *zErrmsg = 0;
3475 int rc;
3477 assert( nVal==1 );
3479 rc = prepareFreeAndCollectError(p->dbMain, &pStmt, &zErrmsg,
3480 sqlite3_mprintf("SELECT count(*) FROM sqlite_master "
3481 "WHERE type='index' AND tbl_name = %Q", sqlite3_value_text(apVal[0]))
3483 if( rc!=SQLITE_OK ){
3484 sqlite3_result_error(pCtx, zErrmsg, -1);
3485 }else{
3486 int nIndex = 0;
3487 if( SQLITE_ROW==sqlite3_step(pStmt) ){
3488 nIndex = sqlite3_column_int(pStmt, 0);
3490 rc = sqlite3_finalize(pStmt);
3491 if( rc==SQLITE_OK ){
3492 sqlite3_result_int(pCtx, nIndex);
3493 }else{
3494 sqlite3_result_error(pCtx, sqlite3_errmsg(p->dbMain), -1);
3498 sqlite3_free(zErrmsg);
3502 ** If the RBU database contains the rbu_count table, use it to initialize
3503 ** the sqlite3rbu.nPhaseOneStep variable. The schema of the rbu_count table
3504 ** is assumed to contain the same columns as:
3506 ** CREATE TABLE rbu_count(tbl TEXT PRIMARY KEY, cnt INTEGER) WITHOUT ROWID;
3508 ** There should be one row in the table for each data_xxx table in the
3509 ** database. The 'tbl' column should contain the name of a data_xxx table,
3510 ** and the cnt column the number of rows it contains.
3512 ** sqlite3rbu.nPhaseOneStep is initialized to the sum of (1 + nIndex) * cnt
3513 ** for all rows in the rbu_count table, where nIndex is the number of
3514 ** indexes on the corresponding target database table.
3516 static void rbuInitPhaseOneSteps(sqlite3rbu *p){
3517 if( p->rc==SQLITE_OK ){
3518 sqlite3_stmt *pStmt = 0;
3519 int bExists = 0; /* True if rbu_count exists */
3521 p->nPhaseOneStep = -1;
3523 p->rc = sqlite3_create_function(p->dbRbu,
3524 "rbu_index_cnt", 1, SQLITE_UTF8, (void*)p, rbuIndexCntFunc, 0, 0
3527 /* Check for the rbu_count table. If it does not exist, or if an error
3528 ** occurs, nPhaseOneStep will be left set to -1. */
3529 if( p->rc==SQLITE_OK ){
3530 p->rc = prepareAndCollectError(p->dbRbu, &pStmt, &p->zErrmsg,
3531 "SELECT 1 FROM sqlite_master WHERE tbl_name = 'rbu_count'"
3534 if( p->rc==SQLITE_OK ){
3535 if( SQLITE_ROW==sqlite3_step(pStmt) ){
3536 bExists = 1;
3538 p->rc = sqlite3_finalize(pStmt);
3541 if( p->rc==SQLITE_OK && bExists ){
3542 p->rc = prepareAndCollectError(p->dbRbu, &pStmt, &p->zErrmsg,
3543 "SELECT sum(cnt * (1 + rbu_index_cnt(rbu_target_name(tbl))))"
3544 "FROM rbu_count"
3546 if( p->rc==SQLITE_OK ){
3547 if( SQLITE_ROW==sqlite3_step(pStmt) ){
3548 p->nPhaseOneStep = sqlite3_column_int64(pStmt, 0);
3550 p->rc = sqlite3_finalize(pStmt);
3557 static sqlite3rbu *openRbuHandle(
3558 const char *zTarget,
3559 const char *zRbu,
3560 const char *zState
3562 sqlite3rbu *p;
3563 size_t nTarget = zTarget ? strlen(zTarget) : 0;
3564 size_t nRbu = strlen(zRbu);
3565 size_t nByte = sizeof(sqlite3rbu) + nTarget+1 + nRbu+1;
3567 p = (sqlite3rbu*)sqlite3_malloc64(nByte);
3568 if( p ){
3569 RbuState *pState = 0;
3571 /* Create the custom VFS. */
3572 memset(p, 0, sizeof(sqlite3rbu));
3573 rbuCreateVfs(p);
3575 /* Open the target, RBU and state databases */
3576 if( p->rc==SQLITE_OK ){
3577 char *pCsr = (char*)&p[1];
3578 int bRetry = 0;
3579 if( zTarget ){
3580 p->zTarget = pCsr;
3581 memcpy(p->zTarget, zTarget, nTarget+1);
3582 pCsr += nTarget+1;
3584 p->zRbu = pCsr;
3585 memcpy(p->zRbu, zRbu, nRbu+1);
3586 pCsr += nRbu+1;
3587 if( zState ){
3588 p->zState = rbuMPrintf(p, "%s", zState);
3591 /* If the first attempt to open the database file fails and the bRetry
3592 ** flag it set, this means that the db was not opened because it seemed
3593 ** to be a wal-mode db. But, this may have happened due to an earlier
3594 ** RBU vacuum operation leaving an old wal file in the directory.
3595 ** If this is the case, it will have been checkpointed and deleted
3596 ** when the handle was closed and a second attempt to open the
3597 ** database may succeed. */
3598 rbuOpenDatabase(p, &bRetry);
3599 if( bRetry ){
3600 rbuOpenDatabase(p, 0);
3604 if( p->rc==SQLITE_OK ){
3605 pState = rbuLoadState(p);
3606 assert( pState || p->rc!=SQLITE_OK );
3607 if( p->rc==SQLITE_OK ){
3609 if( pState->eStage==0 ){
3610 rbuDeleteOalFile(p);
3611 rbuInitPhaseOneSteps(p);
3612 p->eStage = RBU_STAGE_OAL;
3613 }else{
3614 p->eStage = pState->eStage;
3615 p->nPhaseOneStep = pState->nPhaseOneStep;
3617 p->nProgress = pState->nProgress;
3618 p->iOalSz = pState->iOalSz;
3621 assert( p->rc!=SQLITE_OK || p->eStage!=0 );
3623 if( p->rc==SQLITE_OK && p->pTargetFd->pWalFd ){
3624 if( p->eStage==RBU_STAGE_OAL ){
3625 p->rc = SQLITE_ERROR;
3626 p->zErrmsg = sqlite3_mprintf("cannot update wal mode database");
3627 }else if( p->eStage==RBU_STAGE_MOVE ){
3628 p->eStage = RBU_STAGE_CKPT;
3629 p->nStep = 0;
3633 if( p->rc==SQLITE_OK
3634 && (p->eStage==RBU_STAGE_OAL || p->eStage==RBU_STAGE_MOVE)
3635 && pState->eStage!=0
3637 rbu_file *pFd = (rbuIsVacuum(p) ? p->pRbuFd : p->pTargetFd);
3638 if( pFd->iCookie!=pState->iCookie ){
3639 /* At this point (pTargetFd->iCookie) contains the value of the
3640 ** change-counter cookie (the thing that gets incremented when a
3641 ** transaction is committed in rollback mode) currently stored on
3642 ** page 1 of the database file. */
3643 p->rc = SQLITE_BUSY;
3644 p->zErrmsg = sqlite3_mprintf("database modified during rbu %s",
3645 (rbuIsVacuum(p) ? "vacuum" : "update")
3650 if( p->rc==SQLITE_OK ){
3651 if( p->eStage==RBU_STAGE_OAL ){
3652 sqlite3 *db = p->dbMain;
3653 p->rc = sqlite3_exec(p->dbRbu, "BEGIN", 0, 0, &p->zErrmsg);
3655 /* Point the object iterator at the first object */
3656 if( p->rc==SQLITE_OK ){
3657 p->rc = rbuObjIterFirst(p, &p->objiter);
3660 /* If the RBU database contains no data_xxx tables, declare the RBU
3661 ** update finished. */
3662 if( p->rc==SQLITE_OK && p->objiter.zTbl==0 ){
3663 p->rc = SQLITE_DONE;
3664 p->eStage = RBU_STAGE_DONE;
3665 }else{
3666 if( p->rc==SQLITE_OK && pState->eStage==0 && rbuIsVacuum(p) ){
3667 rbuCopyPragma(p, "page_size");
3668 rbuCopyPragma(p, "auto_vacuum");
3671 /* Open transactions both databases. The *-oal file is opened or
3672 ** created at this point. */
3673 if( p->rc==SQLITE_OK ){
3674 p->rc = sqlite3_exec(db, "BEGIN IMMEDIATE", 0, 0, &p->zErrmsg);
3677 /* Check if the main database is a zipvfs db. If it is, set the upper
3678 ** level pager to use "journal_mode=off". This prevents it from
3679 ** generating a large journal using a temp file. */
3680 if( p->rc==SQLITE_OK ){
3681 int frc = sqlite3_file_control(db, "main", SQLITE_FCNTL_ZIPVFS, 0);
3682 if( frc==SQLITE_OK ){
3683 p->rc = sqlite3_exec(
3684 db, "PRAGMA journal_mode=off",0,0,&p->zErrmsg);
3688 if( p->rc==SQLITE_OK ){
3689 rbuSetupOal(p, pState);
3692 }else if( p->eStage==RBU_STAGE_MOVE ){
3693 /* no-op */
3694 }else if( p->eStage==RBU_STAGE_CKPT ){
3695 rbuSetupCheckpoint(p, pState);
3696 }else if( p->eStage==RBU_STAGE_DONE ){
3697 p->rc = SQLITE_DONE;
3698 }else{
3699 p->rc = SQLITE_CORRUPT;
3703 rbuFreeState(pState);
3706 return p;
3710 ** Allocate and return an RBU handle with all fields zeroed except for the
3711 ** error code, which is set to SQLITE_MISUSE.
3713 static sqlite3rbu *rbuMisuseError(void){
3714 sqlite3rbu *pRet;
3715 pRet = sqlite3_malloc64(sizeof(sqlite3rbu));
3716 if( pRet ){
3717 memset(pRet, 0, sizeof(sqlite3rbu));
3718 pRet->rc = SQLITE_MISUSE;
3720 return pRet;
3724 ** Open and return a new RBU handle.
3726 sqlite3rbu *sqlite3rbu_open(
3727 const char *zTarget,
3728 const char *zRbu,
3729 const char *zState
3731 if( zTarget==0 || zRbu==0 ){ return rbuMisuseError(); }
3732 /* TODO: Check that zTarget and zRbu are non-NULL */
3733 return openRbuHandle(zTarget, zRbu, zState);
3737 ** Open a handle to begin or resume an RBU VACUUM operation.
3739 sqlite3rbu *sqlite3rbu_vacuum(
3740 const char *zTarget,
3741 const char *zState
3743 if( zTarget==0 ){ return rbuMisuseError(); }
3744 /* TODO: Check that both arguments are non-NULL */
3745 return openRbuHandle(0, zTarget, zState);
3749 ** Return the database handle used by pRbu.
3751 sqlite3 *sqlite3rbu_db(sqlite3rbu *pRbu, int bRbu){
3752 sqlite3 *db = 0;
3753 if( pRbu ){
3754 db = (bRbu ? pRbu->dbRbu : pRbu->dbMain);
3756 return db;
3761 ** If the error code currently stored in the RBU handle is SQLITE_CONSTRAINT,
3762 ** then edit any error message string so as to remove all occurrences of
3763 ** the pattern "rbu_imp_[0-9]*".
3765 static void rbuEditErrmsg(sqlite3rbu *p){
3766 if( p->rc==SQLITE_CONSTRAINT && p->zErrmsg ){
3767 unsigned int i;
3768 size_t nErrmsg = strlen(p->zErrmsg);
3769 for(i=0; i<(nErrmsg-8); i++){
3770 if( memcmp(&p->zErrmsg[i], "rbu_imp_", 8)==0 ){
3771 int nDel = 8;
3772 while( p->zErrmsg[i+nDel]>='0' && p->zErrmsg[i+nDel]<='9' ) nDel++;
3773 memmove(&p->zErrmsg[i], &p->zErrmsg[i+nDel], nErrmsg + 1 - i - nDel);
3774 nErrmsg -= nDel;
3781 ** Close the RBU handle.
3783 int sqlite3rbu_close(sqlite3rbu *p, char **pzErrmsg){
3784 int rc;
3785 if( p ){
3787 /* Commit the transaction to the *-oal file. */
3788 if( p->rc==SQLITE_OK && p->eStage==RBU_STAGE_OAL ){
3789 p->rc = sqlite3_exec(p->dbMain, "COMMIT", 0, 0, &p->zErrmsg);
3792 /* Sync the db file if currently doing an incremental checkpoint */
3793 if( p->rc==SQLITE_OK && p->eStage==RBU_STAGE_CKPT ){
3794 sqlite3_file *pDb = p->pTargetFd->pReal;
3795 p->rc = pDb->pMethods->xSync(pDb, SQLITE_SYNC_NORMAL);
3798 rbuSaveState(p, p->eStage);
3800 if( p->rc==SQLITE_OK && p->eStage==RBU_STAGE_OAL ){
3801 p->rc = sqlite3_exec(p->dbRbu, "COMMIT", 0, 0, &p->zErrmsg);
3804 /* Close any open statement handles. */
3805 rbuObjIterFinalize(&p->objiter);
3807 /* If this is an RBU vacuum handle and the vacuum has either finished
3808 ** successfully or encountered an error, delete the contents of the
3809 ** state table. This causes the next call to sqlite3rbu_vacuum()
3810 ** specifying the current target and state databases to start a new
3811 ** vacuum from scratch. */
3812 if( rbuIsVacuum(p) && p->rc!=SQLITE_OK && p->dbRbu ){
3813 int rc2 = sqlite3_exec(p->dbRbu, "DELETE FROM stat.rbu_state", 0, 0, 0);
3814 if( p->rc==SQLITE_DONE && rc2!=SQLITE_OK ) p->rc = rc2;
3817 /* Close the open database handle and VFS object. */
3818 sqlite3_close(p->dbRbu);
3819 sqlite3_close(p->dbMain);
3820 assert( p->szTemp==0 );
3821 rbuDeleteVfs(p);
3822 sqlite3_free(p->aBuf);
3823 sqlite3_free(p->aFrame);
3825 rbuEditErrmsg(p);
3826 rc = p->rc;
3827 if( pzErrmsg ){
3828 *pzErrmsg = p->zErrmsg;
3829 }else{
3830 sqlite3_free(p->zErrmsg);
3832 sqlite3_free(p->zState);
3833 sqlite3_free(p);
3834 }else{
3835 rc = SQLITE_NOMEM;
3836 *pzErrmsg = 0;
3838 return rc;
3842 ** Return the total number of key-value operations (inserts, deletes or
3843 ** updates) that have been performed on the target database since the
3844 ** current RBU update was started.
3846 sqlite3_int64 sqlite3rbu_progress(sqlite3rbu *pRbu){
3847 return pRbu->nProgress;
3851 ** Return permyriadage progress indications for the two main stages of
3852 ** an RBU update.
3854 void sqlite3rbu_bp_progress(sqlite3rbu *p, int *pnOne, int *pnTwo){
3855 const int MAX_PROGRESS = 10000;
3856 switch( p->eStage ){
3857 case RBU_STAGE_OAL:
3858 if( p->nPhaseOneStep>0 ){
3859 *pnOne = (int)(MAX_PROGRESS * (i64)p->nProgress/(i64)p->nPhaseOneStep);
3860 }else{
3861 *pnOne = -1;
3863 *pnTwo = 0;
3864 break;
3866 case RBU_STAGE_MOVE:
3867 *pnOne = MAX_PROGRESS;
3868 *pnTwo = 0;
3869 break;
3871 case RBU_STAGE_CKPT:
3872 *pnOne = MAX_PROGRESS;
3873 *pnTwo = (int)(MAX_PROGRESS * (i64)p->nStep / (i64)p->nFrame);
3874 break;
3876 case RBU_STAGE_DONE:
3877 *pnOne = MAX_PROGRESS;
3878 *pnTwo = MAX_PROGRESS;
3879 break;
3881 default:
3882 assert( 0 );
3887 ** Return the current state of the RBU vacuum or update operation.
3889 int sqlite3rbu_state(sqlite3rbu *p){
3890 int aRes[] = {
3891 0, SQLITE_RBU_STATE_OAL, SQLITE_RBU_STATE_MOVE,
3892 0, SQLITE_RBU_STATE_CHECKPOINT, SQLITE_RBU_STATE_DONE
3895 assert( RBU_STAGE_OAL==1 );
3896 assert( RBU_STAGE_MOVE==2 );
3897 assert( RBU_STAGE_CKPT==4 );
3898 assert( RBU_STAGE_DONE==5 );
3899 assert( aRes[RBU_STAGE_OAL]==SQLITE_RBU_STATE_OAL );
3900 assert( aRes[RBU_STAGE_MOVE]==SQLITE_RBU_STATE_MOVE );
3901 assert( aRes[RBU_STAGE_CKPT]==SQLITE_RBU_STATE_CHECKPOINT );
3902 assert( aRes[RBU_STAGE_DONE]==SQLITE_RBU_STATE_DONE );
3904 if( p->rc!=SQLITE_OK && p->rc!=SQLITE_DONE ){
3905 return SQLITE_RBU_STATE_ERROR;
3906 }else{
3907 assert( p->rc!=SQLITE_DONE || p->eStage==RBU_STAGE_DONE );
3908 assert( p->eStage==RBU_STAGE_OAL
3909 || p->eStage==RBU_STAGE_MOVE
3910 || p->eStage==RBU_STAGE_CKPT
3911 || p->eStage==RBU_STAGE_DONE
3913 return aRes[p->eStage];
3917 int sqlite3rbu_savestate(sqlite3rbu *p){
3918 int rc = p->rc;
3919 if( rc==SQLITE_DONE ) return SQLITE_OK;
3921 assert( p->eStage>=RBU_STAGE_OAL && p->eStage<=RBU_STAGE_DONE );
3922 if( p->eStage==RBU_STAGE_OAL ){
3923 assert( rc!=SQLITE_DONE );
3924 if( rc==SQLITE_OK ) rc = sqlite3_exec(p->dbMain, "COMMIT", 0, 0, 0);
3927 /* Sync the db file */
3928 if( rc==SQLITE_OK && p->eStage==RBU_STAGE_CKPT ){
3929 sqlite3_file *pDb = p->pTargetFd->pReal;
3930 rc = pDb->pMethods->xSync(pDb, SQLITE_SYNC_NORMAL);
3933 p->rc = rc;
3934 rbuSaveState(p, p->eStage);
3935 rc = p->rc;
3937 if( p->eStage==RBU_STAGE_OAL ){
3938 assert( rc!=SQLITE_DONE );
3939 if( rc==SQLITE_OK ) rc = sqlite3_exec(p->dbRbu, "COMMIT", 0, 0, 0);
3940 if( rc==SQLITE_OK ) rc = sqlite3_exec(p->dbRbu, "BEGIN IMMEDIATE", 0, 0, 0);
3941 if( rc==SQLITE_OK ) rc = sqlite3_exec(p->dbMain, "BEGIN IMMEDIATE", 0, 0,0);
3944 p->rc = rc;
3945 return rc;
3948 /**************************************************************************
3949 ** Beginning of RBU VFS shim methods. The VFS shim modifies the behaviour
3950 ** of a standard VFS in the following ways:
3952 ** 1. Whenever the first page of a main database file is read or
3953 ** written, the value of the change-counter cookie is stored in
3954 ** rbu_file.iCookie. Similarly, the value of the "write-version"
3955 ** database header field is stored in rbu_file.iWriteVer. This ensures
3956 ** that the values are always trustworthy within an open transaction.
3958 ** 2. Whenever an SQLITE_OPEN_WAL file is opened, the (rbu_file.pWalFd)
3959 ** member variable of the associated database file descriptor is set
3960 ** to point to the new file. A mutex protected linked list of all main
3961 ** db fds opened using a particular RBU VFS is maintained at
3962 ** rbu_vfs.pMain to facilitate this.
3964 ** 3. Using a new file-control "SQLITE_FCNTL_RBU", a main db rbu_file
3965 ** object can be marked as the target database of an RBU update. This
3966 ** turns on the following extra special behaviour:
3968 ** 3a. If xAccess() is called to check if there exists a *-wal file
3969 ** associated with an RBU target database currently in RBU_STAGE_OAL
3970 ** stage (preparing the *-oal file), the following special handling
3971 ** applies:
3973 ** * if the *-wal file does exist, return SQLITE_CANTOPEN. An RBU
3974 ** target database may not be in wal mode already.
3976 ** * if the *-wal file does not exist, set the output parameter to
3977 ** non-zero (to tell SQLite that it does exist) anyway.
3979 ** Then, when xOpen() is called to open the *-wal file associated with
3980 ** the RBU target in RBU_STAGE_OAL stage, instead of opening the *-wal
3981 ** file, the rbu vfs opens the corresponding *-oal file instead.
3983 ** 3b. The *-shm pages returned by xShmMap() for a target db file in
3984 ** RBU_STAGE_OAL mode are actually stored in heap memory. This is to
3985 ** avoid creating a *-shm file on disk. Additionally, xShmLock() calls
3986 ** are no-ops on target database files in RBU_STAGE_OAL mode. This is
3987 ** because assert() statements in some VFS implementations fail if
3988 ** xShmLock() is called before xShmMap().
3990 ** 3c. If an EXCLUSIVE lock is attempted on a target database file in any
3991 ** mode except RBU_STAGE_DONE (all work completed and checkpointed), it
3992 ** fails with an SQLITE_BUSY error. This is to stop RBU connections
3993 ** from automatically checkpointing a *-wal (or *-oal) file from within
3994 ** sqlite3_close().
3996 ** 3d. In RBU_STAGE_CAPTURE mode, all xRead() calls on the wal file, and
3997 ** all xWrite() calls on the target database file perform no IO.
3998 ** Instead the frame and page numbers that would be read and written
3999 ** are recorded. Additionally, successful attempts to obtain exclusive
4000 ** xShmLock() WRITER, CHECKPOINTER and READ0 locks on the target
4001 ** database file are recorded. xShmLock() calls to unlock the same
4002 ** locks are no-ops (so that once obtained, these locks are never
4003 ** relinquished). Finally, calls to xSync() on the target database
4004 ** file fail with SQLITE_INTERNAL errors.
4007 static void rbuUnlockShm(rbu_file *p){
4008 assert( p->openFlags & SQLITE_OPEN_MAIN_DB );
4009 if( p->pRbu ){
4010 int (*xShmLock)(sqlite3_file*,int,int,int) = p->pReal->pMethods->xShmLock;
4011 int i;
4012 for(i=0; i<SQLITE_SHM_NLOCK;i++){
4013 if( (1<<i) & p->pRbu->mLock ){
4014 xShmLock(p->pReal, i, 1, SQLITE_SHM_UNLOCK|SQLITE_SHM_EXCLUSIVE);
4017 p->pRbu->mLock = 0;
4023 static int rbuUpdateTempSize(rbu_file *pFd, sqlite3_int64 nNew){
4024 sqlite3rbu *pRbu = pFd->pRbu;
4025 i64 nDiff = nNew - pFd->sz;
4026 pRbu->szTemp += nDiff;
4027 pFd->sz = nNew;
4028 assert( pRbu->szTemp>=0 );
4029 if( pRbu->szTempLimit && pRbu->szTemp>pRbu->szTempLimit ) return SQLITE_FULL;
4030 return SQLITE_OK;
4034 ** Close an rbu file.
4036 static int rbuVfsClose(sqlite3_file *pFile){
4037 rbu_file *p = (rbu_file*)pFile;
4038 int rc;
4039 int i;
4041 /* Free the contents of the apShm[] array. And the array itself. */
4042 for(i=0; i<p->nShm; i++){
4043 sqlite3_free(p->apShm[i]);
4045 sqlite3_free(p->apShm);
4046 p->apShm = 0;
4047 sqlite3_free(p->zDel);
4049 if( p->openFlags & SQLITE_OPEN_MAIN_DB ){
4050 rbu_file **pp;
4051 sqlite3_mutex_enter(p->pRbuVfs->mutex);
4052 for(pp=&p->pRbuVfs->pMain; *pp!=p; pp=&((*pp)->pMainNext));
4053 *pp = p->pMainNext;
4054 sqlite3_mutex_leave(p->pRbuVfs->mutex);
4055 rbuUnlockShm(p);
4056 p->pReal->pMethods->xShmUnmap(p->pReal, 0);
4058 else if( (p->openFlags & SQLITE_OPEN_DELETEONCLOSE) && p->pRbu ){
4059 rbuUpdateTempSize(p, 0);
4062 /* Close the underlying file handle */
4063 rc = p->pReal->pMethods->xClose(p->pReal);
4064 return rc;
4069 ** Read and return an unsigned 32-bit big-endian integer from the buffer
4070 ** passed as the only argument.
4072 static u32 rbuGetU32(u8 *aBuf){
4073 return ((u32)aBuf[0] << 24)
4074 + ((u32)aBuf[1] << 16)
4075 + ((u32)aBuf[2] << 8)
4076 + ((u32)aBuf[3]);
4080 ** Write an unsigned 32-bit value in big-endian format to the supplied
4081 ** buffer.
4083 static void rbuPutU32(u8 *aBuf, u32 iVal){
4084 aBuf[0] = (iVal >> 24) & 0xFF;
4085 aBuf[1] = (iVal >> 16) & 0xFF;
4086 aBuf[2] = (iVal >> 8) & 0xFF;
4087 aBuf[3] = (iVal >> 0) & 0xFF;
4090 static void rbuPutU16(u8 *aBuf, u16 iVal){
4091 aBuf[0] = (iVal >> 8) & 0xFF;
4092 aBuf[1] = (iVal >> 0) & 0xFF;
4096 ** Read data from an rbuVfs-file.
4098 static int rbuVfsRead(
4099 sqlite3_file *pFile,
4100 void *zBuf,
4101 int iAmt,
4102 sqlite_int64 iOfst
4104 rbu_file *p = (rbu_file*)pFile;
4105 sqlite3rbu *pRbu = p->pRbu;
4106 int rc;
4108 if( pRbu && pRbu->eStage==RBU_STAGE_CAPTURE ){
4109 assert( p->openFlags & SQLITE_OPEN_WAL );
4110 rc = rbuCaptureWalRead(p->pRbu, iOfst, iAmt);
4111 }else{
4112 if( pRbu && pRbu->eStage==RBU_STAGE_OAL
4113 && (p->openFlags & SQLITE_OPEN_WAL)
4114 && iOfst>=pRbu->iOalSz
4116 rc = SQLITE_OK;
4117 memset(zBuf, 0, iAmt);
4118 }else{
4119 rc = p->pReal->pMethods->xRead(p->pReal, zBuf, iAmt, iOfst);
4120 #if 1
4121 /* If this is being called to read the first page of the target
4122 ** database as part of an rbu vacuum operation, synthesize the
4123 ** contents of the first page if it does not yet exist. Otherwise,
4124 ** SQLite will not check for a *-wal file. */
4125 if( pRbu && rbuIsVacuum(pRbu)
4126 && rc==SQLITE_IOERR_SHORT_READ && iOfst==0
4127 && (p->openFlags & SQLITE_OPEN_MAIN_DB)
4128 && pRbu->rc==SQLITE_OK
4130 sqlite3_file *pFd = (sqlite3_file*)pRbu->pRbuFd;
4131 rc = pFd->pMethods->xRead(pFd, zBuf, iAmt, iOfst);
4132 if( rc==SQLITE_OK ){
4133 u8 *aBuf = (u8*)zBuf;
4134 u32 iRoot = rbuGetU32(&aBuf[52]) ? 1 : 0;
4135 rbuPutU32(&aBuf[52], iRoot); /* largest root page number */
4136 rbuPutU32(&aBuf[36], 0); /* number of free pages */
4137 rbuPutU32(&aBuf[32], 0); /* first page on free list trunk */
4138 rbuPutU32(&aBuf[28], 1); /* size of db file in pages */
4139 rbuPutU32(&aBuf[24], pRbu->pRbuFd->iCookie+1); /* Change counter */
4141 if( iAmt>100 ){
4142 memset(&aBuf[100], 0, iAmt-100);
4143 rbuPutU16(&aBuf[105], iAmt & 0xFFFF);
4144 aBuf[100] = 0x0D;
4148 #endif
4150 if( rc==SQLITE_OK && iOfst==0 && (p->openFlags & SQLITE_OPEN_MAIN_DB) ){
4151 /* These look like magic numbers. But they are stable, as they are part
4152 ** of the definition of the SQLite file format, which may not change. */
4153 u8 *pBuf = (u8*)zBuf;
4154 p->iCookie = rbuGetU32(&pBuf[24]);
4155 p->iWriteVer = pBuf[19];
4158 return rc;
4162 ** Write data to an rbuVfs-file.
4164 static int rbuVfsWrite(
4165 sqlite3_file *pFile,
4166 const void *zBuf,
4167 int iAmt,
4168 sqlite_int64 iOfst
4170 rbu_file *p = (rbu_file*)pFile;
4171 sqlite3rbu *pRbu = p->pRbu;
4172 int rc;
4174 if( pRbu && pRbu->eStage==RBU_STAGE_CAPTURE ){
4175 assert( p->openFlags & SQLITE_OPEN_MAIN_DB );
4176 rc = rbuCaptureDbWrite(p->pRbu, iOfst);
4177 }else{
4178 if( pRbu ){
4179 if( pRbu->eStage==RBU_STAGE_OAL
4180 && (p->openFlags & SQLITE_OPEN_WAL)
4181 && iOfst>=pRbu->iOalSz
4183 pRbu->iOalSz = iAmt + iOfst;
4184 }else if( p->openFlags & SQLITE_OPEN_DELETEONCLOSE ){
4185 i64 szNew = iAmt+iOfst;
4186 if( szNew>p->sz ){
4187 rc = rbuUpdateTempSize(p, szNew);
4188 if( rc!=SQLITE_OK ) return rc;
4192 rc = p->pReal->pMethods->xWrite(p->pReal, zBuf, iAmt, iOfst);
4193 if( rc==SQLITE_OK && iOfst==0 && (p->openFlags & SQLITE_OPEN_MAIN_DB) ){
4194 /* These look like magic numbers. But they are stable, as they are part
4195 ** of the definition of the SQLite file format, which may not change. */
4196 u8 *pBuf = (u8*)zBuf;
4197 p->iCookie = rbuGetU32(&pBuf[24]);
4198 p->iWriteVer = pBuf[19];
4201 return rc;
4205 ** Truncate an rbuVfs-file.
4207 static int rbuVfsTruncate(sqlite3_file *pFile, sqlite_int64 size){
4208 rbu_file *p = (rbu_file*)pFile;
4209 if( (p->openFlags & SQLITE_OPEN_DELETEONCLOSE) && p->pRbu ){
4210 int rc = rbuUpdateTempSize(p, size);
4211 if( rc!=SQLITE_OK ) return rc;
4213 return p->pReal->pMethods->xTruncate(p->pReal, size);
4217 ** Sync an rbuVfs-file.
4219 static int rbuVfsSync(sqlite3_file *pFile, int flags){
4220 rbu_file *p = (rbu_file *)pFile;
4221 if( p->pRbu && p->pRbu->eStage==RBU_STAGE_CAPTURE ){
4222 if( p->openFlags & SQLITE_OPEN_MAIN_DB ){
4223 return SQLITE_INTERNAL;
4225 return SQLITE_OK;
4227 return p->pReal->pMethods->xSync(p->pReal, flags);
4231 ** Return the current file-size of an rbuVfs-file.
4233 static int rbuVfsFileSize(sqlite3_file *pFile, sqlite_int64 *pSize){
4234 rbu_file *p = (rbu_file *)pFile;
4235 int rc;
4236 rc = p->pReal->pMethods->xFileSize(p->pReal, pSize);
4238 /* If this is an RBU vacuum operation and this is the target database,
4239 ** pretend that it has at least one page. Otherwise, SQLite will not
4240 ** check for the existance of a *-wal file. rbuVfsRead() contains
4241 ** similar logic. */
4242 if( rc==SQLITE_OK && *pSize==0
4243 && p->pRbu && rbuIsVacuum(p->pRbu)
4244 && (p->openFlags & SQLITE_OPEN_MAIN_DB)
4246 *pSize = 1024;
4248 return rc;
4252 ** Lock an rbuVfs-file.
4254 static int rbuVfsLock(sqlite3_file *pFile, int eLock){
4255 rbu_file *p = (rbu_file*)pFile;
4256 sqlite3rbu *pRbu = p->pRbu;
4257 int rc = SQLITE_OK;
4259 assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB) );
4260 if( eLock==SQLITE_LOCK_EXCLUSIVE
4261 && (p->bNolock || (pRbu && pRbu->eStage!=RBU_STAGE_DONE))
4263 /* Do not allow EXCLUSIVE locks. Preventing SQLite from taking this
4264 ** prevents it from checkpointing the database from sqlite3_close(). */
4265 rc = SQLITE_BUSY;
4266 }else{
4267 rc = p->pReal->pMethods->xLock(p->pReal, eLock);
4270 return rc;
4274 ** Unlock an rbuVfs-file.
4276 static int rbuVfsUnlock(sqlite3_file *pFile, int eLock){
4277 rbu_file *p = (rbu_file *)pFile;
4278 return p->pReal->pMethods->xUnlock(p->pReal, eLock);
4282 ** Check if another file-handle holds a RESERVED lock on an rbuVfs-file.
4284 static int rbuVfsCheckReservedLock(sqlite3_file *pFile, int *pResOut){
4285 rbu_file *p = (rbu_file *)pFile;
4286 return p->pReal->pMethods->xCheckReservedLock(p->pReal, pResOut);
4290 ** File control method. For custom operations on an rbuVfs-file.
4292 static int rbuVfsFileControl(sqlite3_file *pFile, int op, void *pArg){
4293 rbu_file *p = (rbu_file *)pFile;
4294 int (*xControl)(sqlite3_file*,int,void*) = p->pReal->pMethods->xFileControl;
4295 int rc;
4297 assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB)
4298 || p->openFlags & (SQLITE_OPEN_TRANSIENT_DB|SQLITE_OPEN_TEMP_JOURNAL)
4300 if( op==SQLITE_FCNTL_RBU ){
4301 sqlite3rbu *pRbu = (sqlite3rbu*)pArg;
4303 /* First try to find another RBU vfs lower down in the vfs stack. If
4304 ** one is found, this vfs will operate in pass-through mode. The lower
4305 ** level vfs will do the special RBU handling. */
4306 rc = xControl(p->pReal, op, pArg);
4308 if( rc==SQLITE_NOTFOUND ){
4309 /* Now search for a zipvfs instance lower down in the VFS stack. If
4310 ** one is found, this is an error. */
4311 void *dummy = 0;
4312 rc = xControl(p->pReal, SQLITE_FCNTL_ZIPVFS, &dummy);
4313 if( rc==SQLITE_OK ){
4314 rc = SQLITE_ERROR;
4315 pRbu->zErrmsg = sqlite3_mprintf("rbu/zipvfs setup error");
4316 }else if( rc==SQLITE_NOTFOUND ){
4317 pRbu->pTargetFd = p;
4318 p->pRbu = pRbu;
4319 if( p->pWalFd ) p->pWalFd->pRbu = pRbu;
4320 rc = SQLITE_OK;
4323 return rc;
4325 else if( op==SQLITE_FCNTL_RBUCNT ){
4326 sqlite3rbu *pRbu = (sqlite3rbu*)pArg;
4327 pRbu->nRbu++;
4328 pRbu->pRbuFd = p;
4329 p->bNolock = 1;
4332 rc = xControl(p->pReal, op, pArg);
4333 if( rc==SQLITE_OK && op==SQLITE_FCNTL_VFSNAME ){
4334 rbu_vfs *pRbuVfs = p->pRbuVfs;
4335 char *zIn = *(char**)pArg;
4336 char *zOut = sqlite3_mprintf("rbu(%s)/%z", pRbuVfs->base.zName, zIn);
4337 *(char**)pArg = zOut;
4338 if( zOut==0 ) rc = SQLITE_NOMEM;
4341 return rc;
4345 ** Return the sector-size in bytes for an rbuVfs-file.
4347 static int rbuVfsSectorSize(sqlite3_file *pFile){
4348 rbu_file *p = (rbu_file *)pFile;
4349 return p->pReal->pMethods->xSectorSize(p->pReal);
4353 ** Return the device characteristic flags supported by an rbuVfs-file.
4355 static int rbuVfsDeviceCharacteristics(sqlite3_file *pFile){
4356 rbu_file *p = (rbu_file *)pFile;
4357 return p->pReal->pMethods->xDeviceCharacteristics(p->pReal);
4361 ** Take or release a shared-memory lock.
4363 static int rbuVfsShmLock(sqlite3_file *pFile, int ofst, int n, int flags){
4364 rbu_file *p = (rbu_file*)pFile;
4365 sqlite3rbu *pRbu = p->pRbu;
4366 int rc = SQLITE_OK;
4368 #ifdef SQLITE_AMALGAMATION
4369 assert( WAL_CKPT_LOCK==1 );
4370 #endif
4372 assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB) );
4373 if( pRbu && (pRbu->eStage==RBU_STAGE_OAL || pRbu->eStage==RBU_STAGE_MOVE) ){
4374 /* Magic number 1 is the WAL_CKPT_LOCK lock. Preventing SQLite from
4375 ** taking this lock also prevents any checkpoints from occurring.
4376 ** todo: really, it's not clear why this might occur, as
4377 ** wal_autocheckpoint ought to be turned off. */
4378 if( ofst==WAL_LOCK_CKPT && n==1 ) rc = SQLITE_BUSY;
4379 }else{
4380 int bCapture = 0;
4381 if( n==1 && (flags & SQLITE_SHM_EXCLUSIVE)
4382 && pRbu && pRbu->eStage==RBU_STAGE_CAPTURE
4383 && (ofst==WAL_LOCK_WRITE || ofst==WAL_LOCK_CKPT || ofst==WAL_LOCK_READ0)
4385 bCapture = 1;
4388 if( bCapture==0 || 0==(flags & SQLITE_SHM_UNLOCK) ){
4389 rc = p->pReal->pMethods->xShmLock(p->pReal, ofst, n, flags);
4390 if( bCapture && rc==SQLITE_OK ){
4391 pRbu->mLock |= (1 << ofst);
4396 return rc;
4400 ** Obtain a pointer to a mapping of a single 32KiB page of the *-shm file.
4402 static int rbuVfsShmMap(
4403 sqlite3_file *pFile,
4404 int iRegion,
4405 int szRegion,
4406 int isWrite,
4407 void volatile **pp
4409 rbu_file *p = (rbu_file*)pFile;
4410 int rc = SQLITE_OK;
4411 int eStage = (p->pRbu ? p->pRbu->eStage : 0);
4413 /* If not in RBU_STAGE_OAL, allow this call to pass through. Or, if this
4414 ** rbu is in the RBU_STAGE_OAL state, use heap memory for *-shm space
4415 ** instead of a file on disk. */
4416 assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB) );
4417 if( eStage==RBU_STAGE_OAL || eStage==RBU_STAGE_MOVE ){
4418 if( iRegion<=p->nShm ){
4419 int nByte = (iRegion+1) * sizeof(char*);
4420 char **apNew = (char**)sqlite3_realloc64(p->apShm, nByte);
4421 if( apNew==0 ){
4422 rc = SQLITE_NOMEM;
4423 }else{
4424 memset(&apNew[p->nShm], 0, sizeof(char*) * (1 + iRegion - p->nShm));
4425 p->apShm = apNew;
4426 p->nShm = iRegion+1;
4430 if( rc==SQLITE_OK && p->apShm[iRegion]==0 ){
4431 char *pNew = (char*)sqlite3_malloc64(szRegion);
4432 if( pNew==0 ){
4433 rc = SQLITE_NOMEM;
4434 }else{
4435 memset(pNew, 0, szRegion);
4436 p->apShm[iRegion] = pNew;
4440 if( rc==SQLITE_OK ){
4441 *pp = p->apShm[iRegion];
4442 }else{
4443 *pp = 0;
4445 }else{
4446 assert( p->apShm==0 );
4447 rc = p->pReal->pMethods->xShmMap(p->pReal, iRegion, szRegion, isWrite, pp);
4450 return rc;
4454 ** Memory barrier.
4456 static void rbuVfsShmBarrier(sqlite3_file *pFile){
4457 rbu_file *p = (rbu_file *)pFile;
4458 p->pReal->pMethods->xShmBarrier(p->pReal);
4462 ** The xShmUnmap method.
4464 static int rbuVfsShmUnmap(sqlite3_file *pFile, int delFlag){
4465 rbu_file *p = (rbu_file*)pFile;
4466 int rc = SQLITE_OK;
4467 int eStage = (p->pRbu ? p->pRbu->eStage : 0);
4469 assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB) );
4470 if( eStage==RBU_STAGE_OAL || eStage==RBU_STAGE_MOVE ){
4471 /* no-op */
4472 }else{
4473 /* Release the checkpointer and writer locks */
4474 rbuUnlockShm(p);
4475 rc = p->pReal->pMethods->xShmUnmap(p->pReal, delFlag);
4477 return rc;
4481 ** Given that zWal points to a buffer containing a wal file name passed to
4482 ** either the xOpen() or xAccess() VFS method, return a pointer to the
4483 ** file-handle opened by the same database connection on the corresponding
4484 ** database file.
4486 static rbu_file *rbuFindMaindb(rbu_vfs *pRbuVfs, const char *zWal){
4487 rbu_file *pDb;
4488 sqlite3_mutex_enter(pRbuVfs->mutex);
4489 for(pDb=pRbuVfs->pMain; pDb && pDb->zWal!=zWal; pDb=pDb->pMainNext){}
4490 sqlite3_mutex_leave(pRbuVfs->mutex);
4491 return pDb;
4495 ** A main database named zName has just been opened. The following
4496 ** function returns a pointer to a buffer owned by SQLite that contains
4497 ** the name of the *-wal file this db connection will use. SQLite
4498 ** happens to pass a pointer to this buffer when using xAccess()
4499 ** or xOpen() to operate on the *-wal file.
4501 static const char *rbuMainToWal(const char *zName, int flags){
4502 int n = (int)strlen(zName);
4503 const char *z = &zName[n];
4504 if( flags & SQLITE_OPEN_URI ){
4505 int odd = 0;
4506 while( 1 ){
4507 if( z[0]==0 ){
4508 odd = 1 - odd;
4509 if( odd && z[1]==0 ) break;
4511 z++;
4513 z += 2;
4514 }else{
4515 while( *z==0 ) z++;
4517 z += (n + 8 + 1);
4518 return z;
4522 ** Open an rbu file handle.
4524 static int rbuVfsOpen(
4525 sqlite3_vfs *pVfs,
4526 const char *zName,
4527 sqlite3_file *pFile,
4528 int flags,
4529 int *pOutFlags
4531 static sqlite3_io_methods rbuvfs_io_methods = {
4532 2, /* iVersion */
4533 rbuVfsClose, /* xClose */
4534 rbuVfsRead, /* xRead */
4535 rbuVfsWrite, /* xWrite */
4536 rbuVfsTruncate, /* xTruncate */
4537 rbuVfsSync, /* xSync */
4538 rbuVfsFileSize, /* xFileSize */
4539 rbuVfsLock, /* xLock */
4540 rbuVfsUnlock, /* xUnlock */
4541 rbuVfsCheckReservedLock, /* xCheckReservedLock */
4542 rbuVfsFileControl, /* xFileControl */
4543 rbuVfsSectorSize, /* xSectorSize */
4544 rbuVfsDeviceCharacteristics, /* xDeviceCharacteristics */
4545 rbuVfsShmMap, /* xShmMap */
4546 rbuVfsShmLock, /* xShmLock */
4547 rbuVfsShmBarrier, /* xShmBarrier */
4548 rbuVfsShmUnmap, /* xShmUnmap */
4549 0, 0 /* xFetch, xUnfetch */
4551 rbu_vfs *pRbuVfs = (rbu_vfs*)pVfs;
4552 sqlite3_vfs *pRealVfs = pRbuVfs->pRealVfs;
4553 rbu_file *pFd = (rbu_file *)pFile;
4554 int rc = SQLITE_OK;
4555 const char *zOpen = zName;
4556 int oflags = flags;
4558 memset(pFd, 0, sizeof(rbu_file));
4559 pFd->pReal = (sqlite3_file*)&pFd[1];
4560 pFd->pRbuVfs = pRbuVfs;
4561 pFd->openFlags = flags;
4562 if( zName ){
4563 if( flags & SQLITE_OPEN_MAIN_DB ){
4564 /* A main database has just been opened. The following block sets
4565 ** (pFd->zWal) to point to a buffer owned by SQLite that contains
4566 ** the name of the *-wal file this db connection will use. SQLite
4567 ** happens to pass a pointer to this buffer when using xAccess()
4568 ** or xOpen() to operate on the *-wal file. */
4569 pFd->zWal = rbuMainToWal(zName, flags);
4571 else if( flags & SQLITE_OPEN_WAL ){
4572 rbu_file *pDb = rbuFindMaindb(pRbuVfs, zName);
4573 if( pDb ){
4574 if( pDb->pRbu && pDb->pRbu->eStage==RBU_STAGE_OAL ){
4575 /* This call is to open a *-wal file. Intead, open the *-oal. This
4576 ** code ensures that the string passed to xOpen() is terminated by a
4577 ** pair of '\0' bytes in case the VFS attempts to extract a URI
4578 ** parameter from it. */
4579 const char *zBase = zName;
4580 size_t nCopy;
4581 char *zCopy;
4582 if( rbuIsVacuum(pDb->pRbu) ){
4583 zBase = sqlite3_db_filename(pDb->pRbu->dbRbu, "main");
4584 zBase = rbuMainToWal(zBase, SQLITE_OPEN_URI);
4586 nCopy = strlen(zBase);
4587 zCopy = sqlite3_malloc64(nCopy+2);
4588 if( zCopy ){
4589 memcpy(zCopy, zBase, nCopy);
4590 zCopy[nCopy-3] = 'o';
4591 zCopy[nCopy] = '\0';
4592 zCopy[nCopy+1] = '\0';
4593 zOpen = (const char*)(pFd->zDel = zCopy);
4594 }else{
4595 rc = SQLITE_NOMEM;
4597 pFd->pRbu = pDb->pRbu;
4599 pDb->pWalFd = pFd;
4602 }else{
4603 pFd->pRbu = pRbuVfs->pRbu;
4606 if( oflags & SQLITE_OPEN_MAIN_DB
4607 && sqlite3_uri_boolean(zName, "rbu_memory", 0)
4609 assert( oflags & SQLITE_OPEN_MAIN_DB );
4610 oflags = SQLITE_OPEN_TEMP_DB | SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE |
4611 SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE;
4612 zOpen = 0;
4615 if( rc==SQLITE_OK ){
4616 rc = pRealVfs->xOpen(pRealVfs, zOpen, pFd->pReal, oflags, pOutFlags);
4618 if( pFd->pReal->pMethods ){
4619 /* The xOpen() operation has succeeded. Set the sqlite3_file.pMethods
4620 ** pointer and, if the file is a main database file, link it into the
4621 ** mutex protected linked list of all such files. */
4622 pFile->pMethods = &rbuvfs_io_methods;
4623 if( flags & SQLITE_OPEN_MAIN_DB ){
4624 sqlite3_mutex_enter(pRbuVfs->mutex);
4625 pFd->pMainNext = pRbuVfs->pMain;
4626 pRbuVfs->pMain = pFd;
4627 sqlite3_mutex_leave(pRbuVfs->mutex);
4629 }else{
4630 sqlite3_free(pFd->zDel);
4633 return rc;
4637 ** Delete the file located at zPath.
4639 static int rbuVfsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
4640 sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
4641 return pRealVfs->xDelete(pRealVfs, zPath, dirSync);
4645 ** Test for access permissions. Return true if the requested permission
4646 ** is available, or false otherwise.
4648 static int rbuVfsAccess(
4649 sqlite3_vfs *pVfs,
4650 const char *zPath,
4651 int flags,
4652 int *pResOut
4654 rbu_vfs *pRbuVfs = (rbu_vfs*)pVfs;
4655 sqlite3_vfs *pRealVfs = pRbuVfs->pRealVfs;
4656 int rc;
4658 rc = pRealVfs->xAccess(pRealVfs, zPath, flags, pResOut);
4660 /* If this call is to check if a *-wal file associated with an RBU target
4661 ** database connection exists, and the RBU update is in RBU_STAGE_OAL,
4662 ** the following special handling is activated:
4664 ** a) if the *-wal file does exist, return SQLITE_CANTOPEN. This
4665 ** ensures that the RBU extension never tries to update a database
4666 ** in wal mode, even if the first page of the database file has
4667 ** been damaged.
4669 ** b) if the *-wal file does not exist, claim that it does anyway,
4670 ** causing SQLite to call xOpen() to open it. This call will also
4671 ** be intercepted (see the rbuVfsOpen() function) and the *-oal
4672 ** file opened instead.
4674 if( rc==SQLITE_OK && flags==SQLITE_ACCESS_EXISTS ){
4675 rbu_file *pDb = rbuFindMaindb(pRbuVfs, zPath);
4676 if( pDb && pDb->pRbu && pDb->pRbu->eStage==RBU_STAGE_OAL ){
4677 if( *pResOut ){
4678 rc = SQLITE_CANTOPEN;
4679 }else{
4680 sqlite3_int64 sz = 0;
4681 rc = rbuVfsFileSize(&pDb->base, &sz);
4682 *pResOut = (sz>0);
4687 return rc;
4691 ** Populate buffer zOut with the full canonical pathname corresponding
4692 ** to the pathname in zPath. zOut is guaranteed to point to a buffer
4693 ** of at least (DEVSYM_MAX_PATHNAME+1) bytes.
4695 static int rbuVfsFullPathname(
4696 sqlite3_vfs *pVfs,
4697 const char *zPath,
4698 int nOut,
4699 char *zOut
4701 sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
4702 return pRealVfs->xFullPathname(pRealVfs, zPath, nOut, zOut);
4705 #ifndef SQLITE_OMIT_LOAD_EXTENSION
4707 ** Open the dynamic library located at zPath and return a handle.
4709 static void *rbuVfsDlOpen(sqlite3_vfs *pVfs, const char *zPath){
4710 sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
4711 return pRealVfs->xDlOpen(pRealVfs, zPath);
4715 ** Populate the buffer zErrMsg (size nByte bytes) with a human readable
4716 ** utf-8 string describing the most recent error encountered associated
4717 ** with dynamic libraries.
4719 static void rbuVfsDlError(sqlite3_vfs *pVfs, int nByte, char *zErrMsg){
4720 sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
4721 pRealVfs->xDlError(pRealVfs, nByte, zErrMsg);
4725 ** Return a pointer to the symbol zSymbol in the dynamic library pHandle.
4727 static void (*rbuVfsDlSym(
4728 sqlite3_vfs *pVfs,
4729 void *pArg,
4730 const char *zSym
4731 ))(void){
4732 sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
4733 return pRealVfs->xDlSym(pRealVfs, pArg, zSym);
4737 ** Close the dynamic library handle pHandle.
4739 static void rbuVfsDlClose(sqlite3_vfs *pVfs, void *pHandle){
4740 sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
4741 pRealVfs->xDlClose(pRealVfs, pHandle);
4743 #endif /* SQLITE_OMIT_LOAD_EXTENSION */
4746 ** Populate the buffer pointed to by zBufOut with nByte bytes of
4747 ** random data.
4749 static int rbuVfsRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
4750 sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
4751 return pRealVfs->xRandomness(pRealVfs, nByte, zBufOut);
4755 ** Sleep for nMicro microseconds. Return the number of microseconds
4756 ** actually slept.
4758 static int rbuVfsSleep(sqlite3_vfs *pVfs, int nMicro){
4759 sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
4760 return pRealVfs->xSleep(pRealVfs, nMicro);
4764 ** Return the current time as a Julian Day number in *pTimeOut.
4766 static int rbuVfsCurrentTime(sqlite3_vfs *pVfs, double *pTimeOut){
4767 sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
4768 return pRealVfs->xCurrentTime(pRealVfs, pTimeOut);
4772 ** No-op.
4774 static int rbuVfsGetLastError(sqlite3_vfs *pVfs, int a, char *b){
4775 return 0;
4779 ** Deregister and destroy an RBU vfs created by an earlier call to
4780 ** sqlite3rbu_create_vfs().
4782 void sqlite3rbu_destroy_vfs(const char *zName){
4783 sqlite3_vfs *pVfs = sqlite3_vfs_find(zName);
4784 if( pVfs && pVfs->xOpen==rbuVfsOpen ){
4785 sqlite3_mutex_free(((rbu_vfs*)pVfs)->mutex);
4786 sqlite3_vfs_unregister(pVfs);
4787 sqlite3_free(pVfs);
4792 ** Create an RBU VFS named zName that accesses the underlying file-system
4793 ** via existing VFS zParent. The new object is registered as a non-default
4794 ** VFS with SQLite before returning.
4796 int sqlite3rbu_create_vfs(const char *zName, const char *zParent){
4798 /* Template for VFS */
4799 static sqlite3_vfs vfs_template = {
4800 1, /* iVersion */
4801 0, /* szOsFile */
4802 0, /* mxPathname */
4803 0, /* pNext */
4804 0, /* zName */
4805 0, /* pAppData */
4806 rbuVfsOpen, /* xOpen */
4807 rbuVfsDelete, /* xDelete */
4808 rbuVfsAccess, /* xAccess */
4809 rbuVfsFullPathname, /* xFullPathname */
4811 #ifndef SQLITE_OMIT_LOAD_EXTENSION
4812 rbuVfsDlOpen, /* xDlOpen */
4813 rbuVfsDlError, /* xDlError */
4814 rbuVfsDlSym, /* xDlSym */
4815 rbuVfsDlClose, /* xDlClose */
4816 #else
4817 0, 0, 0, 0,
4818 #endif
4820 rbuVfsRandomness, /* xRandomness */
4821 rbuVfsSleep, /* xSleep */
4822 rbuVfsCurrentTime, /* xCurrentTime */
4823 rbuVfsGetLastError, /* xGetLastError */
4824 0, /* xCurrentTimeInt64 (version 2) */
4825 0, 0, 0 /* Unimplemented version 3 methods */
4828 rbu_vfs *pNew = 0; /* Newly allocated VFS */
4829 int rc = SQLITE_OK;
4830 size_t nName;
4831 size_t nByte;
4833 nName = strlen(zName);
4834 nByte = sizeof(rbu_vfs) + nName + 1;
4835 pNew = (rbu_vfs*)sqlite3_malloc64(nByte);
4836 if( pNew==0 ){
4837 rc = SQLITE_NOMEM;
4838 }else{
4839 sqlite3_vfs *pParent; /* Parent VFS */
4840 memset(pNew, 0, nByte);
4841 pParent = sqlite3_vfs_find(zParent);
4842 if( pParent==0 ){
4843 rc = SQLITE_NOTFOUND;
4844 }else{
4845 char *zSpace;
4846 memcpy(&pNew->base, &vfs_template, sizeof(sqlite3_vfs));
4847 pNew->base.mxPathname = pParent->mxPathname;
4848 pNew->base.szOsFile = sizeof(rbu_file) + pParent->szOsFile;
4849 pNew->pRealVfs = pParent;
4850 pNew->base.zName = (const char*)(zSpace = (char*)&pNew[1]);
4851 memcpy(zSpace, zName, nName);
4853 /* Allocate the mutex and register the new VFS (not as the default) */
4854 pNew->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_RECURSIVE);
4855 if( pNew->mutex==0 ){
4856 rc = SQLITE_NOMEM;
4857 }else{
4858 rc = sqlite3_vfs_register(&pNew->base, 0);
4862 if( rc!=SQLITE_OK ){
4863 sqlite3_mutex_free(pNew->mutex);
4864 sqlite3_free(pNew);
4868 return rc;
4872 ** Configure the aggregate temp file size limit for this RBU handle.
4874 sqlite3_int64 sqlite3rbu_temp_size_limit(sqlite3rbu *pRbu, sqlite3_int64 n){
4875 if( n>=0 ){
4876 pRbu->szTempLimit = n;
4878 return pRbu->szTempLimit;
4881 sqlite3_int64 sqlite3rbu_temp_size(sqlite3rbu *pRbu){
4882 return pRbu->szTemp;
4886 /**************************************************************************/
4888 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RBU) */