Snapshot of upstream SQLite 3.39.2
[sqlcipher.git] / src / pragma.c
blob9860da86d7d057f83c06d8b2f07a1b2314fc69bb
1 /*
2 ** 2003 April 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used to implement the PRAGMA command.
14 #include "sqliteInt.h"
16 #if !defined(SQLITE_ENABLE_LOCKING_STYLE)
17 # if defined(__APPLE__)
18 # define SQLITE_ENABLE_LOCKING_STYLE 1
19 # else
20 # define SQLITE_ENABLE_LOCKING_STYLE 0
21 # endif
22 #endif
24 /***************************************************************************
25 ** The "pragma.h" include file is an automatically generated file that
26 ** that includes the PragType_XXXX macro definitions and the aPragmaName[]
27 ** object. This ensures that the aPragmaName[] table is arranged in
28 ** lexicographical order to facility a binary search of the pragma name.
29 ** Do not edit pragma.h directly. Edit and rerun the script in at
30 ** ../tool/mkpragmatab.tcl. */
31 #include "pragma.h"
34 ** Interpret the given string as a safety level. Return 0 for OFF,
35 ** 1 for ON or NORMAL, 2 for FULL, and 3 for EXTRA. Return 1 for an empty or
36 ** unrecognized string argument. The FULL and EXTRA option is disallowed
37 ** if the omitFull parameter it 1.
39 ** Note that the values returned are one less that the values that
40 ** should be passed into sqlite3BtreeSetSafetyLevel(). The is done
41 ** to support legacy SQL code. The safety level used to be boolean
42 ** and older scripts may have used numbers 0 for OFF and 1 for ON.
44 static u8 getSafetyLevel(const char *z, int omitFull, u8 dflt){
45 /* 123456789 123456789 123 */
46 static const char zText[] = "onoffalseyestruextrafull";
47 static const u8 iOffset[] = {0, 1, 2, 4, 9, 12, 15, 20};
48 static const u8 iLength[] = {2, 2, 3, 5, 3, 4, 5, 4};
49 static const u8 iValue[] = {1, 0, 0, 0, 1, 1, 3, 2};
50 /* on no off false yes true extra full */
51 int i, n;
52 if( sqlite3Isdigit(*z) ){
53 return (u8)sqlite3Atoi(z);
55 n = sqlite3Strlen30(z);
56 for(i=0; i<ArraySize(iLength); i++){
57 if( iLength[i]==n && sqlite3StrNICmp(&zText[iOffset[i]],z,n)==0
58 && (!omitFull || iValue[i]<=1)
60 return iValue[i];
63 return dflt;
67 ** Interpret the given string as a boolean value.
69 u8 sqlite3GetBoolean(const char *z, u8 dflt){
70 return getSafetyLevel(z,1,dflt)!=0;
73 /* The sqlite3GetBoolean() function is used by other modules but the
74 ** remainder of this file is specific to PRAGMA processing. So omit
75 ** the rest of the file if PRAGMAs are omitted from the build.
77 #if !defined(SQLITE_OMIT_PRAGMA)
80 ** Interpret the given string as a locking mode value.
82 static int getLockingMode(const char *z){
83 if( z ){
84 if( 0==sqlite3StrICmp(z, "exclusive") ) return PAGER_LOCKINGMODE_EXCLUSIVE;
85 if( 0==sqlite3StrICmp(z, "normal") ) return PAGER_LOCKINGMODE_NORMAL;
87 return PAGER_LOCKINGMODE_QUERY;
90 #ifndef SQLITE_OMIT_AUTOVACUUM
92 ** Interpret the given string as an auto-vacuum mode value.
94 ** The following strings, "none", "full" and "incremental" are
95 ** acceptable, as are their numeric equivalents: 0, 1 and 2 respectively.
97 static int getAutoVacuum(const char *z){
98 int i;
99 if( 0==sqlite3StrICmp(z, "none") ) return BTREE_AUTOVACUUM_NONE;
100 if( 0==sqlite3StrICmp(z, "full") ) return BTREE_AUTOVACUUM_FULL;
101 if( 0==sqlite3StrICmp(z, "incremental") ) return BTREE_AUTOVACUUM_INCR;
102 i = sqlite3Atoi(z);
103 return (u8)((i>=0&&i<=2)?i:0);
105 #endif /* ifndef SQLITE_OMIT_AUTOVACUUM */
107 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
109 ** Interpret the given string as a temp db location. Return 1 for file
110 ** backed temporary databases, 2 for the Red-Black tree in memory database
111 ** and 0 to use the compile-time default.
113 static int getTempStore(const char *z){
114 if( z[0]>='0' && z[0]<='2' ){
115 return z[0] - '0';
116 }else if( sqlite3StrICmp(z, "file")==0 ){
117 return 1;
118 }else if( sqlite3StrICmp(z, "memory")==0 ){
119 return 2;
120 }else{
121 return 0;
124 #endif /* SQLITE_PAGER_PRAGMAS */
126 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
128 ** Invalidate temp storage, either when the temp storage is changed
129 ** from default, or when 'file' and the temp_store_directory has changed
131 static int invalidateTempStorage(Parse *pParse){
132 sqlite3 *db = pParse->db;
133 if( db->aDb[1].pBt!=0 ){
134 if( !db->autoCommit
135 || sqlite3BtreeTxnState(db->aDb[1].pBt)!=SQLITE_TXN_NONE
137 sqlite3ErrorMsg(pParse, "temporary storage cannot be changed "
138 "from within a transaction");
139 return SQLITE_ERROR;
141 sqlite3BtreeClose(db->aDb[1].pBt);
142 db->aDb[1].pBt = 0;
143 sqlite3ResetAllSchemasOfConnection(db);
145 return SQLITE_OK;
147 #endif /* SQLITE_PAGER_PRAGMAS */
149 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
151 ** If the TEMP database is open, close it and mark the database schema
152 ** as needing reloading. This must be done when using the SQLITE_TEMP_STORE
153 ** or DEFAULT_TEMP_STORE pragmas.
155 static int changeTempStorage(Parse *pParse, const char *zStorageType){
156 int ts = getTempStore(zStorageType);
157 sqlite3 *db = pParse->db;
158 if( db->temp_store==ts ) return SQLITE_OK;
159 if( invalidateTempStorage( pParse ) != SQLITE_OK ){
160 return SQLITE_ERROR;
162 db->temp_store = (u8)ts;
163 return SQLITE_OK;
165 #endif /* SQLITE_PAGER_PRAGMAS */
168 ** Set result column names for a pragma.
170 static void setPragmaResultColumnNames(
171 Vdbe *v, /* The query under construction */
172 const PragmaName *pPragma /* The pragma */
174 u8 n = pPragma->nPragCName;
175 sqlite3VdbeSetNumCols(v, n==0 ? 1 : n);
176 if( n==0 ){
177 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, pPragma->zName, SQLITE_STATIC);
178 }else{
179 int i, j;
180 for(i=0, j=pPragma->iPragCName; i<n; i++, j++){
181 sqlite3VdbeSetColName(v, i, COLNAME_NAME, pragCName[j], SQLITE_STATIC);
187 ** Generate code to return a single integer value.
189 static void returnSingleInt(Vdbe *v, i64 value){
190 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, 1, 0, (const u8*)&value, P4_INT64);
191 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
195 ** Generate code to return a single text value.
197 static void returnSingleText(
198 Vdbe *v, /* Prepared statement under construction */
199 const char *zValue /* Value to be returned */
201 if( zValue ){
202 sqlite3VdbeLoadString(v, 1, (const char*)zValue);
203 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
209 ** Set the safety_level and pager flags for pager iDb. Or if iDb<0
210 ** set these values for all pagers.
212 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
213 static void setAllPagerFlags(sqlite3 *db){
214 if( db->autoCommit ){
215 Db *pDb = db->aDb;
216 int n = db->nDb;
217 assert( SQLITE_FullFSync==PAGER_FULLFSYNC );
218 assert( SQLITE_CkptFullFSync==PAGER_CKPT_FULLFSYNC );
219 assert( SQLITE_CacheSpill==PAGER_CACHESPILL );
220 assert( (PAGER_FULLFSYNC | PAGER_CKPT_FULLFSYNC | PAGER_CACHESPILL)
221 == PAGER_FLAGS_MASK );
222 assert( (pDb->safety_level & PAGER_SYNCHRONOUS_MASK)==pDb->safety_level );
223 while( (n--) > 0 ){
224 if( pDb->pBt ){
225 sqlite3BtreeSetPagerFlags(pDb->pBt,
226 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK) );
228 pDb++;
232 #else
233 # define setAllPagerFlags(X) /* no-op */
234 #endif
238 ** Return a human-readable name for a constraint resolution action.
240 #ifndef SQLITE_OMIT_FOREIGN_KEY
241 static const char *actionName(u8 action){
242 const char *zName;
243 switch( action ){
244 case OE_SetNull: zName = "SET NULL"; break;
245 case OE_SetDflt: zName = "SET DEFAULT"; break;
246 case OE_Cascade: zName = "CASCADE"; break;
247 case OE_Restrict: zName = "RESTRICT"; break;
248 default: zName = "NO ACTION";
249 assert( action==OE_None ); break;
251 return zName;
253 #endif
257 ** Parameter eMode must be one of the PAGER_JOURNALMODE_XXX constants
258 ** defined in pager.h. This function returns the associated lowercase
259 ** journal-mode name.
261 const char *sqlite3JournalModename(int eMode){
262 static char * const azModeName[] = {
263 "delete", "persist", "off", "truncate", "memory"
264 #ifndef SQLITE_OMIT_WAL
265 , "wal"
266 #endif
268 assert( PAGER_JOURNALMODE_DELETE==0 );
269 assert( PAGER_JOURNALMODE_PERSIST==1 );
270 assert( PAGER_JOURNALMODE_OFF==2 );
271 assert( PAGER_JOURNALMODE_TRUNCATE==3 );
272 assert( PAGER_JOURNALMODE_MEMORY==4 );
273 assert( PAGER_JOURNALMODE_WAL==5 );
274 assert( eMode>=0 && eMode<=ArraySize(azModeName) );
276 if( eMode==ArraySize(azModeName) ) return 0;
277 return azModeName[eMode];
281 ** Locate a pragma in the aPragmaName[] array.
283 static const PragmaName *pragmaLocate(const char *zName){
284 int upr, lwr, mid = 0, rc;
285 lwr = 0;
286 upr = ArraySize(aPragmaName)-1;
287 while( lwr<=upr ){
288 mid = (lwr+upr)/2;
289 rc = sqlite3_stricmp(zName, aPragmaName[mid].zName);
290 if( rc==0 ) break;
291 if( rc<0 ){
292 upr = mid - 1;
293 }else{
294 lwr = mid + 1;
297 return lwr>upr ? 0 : &aPragmaName[mid];
301 ** Create zero or more entries in the output for the SQL functions
302 ** defined by FuncDef p.
304 static void pragmaFunclistLine(
305 Vdbe *v, /* The prepared statement being created */
306 FuncDef *p, /* A particular function definition */
307 int isBuiltin, /* True if this is a built-in function */
308 int showInternFuncs /* True if showing internal functions */
310 u32 mask =
311 SQLITE_DETERMINISTIC |
312 SQLITE_DIRECTONLY |
313 SQLITE_SUBTYPE |
314 SQLITE_INNOCUOUS |
315 SQLITE_FUNC_INTERNAL
317 if( showInternFuncs ) mask = 0xffffffff;
318 for(; p; p=p->pNext){
319 const char *zType;
320 static const char *azEnc[] = { 0, "utf8", "utf16le", "utf16be" };
322 assert( SQLITE_FUNC_ENCMASK==0x3 );
323 assert( strcmp(azEnc[SQLITE_UTF8],"utf8")==0 );
324 assert( strcmp(azEnc[SQLITE_UTF16LE],"utf16le")==0 );
325 assert( strcmp(azEnc[SQLITE_UTF16BE],"utf16be")==0 );
327 if( p->xSFunc==0 ) continue;
328 if( (p->funcFlags & SQLITE_FUNC_INTERNAL)!=0
329 && showInternFuncs==0
331 continue;
333 if( p->xValue!=0 ){
334 zType = "w";
335 }else if( p->xFinalize!=0 ){
336 zType = "a";
337 }else{
338 zType = "s";
340 sqlite3VdbeMultiLoad(v, 1, "sissii",
341 p->zName, isBuiltin,
342 zType, azEnc[p->funcFlags&SQLITE_FUNC_ENCMASK],
343 p->nArg,
344 (p->funcFlags & mask) ^ SQLITE_INNOCUOUS
351 ** Helper subroutine for PRAGMA integrity_check:
353 ** Generate code to output a single-column result row with a value of the
354 ** string held in register 3. Decrement the result count in register 1
355 ** and halt if the maximum number of result rows have been issued.
357 static int integrityCheckResultRow(Vdbe *v){
358 int addr;
359 sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1);
360 addr = sqlite3VdbeAddOp3(v, OP_IfPos, 1, sqlite3VdbeCurrentAddr(v)+2, 1);
361 VdbeCoverage(v);
362 sqlite3VdbeAddOp0(v, OP_Halt);
363 return addr;
367 ** Process a pragma statement.
369 ** Pragmas are of this form:
371 ** PRAGMA [schema.]id [= value]
373 ** The identifier might also be a string. The value is a string, and
374 ** identifier, or a number. If minusFlag is true, then the value is
375 ** a number that was preceded by a minus sign.
377 ** If the left side is "database.id" then pId1 is the database name
378 ** and pId2 is the id. If the left side is just "id" then pId1 is the
379 ** id and pId2 is any empty string.
381 void sqlite3Pragma(
382 Parse *pParse,
383 Token *pId1, /* First part of [schema.]id field */
384 Token *pId2, /* Second part of [schema.]id field, or NULL */
385 Token *pValue, /* Token for <value>, or NULL */
386 int minusFlag /* True if a '-' sign preceded <value> */
388 char *zLeft = 0; /* Nul-terminated UTF-8 string <id> */
389 char *zRight = 0; /* Nul-terminated UTF-8 string <value>, or NULL */
390 const char *zDb = 0; /* The database name */
391 Token *pId; /* Pointer to <id> token */
392 char *aFcntl[4]; /* Argument to SQLITE_FCNTL_PRAGMA */
393 int iDb; /* Database index for <database> */
394 int rc; /* return value form SQLITE_FCNTL_PRAGMA */
395 sqlite3 *db = pParse->db; /* The database connection */
396 Db *pDb; /* The specific database being pragmaed */
397 Vdbe *v = sqlite3GetVdbe(pParse); /* Prepared statement */
398 const PragmaName *pPragma; /* The pragma */
400 if( v==0 ) return;
401 sqlite3VdbeRunOnlyOnce(v);
402 pParse->nMem = 2;
404 /* Interpret the [schema.] part of the pragma statement. iDb is the
405 ** index of the database this pragma is being applied to in db.aDb[]. */
406 iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId);
407 if( iDb<0 ) return;
408 pDb = &db->aDb[iDb];
410 /* If the temp database has been explicitly named as part of the
411 ** pragma, make sure it is open.
413 if( iDb==1 && sqlite3OpenTempDatabase(pParse) ){
414 return;
417 zLeft = sqlite3NameFromToken(db, pId);
418 if( !zLeft ) return;
419 if( minusFlag ){
420 zRight = sqlite3MPrintf(db, "-%T", pValue);
421 }else{
422 zRight = sqlite3NameFromToken(db, pValue);
425 assert( pId2 );
426 zDb = pId2->n>0 ? pDb->zDbSName : 0;
427 if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){
428 goto pragma_out;
431 /* Send an SQLITE_FCNTL_PRAGMA file-control to the underlying VFS
432 ** connection. If it returns SQLITE_OK, then assume that the VFS
433 ** handled the pragma and generate a no-op prepared statement.
435 ** IMPLEMENTATION-OF: R-12238-55120 Whenever a PRAGMA statement is parsed,
436 ** an SQLITE_FCNTL_PRAGMA file control is sent to the open sqlite3_file
437 ** object corresponding to the database file to which the pragma
438 ** statement refers.
440 ** IMPLEMENTATION-OF: R-29875-31678 The argument to the SQLITE_FCNTL_PRAGMA
441 ** file control is an array of pointers to strings (char**) in which the
442 ** second element of the array is the name of the pragma and the third
443 ** element is the argument to the pragma or NULL if the pragma has no
444 ** argument.
446 aFcntl[0] = 0;
447 aFcntl[1] = zLeft;
448 aFcntl[2] = zRight;
449 aFcntl[3] = 0;
450 db->busyHandler.nBusy = 0;
451 rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_PRAGMA, (void*)aFcntl);
452 if( rc==SQLITE_OK ){
453 sqlite3VdbeSetNumCols(v, 1);
454 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, aFcntl[0], SQLITE_TRANSIENT);
455 returnSingleText(v, aFcntl[0]);
456 sqlite3_free(aFcntl[0]);
457 goto pragma_out;
459 if( rc!=SQLITE_NOTFOUND ){
460 if( aFcntl[0] ){
461 sqlite3ErrorMsg(pParse, "%s", aFcntl[0]);
462 sqlite3_free(aFcntl[0]);
464 pParse->nErr++;
465 pParse->rc = rc;
466 goto pragma_out;
469 /* Locate the pragma in the lookup table */
470 pPragma = pragmaLocate(zLeft);
471 if( pPragma==0 ){
472 /* IMP: R-43042-22504 No error messages are generated if an
473 ** unknown pragma is issued. */
474 goto pragma_out;
477 /* Make sure the database schema is loaded if the pragma requires that */
478 if( (pPragma->mPragFlg & PragFlg_NeedSchema)!=0 ){
479 if( sqlite3ReadSchema(pParse) ) goto pragma_out;
482 /* Register the result column names for pragmas that return results */
483 if( (pPragma->mPragFlg & PragFlg_NoColumns)==0
484 && ((pPragma->mPragFlg & PragFlg_NoColumns1)==0 || zRight==0)
486 setPragmaResultColumnNames(v, pPragma);
489 /* Jump to the appropriate pragma handler */
490 switch( pPragma->ePragTyp ){
492 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED)
494 ** PRAGMA [schema.]default_cache_size
495 ** PRAGMA [schema.]default_cache_size=N
497 ** The first form reports the current persistent setting for the
498 ** page cache size. The value returned is the maximum number of
499 ** pages in the page cache. The second form sets both the current
500 ** page cache size value and the persistent page cache size value
501 ** stored in the database file.
503 ** Older versions of SQLite would set the default cache size to a
504 ** negative number to indicate synchronous=OFF. These days, synchronous
505 ** is always on by default regardless of the sign of the default cache
506 ** size. But continue to take the absolute value of the default cache
507 ** size of historical compatibility.
509 case PragTyp_DEFAULT_CACHE_SIZE: {
510 static const int iLn = VDBE_OFFSET_LINENO(2);
511 static const VdbeOpList getCacheSize[] = {
512 { OP_Transaction, 0, 0, 0}, /* 0 */
513 { OP_ReadCookie, 0, 1, BTREE_DEFAULT_CACHE_SIZE}, /* 1 */
514 { OP_IfPos, 1, 8, 0},
515 { OP_Integer, 0, 2, 0},
516 { OP_Subtract, 1, 2, 1},
517 { OP_IfPos, 1, 8, 0},
518 { OP_Integer, 0, 1, 0}, /* 6 */
519 { OP_Noop, 0, 0, 0},
520 { OP_ResultRow, 1, 1, 0},
522 VdbeOp *aOp;
523 sqlite3VdbeUsesBtree(v, iDb);
524 if( !zRight ){
525 pParse->nMem += 2;
526 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(getCacheSize));
527 aOp = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize, iLn);
528 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
529 aOp[0].p1 = iDb;
530 aOp[1].p1 = iDb;
531 aOp[6].p1 = SQLITE_DEFAULT_CACHE_SIZE;
532 }else{
533 int size = sqlite3AbsInt32(sqlite3Atoi(zRight));
534 sqlite3BeginWriteOperation(pParse, 0, iDb);
535 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_DEFAULT_CACHE_SIZE, size);
536 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
537 pDb->pSchema->cache_size = size;
538 sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
540 break;
542 #endif /* !SQLITE_OMIT_PAGER_PRAGMAS && !SQLITE_OMIT_DEPRECATED */
544 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
546 ** PRAGMA [schema.]page_size
547 ** PRAGMA [schema.]page_size=N
549 ** The first form reports the current setting for the
550 ** database page size in bytes. The second form sets the
551 ** database page size value. The value can only be set if
552 ** the database has not yet been created.
554 case PragTyp_PAGE_SIZE: {
555 Btree *pBt = pDb->pBt;
556 assert( pBt!=0 );
557 if( !zRight ){
558 int size = ALWAYS(pBt) ? sqlite3BtreeGetPageSize(pBt) : 0;
559 returnSingleInt(v, size);
560 }else{
561 /* Malloc may fail when setting the page-size, as there is an internal
562 ** buffer that the pager module resizes using sqlite3_realloc().
564 db->nextPagesize = sqlite3Atoi(zRight);
565 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize,0,0) ){
566 sqlite3OomFault(db);
569 break;
573 ** PRAGMA [schema.]secure_delete
574 ** PRAGMA [schema.]secure_delete=ON/OFF/FAST
576 ** The first form reports the current setting for the
577 ** secure_delete flag. The second form changes the secure_delete
578 ** flag setting and reports the new value.
580 case PragTyp_SECURE_DELETE: {
581 Btree *pBt = pDb->pBt;
582 int b = -1;
583 assert( pBt!=0 );
584 if( zRight ){
585 if( sqlite3_stricmp(zRight, "fast")==0 ){
586 b = 2;
587 }else{
588 b = sqlite3GetBoolean(zRight, 0);
591 if( pId2->n==0 && b>=0 ){
592 int ii;
593 for(ii=0; ii<db->nDb; ii++){
594 sqlite3BtreeSecureDelete(db->aDb[ii].pBt, b);
597 b = sqlite3BtreeSecureDelete(pBt, b);
598 returnSingleInt(v, b);
599 break;
603 ** PRAGMA [schema.]max_page_count
604 ** PRAGMA [schema.]max_page_count=N
606 ** The first form reports the current setting for the
607 ** maximum number of pages in the database file. The
608 ** second form attempts to change this setting. Both
609 ** forms return the current setting.
611 ** The absolute value of N is used. This is undocumented and might
612 ** change. The only purpose is to provide an easy way to test
613 ** the sqlite3AbsInt32() function.
615 ** PRAGMA [schema.]page_count
617 ** Return the number of pages in the specified database.
619 case PragTyp_PAGE_COUNT: {
620 int iReg;
621 i64 x = 0;
622 sqlite3CodeVerifySchema(pParse, iDb);
623 iReg = ++pParse->nMem;
624 if( sqlite3Tolower(zLeft[0])=='p' ){
625 sqlite3VdbeAddOp2(v, OP_Pagecount, iDb, iReg);
626 }else{
627 if( zRight && sqlite3DecOrHexToI64(zRight,&x)==0 ){
628 if( x<0 ) x = 0;
629 else if( x>0xfffffffe ) x = 0xfffffffe;
630 }else{
631 x = 0;
633 sqlite3VdbeAddOp3(v, OP_MaxPgcnt, iDb, iReg, (int)x);
635 sqlite3VdbeAddOp2(v, OP_ResultRow, iReg, 1);
636 break;
640 ** PRAGMA [schema.]locking_mode
641 ** PRAGMA [schema.]locking_mode = (normal|exclusive)
643 case PragTyp_LOCKING_MODE: {
644 const char *zRet = "normal";
645 int eMode = getLockingMode(zRight);
647 if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){
648 /* Simple "PRAGMA locking_mode;" statement. This is a query for
649 ** the current default locking mode (which may be different to
650 ** the locking-mode of the main database).
652 eMode = db->dfltLockMode;
653 }else{
654 Pager *pPager;
655 if( pId2->n==0 ){
656 /* This indicates that no database name was specified as part
657 ** of the PRAGMA command. In this case the locking-mode must be
658 ** set on all attached databases, as well as the main db file.
660 ** Also, the sqlite3.dfltLockMode variable is set so that
661 ** any subsequently attached databases also use the specified
662 ** locking mode.
664 int ii;
665 assert(pDb==&db->aDb[0]);
666 for(ii=2; ii<db->nDb; ii++){
667 pPager = sqlite3BtreePager(db->aDb[ii].pBt);
668 sqlite3PagerLockingMode(pPager, eMode);
670 db->dfltLockMode = (u8)eMode;
672 pPager = sqlite3BtreePager(pDb->pBt);
673 eMode = sqlite3PagerLockingMode(pPager, eMode);
676 assert( eMode==PAGER_LOCKINGMODE_NORMAL
677 || eMode==PAGER_LOCKINGMODE_EXCLUSIVE );
678 if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){
679 zRet = "exclusive";
681 returnSingleText(v, zRet);
682 break;
686 ** PRAGMA [schema.]journal_mode
687 ** PRAGMA [schema.]journal_mode =
688 ** (delete|persist|off|truncate|memory|wal|off)
690 case PragTyp_JOURNAL_MODE: {
691 int eMode; /* One of the PAGER_JOURNALMODE_XXX symbols */
692 int ii; /* Loop counter */
694 if( zRight==0 ){
695 /* If there is no "=MODE" part of the pragma, do a query for the
696 ** current mode */
697 eMode = PAGER_JOURNALMODE_QUERY;
698 }else{
699 const char *zMode;
700 int n = sqlite3Strlen30(zRight);
701 for(eMode=0; (zMode = sqlite3JournalModename(eMode))!=0; eMode++){
702 if( sqlite3StrNICmp(zRight, zMode, n)==0 ) break;
704 if( !zMode ){
705 /* If the "=MODE" part does not match any known journal mode,
706 ** then do a query */
707 eMode = PAGER_JOURNALMODE_QUERY;
709 if( eMode==PAGER_JOURNALMODE_OFF && (db->flags & SQLITE_Defensive)!=0 ){
710 /* Do not allow journal-mode "OFF" in defensive since the database
711 ** can become corrupted using ordinary SQL when the journal is off */
712 eMode = PAGER_JOURNALMODE_QUERY;
715 if( eMode==PAGER_JOURNALMODE_QUERY && pId2->n==0 ){
716 /* Convert "PRAGMA journal_mode" into "PRAGMA main.journal_mode" */
717 iDb = 0;
718 pId2->n = 1;
720 for(ii=db->nDb-1; ii>=0; ii--){
721 if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
722 sqlite3VdbeUsesBtree(v, ii);
723 sqlite3VdbeAddOp3(v, OP_JournalMode, ii, 1, eMode);
726 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
727 break;
731 ** PRAGMA [schema.]journal_size_limit
732 ** PRAGMA [schema.]journal_size_limit=N
734 ** Get or set the size limit on rollback journal files.
736 case PragTyp_JOURNAL_SIZE_LIMIT: {
737 Pager *pPager = sqlite3BtreePager(pDb->pBt);
738 i64 iLimit = -2;
739 if( zRight ){
740 sqlite3DecOrHexToI64(zRight, &iLimit);
741 if( iLimit<-1 ) iLimit = -1;
743 iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit);
744 returnSingleInt(v, iLimit);
745 break;
748 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */
751 ** PRAGMA [schema.]auto_vacuum
752 ** PRAGMA [schema.]auto_vacuum=N
754 ** Get or set the value of the database 'auto-vacuum' parameter.
755 ** The value is one of: 0 NONE 1 FULL 2 INCREMENTAL
757 #ifndef SQLITE_OMIT_AUTOVACUUM
758 case PragTyp_AUTO_VACUUM: {
759 Btree *pBt = pDb->pBt;
760 assert( pBt!=0 );
761 if( !zRight ){
762 returnSingleInt(v, sqlite3BtreeGetAutoVacuum(pBt));
763 }else{
764 int eAuto = getAutoVacuum(zRight);
765 assert( eAuto>=0 && eAuto<=2 );
766 db->nextAutovac = (u8)eAuto;
767 /* Call SetAutoVacuum() to set initialize the internal auto and
768 ** incr-vacuum flags. This is required in case this connection
769 ** creates the database file. It is important that it is created
770 ** as an auto-vacuum capable db.
772 rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto);
773 if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){
774 /* When setting the auto_vacuum mode to either "full" or
775 ** "incremental", write the value of meta[6] in the database
776 ** file. Before writing to meta[6], check that meta[3] indicates
777 ** that this really is an auto-vacuum capable database.
779 static const int iLn = VDBE_OFFSET_LINENO(2);
780 static const VdbeOpList setMeta6[] = {
781 { OP_Transaction, 0, 1, 0}, /* 0 */
782 { OP_ReadCookie, 0, 1, BTREE_LARGEST_ROOT_PAGE},
783 { OP_If, 1, 0, 0}, /* 2 */
784 { OP_Halt, SQLITE_OK, OE_Abort, 0}, /* 3 */
785 { OP_SetCookie, 0, BTREE_INCR_VACUUM, 0}, /* 4 */
787 VdbeOp *aOp;
788 int iAddr = sqlite3VdbeCurrentAddr(v);
789 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setMeta6));
790 aOp = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6, iLn);
791 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
792 aOp[0].p1 = iDb;
793 aOp[1].p1 = iDb;
794 aOp[2].p2 = iAddr+4;
795 aOp[4].p1 = iDb;
796 aOp[4].p3 = eAuto - 1;
797 sqlite3VdbeUsesBtree(v, iDb);
800 break;
802 #endif
805 ** PRAGMA [schema.]incremental_vacuum(N)
807 ** Do N steps of incremental vacuuming on a database.
809 #ifndef SQLITE_OMIT_AUTOVACUUM
810 case PragTyp_INCREMENTAL_VACUUM: {
811 int iLimit = 0, addr;
812 if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){
813 iLimit = 0x7fffffff;
815 sqlite3BeginWriteOperation(pParse, 0, iDb);
816 sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1);
817 addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb); VdbeCoverage(v);
818 sqlite3VdbeAddOp1(v, OP_ResultRow, 1);
819 sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1);
820 sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr); VdbeCoverage(v);
821 sqlite3VdbeJumpHere(v, addr);
822 break;
824 #endif
826 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
828 ** PRAGMA [schema.]cache_size
829 ** PRAGMA [schema.]cache_size=N
831 ** The first form reports the current local setting for the
832 ** page cache size. The second form sets the local
833 ** page cache size value. If N is positive then that is the
834 ** number of pages in the cache. If N is negative, then the
835 ** number of pages is adjusted so that the cache uses -N kibibytes
836 ** of memory.
838 case PragTyp_CACHE_SIZE: {
839 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
840 if( !zRight ){
841 returnSingleInt(v, pDb->pSchema->cache_size);
842 }else{
843 int size = sqlite3Atoi(zRight);
844 pDb->pSchema->cache_size = size;
845 sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
847 break;
851 ** PRAGMA [schema.]cache_spill
852 ** PRAGMA cache_spill=BOOLEAN
853 ** PRAGMA [schema.]cache_spill=N
855 ** The first form reports the current local setting for the
856 ** page cache spill size. The second form turns cache spill on
857 ** or off. When turnning cache spill on, the size is set to the
858 ** current cache_size. The third form sets a spill size that
859 ** may be different form the cache size.
860 ** If N is positive then that is the
861 ** number of pages in the cache. If N is negative, then the
862 ** number of pages is adjusted so that the cache uses -N kibibytes
863 ** of memory.
865 ** If the number of cache_spill pages is less then the number of
866 ** cache_size pages, no spilling occurs until the page count exceeds
867 ** the number of cache_size pages.
869 ** The cache_spill=BOOLEAN setting applies to all attached schemas,
870 ** not just the schema specified.
872 case PragTyp_CACHE_SPILL: {
873 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
874 if( !zRight ){
875 returnSingleInt(v,
876 (db->flags & SQLITE_CacheSpill)==0 ? 0 :
877 sqlite3BtreeSetSpillSize(pDb->pBt,0));
878 }else{
879 int size = 1;
880 if( sqlite3GetInt32(zRight, &size) ){
881 sqlite3BtreeSetSpillSize(pDb->pBt, size);
883 if( sqlite3GetBoolean(zRight, size!=0) ){
884 db->flags |= SQLITE_CacheSpill;
885 }else{
886 db->flags &= ~(u64)SQLITE_CacheSpill;
888 setAllPagerFlags(db);
890 break;
894 ** PRAGMA [schema.]mmap_size(N)
896 ** Used to set mapping size limit. The mapping size limit is
897 ** used to limit the aggregate size of all memory mapped regions of the
898 ** database file. If this parameter is set to zero, then memory mapping
899 ** is not used at all. If N is negative, then the default memory map
900 ** limit determined by sqlite3_config(SQLITE_CONFIG_MMAP_SIZE) is set.
901 ** The parameter N is measured in bytes.
903 ** This value is advisory. The underlying VFS is free to memory map
904 ** as little or as much as it wants. Except, if N is set to 0 then the
905 ** upper layers will never invoke the xFetch interfaces to the VFS.
907 case PragTyp_MMAP_SIZE: {
908 sqlite3_int64 sz;
909 #if SQLITE_MAX_MMAP_SIZE>0
910 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
911 if( zRight ){
912 int ii;
913 sqlite3DecOrHexToI64(zRight, &sz);
914 if( sz<0 ) sz = sqlite3GlobalConfig.szMmap;
915 if( pId2->n==0 ) db->szMmap = sz;
916 for(ii=db->nDb-1; ii>=0; ii--){
917 if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
918 sqlite3BtreeSetMmapLimit(db->aDb[ii].pBt, sz);
922 sz = -1;
923 rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_MMAP_SIZE, &sz);
924 #else
925 sz = 0;
926 rc = SQLITE_OK;
927 #endif
928 if( rc==SQLITE_OK ){
929 returnSingleInt(v, sz);
930 }else if( rc!=SQLITE_NOTFOUND ){
931 pParse->nErr++;
932 pParse->rc = rc;
934 break;
938 ** PRAGMA temp_store
939 ** PRAGMA temp_store = "default"|"memory"|"file"
941 ** Return or set the local value of the temp_store flag. Changing
942 ** the local value does not make changes to the disk file and the default
943 ** value will be restored the next time the database is opened.
945 ** Note that it is possible for the library compile-time options to
946 ** override this setting
948 case PragTyp_TEMP_STORE: {
949 if( !zRight ){
950 returnSingleInt(v, db->temp_store);
951 }else{
952 changeTempStorage(pParse, zRight);
954 break;
958 ** PRAGMA temp_store_directory
959 ** PRAGMA temp_store_directory = ""|"directory_name"
961 ** Return or set the local value of the temp_store_directory flag. Changing
962 ** the value sets a specific directory to be used for temporary files.
963 ** Setting to a null string reverts to the default temporary directory search.
964 ** If temporary directory is changed, then invalidateTempStorage.
967 case PragTyp_TEMP_STORE_DIRECTORY: {
968 if( !zRight ){
969 returnSingleText(v, sqlite3_temp_directory);
970 }else{
971 #ifndef SQLITE_OMIT_WSD
972 if( zRight[0] ){
973 int res;
974 rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
975 if( rc!=SQLITE_OK || res==0 ){
976 sqlite3ErrorMsg(pParse, "not a writable directory");
977 goto pragma_out;
980 if( SQLITE_TEMP_STORE==0
981 || (SQLITE_TEMP_STORE==1 && db->temp_store<=1)
982 || (SQLITE_TEMP_STORE==2 && db->temp_store==1)
984 invalidateTempStorage(pParse);
986 sqlite3_free(sqlite3_temp_directory);
987 if( zRight[0] ){
988 sqlite3_temp_directory = sqlite3_mprintf("%s", zRight);
989 }else{
990 sqlite3_temp_directory = 0;
992 #endif /* SQLITE_OMIT_WSD */
994 break;
997 #if SQLITE_OS_WIN
999 ** PRAGMA data_store_directory
1000 ** PRAGMA data_store_directory = ""|"directory_name"
1002 ** Return or set the local value of the data_store_directory flag. Changing
1003 ** the value sets a specific directory to be used for database files that
1004 ** were specified with a relative pathname. Setting to a null string reverts
1005 ** to the default database directory, which for database files specified with
1006 ** a relative path will probably be based on the current directory for the
1007 ** process. Database file specified with an absolute path are not impacted
1008 ** by this setting, regardless of its value.
1011 case PragTyp_DATA_STORE_DIRECTORY: {
1012 if( !zRight ){
1013 returnSingleText(v, sqlite3_data_directory);
1014 }else{
1015 #ifndef SQLITE_OMIT_WSD
1016 if( zRight[0] ){
1017 int res;
1018 rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
1019 if( rc!=SQLITE_OK || res==0 ){
1020 sqlite3ErrorMsg(pParse, "not a writable directory");
1021 goto pragma_out;
1024 sqlite3_free(sqlite3_data_directory);
1025 if( zRight[0] ){
1026 sqlite3_data_directory = sqlite3_mprintf("%s", zRight);
1027 }else{
1028 sqlite3_data_directory = 0;
1030 #endif /* SQLITE_OMIT_WSD */
1032 break;
1034 #endif
1036 #if SQLITE_ENABLE_LOCKING_STYLE
1038 ** PRAGMA [schema.]lock_proxy_file
1039 ** PRAGMA [schema.]lock_proxy_file = ":auto:"|"lock_file_path"
1041 ** Return or set the value of the lock_proxy_file flag. Changing
1042 ** the value sets a specific file to be used for database access locks.
1045 case PragTyp_LOCK_PROXY_FILE: {
1046 if( !zRight ){
1047 Pager *pPager = sqlite3BtreePager(pDb->pBt);
1048 char *proxy_file_path = NULL;
1049 sqlite3_file *pFile = sqlite3PagerFile(pPager);
1050 sqlite3OsFileControlHint(pFile, SQLITE_GET_LOCKPROXYFILE,
1051 &proxy_file_path);
1052 returnSingleText(v, proxy_file_path);
1053 }else{
1054 Pager *pPager = sqlite3BtreePager(pDb->pBt);
1055 sqlite3_file *pFile = sqlite3PagerFile(pPager);
1056 int res;
1057 if( zRight[0] ){
1058 res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE,
1059 zRight);
1060 } else {
1061 res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE,
1062 NULL);
1064 if( res!=SQLITE_OK ){
1065 sqlite3ErrorMsg(pParse, "failed to set lock proxy file");
1066 goto pragma_out;
1069 break;
1071 #endif /* SQLITE_ENABLE_LOCKING_STYLE */
1074 ** PRAGMA [schema.]synchronous
1075 ** PRAGMA [schema.]synchronous=OFF|ON|NORMAL|FULL|EXTRA
1077 ** Return or set the local value of the synchronous flag. Changing
1078 ** the local value does not make changes to the disk file and the
1079 ** default value will be restored the next time the database is
1080 ** opened.
1082 case PragTyp_SYNCHRONOUS: {
1083 if( !zRight ){
1084 returnSingleInt(v, pDb->safety_level-1);
1085 }else{
1086 if( !db->autoCommit ){
1087 sqlite3ErrorMsg(pParse,
1088 "Safety level may not be changed inside a transaction");
1089 }else if( iDb!=1 ){
1090 int iLevel = (getSafetyLevel(zRight,0,1)+1) & PAGER_SYNCHRONOUS_MASK;
1091 if( iLevel==0 ) iLevel = 1;
1092 pDb->safety_level = iLevel;
1093 pDb->bSyncSet = 1;
1094 setAllPagerFlags(db);
1097 break;
1099 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */
1101 #ifndef SQLITE_OMIT_FLAG_PRAGMAS
1102 case PragTyp_FLAG: {
1103 if( zRight==0 ){
1104 setPragmaResultColumnNames(v, pPragma);
1105 returnSingleInt(v, (db->flags & pPragma->iArg)!=0 );
1106 }else{
1107 u64 mask = pPragma->iArg; /* Mask of bits to set or clear. */
1108 if( db->autoCommit==0 ){
1109 /* Foreign key support may not be enabled or disabled while not
1110 ** in auto-commit mode. */
1111 mask &= ~(SQLITE_ForeignKeys);
1113 #if SQLITE_USER_AUTHENTICATION
1114 if( db->auth.authLevel==UAUTH_User ){
1115 /* Do not allow non-admin users to modify the schema arbitrarily */
1116 mask &= ~(SQLITE_WriteSchema);
1118 #endif
1120 if( sqlite3GetBoolean(zRight, 0) ){
1121 db->flags |= mask;
1122 }else{
1123 db->flags &= ~mask;
1124 if( mask==SQLITE_DeferFKs ) db->nDeferredImmCons = 0;
1125 if( (mask & SQLITE_WriteSchema)!=0
1126 && sqlite3_stricmp(zRight, "reset")==0
1128 /* IMP: R-60817-01178 If the argument is "RESET" then schema
1129 ** writing is disabled (as with "PRAGMA writable_schema=OFF") and,
1130 ** in addition, the schema is reloaded. */
1131 sqlite3ResetAllSchemasOfConnection(db);
1135 /* Many of the flag-pragmas modify the code generated by the SQL
1136 ** compiler (eg. count_changes). So add an opcode to expire all
1137 ** compiled SQL statements after modifying a pragma value.
1139 sqlite3VdbeAddOp0(v, OP_Expire);
1140 setAllPagerFlags(db);
1142 break;
1144 #endif /* SQLITE_OMIT_FLAG_PRAGMAS */
1146 #ifndef SQLITE_OMIT_SCHEMA_PRAGMAS
1148 ** PRAGMA table_info(<table>)
1150 ** Return a single row for each column of the named table. The columns of
1151 ** the returned data set are:
1153 ** cid: Column id (numbered from left to right, starting at 0)
1154 ** name: Column name
1155 ** type: Column declaration type.
1156 ** notnull: True if 'NOT NULL' is part of column declaration
1157 ** dflt_value: The default value for the column, if any.
1158 ** pk: Non-zero for PK fields.
1160 case PragTyp_TABLE_INFO: if( zRight ){
1161 Table *pTab;
1162 sqlite3CodeVerifyNamedSchema(pParse, zDb);
1163 pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb);
1164 if( pTab ){
1165 int i, k;
1166 int nHidden = 0;
1167 Column *pCol;
1168 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1169 pParse->nMem = 7;
1170 sqlite3ViewGetColumnNames(pParse, pTab);
1171 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1172 int isHidden = 0;
1173 const Expr *pColExpr;
1174 if( pCol->colFlags & COLFLAG_NOINSERT ){
1175 if( pPragma->iArg==0 ){
1176 nHidden++;
1177 continue;
1179 if( pCol->colFlags & COLFLAG_VIRTUAL ){
1180 isHidden = 2; /* GENERATED ALWAYS AS ... VIRTUAL */
1181 }else if( pCol->colFlags & COLFLAG_STORED ){
1182 isHidden = 3; /* GENERATED ALWAYS AS ... STORED */
1183 }else{ assert( pCol->colFlags & COLFLAG_HIDDEN );
1184 isHidden = 1; /* HIDDEN */
1187 if( (pCol->colFlags & COLFLAG_PRIMKEY)==0 ){
1188 k = 0;
1189 }else if( pPk==0 ){
1190 k = 1;
1191 }else{
1192 for(k=1; k<=pTab->nCol && pPk->aiColumn[k-1]!=i; k++){}
1194 pColExpr = sqlite3ColumnExpr(pTab,pCol);
1195 assert( pColExpr==0 || pColExpr->op==TK_SPAN || isHidden>=2 );
1196 assert( pColExpr==0 || !ExprHasProperty(pColExpr, EP_IntValue)
1197 || isHidden>=2 );
1198 sqlite3VdbeMultiLoad(v, 1, pPragma->iArg ? "issisii" : "issisi",
1199 i-nHidden,
1200 pCol->zCnName,
1201 sqlite3ColumnType(pCol,""),
1202 pCol->notNull ? 1 : 0,
1203 (isHidden>=2 || pColExpr==0) ? 0 : pColExpr->u.zToken,
1205 isHidden);
1209 break;
1212 ** PRAGMA table_list
1214 ** Return a single row for each table, virtual table, or view in the
1215 ** entire schema.
1217 ** schema: Name of attached database hold this table
1218 ** name: Name of the table itself
1219 ** type: "table", "view", "virtual", "shadow"
1220 ** ncol: Number of columns
1221 ** wr: True for a WITHOUT ROWID table
1222 ** strict: True for a STRICT table
1224 case PragTyp_TABLE_LIST: {
1225 int ii;
1226 pParse->nMem = 6;
1227 sqlite3CodeVerifyNamedSchema(pParse, zDb);
1228 for(ii=0; ii<db->nDb; ii++){
1229 HashElem *k;
1230 Hash *pHash;
1231 int initNCol;
1232 if( zDb && sqlite3_stricmp(zDb, db->aDb[ii].zDbSName)!=0 ) continue;
1234 /* Ensure that the Table.nCol field is initialized for all views
1235 ** and virtual tables. Each time we initialize a Table.nCol value
1236 ** for a table, that can potentially disrupt the hash table, so restart
1237 ** the initialization scan.
1239 pHash = &db->aDb[ii].pSchema->tblHash;
1240 initNCol = sqliteHashCount(pHash);
1241 while( initNCol-- ){
1242 for(k=sqliteHashFirst(pHash); 1; k=sqliteHashNext(k) ){
1243 Table *pTab;
1244 if( k==0 ){ initNCol = 0; break; }
1245 pTab = sqliteHashData(k);
1246 if( pTab->nCol==0 ){
1247 char *zSql = sqlite3MPrintf(db, "SELECT*FROM\"%w\"", pTab->zName);
1248 if( zSql ){
1249 sqlite3_stmt *pDummy = 0;
1250 (void)sqlite3_prepare(db, zSql, -1, &pDummy, 0);
1251 (void)sqlite3_finalize(pDummy);
1252 sqlite3DbFree(db, zSql);
1254 if( db->mallocFailed ){
1255 sqlite3ErrorMsg(db->pParse, "out of memory");
1256 db->pParse->rc = SQLITE_NOMEM_BKPT;
1258 pHash = &db->aDb[ii].pSchema->tblHash;
1259 break;
1264 for(k=sqliteHashFirst(pHash); k; k=sqliteHashNext(k) ){
1265 Table *pTab = sqliteHashData(k);
1266 const char *zType;
1267 if( zRight && sqlite3_stricmp(zRight, pTab->zName)!=0 ) continue;
1268 if( IsView(pTab) ){
1269 zType = "view";
1270 }else if( IsVirtual(pTab) ){
1271 zType = "virtual";
1272 }else if( pTab->tabFlags & TF_Shadow ){
1273 zType = "shadow";
1274 }else{
1275 zType = "table";
1277 sqlite3VdbeMultiLoad(v, 1, "sssiii",
1278 db->aDb[ii].zDbSName,
1279 sqlite3PreferredTableName(pTab->zName),
1280 zType,
1281 pTab->nCol,
1282 (pTab->tabFlags & TF_WithoutRowid)!=0,
1283 (pTab->tabFlags & TF_Strict)!=0
1288 break;
1290 #ifdef SQLITE_DEBUG
1291 case PragTyp_STATS: {
1292 Index *pIdx;
1293 HashElem *i;
1294 pParse->nMem = 5;
1295 sqlite3CodeVerifySchema(pParse, iDb);
1296 for(i=sqliteHashFirst(&pDb->pSchema->tblHash); i; i=sqliteHashNext(i)){
1297 Table *pTab = sqliteHashData(i);
1298 sqlite3VdbeMultiLoad(v, 1, "ssiii",
1299 sqlite3PreferredTableName(pTab->zName),
1301 pTab->szTabRow,
1302 pTab->nRowLogEst,
1303 pTab->tabFlags);
1304 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1305 sqlite3VdbeMultiLoad(v, 2, "siiiX",
1306 pIdx->zName,
1307 pIdx->szIdxRow,
1308 pIdx->aiRowLogEst[0],
1309 pIdx->hasStat1);
1310 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 5);
1314 break;
1315 #endif
1317 case PragTyp_INDEX_INFO: if( zRight ){
1318 Index *pIdx;
1319 Table *pTab;
1320 pIdx = sqlite3FindIndex(db, zRight, zDb);
1321 if( pIdx==0 ){
1322 /* If there is no index named zRight, check to see if there is a
1323 ** WITHOUT ROWID table named zRight, and if there is, show the
1324 ** structure of the PRIMARY KEY index for that table. */
1325 pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb);
1326 if( pTab && !HasRowid(pTab) ){
1327 pIdx = sqlite3PrimaryKeyIndex(pTab);
1330 if( pIdx ){
1331 int iIdxDb = sqlite3SchemaToIndex(db, pIdx->pSchema);
1332 int i;
1333 int mx;
1334 if( pPragma->iArg ){
1335 /* PRAGMA index_xinfo (newer version with more rows and columns) */
1336 mx = pIdx->nColumn;
1337 pParse->nMem = 6;
1338 }else{
1339 /* PRAGMA index_info (legacy version) */
1340 mx = pIdx->nKeyCol;
1341 pParse->nMem = 3;
1343 pTab = pIdx->pTable;
1344 sqlite3CodeVerifySchema(pParse, iIdxDb);
1345 assert( pParse->nMem<=pPragma->nPragCName );
1346 for(i=0; i<mx; i++){
1347 i16 cnum = pIdx->aiColumn[i];
1348 sqlite3VdbeMultiLoad(v, 1, "iisX", i, cnum,
1349 cnum<0 ? 0 : pTab->aCol[cnum].zCnName);
1350 if( pPragma->iArg ){
1351 sqlite3VdbeMultiLoad(v, 4, "isiX",
1352 pIdx->aSortOrder[i],
1353 pIdx->azColl[i],
1354 i<pIdx->nKeyCol);
1356 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, pParse->nMem);
1360 break;
1362 case PragTyp_INDEX_LIST: if( zRight ){
1363 Index *pIdx;
1364 Table *pTab;
1365 int i;
1366 pTab = sqlite3FindTable(db, zRight, zDb);
1367 if( pTab ){
1368 int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1369 pParse->nMem = 5;
1370 sqlite3CodeVerifySchema(pParse, iTabDb);
1371 for(pIdx=pTab->pIndex, i=0; pIdx; pIdx=pIdx->pNext, i++){
1372 const char *azOrigin[] = { "c", "u", "pk" };
1373 sqlite3VdbeMultiLoad(v, 1, "isisi",
1375 pIdx->zName,
1376 IsUniqueIndex(pIdx),
1377 azOrigin[pIdx->idxType],
1378 pIdx->pPartIdxWhere!=0);
1382 break;
1384 case PragTyp_DATABASE_LIST: {
1385 int i;
1386 pParse->nMem = 3;
1387 for(i=0; i<db->nDb; i++){
1388 if( db->aDb[i].pBt==0 ) continue;
1389 assert( db->aDb[i].zDbSName!=0 );
1390 sqlite3VdbeMultiLoad(v, 1, "iss",
1392 db->aDb[i].zDbSName,
1393 sqlite3BtreeGetFilename(db->aDb[i].pBt));
1396 break;
1398 case PragTyp_COLLATION_LIST: {
1399 int i = 0;
1400 HashElem *p;
1401 pParse->nMem = 2;
1402 for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){
1403 CollSeq *pColl = (CollSeq *)sqliteHashData(p);
1404 sqlite3VdbeMultiLoad(v, 1, "is", i++, pColl->zName);
1407 break;
1409 #ifndef SQLITE_OMIT_INTROSPECTION_PRAGMAS
1410 case PragTyp_FUNCTION_LIST: {
1411 int i;
1412 HashElem *j;
1413 FuncDef *p;
1414 int showInternFunc = (db->mDbFlags & DBFLAG_InternalFunc)!=0;
1415 pParse->nMem = 6;
1416 for(i=0; i<SQLITE_FUNC_HASH_SZ; i++){
1417 for(p=sqlite3BuiltinFunctions.a[i]; p; p=p->u.pHash ){
1418 assert( p->funcFlags & SQLITE_FUNC_BUILTIN );
1419 pragmaFunclistLine(v, p, 1, showInternFunc);
1422 for(j=sqliteHashFirst(&db->aFunc); j; j=sqliteHashNext(j)){
1423 p = (FuncDef*)sqliteHashData(j);
1424 assert( (p->funcFlags & SQLITE_FUNC_BUILTIN)==0 );
1425 pragmaFunclistLine(v, p, 0, showInternFunc);
1428 break;
1430 #ifndef SQLITE_OMIT_VIRTUALTABLE
1431 case PragTyp_MODULE_LIST: {
1432 HashElem *j;
1433 pParse->nMem = 1;
1434 for(j=sqliteHashFirst(&db->aModule); j; j=sqliteHashNext(j)){
1435 Module *pMod = (Module*)sqliteHashData(j);
1436 sqlite3VdbeMultiLoad(v, 1, "s", pMod->zName);
1439 break;
1440 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1442 case PragTyp_PRAGMA_LIST: {
1443 int i;
1444 for(i=0; i<ArraySize(aPragmaName); i++){
1445 sqlite3VdbeMultiLoad(v, 1, "s", aPragmaName[i].zName);
1448 break;
1449 #endif /* SQLITE_INTROSPECTION_PRAGMAS */
1451 #endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */
1453 #ifndef SQLITE_OMIT_FOREIGN_KEY
1454 case PragTyp_FOREIGN_KEY_LIST: if( zRight ){
1455 FKey *pFK;
1456 Table *pTab;
1457 pTab = sqlite3FindTable(db, zRight, zDb);
1458 if( pTab && IsOrdinaryTable(pTab) ){
1459 pFK = pTab->u.tab.pFKey;
1460 if( pFK ){
1461 int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1462 int i = 0;
1463 pParse->nMem = 8;
1464 sqlite3CodeVerifySchema(pParse, iTabDb);
1465 while(pFK){
1466 int j;
1467 for(j=0; j<pFK->nCol; j++){
1468 sqlite3VdbeMultiLoad(v, 1, "iissssss",
1471 pFK->zTo,
1472 pTab->aCol[pFK->aCol[j].iFrom].zCnName,
1473 pFK->aCol[j].zCol,
1474 actionName(pFK->aAction[1]), /* ON UPDATE */
1475 actionName(pFK->aAction[0]), /* ON DELETE */
1476 "NONE");
1478 ++i;
1479 pFK = pFK->pNextFrom;
1484 break;
1485 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
1487 #ifndef SQLITE_OMIT_FOREIGN_KEY
1488 #ifndef SQLITE_OMIT_TRIGGER
1489 case PragTyp_FOREIGN_KEY_CHECK: {
1490 FKey *pFK; /* A foreign key constraint */
1491 Table *pTab; /* Child table contain "REFERENCES" keyword */
1492 Table *pParent; /* Parent table that child points to */
1493 Index *pIdx; /* Index in the parent table */
1494 int i; /* Loop counter: Foreign key number for pTab */
1495 int j; /* Loop counter: Field of the foreign key */
1496 HashElem *k; /* Loop counter: Next table in schema */
1497 int x; /* result variable */
1498 int regResult; /* 3 registers to hold a result row */
1499 int regRow; /* Registers to hold a row from pTab */
1500 int addrTop; /* Top of a loop checking foreign keys */
1501 int addrOk; /* Jump here if the key is OK */
1502 int *aiCols; /* child to parent column mapping */
1504 regResult = pParse->nMem+1;
1505 pParse->nMem += 4;
1506 regRow = ++pParse->nMem;
1507 k = sqliteHashFirst(&db->aDb[iDb].pSchema->tblHash);
1508 while( k ){
1509 if( zRight ){
1510 pTab = sqlite3LocateTable(pParse, 0, zRight, zDb);
1511 k = 0;
1512 }else{
1513 pTab = (Table*)sqliteHashData(k);
1514 k = sqliteHashNext(k);
1516 if( pTab==0 || !IsOrdinaryTable(pTab) || pTab->u.tab.pFKey==0 ) continue;
1517 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1518 zDb = db->aDb[iDb].zDbSName;
1519 sqlite3CodeVerifySchema(pParse, iDb);
1520 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1521 if( pTab->nCol+regRow>pParse->nMem ) pParse->nMem = pTab->nCol + regRow;
1522 sqlite3OpenTable(pParse, 0, iDb, pTab, OP_OpenRead);
1523 sqlite3VdbeLoadString(v, regResult, pTab->zName);
1524 assert( IsOrdinaryTable(pTab) );
1525 for(i=1, pFK=pTab->u.tab.pFKey; pFK; i++, pFK=pFK->pNextFrom){
1526 pParent = sqlite3FindTable(db, pFK->zTo, zDb);
1527 if( pParent==0 ) continue;
1528 pIdx = 0;
1529 sqlite3TableLock(pParse, iDb, pParent->tnum, 0, pParent->zName);
1530 x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, 0);
1531 if( x==0 ){
1532 if( pIdx==0 ){
1533 sqlite3OpenTable(pParse, i, iDb, pParent, OP_OpenRead);
1534 }else{
1535 sqlite3VdbeAddOp3(v, OP_OpenRead, i, pIdx->tnum, iDb);
1536 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1538 }else{
1539 k = 0;
1540 break;
1543 assert( pParse->nErr>0 || pFK==0 );
1544 if( pFK ) break;
1545 if( pParse->nTab<i ) pParse->nTab = i;
1546 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, 0); VdbeCoverage(v);
1547 assert( IsOrdinaryTable(pTab) );
1548 for(i=1, pFK=pTab->u.tab.pFKey; pFK; i++, pFK=pFK->pNextFrom){
1549 pParent = sqlite3FindTable(db, pFK->zTo, zDb);
1550 pIdx = 0;
1551 aiCols = 0;
1552 if( pParent ){
1553 x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols);
1554 assert( x==0 || db->mallocFailed );
1556 addrOk = sqlite3VdbeMakeLabel(pParse);
1558 /* Generate code to read the child key values into registers
1559 ** regRow..regRow+n. If any of the child key values are NULL, this
1560 ** row cannot cause an FK violation. Jump directly to addrOk in
1561 ** this case. */
1562 if( regRow+pFK->nCol>pParse->nMem ) pParse->nMem = regRow+pFK->nCol;
1563 for(j=0; j<pFK->nCol; j++){
1564 int iCol = aiCols ? aiCols[j] : pFK->aCol[j].iFrom;
1565 sqlite3ExprCodeGetColumnOfTable(v, pTab, 0, iCol, regRow+j);
1566 sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk); VdbeCoverage(v);
1569 /* Generate code to query the parent index for a matching parent
1570 ** key. If a match is found, jump to addrOk. */
1571 if( pIdx ){
1572 sqlite3VdbeAddOp4(v, OP_Affinity, regRow, pFK->nCol, 0,
1573 sqlite3IndexAffinityStr(db,pIdx), pFK->nCol);
1574 sqlite3VdbeAddOp4Int(v, OP_Found, i, addrOk, regRow, pFK->nCol);
1575 VdbeCoverage(v);
1576 }else if( pParent ){
1577 int jmp = sqlite3VdbeCurrentAddr(v)+2;
1578 sqlite3VdbeAddOp3(v, OP_SeekRowid, i, jmp, regRow); VdbeCoverage(v);
1579 sqlite3VdbeGoto(v, addrOk);
1580 assert( pFK->nCol==1 || db->mallocFailed );
1583 /* Generate code to report an FK violation to the caller. */
1584 if( HasRowid(pTab) ){
1585 sqlite3VdbeAddOp2(v, OP_Rowid, 0, regResult+1);
1586 }else{
1587 sqlite3VdbeAddOp2(v, OP_Null, 0, regResult+1);
1589 sqlite3VdbeMultiLoad(v, regResult+2, "siX", pFK->zTo, i-1);
1590 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 4);
1591 sqlite3VdbeResolveLabel(v, addrOk);
1592 sqlite3DbFree(db, aiCols);
1594 sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1); VdbeCoverage(v);
1595 sqlite3VdbeJumpHere(v, addrTop);
1598 break;
1599 #endif /* !defined(SQLITE_OMIT_TRIGGER) */
1600 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
1602 #ifndef SQLITE_OMIT_CASE_SENSITIVE_LIKE_PRAGMA
1603 /* Reinstall the LIKE and GLOB functions. The variant of LIKE
1604 ** used will be case sensitive or not depending on the RHS.
1606 case PragTyp_CASE_SENSITIVE_LIKE: {
1607 if( zRight ){
1608 sqlite3RegisterLikeFunctions(db, sqlite3GetBoolean(zRight, 0));
1611 break;
1612 #endif /* SQLITE_OMIT_CASE_SENSITIVE_LIKE_PRAGMA */
1614 #ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX
1615 # define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100
1616 #endif
1618 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
1619 /* PRAGMA integrity_check
1620 ** PRAGMA integrity_check(N)
1621 ** PRAGMA quick_check
1622 ** PRAGMA quick_check(N)
1624 ** Verify the integrity of the database.
1626 ** The "quick_check" is reduced version of
1627 ** integrity_check designed to detect most database corruption
1628 ** without the overhead of cross-checking indexes. Quick_check
1629 ** is linear time wherease integrity_check is O(NlogN).
1631 ** The maximum nubmer of errors is 100 by default. A different default
1632 ** can be specified using a numeric parameter N.
1634 ** Or, the parameter N can be the name of a table. In that case, only
1635 ** the one table named is verified. The freelist is only verified if
1636 ** the named table is "sqlite_schema" (or one of its aliases).
1638 ** All schemas are checked by default. To check just a single
1639 ** schema, use the form:
1641 ** PRAGMA schema.integrity_check;
1643 case PragTyp_INTEGRITY_CHECK: {
1644 int i, j, addr, mxErr;
1645 Table *pObjTab = 0; /* Check only this one table, if not NULL */
1647 int isQuick = (sqlite3Tolower(zLeft[0])=='q');
1649 /* If the PRAGMA command was of the form "PRAGMA <db>.integrity_check",
1650 ** then iDb is set to the index of the database identified by <db>.
1651 ** In this case, the integrity of database iDb only is verified by
1652 ** the VDBE created below.
1654 ** Otherwise, if the command was simply "PRAGMA integrity_check" (or
1655 ** "PRAGMA quick_check"), then iDb is set to 0. In this case, set iDb
1656 ** to -1 here, to indicate that the VDBE should verify the integrity
1657 ** of all attached databases. */
1658 assert( iDb>=0 );
1659 assert( iDb==0 || pId2->z );
1660 if( pId2->z==0 ) iDb = -1;
1662 /* Initialize the VDBE program */
1663 pParse->nMem = 6;
1665 /* Set the maximum error count */
1666 mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
1667 if( zRight ){
1668 if( sqlite3GetInt32(zRight, &mxErr) ){
1669 if( mxErr<=0 ){
1670 mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
1672 }else{
1673 pObjTab = sqlite3LocateTable(pParse, 0, zRight,
1674 iDb>=0 ? db->aDb[iDb].zDbSName : 0);
1677 sqlite3VdbeAddOp2(v, OP_Integer, mxErr-1, 1); /* reg[1] holds errors left */
1679 /* Do an integrity check on each database file */
1680 for(i=0; i<db->nDb; i++){
1681 HashElem *x; /* For looping over tables in the schema */
1682 Hash *pTbls; /* Set of all tables in the schema */
1683 int *aRoot; /* Array of root page numbers of all btrees */
1684 int cnt = 0; /* Number of entries in aRoot[] */
1685 int mxIdx = 0; /* Maximum number of indexes for any table */
1687 if( OMIT_TEMPDB && i==1 ) continue;
1688 if( iDb>=0 && i!=iDb ) continue;
1690 sqlite3CodeVerifySchema(pParse, i);
1692 /* Do an integrity check of the B-Tree
1694 ** Begin by finding the root pages numbers
1695 ** for all tables and indices in the database.
1697 assert( sqlite3SchemaMutexHeld(db, i, 0) );
1698 pTbls = &db->aDb[i].pSchema->tblHash;
1699 for(cnt=0, x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
1700 Table *pTab = sqliteHashData(x); /* Current table */
1701 Index *pIdx; /* An index on pTab */
1702 int nIdx; /* Number of indexes on pTab */
1703 if( pObjTab && pObjTab!=pTab ) continue;
1704 if( HasRowid(pTab) ) cnt++;
1705 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ cnt++; }
1706 if( nIdx>mxIdx ) mxIdx = nIdx;
1708 if( cnt==0 ) continue;
1709 if( pObjTab ) cnt++;
1710 aRoot = sqlite3DbMallocRawNN(db, sizeof(int)*(cnt+1));
1711 if( aRoot==0 ) break;
1712 cnt = 0;
1713 if( pObjTab ) aRoot[++cnt] = 0;
1714 for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
1715 Table *pTab = sqliteHashData(x);
1716 Index *pIdx;
1717 if( pObjTab && pObjTab!=pTab ) continue;
1718 if( HasRowid(pTab) ) aRoot[++cnt] = pTab->tnum;
1719 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1720 aRoot[++cnt] = pIdx->tnum;
1723 aRoot[0] = cnt;
1725 /* Make sure sufficient number of registers have been allocated */
1726 pParse->nMem = MAX( pParse->nMem, 8+mxIdx );
1727 sqlite3ClearTempRegCache(pParse);
1729 /* Do the b-tree integrity checks */
1730 sqlite3VdbeAddOp4(v, OP_IntegrityCk, 2, cnt, 1, (char*)aRoot,P4_INTARRAY);
1731 sqlite3VdbeChangeP5(v, (u8)i);
1732 addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2); VdbeCoverage(v);
1733 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
1734 sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zDbSName),
1735 P4_DYNAMIC);
1736 sqlite3VdbeAddOp3(v, OP_Concat, 2, 3, 3);
1737 integrityCheckResultRow(v);
1738 sqlite3VdbeJumpHere(v, addr);
1740 /* Make sure all the indices are constructed correctly.
1742 for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
1743 Table *pTab = sqliteHashData(x);
1744 Index *pIdx, *pPk;
1745 Index *pPrior = 0;
1746 int loopTop;
1747 int iDataCur, iIdxCur;
1748 int r1 = -1;
1749 int bStrict;
1751 if( !IsOrdinaryTable(pTab) ) continue;
1752 if( pObjTab && pObjTab!=pTab ) continue;
1753 pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab);
1754 sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenRead, 0,
1755 1, 0, &iDataCur, &iIdxCur);
1756 /* reg[7] counts the number of entries in the table.
1757 ** reg[8+i] counts the number of entries in the i-th index
1759 sqlite3VdbeAddOp2(v, OP_Integer, 0, 7);
1760 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
1761 sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */
1763 assert( pParse->nMem>=8+j );
1764 assert( sqlite3NoTempsInRange(pParse,1,7+j) );
1765 sqlite3VdbeAddOp2(v, OP_Rewind, iDataCur, 0); VdbeCoverage(v);
1766 loopTop = sqlite3VdbeAddOp2(v, OP_AddImm, 7, 1);
1767 if( !isQuick ){
1768 /* Sanity check on record header decoding */
1769 sqlite3VdbeAddOp3(v, OP_Column, iDataCur, pTab->nNVCol-1,3);
1770 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1771 VdbeComment((v, "(right-most column)"));
1773 /* Verify that all NOT NULL columns really are NOT NULL. At the
1774 ** same time verify the type of the content of STRICT tables */
1775 bStrict = (pTab->tabFlags & TF_Strict)!=0;
1776 for(j=0; j<pTab->nCol; j++){
1777 char *zErr;
1778 Column *pCol = pTab->aCol + j;
1779 int doError, jmp2;
1780 if( j==pTab->iPKey ) continue;
1781 if( pCol->notNull==0 && !bStrict ) continue;
1782 doError = bStrict ? sqlite3VdbeMakeLabel(pParse) : 0;
1783 sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, j, 3);
1784 if( sqlite3VdbeGetOp(v,-1)->opcode==OP_Column ){
1785 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1787 if( pCol->notNull ){
1788 jmp2 = sqlite3VdbeAddOp1(v, OP_NotNull, 3); VdbeCoverage(v);
1789 zErr = sqlite3MPrintf(db, "NULL value in %s.%s", pTab->zName,
1790 pCol->zCnName);
1791 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
1792 if( bStrict && pCol->eCType!=COLTYPE_ANY ){
1793 sqlite3VdbeGoto(v, doError);
1794 }else{
1795 integrityCheckResultRow(v);
1797 sqlite3VdbeJumpHere(v, jmp2);
1799 if( (pTab->tabFlags & TF_Strict)!=0
1800 && pCol->eCType!=COLTYPE_ANY
1802 jmp2 = sqlite3VdbeAddOp3(v, OP_IsNullOrType, 3, 0,
1803 sqlite3StdTypeMap[pCol->eCType-1]);
1804 VdbeCoverage(v);
1805 zErr = sqlite3MPrintf(db, "non-%s value in %s.%s",
1806 sqlite3StdType[pCol->eCType-1],
1807 pTab->zName, pTab->aCol[j].zCnName);
1808 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
1809 sqlite3VdbeResolveLabel(v, doError);
1810 integrityCheckResultRow(v);
1811 sqlite3VdbeJumpHere(v, jmp2);
1814 /* Verify CHECK constraints */
1815 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
1816 ExprList *pCheck = sqlite3ExprListDup(db, pTab->pCheck, 0);
1817 if( db->mallocFailed==0 ){
1818 int addrCkFault = sqlite3VdbeMakeLabel(pParse);
1819 int addrCkOk = sqlite3VdbeMakeLabel(pParse);
1820 char *zErr;
1821 int k;
1822 pParse->iSelfTab = iDataCur + 1;
1823 for(k=pCheck->nExpr-1; k>0; k--){
1824 sqlite3ExprIfFalse(pParse, pCheck->a[k].pExpr, addrCkFault, 0);
1826 sqlite3ExprIfTrue(pParse, pCheck->a[0].pExpr, addrCkOk,
1827 SQLITE_JUMPIFNULL);
1828 sqlite3VdbeResolveLabel(v, addrCkFault);
1829 pParse->iSelfTab = 0;
1830 zErr = sqlite3MPrintf(db, "CHECK constraint failed in %s",
1831 pTab->zName);
1832 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
1833 integrityCheckResultRow(v);
1834 sqlite3VdbeResolveLabel(v, addrCkOk);
1836 sqlite3ExprListDelete(db, pCheck);
1838 if( !isQuick ){ /* Omit the remaining tests for quick_check */
1839 /* Validate index entries for the current row */
1840 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
1841 int jmp2, jmp3, jmp4, jmp5;
1842 int ckUniq = sqlite3VdbeMakeLabel(pParse);
1843 if( pPk==pIdx ) continue;
1844 r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 0, &jmp3,
1845 pPrior, r1);
1846 pPrior = pIdx;
1847 sqlite3VdbeAddOp2(v, OP_AddImm, 8+j, 1);/* increment entry count */
1848 /* Verify that an index entry exists for the current table row */
1849 jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, iIdxCur+j, ckUniq, r1,
1850 pIdx->nColumn); VdbeCoverage(v);
1851 sqlite3VdbeLoadString(v, 3, "row ");
1852 sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3);
1853 sqlite3VdbeLoadString(v, 4, " missing from index ");
1854 sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3);
1855 jmp5 = sqlite3VdbeLoadString(v, 4, pIdx->zName);
1856 sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3);
1857 jmp4 = integrityCheckResultRow(v);
1858 sqlite3VdbeJumpHere(v, jmp2);
1859 /* For UNIQUE indexes, verify that only one entry exists with the
1860 ** current key. The entry is unique if (1) any column is NULL
1861 ** or (2) the next entry has a different key */
1862 if( IsUniqueIndex(pIdx) ){
1863 int uniqOk = sqlite3VdbeMakeLabel(pParse);
1864 int jmp6;
1865 int kk;
1866 for(kk=0; kk<pIdx->nKeyCol; kk++){
1867 int iCol = pIdx->aiColumn[kk];
1868 assert( iCol!=XN_ROWID && iCol<pTab->nCol );
1869 if( iCol>=0 && pTab->aCol[iCol].notNull ) continue;
1870 sqlite3VdbeAddOp2(v, OP_IsNull, r1+kk, uniqOk);
1871 VdbeCoverage(v);
1873 jmp6 = sqlite3VdbeAddOp1(v, OP_Next, iIdxCur+j); VdbeCoverage(v);
1874 sqlite3VdbeGoto(v, uniqOk);
1875 sqlite3VdbeJumpHere(v, jmp6);
1876 sqlite3VdbeAddOp4Int(v, OP_IdxGT, iIdxCur+j, uniqOk, r1,
1877 pIdx->nKeyCol); VdbeCoverage(v);
1878 sqlite3VdbeLoadString(v, 3, "non-unique entry in index ");
1879 sqlite3VdbeGoto(v, jmp5);
1880 sqlite3VdbeResolveLabel(v, uniqOk);
1882 sqlite3VdbeJumpHere(v, jmp4);
1883 sqlite3ResolvePartIdxLabel(pParse, jmp3);
1886 sqlite3VdbeAddOp2(v, OP_Next, iDataCur, loopTop); VdbeCoverage(v);
1887 sqlite3VdbeJumpHere(v, loopTop-1);
1888 if( !isQuick ){
1889 sqlite3VdbeLoadString(v, 2, "wrong # of entries in index ");
1890 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
1891 if( pPk==pIdx ) continue;
1892 sqlite3VdbeAddOp2(v, OP_Count, iIdxCur+j, 3);
1893 addr = sqlite3VdbeAddOp3(v, OP_Eq, 8+j, 0, 3); VdbeCoverage(v);
1894 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1895 sqlite3VdbeLoadString(v, 4, pIdx->zName);
1896 sqlite3VdbeAddOp3(v, OP_Concat, 4, 2, 3);
1897 integrityCheckResultRow(v);
1898 sqlite3VdbeJumpHere(v, addr);
1904 static const int iLn = VDBE_OFFSET_LINENO(2);
1905 static const VdbeOpList endCode[] = {
1906 { OP_AddImm, 1, 0, 0}, /* 0 */
1907 { OP_IfNotZero, 1, 4, 0}, /* 1 */
1908 { OP_String8, 0, 3, 0}, /* 2 */
1909 { OP_ResultRow, 3, 1, 0}, /* 3 */
1910 { OP_Halt, 0, 0, 0}, /* 4 */
1911 { OP_String8, 0, 3, 0}, /* 5 */
1912 { OP_Goto, 0, 3, 0}, /* 6 */
1914 VdbeOp *aOp;
1916 aOp = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode, iLn);
1917 if( aOp ){
1918 aOp[0].p2 = 1-mxErr;
1919 aOp[2].p4type = P4_STATIC;
1920 aOp[2].p4.z = "ok";
1921 aOp[5].p4type = P4_STATIC;
1922 aOp[5].p4.z = (char*)sqlite3ErrStr(SQLITE_CORRUPT);
1924 sqlite3VdbeChangeP3(v, 0, sqlite3VdbeCurrentAddr(v)-2);
1927 break;
1928 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
1930 #ifndef SQLITE_OMIT_UTF16
1932 ** PRAGMA encoding
1933 ** PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be"
1935 ** In its first form, this pragma returns the encoding of the main
1936 ** database. If the database is not initialized, it is initialized now.
1938 ** The second form of this pragma is a no-op if the main database file
1939 ** has not already been initialized. In this case it sets the default
1940 ** encoding that will be used for the main database file if a new file
1941 ** is created. If an existing main database file is opened, then the
1942 ** default text encoding for the existing database is used.
1944 ** In all cases new databases created using the ATTACH command are
1945 ** created to use the same default text encoding as the main database. If
1946 ** the main database has not been initialized and/or created when ATTACH
1947 ** is executed, this is done before the ATTACH operation.
1949 ** In the second form this pragma sets the text encoding to be used in
1950 ** new database files created using this database handle. It is only
1951 ** useful if invoked immediately after the main database i
1953 case PragTyp_ENCODING: {
1954 static const struct EncName {
1955 char *zName;
1956 u8 enc;
1957 } encnames[] = {
1958 { "UTF8", SQLITE_UTF8 },
1959 { "UTF-8", SQLITE_UTF8 }, /* Must be element [1] */
1960 { "UTF-16le", SQLITE_UTF16LE }, /* Must be element [2] */
1961 { "UTF-16be", SQLITE_UTF16BE }, /* Must be element [3] */
1962 { "UTF16le", SQLITE_UTF16LE },
1963 { "UTF16be", SQLITE_UTF16BE },
1964 { "UTF-16", 0 }, /* SQLITE_UTF16NATIVE */
1965 { "UTF16", 0 }, /* SQLITE_UTF16NATIVE */
1966 { 0, 0 }
1968 const struct EncName *pEnc;
1969 if( !zRight ){ /* "PRAGMA encoding" */
1970 if( sqlite3ReadSchema(pParse) ) goto pragma_out;
1971 assert( encnames[SQLITE_UTF8].enc==SQLITE_UTF8 );
1972 assert( encnames[SQLITE_UTF16LE].enc==SQLITE_UTF16LE );
1973 assert( encnames[SQLITE_UTF16BE].enc==SQLITE_UTF16BE );
1974 returnSingleText(v, encnames[ENC(pParse->db)].zName);
1975 }else{ /* "PRAGMA encoding = XXX" */
1976 /* Only change the value of sqlite.enc if the database handle is not
1977 ** initialized. If the main database exists, the new sqlite.enc value
1978 ** will be overwritten when the schema is next loaded. If it does not
1979 ** already exists, it will be created to use the new encoding value.
1981 if( (db->mDbFlags & DBFLAG_EncodingFixed)==0 ){
1982 for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
1983 if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){
1984 u8 enc = pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE;
1985 SCHEMA_ENC(db) = enc;
1986 sqlite3SetTextEncoding(db, enc);
1987 break;
1990 if( !pEnc->zName ){
1991 sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight);
1996 break;
1997 #endif /* SQLITE_OMIT_UTF16 */
1999 #ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
2001 ** PRAGMA [schema.]schema_version
2002 ** PRAGMA [schema.]schema_version = <integer>
2004 ** PRAGMA [schema.]user_version
2005 ** PRAGMA [schema.]user_version = <integer>
2007 ** PRAGMA [schema.]freelist_count
2009 ** PRAGMA [schema.]data_version
2011 ** PRAGMA [schema.]application_id
2012 ** PRAGMA [schema.]application_id = <integer>
2014 ** The pragma's schema_version and user_version are used to set or get
2015 ** the value of the schema-version and user-version, respectively. Both
2016 ** the schema-version and the user-version are 32-bit signed integers
2017 ** stored in the database header.
2019 ** The schema-cookie is usually only manipulated internally by SQLite. It
2020 ** is incremented by SQLite whenever the database schema is modified (by
2021 ** creating or dropping a table or index). The schema version is used by
2022 ** SQLite each time a query is executed to ensure that the internal cache
2023 ** of the schema used when compiling the SQL query matches the schema of
2024 ** the database against which the compiled query is actually executed.
2025 ** Subverting this mechanism by using "PRAGMA schema_version" to modify
2026 ** the schema-version is potentially dangerous and may lead to program
2027 ** crashes or database corruption. Use with caution!
2029 ** The user-version is not used internally by SQLite. It may be used by
2030 ** applications for any purpose.
2032 case PragTyp_HEADER_VALUE: {
2033 int iCookie = pPragma->iArg; /* Which cookie to read or write */
2034 sqlite3VdbeUsesBtree(v, iDb);
2035 if( zRight && (pPragma->mPragFlg & PragFlg_ReadOnly)==0 ){
2036 /* Write the specified cookie value */
2037 static const VdbeOpList setCookie[] = {
2038 { OP_Transaction, 0, 1, 0}, /* 0 */
2039 { OP_SetCookie, 0, 0, 0}, /* 1 */
2041 VdbeOp *aOp;
2042 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setCookie));
2043 aOp = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie, 0);
2044 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
2045 aOp[0].p1 = iDb;
2046 aOp[1].p1 = iDb;
2047 aOp[1].p2 = iCookie;
2048 aOp[1].p3 = sqlite3Atoi(zRight);
2049 aOp[1].p5 = 1;
2050 }else{
2051 /* Read the specified cookie value */
2052 static const VdbeOpList readCookie[] = {
2053 { OP_Transaction, 0, 0, 0}, /* 0 */
2054 { OP_ReadCookie, 0, 1, 0}, /* 1 */
2055 { OP_ResultRow, 1, 1, 0}
2057 VdbeOp *aOp;
2058 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(readCookie));
2059 aOp = sqlite3VdbeAddOpList(v, ArraySize(readCookie),readCookie,0);
2060 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
2061 aOp[0].p1 = iDb;
2062 aOp[1].p1 = iDb;
2063 aOp[1].p3 = iCookie;
2064 sqlite3VdbeReusable(v);
2067 break;
2068 #endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */
2070 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
2072 ** PRAGMA compile_options
2074 ** Return the names of all compile-time options used in this build,
2075 ** one option per row.
2077 case PragTyp_COMPILE_OPTIONS: {
2078 int i = 0;
2079 const char *zOpt;
2080 pParse->nMem = 1;
2081 while( (zOpt = sqlite3_compileoption_get(i++))!=0 ){
2082 sqlite3VdbeLoadString(v, 1, zOpt);
2083 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
2085 sqlite3VdbeReusable(v);
2087 break;
2088 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
2090 #ifndef SQLITE_OMIT_WAL
2092 ** PRAGMA [schema.]wal_checkpoint = passive|full|restart|truncate
2094 ** Checkpoint the database.
2096 case PragTyp_WAL_CHECKPOINT: {
2097 int iBt = (pId2->z?iDb:SQLITE_MAX_DB);
2098 int eMode = SQLITE_CHECKPOINT_PASSIVE;
2099 if( zRight ){
2100 if( sqlite3StrICmp(zRight, "full")==0 ){
2101 eMode = SQLITE_CHECKPOINT_FULL;
2102 }else if( sqlite3StrICmp(zRight, "restart")==0 ){
2103 eMode = SQLITE_CHECKPOINT_RESTART;
2104 }else if( sqlite3StrICmp(zRight, "truncate")==0 ){
2105 eMode = SQLITE_CHECKPOINT_TRUNCATE;
2108 pParse->nMem = 3;
2109 sqlite3VdbeAddOp3(v, OP_Checkpoint, iBt, eMode, 1);
2110 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
2112 break;
2115 ** PRAGMA wal_autocheckpoint
2116 ** PRAGMA wal_autocheckpoint = N
2118 ** Configure a database connection to automatically checkpoint a database
2119 ** after accumulating N frames in the log. Or query for the current value
2120 ** of N.
2122 case PragTyp_WAL_AUTOCHECKPOINT: {
2123 if( zRight ){
2124 sqlite3_wal_autocheckpoint(db, sqlite3Atoi(zRight));
2126 returnSingleInt(v,
2127 db->xWalCallback==sqlite3WalDefaultHook ?
2128 SQLITE_PTR_TO_INT(db->pWalArg) : 0);
2130 break;
2131 #endif
2134 ** PRAGMA shrink_memory
2136 ** IMPLEMENTATION-OF: R-23445-46109 This pragma causes the database
2137 ** connection on which it is invoked to free up as much memory as it
2138 ** can, by calling sqlite3_db_release_memory().
2140 case PragTyp_SHRINK_MEMORY: {
2141 sqlite3_db_release_memory(db);
2142 break;
2146 ** PRAGMA optimize
2147 ** PRAGMA optimize(MASK)
2148 ** PRAGMA schema.optimize
2149 ** PRAGMA schema.optimize(MASK)
2151 ** Attempt to optimize the database. All schemas are optimized in the first
2152 ** two forms, and only the specified schema is optimized in the latter two.
2154 ** The details of optimizations performed by this pragma are expected
2155 ** to change and improve over time. Applications should anticipate that
2156 ** this pragma will perform new optimizations in future releases.
2158 ** The optional argument is a bitmask of optimizations to perform:
2160 ** 0x0001 Debugging mode. Do not actually perform any optimizations
2161 ** but instead return one line of text for each optimization
2162 ** that would have been done. Off by default.
2164 ** 0x0002 Run ANALYZE on tables that might benefit. On by default.
2165 ** See below for additional information.
2167 ** 0x0004 (Not yet implemented) Record usage and performance
2168 ** information from the current session in the
2169 ** database file so that it will be available to "optimize"
2170 ** pragmas run by future database connections.
2172 ** 0x0008 (Not yet implemented) Create indexes that might have
2173 ** been helpful to recent queries
2175 ** The default MASK is and always shall be 0xfffe. 0xfffe means perform all
2176 ** of the optimizations listed above except Debug Mode, including new
2177 ** optimizations that have not yet been invented. If new optimizations are
2178 ** ever added that should be off by default, those off-by-default
2179 ** optimizations will have bitmasks of 0x10000 or larger.
2181 ** DETERMINATION OF WHEN TO RUN ANALYZE
2183 ** In the current implementation, a table is analyzed if only if all of
2184 ** the following are true:
2186 ** (1) MASK bit 0x02 is set.
2188 ** (2) The query planner used sqlite_stat1-style statistics for one or
2189 ** more indexes of the table at some point during the lifetime of
2190 ** the current connection.
2192 ** (3) One or more indexes of the table are currently unanalyzed OR
2193 ** the number of rows in the table has increased by 25 times or more
2194 ** since the last time ANALYZE was run.
2196 ** The rules for when tables are analyzed are likely to change in
2197 ** future releases.
2199 case PragTyp_OPTIMIZE: {
2200 int iDbLast; /* Loop termination point for the schema loop */
2201 int iTabCur; /* Cursor for a table whose size needs checking */
2202 HashElem *k; /* Loop over tables of a schema */
2203 Schema *pSchema; /* The current schema */
2204 Table *pTab; /* A table in the schema */
2205 Index *pIdx; /* An index of the table */
2206 LogEst szThreshold; /* Size threshold above which reanalysis is needd */
2207 char *zSubSql; /* SQL statement for the OP_SqlExec opcode */
2208 u32 opMask; /* Mask of operations to perform */
2210 if( zRight ){
2211 opMask = (u32)sqlite3Atoi(zRight);
2212 if( (opMask & 0x02)==0 ) break;
2213 }else{
2214 opMask = 0xfffe;
2216 iTabCur = pParse->nTab++;
2217 for(iDbLast = zDb?iDb:db->nDb-1; iDb<=iDbLast; iDb++){
2218 if( iDb==1 ) continue;
2219 sqlite3CodeVerifySchema(pParse, iDb);
2220 pSchema = db->aDb[iDb].pSchema;
2221 for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
2222 pTab = (Table*)sqliteHashData(k);
2224 /* If table pTab has not been used in a way that would benefit from
2225 ** having analysis statistics during the current session, then skip it.
2226 ** This also has the effect of skipping virtual tables and views */
2227 if( (pTab->tabFlags & TF_StatsUsed)==0 ) continue;
2229 /* Reanalyze if the table is 25 times larger than the last analysis */
2230 szThreshold = pTab->nRowLogEst + 46; assert( sqlite3LogEst(25)==46 );
2231 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2232 if( !pIdx->hasStat1 ){
2233 szThreshold = 0; /* Always analyze if any index lacks statistics */
2234 break;
2237 if( szThreshold ){
2238 sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
2239 sqlite3VdbeAddOp3(v, OP_IfSmaller, iTabCur,
2240 sqlite3VdbeCurrentAddr(v)+2+(opMask&1), szThreshold);
2241 VdbeCoverage(v);
2243 zSubSql = sqlite3MPrintf(db, "ANALYZE \"%w\".\"%w\"",
2244 db->aDb[iDb].zDbSName, pTab->zName);
2245 if( opMask & 0x01 ){
2246 int r1 = sqlite3GetTempReg(pParse);
2247 sqlite3VdbeAddOp4(v, OP_String8, 0, r1, 0, zSubSql, P4_DYNAMIC);
2248 sqlite3VdbeAddOp2(v, OP_ResultRow, r1, 1);
2249 }else{
2250 sqlite3VdbeAddOp4(v, OP_SqlExec, 0, 0, 0, zSubSql, P4_DYNAMIC);
2254 sqlite3VdbeAddOp0(v, OP_Expire);
2255 break;
2259 ** PRAGMA busy_timeout
2260 ** PRAGMA busy_timeout = N
2262 ** Call sqlite3_busy_timeout(db, N). Return the current timeout value
2263 ** if one is set. If no busy handler or a different busy handler is set
2264 ** then 0 is returned. Setting the busy_timeout to 0 or negative
2265 ** disables the timeout.
2267 /*case PragTyp_BUSY_TIMEOUT*/ default: {
2268 assert( pPragma->ePragTyp==PragTyp_BUSY_TIMEOUT );
2269 if( zRight ){
2270 sqlite3_busy_timeout(db, sqlite3Atoi(zRight));
2272 returnSingleInt(v, db->busyTimeout);
2273 break;
2277 ** PRAGMA soft_heap_limit
2278 ** PRAGMA soft_heap_limit = N
2280 ** IMPLEMENTATION-OF: R-26343-45930 This pragma invokes the
2281 ** sqlite3_soft_heap_limit64() interface with the argument N, if N is
2282 ** specified and is a non-negative integer.
2283 ** IMPLEMENTATION-OF: R-64451-07163 The soft_heap_limit pragma always
2284 ** returns the same integer that would be returned by the
2285 ** sqlite3_soft_heap_limit64(-1) C-language function.
2287 case PragTyp_SOFT_HEAP_LIMIT: {
2288 sqlite3_int64 N;
2289 if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){
2290 sqlite3_soft_heap_limit64(N);
2292 returnSingleInt(v, sqlite3_soft_heap_limit64(-1));
2293 break;
2297 ** PRAGMA hard_heap_limit
2298 ** PRAGMA hard_heap_limit = N
2300 ** Invoke sqlite3_hard_heap_limit64() to query or set the hard heap
2301 ** limit. The hard heap limit can be activated or lowered by this
2302 ** pragma, but not raised or deactivated. Only the
2303 ** sqlite3_hard_heap_limit64() C-language API can raise or deactivate
2304 ** the hard heap limit. This allows an application to set a heap limit
2305 ** constraint that cannot be relaxed by an untrusted SQL script.
2307 case PragTyp_HARD_HEAP_LIMIT: {
2308 sqlite3_int64 N;
2309 if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){
2310 sqlite3_int64 iPrior = sqlite3_hard_heap_limit64(-1);
2311 if( N>0 && (iPrior==0 || iPrior>N) ) sqlite3_hard_heap_limit64(N);
2313 returnSingleInt(v, sqlite3_hard_heap_limit64(-1));
2314 break;
2318 ** PRAGMA threads
2319 ** PRAGMA threads = N
2321 ** Configure the maximum number of worker threads. Return the new
2322 ** maximum, which might be less than requested.
2324 case PragTyp_THREADS: {
2325 sqlite3_int64 N;
2326 if( zRight
2327 && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK
2328 && N>=0
2330 sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, (int)(N&0x7fffffff));
2332 returnSingleInt(v, sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, -1));
2333 break;
2337 ** PRAGMA analysis_limit
2338 ** PRAGMA analysis_limit = N
2340 ** Configure the maximum number of rows that ANALYZE will examine
2341 ** in each index that it looks at. Return the new limit.
2343 case PragTyp_ANALYSIS_LIMIT: {
2344 sqlite3_int64 N;
2345 if( zRight
2346 && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK /* IMP: R-40975-20399 */
2347 && N>=0
2349 db->nAnalysisLimit = (int)(N&0x7fffffff);
2351 returnSingleInt(v, db->nAnalysisLimit); /* IMP: R-57594-65522 */
2352 break;
2355 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
2357 ** Report the current state of file logs for all databases
2359 case PragTyp_LOCK_STATUS: {
2360 static const char *const azLockName[] = {
2361 "unlocked", "shared", "reserved", "pending", "exclusive"
2363 int i;
2364 pParse->nMem = 2;
2365 for(i=0; i<db->nDb; i++){
2366 Btree *pBt;
2367 const char *zState = "unknown";
2368 int j;
2369 if( db->aDb[i].zDbSName==0 ) continue;
2370 pBt = db->aDb[i].pBt;
2371 if( pBt==0 || sqlite3BtreePager(pBt)==0 ){
2372 zState = "closed";
2373 }else if( sqlite3_file_control(db, i ? db->aDb[i].zDbSName : 0,
2374 SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){
2375 zState = azLockName[j];
2377 sqlite3VdbeMultiLoad(v, 1, "ss", db->aDb[i].zDbSName, zState);
2379 break;
2381 #endif
2383 #if defined(SQLITE_ENABLE_CEROD)
2384 case PragTyp_ACTIVATE_EXTENSIONS: if( zRight ){
2385 if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){
2386 sqlite3_activate_cerod(&zRight[6]);
2389 break;
2390 #endif
2392 } /* End of the PRAGMA switch */
2394 /* The following block is a no-op unless SQLITE_DEBUG is defined. Its only
2395 ** purpose is to execute assert() statements to verify that if the
2396 ** PragFlg_NoColumns1 flag is set and the caller specified an argument
2397 ** to the PRAGMA, the implementation has not added any OP_ResultRow
2398 ** instructions to the VM. */
2399 if( (pPragma->mPragFlg & PragFlg_NoColumns1) && zRight ){
2400 sqlite3VdbeVerifyNoResultRow(v);
2403 pragma_out:
2404 sqlite3DbFree(db, zLeft);
2405 sqlite3DbFree(db, zRight);
2407 #ifndef SQLITE_OMIT_VIRTUALTABLE
2408 /*****************************************************************************
2409 ** Implementation of an eponymous virtual table that runs a pragma.
2412 typedef struct PragmaVtab PragmaVtab;
2413 typedef struct PragmaVtabCursor PragmaVtabCursor;
2414 struct PragmaVtab {
2415 sqlite3_vtab base; /* Base class. Must be first */
2416 sqlite3 *db; /* The database connection to which it belongs */
2417 const PragmaName *pName; /* Name of the pragma */
2418 u8 nHidden; /* Number of hidden columns */
2419 u8 iHidden; /* Index of the first hidden column */
2421 struct PragmaVtabCursor {
2422 sqlite3_vtab_cursor base; /* Base class. Must be first */
2423 sqlite3_stmt *pPragma; /* The pragma statement to run */
2424 sqlite_int64 iRowid; /* Current rowid */
2425 char *azArg[2]; /* Value of the argument and schema */
2429 ** Pragma virtual table module xConnect method.
2431 static int pragmaVtabConnect(
2432 sqlite3 *db,
2433 void *pAux,
2434 int argc, const char *const*argv,
2435 sqlite3_vtab **ppVtab,
2436 char **pzErr
2438 const PragmaName *pPragma = (const PragmaName*)pAux;
2439 PragmaVtab *pTab = 0;
2440 int rc;
2441 int i, j;
2442 char cSep = '(';
2443 StrAccum acc;
2444 char zBuf[200];
2446 UNUSED_PARAMETER(argc);
2447 UNUSED_PARAMETER(argv);
2448 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
2449 sqlite3_str_appendall(&acc, "CREATE TABLE x");
2450 for(i=0, j=pPragma->iPragCName; i<pPragma->nPragCName; i++, j++){
2451 sqlite3_str_appendf(&acc, "%c\"%s\"", cSep, pragCName[j]);
2452 cSep = ',';
2454 if( i==0 ){
2455 sqlite3_str_appendf(&acc, "(\"%s\"", pPragma->zName);
2456 i++;
2458 j = 0;
2459 if( pPragma->mPragFlg & PragFlg_Result1 ){
2460 sqlite3_str_appendall(&acc, ",arg HIDDEN");
2461 j++;
2463 if( pPragma->mPragFlg & (PragFlg_SchemaOpt|PragFlg_SchemaReq) ){
2464 sqlite3_str_appendall(&acc, ",schema HIDDEN");
2465 j++;
2467 sqlite3_str_append(&acc, ")", 1);
2468 sqlite3StrAccumFinish(&acc);
2469 assert( strlen(zBuf) < sizeof(zBuf)-1 );
2470 rc = sqlite3_declare_vtab(db, zBuf);
2471 if( rc==SQLITE_OK ){
2472 pTab = (PragmaVtab*)sqlite3_malloc(sizeof(PragmaVtab));
2473 if( pTab==0 ){
2474 rc = SQLITE_NOMEM;
2475 }else{
2476 memset(pTab, 0, sizeof(PragmaVtab));
2477 pTab->pName = pPragma;
2478 pTab->db = db;
2479 pTab->iHidden = i;
2480 pTab->nHidden = j;
2482 }else{
2483 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
2486 *ppVtab = (sqlite3_vtab*)pTab;
2487 return rc;
2491 ** Pragma virtual table module xDisconnect method.
2493 static int pragmaVtabDisconnect(sqlite3_vtab *pVtab){
2494 PragmaVtab *pTab = (PragmaVtab*)pVtab;
2495 sqlite3_free(pTab);
2496 return SQLITE_OK;
2499 /* Figure out the best index to use to search a pragma virtual table.
2501 ** There are not really any index choices. But we want to encourage the
2502 ** query planner to give == constraints on as many hidden parameters as
2503 ** possible, and especially on the first hidden parameter. So return a
2504 ** high cost if hidden parameters are unconstrained.
2506 static int pragmaVtabBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
2507 PragmaVtab *pTab = (PragmaVtab*)tab;
2508 const struct sqlite3_index_constraint *pConstraint;
2509 int i, j;
2510 int seen[2];
2512 pIdxInfo->estimatedCost = (double)1;
2513 if( pTab->nHidden==0 ){ return SQLITE_OK; }
2514 pConstraint = pIdxInfo->aConstraint;
2515 seen[0] = 0;
2516 seen[1] = 0;
2517 for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
2518 if( pConstraint->usable==0 ) continue;
2519 if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
2520 if( pConstraint->iColumn < pTab->iHidden ) continue;
2521 j = pConstraint->iColumn - pTab->iHidden;
2522 assert( j < 2 );
2523 seen[j] = i+1;
2525 if( seen[0]==0 ){
2526 pIdxInfo->estimatedCost = (double)2147483647;
2527 pIdxInfo->estimatedRows = 2147483647;
2528 return SQLITE_OK;
2530 j = seen[0]-1;
2531 pIdxInfo->aConstraintUsage[j].argvIndex = 1;
2532 pIdxInfo->aConstraintUsage[j].omit = 1;
2533 if( seen[1]==0 ) return SQLITE_OK;
2534 pIdxInfo->estimatedCost = (double)20;
2535 pIdxInfo->estimatedRows = 20;
2536 j = seen[1]-1;
2537 pIdxInfo->aConstraintUsage[j].argvIndex = 2;
2538 pIdxInfo->aConstraintUsage[j].omit = 1;
2539 return SQLITE_OK;
2542 /* Create a new cursor for the pragma virtual table */
2543 static int pragmaVtabOpen(sqlite3_vtab *pVtab, sqlite3_vtab_cursor **ppCursor){
2544 PragmaVtabCursor *pCsr;
2545 pCsr = (PragmaVtabCursor*)sqlite3_malloc(sizeof(*pCsr));
2546 if( pCsr==0 ) return SQLITE_NOMEM;
2547 memset(pCsr, 0, sizeof(PragmaVtabCursor));
2548 pCsr->base.pVtab = pVtab;
2549 *ppCursor = &pCsr->base;
2550 return SQLITE_OK;
2553 /* Clear all content from pragma virtual table cursor. */
2554 static void pragmaVtabCursorClear(PragmaVtabCursor *pCsr){
2555 int i;
2556 sqlite3_finalize(pCsr->pPragma);
2557 pCsr->pPragma = 0;
2558 for(i=0; i<ArraySize(pCsr->azArg); i++){
2559 sqlite3_free(pCsr->azArg[i]);
2560 pCsr->azArg[i] = 0;
2564 /* Close a pragma virtual table cursor */
2565 static int pragmaVtabClose(sqlite3_vtab_cursor *cur){
2566 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)cur;
2567 pragmaVtabCursorClear(pCsr);
2568 sqlite3_free(pCsr);
2569 return SQLITE_OK;
2572 /* Advance the pragma virtual table cursor to the next row */
2573 static int pragmaVtabNext(sqlite3_vtab_cursor *pVtabCursor){
2574 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2575 int rc = SQLITE_OK;
2577 /* Increment the xRowid value */
2578 pCsr->iRowid++;
2579 assert( pCsr->pPragma );
2580 if( SQLITE_ROW!=sqlite3_step(pCsr->pPragma) ){
2581 rc = sqlite3_finalize(pCsr->pPragma);
2582 pCsr->pPragma = 0;
2583 pragmaVtabCursorClear(pCsr);
2585 return rc;
2589 ** Pragma virtual table module xFilter method.
2591 static int pragmaVtabFilter(
2592 sqlite3_vtab_cursor *pVtabCursor,
2593 int idxNum, const char *idxStr,
2594 int argc, sqlite3_value **argv
2596 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2597 PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab);
2598 int rc;
2599 int i, j;
2600 StrAccum acc;
2601 char *zSql;
2603 UNUSED_PARAMETER(idxNum);
2604 UNUSED_PARAMETER(idxStr);
2605 pragmaVtabCursorClear(pCsr);
2606 j = (pTab->pName->mPragFlg & PragFlg_Result1)!=0 ? 0 : 1;
2607 for(i=0; i<argc; i++, j++){
2608 const char *zText = (const char*)sqlite3_value_text(argv[i]);
2609 assert( j<ArraySize(pCsr->azArg) );
2610 assert( pCsr->azArg[j]==0 );
2611 if( zText ){
2612 pCsr->azArg[j] = sqlite3_mprintf("%s", zText);
2613 if( pCsr->azArg[j]==0 ){
2614 return SQLITE_NOMEM;
2618 sqlite3StrAccumInit(&acc, 0, 0, 0, pTab->db->aLimit[SQLITE_LIMIT_SQL_LENGTH]);
2619 sqlite3_str_appendall(&acc, "PRAGMA ");
2620 if( pCsr->azArg[1] ){
2621 sqlite3_str_appendf(&acc, "%Q.", pCsr->azArg[1]);
2623 sqlite3_str_appendall(&acc, pTab->pName->zName);
2624 if( pCsr->azArg[0] ){
2625 sqlite3_str_appendf(&acc, "=%Q", pCsr->azArg[0]);
2627 zSql = sqlite3StrAccumFinish(&acc);
2628 if( zSql==0 ) return SQLITE_NOMEM;
2629 rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pPragma, 0);
2630 sqlite3_free(zSql);
2631 if( rc!=SQLITE_OK ){
2632 pTab->base.zErrMsg = sqlite3_mprintf("%s", sqlite3_errmsg(pTab->db));
2633 return rc;
2635 return pragmaVtabNext(pVtabCursor);
2639 ** Pragma virtual table module xEof method.
2641 static int pragmaVtabEof(sqlite3_vtab_cursor *pVtabCursor){
2642 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2643 return (pCsr->pPragma==0);
2646 /* The xColumn method simply returns the corresponding column from
2647 ** the PRAGMA.
2649 static int pragmaVtabColumn(
2650 sqlite3_vtab_cursor *pVtabCursor,
2651 sqlite3_context *ctx,
2652 int i
2654 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2655 PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab);
2656 if( i<pTab->iHidden ){
2657 sqlite3_result_value(ctx, sqlite3_column_value(pCsr->pPragma, i));
2658 }else{
2659 sqlite3_result_text(ctx, pCsr->azArg[i-pTab->iHidden],-1,SQLITE_TRANSIENT);
2661 return SQLITE_OK;
2665 ** Pragma virtual table module xRowid method.
2667 static int pragmaVtabRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *p){
2668 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2669 *p = pCsr->iRowid;
2670 return SQLITE_OK;
2673 /* The pragma virtual table object */
2674 static const sqlite3_module pragmaVtabModule = {
2675 0, /* iVersion */
2676 0, /* xCreate - create a table */
2677 pragmaVtabConnect, /* xConnect - connect to an existing table */
2678 pragmaVtabBestIndex, /* xBestIndex - Determine search strategy */
2679 pragmaVtabDisconnect, /* xDisconnect - Disconnect from a table */
2680 0, /* xDestroy - Drop a table */
2681 pragmaVtabOpen, /* xOpen - open a cursor */
2682 pragmaVtabClose, /* xClose - close a cursor */
2683 pragmaVtabFilter, /* xFilter - configure scan constraints */
2684 pragmaVtabNext, /* xNext - advance a cursor */
2685 pragmaVtabEof, /* xEof */
2686 pragmaVtabColumn, /* xColumn - read data */
2687 pragmaVtabRowid, /* xRowid - read data */
2688 0, /* xUpdate - write data */
2689 0, /* xBegin - begin transaction */
2690 0, /* xSync - sync transaction */
2691 0, /* xCommit - commit transaction */
2692 0, /* xRollback - rollback transaction */
2693 0, /* xFindFunction - function overloading */
2694 0, /* xRename - rename the table */
2695 0, /* xSavepoint */
2696 0, /* xRelease */
2697 0, /* xRollbackTo */
2698 0 /* xShadowName */
2702 ** Check to see if zTabName is really the name of a pragma. If it is,
2703 ** then register an eponymous virtual table for that pragma and return
2704 ** a pointer to the Module object for the new virtual table.
2706 Module *sqlite3PragmaVtabRegister(sqlite3 *db, const char *zName){
2707 const PragmaName *pName;
2708 assert( sqlite3_strnicmp(zName, "pragma_", 7)==0 );
2709 pName = pragmaLocate(zName+7);
2710 if( pName==0 ) return 0;
2711 if( (pName->mPragFlg & (PragFlg_Result0|PragFlg_Result1))==0 ) return 0;
2712 assert( sqlite3HashFind(&db->aModule, zName)==0 );
2713 return sqlite3VtabCreateModule(db, zName, &pragmaVtabModule, (void*)pName, 0);
2716 #endif /* SQLITE_OMIT_VIRTUALTABLE */
2718 #endif /* SQLITE_OMIT_PRAGMA */