minimize a few conflicts with upstream
[sqlcipher.git] / src / pragma.c
blob3b58ee4f314327fb51c4a1b7f2d105fa6aaac224
1 /*
2 ** 2003 April 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used to implement the PRAGMA command.
14 #include "sqliteInt.h"
16 #if !defined(SQLITE_ENABLE_LOCKING_STYLE)
17 # if defined(__APPLE__)
18 # define SQLITE_ENABLE_LOCKING_STYLE 1
19 # else
20 # define SQLITE_ENABLE_LOCKING_STYLE 0
21 # endif
22 #endif
24 /***************************************************************************
25 ** The "pragma.h" include file is an automatically generated file that
26 ** that includes the PragType_XXXX macro definitions and the aPragmaName[]
27 ** object. This ensures that the aPragmaName[] table is arranged in
28 ** lexicographical order to facility a binary search of the pragma name.
29 ** Do not edit pragma.h directly. Edit and rerun the script in at
30 ** ../tool/mkpragmatab.tcl. */
31 #include "pragma.h"
34 ** Interpret the given string as a safety level. Return 0 for OFF,
35 ** 1 for ON or NORMAL, 2 for FULL, and 3 for EXTRA. Return 1 for an empty or
36 ** unrecognized string argument. The FULL and EXTRA option is disallowed
37 ** if the omitFull parameter it 1.
39 ** Note that the values returned are one less that the values that
40 ** should be passed into sqlite3BtreeSetSafetyLevel(). The is done
41 ** to support legacy SQL code. The safety level used to be boolean
42 ** and older scripts may have used numbers 0 for OFF and 1 for ON.
44 static u8 getSafetyLevel(const char *z, int omitFull, u8 dflt){
45 /* 123456789 123456789 123 */
46 static const char zText[] = "onoffalseyestruextrafull";
47 static const u8 iOffset[] = {0, 1, 2, 4, 9, 12, 15, 20};
48 static const u8 iLength[] = {2, 2, 3, 5, 3, 4, 5, 4};
49 static const u8 iValue[] = {1, 0, 0, 0, 1, 1, 3, 2};
50 /* on no off false yes true extra full */
51 int i, n;
52 if( sqlite3Isdigit(*z) ){
53 return (u8)sqlite3Atoi(z);
55 n = sqlite3Strlen30(z);
56 for(i=0; i<ArraySize(iLength); i++){
57 if( iLength[i]==n && sqlite3StrNICmp(&zText[iOffset[i]],z,n)==0
58 && (!omitFull || iValue[i]<=1)
60 return iValue[i];
63 return dflt;
67 ** Interpret the given string as a boolean value.
69 u8 sqlite3GetBoolean(const char *z, u8 dflt){
70 return getSafetyLevel(z,1,dflt)!=0;
73 /* The sqlite3GetBoolean() function is used by other modules but the
74 ** remainder of this file is specific to PRAGMA processing. So omit
75 ** the rest of the file if PRAGMAs are omitted from the build.
77 #if !defined(SQLITE_OMIT_PRAGMA)
80 ** Interpret the given string as a locking mode value.
82 static int getLockingMode(const char *z){
83 if( z ){
84 if( 0==sqlite3StrICmp(z, "exclusive") ) return PAGER_LOCKINGMODE_EXCLUSIVE;
85 if( 0==sqlite3StrICmp(z, "normal") ) return PAGER_LOCKINGMODE_NORMAL;
87 return PAGER_LOCKINGMODE_QUERY;
90 #ifndef SQLITE_OMIT_AUTOVACUUM
92 ** Interpret the given string as an auto-vacuum mode value.
94 ** The following strings, "none", "full" and "incremental" are
95 ** acceptable, as are their numeric equivalents: 0, 1 and 2 respectively.
97 static int getAutoVacuum(const char *z){
98 int i;
99 if( 0==sqlite3StrICmp(z, "none") ) return BTREE_AUTOVACUUM_NONE;
100 if( 0==sqlite3StrICmp(z, "full") ) return BTREE_AUTOVACUUM_FULL;
101 if( 0==sqlite3StrICmp(z, "incremental") ) return BTREE_AUTOVACUUM_INCR;
102 i = sqlite3Atoi(z);
103 return (u8)((i>=0&&i<=2)?i:0);
105 #endif /* ifndef SQLITE_OMIT_AUTOVACUUM */
107 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
109 ** Interpret the given string as a temp db location. Return 1 for file
110 ** backed temporary databases, 2 for the Red-Black tree in memory database
111 ** and 0 to use the compile-time default.
113 static int getTempStore(const char *z){
114 if( z[0]>='0' && z[0]<='2' ){
115 return z[0] - '0';
116 }else if( sqlite3StrICmp(z, "file")==0 ){
117 return 1;
118 }else if( sqlite3StrICmp(z, "memory")==0 ){
119 return 2;
120 }else{
121 return 0;
124 #endif /* SQLITE_PAGER_PRAGMAS */
126 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
128 ** Invalidate temp storage, either when the temp storage is changed
129 ** from default, or when 'file' and the temp_store_directory has changed
131 static int invalidateTempStorage(Parse *pParse){
132 sqlite3 *db = pParse->db;
133 if( db->aDb[1].pBt!=0 ){
134 if( !db->autoCommit || sqlite3BtreeIsInReadTrans(db->aDb[1].pBt) ){
135 sqlite3ErrorMsg(pParse, "temporary storage cannot be changed "
136 "from within a transaction");
137 return SQLITE_ERROR;
139 sqlite3BtreeClose(db->aDb[1].pBt);
140 db->aDb[1].pBt = 0;
141 sqlite3ResetAllSchemasOfConnection(db);
143 return SQLITE_OK;
145 #endif /* SQLITE_PAGER_PRAGMAS */
147 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
149 ** If the TEMP database is open, close it and mark the database schema
150 ** as needing reloading. This must be done when using the SQLITE_TEMP_STORE
151 ** or DEFAULT_TEMP_STORE pragmas.
153 static int changeTempStorage(Parse *pParse, const char *zStorageType){
154 int ts = getTempStore(zStorageType);
155 sqlite3 *db = pParse->db;
156 if( db->temp_store==ts ) return SQLITE_OK;
157 if( invalidateTempStorage( pParse ) != SQLITE_OK ){
158 return SQLITE_ERROR;
160 db->temp_store = (u8)ts;
161 return SQLITE_OK;
163 #endif /* SQLITE_PAGER_PRAGMAS */
166 ** Set result column names for a pragma.
168 static void setPragmaResultColumnNames(
169 Vdbe *v, /* The query under construction */
170 const PragmaName *pPragma /* The pragma */
172 u8 n = pPragma->nPragCName;
173 sqlite3VdbeSetNumCols(v, n==0 ? 1 : n);
174 if( n==0 ){
175 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, pPragma->zName, SQLITE_STATIC);
176 }else{
177 int i, j;
178 for(i=0, j=pPragma->iPragCName; i<n; i++, j++){
179 sqlite3VdbeSetColName(v, i, COLNAME_NAME, pragCName[j], SQLITE_STATIC);
185 ** Generate code to return a single integer value.
187 static void returnSingleInt(Vdbe *v, i64 value){
188 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, 1, 0, (const u8*)&value, P4_INT64);
189 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
193 ** Generate code to return a single text value.
195 static void returnSingleText(
196 Vdbe *v, /* Prepared statement under construction */
197 const char *zValue /* Value to be returned */
199 if( zValue ){
200 sqlite3VdbeLoadString(v, 1, (const char*)zValue);
201 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
207 ** Set the safety_level and pager flags for pager iDb. Or if iDb<0
208 ** set these values for all pagers.
210 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
211 static void setAllPagerFlags(sqlite3 *db){
212 if( db->autoCommit ){
213 Db *pDb = db->aDb;
214 int n = db->nDb;
215 assert( SQLITE_FullFSync==PAGER_FULLFSYNC );
216 assert( SQLITE_CkptFullFSync==PAGER_CKPT_FULLFSYNC );
217 assert( SQLITE_CacheSpill==PAGER_CACHESPILL );
218 assert( (PAGER_FULLFSYNC | PAGER_CKPT_FULLFSYNC | PAGER_CACHESPILL)
219 == PAGER_FLAGS_MASK );
220 assert( (pDb->safety_level & PAGER_SYNCHRONOUS_MASK)==pDb->safety_level );
221 while( (n--) > 0 ){
222 if( pDb->pBt ){
223 sqlite3BtreeSetPagerFlags(pDb->pBt,
224 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK) );
226 pDb++;
230 #else
231 # define setAllPagerFlags(X) /* no-op */
232 #endif
236 ** Return a human-readable name for a constraint resolution action.
238 #ifndef SQLITE_OMIT_FOREIGN_KEY
239 static const char *actionName(u8 action){
240 const char *zName;
241 switch( action ){
242 case OE_SetNull: zName = "SET NULL"; break;
243 case OE_SetDflt: zName = "SET DEFAULT"; break;
244 case OE_Cascade: zName = "CASCADE"; break;
245 case OE_Restrict: zName = "RESTRICT"; break;
246 default: zName = "NO ACTION";
247 assert( action==OE_None ); break;
249 return zName;
251 #endif
255 ** Parameter eMode must be one of the PAGER_JOURNALMODE_XXX constants
256 ** defined in pager.h. This function returns the associated lowercase
257 ** journal-mode name.
259 const char *sqlite3JournalModename(int eMode){
260 static char * const azModeName[] = {
261 "delete", "persist", "off", "truncate", "memory"
262 #ifndef SQLITE_OMIT_WAL
263 , "wal"
264 #endif
266 assert( PAGER_JOURNALMODE_DELETE==0 );
267 assert( PAGER_JOURNALMODE_PERSIST==1 );
268 assert( PAGER_JOURNALMODE_OFF==2 );
269 assert( PAGER_JOURNALMODE_TRUNCATE==3 );
270 assert( PAGER_JOURNALMODE_MEMORY==4 );
271 assert( PAGER_JOURNALMODE_WAL==5 );
272 assert( eMode>=0 && eMode<=ArraySize(azModeName) );
274 if( eMode==ArraySize(azModeName) ) return 0;
275 return azModeName[eMode];
279 ** Locate a pragma in the aPragmaName[] array.
281 static const PragmaName *pragmaLocate(const char *zName){
282 int upr, lwr, mid = 0, rc;
283 lwr = 0;
284 upr = ArraySize(aPragmaName)-1;
285 while( lwr<=upr ){
286 mid = (lwr+upr)/2;
287 rc = sqlite3_stricmp(zName, aPragmaName[mid].zName);
288 if( rc==0 ) break;
289 if( rc<0 ){
290 upr = mid - 1;
291 }else{
292 lwr = mid + 1;
295 return lwr>upr ? 0 : &aPragmaName[mid];
299 ** Create zero or more entries in the output for the SQL functions
300 ** defined by FuncDef p.
302 static void pragmaFunclistLine(
303 Vdbe *v, /* The prepared statement being created */
304 FuncDef *p, /* A particular function definition */
305 int isBuiltin, /* True if this is a built-in function */
306 int showInternFuncs /* True if showing internal functions */
308 for(; p; p=p->pNext){
309 const char *zType;
310 static const u32 mask =
311 SQLITE_DETERMINISTIC |
312 SQLITE_DIRECTONLY |
313 SQLITE_SUBTYPE |
314 SQLITE_INNOCUOUS |
315 SQLITE_FUNC_INTERNAL
317 static const char *azEnc[] = { 0, "utf8", "utf16le", "utf16be" };
319 assert( SQLITE_FUNC_ENCMASK==0x3 );
320 assert( strcmp(azEnc[SQLITE_UTF8],"utf8")==0 );
321 assert( strcmp(azEnc[SQLITE_UTF16LE],"utf16le")==0 );
322 assert( strcmp(azEnc[SQLITE_UTF16BE],"utf16be")==0 );
324 if( p->xSFunc==0 ) continue;
325 if( (p->funcFlags & SQLITE_FUNC_INTERNAL)!=0
326 && showInternFuncs==0
328 continue;
330 if( p->xValue!=0 ){
331 zType = "w";
332 }else if( p->xFinalize!=0 ){
333 zType = "a";
334 }else{
335 zType = "s";
337 sqlite3VdbeMultiLoad(v, 1, "sissii",
338 p->zName, isBuiltin,
339 zType, azEnc[p->funcFlags&SQLITE_FUNC_ENCMASK],
340 p->nArg,
341 (p->funcFlags & mask) ^ SQLITE_INNOCUOUS
348 ** Helper subroutine for PRAGMA integrity_check:
350 ** Generate code to output a single-column result row with a value of the
351 ** string held in register 3. Decrement the result count in register 1
352 ** and halt if the maximum number of result rows have been issued.
354 static int integrityCheckResultRow(Vdbe *v){
355 int addr;
356 sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1);
357 addr = sqlite3VdbeAddOp3(v, OP_IfPos, 1, sqlite3VdbeCurrentAddr(v)+2, 1);
358 VdbeCoverage(v);
359 sqlite3VdbeAddOp0(v, OP_Halt);
360 return addr;
364 ** Process a pragma statement.
366 ** Pragmas are of this form:
368 ** PRAGMA [schema.]id [= value]
370 ** The identifier might also be a string. The value is a string, and
371 ** identifier, or a number. If minusFlag is true, then the value is
372 ** a number that was preceded by a minus sign.
374 ** If the left side is "database.id" then pId1 is the database name
375 ** and pId2 is the id. If the left side is just "id" then pId1 is the
376 ** id and pId2 is any empty string.
378 void sqlite3Pragma(
379 Parse *pParse,
380 Token *pId1, /* First part of [schema.]id field */
381 Token *pId2, /* Second part of [schema.]id field, or NULL */
382 Token *pValue, /* Token for <value>, or NULL */
383 int minusFlag /* True if a '-' sign preceded <value> */
385 char *zLeft = 0; /* Nul-terminated UTF-8 string <id> */
386 char *zRight = 0; /* Nul-terminated UTF-8 string <value>, or NULL */
387 const char *zDb = 0; /* The database name */
388 Token *pId; /* Pointer to <id> token */
389 char *aFcntl[4]; /* Argument to SQLITE_FCNTL_PRAGMA */
390 int iDb; /* Database index for <database> */
391 int rc; /* return value form SQLITE_FCNTL_PRAGMA */
392 sqlite3 *db = pParse->db; /* The database connection */
393 Db *pDb; /* The specific database being pragmaed */
394 Vdbe *v = sqlite3GetVdbe(pParse); /* Prepared statement */
395 const PragmaName *pPragma; /* The pragma */
396 /* BEGIN SQLCIPHER */
397 #ifdef SQLITE_HAS_CODEC
398 extern int sqlcipher_codec_pragma(sqlite3*, int, Parse *, const char *, const char *);
399 #endif
400 /* END SQLCIPHER */
402 if( v==0 ) return;
403 sqlite3VdbeRunOnlyOnce(v);
404 pParse->nMem = 2;
406 /* Interpret the [schema.] part of the pragma statement. iDb is the
407 ** index of the database this pragma is being applied to in db.aDb[]. */
408 iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId);
409 if( iDb<0 ) return;
410 pDb = &db->aDb[iDb];
412 /* If the temp database has been explicitly named as part of the
413 ** pragma, make sure it is open.
415 if( iDb==1 && sqlite3OpenTempDatabase(pParse) ){
416 return;
419 zLeft = sqlite3NameFromToken(db, pId);
420 if( !zLeft ) return;
421 if( minusFlag ){
422 zRight = sqlite3MPrintf(db, "-%T", pValue);
423 }else{
424 zRight = sqlite3NameFromToken(db, pValue);
427 assert( pId2 );
428 zDb = pId2->n>0 ? pDb->zDbSName : 0;
429 if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){
430 goto pragma_out;
433 /* Send an SQLITE_FCNTL_PRAGMA file-control to the underlying VFS
434 ** connection. If it returns SQLITE_OK, then assume that the VFS
435 ** handled the pragma and generate a no-op prepared statement.
437 ** IMPLEMENTATION-OF: R-12238-55120 Whenever a PRAGMA statement is parsed,
438 ** an SQLITE_FCNTL_PRAGMA file control is sent to the open sqlite3_file
439 ** object corresponding to the database file to which the pragma
440 ** statement refers.
442 ** IMPLEMENTATION-OF: R-29875-31678 The argument to the SQLITE_FCNTL_PRAGMA
443 ** file control is an array of pointers to strings (char**) in which the
444 ** second element of the array is the name of the pragma and the third
445 ** element is the argument to the pragma or NULL if the pragma has no
446 ** argument.
448 aFcntl[0] = 0;
449 aFcntl[1] = zLeft;
450 aFcntl[2] = zRight;
451 aFcntl[3] = 0;
452 db->busyHandler.nBusy = 0;
453 rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_PRAGMA, (void*)aFcntl);
454 if( rc==SQLITE_OK ){
455 sqlite3VdbeSetNumCols(v, 1);
456 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, aFcntl[0], SQLITE_TRANSIENT);
457 returnSingleText(v, aFcntl[0]);
458 sqlite3_free(aFcntl[0]);
459 goto pragma_out;
461 if( rc!=SQLITE_NOTFOUND ){
462 if( aFcntl[0] ){
463 sqlite3ErrorMsg(pParse, "%s", aFcntl[0]);
464 sqlite3_free(aFcntl[0]);
466 pParse->nErr++;
467 pParse->rc = rc;
469 goto pragma_out;
472 /* BEGIN SQLCIPHER */
473 #ifdef SQLITE_HAS_CODEC
474 if(sqlcipher_codec_pragma(db, iDb, pParse, zLeft, zRight)) {
475 /* sqlcipher_codec_pragma executes internal */
476 goto pragma_out;
478 #endif
479 /* END SQLCIPHER */
481 /* Locate the pragma in the lookup table */
482 pPragma = pragmaLocate(zLeft);
483 if( pPragma==0 ) goto pragma_out;
485 /* Make sure the database schema is loaded if the pragma requires that */
486 if( (pPragma->mPragFlg & PragFlg_NeedSchema)!=0 ){
487 if( sqlite3ReadSchema(pParse) ) goto pragma_out;
490 /* Register the result column names for pragmas that return results */
491 if( (pPragma->mPragFlg & PragFlg_NoColumns)==0
492 && ((pPragma->mPragFlg & PragFlg_NoColumns1)==0 || zRight==0)
494 setPragmaResultColumnNames(v, pPragma);
497 /* Jump to the appropriate pragma handler */
498 switch( pPragma->ePragTyp ){
500 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED)
502 ** PRAGMA [schema.]default_cache_size
503 ** PRAGMA [schema.]default_cache_size=N
505 ** The first form reports the current persistent setting for the
506 ** page cache size. The value returned is the maximum number of
507 ** pages in the page cache. The second form sets both the current
508 ** page cache size value and the persistent page cache size value
509 ** stored in the database file.
511 ** Older versions of SQLite would set the default cache size to a
512 ** negative number to indicate synchronous=OFF. These days, synchronous
513 ** is always on by default regardless of the sign of the default cache
514 ** size. But continue to take the absolute value of the default cache
515 ** size of historical compatibility.
517 case PragTyp_DEFAULT_CACHE_SIZE: {
518 static const int iLn = VDBE_OFFSET_LINENO(2);
519 static const VdbeOpList getCacheSize[] = {
520 { OP_Transaction, 0, 0, 0}, /* 0 */
521 { OP_ReadCookie, 0, 1, BTREE_DEFAULT_CACHE_SIZE}, /* 1 */
522 { OP_IfPos, 1, 8, 0},
523 { OP_Integer, 0, 2, 0},
524 { OP_Subtract, 1, 2, 1},
525 { OP_IfPos, 1, 8, 0},
526 { OP_Integer, 0, 1, 0}, /* 6 */
527 { OP_Noop, 0, 0, 0},
528 { OP_ResultRow, 1, 1, 0},
530 VdbeOp *aOp;
531 sqlite3VdbeUsesBtree(v, iDb);
532 if( !zRight ){
533 pParse->nMem += 2;
534 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(getCacheSize));
535 aOp = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize, iLn);
536 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
537 aOp[0].p1 = iDb;
538 aOp[1].p1 = iDb;
539 aOp[6].p1 = SQLITE_DEFAULT_CACHE_SIZE;
540 }else{
541 int size = sqlite3AbsInt32(sqlite3Atoi(zRight));
542 sqlite3BeginWriteOperation(pParse, 0, iDb);
543 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_DEFAULT_CACHE_SIZE, size);
544 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
545 pDb->pSchema->cache_size = size;
546 sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
548 break;
550 #endif /* !SQLITE_OMIT_PAGER_PRAGMAS && !SQLITE_OMIT_DEPRECATED */
552 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
554 ** PRAGMA [schema.]page_size
555 ** PRAGMA [schema.]page_size=N
557 ** The first form reports the current setting for the
558 ** database page size in bytes. The second form sets the
559 ** database page size value. The value can only be set if
560 ** the database has not yet been created.
562 case PragTyp_PAGE_SIZE: {
563 Btree *pBt = pDb->pBt;
564 assert( pBt!=0 );
565 if( !zRight ){
566 int size = ALWAYS(pBt) ? sqlite3BtreeGetPageSize(pBt) : 0;
567 returnSingleInt(v, size);
568 }else{
569 /* Malloc may fail when setting the page-size, as there is an internal
570 ** buffer that the pager module resizes using sqlite3_realloc().
572 db->nextPagesize = sqlite3Atoi(zRight);
573 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize,0,0) ){
574 sqlite3OomFault(db);
577 break;
581 ** PRAGMA [schema.]secure_delete
582 ** PRAGMA [schema.]secure_delete=ON/OFF/FAST
584 ** The first form reports the current setting for the
585 ** secure_delete flag. The second form changes the secure_delete
586 ** flag setting and reports the new value.
588 case PragTyp_SECURE_DELETE: {
589 Btree *pBt = pDb->pBt;
590 int b = -1;
591 assert( pBt!=0 );
592 if( zRight ){
593 if( sqlite3_stricmp(zRight, "fast")==0 ){
594 b = 2;
595 }else{
596 b = sqlite3GetBoolean(zRight, 0);
599 if( pId2->n==0 && b>=0 ){
600 int ii;
601 for(ii=0; ii<db->nDb; ii++){
602 sqlite3BtreeSecureDelete(db->aDb[ii].pBt, b);
605 b = sqlite3BtreeSecureDelete(pBt, b);
606 returnSingleInt(v, b);
607 break;
611 ** PRAGMA [schema.]max_page_count
612 ** PRAGMA [schema.]max_page_count=N
614 ** The first form reports the current setting for the
615 ** maximum number of pages in the database file. The
616 ** second form attempts to change this setting. Both
617 ** forms return the current setting.
619 ** The absolute value of N is used. This is undocumented and might
620 ** change. The only purpose is to provide an easy way to test
621 ** the sqlite3AbsInt32() function.
623 ** PRAGMA [schema.]page_count
625 ** Return the number of pages in the specified database.
627 case PragTyp_PAGE_COUNT: {
628 int iReg;
629 sqlite3CodeVerifySchema(pParse, iDb);
630 iReg = ++pParse->nMem;
631 if( sqlite3Tolower(zLeft[0])=='p' ){
632 sqlite3VdbeAddOp2(v, OP_Pagecount, iDb, iReg);
633 }else{
634 sqlite3VdbeAddOp3(v, OP_MaxPgcnt, iDb, iReg,
635 sqlite3AbsInt32(sqlite3Atoi(zRight)));
637 sqlite3VdbeAddOp2(v, OP_ResultRow, iReg, 1);
638 break;
642 ** PRAGMA [schema.]locking_mode
643 ** PRAGMA [schema.]locking_mode = (normal|exclusive)
645 case PragTyp_LOCKING_MODE: {
646 const char *zRet = "normal";
647 int eMode = getLockingMode(zRight);
649 if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){
650 /* Simple "PRAGMA locking_mode;" statement. This is a query for
651 ** the current default locking mode (which may be different to
652 ** the locking-mode of the main database).
654 eMode = db->dfltLockMode;
655 }else{
656 Pager *pPager;
657 if( pId2->n==0 ){
658 /* This indicates that no database name was specified as part
659 ** of the PRAGMA command. In this case the locking-mode must be
660 ** set on all attached databases, as well as the main db file.
662 ** Also, the sqlite3.dfltLockMode variable is set so that
663 ** any subsequently attached databases also use the specified
664 ** locking mode.
666 int ii;
667 assert(pDb==&db->aDb[0]);
668 for(ii=2; ii<db->nDb; ii++){
669 pPager = sqlite3BtreePager(db->aDb[ii].pBt);
670 sqlite3PagerLockingMode(pPager, eMode);
672 db->dfltLockMode = (u8)eMode;
674 pPager = sqlite3BtreePager(pDb->pBt);
675 eMode = sqlite3PagerLockingMode(pPager, eMode);
678 assert( eMode==PAGER_LOCKINGMODE_NORMAL
679 || eMode==PAGER_LOCKINGMODE_EXCLUSIVE );
680 if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){
681 zRet = "exclusive";
683 returnSingleText(v, zRet);
684 break;
688 ** PRAGMA [schema.]journal_mode
689 ** PRAGMA [schema.]journal_mode =
690 ** (delete|persist|off|truncate|memory|wal|off)
692 case PragTyp_JOURNAL_MODE: {
693 int eMode; /* One of the PAGER_JOURNALMODE_XXX symbols */
694 int ii; /* Loop counter */
696 if( zRight==0 ){
697 /* If there is no "=MODE" part of the pragma, do a query for the
698 ** current mode */
699 eMode = PAGER_JOURNALMODE_QUERY;
700 }else{
701 const char *zMode;
702 int n = sqlite3Strlen30(zRight);
703 for(eMode=0; (zMode = sqlite3JournalModename(eMode))!=0; eMode++){
704 if( sqlite3StrNICmp(zRight, zMode, n)==0 ) break;
706 if( !zMode ){
707 /* If the "=MODE" part does not match any known journal mode,
708 ** then do a query */
709 eMode = PAGER_JOURNALMODE_QUERY;
711 if( eMode==PAGER_JOURNALMODE_OFF && (db->flags & SQLITE_Defensive)!=0 ){
712 /* Do not allow journal-mode "OFF" in defensive since the database
713 ** can become corrupted using ordinary SQL when the journal is off */
714 eMode = PAGER_JOURNALMODE_QUERY;
717 if( eMode==PAGER_JOURNALMODE_QUERY && pId2->n==0 ){
718 /* Convert "PRAGMA journal_mode" into "PRAGMA main.journal_mode" */
719 iDb = 0;
720 pId2->n = 1;
722 for(ii=db->nDb-1; ii>=0; ii--){
723 if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
724 sqlite3VdbeUsesBtree(v, ii);
725 sqlite3VdbeAddOp3(v, OP_JournalMode, ii, 1, eMode);
728 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
729 break;
733 ** PRAGMA [schema.]journal_size_limit
734 ** PRAGMA [schema.]journal_size_limit=N
736 ** Get or set the size limit on rollback journal files.
738 case PragTyp_JOURNAL_SIZE_LIMIT: {
739 Pager *pPager = sqlite3BtreePager(pDb->pBt);
740 i64 iLimit = -2;
741 if( zRight ){
742 sqlite3DecOrHexToI64(zRight, &iLimit);
743 if( iLimit<-1 ) iLimit = -1;
745 iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit);
746 returnSingleInt(v, iLimit);
747 break;
750 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */
753 ** PRAGMA [schema.]auto_vacuum
754 ** PRAGMA [schema.]auto_vacuum=N
756 ** Get or set the value of the database 'auto-vacuum' parameter.
757 ** The value is one of: 0 NONE 1 FULL 2 INCREMENTAL
759 #ifndef SQLITE_OMIT_AUTOVACUUM
760 case PragTyp_AUTO_VACUUM: {
761 Btree *pBt = pDb->pBt;
762 assert( pBt!=0 );
763 if( !zRight ){
764 returnSingleInt(v, sqlite3BtreeGetAutoVacuum(pBt));
765 }else{
766 int eAuto = getAutoVacuum(zRight);
767 assert( eAuto>=0 && eAuto<=2 );
768 db->nextAutovac = (u8)eAuto;
769 /* Call SetAutoVacuum() to set initialize the internal auto and
770 ** incr-vacuum flags. This is required in case this connection
771 ** creates the database file. It is important that it is created
772 ** as an auto-vacuum capable db.
774 rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto);
775 if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){
776 /* When setting the auto_vacuum mode to either "full" or
777 ** "incremental", write the value of meta[6] in the database
778 ** file. Before writing to meta[6], check that meta[3] indicates
779 ** that this really is an auto-vacuum capable database.
781 static const int iLn = VDBE_OFFSET_LINENO(2);
782 static const VdbeOpList setMeta6[] = {
783 { OP_Transaction, 0, 1, 0}, /* 0 */
784 { OP_ReadCookie, 0, 1, BTREE_LARGEST_ROOT_PAGE},
785 { OP_If, 1, 0, 0}, /* 2 */
786 { OP_Halt, SQLITE_OK, OE_Abort, 0}, /* 3 */
787 { OP_SetCookie, 0, BTREE_INCR_VACUUM, 0}, /* 4 */
789 VdbeOp *aOp;
790 int iAddr = sqlite3VdbeCurrentAddr(v);
791 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setMeta6));
792 aOp = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6, iLn);
793 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
794 aOp[0].p1 = iDb;
795 aOp[1].p1 = iDb;
796 aOp[2].p2 = iAddr+4;
797 aOp[4].p1 = iDb;
798 aOp[4].p3 = eAuto - 1;
799 sqlite3VdbeUsesBtree(v, iDb);
802 break;
804 #endif
807 ** PRAGMA [schema.]incremental_vacuum(N)
809 ** Do N steps of incremental vacuuming on a database.
811 #ifndef SQLITE_OMIT_AUTOVACUUM
812 case PragTyp_INCREMENTAL_VACUUM: {
813 int iLimit, addr;
814 if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){
815 iLimit = 0x7fffffff;
817 sqlite3BeginWriteOperation(pParse, 0, iDb);
818 sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1);
819 addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb); VdbeCoverage(v);
820 sqlite3VdbeAddOp1(v, OP_ResultRow, 1);
821 sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1);
822 sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr); VdbeCoverage(v);
823 sqlite3VdbeJumpHere(v, addr);
824 break;
826 #endif
828 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
830 ** PRAGMA [schema.]cache_size
831 ** PRAGMA [schema.]cache_size=N
833 ** The first form reports the current local setting for the
834 ** page cache size. The second form sets the local
835 ** page cache size value. If N is positive then that is the
836 ** number of pages in the cache. If N is negative, then the
837 ** number of pages is adjusted so that the cache uses -N kibibytes
838 ** of memory.
840 case PragTyp_CACHE_SIZE: {
841 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
842 if( !zRight ){
843 returnSingleInt(v, pDb->pSchema->cache_size);
844 }else{
845 int size = sqlite3Atoi(zRight);
846 pDb->pSchema->cache_size = size;
847 sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
849 break;
853 ** PRAGMA [schema.]cache_spill
854 ** PRAGMA cache_spill=BOOLEAN
855 ** PRAGMA [schema.]cache_spill=N
857 ** The first form reports the current local setting for the
858 ** page cache spill size. The second form turns cache spill on
859 ** or off. When turnning cache spill on, the size is set to the
860 ** current cache_size. The third form sets a spill size that
861 ** may be different form the cache size.
862 ** If N is positive then that is the
863 ** number of pages in the cache. If N is negative, then the
864 ** number of pages is adjusted so that the cache uses -N kibibytes
865 ** of memory.
867 ** If the number of cache_spill pages is less then the number of
868 ** cache_size pages, no spilling occurs until the page count exceeds
869 ** the number of cache_size pages.
871 ** The cache_spill=BOOLEAN setting applies to all attached schemas,
872 ** not just the schema specified.
874 case PragTyp_CACHE_SPILL: {
875 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
876 if( !zRight ){
877 returnSingleInt(v,
878 (db->flags & SQLITE_CacheSpill)==0 ? 0 :
879 sqlite3BtreeSetSpillSize(pDb->pBt,0));
880 }else{
881 int size = 1;
882 if( sqlite3GetInt32(zRight, &size) ){
883 sqlite3BtreeSetSpillSize(pDb->pBt, size);
885 if( sqlite3GetBoolean(zRight, size!=0) ){
886 db->flags |= SQLITE_CacheSpill;
887 }else{
888 db->flags &= ~(u64)SQLITE_CacheSpill;
890 setAllPagerFlags(db);
892 break;
896 ** PRAGMA [schema.]mmap_size(N)
898 ** Used to set mapping size limit. The mapping size limit is
899 ** used to limit the aggregate size of all memory mapped regions of the
900 ** database file. If this parameter is set to zero, then memory mapping
901 ** is not used at all. If N is negative, then the default memory map
902 ** limit determined by sqlite3_config(SQLITE_CONFIG_MMAP_SIZE) is set.
903 ** The parameter N is measured in bytes.
905 ** This value is advisory. The underlying VFS is free to memory map
906 ** as little or as much as it wants. Except, if N is set to 0 then the
907 ** upper layers will never invoke the xFetch interfaces to the VFS.
909 case PragTyp_MMAP_SIZE: {
910 sqlite3_int64 sz;
911 #if SQLITE_MAX_MMAP_SIZE>0
912 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
913 if( zRight ){
914 int ii;
915 sqlite3DecOrHexToI64(zRight, &sz);
916 if( sz<0 ) sz = sqlite3GlobalConfig.szMmap;
917 if( pId2->n==0 ) db->szMmap = sz;
918 for(ii=db->nDb-1; ii>=0; ii--){
919 if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
920 sqlite3BtreeSetMmapLimit(db->aDb[ii].pBt, sz);
924 sz = -1;
925 rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_MMAP_SIZE, &sz);
926 #else
927 sz = 0;
928 rc = SQLITE_OK;
929 #endif
930 if( rc==SQLITE_OK ){
931 returnSingleInt(v, sz);
932 }else if( rc!=SQLITE_NOTFOUND ){
933 pParse->nErr++;
934 pParse->rc = rc;
936 break;
940 ** PRAGMA temp_store
941 ** PRAGMA temp_store = "default"|"memory"|"file"
943 ** Return or set the local value of the temp_store flag. Changing
944 ** the local value does not make changes to the disk file and the default
945 ** value will be restored the next time the database is opened.
947 ** Note that it is possible for the library compile-time options to
948 ** override this setting
950 case PragTyp_TEMP_STORE: {
951 if( !zRight ){
952 returnSingleInt(v, db->temp_store);
953 }else{
954 changeTempStorage(pParse, zRight);
956 break;
960 ** PRAGMA temp_store_directory
961 ** PRAGMA temp_store_directory = ""|"directory_name"
963 ** Return or set the local value of the temp_store_directory flag. Changing
964 ** the value sets a specific directory to be used for temporary files.
965 ** Setting to a null string reverts to the default temporary directory search.
966 ** If temporary directory is changed, then invalidateTempStorage.
969 case PragTyp_TEMP_STORE_DIRECTORY: {
970 if( !zRight ){
971 returnSingleText(v, sqlite3_temp_directory);
972 }else{
973 #ifndef SQLITE_OMIT_WSD
974 if( zRight[0] ){
975 int res;
976 rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
977 if( rc!=SQLITE_OK || res==0 ){
978 sqlite3ErrorMsg(pParse, "not a writable directory");
979 goto pragma_out;
982 if( SQLITE_TEMP_STORE==0
983 || (SQLITE_TEMP_STORE==1 && db->temp_store<=1)
984 || (SQLITE_TEMP_STORE==2 && db->temp_store==1)
986 invalidateTempStorage(pParse);
988 sqlite3_free(sqlite3_temp_directory);
989 if( zRight[0] ){
990 sqlite3_temp_directory = sqlite3_mprintf("%s", zRight);
991 }else{
992 sqlite3_temp_directory = 0;
994 #endif /* SQLITE_OMIT_WSD */
996 break;
999 #if SQLITE_OS_WIN
1001 ** PRAGMA data_store_directory
1002 ** PRAGMA data_store_directory = ""|"directory_name"
1004 ** Return or set the local value of the data_store_directory flag. Changing
1005 ** the value sets a specific directory to be used for database files that
1006 ** were specified with a relative pathname. Setting to a null string reverts
1007 ** to the default database directory, which for database files specified with
1008 ** a relative path will probably be based on the current directory for the
1009 ** process. Database file specified with an absolute path are not impacted
1010 ** by this setting, regardless of its value.
1013 case PragTyp_DATA_STORE_DIRECTORY: {
1014 if( !zRight ){
1015 returnSingleText(v, sqlite3_data_directory);
1016 }else{
1017 #ifndef SQLITE_OMIT_WSD
1018 if( zRight[0] ){
1019 int res;
1020 rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
1021 if( rc!=SQLITE_OK || res==0 ){
1022 sqlite3ErrorMsg(pParse, "not a writable directory");
1023 goto pragma_out;
1026 sqlite3_free(sqlite3_data_directory);
1027 if( zRight[0] ){
1028 sqlite3_data_directory = sqlite3_mprintf("%s", zRight);
1029 }else{
1030 sqlite3_data_directory = 0;
1032 #endif /* SQLITE_OMIT_WSD */
1034 break;
1036 #endif
1038 #if SQLITE_ENABLE_LOCKING_STYLE
1040 ** PRAGMA [schema.]lock_proxy_file
1041 ** PRAGMA [schema.]lock_proxy_file = ":auto:"|"lock_file_path"
1043 ** Return or set the value of the lock_proxy_file flag. Changing
1044 ** the value sets a specific file to be used for database access locks.
1047 case PragTyp_LOCK_PROXY_FILE: {
1048 if( !zRight ){
1049 Pager *pPager = sqlite3BtreePager(pDb->pBt);
1050 char *proxy_file_path = NULL;
1051 sqlite3_file *pFile = sqlite3PagerFile(pPager);
1052 sqlite3OsFileControlHint(pFile, SQLITE_GET_LOCKPROXYFILE,
1053 &proxy_file_path);
1054 returnSingleText(v, proxy_file_path);
1055 }else{
1056 Pager *pPager = sqlite3BtreePager(pDb->pBt);
1057 sqlite3_file *pFile = sqlite3PagerFile(pPager);
1058 int res;
1059 if( zRight[0] ){
1060 res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE,
1061 zRight);
1062 } else {
1063 res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE,
1064 NULL);
1066 if( res!=SQLITE_OK ){
1067 sqlite3ErrorMsg(pParse, "failed to set lock proxy file");
1068 goto pragma_out;
1071 break;
1073 #endif /* SQLITE_ENABLE_LOCKING_STYLE */
1076 ** PRAGMA [schema.]synchronous
1077 ** PRAGMA [schema.]synchronous=OFF|ON|NORMAL|FULL|EXTRA
1079 ** Return or set the local value of the synchronous flag. Changing
1080 ** the local value does not make changes to the disk file and the
1081 ** default value will be restored the next time the database is
1082 ** opened.
1084 case PragTyp_SYNCHRONOUS: {
1085 if( !zRight ){
1086 returnSingleInt(v, pDb->safety_level-1);
1087 }else{
1088 if( !db->autoCommit ){
1089 sqlite3ErrorMsg(pParse,
1090 "Safety level may not be changed inside a transaction");
1091 }else if( iDb!=1 ){
1092 int iLevel = (getSafetyLevel(zRight,0,1)+1) & PAGER_SYNCHRONOUS_MASK;
1093 if( iLevel==0 ) iLevel = 1;
1094 pDb->safety_level = iLevel;
1095 pDb->bSyncSet = 1;
1096 setAllPagerFlags(db);
1099 break;
1101 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */
1103 #ifndef SQLITE_OMIT_FLAG_PRAGMAS
1104 case PragTyp_FLAG: {
1105 if( zRight==0 ){
1106 setPragmaResultColumnNames(v, pPragma);
1107 returnSingleInt(v, (db->flags & pPragma->iArg)!=0 );
1108 }else{
1109 u64 mask = pPragma->iArg; /* Mask of bits to set or clear. */
1110 if( db->autoCommit==0 ){
1111 /* Foreign key support may not be enabled or disabled while not
1112 ** in auto-commit mode. */
1113 mask &= ~(SQLITE_ForeignKeys);
1115 #if SQLITE_USER_AUTHENTICATION
1116 if( db->auth.authLevel==UAUTH_User ){
1117 /* Do not allow non-admin users to modify the schema arbitrarily */
1118 mask &= ~(SQLITE_WriteSchema);
1120 #endif
1122 if( sqlite3GetBoolean(zRight, 0) ){
1123 db->flags |= mask;
1124 }else{
1125 db->flags &= ~mask;
1126 if( mask==SQLITE_DeferFKs ) db->nDeferredImmCons = 0;
1129 /* Many of the flag-pragmas modify the code generated by the SQL
1130 ** compiler (eg. count_changes). So add an opcode to expire all
1131 ** compiled SQL statements after modifying a pragma value.
1133 sqlite3VdbeAddOp0(v, OP_Expire);
1134 setAllPagerFlags(db);
1136 break;
1138 #endif /* SQLITE_OMIT_FLAG_PRAGMAS */
1140 #ifndef SQLITE_OMIT_SCHEMA_PRAGMAS
1142 ** PRAGMA table_info(<table>)
1144 ** Return a single row for each column of the named table. The columns of
1145 ** the returned data set are:
1147 ** cid: Column id (numbered from left to right, starting at 0)
1148 ** name: Column name
1149 ** type: Column declaration type.
1150 ** notnull: True if 'NOT NULL' is part of column declaration
1151 ** dflt_value: The default value for the column, if any.
1152 ** pk: Non-zero for PK fields.
1154 case PragTyp_TABLE_INFO: if( zRight ){
1155 Table *pTab;
1156 pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb);
1157 if( pTab ){
1158 int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1159 int i, k;
1160 int nHidden = 0;
1161 Column *pCol;
1162 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1163 pParse->nMem = 7;
1164 sqlite3CodeVerifySchema(pParse, iTabDb);
1165 sqlite3ViewGetColumnNames(pParse, pTab);
1166 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1167 int isHidden = 0;
1168 if( pCol->colFlags & COLFLAG_NOINSERT ){
1169 if( pPragma->iArg==0 ){
1170 nHidden++;
1171 continue;
1173 if( pCol->colFlags & COLFLAG_VIRTUAL ){
1174 isHidden = 2; /* GENERATED ALWAYS AS ... VIRTUAL */
1175 }else if( pCol->colFlags & COLFLAG_STORED ){
1176 isHidden = 3; /* GENERATED ALWAYS AS ... STORED */
1177 }else{ assert( pCol->colFlags & COLFLAG_HIDDEN );
1178 isHidden = 1; /* HIDDEN */
1181 if( (pCol->colFlags & COLFLAG_PRIMKEY)==0 ){
1182 k = 0;
1183 }else if( pPk==0 ){
1184 k = 1;
1185 }else{
1186 for(k=1; k<=pTab->nCol && pPk->aiColumn[k-1]!=i; k++){}
1188 assert( pCol->pDflt==0 || pCol->pDflt->op==TK_SPAN || isHidden>=2 );
1189 sqlite3VdbeMultiLoad(v, 1, pPragma->iArg ? "issisii" : "issisi",
1190 i-nHidden,
1191 pCol->zName,
1192 sqlite3ColumnType(pCol,""),
1193 pCol->notNull ? 1 : 0,
1194 pCol->pDflt && isHidden<2 ? pCol->pDflt->u.zToken : 0,
1196 isHidden);
1200 break;
1202 #ifdef SQLITE_DEBUG
1203 case PragTyp_STATS: {
1204 Index *pIdx;
1205 HashElem *i;
1206 pParse->nMem = 5;
1207 sqlite3CodeVerifySchema(pParse, iDb);
1208 for(i=sqliteHashFirst(&pDb->pSchema->tblHash); i; i=sqliteHashNext(i)){
1209 Table *pTab = sqliteHashData(i);
1210 sqlite3VdbeMultiLoad(v, 1, "ssiii",
1211 pTab->zName,
1213 pTab->szTabRow,
1214 pTab->nRowLogEst,
1215 pTab->tabFlags);
1216 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1217 sqlite3VdbeMultiLoad(v, 2, "siiiX",
1218 pIdx->zName,
1219 pIdx->szIdxRow,
1220 pIdx->aiRowLogEst[0],
1221 pIdx->hasStat1);
1222 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 5);
1226 break;
1227 #endif
1229 case PragTyp_INDEX_INFO: if( zRight ){
1230 Index *pIdx;
1231 Table *pTab;
1232 pIdx = sqlite3FindIndex(db, zRight, zDb);
1233 if( pIdx==0 ){
1234 /* If there is no index named zRight, check to see if there is a
1235 ** WITHOUT ROWID table named zRight, and if there is, show the
1236 ** structure of the PRIMARY KEY index for that table. */
1237 pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb);
1238 if( pTab && !HasRowid(pTab) ){
1239 pIdx = sqlite3PrimaryKeyIndex(pTab);
1242 if( pIdx ){
1243 int iIdxDb = sqlite3SchemaToIndex(db, pIdx->pSchema);
1244 int i;
1245 int mx;
1246 if( pPragma->iArg ){
1247 /* PRAGMA index_xinfo (newer version with more rows and columns) */
1248 mx = pIdx->nColumn;
1249 pParse->nMem = 6;
1250 }else{
1251 /* PRAGMA index_info (legacy version) */
1252 mx = pIdx->nKeyCol;
1253 pParse->nMem = 3;
1255 pTab = pIdx->pTable;
1256 sqlite3CodeVerifySchema(pParse, iIdxDb);
1257 assert( pParse->nMem<=pPragma->nPragCName );
1258 for(i=0; i<mx; i++){
1259 i16 cnum = pIdx->aiColumn[i];
1260 sqlite3VdbeMultiLoad(v, 1, "iisX", i, cnum,
1261 cnum<0 ? 0 : pTab->aCol[cnum].zName);
1262 if( pPragma->iArg ){
1263 sqlite3VdbeMultiLoad(v, 4, "isiX",
1264 pIdx->aSortOrder[i],
1265 pIdx->azColl[i],
1266 i<pIdx->nKeyCol);
1268 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, pParse->nMem);
1272 break;
1274 case PragTyp_INDEX_LIST: if( zRight ){
1275 Index *pIdx;
1276 Table *pTab;
1277 int i;
1278 pTab = sqlite3FindTable(db, zRight, zDb);
1279 if( pTab ){
1280 int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1281 pParse->nMem = 5;
1282 sqlite3CodeVerifySchema(pParse, iTabDb);
1283 for(pIdx=pTab->pIndex, i=0; pIdx; pIdx=pIdx->pNext, i++){
1284 const char *azOrigin[] = { "c", "u", "pk" };
1285 sqlite3VdbeMultiLoad(v, 1, "isisi",
1287 pIdx->zName,
1288 IsUniqueIndex(pIdx),
1289 azOrigin[pIdx->idxType],
1290 pIdx->pPartIdxWhere!=0);
1294 break;
1296 case PragTyp_DATABASE_LIST: {
1297 int i;
1298 pParse->nMem = 3;
1299 for(i=0; i<db->nDb; i++){
1300 if( db->aDb[i].pBt==0 ) continue;
1301 assert( db->aDb[i].zDbSName!=0 );
1302 sqlite3VdbeMultiLoad(v, 1, "iss",
1304 db->aDb[i].zDbSName,
1305 sqlite3BtreeGetFilename(db->aDb[i].pBt));
1308 break;
1310 case PragTyp_COLLATION_LIST: {
1311 int i = 0;
1312 HashElem *p;
1313 pParse->nMem = 2;
1314 for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){
1315 CollSeq *pColl = (CollSeq *)sqliteHashData(p);
1316 sqlite3VdbeMultiLoad(v, 1, "is", i++, pColl->zName);
1319 break;
1321 #ifndef SQLITE_OMIT_INTROSPECTION_PRAGMAS
1322 case PragTyp_FUNCTION_LIST: {
1323 int i;
1324 HashElem *j;
1325 FuncDef *p;
1326 int showInternFunc = (db->mDbFlags & DBFLAG_InternalFunc)!=0;
1327 pParse->nMem = 6;
1328 for(i=0; i<SQLITE_FUNC_HASH_SZ; i++){
1329 for(p=sqlite3BuiltinFunctions.a[i]; p; p=p->u.pHash ){
1330 pragmaFunclistLine(v, p, 1, showInternFunc);
1333 for(j=sqliteHashFirst(&db->aFunc); j; j=sqliteHashNext(j)){
1334 p = (FuncDef*)sqliteHashData(j);
1335 pragmaFunclistLine(v, p, 0, showInternFunc);
1338 break;
1340 #ifndef SQLITE_OMIT_VIRTUALTABLE
1341 case PragTyp_MODULE_LIST: {
1342 HashElem *j;
1343 pParse->nMem = 1;
1344 for(j=sqliteHashFirst(&db->aModule); j; j=sqliteHashNext(j)){
1345 Module *pMod = (Module*)sqliteHashData(j);
1346 sqlite3VdbeMultiLoad(v, 1, "s", pMod->zName);
1349 break;
1350 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1352 case PragTyp_PRAGMA_LIST: {
1353 int i;
1354 for(i=0; i<ArraySize(aPragmaName); i++){
1355 sqlite3VdbeMultiLoad(v, 1, "s", aPragmaName[i].zName);
1358 break;
1359 #endif /* SQLITE_INTROSPECTION_PRAGMAS */
1361 #endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */
1363 #ifndef SQLITE_OMIT_FOREIGN_KEY
1364 case PragTyp_FOREIGN_KEY_LIST: if( zRight ){
1365 FKey *pFK;
1366 Table *pTab;
1367 pTab = sqlite3FindTable(db, zRight, zDb);
1368 if( pTab ){
1369 pFK = pTab->pFKey;
1370 if( pFK ){
1371 int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1372 int i = 0;
1373 pParse->nMem = 8;
1374 sqlite3CodeVerifySchema(pParse, iTabDb);
1375 while(pFK){
1376 int j;
1377 for(j=0; j<pFK->nCol; j++){
1378 sqlite3VdbeMultiLoad(v, 1, "iissssss",
1381 pFK->zTo,
1382 pTab->aCol[pFK->aCol[j].iFrom].zName,
1383 pFK->aCol[j].zCol,
1384 actionName(pFK->aAction[1]), /* ON UPDATE */
1385 actionName(pFK->aAction[0]), /* ON DELETE */
1386 "NONE");
1388 ++i;
1389 pFK = pFK->pNextFrom;
1394 break;
1395 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
1397 #ifndef SQLITE_OMIT_FOREIGN_KEY
1398 #ifndef SQLITE_OMIT_TRIGGER
1399 case PragTyp_FOREIGN_KEY_CHECK: {
1400 FKey *pFK; /* A foreign key constraint */
1401 Table *pTab; /* Child table contain "REFERENCES" keyword */
1402 Table *pParent; /* Parent table that child points to */
1403 Index *pIdx; /* Index in the parent table */
1404 int i; /* Loop counter: Foreign key number for pTab */
1405 int j; /* Loop counter: Field of the foreign key */
1406 HashElem *k; /* Loop counter: Next table in schema */
1407 int x; /* result variable */
1408 int regResult; /* 3 registers to hold a result row */
1409 int regKey; /* Register to hold key for checking the FK */
1410 int regRow; /* Registers to hold a row from pTab */
1411 int addrTop; /* Top of a loop checking foreign keys */
1412 int addrOk; /* Jump here if the key is OK */
1413 int *aiCols; /* child to parent column mapping */
1415 regResult = pParse->nMem+1;
1416 pParse->nMem += 4;
1417 regKey = ++pParse->nMem;
1418 regRow = ++pParse->nMem;
1419 k = sqliteHashFirst(&db->aDb[iDb].pSchema->tblHash);
1420 while( k ){
1421 int iTabDb;
1422 if( zRight ){
1423 pTab = sqlite3LocateTable(pParse, 0, zRight, zDb);
1424 k = 0;
1425 }else{
1426 pTab = (Table*)sqliteHashData(k);
1427 k = sqliteHashNext(k);
1429 if( pTab==0 || pTab->pFKey==0 ) continue;
1430 iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1431 sqlite3CodeVerifySchema(pParse, iTabDb);
1432 sqlite3TableLock(pParse, iTabDb, pTab->tnum, 0, pTab->zName);
1433 if( pTab->nCol+regRow>pParse->nMem ) pParse->nMem = pTab->nCol + regRow;
1434 sqlite3OpenTable(pParse, 0, iTabDb, pTab, OP_OpenRead);
1435 sqlite3VdbeLoadString(v, regResult, pTab->zName);
1436 for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){
1437 pParent = sqlite3FindTable(db, pFK->zTo, zDb);
1438 if( pParent==0 ) continue;
1439 pIdx = 0;
1440 sqlite3TableLock(pParse, iTabDb, pParent->tnum, 0, pParent->zName);
1441 x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, 0);
1442 if( x==0 ){
1443 if( pIdx==0 ){
1444 sqlite3OpenTable(pParse, i, iTabDb, pParent, OP_OpenRead);
1445 }else{
1446 sqlite3VdbeAddOp3(v, OP_OpenRead, i, pIdx->tnum, iTabDb);
1447 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1449 }else{
1450 k = 0;
1451 break;
1454 assert( pParse->nErr>0 || pFK==0 );
1455 if( pFK ) break;
1456 if( pParse->nTab<i ) pParse->nTab = i;
1457 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, 0); VdbeCoverage(v);
1458 for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){
1459 pParent = sqlite3FindTable(db, pFK->zTo, zDb);
1460 pIdx = 0;
1461 aiCols = 0;
1462 if( pParent ){
1463 x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols);
1464 assert( x==0 );
1466 addrOk = sqlite3VdbeMakeLabel(pParse);
1468 /* Generate code to read the child key values into registers
1469 ** regRow..regRow+n. If any of the child key values are NULL, this
1470 ** row cannot cause an FK violation. Jump directly to addrOk in
1471 ** this case. */
1472 for(j=0; j<pFK->nCol; j++){
1473 int iCol = aiCols ? aiCols[j] : pFK->aCol[j].iFrom;
1474 sqlite3ExprCodeGetColumnOfTable(v, pTab, 0, iCol, regRow+j);
1475 sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk); VdbeCoverage(v);
1478 /* Generate code to query the parent index for a matching parent
1479 ** key. If a match is found, jump to addrOk. */
1480 if( pIdx ){
1481 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, pFK->nCol, regKey,
1482 sqlite3IndexAffinityStr(db,pIdx), pFK->nCol);
1483 sqlite3VdbeAddOp4Int(v, OP_Found, i, addrOk, regKey, 0);
1484 VdbeCoverage(v);
1485 }else if( pParent ){
1486 int jmp = sqlite3VdbeCurrentAddr(v)+2;
1487 sqlite3VdbeAddOp3(v, OP_SeekRowid, i, jmp, regRow); VdbeCoverage(v);
1488 sqlite3VdbeGoto(v, addrOk);
1489 assert( pFK->nCol==1 );
1492 /* Generate code to report an FK violation to the caller. */
1493 if( HasRowid(pTab) ){
1494 sqlite3VdbeAddOp2(v, OP_Rowid, 0, regResult+1);
1495 }else{
1496 sqlite3VdbeAddOp2(v, OP_Null, 0, regResult+1);
1498 sqlite3VdbeMultiLoad(v, regResult+2, "siX", pFK->zTo, i-1);
1499 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 4);
1500 sqlite3VdbeResolveLabel(v, addrOk);
1501 sqlite3DbFree(db, aiCols);
1503 sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1); VdbeCoverage(v);
1504 sqlite3VdbeJumpHere(v, addrTop);
1507 break;
1508 #endif /* !defined(SQLITE_OMIT_TRIGGER) */
1509 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
1511 #ifndef SQLITE_OMIT_CASE_SENSITIVE_LIKE_PRAGMA
1512 /* Reinstall the LIKE and GLOB functions. The variant of LIKE
1513 ** used will be case sensitive or not depending on the RHS.
1515 case PragTyp_CASE_SENSITIVE_LIKE: {
1516 if( zRight ){
1517 sqlite3RegisterLikeFunctions(db, sqlite3GetBoolean(zRight, 0));
1520 break;
1521 #endif /* SQLITE_OMIT_CASE_SENSITIVE_LIKE_PRAGMA */
1523 #ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX
1524 # define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100
1525 #endif
1527 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
1528 /* PRAGMA integrity_check
1529 ** PRAGMA integrity_check(N)
1530 ** PRAGMA quick_check
1531 ** PRAGMA quick_check(N)
1533 ** Verify the integrity of the database.
1535 ** The "quick_check" is reduced version of
1536 ** integrity_check designed to detect most database corruption
1537 ** without the overhead of cross-checking indexes. Quick_check
1538 ** is linear time wherease integrity_check is O(NlogN).
1540 case PragTyp_INTEGRITY_CHECK: {
1541 int i, j, addr, mxErr;
1543 int isQuick = (sqlite3Tolower(zLeft[0])=='q');
1545 /* If the PRAGMA command was of the form "PRAGMA <db>.integrity_check",
1546 ** then iDb is set to the index of the database identified by <db>.
1547 ** In this case, the integrity of database iDb only is verified by
1548 ** the VDBE created below.
1550 ** Otherwise, if the command was simply "PRAGMA integrity_check" (or
1551 ** "PRAGMA quick_check"), then iDb is set to 0. In this case, set iDb
1552 ** to -1 here, to indicate that the VDBE should verify the integrity
1553 ** of all attached databases. */
1554 assert( iDb>=0 );
1555 assert( iDb==0 || pId2->z );
1556 if( pId2->z==0 ) iDb = -1;
1558 /* Initialize the VDBE program */
1559 pParse->nMem = 6;
1561 /* Set the maximum error count */
1562 mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
1563 if( zRight ){
1564 sqlite3GetInt32(zRight, &mxErr);
1565 if( mxErr<=0 ){
1566 mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
1569 sqlite3VdbeAddOp2(v, OP_Integer, mxErr-1, 1); /* reg[1] holds errors left */
1571 /* Do an integrity check on each database file */
1572 for(i=0; i<db->nDb; i++){
1573 HashElem *x; /* For looping over tables in the schema */
1574 Hash *pTbls; /* Set of all tables in the schema */
1575 int *aRoot; /* Array of root page numbers of all btrees */
1576 int cnt = 0; /* Number of entries in aRoot[] */
1577 int mxIdx = 0; /* Maximum number of indexes for any table */
1579 if( OMIT_TEMPDB && i==1 ) continue;
1580 if( iDb>=0 && i!=iDb ) continue;
1582 sqlite3CodeVerifySchema(pParse, i);
1584 /* Do an integrity check of the B-Tree
1586 ** Begin by finding the root pages numbers
1587 ** for all tables and indices in the database.
1589 assert( sqlite3SchemaMutexHeld(db, i, 0) );
1590 pTbls = &db->aDb[i].pSchema->tblHash;
1591 for(cnt=0, x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
1592 Table *pTab = sqliteHashData(x); /* Current table */
1593 Index *pIdx; /* An index on pTab */
1594 int nIdx; /* Number of indexes on pTab */
1595 if( HasRowid(pTab) ) cnt++;
1596 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ cnt++; }
1597 if( nIdx>mxIdx ) mxIdx = nIdx;
1599 aRoot = sqlite3DbMallocRawNN(db, sizeof(int)*(cnt+1));
1600 if( aRoot==0 ) break;
1601 for(cnt=0, x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
1602 Table *pTab = sqliteHashData(x);
1603 Index *pIdx;
1604 if( HasRowid(pTab) ) aRoot[++cnt] = pTab->tnum;
1605 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1606 aRoot[++cnt] = pIdx->tnum;
1609 aRoot[0] = cnt;
1611 /* Make sure sufficient number of registers have been allocated */
1612 pParse->nMem = MAX( pParse->nMem, 8+mxIdx );
1613 sqlite3ClearTempRegCache(pParse);
1615 /* Do the b-tree integrity checks */
1616 sqlite3VdbeAddOp4(v, OP_IntegrityCk, 2, cnt, 1, (char*)aRoot,P4_INTARRAY);
1617 sqlite3VdbeChangeP5(v, (u8)i);
1618 addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2); VdbeCoverage(v);
1619 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
1620 sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zDbSName),
1621 P4_DYNAMIC);
1622 sqlite3VdbeAddOp3(v, OP_Concat, 2, 3, 3);
1623 integrityCheckResultRow(v);
1624 sqlite3VdbeJumpHere(v, addr);
1626 /* Make sure all the indices are constructed correctly.
1628 for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
1629 Table *pTab = sqliteHashData(x);
1630 Index *pIdx, *pPk;
1631 Index *pPrior = 0;
1632 int loopTop;
1633 int iDataCur, iIdxCur;
1634 int r1 = -1;
1636 if( pTab->tnum<1 ) continue; /* Skip VIEWs or VIRTUAL TABLEs */
1637 pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab);
1638 sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenRead, 0,
1639 1, 0, &iDataCur, &iIdxCur);
1640 /* reg[7] counts the number of entries in the table.
1641 ** reg[8+i] counts the number of entries in the i-th index
1643 sqlite3VdbeAddOp2(v, OP_Integer, 0, 7);
1644 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
1645 sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */
1647 assert( pParse->nMem>=8+j );
1648 assert( sqlite3NoTempsInRange(pParse,1,7+j) );
1649 sqlite3VdbeAddOp2(v, OP_Rewind, iDataCur, 0); VdbeCoverage(v);
1650 loopTop = sqlite3VdbeAddOp2(v, OP_AddImm, 7, 1);
1651 if( !isQuick ){
1652 /* Sanity check on record header decoding */
1653 sqlite3VdbeAddOp3(v, OP_Column, iDataCur, pTab->nNVCol-1,3);
1654 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1656 /* Verify that all NOT NULL columns really are NOT NULL */
1657 for(j=0; j<pTab->nCol; j++){
1658 char *zErr;
1659 int jmp2;
1660 if( j==pTab->iPKey ) continue;
1661 if( pTab->aCol[j].notNull==0 ) continue;
1662 sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, j, 3);
1663 if( sqlite3VdbeGetOp(v,-1)->opcode==OP_Column ){
1664 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1666 jmp2 = sqlite3VdbeAddOp1(v, OP_NotNull, 3); VdbeCoverage(v);
1667 zErr = sqlite3MPrintf(db, "NULL value in %s.%s", pTab->zName,
1668 pTab->aCol[j].zName);
1669 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
1670 integrityCheckResultRow(v);
1671 sqlite3VdbeJumpHere(v, jmp2);
1673 /* Verify CHECK constraints */
1674 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
1675 ExprList *pCheck = sqlite3ExprListDup(db, pTab->pCheck, 0);
1676 if( db->mallocFailed==0 ){
1677 int addrCkFault = sqlite3VdbeMakeLabel(pParse);
1678 int addrCkOk = sqlite3VdbeMakeLabel(pParse);
1679 char *zErr;
1680 int k;
1681 pParse->iSelfTab = iDataCur + 1;
1682 for(k=pCheck->nExpr-1; k>0; k--){
1683 sqlite3ExprIfFalse(pParse, pCheck->a[k].pExpr, addrCkFault, 0);
1685 sqlite3ExprIfTrue(pParse, pCheck->a[0].pExpr, addrCkOk,
1686 SQLITE_JUMPIFNULL);
1687 sqlite3VdbeResolveLabel(v, addrCkFault);
1688 pParse->iSelfTab = 0;
1689 zErr = sqlite3MPrintf(db, "CHECK constraint failed in %s",
1690 pTab->zName);
1691 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
1692 integrityCheckResultRow(v);
1693 sqlite3VdbeResolveLabel(v, addrCkOk);
1695 sqlite3ExprListDelete(db, pCheck);
1697 if( !isQuick ){ /* Omit the remaining tests for quick_check */
1698 /* Validate index entries for the current row */
1699 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
1700 int jmp2, jmp3, jmp4, jmp5;
1701 int ckUniq = sqlite3VdbeMakeLabel(pParse);
1702 if( pPk==pIdx ) continue;
1703 r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 0, &jmp3,
1704 pPrior, r1);
1705 pPrior = pIdx;
1706 sqlite3VdbeAddOp2(v, OP_AddImm, 8+j, 1);/* increment entry count */
1707 /* Verify that an index entry exists for the current table row */
1708 jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, iIdxCur+j, ckUniq, r1,
1709 pIdx->nColumn); VdbeCoverage(v);
1710 sqlite3VdbeLoadString(v, 3, "row ");
1711 sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3);
1712 sqlite3VdbeLoadString(v, 4, " missing from index ");
1713 sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3);
1714 jmp5 = sqlite3VdbeLoadString(v, 4, pIdx->zName);
1715 sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3);
1716 jmp4 = integrityCheckResultRow(v);
1717 sqlite3VdbeJumpHere(v, jmp2);
1718 /* For UNIQUE indexes, verify that only one entry exists with the
1719 ** current key. The entry is unique if (1) any column is NULL
1720 ** or (2) the next entry has a different key */
1721 if( IsUniqueIndex(pIdx) ){
1722 int uniqOk = sqlite3VdbeMakeLabel(pParse);
1723 int jmp6;
1724 int kk;
1725 for(kk=0; kk<pIdx->nKeyCol; kk++){
1726 int iCol = pIdx->aiColumn[kk];
1727 assert( iCol!=XN_ROWID && iCol<pTab->nCol );
1728 if( iCol>=0 && pTab->aCol[iCol].notNull ) continue;
1729 sqlite3VdbeAddOp2(v, OP_IsNull, r1+kk, uniqOk);
1730 VdbeCoverage(v);
1732 jmp6 = sqlite3VdbeAddOp1(v, OP_Next, iIdxCur+j); VdbeCoverage(v);
1733 sqlite3VdbeGoto(v, uniqOk);
1734 sqlite3VdbeJumpHere(v, jmp6);
1735 sqlite3VdbeAddOp4Int(v, OP_IdxGT, iIdxCur+j, uniqOk, r1,
1736 pIdx->nKeyCol); VdbeCoverage(v);
1737 sqlite3VdbeLoadString(v, 3, "non-unique entry in index ");
1738 sqlite3VdbeGoto(v, jmp5);
1739 sqlite3VdbeResolveLabel(v, uniqOk);
1741 sqlite3VdbeJumpHere(v, jmp4);
1742 sqlite3ResolvePartIdxLabel(pParse, jmp3);
1745 sqlite3VdbeAddOp2(v, OP_Next, iDataCur, loopTop); VdbeCoverage(v);
1746 sqlite3VdbeJumpHere(v, loopTop-1);
1747 if( !isQuick ){
1748 sqlite3VdbeLoadString(v, 2, "wrong # of entries in index ");
1749 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
1750 if( pPk==pIdx ) continue;
1751 sqlite3VdbeAddOp2(v, OP_Count, iIdxCur+j, 3);
1752 addr = sqlite3VdbeAddOp3(v, OP_Eq, 8+j, 0, 3); VdbeCoverage(v);
1753 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1754 sqlite3VdbeLoadString(v, 4, pIdx->zName);
1755 sqlite3VdbeAddOp3(v, OP_Concat, 4, 2, 3);
1756 integrityCheckResultRow(v);
1757 sqlite3VdbeJumpHere(v, addr);
1763 static const int iLn = VDBE_OFFSET_LINENO(2);
1764 static const VdbeOpList endCode[] = {
1765 { OP_AddImm, 1, 0, 0}, /* 0 */
1766 { OP_IfNotZero, 1, 4, 0}, /* 1 */
1767 { OP_String8, 0, 3, 0}, /* 2 */
1768 { OP_ResultRow, 3, 1, 0}, /* 3 */
1769 { OP_Halt, 0, 0, 0}, /* 4 */
1770 { OP_String8, 0, 3, 0}, /* 5 */
1771 { OP_Goto, 0, 3, 0}, /* 6 */
1773 VdbeOp *aOp;
1775 aOp = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode, iLn);
1776 if( aOp ){
1777 aOp[0].p2 = 1-mxErr;
1778 aOp[2].p4type = P4_STATIC;
1779 aOp[2].p4.z = "ok";
1780 aOp[5].p4type = P4_STATIC;
1781 aOp[5].p4.z = (char*)sqlite3ErrStr(SQLITE_CORRUPT);
1783 sqlite3VdbeChangeP3(v, 0, sqlite3VdbeCurrentAddr(v)-2);
1786 break;
1787 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
1789 #ifndef SQLITE_OMIT_UTF16
1791 ** PRAGMA encoding
1792 ** PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be"
1794 ** In its first form, this pragma returns the encoding of the main
1795 ** database. If the database is not initialized, it is initialized now.
1797 ** The second form of this pragma is a no-op if the main database file
1798 ** has not already been initialized. In this case it sets the default
1799 ** encoding that will be used for the main database file if a new file
1800 ** is created. If an existing main database file is opened, then the
1801 ** default text encoding for the existing database is used.
1803 ** In all cases new databases created using the ATTACH command are
1804 ** created to use the same default text encoding as the main database. If
1805 ** the main database has not been initialized and/or created when ATTACH
1806 ** is executed, this is done before the ATTACH operation.
1808 ** In the second form this pragma sets the text encoding to be used in
1809 ** new database files created using this database handle. It is only
1810 ** useful if invoked immediately after the main database i
1812 case PragTyp_ENCODING: {
1813 static const struct EncName {
1814 char *zName;
1815 u8 enc;
1816 } encnames[] = {
1817 { "UTF8", SQLITE_UTF8 },
1818 { "UTF-8", SQLITE_UTF8 }, /* Must be element [1] */
1819 { "UTF-16le", SQLITE_UTF16LE }, /* Must be element [2] */
1820 { "UTF-16be", SQLITE_UTF16BE }, /* Must be element [3] */
1821 { "UTF16le", SQLITE_UTF16LE },
1822 { "UTF16be", SQLITE_UTF16BE },
1823 { "UTF-16", 0 }, /* SQLITE_UTF16NATIVE */
1824 { "UTF16", 0 }, /* SQLITE_UTF16NATIVE */
1825 { 0, 0 }
1827 const struct EncName *pEnc;
1828 if( !zRight ){ /* "PRAGMA encoding" */
1829 if( sqlite3ReadSchema(pParse) ) goto pragma_out;
1830 assert( encnames[SQLITE_UTF8].enc==SQLITE_UTF8 );
1831 assert( encnames[SQLITE_UTF16LE].enc==SQLITE_UTF16LE );
1832 assert( encnames[SQLITE_UTF16BE].enc==SQLITE_UTF16BE );
1833 returnSingleText(v, encnames[ENC(pParse->db)].zName);
1834 }else{ /* "PRAGMA encoding = XXX" */
1835 /* Only change the value of sqlite.enc if the database handle is not
1836 ** initialized. If the main database exists, the new sqlite.enc value
1837 ** will be overwritten when the schema is next loaded. If it does not
1838 ** already exists, it will be created to use the new encoding value.
1840 if( (db->mDbFlags & DBFLAG_EncodingFixed)==0 ){
1841 for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
1842 if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){
1843 u8 enc = pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE;
1844 SCHEMA_ENC(db) = enc;
1845 sqlite3SetTextEncoding(db, enc);
1846 break;
1849 if( !pEnc->zName ){
1850 sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight);
1855 break;
1856 #endif /* SQLITE_OMIT_UTF16 */
1858 #ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
1860 ** PRAGMA [schema.]schema_version
1861 ** PRAGMA [schema.]schema_version = <integer>
1863 ** PRAGMA [schema.]user_version
1864 ** PRAGMA [schema.]user_version = <integer>
1866 ** PRAGMA [schema.]freelist_count
1868 ** PRAGMA [schema.]data_version
1870 ** PRAGMA [schema.]application_id
1871 ** PRAGMA [schema.]application_id = <integer>
1873 ** The pragma's schema_version and user_version are used to set or get
1874 ** the value of the schema-version and user-version, respectively. Both
1875 ** the schema-version and the user-version are 32-bit signed integers
1876 ** stored in the database header.
1878 ** The schema-cookie is usually only manipulated internally by SQLite. It
1879 ** is incremented by SQLite whenever the database schema is modified (by
1880 ** creating or dropping a table or index). The schema version is used by
1881 ** SQLite each time a query is executed to ensure that the internal cache
1882 ** of the schema used when compiling the SQL query matches the schema of
1883 ** the database against which the compiled query is actually executed.
1884 ** Subverting this mechanism by using "PRAGMA schema_version" to modify
1885 ** the schema-version is potentially dangerous and may lead to program
1886 ** crashes or database corruption. Use with caution!
1888 ** The user-version is not used internally by SQLite. It may be used by
1889 ** applications for any purpose.
1891 case PragTyp_HEADER_VALUE: {
1892 int iCookie = pPragma->iArg; /* Which cookie to read or write */
1893 sqlite3VdbeUsesBtree(v, iDb);
1894 if( zRight && (pPragma->mPragFlg & PragFlg_ReadOnly)==0 ){
1895 /* Write the specified cookie value */
1896 static const VdbeOpList setCookie[] = {
1897 { OP_Transaction, 0, 1, 0}, /* 0 */
1898 { OP_SetCookie, 0, 0, 0}, /* 1 */
1900 VdbeOp *aOp;
1901 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setCookie));
1902 aOp = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie, 0);
1903 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
1904 aOp[0].p1 = iDb;
1905 aOp[1].p1 = iDb;
1906 aOp[1].p2 = iCookie;
1907 aOp[1].p3 = sqlite3Atoi(zRight);
1908 }else{
1909 /* Read the specified cookie value */
1910 static const VdbeOpList readCookie[] = {
1911 { OP_Transaction, 0, 0, 0}, /* 0 */
1912 { OP_ReadCookie, 0, 1, 0}, /* 1 */
1913 { OP_ResultRow, 1, 1, 0}
1915 VdbeOp *aOp;
1916 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(readCookie));
1917 aOp = sqlite3VdbeAddOpList(v, ArraySize(readCookie),readCookie,0);
1918 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
1919 aOp[0].p1 = iDb;
1920 aOp[1].p1 = iDb;
1921 aOp[1].p3 = iCookie;
1922 sqlite3VdbeReusable(v);
1925 break;
1926 #endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */
1928 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
1930 ** PRAGMA compile_options
1932 ** Return the names of all compile-time options used in this build,
1933 ** one option per row.
1935 case PragTyp_COMPILE_OPTIONS: {
1936 int i = 0;
1937 const char *zOpt;
1938 pParse->nMem = 1;
1939 while( (zOpt = sqlite3_compileoption_get(i++))!=0 ){
1940 sqlite3VdbeLoadString(v, 1, zOpt);
1941 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
1943 sqlite3VdbeReusable(v);
1945 break;
1946 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
1948 #ifndef SQLITE_OMIT_WAL
1950 ** PRAGMA [schema.]wal_checkpoint = passive|full|restart|truncate
1952 ** Checkpoint the database.
1954 case PragTyp_WAL_CHECKPOINT: {
1955 int iBt = (pId2->z?iDb:SQLITE_MAX_ATTACHED);
1956 int eMode = SQLITE_CHECKPOINT_PASSIVE;
1957 if( zRight ){
1958 if( sqlite3StrICmp(zRight, "full")==0 ){
1959 eMode = SQLITE_CHECKPOINT_FULL;
1960 }else if( sqlite3StrICmp(zRight, "restart")==0 ){
1961 eMode = SQLITE_CHECKPOINT_RESTART;
1962 }else if( sqlite3StrICmp(zRight, "truncate")==0 ){
1963 eMode = SQLITE_CHECKPOINT_TRUNCATE;
1966 pParse->nMem = 3;
1967 sqlite3VdbeAddOp3(v, OP_Checkpoint, iBt, eMode, 1);
1968 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
1970 break;
1973 ** PRAGMA wal_autocheckpoint
1974 ** PRAGMA wal_autocheckpoint = N
1976 ** Configure a database connection to automatically checkpoint a database
1977 ** after accumulating N frames in the log. Or query for the current value
1978 ** of N.
1980 case PragTyp_WAL_AUTOCHECKPOINT: {
1981 if( zRight ){
1982 sqlite3_wal_autocheckpoint(db, sqlite3Atoi(zRight));
1984 returnSingleInt(v,
1985 db->xWalCallback==sqlite3WalDefaultHook ?
1986 SQLITE_PTR_TO_INT(db->pWalArg) : 0);
1988 break;
1989 #endif
1992 ** PRAGMA shrink_memory
1994 ** IMPLEMENTATION-OF: R-23445-46109 This pragma causes the database
1995 ** connection on which it is invoked to free up as much memory as it
1996 ** can, by calling sqlite3_db_release_memory().
1998 case PragTyp_SHRINK_MEMORY: {
1999 sqlite3_db_release_memory(db);
2000 break;
2004 ** PRAGMA optimize
2005 ** PRAGMA optimize(MASK)
2006 ** PRAGMA schema.optimize
2007 ** PRAGMA schema.optimize(MASK)
2009 ** Attempt to optimize the database. All schemas are optimized in the first
2010 ** two forms, and only the specified schema is optimized in the latter two.
2012 ** The details of optimizations performed by this pragma are expected
2013 ** to change and improve over time. Applications should anticipate that
2014 ** this pragma will perform new optimizations in future releases.
2016 ** The optional argument is a bitmask of optimizations to perform:
2018 ** 0x0001 Debugging mode. Do not actually perform any optimizations
2019 ** but instead return one line of text for each optimization
2020 ** that would have been done. Off by default.
2022 ** 0x0002 Run ANALYZE on tables that might benefit. On by default.
2023 ** See below for additional information.
2025 ** 0x0004 (Not yet implemented) Record usage and performance
2026 ** information from the current session in the
2027 ** database file so that it will be available to "optimize"
2028 ** pragmas run by future database connections.
2030 ** 0x0008 (Not yet implemented) Create indexes that might have
2031 ** been helpful to recent queries
2033 ** The default MASK is and always shall be 0xfffe. 0xfffe means perform all
2034 ** of the optimizations listed above except Debug Mode, including new
2035 ** optimizations that have not yet been invented. If new optimizations are
2036 ** ever added that should be off by default, those off-by-default
2037 ** optimizations will have bitmasks of 0x10000 or larger.
2039 ** DETERMINATION OF WHEN TO RUN ANALYZE
2041 ** In the current implementation, a table is analyzed if only if all of
2042 ** the following are true:
2044 ** (1) MASK bit 0x02 is set.
2046 ** (2) The query planner used sqlite_stat1-style statistics for one or
2047 ** more indexes of the table at some point during the lifetime of
2048 ** the current connection.
2050 ** (3) One or more indexes of the table are currently unanalyzed OR
2051 ** the number of rows in the table has increased by 25 times or more
2052 ** since the last time ANALYZE was run.
2054 ** The rules for when tables are analyzed are likely to change in
2055 ** future releases.
2057 case PragTyp_OPTIMIZE: {
2058 int iDbLast; /* Loop termination point for the schema loop */
2059 int iTabCur; /* Cursor for a table whose size needs checking */
2060 HashElem *k; /* Loop over tables of a schema */
2061 Schema *pSchema; /* The current schema */
2062 Table *pTab; /* A table in the schema */
2063 Index *pIdx; /* An index of the table */
2064 LogEst szThreshold; /* Size threshold above which reanalysis is needd */
2065 char *zSubSql; /* SQL statement for the OP_SqlExec opcode */
2066 u32 opMask; /* Mask of operations to perform */
2068 if( zRight ){
2069 opMask = (u32)sqlite3Atoi(zRight);
2070 if( (opMask & 0x02)==0 ) break;
2071 }else{
2072 opMask = 0xfffe;
2074 iTabCur = pParse->nTab++;
2075 for(iDbLast = zDb?iDb:db->nDb-1; iDb<=iDbLast; iDb++){
2076 if( iDb==1 ) continue;
2077 sqlite3CodeVerifySchema(pParse, iDb);
2078 pSchema = db->aDb[iDb].pSchema;
2079 for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
2080 pTab = (Table*)sqliteHashData(k);
2082 /* If table pTab has not been used in a way that would benefit from
2083 ** having analysis statistics during the current session, then skip it.
2084 ** This also has the effect of skipping virtual tables and views */
2085 if( (pTab->tabFlags & TF_StatsUsed)==0 ) continue;
2087 /* Reanalyze if the table is 25 times larger than the last analysis */
2088 szThreshold = pTab->nRowLogEst + 46; assert( sqlite3LogEst(25)==46 );
2089 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2090 if( !pIdx->hasStat1 ){
2091 szThreshold = 0; /* Always analyze if any index lacks statistics */
2092 break;
2095 if( szThreshold ){
2096 sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
2097 sqlite3VdbeAddOp3(v, OP_IfSmaller, iTabCur,
2098 sqlite3VdbeCurrentAddr(v)+2+(opMask&1), szThreshold);
2099 VdbeCoverage(v);
2101 zSubSql = sqlite3MPrintf(db, "ANALYZE \"%w\".\"%w\"",
2102 db->aDb[iDb].zDbSName, pTab->zName);
2103 if( opMask & 0x01 ){
2104 int r1 = sqlite3GetTempReg(pParse);
2105 sqlite3VdbeAddOp4(v, OP_String8, 0, r1, 0, zSubSql, P4_DYNAMIC);
2106 sqlite3VdbeAddOp2(v, OP_ResultRow, r1, 1);
2107 }else{
2108 sqlite3VdbeAddOp4(v, OP_SqlExec, 0, 0, 0, zSubSql, P4_DYNAMIC);
2112 sqlite3VdbeAddOp0(v, OP_Expire);
2113 break;
2117 ** PRAGMA busy_timeout
2118 ** PRAGMA busy_timeout = N
2120 ** Call sqlite3_busy_timeout(db, N). Return the current timeout value
2121 ** if one is set. If no busy handler or a different busy handler is set
2122 ** then 0 is returned. Setting the busy_timeout to 0 or negative
2123 ** disables the timeout.
2125 /*case PragTyp_BUSY_TIMEOUT*/ default: {
2126 assert( pPragma->ePragTyp==PragTyp_BUSY_TIMEOUT );
2127 if( zRight ){
2128 sqlite3_busy_timeout(db, sqlite3Atoi(zRight));
2130 returnSingleInt(v, db->busyTimeout);
2131 break;
2135 ** PRAGMA soft_heap_limit
2136 ** PRAGMA soft_heap_limit = N
2138 ** IMPLEMENTATION-OF: R-26343-45930 This pragma invokes the
2139 ** sqlite3_soft_heap_limit64() interface with the argument N, if N is
2140 ** specified and is a non-negative integer.
2141 ** IMPLEMENTATION-OF: R-64451-07163 The soft_heap_limit pragma always
2142 ** returns the same integer that would be returned by the
2143 ** sqlite3_soft_heap_limit64(-1) C-language function.
2145 case PragTyp_SOFT_HEAP_LIMIT: {
2146 sqlite3_int64 N;
2147 if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){
2148 sqlite3_soft_heap_limit64(N);
2150 returnSingleInt(v, sqlite3_soft_heap_limit64(-1));
2151 break;
2155 ** PRAGMA hard_heap_limit
2156 ** PRAGMA hard_heap_limit = N
2158 ** Invoke sqlite3_hard_heap_limit64() to query or set the hard heap
2159 ** limit. The hard heap limit can be activated or lowered by this
2160 ** pragma, but not raised or deactivated. Only the
2161 ** sqlite3_hard_heap_limit64() C-language API can raise or deactivate
2162 ** the hard heap limit. This allows an application to set a heap limit
2163 ** constraint that cannot be relaxed by an untrusted SQL script.
2165 case PragTyp_HARD_HEAP_LIMIT: {
2166 sqlite3_int64 N;
2167 if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){
2168 sqlite3_int64 iPrior = sqlite3_hard_heap_limit64(-1);
2169 if( N>0 && (iPrior==0 || iPrior>N) ) sqlite3_hard_heap_limit64(N);
2171 returnSingleInt(v, sqlite3_hard_heap_limit64(-1));
2172 break;
2176 ** PRAGMA threads
2177 ** PRAGMA threads = N
2179 ** Configure the maximum number of worker threads. Return the new
2180 ** maximum, which might be less than requested.
2182 case PragTyp_THREADS: {
2183 sqlite3_int64 N;
2184 if( zRight
2185 && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK
2186 && N>=0
2188 sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, (int)(N&0x7fffffff));
2190 returnSingleInt(v, sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, -1));
2191 break;
2195 ** PRAGMA analysis_limit
2196 ** PRAGMA analysis_limit = N
2198 ** Configure the maximum number of rows that ANALYZE will examine
2199 ** in each index that it looks at. Return the new limit.
2201 case PragTyp_ANALYSIS_LIMIT: {
2202 sqlite3_int64 N;
2203 if( zRight
2204 && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK
2205 && N>=0
2207 db->nAnalysisLimit = (int)(N&0x7fffffff);
2209 returnSingleInt(v, db->nAnalysisLimit);
2210 break;
2213 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
2215 ** Report the current state of file logs for all databases
2217 case PragTyp_LOCK_STATUS: {
2218 static const char *const azLockName[] = {
2219 "unlocked", "shared", "reserved", "pending", "exclusive"
2221 int i;
2222 pParse->nMem = 2;
2223 for(i=0; i<db->nDb; i++){
2224 Btree *pBt;
2225 const char *zState = "unknown";
2226 int j;
2227 if( db->aDb[i].zDbSName==0 ) continue;
2228 pBt = db->aDb[i].pBt;
2229 if( pBt==0 || sqlite3BtreePager(pBt)==0 ){
2230 zState = "closed";
2231 }else if( sqlite3_file_control(db, i ? db->aDb[i].zDbSName : 0,
2232 SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){
2233 zState = azLockName[j];
2235 sqlite3VdbeMultiLoad(v, 1, "ss", db->aDb[i].zDbSName, zState);
2237 break;
2239 #endif
2241 /* BEGIN SQLCIPHER */
2242 #ifdef SQLITE_HAS_CODEC
2243 /* Pragma iArg
2244 ** ---------- ------
2245 ** key 0
2246 ** rekey 1
2247 ** hexkey 2
2248 ** hexrekey 3
2249 ** textkey 4
2250 ** textrekey 5
2252 case PragTyp_KEY: {
2253 if( zRight ){
2254 char zBuf[40];
2255 const char *zKey = zRight;
2256 int n;
2257 if( pPragma->iArg==2 || pPragma->iArg==3 ){
2258 u8 iByte;
2259 int i;
2260 for(i=0, iByte=0; i<sizeof(zBuf)*2 && sqlite3Isxdigit(zRight[i]); i++){
2261 iByte = (iByte<<4) + sqlite3HexToInt(zRight[i]);
2262 if( (i&1)!=0 ) zBuf[i/2] = iByte;
2264 zKey = zBuf;
2265 n = i/2;
2266 }else{
2267 n = pPragma->iArg<4 ? sqlite3Strlen30(zRight) : -1;
2269 if( (pPragma->iArg & 1)==0 ){
2270 rc = sqlite3_key_v2(db, zDb, zKey, n);
2271 }else{
2272 rc = sqlite3_rekey_v2(db, zDb, zKey, n);
2274 if( rc==SQLITE_OK && n!=0 ){
2275 sqlite3VdbeSetNumCols(v, 1);
2276 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "ok", SQLITE_STATIC);
2277 returnSingleText(v, "ok");
2280 break;
2282 #endif
2283 /* END SQLCIPHER */
2284 #if defined(SQLITE_ENABLE_CEROD)
2285 case PragTyp_ACTIVATE_EXTENSIONS: if( zRight ){
2286 if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){
2287 sqlite3_activate_cerod(&zRight[6]);
2290 break;
2291 #endif
2293 } /* End of the PRAGMA switch */
2295 /* The following block is a no-op unless SQLITE_DEBUG is defined. Its only
2296 ** purpose is to execute assert() statements to verify that if the
2297 ** PragFlg_NoColumns1 flag is set and the caller specified an argument
2298 ** to the PRAGMA, the implementation has not added any OP_ResultRow
2299 ** instructions to the VM. */
2300 if( (pPragma->mPragFlg & PragFlg_NoColumns1) && zRight ){
2301 sqlite3VdbeVerifyNoResultRow(v);
2304 pragma_out:
2305 sqlite3DbFree(db, zLeft);
2306 sqlite3DbFree(db, zRight);
2308 #ifndef SQLITE_OMIT_VIRTUALTABLE
2309 /*****************************************************************************
2310 ** Implementation of an eponymous virtual table that runs a pragma.
2313 typedef struct PragmaVtab PragmaVtab;
2314 typedef struct PragmaVtabCursor PragmaVtabCursor;
2315 struct PragmaVtab {
2316 sqlite3_vtab base; /* Base class. Must be first */
2317 sqlite3 *db; /* The database connection to which it belongs */
2318 const PragmaName *pName; /* Name of the pragma */
2319 u8 nHidden; /* Number of hidden columns */
2320 u8 iHidden; /* Index of the first hidden column */
2322 struct PragmaVtabCursor {
2323 sqlite3_vtab_cursor base; /* Base class. Must be first */
2324 sqlite3_stmt *pPragma; /* The pragma statement to run */
2325 sqlite_int64 iRowid; /* Current rowid */
2326 char *azArg[2]; /* Value of the argument and schema */
2330 ** Pragma virtual table module xConnect method.
2332 static int pragmaVtabConnect(
2333 sqlite3 *db,
2334 void *pAux,
2335 int argc, const char *const*argv,
2336 sqlite3_vtab **ppVtab,
2337 char **pzErr
2339 const PragmaName *pPragma = (const PragmaName*)pAux;
2340 PragmaVtab *pTab = 0;
2341 int rc;
2342 int i, j;
2343 char cSep = '(';
2344 StrAccum acc;
2345 char zBuf[200];
2347 UNUSED_PARAMETER(argc);
2348 UNUSED_PARAMETER(argv);
2349 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
2350 sqlite3_str_appendall(&acc, "CREATE TABLE x");
2351 for(i=0, j=pPragma->iPragCName; i<pPragma->nPragCName; i++, j++){
2352 sqlite3_str_appendf(&acc, "%c\"%s\"", cSep, pragCName[j]);
2353 cSep = ',';
2355 if( i==0 ){
2356 sqlite3_str_appendf(&acc, "(\"%s\"", pPragma->zName);
2357 i++;
2359 j = 0;
2360 if( pPragma->mPragFlg & PragFlg_Result1 ){
2361 sqlite3_str_appendall(&acc, ",arg HIDDEN");
2362 j++;
2364 if( pPragma->mPragFlg & (PragFlg_SchemaOpt|PragFlg_SchemaReq) ){
2365 sqlite3_str_appendall(&acc, ",schema HIDDEN");
2366 j++;
2368 sqlite3_str_append(&acc, ")", 1);
2369 sqlite3StrAccumFinish(&acc);
2370 assert( strlen(zBuf) < sizeof(zBuf)-1 );
2371 rc = sqlite3_declare_vtab(db, zBuf);
2372 if( rc==SQLITE_OK ){
2373 pTab = (PragmaVtab*)sqlite3_malloc(sizeof(PragmaVtab));
2374 if( pTab==0 ){
2375 rc = SQLITE_NOMEM;
2376 }else{
2377 memset(pTab, 0, sizeof(PragmaVtab));
2378 pTab->pName = pPragma;
2379 pTab->db = db;
2380 pTab->iHidden = i;
2381 pTab->nHidden = j;
2383 }else{
2384 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
2387 *ppVtab = (sqlite3_vtab*)pTab;
2388 return rc;
2392 ** Pragma virtual table module xDisconnect method.
2394 static int pragmaVtabDisconnect(sqlite3_vtab *pVtab){
2395 PragmaVtab *pTab = (PragmaVtab*)pVtab;
2396 sqlite3_free(pTab);
2397 return SQLITE_OK;
2400 /* Figure out the best index to use to search a pragma virtual table.
2402 ** There are not really any index choices. But we want to encourage the
2403 ** query planner to give == constraints on as many hidden parameters as
2404 ** possible, and especially on the first hidden parameter. So return a
2405 ** high cost if hidden parameters are unconstrained.
2407 static int pragmaVtabBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
2408 PragmaVtab *pTab = (PragmaVtab*)tab;
2409 const struct sqlite3_index_constraint *pConstraint;
2410 int i, j;
2411 int seen[2];
2413 pIdxInfo->estimatedCost = (double)1;
2414 if( pTab->nHidden==0 ){ return SQLITE_OK; }
2415 pConstraint = pIdxInfo->aConstraint;
2416 seen[0] = 0;
2417 seen[1] = 0;
2418 for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
2419 if( pConstraint->usable==0 ) continue;
2420 if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
2421 if( pConstraint->iColumn < pTab->iHidden ) continue;
2422 j = pConstraint->iColumn - pTab->iHidden;
2423 assert( j < 2 );
2424 seen[j] = i+1;
2426 if( seen[0]==0 ){
2427 pIdxInfo->estimatedCost = (double)2147483647;
2428 pIdxInfo->estimatedRows = 2147483647;
2429 return SQLITE_OK;
2431 j = seen[0]-1;
2432 pIdxInfo->aConstraintUsage[j].argvIndex = 1;
2433 pIdxInfo->aConstraintUsage[j].omit = 1;
2434 if( seen[1]==0 ) return SQLITE_OK;
2435 pIdxInfo->estimatedCost = (double)20;
2436 pIdxInfo->estimatedRows = 20;
2437 j = seen[1]-1;
2438 pIdxInfo->aConstraintUsage[j].argvIndex = 2;
2439 pIdxInfo->aConstraintUsage[j].omit = 1;
2440 return SQLITE_OK;
2443 /* Create a new cursor for the pragma virtual table */
2444 static int pragmaVtabOpen(sqlite3_vtab *pVtab, sqlite3_vtab_cursor **ppCursor){
2445 PragmaVtabCursor *pCsr;
2446 pCsr = (PragmaVtabCursor*)sqlite3_malloc(sizeof(*pCsr));
2447 if( pCsr==0 ) return SQLITE_NOMEM;
2448 memset(pCsr, 0, sizeof(PragmaVtabCursor));
2449 pCsr->base.pVtab = pVtab;
2450 *ppCursor = &pCsr->base;
2451 return SQLITE_OK;
2454 /* Clear all content from pragma virtual table cursor. */
2455 static void pragmaVtabCursorClear(PragmaVtabCursor *pCsr){
2456 int i;
2457 sqlite3_finalize(pCsr->pPragma);
2458 pCsr->pPragma = 0;
2459 for(i=0; i<ArraySize(pCsr->azArg); i++){
2460 sqlite3_free(pCsr->azArg[i]);
2461 pCsr->azArg[i] = 0;
2465 /* Close a pragma virtual table cursor */
2466 static int pragmaVtabClose(sqlite3_vtab_cursor *cur){
2467 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)cur;
2468 pragmaVtabCursorClear(pCsr);
2469 sqlite3_free(pCsr);
2470 return SQLITE_OK;
2473 /* Advance the pragma virtual table cursor to the next row */
2474 static int pragmaVtabNext(sqlite3_vtab_cursor *pVtabCursor){
2475 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2476 int rc = SQLITE_OK;
2478 /* Increment the xRowid value */
2479 pCsr->iRowid++;
2480 assert( pCsr->pPragma );
2481 if( SQLITE_ROW!=sqlite3_step(pCsr->pPragma) ){
2482 rc = sqlite3_finalize(pCsr->pPragma);
2483 pCsr->pPragma = 0;
2484 pragmaVtabCursorClear(pCsr);
2486 return rc;
2490 ** Pragma virtual table module xFilter method.
2492 static int pragmaVtabFilter(
2493 sqlite3_vtab_cursor *pVtabCursor,
2494 int idxNum, const char *idxStr,
2495 int argc, sqlite3_value **argv
2497 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2498 PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab);
2499 int rc;
2500 int i, j;
2501 StrAccum acc;
2502 char *zSql;
2504 UNUSED_PARAMETER(idxNum);
2505 UNUSED_PARAMETER(idxStr);
2506 pragmaVtabCursorClear(pCsr);
2507 j = (pTab->pName->mPragFlg & PragFlg_Result1)!=0 ? 0 : 1;
2508 for(i=0; i<argc; i++, j++){
2509 const char *zText = (const char*)sqlite3_value_text(argv[i]);
2510 assert( j<ArraySize(pCsr->azArg) );
2511 assert( pCsr->azArg[j]==0 );
2512 if( zText ){
2513 pCsr->azArg[j] = sqlite3_mprintf("%s", zText);
2514 if( pCsr->azArg[j]==0 ){
2515 return SQLITE_NOMEM;
2519 sqlite3StrAccumInit(&acc, 0, 0, 0, pTab->db->aLimit[SQLITE_LIMIT_SQL_LENGTH]);
2520 sqlite3_str_appendall(&acc, "PRAGMA ");
2521 if( pCsr->azArg[1] ){
2522 sqlite3_str_appendf(&acc, "%Q.", pCsr->azArg[1]);
2524 sqlite3_str_appendall(&acc, pTab->pName->zName);
2525 if( pCsr->azArg[0] ){
2526 sqlite3_str_appendf(&acc, "=%Q", pCsr->azArg[0]);
2528 zSql = sqlite3StrAccumFinish(&acc);
2529 if( zSql==0 ) return SQLITE_NOMEM;
2530 rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pPragma, 0);
2531 sqlite3_free(zSql);
2532 if( rc!=SQLITE_OK ){
2533 pTab->base.zErrMsg = sqlite3_mprintf("%s", sqlite3_errmsg(pTab->db));
2534 return rc;
2536 return pragmaVtabNext(pVtabCursor);
2540 ** Pragma virtual table module xEof method.
2542 static int pragmaVtabEof(sqlite3_vtab_cursor *pVtabCursor){
2543 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2544 return (pCsr->pPragma==0);
2547 /* The xColumn method simply returns the corresponding column from
2548 ** the PRAGMA.
2550 static int pragmaVtabColumn(
2551 sqlite3_vtab_cursor *pVtabCursor,
2552 sqlite3_context *ctx,
2553 int i
2555 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2556 PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab);
2557 if( i<pTab->iHidden ){
2558 sqlite3_result_value(ctx, sqlite3_column_value(pCsr->pPragma, i));
2559 }else{
2560 sqlite3_result_text(ctx, pCsr->azArg[i-pTab->iHidden],-1,SQLITE_TRANSIENT);
2562 return SQLITE_OK;
2566 ** Pragma virtual table module xRowid method.
2568 static int pragmaVtabRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *p){
2569 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2570 *p = pCsr->iRowid;
2571 return SQLITE_OK;
2574 /* The pragma virtual table object */
2575 static const sqlite3_module pragmaVtabModule = {
2576 0, /* iVersion */
2577 0, /* xCreate - create a table */
2578 pragmaVtabConnect, /* xConnect - connect to an existing table */
2579 pragmaVtabBestIndex, /* xBestIndex - Determine search strategy */
2580 pragmaVtabDisconnect, /* xDisconnect - Disconnect from a table */
2581 0, /* xDestroy - Drop a table */
2582 pragmaVtabOpen, /* xOpen - open a cursor */
2583 pragmaVtabClose, /* xClose - close a cursor */
2584 pragmaVtabFilter, /* xFilter - configure scan constraints */
2585 pragmaVtabNext, /* xNext - advance a cursor */
2586 pragmaVtabEof, /* xEof */
2587 pragmaVtabColumn, /* xColumn - read data */
2588 pragmaVtabRowid, /* xRowid - read data */
2589 0, /* xUpdate - write data */
2590 0, /* xBegin - begin transaction */
2591 0, /* xSync - sync transaction */
2592 0, /* xCommit - commit transaction */
2593 0, /* xRollback - rollback transaction */
2594 0, /* xFindFunction - function overloading */
2595 0, /* xRename - rename the table */
2596 0, /* xSavepoint */
2597 0, /* xRelease */
2598 0, /* xRollbackTo */
2599 0 /* xShadowName */
2603 ** Check to see if zTabName is really the name of a pragma. If it is,
2604 ** then register an eponymous virtual table for that pragma and return
2605 ** a pointer to the Module object for the new virtual table.
2607 Module *sqlite3PragmaVtabRegister(sqlite3 *db, const char *zName){
2608 const PragmaName *pName;
2609 assert( sqlite3_strnicmp(zName, "pragma_", 7)==0 );
2610 pName = pragmaLocate(zName+7);
2611 if( pName==0 ) return 0;
2612 if( (pName->mPragFlg & (PragFlg_Result0|PragFlg_Result1))==0 ) return 0;
2613 assert( sqlite3HashFind(&db->aModule, zName)==0 );
2614 return sqlite3VtabCreateModule(db, zName, &pragmaVtabModule, (void*)pName, 0);
2617 #endif /* SQLITE_OMIT_VIRTUALTABLE */
2619 #endif /* SQLITE_OMIT_PRAGMA */