4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** $Id: sqlite3async.c,v 1.7 2009/07/18 11:52:04 danielk1977 Exp $
15 ** This file contains the implementation of an asynchronous IO backend
19 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ASYNCIO)
21 #include "sqlite3async.h"
27 /* Useful macros used in several places */
28 #define MIN(x,y) ((x)<(y)?(x):(y))
29 #define MAX(x,y) ((x)>(y)?(x):(y))
31 #ifndef SQLITE_AMALGAMATION
32 /* Macro to mark parameters as unused and silence compiler warnings. */
33 #define UNUSED_PARAMETER(x) (void)(x)
36 /* Forward references */
37 typedef struct AsyncWrite AsyncWrite
;
38 typedef struct AsyncFile AsyncFile
;
39 typedef struct AsyncFileData AsyncFileData
;
40 typedef struct AsyncFileLock AsyncFileLock
;
41 typedef struct AsyncLock AsyncLock
;
43 /* Enable for debugging */
46 static int sqlite3async_trace
= 0;
47 # define ASYNC_TRACE(X) if( sqlite3async_trace ) asyncTrace X
48 static void asyncTrace(const char *zFormat
, ...){
51 va_start(ap
, zFormat
);
52 z
= sqlite3_vmprintf(zFormat
, ap
);
54 fprintf(stderr
, "[%d] %s", 0 /* (int)pthread_self() */, z
);
58 # define ASYNC_TRACE(X)
62 ** THREAD SAFETY NOTES
66 ** * Both read and write access to the global write-op queue must be
67 ** protected by the async.queueMutex. As are the async.ioError and
68 ** async.nFile variables.
70 ** * The async.pLock list and all AsyncLock and AsyncFileLock
71 ** structures must be protected by the async.lockMutex mutex.
73 ** * The file handles from the underlying system are not assumed to
76 ** * See the last two paragraphs under "The Writer Thread" for
77 ** an assumption to do with file-handle synchronization by the Os.
79 ** Deadlock prevention:
81 ** There are three mutex used by the system: the "writer" mutex,
82 ** the "queue" mutex and the "lock" mutex. Rules are:
84 ** * It is illegal to block on the writer mutex when any other mutex
87 ** * It is illegal to block on the queue mutex when the lock mutex
90 ** i.e. mutex's must be grabbed in the order "writer", "queue", "lock".
92 ** File system operations (invoked by SQLite thread):
98 ** File handle operations (invoked by SQLite thread):
100 ** asyncWrite, asyncClose, asyncTruncate, asyncSync
102 ** The operations above add an entry to the global write-op list. They
103 ** prepare the entry, acquire the async.queueMutex momentarily while
104 ** list pointers are manipulated to insert the new entry, then release
105 ** the mutex and signal the writer thread to wake up in case it happens
109 ** asyncRead, asyncFileSize.
111 ** Read operations. Both of these read from both the underlying file
112 ** first then adjust their result based on pending writes in the
113 ** write-op queue. So async.queueMutex is held for the duration
114 ** of these operations to prevent other threads from changing the
115 ** queue in mid operation.
118 ** asyncLock, asyncUnlock, asyncCheckReservedLock
120 ** These primitives implement in-process locking using a hash table
121 ** on the file name. Files are locked correctly for connections coming
122 ** from the same process. But other processes cannot see these locks
123 ** and will therefore not honor them.
126 ** The writer thread:
128 ** The async.writerMutex is used to make sure only there is only
129 ** a single writer thread running at a time.
131 ** Inside the writer thread is a loop that works like this:
133 ** WHILE (write-op list is not empty)
134 ** Do IO operation at head of write-op list
135 ** Remove entry from head of write-op list
138 ** The async.queueMutex is always held during the <write-op list is
139 ** not empty> test, and when the entry is removed from the head
140 ** of the write-op list. Sometimes it is held for the interim
141 ** period (while the IO is performed), and sometimes it is
142 ** relinquished. It is relinquished if (a) the IO op is an
143 ** ASYNC_CLOSE or (b) when the file handle was opened, two of
144 ** the underlying systems handles were opened on the same
145 ** file-system entry.
147 ** If condition (b) above is true, then one file-handle
148 ** (AsyncFile.pBaseRead) is used exclusively by sqlite threads to read the
149 ** file, the other (AsyncFile.pBaseWrite) by sqlite3_async_flush()
150 ** threads to perform write() operations. This means that read
151 ** operations are not blocked by asynchronous writes (although
152 ** asynchronous writes may still be blocked by reads).
154 ** This assumes that the OS keeps two handles open on the same file
155 ** properly in sync. That is, any read operation that starts after a
156 ** write operation on the same file system entry has completed returns
157 ** data consistent with the write. We also assume that if one thread
158 ** reads a file while another is writing it all bytes other than the
159 ** ones actually being written contain valid data.
161 ** If the above assumptions are not true, set the preprocessor symbol
162 ** SQLITE_ASYNC_TWO_FILEHANDLES to 0.
167 # define TESTONLY( X ) X
169 # define TESTONLY( X )
175 ** There are two definitions of the following functions. One for pthreads
176 ** compatible systems and one for Win32. These functions isolate the OS
177 ** specific code required by each platform.
179 ** The system uses three mutexes and a single condition variable. To
180 ** block on a mutex, async_mutex_enter() is called. The parameter passed
181 ** to async_mutex_enter(), which must be one of ASYNC_MUTEX_LOCK,
182 ** ASYNC_MUTEX_QUEUE or ASYNC_MUTEX_WRITER, identifies which of the three
183 ** mutexes to lock. Similarly, to unlock a mutex, async_mutex_leave() is
184 ** called with a parameter identifying the mutex being unlocked. Mutexes
185 ** are not recursive - it is an error to call async_mutex_enter() to
186 ** lock a mutex that is already locked, or to call async_mutex_leave()
187 ** to unlock a mutex that is not currently locked.
189 ** The async_cond_wait() and async_cond_signal() functions are modelled
190 ** on the pthreads functions with similar names. The first parameter to
191 ** both functions is always ASYNC_COND_QUEUE. When async_cond_wait()
192 ** is called the mutex identified by the second parameter must be held.
193 ** The mutex is unlocked, and the calling thread simultaneously begins
194 ** waiting for the condition variable to be signalled by another thread.
195 ** After another thread signals the condition variable, the calling
196 ** thread stops waiting, locks mutex eMutex and returns. The
197 ** async_cond_signal() function is used to signal the condition variable.
198 ** It is assumed that the mutex used by the thread calling async_cond_wait()
199 ** is held by the caller of async_cond_signal() (otherwise there would be
200 ** a race condition).
202 ** It is guaranteed that no other thread will call async_cond_wait() when
203 ** there is already a thread waiting on the condition variable.
205 ** The async_sched_yield() function is called to suggest to the operating
206 ** system that it would be a good time to shift the current thread off the
207 ** CPU. The system will still work if this function is not implemented
208 ** (it is not currently implemented for win32), but it might be marginally
209 ** more efficient if it is.
211 static void async_mutex_enter(int eMutex
);
212 static void async_mutex_leave(int eMutex
);
213 static void async_cond_wait(int eCond
, int eMutex
);
214 static void async_cond_signal(int eCond
);
215 static void async_sched_yield(void);
218 ** There are also two definitions of the following. async_os_initialize()
219 ** is called when the asynchronous VFS is first installed, and os_shutdown()
220 ** is called when it is uninstalled (from within sqlite3async_shutdown()).
222 ** For pthreads builds, both of these functions are no-ops. For win32,
223 ** they provide an opportunity to initialize and finalize the required
224 ** mutex and condition variables.
226 ** If async_os_initialize() returns other than zero, then the initialization
227 ** fails and SQLITE_ERROR is returned to the user.
229 static int async_os_initialize(void);
230 static void async_os_shutdown(void);
232 /* Values for use as the 'eMutex' argument of the above functions. The
233 ** integer values assigned to these constants are important for assert()
234 ** statements that verify that mutexes are locked in the correct order.
235 ** Specifically, it is unsafe to try to lock mutex N while holding a lock
236 ** on mutex M if (M<=N).
238 #define ASYNC_MUTEX_LOCK 0
239 #define ASYNC_MUTEX_QUEUE 1
240 #define ASYNC_MUTEX_WRITER 2
242 /* Values for use as the 'eCond' argument of the above functions. */
243 #define ASYNC_COND_QUEUE 0
245 /*************************************************************************
246 ** Start of OS specific code.
248 #if SQLITE_OS_WIN || defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__)
252 /* The following block contains the win32 specific code. */
254 #define mutex_held(X) (GetCurrentThreadId()==primitives.aHolder[X])
256 static struct AsyncPrimitives
{
259 CRITICAL_SECTION aMutex
[3];
261 } primitives
= { 0 };
263 static int async_os_initialize(void){
264 if( !primitives
.isInit
){
265 primitives
.aCond
[0] = CreateEvent(NULL
, TRUE
, FALSE
, 0);
266 if( primitives
.aCond
[0]==NULL
){
269 InitializeCriticalSection(&primitives
.aMutex
[0]);
270 InitializeCriticalSection(&primitives
.aMutex
[1]);
271 InitializeCriticalSection(&primitives
.aMutex
[2]);
272 primitives
.isInit
= 1;
276 static void async_os_shutdown(void){
277 if( primitives
.isInit
){
278 DeleteCriticalSection(&primitives
.aMutex
[0]);
279 DeleteCriticalSection(&primitives
.aMutex
[1]);
280 DeleteCriticalSection(&primitives
.aMutex
[2]);
281 CloseHandle(primitives
.aCond
[0]);
282 primitives
.isInit
= 0;
286 /* The following block contains the Win32 specific code. */
287 static void async_mutex_enter(int eMutex
){
288 assert( eMutex
==0 || eMutex
==1 || eMutex
==2 );
289 assert( eMutex
!=2 || (!mutex_held(0) && !mutex_held(1) && !mutex_held(2)) );
290 assert( eMutex
!=1 || (!mutex_held(0) && !mutex_held(1)) );
291 assert( eMutex
!=0 || (!mutex_held(0)) );
292 EnterCriticalSection(&primitives
.aMutex
[eMutex
]);
293 TESTONLY( primitives
.aHolder
[eMutex
] = GetCurrentThreadId(); )
295 static void async_mutex_leave(int eMutex
){
296 assert( eMutex
==0 || eMutex
==1 || eMutex
==2 );
297 assert( mutex_held(eMutex
) );
298 TESTONLY( primitives
.aHolder
[eMutex
] = 0; )
299 LeaveCriticalSection(&primitives
.aMutex
[eMutex
]);
301 static void async_cond_wait(int eCond
, int eMutex
){
302 ResetEvent(primitives
.aCond
[eCond
]);
303 async_mutex_leave(eMutex
);
304 WaitForSingleObject(primitives
.aCond
[eCond
], INFINITE
);
305 async_mutex_enter(eMutex
);
307 static void async_cond_signal(int eCond
){
308 assert( mutex_held(ASYNC_MUTEX_QUEUE
) );
309 SetEvent(primitives
.aCond
[eCond
]);
311 static void async_sched_yield(void){
316 /* The following block contains the pthreads specific code. */
320 #define mutex_held(X) pthread_equal(primitives.aHolder[X], pthread_self())
322 static int async_os_initialize(void) {return 0;}
323 static void async_os_shutdown(void) {}
325 static struct AsyncPrimitives
{
326 pthread_mutex_t aMutex
[3];
327 pthread_cond_t aCond
[1];
328 pthread_t aHolder
[3];
330 { PTHREAD_MUTEX_INITIALIZER
,
331 PTHREAD_MUTEX_INITIALIZER
,
332 PTHREAD_MUTEX_INITIALIZER
334 PTHREAD_COND_INITIALIZER
338 static void async_mutex_enter(int eMutex
){
339 assert( eMutex
==0 || eMutex
==1 || eMutex
==2 );
340 assert( eMutex
!=2 || (!mutex_held(0) && !mutex_held(1) && !mutex_held(2)) );
341 assert( eMutex
!=1 || (!mutex_held(0) && !mutex_held(1)) );
342 assert( eMutex
!=0 || (!mutex_held(0)) );
343 pthread_mutex_lock(&primitives
.aMutex
[eMutex
]);
344 TESTONLY( primitives
.aHolder
[eMutex
] = pthread_self(); )
346 static void async_mutex_leave(int eMutex
){
347 assert( eMutex
==0 || eMutex
==1 || eMutex
==2 );
348 assert( mutex_held(eMutex
) );
349 TESTONLY( primitives
.aHolder
[eMutex
] = 0; )
350 pthread_mutex_unlock(&primitives
.aMutex
[eMutex
]);
352 static void async_cond_wait(int eCond
, int eMutex
){
353 assert( eMutex
==0 || eMutex
==1 || eMutex
==2 );
354 assert( mutex_held(eMutex
) );
355 TESTONLY( primitives
.aHolder
[eMutex
] = 0; )
356 pthread_cond_wait(&primitives
.aCond
[eCond
], &primitives
.aMutex
[eMutex
]);
357 TESTONLY( primitives
.aHolder
[eMutex
] = pthread_self(); )
359 static void async_cond_signal(int eCond
){
360 assert( mutex_held(ASYNC_MUTEX_QUEUE
) );
361 pthread_cond_signal(&primitives
.aCond
[eCond
]);
363 static void async_sched_yield(void){
368 ** End of OS specific code.
369 *************************************************************************/
371 #define assert_mutex_is_held(X) assert( mutex_held(X) )
374 #ifndef SQLITE_ASYNC_TWO_FILEHANDLES
375 /* #define SQLITE_ASYNC_TWO_FILEHANDLES 0 */
376 #define SQLITE_ASYNC_TWO_FILEHANDLES 1
380 ** State information is held in the static variable "async" defined
381 ** as the following structure.
383 ** Both async.ioError and async.nFile are protected by async.queueMutex.
385 static struct TestAsyncStaticData
{
386 AsyncWrite
*pQueueFirst
; /* Next write operation to be processed */
387 AsyncWrite
*pQueueLast
; /* Last write operation on the list */
388 AsyncLock
*pLock
; /* Linked list of all AsyncLock structures */
389 volatile int ioDelay
; /* Extra delay between write operations */
390 volatile int eHalt
; /* One of the SQLITEASYNC_HALT_XXX values */
391 volatile int bLockFiles
; /* Current value of "lockfiles" parameter */
392 int ioError
; /* True if an IO error has occurred */
393 int nFile
; /* Number of open files (from sqlite pov) */
394 } async
= { 0,0,0,0,0,1,0,0 };
396 /* Possible values of AsyncWrite.op */
398 #define ASYNC_WRITE 1
400 #define ASYNC_TRUNCATE 3
401 #define ASYNC_CLOSE 4
402 #define ASYNC_DELETE 5
403 #define ASYNC_OPENEXCLUSIVE 6
404 #define ASYNC_UNLOCK 7
406 /* Names of opcodes. Used for debugging only.
407 ** Make sure these stay in sync with the macros above!
409 static const char *azOpcodeName
[] = {
410 "NOOP", "WRITE", "SYNC", "TRUNCATE", "CLOSE", "DELETE", "OPENEX", "UNLOCK"
414 ** Entries on the write-op queue are instances of the AsyncWrite
415 ** structure, defined here.
417 ** The interpretation of the iOffset and nByte variables varies depending
418 ** on the value of AsyncWrite.op:
424 ** iOffset -> Offset in file to write to.
425 ** nByte -> Number of bytes of data to write (pointed to by zBuf).
428 ** nByte -> flags to pass to sqlite3OsSync().
431 ** iOffset -> Size to truncate file to.
435 ** iOffset -> Unused.
439 ** iOffset -> Contains the "syncDir" flag.
440 ** nByte -> Number of bytes of zBuf points to (file name).
442 ** ASYNC_OPENEXCLUSIVE:
443 ** iOffset -> Value of "delflag".
444 ** nByte -> Number of bytes of zBuf points to (file name).
447 ** nByte -> Argument to sqlite3OsUnlock().
450 ** For an ASYNC_WRITE operation, zBuf points to the data to write to the file.
451 ** This space is sqlite3_malloc()d along with the AsyncWrite structure in a
452 ** single blob, so is deleted when sqlite3_free() is called on the parent
456 AsyncFileData
*pFileData
; /* File to write data to or sync */
457 int op
; /* One of ASYNC_xxx etc. */
458 sqlite_int64 iOffset
; /* See above */
459 int nByte
; /* See above */
460 char *zBuf
; /* Data to write to file (or NULL if op!=ASYNC_WRITE) */
461 AsyncWrite
*pNext
; /* Next write operation (to any file) */
465 ** An instance of this structure is created for each distinct open file
466 ** (i.e. if two handles are opened on the one file, only one of these
467 ** structures is allocated) and stored in the async.aLock hash table. The
468 ** keys for async.aLock are the full pathnames of the opened files.
470 ** AsyncLock.pList points to the head of a linked list of AsyncFileLock
471 ** structures, one for each handle currently open on the file.
473 ** If the opened file is not a main-database (the SQLITE_OPEN_MAIN_DB is
474 ** not passed to the sqlite3OsOpen() call), or if async.bLockFiles is
475 ** false, variables AsyncLock.pFile and AsyncLock.eLock are never used.
476 ** Otherwise, pFile is a file handle opened on the file in question and
477 ** used to obtain the file-system locks required by database connections
478 ** within this process.
480 ** See comments above the asyncLock() function for more details on
481 ** the implementation of database locking used by this backend.
488 AsyncFileLock
*pList
;
489 AsyncLock
*pNext
; /* Next in linked list headed by async.pLock */
493 ** An instance of the following structure is allocated along with each
494 ** AsyncFileData structure (see AsyncFileData.lock), but is only used if the
495 ** file was opened with the SQLITE_OPEN_MAIN_DB.
497 struct AsyncFileLock
{
498 int eLock
; /* Internally visible lock state (sqlite pov) */
499 int eAsyncLock
; /* Lock-state with write-queue unlock */
500 AsyncFileLock
*pNext
;
504 ** The AsyncFile structure is a subclass of sqlite3_file used for
507 ** All of the actual data for the structure is stored in the structure
508 ** pointed to by AsyncFile.pData, which is allocated as part of the
509 ** sqlite3OsOpen() using sqlite3_malloc(). The reason for this is that the
510 ** lifetime of the AsyncFile structure is ended by the caller after OsClose()
511 ** is called, but the data in AsyncFileData may be required by the
512 ** writer thread after that point.
515 sqlite3_io_methods
*pMethod
;
516 AsyncFileData
*pData
;
518 struct AsyncFileData
{
519 char *zName
; /* Underlying OS filename - used for debugging */
520 int nName
; /* Number of characters in zName */
521 sqlite3_file
*pBaseRead
; /* Read handle to the underlying Os file */
522 sqlite3_file
*pBaseWrite
; /* Write handle to the underlying Os file */
523 AsyncFileLock lock
; /* Lock state for this handle */
524 AsyncLock
*pLock
; /* AsyncLock object for this file system entry */
525 AsyncWrite closeOp
; /* Preallocated close operation */
529 ** Add an entry to the end of the global write-op list. pWrite should point
530 ** to an AsyncWrite structure allocated using sqlite3_malloc(). The writer
531 ** thread will call sqlite3_free() to free the structure after the specified
532 ** operation has been completed.
534 ** Once an AsyncWrite structure has been added to the list, it becomes the
535 ** property of the writer thread and must not be read or modified by the
538 static void addAsyncWrite(AsyncWrite
*pWrite
){
539 /* We must hold the queue mutex in order to modify the queue pointers */
540 if( pWrite
->op
!=ASYNC_UNLOCK
){
541 async_mutex_enter(ASYNC_MUTEX_QUEUE
);
544 /* Add the record to the end of the write-op queue */
545 assert( !pWrite
->pNext
);
546 if( async
.pQueueLast
){
547 assert( async
.pQueueFirst
);
548 async
.pQueueLast
->pNext
= pWrite
;
550 async
.pQueueFirst
= pWrite
;
552 async
.pQueueLast
= pWrite
;
553 ASYNC_TRACE(("PUSH %p (%s %s %d)\n", pWrite
, azOpcodeName
[pWrite
->op
],
554 pWrite
->pFileData
? pWrite
->pFileData
->zName
: "-", pWrite
->iOffset
));
556 if( pWrite
->op
==ASYNC_CLOSE
){
560 /* The writer thread might have been idle because there was nothing
561 ** on the write-op queue for it to do. So wake it up. */
562 async_cond_signal(ASYNC_COND_QUEUE
);
564 /* Drop the queue mutex */
565 if( pWrite
->op
!=ASYNC_UNLOCK
){
566 async_mutex_leave(ASYNC_MUTEX_QUEUE
);
571 ** Increment async.nFile in a thread-safe manner.
573 static void incrOpenFileCount(void){
574 /* We must hold the queue mutex in order to modify async.nFile */
575 async_mutex_enter(ASYNC_MUTEX_QUEUE
);
576 if( async
.nFile
==0 ){
577 async
.ioError
= SQLITE_OK
;
580 async_mutex_leave(ASYNC_MUTEX_QUEUE
);
584 ** This is a utility function to allocate and populate a new AsyncWrite
585 ** structure and insert it (via addAsyncWrite() ) into the global list.
587 static int addNewAsyncWrite(
588 AsyncFileData
*pFileData
,
590 sqlite3_int64 iOffset
,
595 if( op
!=ASYNC_CLOSE
&& async
.ioError
){
596 return async
.ioError
;
598 p
= sqlite3_malloc(sizeof(AsyncWrite
) + (zByte
?nByte
:0));
600 /* The upper layer does not expect operations like OsWrite() to
601 ** return SQLITE_NOMEM. This is partly because under normal conditions
602 ** SQLite is required to do rollback without calling malloc(). So
603 ** if malloc() fails here, treat it as an I/O error. The above
604 ** layer knows how to handle that.
609 p
->iOffset
= iOffset
;
611 p
->pFileData
= pFileData
;
614 p
->zBuf
= (char *)&p
[1];
615 memcpy(p
->zBuf
, zByte
, nByte
);
624 ** Close the file. This just adds an entry to the write-op list, the file is
625 ** not actually closed.
627 static int asyncClose(sqlite3_file
*pFile
){
628 AsyncFileData
*p
= ((AsyncFile
*)pFile
)->pData
;
630 /* Unlock the file, if it is locked */
631 async_mutex_enter(ASYNC_MUTEX_LOCK
);
633 async_mutex_leave(ASYNC_MUTEX_LOCK
);
635 addAsyncWrite(&p
->closeOp
);
640 ** Implementation of sqlite3OsWrite() for asynchronous files. Instead of
641 ** writing to the underlying file, this function adds an entry to the end of
642 ** the global AsyncWrite list. Either SQLITE_OK or SQLITE_NOMEM may be
645 static int asyncWrite(
651 AsyncFileData
*p
= ((AsyncFile
*)pFile
)->pData
;
652 return addNewAsyncWrite(p
, ASYNC_WRITE
, iOff
, amt
, pBuf
);
656 ** Read data from the file. First we read from the filesystem, then adjust
657 ** the contents of the buffer based on ASYNC_WRITE operations in the
660 ** This method holds the mutex from start to finish.
662 static int asyncRead(
666 sqlite3_int64 iOffset
668 AsyncFileData
*p
= ((AsyncFile
*)pFile
)->pData
;
670 sqlite3_int64 filesize
= 0;
671 sqlite3_file
*pBase
= p
->pBaseRead
;
672 sqlite3_int64 iAmt64
= (sqlite3_int64
)iAmt
;
674 /* Grab the write queue mutex for the duration of the call */
675 async_mutex_enter(ASYNC_MUTEX_QUEUE
);
677 /* If an I/O error has previously occurred in this virtual file
678 ** system, then all subsequent operations fail.
680 if( async
.ioError
!=SQLITE_OK
){
685 if( pBase
->pMethods
){
687 rc
= pBase
->pMethods
->xFileSize(pBase
, &filesize
);
691 nRead
= MIN(filesize
- iOffset
, iAmt64
);
693 rc
= pBase
->pMethods
->xRead(pBase
, zOut
, (int)nRead
, iOffset
);
694 ASYNC_TRACE(("READ %s %d bytes at %d\n", p
->zName
, nRead
, iOffset
));
700 char *zName
= p
->zName
;
702 for(pWrite
=async
.pQueueFirst
; pWrite
; pWrite
= pWrite
->pNext
){
703 if( pWrite
->op
==ASYNC_WRITE
&& (
704 (pWrite
->pFileData
==p
) ||
705 (zName
&& pWrite
->pFileData
->zName
==zName
)
708 sqlite3_int64 nByte64
= (sqlite3_int64
)pWrite
->nByte
;
710 /* Set variable iBeginIn to the offset in buffer pWrite->zBuf[] from
711 ** which data should be copied. Set iBeginOut to the offset within
712 ** the output buffer to which data should be copied. If either of
713 ** these offsets is a negative number, set them to 0.
715 sqlite3_int64 iBeginOut
= (pWrite
->iOffset
-iOffset
);
716 sqlite3_int64 iBeginIn
= -iBeginOut
;
717 if( iBeginIn
<0 ) iBeginIn
= 0;
718 if( iBeginOut
<0 ) iBeginOut
= 0;
720 filesize
= MAX(filesize
, pWrite
->iOffset
+nByte64
);
722 nCopy
= MIN(nByte64
-iBeginIn
, iAmt64
-iBeginOut
);
724 memcpy(&((char *)zOut
)[iBeginOut
], &pWrite
->zBuf
[iBeginIn
], (size_t)nCopy
);
725 ASYNC_TRACE(("OVERREAD %d bytes at %d\n", nCopy
, iBeginOut
+iOffset
));
732 async_mutex_leave(ASYNC_MUTEX_QUEUE
);
733 if( rc
==SQLITE_OK
&& filesize
<(iOffset
+iAmt
) ){
734 rc
= SQLITE_IOERR_SHORT_READ
;
740 ** Truncate the file to nByte bytes in length. This just adds an entry to
741 ** the write-op list, no IO actually takes place.
743 static int asyncTruncate(sqlite3_file
*pFile
, sqlite3_int64 nByte
){
744 AsyncFileData
*p
= ((AsyncFile
*)pFile
)->pData
;
745 return addNewAsyncWrite(p
, ASYNC_TRUNCATE
, nByte
, 0, 0);
749 ** Sync the file. This just adds an entry to the write-op list, the
750 ** sync() is done later by sqlite3_async_flush().
752 static int asyncSync(sqlite3_file
*pFile
, int flags
){
753 AsyncFileData
*p
= ((AsyncFile
*)pFile
)->pData
;
754 return addNewAsyncWrite(p
, ASYNC_SYNC
, 0, flags
, 0);
758 ** Read the size of the file. First we read the size of the file system
759 ** entry, then adjust for any ASYNC_WRITE or ASYNC_TRUNCATE operations
760 ** currently in the write-op list.
762 ** This method holds the mutex from start to finish.
764 int asyncFileSize(sqlite3_file
*pFile
, sqlite3_int64
*piSize
){
765 AsyncFileData
*p
= ((AsyncFile
*)pFile
)->pData
;
770 async_mutex_enter(ASYNC_MUTEX_QUEUE
);
772 /* Read the filesystem size from the base file. If pMethods is NULL, this
773 ** means the file hasn't been opened yet. In this case all relevant data
774 ** must be in the write-op queue anyway, so we can omit reading from the
777 pBase
= p
->pBaseRead
;
778 if( pBase
->pMethods
){
779 rc
= pBase
->pMethods
->xFileSize(pBase
, &s
);
784 for(pWrite
=async
.pQueueFirst
; pWrite
; pWrite
= pWrite
->pNext
){
785 if( pWrite
->op
==ASYNC_DELETE
787 && strcmp(p
->zName
, pWrite
->zBuf
)==0
790 }else if( pWrite
->pFileData
&& (
791 (pWrite
->pFileData
==p
)
792 || (p
->zName
&& pWrite
->pFileData
->zName
==p
->zName
)
794 switch( pWrite
->op
){
796 s
= MAX(pWrite
->iOffset
+ (sqlite3_int64
)(pWrite
->nByte
), s
);
799 s
= MIN(s
, pWrite
->iOffset
);
806 async_mutex_leave(ASYNC_MUTEX_QUEUE
);
811 ** Lock or unlock the actual file-system entry.
813 static int getFileLock(AsyncLock
*pLock
){
815 AsyncFileLock
*pIter
;
819 for(pIter
=pLock
->pList
; pIter
; pIter
=pIter
->pNext
){
820 assert(pIter
->eAsyncLock
>=pIter
->eLock
);
821 if( pIter
->eAsyncLock
>eRequired
){
822 eRequired
= pIter
->eAsyncLock
;
823 assert(eRequired
>=0 && eRequired
<=SQLITE_LOCK_EXCLUSIVE
);
827 if( eRequired
>pLock
->eLock
){
828 rc
= pLock
->pFile
->pMethods
->xLock(pLock
->pFile
, eRequired
);
830 pLock
->eLock
= eRequired
;
833 else if( eRequired
<pLock
->eLock
&& eRequired
<=SQLITE_LOCK_SHARED
){
834 rc
= pLock
->pFile
->pMethods
->xUnlock(pLock
->pFile
, eRequired
);
836 pLock
->eLock
= eRequired
;
845 ** Return the AsyncLock structure from the global async.pLock list
846 ** associated with the file-system entry identified by path zName
847 ** (a string of nName bytes). If no such structure exists, return 0.
849 static AsyncLock
*findLock(const char *zName
, int nName
){
850 AsyncLock
*p
= async
.pLock
;
851 while( p
&& (p
->nFile
!=nName
|| memcmp(p
->zFile
, zName
, nName
)) ){
858 ** The following two methods - asyncLock() and asyncUnlock() - are used
859 ** to obtain and release locks on database files opened with the
860 ** asynchronous backend.
862 static int asyncLock(sqlite3_file
*pFile
, int eLock
){
864 AsyncFileData
*p
= ((AsyncFile
*)pFile
)->pData
;
867 async_mutex_enter(ASYNC_MUTEX_LOCK
);
868 if( p
->lock
.eLock
<eLock
){
869 AsyncLock
*pLock
= p
->pLock
;
870 AsyncFileLock
*pIter
;
871 assert(pLock
&& pLock
->pList
);
872 for(pIter
=pLock
->pList
; pIter
; pIter
=pIter
->pNext
){
873 if( pIter
!=&p
->lock
&& (
874 (eLock
==SQLITE_LOCK_EXCLUSIVE
&& pIter
->eLock
>=SQLITE_LOCK_SHARED
) ||
875 (eLock
==SQLITE_LOCK_PENDING
&& pIter
->eLock
>=SQLITE_LOCK_RESERVED
) ||
876 (eLock
==SQLITE_LOCK_RESERVED
&& pIter
->eLock
>=SQLITE_LOCK_RESERVED
) ||
877 (eLock
==SQLITE_LOCK_SHARED
&& pIter
->eLock
>=SQLITE_LOCK_PENDING
)
883 p
->lock
.eLock
= eLock
;
884 p
->lock
.eAsyncLock
= MAX(p
->lock
.eAsyncLock
, eLock
);
886 assert(p
->lock
.eAsyncLock
>=p
->lock
.eLock
);
888 rc
= getFileLock(pLock
);
891 async_mutex_leave(ASYNC_MUTEX_LOCK
);
894 ASYNC_TRACE(("LOCK %d (%s) rc=%d\n", eLock
, p
->zName
, rc
));
897 static int asyncUnlock(sqlite3_file
*pFile
, int eLock
){
899 AsyncFileData
*p
= ((AsyncFile
*)pFile
)->pData
;
901 AsyncFileLock
*pLock
= &p
->lock
;
902 async_mutex_enter(ASYNC_MUTEX_QUEUE
);
903 async_mutex_enter(ASYNC_MUTEX_LOCK
);
904 pLock
->eLock
= MIN(pLock
->eLock
, eLock
);
905 rc
= addNewAsyncWrite(p
, ASYNC_UNLOCK
, 0, eLock
, 0);
906 async_mutex_leave(ASYNC_MUTEX_LOCK
);
907 async_mutex_leave(ASYNC_MUTEX_QUEUE
);
913 ** This function is called when the pager layer first opens a database file
914 ** and is checking for a hot-journal.
916 static int asyncCheckReservedLock(sqlite3_file
*pFile
, int *pResOut
){
918 AsyncFileLock
*pIter
;
919 AsyncFileData
*p
= ((AsyncFile
*)pFile
)->pData
;
921 async_mutex_enter(ASYNC_MUTEX_LOCK
);
922 for(pIter
=p
->pLock
->pList
; pIter
; pIter
=pIter
->pNext
){
923 if( pIter
->eLock
>=SQLITE_LOCK_RESERVED
){
928 async_mutex_leave(ASYNC_MUTEX_LOCK
);
930 ASYNC_TRACE(("CHECK-LOCK %d (%s)\n", ret
, p
->zName
));
936 ** sqlite3_file_control() implementation.
938 static int asyncFileControl(sqlite3_file
*id
, int op
, void *pArg
){
940 case SQLITE_FCNTL_LOCKSTATE
: {
941 async_mutex_enter(ASYNC_MUTEX_LOCK
);
942 *(int*)pArg
= ((AsyncFile
*)id
)->pData
->lock
.eLock
;
943 async_mutex_leave(ASYNC_MUTEX_LOCK
);
947 return SQLITE_NOTFOUND
;
951 ** Return the device characteristics and sector-size of the device. It
952 ** is tricky to implement these correctly, as this backend might
953 ** not have an open file handle at this point.
955 static int asyncSectorSize(sqlite3_file
*pFile
){
956 UNUSED_PARAMETER(pFile
);
959 static int asyncDeviceCharacteristics(sqlite3_file
*pFile
){
960 UNUSED_PARAMETER(pFile
);
964 static int unlinkAsyncFile(AsyncFileData
*pData
){
965 AsyncFileLock
**ppIter
;
969 AsyncLock
*pLock
= pData
->pLock
;
970 for(ppIter
=&pLock
->pList
; *ppIter
; ppIter
=&((*ppIter
)->pNext
)){
971 if( (*ppIter
)==&pData
->lock
){
972 *ppIter
= pData
->lock
.pNext
;
979 pLock
->pFile
->pMethods
->xClose(pLock
->pFile
);
981 for(pp
=&async
.pLock
; *pp
!=pLock
; pp
=&((*pp
)->pNext
));
985 rc
= getFileLock(pLock
);
993 ** The parameter passed to this function is a copy of a 'flags' parameter
994 ** passed to this modules xOpen() method. This function returns true
995 ** if the file should be opened asynchronously, or false if it should
996 ** be opened immediately.
998 ** If the file is to be opened asynchronously, then asyncOpen() will add
999 ** an entry to the event queue and the file will not actually be opened
1000 ** until the event is processed. Otherwise, the file is opened directly
1003 static int doAsynchronousOpen(int flags
){
1004 return (flags
&SQLITE_OPEN_CREATE
) && (
1005 (flags
&SQLITE_OPEN_MAIN_JOURNAL
) ||
1006 (flags
&SQLITE_OPEN_TEMP_JOURNAL
) ||
1007 (flags
&SQLITE_OPEN_DELETEONCLOSE
)
1014 static int asyncOpen(
1015 sqlite3_vfs
*pAsyncVfs
,
1017 sqlite3_file
*pFile
,
1021 static sqlite3_io_methods async_methods
= {
1023 asyncClose
, /* xClose */
1024 asyncRead
, /* xRead */
1025 asyncWrite
, /* xWrite */
1026 asyncTruncate
, /* xTruncate */
1027 asyncSync
, /* xSync */
1028 asyncFileSize
, /* xFileSize */
1029 asyncLock
, /* xLock */
1030 asyncUnlock
, /* xUnlock */
1031 asyncCheckReservedLock
, /* xCheckReservedLock */
1032 asyncFileControl
, /* xFileControl */
1033 asyncSectorSize
, /* xSectorSize */
1034 asyncDeviceCharacteristics
/* xDeviceCharacteristics */
1037 sqlite3_vfs
*pVfs
= (sqlite3_vfs
*)pAsyncVfs
->pAppData
;
1038 AsyncFile
*p
= (AsyncFile
*)pFile
;
1042 AsyncFileData
*pData
;
1043 AsyncLock
*pLock
= 0;
1045 int isAsyncOpen
= doAsynchronousOpen(flags
);
1047 /* If zName is NULL, then the upper layer is requesting an anonymous file.
1048 ** Otherwise, allocate enough space to make a copy of the file name (along
1049 ** with the second nul-terminator byte required by xOpen).
1052 nName
= (int)strlen(zName
);
1056 sizeof(AsyncFileData
) + /* AsyncFileData structure */
1057 2 * pVfs
->szOsFile
+ /* AsyncFileData.pBaseRead and pBaseWrite */
1058 nName
+ 2 /* AsyncFileData.zName */
1060 z
= sqlite3_malloc(nByte
);
1062 return SQLITE_NOMEM
;
1064 memset(z
, 0, nByte
);
1065 pData
= (AsyncFileData
*)z
;
1066 z
+= sizeof(pData
[0]);
1067 pData
->pBaseRead
= (sqlite3_file
*)z
;
1068 z
+= pVfs
->szOsFile
;
1069 pData
->pBaseWrite
= (sqlite3_file
*)z
;
1070 pData
->closeOp
.pFileData
= pData
;
1071 pData
->closeOp
.op
= ASYNC_CLOSE
;
1074 z
+= pVfs
->szOsFile
;
1076 pData
->nName
= nName
;
1077 memcpy(pData
->zName
, zName
, nName
);
1082 rc
= pVfs
->xOpen(pVfs
, pData
->zName
, pData
->pBaseRead
, flags
, &flagsout
);
1084 && (flagsout
&SQLITE_OPEN_READWRITE
)
1085 && (flags
&SQLITE_OPEN_EXCLUSIVE
)==0
1087 rc
= pVfs
->xOpen(pVfs
, pData
->zName
, pData
->pBaseWrite
, flags
, 0);
1090 *pOutFlags
= flagsout
;
1094 async_mutex_enter(ASYNC_MUTEX_LOCK
);
1096 if( zName
&& rc
==SQLITE_OK
){
1097 pLock
= findLock(pData
->zName
, pData
->nName
);
1099 int nByte
= pVfs
->szOsFile
+ sizeof(AsyncLock
) + pData
->nName
+ 1;
1100 pLock
= (AsyncLock
*)sqlite3_malloc(nByte
);
1102 memset(pLock
, 0, nByte
);
1103 if( async
.bLockFiles
&& (flags
&SQLITE_OPEN_MAIN_DB
) ){
1104 pLock
->pFile
= (sqlite3_file
*)&pLock
[1];
1105 rc
= pVfs
->xOpen(pVfs
, pData
->zName
, pLock
->pFile
, flags
, 0);
1106 if( rc
!=SQLITE_OK
){
1107 sqlite3_free(pLock
);
1112 pLock
->nFile
= pData
->nName
;
1113 pLock
->zFile
= &((char *)(&pLock
[1]))[pVfs
->szOsFile
];
1114 memcpy(pLock
->zFile
, pData
->zName
, pLock
->nFile
);
1115 pLock
->pNext
= async
.pLock
;
1116 async
.pLock
= pLock
;
1124 if( rc
==SQLITE_OK
){
1125 p
->pMethod
= &async_methods
;
1128 /* Link AsyncFileData.lock into the linked list of
1129 ** AsyncFileLock structures for this file.
1132 pData
->lock
.pNext
= pLock
->pList
;
1133 pLock
->pList
= &pData
->lock
;
1134 pData
->zName
= pLock
->zFile
;
1137 if( pData
->pBaseRead
->pMethods
){
1138 pData
->pBaseRead
->pMethods
->xClose(pData
->pBaseRead
);
1140 if( pData
->pBaseWrite
->pMethods
){
1141 pData
->pBaseWrite
->pMethods
->xClose(pData
->pBaseWrite
);
1143 sqlite3_free(pData
);
1146 async_mutex_leave(ASYNC_MUTEX_LOCK
);
1148 if( rc
==SQLITE_OK
){
1149 pData
->pLock
= pLock
;
1152 if( rc
==SQLITE_OK
&& isAsyncOpen
){
1153 rc
= addNewAsyncWrite(pData
, ASYNC_OPENEXCLUSIVE
, (sqlite3_int64
)flags
,0,0);
1154 if( rc
==SQLITE_OK
){
1155 if( pOutFlags
) *pOutFlags
= flags
;
1157 async_mutex_enter(ASYNC_MUTEX_LOCK
);
1158 unlinkAsyncFile(pData
);
1159 async_mutex_leave(ASYNC_MUTEX_LOCK
);
1160 sqlite3_free(pData
);
1163 if( rc
!=SQLITE_OK
){
1166 incrOpenFileCount();
1173 ** Implementation of sqlite3OsDelete. Add an entry to the end of the
1174 ** write-op queue to perform the delete.
1176 static int asyncDelete(sqlite3_vfs
*pAsyncVfs
, const char *z
, int syncDir
){
1177 UNUSED_PARAMETER(pAsyncVfs
);
1178 return addNewAsyncWrite(0, ASYNC_DELETE
, syncDir
, (int)strlen(z
)+1, z
);
1182 ** Implementation of sqlite3OsAccess. This method holds the mutex from
1185 static int asyncAccess(
1186 sqlite3_vfs
*pAsyncVfs
,
1194 sqlite3_vfs
*pVfs
= (sqlite3_vfs
*)pAsyncVfs
->pAppData
;
1196 assert(flags
==SQLITE_ACCESS_READWRITE
1197 || flags
==SQLITE_ACCESS_READ
1198 || flags
==SQLITE_ACCESS_EXISTS
1201 async_mutex_enter(ASYNC_MUTEX_QUEUE
);
1202 rc
= pVfs
->xAccess(pVfs
, zName
, flags
, &ret
);
1203 if( rc
==SQLITE_OK
&& flags
==SQLITE_ACCESS_EXISTS
){
1204 for(p
=async
.pQueueFirst
; p
; p
= p
->pNext
){
1205 if( p
->op
==ASYNC_DELETE
&& 0==strcmp(p
->zBuf
, zName
) ){
1207 }else if( p
->op
==ASYNC_OPENEXCLUSIVE
1208 && p
->pFileData
->zName
1209 && 0==strcmp(p
->pFileData
->zName
, zName
)
1215 ASYNC_TRACE(("ACCESS(%s): %s = %d\n",
1216 flags
==SQLITE_ACCESS_READWRITE
?"read-write":
1217 flags
==SQLITE_ACCESS_READ
?"read":"exists"
1220 async_mutex_leave(ASYNC_MUTEX_QUEUE
);
1226 ** Fill in zPathOut with the full path to the file identified by zPath.
1228 static int asyncFullPathname(
1229 sqlite3_vfs
*pAsyncVfs
,
1235 sqlite3_vfs
*pVfs
= (sqlite3_vfs
*)pAsyncVfs
->pAppData
;
1236 rc
= pVfs
->xFullPathname(pVfs
, zPath
, nPathOut
, zPathOut
);
1238 /* Because of the way intra-process file locking works, this backend
1239 ** needs to return a canonical path. The following block assumes the
1240 ** file-system uses unix style paths.
1242 if( rc
==SQLITE_OK
){
1245 int n
= (int)strlen(z
);
1246 while( n
>1 && z
[n
-1]=='/' ){ n
--; }
1247 for(i
=j
=0; i
<n
; i
++){
1249 if( z
[i
+1]=='/' ) continue;
1250 if( z
[i
+1]=='.' && i
+2<n
&& z
[i
+2]=='/' ){
1254 if( z
[i
+1]=='.' && i
+3<n
&& z
[i
+2]=='.' && z
[i
+3]=='/' ){
1255 while( j
>0 && z
[j
-1]!='/' ){ j
--; }
1268 static void *asyncDlOpen(sqlite3_vfs
*pAsyncVfs
, const char *zPath
){
1269 sqlite3_vfs
*pVfs
= (sqlite3_vfs
*)pAsyncVfs
->pAppData
;
1270 return pVfs
->xDlOpen(pVfs
, zPath
);
1272 static void asyncDlError(sqlite3_vfs
*pAsyncVfs
, int nByte
, char *zErrMsg
){
1273 sqlite3_vfs
*pVfs
= (sqlite3_vfs
*)pAsyncVfs
->pAppData
;
1274 pVfs
->xDlError(pVfs
, nByte
, zErrMsg
);
1276 static void (*asyncDlSym(
1277 sqlite3_vfs
*pAsyncVfs
,
1281 sqlite3_vfs
*pVfs
= (sqlite3_vfs
*)pAsyncVfs
->pAppData
;
1282 return pVfs
->xDlSym(pVfs
, pHandle
, zSymbol
);
1284 static void asyncDlClose(sqlite3_vfs
*pAsyncVfs
, void *pHandle
){
1285 sqlite3_vfs
*pVfs
= (sqlite3_vfs
*)pAsyncVfs
->pAppData
;
1286 pVfs
->xDlClose(pVfs
, pHandle
);
1288 static int asyncRandomness(sqlite3_vfs
*pAsyncVfs
, int nByte
, char *zBufOut
){
1289 sqlite3_vfs
*pVfs
= (sqlite3_vfs
*)pAsyncVfs
->pAppData
;
1290 return pVfs
->xRandomness(pVfs
, nByte
, zBufOut
);
1292 static int asyncSleep(sqlite3_vfs
*pAsyncVfs
, int nMicro
){
1293 sqlite3_vfs
*pVfs
= (sqlite3_vfs
*)pAsyncVfs
->pAppData
;
1294 return pVfs
->xSleep(pVfs
, nMicro
);
1296 static int asyncCurrentTime(sqlite3_vfs
*pAsyncVfs
, double *pTimeOut
){
1297 sqlite3_vfs
*pVfs
= (sqlite3_vfs
*)pAsyncVfs
->pAppData
;
1298 return pVfs
->xCurrentTime(pVfs
, pTimeOut
);
1301 static sqlite3_vfs async_vfs
= {
1303 sizeof(AsyncFile
), /* szOsFile */
1306 SQLITEASYNC_VFSNAME
, /* zName */
1308 asyncOpen
, /* xOpen */
1309 asyncDelete
, /* xDelete */
1310 asyncAccess
, /* xAccess */
1311 asyncFullPathname
, /* xFullPathname */
1312 asyncDlOpen
, /* xDlOpen */
1313 asyncDlError
, /* xDlError */
1314 asyncDlSym
, /* xDlSym */
1315 asyncDlClose
, /* xDlClose */
1316 asyncRandomness
, /* xDlError */
1317 asyncSleep
, /* xDlSym */
1318 asyncCurrentTime
/* xDlClose */
1322 ** This procedure runs in a separate thread, reading messages off of the
1323 ** write queue and processing them one by one.
1325 ** If async.writerHaltNow is true, then this procedure exits
1326 ** after processing a single message.
1328 ** If async.writerHaltWhenIdle is true, then this procedure exits when
1329 ** the write queue is empty.
1331 ** If both of the above variables are false, this procedure runs
1332 ** indefinately, waiting for operations to be added to the write queue
1333 ** and processing them in the order in which they arrive.
1335 ** An artifical delay of async.ioDelay milliseconds is inserted before
1336 ** each write operation in order to simulate the effect of a slow disk.
1338 ** Only one instance of this procedure may be running at a time.
1340 static void asyncWriterThread(void){
1341 sqlite3_vfs
*pVfs
= (sqlite3_vfs
*)(async_vfs
.pAppData
);
1344 int holdingMutex
= 0;
1346 async_mutex_enter(ASYNC_MUTEX_WRITER
);
1348 while( async
.eHalt
!=SQLITEASYNC_HALT_NOW
){
1350 sqlite3_file
*pBase
= 0;
1352 if( !holdingMutex
){
1353 async_mutex_enter(ASYNC_MUTEX_QUEUE
);
1355 while( (p
= async
.pQueueFirst
)==0 ){
1356 if( async
.eHalt
!=SQLITEASYNC_HALT_NEVER
){
1357 async_mutex_leave(ASYNC_MUTEX_QUEUE
);
1360 ASYNC_TRACE(("IDLE\n"));
1361 async_cond_wait(ASYNC_COND_QUEUE
, ASYNC_MUTEX_QUEUE
);
1362 ASYNC_TRACE(("WAKEUP\n"));
1368 /* Right now this thread is holding the mutex on the write-op queue.
1369 ** Variable 'p' points to the first entry in the write-op queue. In
1370 ** the general case, we hold on to the mutex for the entire body of
1373 ** However in the cases enumerated below, we relinquish the mutex,
1374 ** perform the IO, and then re-request the mutex before removing 'p' from
1375 ** the head of the write-op queue. The idea is to increase concurrency with
1378 ** * An ASYNC_CLOSE operation.
1379 ** * An ASYNC_OPENEXCLUSIVE operation. For this one, we relinquish
1380 ** the mutex, call the underlying xOpenExclusive() function, then
1381 ** re-aquire the mutex before seting the AsyncFile.pBaseRead
1383 ** * ASYNC_SYNC and ASYNC_WRITE operations, if
1384 ** SQLITE_ASYNC_TWO_FILEHANDLES was set at compile time and two
1385 ** file-handles are open for the particular file being "synced".
1387 if( async
.ioError
!=SQLITE_OK
&& p
->op
!=ASYNC_CLOSE
){
1391 pBase
= p
->pFileData
->pBaseWrite
;
1393 p
->op
==ASYNC_CLOSE
||
1394 p
->op
==ASYNC_OPENEXCLUSIVE
||
1395 (pBase
->pMethods
&& (p
->op
==ASYNC_SYNC
|| p
->op
==ASYNC_WRITE
) )
1397 async_mutex_leave(ASYNC_MUTEX_QUEUE
);
1400 if( !pBase
->pMethods
){
1401 pBase
= p
->pFileData
->pBaseRead
;
1411 ASYNC_TRACE(("WRITE %s %d bytes at %d\n",
1412 p
->pFileData
->zName
, p
->nByte
, p
->iOffset
));
1413 rc
= pBase
->pMethods
->xWrite(pBase
, (void *)(p
->zBuf
), p
->nByte
, p
->iOffset
);
1418 ASYNC_TRACE(("SYNC %s\n", p
->pFileData
->zName
));
1419 rc
= pBase
->pMethods
->xSync(pBase
, p
->nByte
);
1422 case ASYNC_TRUNCATE
:
1424 ASYNC_TRACE(("TRUNCATE %s to %d bytes\n",
1425 p
->pFileData
->zName
, p
->iOffset
));
1426 rc
= pBase
->pMethods
->xTruncate(pBase
, p
->iOffset
);
1430 AsyncFileData
*pData
= p
->pFileData
;
1431 ASYNC_TRACE(("CLOSE %s\n", p
->pFileData
->zName
));
1432 if( pData
->pBaseWrite
->pMethods
){
1433 pData
->pBaseWrite
->pMethods
->xClose(pData
->pBaseWrite
);
1435 if( pData
->pBaseRead
->pMethods
){
1436 pData
->pBaseRead
->pMethods
->xClose(pData
->pBaseRead
);
1439 /* Unlink AsyncFileData.lock from the linked list of AsyncFileLock
1440 ** structures for this file. Obtain the async.lockMutex mutex
1443 async_mutex_enter(ASYNC_MUTEX_LOCK
);
1444 rc
= unlinkAsyncFile(pData
);
1445 async_mutex_leave(ASYNC_MUTEX_LOCK
);
1447 if( !holdingMutex
){
1448 async_mutex_enter(ASYNC_MUTEX_QUEUE
);
1451 assert_mutex_is_held(ASYNC_MUTEX_QUEUE
);
1452 async
.pQueueFirst
= p
->pNext
;
1453 sqlite3_free(pData
);
1458 case ASYNC_UNLOCK
: {
1460 AsyncFileData
*pData
= p
->pFileData
;
1461 int eLock
= p
->nByte
;
1463 /* When a file is locked by SQLite using the async backend, it is
1464 ** locked within the 'real' file-system synchronously. When it is
1465 ** unlocked, an ASYNC_UNLOCK event is added to the write-queue to
1466 ** unlock the file asynchronously. The design of the async backend
1467 ** requires that the 'real' file-system file be locked from the
1468 ** time that SQLite first locks it (and probably reads from it)
1469 ** until all asynchronous write events that were scheduled before
1470 ** SQLite unlocked the file have been processed.
1472 ** This is more complex if SQLite locks and unlocks the file multiple
1473 ** times in quick succession. For example, if SQLite does:
1475 ** lock, write, unlock, lock, write, unlock
1477 ** Each "lock" operation locks the file immediately. Each "write"
1478 ** and "unlock" operation adds an event to the event queue. If the
1479 ** second "lock" operation is performed before the first "unlock"
1480 ** operation has been processed asynchronously, then the first
1481 ** "unlock" cannot be safely processed as is, since this would mean
1482 ** the file was unlocked when the second "write" operation is
1483 ** processed. To work around this, when processing an ASYNC_UNLOCK
1484 ** operation, SQLite:
1486 ** 1) Unlocks the file to the minimum of the argument passed to
1487 ** the xUnlock() call and the current lock from SQLite's point
1490 ** 2) Only unlocks the file at all if this event is the last
1491 ** ASYNC_UNLOCK event on this file in the write-queue.
1493 assert( holdingMutex
==1 );
1494 assert( async
.pQueueFirst
==p
);
1495 for(pIter
=async
.pQueueFirst
->pNext
; pIter
; pIter
=pIter
->pNext
){
1496 if( pIter
->pFileData
==pData
&& pIter
->op
==ASYNC_UNLOCK
) break;
1499 async_mutex_enter(ASYNC_MUTEX_LOCK
);
1500 pData
->lock
.eAsyncLock
= MIN(
1501 pData
->lock
.eAsyncLock
, MAX(pData
->lock
.eLock
, eLock
)
1503 assert(pData
->lock
.eAsyncLock
>=pData
->lock
.eLock
);
1504 rc
= getFileLock(pData
->pLock
);
1505 async_mutex_leave(ASYNC_MUTEX_LOCK
);
1511 ASYNC_TRACE(("DELETE %s\n", p
->zBuf
));
1512 rc
= pVfs
->xDelete(pVfs
, p
->zBuf
, (int)p
->iOffset
);
1513 if( rc
==SQLITE_IOERR_DELETE_NOENT
) rc
= SQLITE_OK
;
1516 case ASYNC_OPENEXCLUSIVE
: {
1517 int flags
= (int)p
->iOffset
;
1518 AsyncFileData
*pData
= p
->pFileData
;
1519 ASYNC_TRACE(("OPEN %s flags=%d\n", p
->zBuf
, (int)p
->iOffset
));
1520 assert(pData
->pBaseRead
->pMethods
==0 && pData
->pBaseWrite
->pMethods
==0);
1521 rc
= pVfs
->xOpen(pVfs
, pData
->zName
, pData
->pBaseRead
, flags
, 0);
1522 assert( holdingMutex
==0 );
1523 async_mutex_enter(ASYNC_MUTEX_QUEUE
);
1528 default: assert(!"Illegal value for AsyncWrite.op");
1531 /* If we didn't hang on to the mutex during the IO op, obtain it now
1532 ** so that the AsyncWrite structure can be safely removed from the
1533 ** global write-op queue.
1535 if( !holdingMutex
){
1536 async_mutex_enter(ASYNC_MUTEX_QUEUE
);
1539 /* ASYNC_TRACE(("UNLINK %p\n", p)); */
1540 if( p
==async
.pQueueLast
){
1541 async
.pQueueLast
= 0;
1544 assert_mutex_is_held(ASYNC_MUTEX_QUEUE
);
1545 async
.pQueueFirst
= p
->pNext
;
1548 assert( holdingMutex
);
1550 /* An IO error has occurred. We cannot report the error back to the
1551 ** connection that requested the I/O since the error happened
1552 ** asynchronously. The connection has already moved on. There
1553 ** really is nobody to report the error to.
1555 ** The file for which the error occurred may have been a database or
1556 ** journal file. Regardless, none of the currently queued operations
1557 ** associated with the same database should now be performed. Nor should
1558 ** any subsequently requested IO on either a database or journal file
1559 ** handle for the same database be accepted until the main database
1560 ** file handle has been closed and reopened.
1562 ** Furthermore, no further IO should be queued or performed on any file
1563 ** handle associated with a database that may have been part of a
1564 ** multi-file transaction that included the database associated with
1565 ** the IO error (i.e. a database ATTACHed to the same handle at some
1568 if( rc
!=SQLITE_OK
){
1572 if( async
.ioError
&& !async
.pQueueFirst
){
1573 async_mutex_enter(ASYNC_MUTEX_LOCK
);
1574 if( 0==async
.pLock
){
1575 async
.ioError
= SQLITE_OK
;
1577 async_mutex_leave(ASYNC_MUTEX_LOCK
);
1580 /* Drop the queue mutex before continuing to the next write operation
1581 ** in order to give other threads a chance to work with the write queue.
1583 if( !async
.pQueueFirst
|| !async
.ioError
){
1584 async_mutex_leave(ASYNC_MUTEX_QUEUE
);
1586 if( async
.ioDelay
>0 ){
1587 pVfs
->xSleep(pVfs
, async
.ioDelay
*1000);
1589 async_sched_yield();
1594 async_mutex_leave(ASYNC_MUTEX_WRITER
);
1599 ** Install the asynchronous VFS.
1601 int sqlite3async_initialize(const char *zParent
, int isDefault
){
1603 if( async_vfs
.pAppData
==0 ){
1604 sqlite3_vfs
*pParent
= sqlite3_vfs_find(zParent
);
1605 if( !pParent
|| async_os_initialize() ){
1607 }else if( SQLITE_OK
!=(rc
= sqlite3_vfs_register(&async_vfs
, isDefault
)) ){
1608 async_os_shutdown();
1610 async_vfs
.pAppData
= (void *)pParent
;
1611 async_vfs
.mxPathname
= ((sqlite3_vfs
*)async_vfs
.pAppData
)->mxPathname
;
1618 ** Uninstall the asynchronous VFS.
1620 void sqlite3async_shutdown(void){
1621 if( async_vfs
.pAppData
){
1622 async_os_shutdown();
1623 sqlite3_vfs_unregister((sqlite3_vfs
*)&async_vfs
);
1624 async_vfs
.pAppData
= 0;
1629 ** Process events on the write-queue.
1631 void sqlite3async_run(void){
1632 asyncWriterThread();
1636 ** Control/configure the asynchronous IO system.
1638 int sqlite3async_control(int op
, ...){
1642 case SQLITEASYNC_HALT
: {
1643 int eWhen
= va_arg(ap
, int);
1644 if( eWhen
!=SQLITEASYNC_HALT_NEVER
1645 && eWhen
!=SQLITEASYNC_HALT_NOW
1646 && eWhen
!=SQLITEASYNC_HALT_IDLE
1648 return SQLITE_MISUSE
;
1650 async
.eHalt
= eWhen
;
1651 async_mutex_enter(ASYNC_MUTEX_QUEUE
);
1652 async_cond_signal(ASYNC_COND_QUEUE
);
1653 async_mutex_leave(ASYNC_MUTEX_QUEUE
);
1657 case SQLITEASYNC_DELAY
: {
1658 int iDelay
= va_arg(ap
, int);
1660 return SQLITE_MISUSE
;
1662 async
.ioDelay
= iDelay
;
1666 case SQLITEASYNC_LOCKFILES
: {
1667 int bLock
= va_arg(ap
, int);
1668 async_mutex_enter(ASYNC_MUTEX_QUEUE
);
1669 if( async
.nFile
|| async
.pQueueFirst
){
1670 async_mutex_leave(ASYNC_MUTEX_QUEUE
);
1671 return SQLITE_MISUSE
;
1673 async
.bLockFiles
= bLock
;
1674 async_mutex_leave(ASYNC_MUTEX_QUEUE
);
1678 case SQLITEASYNC_GET_HALT
: {
1679 int *peWhen
= va_arg(ap
, int *);
1680 *peWhen
= async
.eHalt
;
1683 case SQLITEASYNC_GET_DELAY
: {
1684 int *piDelay
= va_arg(ap
, int *);
1685 *piDelay
= async
.ioDelay
;
1688 case SQLITEASYNC_GET_LOCKFILES
: {
1689 int *piDelay
= va_arg(ap
, int *);
1690 *piDelay
= async
.bLockFiles
;
1695 return SQLITE_ERROR
;
1700 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ASYNCIO) */