4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 ******************************************************************************
13 ** This file is part of the SQLite FTS3 extension module. Specifically,
14 ** this file contains code to insert, update and delete rows from FTS3
15 ** tables. It also contains code to merge FTS3 b-tree segments. Some
16 ** of the sub-routines used to merge segments are also used by the query
21 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
28 #define FTS_MAX_APPENDABLE_HEIGHT 16
31 ** When full-text index nodes are loaded from disk, the buffer that they
32 ** are loaded into has the following number of bytes of padding at the end
33 ** of it. i.e. if a full-text index node is 900 bytes in size, then a buffer
34 ** of 920 bytes is allocated for it.
36 ** This means that if we have a pointer into a buffer containing node data,
37 ** it is always safe to read up to two varints from it without risking an
38 ** overread, even if the node data is corrupted.
40 #define FTS3_NODE_PADDING (FTS3_VARINT_MAX*2)
43 ** Under certain circumstances, b-tree nodes (doclists) can be loaded into
44 ** memory incrementally instead of all at once. This can be a big performance
45 ** win (reduced IO and CPU) if SQLite stops calling the virtual table xNext()
46 ** method before retrieving all query results (as may happen, for example,
47 ** if a query has a LIMIT clause).
49 ** Incremental loading is used for b-tree nodes FTS3_NODE_CHUNK_THRESHOLD
50 ** bytes and larger. Nodes are loaded in chunks of FTS3_NODE_CHUNKSIZE bytes.
51 ** The code is written so that the hard lower-limit for each of these values
52 ** is 1. Clearly such small values would be inefficient, but can be useful
53 ** for testing purposes.
55 ** If this module is built with SQLITE_TEST defined, these constants may
56 ** be overridden at runtime for testing purposes. File fts3_test.c contains
57 ** a Tcl interface to read and write the values.
60 int test_fts3_node_chunksize
= (4*1024);
61 int test_fts3_node_chunk_threshold
= (4*1024)*4;
62 # define FTS3_NODE_CHUNKSIZE test_fts3_node_chunksize
63 # define FTS3_NODE_CHUNK_THRESHOLD test_fts3_node_chunk_threshold
65 # define FTS3_NODE_CHUNKSIZE (4*1024)
66 # define FTS3_NODE_CHUNK_THRESHOLD (FTS3_NODE_CHUNKSIZE*4)
70 ** The two values that may be meaningfully bound to the :1 parameter in
71 ** statements SQL_REPLACE_STAT and SQL_SELECT_STAT.
73 #define FTS_STAT_DOCTOTAL 0
74 #define FTS_STAT_INCRMERGEHINT 1
75 #define FTS_STAT_AUTOINCRMERGE 2
78 ** If FTS_LOG_MERGES is defined, call sqlite3_log() to report each automatic
79 ** and incremental merge operation that takes place. This is used for
80 ** debugging FTS only, it should not usually be turned on in production
83 #ifdef FTS3_LOG_MERGES
84 static void fts3LogMerge(int nMerge
, sqlite3_int64 iAbsLevel
){
85 sqlite3_log(SQLITE_OK
, "%d-way merge from level %d", nMerge
, (int)iAbsLevel
);
88 #define fts3LogMerge(x, y)
92 typedef struct PendingList PendingList
;
93 typedef struct SegmentNode SegmentNode
;
94 typedef struct SegmentWriter SegmentWriter
;
97 ** An instance of the following data structure is used to build doclists
98 ** incrementally. See function fts3PendingListAppend() for details.
104 sqlite3_int64 iLastDocid
;
105 sqlite3_int64 iLastCol
;
106 sqlite3_int64 iLastPos
;
111 ** Each cursor has a (possibly empty) linked list of the following objects.
113 struct Fts3DeferredToken
{
114 Fts3PhraseToken
*pToken
; /* Pointer to corresponding expr token */
115 int iCol
; /* Column token must occur in */
116 Fts3DeferredToken
*pNext
; /* Next in list of deferred tokens */
117 PendingList
*pList
; /* Doclist is assembled here */
121 ** An instance of this structure is used to iterate through the terms on
122 ** a contiguous set of segment b-tree leaf nodes. Although the details of
123 ** this structure are only manipulated by code in this file, opaque handles
124 ** of type Fts3SegReader* are also used by code in fts3.c to iterate through
125 ** terms when querying the full-text index. See functions:
127 ** sqlite3Fts3SegReaderNew()
128 ** sqlite3Fts3SegReaderFree()
129 ** sqlite3Fts3SegReaderIterate()
131 ** Methods used to manipulate Fts3SegReader structures:
133 ** fts3SegReaderNext()
134 ** fts3SegReaderFirstDocid()
135 ** fts3SegReaderNextDocid()
137 struct Fts3SegReader
{
138 int iIdx
; /* Index within level, or 0x7FFFFFFF for PT */
139 u8 bLookup
; /* True for a lookup only */
140 u8 rootOnly
; /* True for a root-only reader */
142 sqlite3_int64 iStartBlock
; /* Rowid of first leaf block to traverse */
143 sqlite3_int64 iLeafEndBlock
; /* Rowid of final leaf block to traverse */
144 sqlite3_int64 iEndBlock
; /* Rowid of final block in segment (or 0) */
145 sqlite3_int64 iCurrentBlock
; /* Current leaf block (or 0) */
147 char *aNode
; /* Pointer to node data (or NULL) */
148 int nNode
; /* Size of buffer at aNode (or 0) */
149 int nPopulate
; /* If >0, bytes of buffer aNode[] loaded */
150 sqlite3_blob
*pBlob
; /* If not NULL, blob handle to read node */
152 Fts3HashElem
**ppNextElem
;
154 /* Variables set by fts3SegReaderNext(). These may be read directly
155 ** by the caller. They are valid from the time SegmentReaderNew() returns
156 ** until SegmentReaderNext() returns something other than SQLITE_OK
157 ** (i.e. SQLITE_DONE).
159 int nTerm
; /* Number of bytes in current term */
160 char *zTerm
; /* Pointer to current term */
161 int nTermAlloc
; /* Allocated size of zTerm buffer */
162 char *aDoclist
; /* Pointer to doclist of current entry */
163 int nDoclist
; /* Size of doclist in current entry */
165 /* The following variables are used by fts3SegReaderNextDocid() to iterate
166 ** through the current doclist (aDoclist/nDoclist).
169 int nOffsetList
; /* For descending pending seg-readers only */
170 sqlite3_int64 iDocid
;
173 #define fts3SegReaderIsPending(p) ((p)->ppNextElem!=0)
174 #define fts3SegReaderIsRootOnly(p) ((p)->rootOnly!=0)
177 ** An instance of this structure is used to create a segment b-tree in the
178 ** database. The internal details of this type are only accessed by the
179 ** following functions:
181 ** fts3SegWriterAdd()
182 ** fts3SegWriterFlush()
183 ** fts3SegWriterFree()
185 struct SegmentWriter
{
186 SegmentNode
*pTree
; /* Pointer to interior tree structure */
187 sqlite3_int64 iFirst
; /* First slot in %_segments written */
188 sqlite3_int64 iFree
; /* Next free slot in %_segments */
189 char *zTerm
; /* Pointer to previous term buffer */
190 int nTerm
; /* Number of bytes in zTerm */
191 int nMalloc
; /* Size of malloc'd buffer at zMalloc */
192 char *zMalloc
; /* Malloc'd space (possibly) used for zTerm */
193 int nSize
; /* Size of allocation at aData */
194 int nData
; /* Bytes of data in aData */
195 char *aData
; /* Pointer to block from malloc() */
196 i64 nLeafData
; /* Number of bytes of leaf data written */
200 ** Type SegmentNode is used by the following three functions to create
201 ** the interior part of the segment b+-tree structures (everything except
202 ** the leaf nodes). These functions and type are only ever used by code
203 ** within the fts3SegWriterXXX() family of functions described above.
209 ** When a b+tree is written to the database (either as a result of a merge
210 ** or the pending-terms table being flushed), leaves are written into the
211 ** database file as soon as they are completely populated. The interior of
212 ** the tree is assembled in memory and written out only once all leaves have
213 ** been populated and stored. This is Ok, as the b+-tree fanout is usually
214 ** very large, meaning that the interior of the tree consumes relatively
218 SegmentNode
*pParent
; /* Parent node (or NULL for root node) */
219 SegmentNode
*pRight
; /* Pointer to right-sibling */
220 SegmentNode
*pLeftmost
; /* Pointer to left-most node of this depth */
221 int nEntry
; /* Number of terms written to node so far */
222 char *zTerm
; /* Pointer to previous term buffer */
223 int nTerm
; /* Number of bytes in zTerm */
224 int nMalloc
; /* Size of malloc'd buffer at zMalloc */
225 char *zMalloc
; /* Malloc'd space (possibly) used for zTerm */
226 int nData
; /* Bytes of valid data so far */
227 char *aData
; /* Node data */
231 ** Valid values for the second argument to fts3SqlStmt().
233 #define SQL_DELETE_CONTENT 0
234 #define SQL_IS_EMPTY 1
235 #define SQL_DELETE_ALL_CONTENT 2
236 #define SQL_DELETE_ALL_SEGMENTS 3
237 #define SQL_DELETE_ALL_SEGDIR 4
238 #define SQL_DELETE_ALL_DOCSIZE 5
239 #define SQL_DELETE_ALL_STAT 6
240 #define SQL_SELECT_CONTENT_BY_ROWID 7
241 #define SQL_NEXT_SEGMENT_INDEX 8
242 #define SQL_INSERT_SEGMENTS 9
243 #define SQL_NEXT_SEGMENTS_ID 10
244 #define SQL_INSERT_SEGDIR 11
245 #define SQL_SELECT_LEVEL 12
246 #define SQL_SELECT_LEVEL_RANGE 13
247 #define SQL_SELECT_LEVEL_COUNT 14
248 #define SQL_SELECT_SEGDIR_MAX_LEVEL 15
249 #define SQL_DELETE_SEGDIR_LEVEL 16
250 #define SQL_DELETE_SEGMENTS_RANGE 17
251 #define SQL_CONTENT_INSERT 18
252 #define SQL_DELETE_DOCSIZE 19
253 #define SQL_REPLACE_DOCSIZE 20
254 #define SQL_SELECT_DOCSIZE 21
255 #define SQL_SELECT_STAT 22
256 #define SQL_REPLACE_STAT 23
258 #define SQL_SELECT_ALL_PREFIX_LEVEL 24
259 #define SQL_DELETE_ALL_TERMS_SEGDIR 25
260 #define SQL_DELETE_SEGDIR_RANGE 26
261 #define SQL_SELECT_ALL_LANGID 27
262 #define SQL_FIND_MERGE_LEVEL 28
263 #define SQL_MAX_LEAF_NODE_ESTIMATE 29
264 #define SQL_DELETE_SEGDIR_ENTRY 30
265 #define SQL_SHIFT_SEGDIR_ENTRY 31
266 #define SQL_SELECT_SEGDIR 32
267 #define SQL_CHOMP_SEGDIR 33
268 #define SQL_SEGMENT_IS_APPENDABLE 34
269 #define SQL_SELECT_INDEXES 35
270 #define SQL_SELECT_MXLEVEL 36
272 #define SQL_SELECT_LEVEL_RANGE2 37
273 #define SQL_UPDATE_LEVEL_IDX 38
274 #define SQL_UPDATE_LEVEL 39
277 ** This function is used to obtain an SQLite prepared statement handle
278 ** for the statement identified by the second argument. If successful,
279 ** *pp is set to the requested statement handle and SQLITE_OK returned.
280 ** Otherwise, an SQLite error code is returned and *pp is set to 0.
282 ** If argument apVal is not NULL, then it must point to an array with
283 ** at least as many entries as the requested statement has bound
284 ** parameters. The values are bound to the statements parameters before
287 static int fts3SqlStmt(
288 Fts3Table
*p
, /* Virtual table handle */
289 int eStmt
, /* One of the SQL_XXX constants above */
290 sqlite3_stmt
**pp
, /* OUT: Statement handle */
291 sqlite3_value
**apVal
/* Values to bind to statement */
293 const char *azSql
[] = {
294 /* 0 */ "DELETE FROM %Q.'%q_content' WHERE rowid = ?",
295 /* 1 */ "SELECT NOT EXISTS(SELECT docid FROM %Q.'%q_content' WHERE rowid!=?)",
296 /* 2 */ "DELETE FROM %Q.'%q_content'",
297 /* 3 */ "DELETE FROM %Q.'%q_segments'",
298 /* 4 */ "DELETE FROM %Q.'%q_segdir'",
299 /* 5 */ "DELETE FROM %Q.'%q_docsize'",
300 /* 6 */ "DELETE FROM %Q.'%q_stat'",
301 /* 7 */ "SELECT %s WHERE rowid=?",
302 /* 8 */ "SELECT (SELECT max(idx) FROM %Q.'%q_segdir' WHERE level = ?) + 1",
303 /* 9 */ "REPLACE INTO %Q.'%q_segments'(blockid, block) VALUES(?, ?)",
304 /* 10 */ "SELECT coalesce((SELECT max(blockid) FROM %Q.'%q_segments') + 1, 1)",
305 /* 11 */ "REPLACE INTO %Q.'%q_segdir' VALUES(?,?,?,?,?,?)",
307 /* Return segments in order from oldest to newest.*/
308 /* 12 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
309 "FROM %Q.'%q_segdir' WHERE level = ? ORDER BY idx ASC",
310 /* 13 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
311 "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?"
312 "ORDER BY level DESC, idx ASC",
314 /* 14 */ "SELECT count(*) FROM %Q.'%q_segdir' WHERE level = ?",
315 /* 15 */ "SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?",
317 /* 16 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ?",
318 /* 17 */ "DELETE FROM %Q.'%q_segments' WHERE blockid BETWEEN ? AND ?",
319 /* 18 */ "INSERT INTO %Q.'%q_content' VALUES(%s)",
320 /* 19 */ "DELETE FROM %Q.'%q_docsize' WHERE docid = ?",
321 /* 20 */ "REPLACE INTO %Q.'%q_docsize' VALUES(?,?)",
322 /* 21 */ "SELECT size FROM %Q.'%q_docsize' WHERE docid=?",
323 /* 22 */ "SELECT value FROM %Q.'%q_stat' WHERE id=?",
324 /* 23 */ "REPLACE INTO %Q.'%q_stat' VALUES(?,?)",
328 /* 26 */ "DELETE FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?",
329 /* 27 */ "SELECT ? UNION SELECT level / (1024 * ?) FROM %Q.'%q_segdir'",
331 /* This statement is used to determine which level to read the input from
332 ** when performing an incremental merge. It returns the absolute level number
333 ** of the oldest level in the db that contains at least ? segments. Or,
334 ** if no level in the FTS index contains more than ? segments, the statement
335 ** returns zero rows. */
336 /* 28 */ "SELECT level, count(*) AS cnt FROM %Q.'%q_segdir' "
337 " GROUP BY level HAVING cnt>=?"
338 " ORDER BY (level %% 1024) ASC LIMIT 1",
340 /* Estimate the upper limit on the number of leaf nodes in a new segment
341 ** created by merging the oldest :2 segments from absolute level :1. See
342 ** function sqlite3Fts3Incrmerge() for details. */
343 /* 29 */ "SELECT 2 * total(1 + leaves_end_block - start_block) "
344 " FROM %Q.'%q_segdir' WHERE level = ? AND idx < ?",
346 /* SQL_DELETE_SEGDIR_ENTRY
347 ** Delete the %_segdir entry on absolute level :1 with index :2. */
348 /* 30 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?",
350 /* SQL_SHIFT_SEGDIR_ENTRY
351 ** Modify the idx value for the segment with idx=:3 on absolute level :2
353 /* 31 */ "UPDATE %Q.'%q_segdir' SET idx = ? WHERE level=? AND idx=?",
356 ** Read a single entry from the %_segdir table. The entry from absolute
357 ** level :1 with index value :2. */
358 /* 32 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
359 "FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?",
362 ** Update the start_block (:1) and root (:2) fields of the %_segdir
363 ** entry located on absolute level :3 with index :4. */
364 /* 33 */ "UPDATE %Q.'%q_segdir' SET start_block = ?, root = ?"
365 "WHERE level = ? AND idx = ?",
367 /* SQL_SEGMENT_IS_APPENDABLE
368 ** Return a single row if the segment with end_block=? is appendable. Or
369 ** no rows otherwise. */
370 /* 34 */ "SELECT 1 FROM %Q.'%q_segments' WHERE blockid=? AND block IS NULL",
372 /* SQL_SELECT_INDEXES
373 ** Return the list of valid segment indexes for absolute level ? */
374 /* 35 */ "SELECT idx FROM %Q.'%q_segdir' WHERE level=? ORDER BY 1 ASC",
376 /* SQL_SELECT_MXLEVEL
377 ** Return the largest relative level in the FTS index or indexes. */
378 /* 36 */ "SELECT max( level %% 1024 ) FROM %Q.'%q_segdir'",
380 /* Return segments in order from oldest to newest.*/
381 /* 37 */ "SELECT level, idx, end_block "
382 "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ? "
383 "ORDER BY level DESC, idx ASC",
385 /* Update statements used while promoting segments */
386 /* 38 */ "UPDATE OR FAIL %Q.'%q_segdir' SET level=-1,idx=? "
387 "WHERE level=? AND idx=?",
388 /* 39 */ "UPDATE OR FAIL %Q.'%q_segdir' SET level=? WHERE level=-1"
394 assert( SizeofArray(azSql
)==SizeofArray(p
->aStmt
) );
395 assert( eStmt
<SizeofArray(azSql
) && eStmt
>=0 );
397 pStmt
= p
->aStmt
[eStmt
];
400 if( eStmt
==SQL_CONTENT_INSERT
){
401 zSql
= sqlite3_mprintf(azSql
[eStmt
], p
->zDb
, p
->zName
, p
->zWriteExprlist
);
402 }else if( eStmt
==SQL_SELECT_CONTENT_BY_ROWID
){
403 zSql
= sqlite3_mprintf(azSql
[eStmt
], p
->zReadExprlist
);
405 zSql
= sqlite3_mprintf(azSql
[eStmt
], p
->zDb
, p
->zName
);
410 rc
= sqlite3_prepare_v3(p
->db
, zSql
, -1, SQLITE_PREPARE_PERSISTENT
,
413 assert( rc
==SQLITE_OK
|| pStmt
==0 );
414 p
->aStmt
[eStmt
] = pStmt
;
419 int nParam
= sqlite3_bind_parameter_count(pStmt
);
420 for(i
=0; rc
==SQLITE_OK
&& i
<nParam
; i
++){
421 rc
= sqlite3_bind_value(pStmt
, i
+1, apVal
[i
]);
429 static int fts3SelectDocsize(
430 Fts3Table
*pTab
, /* FTS3 table handle */
431 sqlite3_int64 iDocid
, /* Docid to bind for SQL_SELECT_DOCSIZE */
432 sqlite3_stmt
**ppStmt
/* OUT: Statement handle */
434 sqlite3_stmt
*pStmt
= 0; /* Statement requested from fts3SqlStmt() */
435 int rc
; /* Return code */
437 rc
= fts3SqlStmt(pTab
, SQL_SELECT_DOCSIZE
, &pStmt
, 0);
439 sqlite3_bind_int64(pStmt
, 1, iDocid
);
440 rc
= sqlite3_step(pStmt
);
441 if( rc
!=SQLITE_ROW
|| sqlite3_column_type(pStmt
, 0)!=SQLITE_BLOB
){
442 rc
= sqlite3_reset(pStmt
);
443 if( rc
==SQLITE_OK
) rc
= FTS_CORRUPT_VTAB
;
454 int sqlite3Fts3SelectDoctotal(
455 Fts3Table
*pTab
, /* Fts3 table handle */
456 sqlite3_stmt
**ppStmt
/* OUT: Statement handle */
458 sqlite3_stmt
*pStmt
= 0;
460 rc
= fts3SqlStmt(pTab
, SQL_SELECT_STAT
, &pStmt
, 0);
462 sqlite3_bind_int(pStmt
, 1, FTS_STAT_DOCTOTAL
);
463 if( sqlite3_step(pStmt
)!=SQLITE_ROW
464 || sqlite3_column_type(pStmt
, 0)!=SQLITE_BLOB
466 rc
= sqlite3_reset(pStmt
);
467 if( rc
==SQLITE_OK
) rc
= FTS_CORRUPT_VTAB
;
475 int sqlite3Fts3SelectDocsize(
476 Fts3Table
*pTab
, /* Fts3 table handle */
477 sqlite3_int64 iDocid
, /* Docid to read size data for */
478 sqlite3_stmt
**ppStmt
/* OUT: Statement handle */
480 return fts3SelectDocsize(pTab
, iDocid
, ppStmt
);
484 ** Similar to fts3SqlStmt(). Except, after binding the parameters in
485 ** array apVal[] to the SQL statement identified by eStmt, the statement
488 ** Returns SQLITE_OK if the statement is successfully executed, or an
489 ** SQLite error code otherwise.
491 static void fts3SqlExec(
492 int *pRC
, /* Result code */
493 Fts3Table
*p
, /* The FTS3 table */
494 int eStmt
, /* Index of statement to evaluate */
495 sqlite3_value
**apVal
/* Parameters to bind */
500 rc
= fts3SqlStmt(p
, eStmt
, &pStmt
, apVal
);
503 rc
= sqlite3_reset(pStmt
);
510 ** This function ensures that the caller has obtained an exclusive
511 ** shared-cache table-lock on the %_segdir table. This is required before
512 ** writing data to the fts3 table. If this lock is not acquired first, then
513 ** the caller may end up attempting to take this lock as part of committing
514 ** a transaction, causing SQLite to return SQLITE_LOCKED or
515 ** LOCKED_SHAREDCACHEto a COMMIT command.
517 ** It is best to avoid this because if FTS3 returns any error when
518 ** committing a transaction, the whole transaction will be rolled back.
519 ** And this is not what users expect when they get SQLITE_LOCKED_SHAREDCACHE.
520 ** It can still happen if the user locks the underlying tables directly
521 ** instead of accessing them via FTS.
523 static int fts3Writelock(Fts3Table
*p
){
526 if( p
->nPendingData
==0 ){
528 rc
= fts3SqlStmt(p
, SQL_DELETE_SEGDIR_LEVEL
, &pStmt
, 0);
530 sqlite3_bind_null(pStmt
, 1);
532 rc
= sqlite3_reset(pStmt
);
540 ** FTS maintains a separate indexes for each language-id (a 32-bit integer).
541 ** Within each language id, a separate index is maintained to store the
542 ** document terms, and each configured prefix size (configured the FTS
543 ** "prefix=" option). And each index consists of multiple levels ("relative
546 ** All three of these values (the language id, the specific index and the
547 ** level within the index) are encoded in 64-bit integer values stored
548 ** in the %_segdir table on disk. This function is used to convert three
549 ** separate component values into the single 64-bit integer value that
550 ** can be used to query the %_segdir table.
552 ** Specifically, each language-id/index combination is allocated 1024
553 ** 64-bit integer level values ("absolute levels"). The main terms index
554 ** for language-id 0 is allocate values 0-1023. The first prefix index
555 ** (if any) for language-id 0 is allocated values 1024-2047. And so on.
556 ** Language 1 indexes are allocated immediately following language 0.
558 ** So, for a system with nPrefix prefix indexes configured, the block of
559 ** absolute levels that corresponds to language-id iLangid and index
560 ** iIndex starts at absolute level ((iLangid * (nPrefix+1) + iIndex) * 1024).
562 static sqlite3_int64
getAbsoluteLevel(
563 Fts3Table
*p
, /* FTS3 table handle */
564 int iLangid
, /* Language id */
565 int iIndex
, /* Index in p->aIndex[] */
566 int iLevel
/* Level of segments */
568 sqlite3_int64 iBase
; /* First absolute level for iLangid/iIndex */
569 assert( iLangid
>=0 );
570 assert( p
->nIndex
>0 );
571 assert( iIndex
>=0 && iIndex
<p
->nIndex
);
573 iBase
= ((sqlite3_int64
)iLangid
* p
->nIndex
+ iIndex
) * FTS3_SEGDIR_MAXLEVEL
;
574 return iBase
+ iLevel
;
578 ** Set *ppStmt to a statement handle that may be used to iterate through
579 ** all rows in the %_segdir table, from oldest to newest. If successful,
580 ** return SQLITE_OK. If an error occurs while preparing the statement,
581 ** return an SQLite error code.
583 ** There is only ever one instance of this SQL statement compiled for
586 ** The statement returns the following columns from the %_segdir table:
590 ** 2: leaves_end_block
594 int sqlite3Fts3AllSegdirs(
595 Fts3Table
*p
, /* FTS3 table */
596 int iLangid
, /* Language being queried */
597 int iIndex
, /* Index for p->aIndex[] */
598 int iLevel
, /* Level to select (relative level) */
599 sqlite3_stmt
**ppStmt
/* OUT: Compiled statement */
602 sqlite3_stmt
*pStmt
= 0;
604 assert( iLevel
==FTS3_SEGCURSOR_ALL
|| iLevel
>=0 );
605 assert( iLevel
<FTS3_SEGDIR_MAXLEVEL
);
606 assert( iIndex
>=0 && iIndex
<p
->nIndex
);
609 /* "SELECT * FROM %_segdir WHERE level BETWEEN ? AND ? ORDER BY ..." */
610 rc
= fts3SqlStmt(p
, SQL_SELECT_LEVEL_RANGE
, &pStmt
, 0);
612 sqlite3_bind_int64(pStmt
, 1, getAbsoluteLevel(p
, iLangid
, iIndex
, 0));
613 sqlite3_bind_int64(pStmt
, 2,
614 getAbsoluteLevel(p
, iLangid
, iIndex
, FTS3_SEGDIR_MAXLEVEL
-1)
618 /* "SELECT * FROM %_segdir WHERE level = ? ORDER BY ..." */
619 rc
= fts3SqlStmt(p
, SQL_SELECT_LEVEL
, &pStmt
, 0);
621 sqlite3_bind_int64(pStmt
, 1, getAbsoluteLevel(p
, iLangid
, iIndex
,iLevel
));
630 ** Append a single varint to a PendingList buffer. SQLITE_OK is returned
631 ** if successful, or an SQLite error code otherwise.
633 ** This function also serves to allocate the PendingList structure itself.
634 ** For example, to create a new PendingList structure containing two
637 ** PendingList *p = 0;
638 ** fts3PendingListAppendVarint(&p, 1);
639 ** fts3PendingListAppendVarint(&p, 2);
641 static int fts3PendingListAppendVarint(
642 PendingList
**pp
, /* IN/OUT: Pointer to PendingList struct */
643 sqlite3_int64 i
/* Value to append to data */
645 PendingList
*p
= *pp
;
647 /* Allocate or grow the PendingList as required. */
649 p
= sqlite3_malloc(sizeof(*p
) + 100);
654 p
->aData
= (char *)&p
[1];
657 else if( p
->nData
+FTS3_VARINT_MAX
+1>p
->nSpace
){
658 int nNew
= p
->nSpace
* 2;
659 p
= sqlite3_realloc(p
, sizeof(*p
) + nNew
);
666 p
->aData
= (char *)&p
[1];
669 /* Append the new serialized varint to the end of the list. */
670 p
->nData
+= sqlite3Fts3PutVarint(&p
->aData
[p
->nData
], i
);
671 p
->aData
[p
->nData
] = '\0';
677 ** Add a docid/column/position entry to a PendingList structure. Non-zero
678 ** is returned if the structure is sqlite3_realloced as part of adding
679 ** the entry. Otherwise, zero.
681 ** If an OOM error occurs, *pRc is set to SQLITE_NOMEM before returning.
682 ** Zero is always returned in this case. Otherwise, if no OOM error occurs,
683 ** it is set to SQLITE_OK.
685 static int fts3PendingListAppend(
686 PendingList
**pp
, /* IN/OUT: PendingList structure */
687 sqlite3_int64 iDocid
, /* Docid for entry to add */
688 sqlite3_int64 iCol
, /* Column for entry to add */
689 sqlite3_int64 iPos
, /* Position of term for entry to add */
690 int *pRc
/* OUT: Return code */
692 PendingList
*p
= *pp
;
695 assert( !p
|| p
->iLastDocid
<=iDocid
);
697 if( !p
|| p
->iLastDocid
!=iDocid
){
698 sqlite3_int64 iDelta
= iDocid
- (p
? p
->iLastDocid
: 0);
700 assert( p
->nData
<p
->nSpace
);
701 assert( p
->aData
[p
->nData
]==0 );
704 if( SQLITE_OK
!=(rc
= fts3PendingListAppendVarint(&p
, iDelta
)) ){
705 goto pendinglistappend_out
;
709 p
->iLastDocid
= iDocid
;
711 if( iCol
>0 && p
->iLastCol
!=iCol
){
712 if( SQLITE_OK
!=(rc
= fts3PendingListAppendVarint(&p
, 1))
713 || SQLITE_OK
!=(rc
= fts3PendingListAppendVarint(&p
, iCol
))
715 goto pendinglistappend_out
;
721 assert( iPos
>p
->iLastPos
|| (iPos
==0 && p
->iLastPos
==0) );
722 rc
= fts3PendingListAppendVarint(&p
, 2+iPos
-p
->iLastPos
);
728 pendinglistappend_out
:
738 ** Free a PendingList object allocated by fts3PendingListAppend().
740 static void fts3PendingListDelete(PendingList
*pList
){
745 ** Add an entry to one of the pending-terms hash tables.
747 static int fts3PendingTermsAddOne(
751 Fts3Hash
*pHash
, /* Pending terms hash table to add entry to */
758 pList
= (PendingList
*)fts3HashFind(pHash
, zToken
, nToken
);
760 p
->nPendingData
-= (pList
->nData
+ nToken
+ sizeof(Fts3HashElem
));
762 if( fts3PendingListAppend(&pList
, p
->iPrevDocid
, iCol
, iPos
, &rc
) ){
763 if( pList
==fts3HashInsert(pHash
, zToken
, nToken
, pList
) ){
764 /* Malloc failed while inserting the new entry. This can only
765 ** happen if there was no previous entry for this token.
767 assert( 0==fts3HashFind(pHash
, zToken
, nToken
) );
773 p
->nPendingData
+= (pList
->nData
+ nToken
+ sizeof(Fts3HashElem
));
779 ** Tokenize the nul-terminated string zText and add all tokens to the
780 ** pending-terms hash-table. The docid used is that currently stored in
781 ** p->iPrevDocid, and the column is specified by argument iCol.
783 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
785 static int fts3PendingTermsAdd(
786 Fts3Table
*p
, /* Table into which text will be inserted */
787 int iLangid
, /* Language id to use */
788 const char *zText
, /* Text of document to be inserted */
789 int iCol
, /* Column into which text is being inserted */
790 u32
*pnWord
/* IN/OUT: Incr. by number tokens inserted */
801 sqlite3_tokenizer
*pTokenizer
= p
->pTokenizer
;
802 sqlite3_tokenizer_module
const *pModule
= pTokenizer
->pModule
;
803 sqlite3_tokenizer_cursor
*pCsr
;
804 int (*xNext
)(sqlite3_tokenizer_cursor
*pCursor
,
805 const char**,int*,int*,int*,int*);
807 assert( pTokenizer
&& pModule
);
809 /* If the user has inserted a NULL value, this function may be called with
810 ** zText==0. In this case, add zero token entries to the hash table and
817 rc
= sqlite3Fts3OpenTokenizer(pTokenizer
, iLangid
, zText
, -1, &pCsr
);
822 xNext
= pModule
->xNext
;
824 && SQLITE_OK
==(rc
= xNext(pCsr
, &zToken
, &nToken
, &iStart
, &iEnd
, &iPos
))
827 if( iPos
>=nWord
) nWord
= iPos
+1;
829 /* Positions cannot be negative; we use -1 as a terminator internally.
830 ** Tokens must have a non-zero length.
832 if( iPos
<0 || !zToken
|| nToken
<=0 ){
837 /* Add the term to the terms index */
838 rc
= fts3PendingTermsAddOne(
839 p
, iCol
, iPos
, &p
->aIndex
[0].hPending
, zToken
, nToken
842 /* Add the term to each of the prefix indexes that it is not too
844 for(i
=1; rc
==SQLITE_OK
&& i
<p
->nIndex
; i
++){
845 struct Fts3Index
*pIndex
= &p
->aIndex
[i
];
846 if( nToken
<pIndex
->nPrefix
) continue;
847 rc
= fts3PendingTermsAddOne(
848 p
, iCol
, iPos
, &pIndex
->hPending
, zToken
, pIndex
->nPrefix
853 pModule
->xClose(pCsr
);
855 return (rc
==SQLITE_DONE
? SQLITE_OK
: rc
);
859 ** Calling this function indicates that subsequent calls to
860 ** fts3PendingTermsAdd() are to add term/position-list pairs for the
861 ** contents of the document with docid iDocid.
863 static int fts3PendingTermsDocid(
864 Fts3Table
*p
, /* Full-text table handle */
865 int bDelete
, /* True if this op is a delete */
866 int iLangid
, /* Language id of row being written */
867 sqlite_int64 iDocid
/* Docid of row being written */
869 assert( iLangid
>=0 );
870 assert( bDelete
==1 || bDelete
==0 );
872 /* TODO(shess) Explore whether partially flushing the buffer on
873 ** forced-flush would provide better performance. I suspect that if
874 ** we ordered the doclists by size and flushed the largest until the
875 ** buffer was half empty, that would let the less frequent terms
876 ** generate longer doclists.
878 if( iDocid
<p
->iPrevDocid
879 || (iDocid
==p
->iPrevDocid
&& p
->bPrevDelete
==0)
880 || p
->iPrevLangid
!=iLangid
881 || p
->nPendingData
>p
->nMaxPendingData
883 int rc
= sqlite3Fts3PendingTermsFlush(p
);
884 if( rc
!=SQLITE_OK
) return rc
;
886 p
->iPrevDocid
= iDocid
;
887 p
->iPrevLangid
= iLangid
;
888 p
->bPrevDelete
= bDelete
;
893 ** Discard the contents of the pending-terms hash tables.
895 void sqlite3Fts3PendingTermsClear(Fts3Table
*p
){
897 for(i
=0; i
<p
->nIndex
; i
++){
899 Fts3Hash
*pHash
= &p
->aIndex
[i
].hPending
;
900 for(pElem
=fts3HashFirst(pHash
); pElem
; pElem
=fts3HashNext(pElem
)){
901 PendingList
*pList
= (PendingList
*)fts3HashData(pElem
);
902 fts3PendingListDelete(pList
);
904 fts3HashClear(pHash
);
910 ** This function is called by the xUpdate() method as part of an INSERT
911 ** operation. It adds entries for each term in the new record to the
912 ** pendingTerms hash table.
914 ** Argument apVal is the same as the similarly named argument passed to
915 ** fts3InsertData(). Parameter iDocid is the docid of the new row.
917 static int fts3InsertTerms(
920 sqlite3_value
**apVal
,
923 int i
; /* Iterator variable */
924 for(i
=2; i
<p
->nColumn
+2; i
++){
926 if( p
->abNotindexed
[iCol
]==0 ){
927 const char *zText
= (const char *)sqlite3_value_text(apVal
[i
]);
928 int rc
= fts3PendingTermsAdd(p
, iLangid
, zText
, iCol
, &aSz
[iCol
]);
932 aSz
[p
->nColumn
] += sqlite3_value_bytes(apVal
[i
]);
939 ** This function is called by the xUpdate() method for an INSERT operation.
940 ** The apVal parameter is passed a copy of the apVal argument passed by
941 ** SQLite to the xUpdate() method. i.e:
943 ** apVal[0] Not used for INSERT.
945 ** apVal[2] Left-most user-defined column
947 ** apVal[p->nColumn+1] Right-most user-defined column
948 ** apVal[p->nColumn+2] Hidden column with same name as table
949 ** apVal[p->nColumn+3] Hidden "docid" column (alias for rowid)
950 ** apVal[p->nColumn+4] Hidden languageid column
952 static int fts3InsertData(
953 Fts3Table
*p
, /* Full-text table */
954 sqlite3_value
**apVal
, /* Array of values to insert */
955 sqlite3_int64
*piDocid
/* OUT: Docid for row just inserted */
957 int rc
; /* Return code */
958 sqlite3_stmt
*pContentInsert
; /* INSERT INTO %_content VALUES(...) */
960 if( p
->zContentTbl
){
961 sqlite3_value
*pRowid
= apVal
[p
->nColumn
+3];
962 if( sqlite3_value_type(pRowid
)==SQLITE_NULL
){
965 if( sqlite3_value_type(pRowid
)!=SQLITE_INTEGER
){
966 return SQLITE_CONSTRAINT
;
968 *piDocid
= sqlite3_value_int64(pRowid
);
972 /* Locate the statement handle used to insert data into the %_content
973 ** table. The SQL for this statement is:
975 ** INSERT INTO %_content VALUES(?, ?, ?, ...)
977 ** The statement features N '?' variables, where N is the number of user
978 ** defined columns in the FTS3 table, plus one for the docid field.
980 rc
= fts3SqlStmt(p
, SQL_CONTENT_INSERT
, &pContentInsert
, &apVal
[1]);
981 if( rc
==SQLITE_OK
&& p
->zLanguageid
){
982 rc
= sqlite3_bind_int(
983 pContentInsert
, p
->nColumn
+2,
984 sqlite3_value_int(apVal
[p
->nColumn
+4])
987 if( rc
!=SQLITE_OK
) return rc
;
989 /* There is a quirk here. The users INSERT statement may have specified
990 ** a value for the "rowid" field, for the "docid" field, or for both.
991 ** Which is a problem, since "rowid" and "docid" are aliases for the
992 ** same value. For example:
994 ** INSERT INTO fts3tbl(rowid, docid) VALUES(1, 2);
996 ** In FTS3, this is an error. It is an error to specify non-NULL values
997 ** for both docid and some other rowid alias.
999 if( SQLITE_NULL
!=sqlite3_value_type(apVal
[3+p
->nColumn
]) ){
1000 if( SQLITE_NULL
==sqlite3_value_type(apVal
[0])
1001 && SQLITE_NULL
!=sqlite3_value_type(apVal
[1])
1003 /* A rowid/docid conflict. */
1004 return SQLITE_ERROR
;
1006 rc
= sqlite3_bind_value(pContentInsert
, 1, apVal
[3+p
->nColumn
]);
1007 if( rc
!=SQLITE_OK
) return rc
;
1010 /* Execute the statement to insert the record. Set *piDocid to the
1013 sqlite3_step(pContentInsert
);
1014 rc
= sqlite3_reset(pContentInsert
);
1016 *piDocid
= sqlite3_last_insert_rowid(p
->db
);
1023 ** Remove all data from the FTS3 table. Clear the hash table containing
1026 static int fts3DeleteAll(Fts3Table
*p
, int bContent
){
1027 int rc
= SQLITE_OK
; /* Return code */
1029 /* Discard the contents of the pending-terms hash table. */
1030 sqlite3Fts3PendingTermsClear(p
);
1032 /* Delete everything from the shadow tables. Except, leave %_content as
1033 ** is if bContent is false. */
1034 assert( p
->zContentTbl
==0 || bContent
==0 );
1035 if( bContent
) fts3SqlExec(&rc
, p
, SQL_DELETE_ALL_CONTENT
, 0);
1036 fts3SqlExec(&rc
, p
, SQL_DELETE_ALL_SEGMENTS
, 0);
1037 fts3SqlExec(&rc
, p
, SQL_DELETE_ALL_SEGDIR
, 0);
1038 if( p
->bHasDocsize
){
1039 fts3SqlExec(&rc
, p
, SQL_DELETE_ALL_DOCSIZE
, 0);
1042 fts3SqlExec(&rc
, p
, SQL_DELETE_ALL_STAT
, 0);
1050 static int langidFromSelect(Fts3Table
*p
, sqlite3_stmt
*pSelect
){
1052 if( p
->zLanguageid
) iLangid
= sqlite3_column_int(pSelect
, p
->nColumn
+1);
1057 ** The first element in the apVal[] array is assumed to contain the docid
1058 ** (an integer) of a row about to be deleted. Remove all terms from the
1061 static void fts3DeleteTerms(
1062 int *pRC
, /* Result code */
1063 Fts3Table
*p
, /* The FTS table to delete from */
1064 sqlite3_value
*pRowid
, /* The docid to be deleted */
1065 u32
*aSz
, /* Sizes of deleted document written here */
1066 int *pbFound
/* OUT: Set to true if row really does exist */
1069 sqlite3_stmt
*pSelect
;
1071 assert( *pbFound
==0 );
1073 rc
= fts3SqlStmt(p
, SQL_SELECT_CONTENT_BY_ROWID
, &pSelect
, &pRowid
);
1074 if( rc
==SQLITE_OK
){
1075 if( SQLITE_ROW
==sqlite3_step(pSelect
) ){
1077 int iLangid
= langidFromSelect(p
, pSelect
);
1078 i64 iDocid
= sqlite3_column_int64(pSelect
, 0);
1079 rc
= fts3PendingTermsDocid(p
, 1, iLangid
, iDocid
);
1080 for(i
=1; rc
==SQLITE_OK
&& i
<=p
->nColumn
; i
++){
1082 if( p
->abNotindexed
[iCol
]==0 ){
1083 const char *zText
= (const char *)sqlite3_column_text(pSelect
, i
);
1084 rc
= fts3PendingTermsAdd(p
, iLangid
, zText
, -1, &aSz
[iCol
]);
1085 aSz
[p
->nColumn
] += sqlite3_column_bytes(pSelect
, i
);
1088 if( rc
!=SQLITE_OK
){
1089 sqlite3_reset(pSelect
);
1095 rc
= sqlite3_reset(pSelect
);
1097 sqlite3_reset(pSelect
);
1103 ** Forward declaration to account for the circular dependency between
1104 ** functions fts3SegmentMerge() and fts3AllocateSegdirIdx().
1106 static int fts3SegmentMerge(Fts3Table
*, int, int, int);
1109 ** This function allocates a new level iLevel index in the segdir table.
1110 ** Usually, indexes are allocated within a level sequentially starting
1111 ** with 0, so the allocated index is one greater than the value returned
1114 ** SELECT max(idx) FROM %_segdir WHERE level = :iLevel
1116 ** However, if there are already FTS3_MERGE_COUNT indexes at the requested
1117 ** level, they are merged into a single level (iLevel+1) segment and the
1118 ** allocated index is 0.
1120 ** If successful, *piIdx is set to the allocated index slot and SQLITE_OK
1121 ** returned. Otherwise, an SQLite error code is returned.
1123 static int fts3AllocateSegdirIdx(
1125 int iLangid
, /* Language id */
1126 int iIndex
, /* Index for p->aIndex */
1130 int rc
; /* Return Code */
1131 sqlite3_stmt
*pNextIdx
; /* Query for next idx at level iLevel */
1132 int iNext
= 0; /* Result of query pNextIdx */
1134 assert( iLangid
>=0 );
1135 assert( p
->nIndex
>=1 );
1137 /* Set variable iNext to the next available segdir index at level iLevel. */
1138 rc
= fts3SqlStmt(p
, SQL_NEXT_SEGMENT_INDEX
, &pNextIdx
, 0);
1139 if( rc
==SQLITE_OK
){
1141 pNextIdx
, 1, getAbsoluteLevel(p
, iLangid
, iIndex
, iLevel
)
1143 if( SQLITE_ROW
==sqlite3_step(pNextIdx
) ){
1144 iNext
= sqlite3_column_int(pNextIdx
, 0);
1146 rc
= sqlite3_reset(pNextIdx
);
1149 if( rc
==SQLITE_OK
){
1150 /* If iNext is FTS3_MERGE_COUNT, indicating that level iLevel is already
1151 ** full, merge all segments in level iLevel into a single iLevel+1
1152 ** segment and allocate (newly freed) index 0 at level iLevel. Otherwise,
1153 ** if iNext is less than FTS3_MERGE_COUNT, allocate index iNext.
1155 if( iNext
>=FTS3_MERGE_COUNT
){
1156 fts3LogMerge(16, getAbsoluteLevel(p
, iLangid
, iIndex
, iLevel
));
1157 rc
= fts3SegmentMerge(p
, iLangid
, iIndex
, iLevel
);
1168 ** The %_segments table is declared as follows:
1170 ** CREATE TABLE %_segments(blockid INTEGER PRIMARY KEY, block BLOB)
1172 ** This function reads data from a single row of the %_segments table. The
1173 ** specific row is identified by the iBlockid parameter. If paBlob is not
1174 ** NULL, then a buffer is allocated using sqlite3_malloc() and populated
1175 ** with the contents of the blob stored in the "block" column of the
1176 ** identified table row is. Whether or not paBlob is NULL, *pnBlob is set
1177 ** to the size of the blob in bytes before returning.
1179 ** If an error occurs, or the table does not contain the specified row,
1180 ** an SQLite error code is returned. Otherwise, SQLITE_OK is returned. If
1181 ** paBlob is non-NULL, then it is the responsibility of the caller to
1182 ** eventually free the returned buffer.
1184 ** This function may leave an open sqlite3_blob* handle in the
1185 ** Fts3Table.pSegments variable. This handle is reused by subsequent calls
1186 ** to this function. The handle may be closed by calling the
1187 ** sqlite3Fts3SegmentsClose() function. Reusing a blob handle is a handy
1188 ** performance improvement, but the blob handle should always be closed
1189 ** before control is returned to the user (to prevent a lock being held
1190 ** on the database file for longer than necessary). Thus, any virtual table
1191 ** method (xFilter etc.) that may directly or indirectly call this function
1192 ** must call sqlite3Fts3SegmentsClose() before returning.
1194 int sqlite3Fts3ReadBlock(
1195 Fts3Table
*p
, /* FTS3 table handle */
1196 sqlite3_int64 iBlockid
, /* Access the row with blockid=$iBlockid */
1197 char **paBlob
, /* OUT: Blob data in malloc'd buffer */
1198 int *pnBlob
, /* OUT: Size of blob data */
1199 int *pnLoad
/* OUT: Bytes actually loaded */
1201 int rc
; /* Return code */
1203 /* pnBlob must be non-NULL. paBlob may be NULL or non-NULL. */
1207 rc
= sqlite3_blob_reopen(p
->pSegments
, iBlockid
);
1209 if( 0==p
->zSegmentsTbl
){
1210 p
->zSegmentsTbl
= sqlite3_mprintf("%s_segments", p
->zName
);
1211 if( 0==p
->zSegmentsTbl
) return SQLITE_NOMEM
;
1213 rc
= sqlite3_blob_open(
1214 p
->db
, p
->zDb
, p
->zSegmentsTbl
, "block", iBlockid
, 0, &p
->pSegments
1218 if( rc
==SQLITE_OK
){
1219 int nByte
= sqlite3_blob_bytes(p
->pSegments
);
1222 char *aByte
= sqlite3_malloc(nByte
+ FTS3_NODE_PADDING
);
1226 if( pnLoad
&& nByte
>(FTS3_NODE_CHUNK_THRESHOLD
) ){
1227 nByte
= FTS3_NODE_CHUNKSIZE
;
1230 rc
= sqlite3_blob_read(p
->pSegments
, aByte
, nByte
, 0);
1231 memset(&aByte
[nByte
], 0, FTS3_NODE_PADDING
);
1232 if( rc
!=SQLITE_OK
){
1233 sqlite3_free(aByte
);
1245 ** Close the blob handle at p->pSegments, if it is open. See comments above
1246 ** the sqlite3Fts3ReadBlock() function for details.
1248 void sqlite3Fts3SegmentsClose(Fts3Table
*p
){
1249 sqlite3_blob_close(p
->pSegments
);
1253 static int fts3SegReaderIncrRead(Fts3SegReader
*pReader
){
1254 int nRead
; /* Number of bytes to read */
1255 int rc
; /* Return code */
1257 nRead
= MIN(pReader
->nNode
- pReader
->nPopulate
, FTS3_NODE_CHUNKSIZE
);
1258 rc
= sqlite3_blob_read(
1260 &pReader
->aNode
[pReader
->nPopulate
],
1265 if( rc
==SQLITE_OK
){
1266 pReader
->nPopulate
+= nRead
;
1267 memset(&pReader
->aNode
[pReader
->nPopulate
], 0, FTS3_NODE_PADDING
);
1268 if( pReader
->nPopulate
==pReader
->nNode
){
1269 sqlite3_blob_close(pReader
->pBlob
);
1271 pReader
->nPopulate
= 0;
1277 static int fts3SegReaderRequire(Fts3SegReader
*pReader
, char *pFrom
, int nByte
){
1279 assert( !pReader
->pBlob
1280 || (pFrom
>=pReader
->aNode
&& pFrom
<&pReader
->aNode
[pReader
->nNode
])
1282 while( pReader
->pBlob
&& rc
==SQLITE_OK
1283 && (pFrom
- pReader
->aNode
+ nByte
)>pReader
->nPopulate
1285 rc
= fts3SegReaderIncrRead(pReader
);
1291 ** Set an Fts3SegReader cursor to point at EOF.
1293 static void fts3SegReaderSetEof(Fts3SegReader
*pSeg
){
1294 if( !fts3SegReaderIsRootOnly(pSeg
) ){
1295 sqlite3_free(pSeg
->aNode
);
1296 sqlite3_blob_close(pSeg
->pBlob
);
1303 ** Move the iterator passed as the first argument to the next term in the
1304 ** segment. If successful, SQLITE_OK is returned. If there is no next term,
1305 ** SQLITE_DONE. Otherwise, an SQLite error code.
1307 static int fts3SegReaderNext(
1309 Fts3SegReader
*pReader
,
1312 int rc
; /* Return code of various sub-routines */
1313 char *pNext
; /* Cursor variable */
1314 int nPrefix
; /* Number of bytes in term prefix */
1315 int nSuffix
; /* Number of bytes in term suffix */
1317 if( !pReader
->aDoclist
){
1318 pNext
= pReader
->aNode
;
1320 pNext
= &pReader
->aDoclist
[pReader
->nDoclist
];
1323 if( !pNext
|| pNext
>=&pReader
->aNode
[pReader
->nNode
] ){
1325 if( fts3SegReaderIsPending(pReader
) ){
1326 Fts3HashElem
*pElem
= *(pReader
->ppNextElem
);
1327 sqlite3_free(pReader
->aNode
);
1331 PendingList
*pList
= (PendingList
*)fts3HashData(pElem
);
1332 int nCopy
= pList
->nData
+1;
1333 pReader
->zTerm
= (char *)fts3HashKey(pElem
);
1334 pReader
->nTerm
= fts3HashKeysize(pElem
);
1335 aCopy
= (char*)sqlite3_malloc(nCopy
);
1336 if( !aCopy
) return SQLITE_NOMEM
;
1337 memcpy(aCopy
, pList
->aData
, nCopy
);
1338 pReader
->nNode
= pReader
->nDoclist
= nCopy
;
1339 pReader
->aNode
= pReader
->aDoclist
= aCopy
;
1340 pReader
->ppNextElem
++;
1341 assert( pReader
->aNode
);
1346 fts3SegReaderSetEof(pReader
);
1348 /* If iCurrentBlock>=iLeafEndBlock, this is an EOF condition. All leaf
1349 ** blocks have already been traversed. */
1350 assert( pReader
->iCurrentBlock
<=pReader
->iLeafEndBlock
);
1351 if( pReader
->iCurrentBlock
>=pReader
->iLeafEndBlock
){
1355 rc
= sqlite3Fts3ReadBlock(
1356 p
, ++pReader
->iCurrentBlock
, &pReader
->aNode
, &pReader
->nNode
,
1357 (bIncr
? &pReader
->nPopulate
: 0)
1359 if( rc
!=SQLITE_OK
) return rc
;
1360 assert( pReader
->pBlob
==0 );
1361 if( bIncr
&& pReader
->nPopulate
<pReader
->nNode
){
1362 pReader
->pBlob
= p
->pSegments
;
1365 pNext
= pReader
->aNode
;
1368 assert( !fts3SegReaderIsPending(pReader
) );
1370 rc
= fts3SegReaderRequire(pReader
, pNext
, FTS3_VARINT_MAX
*2);
1371 if( rc
!=SQLITE_OK
) return rc
;
1373 /* Because of the FTS3_NODE_PADDING bytes of padding, the following is
1374 ** safe (no risk of overread) even if the node data is corrupted. */
1375 pNext
+= fts3GetVarint32(pNext
, &nPrefix
);
1376 pNext
+= fts3GetVarint32(pNext
, &nSuffix
);
1377 if( nPrefix
<0 || nSuffix
<=0
1378 || &pNext
[nSuffix
]>&pReader
->aNode
[pReader
->nNode
]
1380 return FTS_CORRUPT_VTAB
;
1383 if( nPrefix
+nSuffix
>pReader
->nTermAlloc
){
1384 int nNew
= (nPrefix
+nSuffix
)*2;
1385 char *zNew
= sqlite3_realloc(pReader
->zTerm
, nNew
);
1387 return SQLITE_NOMEM
;
1389 pReader
->zTerm
= zNew
;
1390 pReader
->nTermAlloc
= nNew
;
1393 rc
= fts3SegReaderRequire(pReader
, pNext
, nSuffix
+FTS3_VARINT_MAX
);
1394 if( rc
!=SQLITE_OK
) return rc
;
1396 memcpy(&pReader
->zTerm
[nPrefix
], pNext
, nSuffix
);
1397 pReader
->nTerm
= nPrefix
+nSuffix
;
1399 pNext
+= fts3GetVarint32(pNext
, &pReader
->nDoclist
);
1400 pReader
->aDoclist
= pNext
;
1401 pReader
->pOffsetList
= 0;
1403 /* Check that the doclist does not appear to extend past the end of the
1404 ** b-tree node. And that the final byte of the doclist is 0x00. If either
1405 ** of these statements is untrue, then the data structure is corrupt.
1407 if( &pReader
->aDoclist
[pReader
->nDoclist
]>&pReader
->aNode
[pReader
->nNode
]
1408 || (pReader
->nPopulate
==0 && pReader
->aDoclist
[pReader
->nDoclist
-1])
1410 return FTS_CORRUPT_VTAB
;
1416 ** Set the SegReader to point to the first docid in the doclist associated
1417 ** with the current term.
1419 static int fts3SegReaderFirstDocid(Fts3Table
*pTab
, Fts3SegReader
*pReader
){
1421 assert( pReader
->aDoclist
);
1422 assert( !pReader
->pOffsetList
);
1423 if( pTab
->bDescIdx
&& fts3SegReaderIsPending(pReader
) ){
1425 pReader
->iDocid
= 0;
1426 pReader
->nOffsetList
= 0;
1427 sqlite3Fts3DoclistPrev(0,
1428 pReader
->aDoclist
, pReader
->nDoclist
, &pReader
->pOffsetList
,
1429 &pReader
->iDocid
, &pReader
->nOffsetList
, &bEof
1432 rc
= fts3SegReaderRequire(pReader
, pReader
->aDoclist
, FTS3_VARINT_MAX
);
1433 if( rc
==SQLITE_OK
){
1434 int n
= sqlite3Fts3GetVarint(pReader
->aDoclist
, &pReader
->iDocid
);
1435 pReader
->pOffsetList
= &pReader
->aDoclist
[n
];
1442 ** Advance the SegReader to point to the next docid in the doclist
1443 ** associated with the current term.
1445 ** If arguments ppOffsetList and pnOffsetList are not NULL, then
1446 ** *ppOffsetList is set to point to the first column-offset list
1447 ** in the doclist entry (i.e. immediately past the docid varint).
1448 ** *pnOffsetList is set to the length of the set of column-offset
1449 ** lists, not including the nul-terminator byte. For example:
1451 static int fts3SegReaderNextDocid(
1453 Fts3SegReader
*pReader
, /* Reader to advance to next docid */
1454 char **ppOffsetList
, /* OUT: Pointer to current position-list */
1455 int *pnOffsetList
/* OUT: Length of *ppOffsetList in bytes */
1458 char *p
= pReader
->pOffsetList
;
1463 if( pTab
->bDescIdx
&& fts3SegReaderIsPending(pReader
) ){
1464 /* A pending-terms seg-reader for an FTS4 table that uses order=desc.
1465 ** Pending-terms doclists are always built up in ascending order, so
1466 ** we have to iterate through them backwards here. */
1469 *ppOffsetList
= pReader
->pOffsetList
;
1470 *pnOffsetList
= pReader
->nOffsetList
- 1;
1472 sqlite3Fts3DoclistPrev(0,
1473 pReader
->aDoclist
, pReader
->nDoclist
, &p
, &pReader
->iDocid
,
1474 &pReader
->nOffsetList
, &bEof
1477 pReader
->pOffsetList
= 0;
1479 pReader
->pOffsetList
= p
;
1482 char *pEnd
= &pReader
->aDoclist
[pReader
->nDoclist
];
1484 /* Pointer p currently points at the first byte of an offset list. The
1485 ** following block advances it to point one byte past the end of
1486 ** the same offset list. */
1489 /* The following line of code (and the "p++" below the while() loop) is
1490 ** normally all that is required to move pointer p to the desired
1491 ** position. The exception is if this node is being loaded from disk
1492 ** incrementally and pointer "p" now points to the first byte past
1493 ** the populated part of pReader->aNode[].
1495 while( *p
| c
) c
= *p
++ & 0x80;
1498 if( pReader
->pBlob
==0 || p
<&pReader
->aNode
[pReader
->nPopulate
] ) break;
1499 rc
= fts3SegReaderIncrRead(pReader
);
1500 if( rc
!=SQLITE_OK
) return rc
;
1504 /* If required, populate the output variables with a pointer to and the
1505 ** size of the previous offset-list.
1508 *ppOffsetList
= pReader
->pOffsetList
;
1509 *pnOffsetList
= (int)(p
- pReader
->pOffsetList
- 1);
1512 /* List may have been edited in place by fts3EvalNearTrim() */
1513 while( p
<pEnd
&& *p
==0 ) p
++;
1515 /* If there are no more entries in the doclist, set pOffsetList to
1516 ** NULL. Otherwise, set Fts3SegReader.iDocid to the next docid and
1517 ** Fts3SegReader.pOffsetList to point to the next offset list before
1521 pReader
->pOffsetList
= 0;
1523 rc
= fts3SegReaderRequire(pReader
, p
, FTS3_VARINT_MAX
);
1524 if( rc
==SQLITE_OK
){
1525 sqlite3_int64 iDelta
;
1526 pReader
->pOffsetList
= p
+ sqlite3Fts3GetVarint(p
, &iDelta
);
1527 if( pTab
->bDescIdx
){
1528 pReader
->iDocid
-= iDelta
;
1530 pReader
->iDocid
+= iDelta
;
1540 int sqlite3Fts3MsrOvfl(
1542 Fts3MultiSegReader
*pMsr
,
1545 Fts3Table
*p
= (Fts3Table
*)pCsr
->base
.pVtab
;
1549 int pgsz
= p
->nPgsz
;
1554 for(ii
=0; rc
==SQLITE_OK
&& ii
<pMsr
->nSegment
; ii
++){
1555 Fts3SegReader
*pReader
= pMsr
->apSegment
[ii
];
1556 if( !fts3SegReaderIsPending(pReader
)
1557 && !fts3SegReaderIsRootOnly(pReader
)
1560 for(jj
=pReader
->iStartBlock
; jj
<=pReader
->iLeafEndBlock
; jj
++){
1562 rc
= sqlite3Fts3ReadBlock(p
, jj
, 0, &nBlob
, 0);
1563 if( rc
!=SQLITE_OK
) break;
1564 if( (nBlob
+35)>pgsz
){
1565 nOvfl
+= (nBlob
+ 34)/pgsz
;
1575 ** Free all allocations associated with the iterator passed as the
1578 void sqlite3Fts3SegReaderFree(Fts3SegReader
*pReader
){
1580 if( !fts3SegReaderIsPending(pReader
) ){
1581 sqlite3_free(pReader
->zTerm
);
1583 if( !fts3SegReaderIsRootOnly(pReader
) ){
1584 sqlite3_free(pReader
->aNode
);
1586 sqlite3_blob_close(pReader
->pBlob
);
1588 sqlite3_free(pReader
);
1592 ** Allocate a new SegReader object.
1594 int sqlite3Fts3SegReaderNew(
1595 int iAge
, /* Segment "age". */
1596 int bLookup
, /* True for a lookup only */
1597 sqlite3_int64 iStartLeaf
, /* First leaf to traverse */
1598 sqlite3_int64 iEndLeaf
, /* Final leaf to traverse */
1599 sqlite3_int64 iEndBlock
, /* Final block of segment */
1600 const char *zRoot
, /* Buffer containing root node */
1601 int nRoot
, /* Size of buffer containing root node */
1602 Fts3SegReader
**ppReader
/* OUT: Allocated Fts3SegReader */
1604 Fts3SegReader
*pReader
; /* Newly allocated SegReader object */
1605 int nExtra
= 0; /* Bytes to allocate segment root node */
1607 assert( iStartLeaf
<=iEndLeaf
);
1608 if( iStartLeaf
==0 ){
1609 nExtra
= nRoot
+ FTS3_NODE_PADDING
;
1612 pReader
= (Fts3SegReader
*)sqlite3_malloc(sizeof(Fts3SegReader
) + nExtra
);
1614 return SQLITE_NOMEM
;
1616 memset(pReader
, 0, sizeof(Fts3SegReader
));
1617 pReader
->iIdx
= iAge
;
1618 pReader
->bLookup
= bLookup
!=0;
1619 pReader
->iStartBlock
= iStartLeaf
;
1620 pReader
->iLeafEndBlock
= iEndLeaf
;
1621 pReader
->iEndBlock
= iEndBlock
;
1624 /* The entire segment is stored in the root node. */
1625 pReader
->aNode
= (char *)&pReader
[1];
1626 pReader
->rootOnly
= 1;
1627 pReader
->nNode
= nRoot
;
1628 memcpy(pReader
->aNode
, zRoot
, nRoot
);
1629 memset(&pReader
->aNode
[nRoot
], 0, FTS3_NODE_PADDING
);
1631 pReader
->iCurrentBlock
= iStartLeaf
-1;
1633 *ppReader
= pReader
;
1638 ** This is a comparison function used as a qsort() callback when sorting
1639 ** an array of pending terms by term. This occurs as part of flushing
1640 ** the contents of the pending-terms hash table to the database.
1642 static int SQLITE_CDECL
fts3CompareElemByTerm(
1646 char *z1
= fts3HashKey(*(Fts3HashElem
**)lhs
);
1647 char *z2
= fts3HashKey(*(Fts3HashElem
**)rhs
);
1648 int n1
= fts3HashKeysize(*(Fts3HashElem
**)lhs
);
1649 int n2
= fts3HashKeysize(*(Fts3HashElem
**)rhs
);
1651 int n
= (n1
<n2
? n1
: n2
);
1652 int c
= memcmp(z1
, z2
, n
);
1660 ** This function is used to allocate an Fts3SegReader that iterates through
1661 ** a subset of the terms stored in the Fts3Table.pendingTerms array.
1663 ** If the isPrefixIter parameter is zero, then the returned SegReader iterates
1664 ** through each term in the pending-terms table. Or, if isPrefixIter is
1665 ** non-zero, it iterates through each term and its prefixes. For example, if
1666 ** the pending terms hash table contains the terms "sqlite", "mysql" and
1667 ** "firebird", then the iterator visits the following 'terms' (in the order
1670 ** f fi fir fire fireb firebi firebir firebird
1671 ** m my mys mysq mysql
1672 ** s sq sql sqli sqlit sqlite
1674 ** Whereas if isPrefixIter is zero, the terms visited are:
1676 ** firebird mysql sqlite
1678 int sqlite3Fts3SegReaderPending(
1679 Fts3Table
*p
, /* Virtual table handle */
1680 int iIndex
, /* Index for p->aIndex */
1681 const char *zTerm
, /* Term to search for */
1682 int nTerm
, /* Size of buffer zTerm */
1683 int bPrefix
, /* True for a prefix iterator */
1684 Fts3SegReader
**ppReader
/* OUT: SegReader for pending-terms */
1686 Fts3SegReader
*pReader
= 0; /* Fts3SegReader object to return */
1687 Fts3HashElem
*pE
; /* Iterator variable */
1688 Fts3HashElem
**aElem
= 0; /* Array of term hash entries to scan */
1689 int nElem
= 0; /* Size of array at aElem */
1690 int rc
= SQLITE_OK
; /* Return Code */
1693 pHash
= &p
->aIndex
[iIndex
].hPending
;
1695 int nAlloc
= 0; /* Size of allocated array at aElem */
1697 for(pE
=fts3HashFirst(pHash
); pE
; pE
=fts3HashNext(pE
)){
1698 char *zKey
= (char *)fts3HashKey(pE
);
1699 int nKey
= fts3HashKeysize(pE
);
1700 if( nTerm
==0 || (nKey
>=nTerm
&& 0==memcmp(zKey
, zTerm
, nTerm
)) ){
1701 if( nElem
==nAlloc
){
1702 Fts3HashElem
**aElem2
;
1704 aElem2
= (Fts3HashElem
**)sqlite3_realloc(
1705 aElem
, nAlloc
*sizeof(Fts3HashElem
*)
1715 aElem
[nElem
++] = pE
;
1719 /* If more than one term matches the prefix, sort the Fts3HashElem
1720 ** objects in term order using qsort(). This uses the same comparison
1721 ** callback as is used when flushing terms to disk.
1724 qsort(aElem
, nElem
, sizeof(Fts3HashElem
*), fts3CompareElemByTerm
);
1728 /* The query is a simple term lookup that matches at most one term in
1729 ** the index. All that is required is a straight hash-lookup.
1731 ** Because the stack address of pE may be accessed via the aElem pointer
1732 ** below, the "Fts3HashElem *pE" must be declared so that it is valid
1733 ** within this entire function, not just this "else{...}" block.
1735 pE
= fts3HashFindElem(pHash
, zTerm
, nTerm
);
1743 int nByte
= sizeof(Fts3SegReader
) + (nElem
+1)*sizeof(Fts3HashElem
*);
1744 pReader
= (Fts3SegReader
*)sqlite3_malloc(nByte
);
1748 memset(pReader
, 0, nByte
);
1749 pReader
->iIdx
= 0x7FFFFFFF;
1750 pReader
->ppNextElem
= (Fts3HashElem
**)&pReader
[1];
1751 memcpy(pReader
->ppNextElem
, aElem
, nElem
*sizeof(Fts3HashElem
*));
1756 sqlite3_free(aElem
);
1758 *ppReader
= pReader
;
1763 ** Compare the entries pointed to by two Fts3SegReader structures.
1764 ** Comparison is as follows:
1766 ** 1) EOF is greater than not EOF.
1768 ** 2) The current terms (if any) are compared using memcmp(). If one
1769 ** term is a prefix of another, the longer term is considered the
1772 ** 3) By segment age. An older segment is considered larger.
1774 static int fts3SegReaderCmp(Fts3SegReader
*pLhs
, Fts3SegReader
*pRhs
){
1776 if( pLhs
->aNode
&& pRhs
->aNode
){
1777 int rc2
= pLhs
->nTerm
- pRhs
->nTerm
;
1779 rc
= memcmp(pLhs
->zTerm
, pRhs
->zTerm
, pLhs
->nTerm
);
1781 rc
= memcmp(pLhs
->zTerm
, pRhs
->zTerm
, pRhs
->nTerm
);
1787 rc
= (pLhs
->aNode
==0) - (pRhs
->aNode
==0);
1790 rc
= pRhs
->iIdx
- pLhs
->iIdx
;
1797 ** A different comparison function for SegReader structures. In this
1798 ** version, it is assumed that each SegReader points to an entry in
1799 ** a doclist for identical terms. Comparison is made as follows:
1801 ** 1) EOF (end of doclist in this case) is greater than not EOF.
1803 ** 2) By current docid.
1805 ** 3) By segment age. An older segment is considered larger.
1807 static int fts3SegReaderDoclistCmp(Fts3SegReader
*pLhs
, Fts3SegReader
*pRhs
){
1808 int rc
= (pLhs
->pOffsetList
==0)-(pRhs
->pOffsetList
==0);
1810 if( pLhs
->iDocid
==pRhs
->iDocid
){
1811 rc
= pRhs
->iIdx
- pLhs
->iIdx
;
1813 rc
= (pLhs
->iDocid
> pRhs
->iDocid
) ? 1 : -1;
1816 assert( pLhs
->aNode
&& pRhs
->aNode
);
1819 static int fts3SegReaderDoclistCmpRev(Fts3SegReader
*pLhs
, Fts3SegReader
*pRhs
){
1820 int rc
= (pLhs
->pOffsetList
==0)-(pRhs
->pOffsetList
==0);
1822 if( pLhs
->iDocid
==pRhs
->iDocid
){
1823 rc
= pRhs
->iIdx
- pLhs
->iIdx
;
1825 rc
= (pLhs
->iDocid
< pRhs
->iDocid
) ? 1 : -1;
1828 assert( pLhs
->aNode
&& pRhs
->aNode
);
1833 ** Compare the term that the Fts3SegReader object passed as the first argument
1834 ** points to with the term specified by arguments zTerm and nTerm.
1836 ** If the pSeg iterator is already at EOF, return 0. Otherwise, return
1837 ** -ve if the pSeg term is less than zTerm/nTerm, 0 if the two terms are
1838 ** equal, or +ve if the pSeg term is greater than zTerm/nTerm.
1840 static int fts3SegReaderTermCmp(
1841 Fts3SegReader
*pSeg
, /* Segment reader object */
1842 const char *zTerm
, /* Term to compare to */
1843 int nTerm
/* Size of term zTerm in bytes */
1847 if( pSeg
->nTerm
>nTerm
){
1848 res
= memcmp(pSeg
->zTerm
, zTerm
, nTerm
);
1850 res
= memcmp(pSeg
->zTerm
, zTerm
, pSeg
->nTerm
);
1853 res
= pSeg
->nTerm
-nTerm
;
1860 ** Argument apSegment is an array of nSegment elements. It is known that
1861 ** the final (nSegment-nSuspect) members are already in sorted order
1862 ** (according to the comparison function provided). This function shuffles
1863 ** the array around until all entries are in sorted order.
1865 static void fts3SegReaderSort(
1866 Fts3SegReader
**apSegment
, /* Array to sort entries of */
1867 int nSegment
, /* Size of apSegment array */
1868 int nSuspect
, /* Unsorted entry count */
1869 int (*xCmp
)(Fts3SegReader
*, Fts3SegReader
*) /* Comparison function */
1871 int i
; /* Iterator variable */
1873 assert( nSuspect
<=nSegment
);
1875 if( nSuspect
==nSegment
) nSuspect
--;
1876 for(i
=nSuspect
-1; i
>=0; i
--){
1878 for(j
=i
; j
<(nSegment
-1); j
++){
1879 Fts3SegReader
*pTmp
;
1880 if( xCmp(apSegment
[j
], apSegment
[j
+1])<0 ) break;
1881 pTmp
= apSegment
[j
+1];
1882 apSegment
[j
+1] = apSegment
[j
];
1883 apSegment
[j
] = pTmp
;
1888 /* Check that the list really is sorted now. */
1889 for(i
=0; i
<(nSuspect
-1); i
++){
1890 assert( xCmp(apSegment
[i
], apSegment
[i
+1])<0 );
1896 ** Insert a record into the %_segments table.
1898 static int fts3WriteSegment(
1899 Fts3Table
*p
, /* Virtual table handle */
1900 sqlite3_int64 iBlock
, /* Block id for new block */
1901 char *z
, /* Pointer to buffer containing block data */
1902 int n
/* Size of buffer z in bytes */
1904 sqlite3_stmt
*pStmt
;
1905 int rc
= fts3SqlStmt(p
, SQL_INSERT_SEGMENTS
, &pStmt
, 0);
1906 if( rc
==SQLITE_OK
){
1907 sqlite3_bind_int64(pStmt
, 1, iBlock
);
1908 sqlite3_bind_blob(pStmt
, 2, z
, n
, SQLITE_STATIC
);
1909 sqlite3_step(pStmt
);
1910 rc
= sqlite3_reset(pStmt
);
1911 sqlite3_bind_null(pStmt
, 2);
1917 ** Find the largest relative level number in the table. If successful, set
1918 ** *pnMax to this value and return SQLITE_OK. Otherwise, if an error occurs,
1919 ** set *pnMax to zero and return an SQLite error code.
1921 int sqlite3Fts3MaxLevel(Fts3Table
*p
, int *pnMax
){
1924 sqlite3_stmt
*pStmt
= 0;
1926 rc
= fts3SqlStmt(p
, SQL_SELECT_MXLEVEL
, &pStmt
, 0);
1927 if( rc
==SQLITE_OK
){
1928 if( SQLITE_ROW
==sqlite3_step(pStmt
) ){
1929 mxLevel
= sqlite3_column_int(pStmt
, 0);
1931 rc
= sqlite3_reset(pStmt
);
1938 ** Insert a record into the %_segdir table.
1940 static int fts3WriteSegdir(
1941 Fts3Table
*p
, /* Virtual table handle */
1942 sqlite3_int64 iLevel
, /* Value for "level" field (absolute level) */
1943 int iIdx
, /* Value for "idx" field */
1944 sqlite3_int64 iStartBlock
, /* Value for "start_block" field */
1945 sqlite3_int64 iLeafEndBlock
, /* Value for "leaves_end_block" field */
1946 sqlite3_int64 iEndBlock
, /* Value for "end_block" field */
1947 sqlite3_int64 nLeafData
, /* Bytes of leaf data in segment */
1948 char *zRoot
, /* Blob value for "root" field */
1949 int nRoot
/* Number of bytes in buffer zRoot */
1951 sqlite3_stmt
*pStmt
;
1952 int rc
= fts3SqlStmt(p
, SQL_INSERT_SEGDIR
, &pStmt
, 0);
1953 if( rc
==SQLITE_OK
){
1954 sqlite3_bind_int64(pStmt
, 1, iLevel
);
1955 sqlite3_bind_int(pStmt
, 2, iIdx
);
1956 sqlite3_bind_int64(pStmt
, 3, iStartBlock
);
1957 sqlite3_bind_int64(pStmt
, 4, iLeafEndBlock
);
1959 sqlite3_bind_int64(pStmt
, 5, iEndBlock
);
1961 char *zEnd
= sqlite3_mprintf("%lld %lld", iEndBlock
, nLeafData
);
1962 if( !zEnd
) return SQLITE_NOMEM
;
1963 sqlite3_bind_text(pStmt
, 5, zEnd
, -1, sqlite3_free
);
1965 sqlite3_bind_blob(pStmt
, 6, zRoot
, nRoot
, SQLITE_STATIC
);
1966 sqlite3_step(pStmt
);
1967 rc
= sqlite3_reset(pStmt
);
1968 sqlite3_bind_null(pStmt
, 6);
1974 ** Return the size of the common prefix (if any) shared by zPrev and
1975 ** zNext, in bytes. For example,
1977 ** fts3PrefixCompress("abc", 3, "abcdef", 6) // returns 3
1978 ** fts3PrefixCompress("abX", 3, "abcdef", 6) // returns 2
1979 ** fts3PrefixCompress("abX", 3, "Xbcdef", 6) // returns 0
1981 static int fts3PrefixCompress(
1982 const char *zPrev
, /* Buffer containing previous term */
1983 int nPrev
, /* Size of buffer zPrev in bytes */
1984 const char *zNext
, /* Buffer containing next term */
1985 int nNext
/* Size of buffer zNext in bytes */
1988 UNUSED_PARAMETER(nNext
);
1989 for(n
=0; n
<nPrev
&& zPrev
[n
]==zNext
[n
]; n
++);
1994 ** Add term zTerm to the SegmentNode. It is guaranteed that zTerm is larger
1995 ** (according to memcmp) than the previous term.
1997 static int fts3NodeAddTerm(
1998 Fts3Table
*p
, /* Virtual table handle */
1999 SegmentNode
**ppTree
, /* IN/OUT: SegmentNode handle */
2000 int isCopyTerm
, /* True if zTerm/nTerm is transient */
2001 const char *zTerm
, /* Pointer to buffer containing term */
2002 int nTerm
/* Size of term in bytes */
2004 SegmentNode
*pTree
= *ppTree
;
2008 /* First try to append the term to the current node. Return early if
2009 ** this is possible.
2012 int nData
= pTree
->nData
; /* Current size of node in bytes */
2013 int nReq
= nData
; /* Required space after adding zTerm */
2014 int nPrefix
; /* Number of bytes of prefix compression */
2015 int nSuffix
; /* Suffix length */
2017 nPrefix
= fts3PrefixCompress(pTree
->zTerm
, pTree
->nTerm
, zTerm
, nTerm
);
2018 nSuffix
= nTerm
-nPrefix
;
2020 nReq
+= sqlite3Fts3VarintLen(nPrefix
)+sqlite3Fts3VarintLen(nSuffix
)+nSuffix
;
2021 if( nReq
<=p
->nNodeSize
|| !pTree
->zTerm
){
2023 if( nReq
>p
->nNodeSize
){
2024 /* An unusual case: this is the first term to be added to the node
2025 ** and the static node buffer (p->nNodeSize bytes) is not large
2026 ** enough. Use a separately malloced buffer instead This wastes
2027 ** p->nNodeSize bytes, but since this scenario only comes about when
2028 ** the database contain two terms that share a prefix of almost 2KB,
2029 ** this is not expected to be a serious problem.
2031 assert( pTree
->aData
==(char *)&pTree
[1] );
2032 pTree
->aData
= (char *)sqlite3_malloc(nReq
);
2033 if( !pTree
->aData
){
2034 return SQLITE_NOMEM
;
2039 /* There is no prefix-length field for first term in a node */
2040 nData
+= sqlite3Fts3PutVarint(&pTree
->aData
[nData
], nPrefix
);
2043 nData
+= sqlite3Fts3PutVarint(&pTree
->aData
[nData
], nSuffix
);
2044 memcpy(&pTree
->aData
[nData
], &zTerm
[nPrefix
], nSuffix
);
2045 pTree
->nData
= nData
+ nSuffix
;
2049 if( pTree
->nMalloc
<nTerm
){
2050 char *zNew
= sqlite3_realloc(pTree
->zMalloc
, nTerm
*2);
2052 return SQLITE_NOMEM
;
2054 pTree
->nMalloc
= nTerm
*2;
2055 pTree
->zMalloc
= zNew
;
2057 pTree
->zTerm
= pTree
->zMalloc
;
2058 memcpy(pTree
->zTerm
, zTerm
, nTerm
);
2059 pTree
->nTerm
= nTerm
;
2061 pTree
->zTerm
= (char *)zTerm
;
2062 pTree
->nTerm
= nTerm
;
2068 /* If control flows to here, it was not possible to append zTerm to the
2069 ** current node. Create a new node (a right-sibling of the current node).
2070 ** If this is the first node in the tree, the term is added to it.
2072 ** Otherwise, the term is not added to the new node, it is left empty for
2073 ** now. Instead, the term is inserted into the parent of pTree. If pTree
2074 ** has no parent, one is created here.
2076 pNew
= (SegmentNode
*)sqlite3_malloc(sizeof(SegmentNode
) + p
->nNodeSize
);
2078 return SQLITE_NOMEM
;
2080 memset(pNew
, 0, sizeof(SegmentNode
));
2081 pNew
->nData
= 1 + FTS3_VARINT_MAX
;
2082 pNew
->aData
= (char *)&pNew
[1];
2085 SegmentNode
*pParent
= pTree
->pParent
;
2086 rc
= fts3NodeAddTerm(p
, &pParent
, isCopyTerm
, zTerm
, nTerm
);
2087 if( pTree
->pParent
==0 ){
2088 pTree
->pParent
= pParent
;
2090 pTree
->pRight
= pNew
;
2091 pNew
->pLeftmost
= pTree
->pLeftmost
;
2092 pNew
->pParent
= pParent
;
2093 pNew
->zMalloc
= pTree
->zMalloc
;
2094 pNew
->nMalloc
= pTree
->nMalloc
;
2097 pNew
->pLeftmost
= pNew
;
2098 rc
= fts3NodeAddTerm(p
, &pNew
, isCopyTerm
, zTerm
, nTerm
);
2106 ** Helper function for fts3NodeWrite().
2108 static int fts3TreeFinishNode(
2111 sqlite3_int64 iLeftChild
2114 assert( iHeight
>=1 && iHeight
<128 );
2115 nStart
= FTS3_VARINT_MAX
- sqlite3Fts3VarintLen(iLeftChild
);
2116 pTree
->aData
[nStart
] = (char)iHeight
;
2117 sqlite3Fts3PutVarint(&pTree
->aData
[nStart
+1], iLeftChild
);
2122 ** Write the buffer for the segment node pTree and all of its peers to the
2123 ** database. Then call this function recursively to write the parent of
2124 ** pTree and its peers to the database.
2126 ** Except, if pTree is a root node, do not write it to the database. Instead,
2127 ** set output variables *paRoot and *pnRoot to contain the root node.
2129 ** If successful, SQLITE_OK is returned and output variable *piLast is
2130 ** set to the largest blockid written to the database (or zero if no
2131 ** blocks were written to the db). Otherwise, an SQLite error code is
2134 static int fts3NodeWrite(
2135 Fts3Table
*p
, /* Virtual table handle */
2136 SegmentNode
*pTree
, /* SegmentNode handle */
2137 int iHeight
, /* Height of this node in tree */
2138 sqlite3_int64 iLeaf
, /* Block id of first leaf node */
2139 sqlite3_int64 iFree
, /* Block id of next free slot in %_segments */
2140 sqlite3_int64
*piLast
, /* OUT: Block id of last entry written */
2141 char **paRoot
, /* OUT: Data for root node */
2142 int *pnRoot
/* OUT: Size of root node in bytes */
2146 if( !pTree
->pParent
){
2147 /* Root node of the tree. */
2148 int nStart
= fts3TreeFinishNode(pTree
, iHeight
, iLeaf
);
2150 *pnRoot
= pTree
->nData
- nStart
;
2151 *paRoot
= &pTree
->aData
[nStart
];
2154 sqlite3_int64 iNextFree
= iFree
;
2155 sqlite3_int64 iNextLeaf
= iLeaf
;
2156 for(pIter
=pTree
->pLeftmost
; pIter
&& rc
==SQLITE_OK
; pIter
=pIter
->pRight
){
2157 int nStart
= fts3TreeFinishNode(pIter
, iHeight
, iNextLeaf
);
2158 int nWrite
= pIter
->nData
- nStart
;
2160 rc
= fts3WriteSegment(p
, iNextFree
, &pIter
->aData
[nStart
], nWrite
);
2162 iNextLeaf
+= (pIter
->nEntry
+1);
2164 if( rc
==SQLITE_OK
){
2165 assert( iNextLeaf
==iFree
);
2167 p
, pTree
->pParent
, iHeight
+1, iFree
, iNextFree
, piLast
, paRoot
, pnRoot
2176 ** Free all memory allocations associated with the tree pTree.
2178 static void fts3NodeFree(SegmentNode
*pTree
){
2180 SegmentNode
*p
= pTree
->pLeftmost
;
2181 fts3NodeFree(p
->pParent
);
2183 SegmentNode
*pRight
= p
->pRight
;
2184 if( p
->aData
!=(char *)&p
[1] ){
2185 sqlite3_free(p
->aData
);
2187 assert( pRight
==0 || p
->zMalloc
==0 );
2188 sqlite3_free(p
->zMalloc
);
2196 ** Add a term to the segment being constructed by the SegmentWriter object
2197 ** *ppWriter. When adding the first term to a segment, *ppWriter should
2198 ** be passed NULL. This function will allocate a new SegmentWriter object
2199 ** and return it via the input/output variable *ppWriter in this case.
2201 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
2203 static int fts3SegWriterAdd(
2204 Fts3Table
*p
, /* Virtual table handle */
2205 SegmentWriter
**ppWriter
, /* IN/OUT: SegmentWriter handle */
2206 int isCopyTerm
, /* True if buffer zTerm must be copied */
2207 const char *zTerm
, /* Pointer to buffer containing term */
2208 int nTerm
, /* Size of term in bytes */
2209 const char *aDoclist
, /* Pointer to buffer containing doclist */
2210 int nDoclist
/* Size of doclist in bytes */
2212 int nPrefix
; /* Size of term prefix in bytes */
2213 int nSuffix
; /* Size of term suffix in bytes */
2214 int nReq
; /* Number of bytes required on leaf page */
2216 SegmentWriter
*pWriter
= *ppWriter
;
2220 sqlite3_stmt
*pStmt
;
2222 /* Allocate the SegmentWriter structure */
2223 pWriter
= (SegmentWriter
*)sqlite3_malloc(sizeof(SegmentWriter
));
2224 if( !pWriter
) return SQLITE_NOMEM
;
2225 memset(pWriter
, 0, sizeof(SegmentWriter
));
2226 *ppWriter
= pWriter
;
2228 /* Allocate a buffer in which to accumulate data */
2229 pWriter
->aData
= (char *)sqlite3_malloc(p
->nNodeSize
);
2230 if( !pWriter
->aData
) return SQLITE_NOMEM
;
2231 pWriter
->nSize
= p
->nNodeSize
;
2233 /* Find the next free blockid in the %_segments table */
2234 rc
= fts3SqlStmt(p
, SQL_NEXT_SEGMENTS_ID
, &pStmt
, 0);
2235 if( rc
!=SQLITE_OK
) return rc
;
2236 if( SQLITE_ROW
==sqlite3_step(pStmt
) ){
2237 pWriter
->iFree
= sqlite3_column_int64(pStmt
, 0);
2238 pWriter
->iFirst
= pWriter
->iFree
;
2240 rc
= sqlite3_reset(pStmt
);
2241 if( rc
!=SQLITE_OK
) return rc
;
2243 nData
= pWriter
->nData
;
2245 nPrefix
= fts3PrefixCompress(pWriter
->zTerm
, pWriter
->nTerm
, zTerm
, nTerm
);
2246 nSuffix
= nTerm
-nPrefix
;
2248 /* Figure out how many bytes are required by this new entry */
2249 nReq
= sqlite3Fts3VarintLen(nPrefix
) + /* varint containing prefix size */
2250 sqlite3Fts3VarintLen(nSuffix
) + /* varint containing suffix size */
2251 nSuffix
+ /* Term suffix */
2252 sqlite3Fts3VarintLen(nDoclist
) + /* Size of doclist */
2253 nDoclist
; /* Doclist data */
2255 if( nData
>0 && nData
+nReq
>p
->nNodeSize
){
2258 /* The current leaf node is full. Write it out to the database. */
2259 rc
= fts3WriteSegment(p
, pWriter
->iFree
++, pWriter
->aData
, nData
);
2260 if( rc
!=SQLITE_OK
) return rc
;
2263 /* Add the current term to the interior node tree. The term added to
2264 ** the interior tree must:
2266 ** a) be greater than the largest term on the leaf node just written
2267 ** to the database (still available in pWriter->zTerm), and
2269 ** b) be less than or equal to the term about to be added to the new
2270 ** leaf node (zTerm/nTerm).
2272 ** In other words, it must be the prefix of zTerm 1 byte longer than
2273 ** the common prefix (if any) of zTerm and pWriter->zTerm.
2275 assert( nPrefix
<nTerm
);
2276 rc
= fts3NodeAddTerm(p
, &pWriter
->pTree
, isCopyTerm
, zTerm
, nPrefix
+1);
2277 if( rc
!=SQLITE_OK
) return rc
;
2284 nReq
= 1 + /* varint containing prefix size */
2285 sqlite3Fts3VarintLen(nTerm
) + /* varint containing suffix size */
2286 nTerm
+ /* Term suffix */
2287 sqlite3Fts3VarintLen(nDoclist
) + /* Size of doclist */
2288 nDoclist
; /* Doclist data */
2291 /* Increase the total number of bytes written to account for the new entry. */
2292 pWriter
->nLeafData
+= nReq
;
2294 /* If the buffer currently allocated is too small for this entry, realloc
2295 ** the buffer to make it large enough.
2297 if( nReq
>pWriter
->nSize
){
2298 char *aNew
= sqlite3_realloc(pWriter
->aData
, nReq
);
2299 if( !aNew
) return SQLITE_NOMEM
;
2300 pWriter
->aData
= aNew
;
2301 pWriter
->nSize
= nReq
;
2303 assert( nData
+nReq
<=pWriter
->nSize
);
2305 /* Append the prefix-compressed term and doclist to the buffer. */
2306 nData
+= sqlite3Fts3PutVarint(&pWriter
->aData
[nData
], nPrefix
);
2307 nData
+= sqlite3Fts3PutVarint(&pWriter
->aData
[nData
], nSuffix
);
2308 memcpy(&pWriter
->aData
[nData
], &zTerm
[nPrefix
], nSuffix
);
2310 nData
+= sqlite3Fts3PutVarint(&pWriter
->aData
[nData
], nDoclist
);
2311 memcpy(&pWriter
->aData
[nData
], aDoclist
, nDoclist
);
2312 pWriter
->nData
= nData
+ nDoclist
;
2314 /* Save the current term so that it can be used to prefix-compress the next.
2315 ** If the isCopyTerm parameter is true, then the buffer pointed to by
2316 ** zTerm is transient, so take a copy of the term data. Otherwise, just
2317 ** store a copy of the pointer.
2320 if( nTerm
>pWriter
->nMalloc
){
2321 char *zNew
= sqlite3_realloc(pWriter
->zMalloc
, nTerm
*2);
2323 return SQLITE_NOMEM
;
2325 pWriter
->nMalloc
= nTerm
*2;
2326 pWriter
->zMalloc
= zNew
;
2327 pWriter
->zTerm
= zNew
;
2329 assert( pWriter
->zTerm
==pWriter
->zMalloc
);
2330 memcpy(pWriter
->zTerm
, zTerm
, nTerm
);
2332 pWriter
->zTerm
= (char *)zTerm
;
2334 pWriter
->nTerm
= nTerm
;
2340 ** Flush all data associated with the SegmentWriter object pWriter to the
2341 ** database. This function must be called after all terms have been added
2342 ** to the segment using fts3SegWriterAdd(). If successful, SQLITE_OK is
2343 ** returned. Otherwise, an SQLite error code.
2345 static int fts3SegWriterFlush(
2346 Fts3Table
*p
, /* Virtual table handle */
2347 SegmentWriter
*pWriter
, /* SegmentWriter to flush to the db */
2348 sqlite3_int64 iLevel
, /* Value for 'level' column of %_segdir */
2349 int iIdx
/* Value for 'idx' column of %_segdir */
2351 int rc
; /* Return code */
2352 if( pWriter
->pTree
){
2353 sqlite3_int64 iLast
= 0; /* Largest block id written to database */
2354 sqlite3_int64 iLastLeaf
; /* Largest leaf block id written to db */
2355 char *zRoot
= NULL
; /* Pointer to buffer containing root node */
2356 int nRoot
= 0; /* Size of buffer zRoot */
2358 iLastLeaf
= pWriter
->iFree
;
2359 rc
= fts3WriteSegment(p
, pWriter
->iFree
++, pWriter
->aData
, pWriter
->nData
);
2360 if( rc
==SQLITE_OK
){
2361 rc
= fts3NodeWrite(p
, pWriter
->pTree
, 1,
2362 pWriter
->iFirst
, pWriter
->iFree
, &iLast
, &zRoot
, &nRoot
);
2364 if( rc
==SQLITE_OK
){
2365 rc
= fts3WriteSegdir(p
, iLevel
, iIdx
,
2366 pWriter
->iFirst
, iLastLeaf
, iLast
, pWriter
->nLeafData
, zRoot
, nRoot
);
2369 /* The entire tree fits on the root node. Write it to the segdir table. */
2370 rc
= fts3WriteSegdir(p
, iLevel
, iIdx
,
2371 0, 0, 0, pWriter
->nLeafData
, pWriter
->aData
, pWriter
->nData
);
2378 ** Release all memory held by the SegmentWriter object passed as the
2381 static void fts3SegWriterFree(SegmentWriter
*pWriter
){
2383 sqlite3_free(pWriter
->aData
);
2384 sqlite3_free(pWriter
->zMalloc
);
2385 fts3NodeFree(pWriter
->pTree
);
2386 sqlite3_free(pWriter
);
2391 ** The first value in the apVal[] array is assumed to contain an integer.
2392 ** This function tests if there exist any documents with docid values that
2393 ** are different from that integer. i.e. if deleting the document with docid
2394 ** pRowid would mean the FTS3 table were empty.
2396 ** If successful, *pisEmpty is set to true if the table is empty except for
2397 ** document pRowid, or false otherwise, and SQLITE_OK is returned. If an
2398 ** error occurs, an SQLite error code is returned.
2400 static int fts3IsEmpty(Fts3Table
*p
, sqlite3_value
*pRowid
, int *pisEmpty
){
2401 sqlite3_stmt
*pStmt
;
2403 if( p
->zContentTbl
){
2404 /* If using the content=xxx option, assume the table is never empty */
2408 rc
= fts3SqlStmt(p
, SQL_IS_EMPTY
, &pStmt
, &pRowid
);
2409 if( rc
==SQLITE_OK
){
2410 if( SQLITE_ROW
==sqlite3_step(pStmt
) ){
2411 *pisEmpty
= sqlite3_column_int(pStmt
, 0);
2413 rc
= sqlite3_reset(pStmt
);
2420 ** Set *pnMax to the largest segment level in the database for the index
2423 ** Segment levels are stored in the 'level' column of the %_segdir table.
2425 ** Return SQLITE_OK if successful, or an SQLite error code if not.
2427 static int fts3SegmentMaxLevel(
2431 sqlite3_int64
*pnMax
2433 sqlite3_stmt
*pStmt
;
2435 assert( iIndex
>=0 && iIndex
<p
->nIndex
);
2437 /* Set pStmt to the compiled version of:
2439 ** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?
2441 ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR).
2443 rc
= fts3SqlStmt(p
, SQL_SELECT_SEGDIR_MAX_LEVEL
, &pStmt
, 0);
2444 if( rc
!=SQLITE_OK
) return rc
;
2445 sqlite3_bind_int64(pStmt
, 1, getAbsoluteLevel(p
, iLangid
, iIndex
, 0));
2446 sqlite3_bind_int64(pStmt
, 2,
2447 getAbsoluteLevel(p
, iLangid
, iIndex
, FTS3_SEGDIR_MAXLEVEL
-1)
2449 if( SQLITE_ROW
==sqlite3_step(pStmt
) ){
2450 *pnMax
= sqlite3_column_int64(pStmt
, 0);
2452 return sqlite3_reset(pStmt
);
2456 ** iAbsLevel is an absolute level that may be assumed to exist within
2457 ** the database. This function checks if it is the largest level number
2458 ** within its index. Assuming no error occurs, *pbMax is set to 1 if
2459 ** iAbsLevel is indeed the largest level, or 0 otherwise, and SQLITE_OK
2460 ** is returned. If an error occurs, an error code is returned and the
2461 ** final value of *pbMax is undefined.
2463 static int fts3SegmentIsMaxLevel(Fts3Table
*p
, i64 iAbsLevel
, int *pbMax
){
2465 /* Set pStmt to the compiled version of:
2467 ** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?
2469 ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR).
2471 sqlite3_stmt
*pStmt
;
2472 int rc
= fts3SqlStmt(p
, SQL_SELECT_SEGDIR_MAX_LEVEL
, &pStmt
, 0);
2473 if( rc
!=SQLITE_OK
) return rc
;
2474 sqlite3_bind_int64(pStmt
, 1, iAbsLevel
+1);
2475 sqlite3_bind_int64(pStmt
, 2,
2476 ((iAbsLevel
/FTS3_SEGDIR_MAXLEVEL
)+1) * FTS3_SEGDIR_MAXLEVEL
2480 if( SQLITE_ROW
==sqlite3_step(pStmt
) ){
2481 *pbMax
= sqlite3_column_type(pStmt
, 0)==SQLITE_NULL
;
2483 return sqlite3_reset(pStmt
);
2487 ** Delete all entries in the %_segments table associated with the segment
2488 ** opened with seg-reader pSeg. This function does not affect the contents
2489 ** of the %_segdir table.
2491 static int fts3DeleteSegment(
2492 Fts3Table
*p
, /* FTS table handle */
2493 Fts3SegReader
*pSeg
/* Segment to delete */
2495 int rc
= SQLITE_OK
; /* Return code */
2496 if( pSeg
->iStartBlock
){
2497 sqlite3_stmt
*pDelete
; /* SQL statement to delete rows */
2498 rc
= fts3SqlStmt(p
, SQL_DELETE_SEGMENTS_RANGE
, &pDelete
, 0);
2499 if( rc
==SQLITE_OK
){
2500 sqlite3_bind_int64(pDelete
, 1, pSeg
->iStartBlock
);
2501 sqlite3_bind_int64(pDelete
, 2, pSeg
->iEndBlock
);
2502 sqlite3_step(pDelete
);
2503 rc
= sqlite3_reset(pDelete
);
2510 ** This function is used after merging multiple segments into a single large
2511 ** segment to delete the old, now redundant, segment b-trees. Specifically,
2514 ** 1) Deletes all %_segments entries for the segments associated with
2515 ** each of the SegReader objects in the array passed as the third
2518 ** 2) deletes all %_segdir entries with level iLevel, or all %_segdir
2519 ** entries regardless of level if (iLevel<0).
2521 ** SQLITE_OK is returned if successful, otherwise an SQLite error code.
2523 static int fts3DeleteSegdir(
2524 Fts3Table
*p
, /* Virtual table handle */
2525 int iLangid
, /* Language id */
2526 int iIndex
, /* Index for p->aIndex */
2527 int iLevel
, /* Level of %_segdir entries to delete */
2528 Fts3SegReader
**apSegment
, /* Array of SegReader objects */
2529 int nReader
/* Size of array apSegment */
2531 int rc
= SQLITE_OK
; /* Return Code */
2532 int i
; /* Iterator variable */
2533 sqlite3_stmt
*pDelete
= 0; /* SQL statement to delete rows */
2535 for(i
=0; rc
==SQLITE_OK
&& i
<nReader
; i
++){
2536 rc
= fts3DeleteSegment(p
, apSegment
[i
]);
2538 if( rc
!=SQLITE_OK
){
2542 assert( iLevel
>=0 || iLevel
==FTS3_SEGCURSOR_ALL
);
2543 if( iLevel
==FTS3_SEGCURSOR_ALL
){
2544 rc
= fts3SqlStmt(p
, SQL_DELETE_SEGDIR_RANGE
, &pDelete
, 0);
2545 if( rc
==SQLITE_OK
){
2546 sqlite3_bind_int64(pDelete
, 1, getAbsoluteLevel(p
, iLangid
, iIndex
, 0));
2547 sqlite3_bind_int64(pDelete
, 2,
2548 getAbsoluteLevel(p
, iLangid
, iIndex
, FTS3_SEGDIR_MAXLEVEL
-1)
2552 rc
= fts3SqlStmt(p
, SQL_DELETE_SEGDIR_LEVEL
, &pDelete
, 0);
2553 if( rc
==SQLITE_OK
){
2555 pDelete
, 1, getAbsoluteLevel(p
, iLangid
, iIndex
, iLevel
)
2560 if( rc
==SQLITE_OK
){
2561 sqlite3_step(pDelete
);
2562 rc
= sqlite3_reset(pDelete
);
2569 ** When this function is called, buffer *ppList (size *pnList bytes) contains
2570 ** a position list that may (or may not) feature multiple columns. This
2571 ** function adjusts the pointer *ppList and the length *pnList so that they
2572 ** identify the subset of the position list that corresponds to column iCol.
2574 ** If there are no entries in the input position list for column iCol, then
2575 ** *pnList is set to zero before returning.
2577 ** If parameter bZero is non-zero, then any part of the input list following
2578 ** the end of the output list is zeroed before returning.
2580 static void fts3ColumnFilter(
2581 int iCol
, /* Column to filter on */
2582 int bZero
, /* Zero out anything following *ppList */
2583 char **ppList
, /* IN/OUT: Pointer to position list */
2584 int *pnList
/* IN/OUT: Size of buffer *ppList in bytes */
2586 char *pList
= *ppList
;
2587 int nList
= *pnList
;
2588 char *pEnd
= &pList
[nList
];
2595 while( p
<pEnd
&& (c
| *p
)&0xFE ) c
= *p
++ & 0x80;
2597 if( iCol
==iCurrent
){
2598 nList
= (int)(p
- pList
);
2602 nList
-= (int)(p
- pList
);
2608 p
+= fts3GetVarint32(p
, &iCurrent
);
2611 if( bZero
&& &pList
[nList
]!=pEnd
){
2612 memset(&pList
[nList
], 0, pEnd
- &pList
[nList
]);
2619 ** Cache data in the Fts3MultiSegReader.aBuffer[] buffer (overwriting any
2620 ** existing data). Grow the buffer if required.
2622 ** If successful, return SQLITE_OK. Otherwise, if an OOM error is encountered
2623 ** trying to resize the buffer, return SQLITE_NOMEM.
2625 static int fts3MsrBufferData(
2626 Fts3MultiSegReader
*pMsr
, /* Multi-segment-reader handle */
2630 if( nList
>pMsr
->nBuffer
){
2632 pMsr
->nBuffer
= nList
*2;
2633 pNew
= (char *)sqlite3_realloc(pMsr
->aBuffer
, pMsr
->nBuffer
);
2634 if( !pNew
) return SQLITE_NOMEM
;
2635 pMsr
->aBuffer
= pNew
;
2638 memcpy(pMsr
->aBuffer
, pList
, nList
);
2642 int sqlite3Fts3MsrIncrNext(
2643 Fts3Table
*p
, /* Virtual table handle */
2644 Fts3MultiSegReader
*pMsr
, /* Multi-segment-reader handle */
2645 sqlite3_int64
*piDocid
, /* OUT: Docid value */
2646 char **paPoslist
, /* OUT: Pointer to position list */
2647 int *pnPoslist
/* OUT: Size of position list in bytes */
2649 int nMerge
= pMsr
->nAdvance
;
2650 Fts3SegReader
**apSegment
= pMsr
->apSegment
;
2651 int (*xCmp
)(Fts3SegReader
*, Fts3SegReader
*) = (
2652 p
->bDescIdx
? fts3SegReaderDoclistCmpRev
: fts3SegReaderDoclistCmp
2661 Fts3SegReader
*pSeg
;
2662 pSeg
= pMsr
->apSegment
[0];
2664 if( pSeg
->pOffsetList
==0 ){
2672 sqlite3_int64 iDocid
= apSegment
[0]->iDocid
;
2674 rc
= fts3SegReaderNextDocid(p
, apSegment
[0], &pList
, &nList
);
2676 while( rc
==SQLITE_OK
2678 && apSegment
[j
]->pOffsetList
2679 && apSegment
[j
]->iDocid
==iDocid
2681 rc
= fts3SegReaderNextDocid(p
, apSegment
[j
], 0, 0);
2684 if( rc
!=SQLITE_OK
) return rc
;
2685 fts3SegReaderSort(pMsr
->apSegment
, nMerge
, j
, xCmp
);
2687 if( nList
>0 && fts3SegReaderIsPending(apSegment
[0]) ){
2688 rc
= fts3MsrBufferData(pMsr
, pList
, nList
+1);
2689 if( rc
!=SQLITE_OK
) return rc
;
2690 assert( (pMsr
->aBuffer
[nList
] & 0xFE)==0x00 );
2691 pList
= pMsr
->aBuffer
;
2694 if( pMsr
->iColFilter
>=0 ){
2695 fts3ColumnFilter(pMsr
->iColFilter
, 1, &pList
, &nList
);
2710 static int fts3SegReaderStart(
2711 Fts3Table
*p
, /* Virtual table handle */
2712 Fts3MultiSegReader
*pCsr
, /* Cursor object */
2713 const char *zTerm
, /* Term searched for (or NULL) */
2714 int nTerm
/* Length of zTerm in bytes */
2717 int nSeg
= pCsr
->nSegment
;
2719 /* If the Fts3SegFilter defines a specific term (or term prefix) to search
2720 ** for, then advance each segment iterator until it points to a term of
2721 ** equal or greater value than the specified term. This prevents many
2722 ** unnecessary merge/sort operations for the case where single segment
2723 ** b-tree leaf nodes contain more than one term.
2725 for(i
=0; pCsr
->bRestart
==0 && i
<pCsr
->nSegment
; i
++){
2727 Fts3SegReader
*pSeg
= pCsr
->apSegment
[i
];
2729 int rc
= fts3SegReaderNext(p
, pSeg
, 0);
2730 if( rc
!=SQLITE_OK
) return rc
;
2731 }while( zTerm
&& (res
= fts3SegReaderTermCmp(pSeg
, zTerm
, nTerm
))<0 );
2733 if( pSeg
->bLookup
&& res
!=0 ){
2734 fts3SegReaderSetEof(pSeg
);
2737 fts3SegReaderSort(pCsr
->apSegment
, nSeg
, nSeg
, fts3SegReaderCmp
);
2742 int sqlite3Fts3SegReaderStart(
2743 Fts3Table
*p
, /* Virtual table handle */
2744 Fts3MultiSegReader
*pCsr
, /* Cursor object */
2745 Fts3SegFilter
*pFilter
/* Restrictions on range of iteration */
2747 pCsr
->pFilter
= pFilter
;
2748 return fts3SegReaderStart(p
, pCsr
, pFilter
->zTerm
, pFilter
->nTerm
);
2751 int sqlite3Fts3MsrIncrStart(
2752 Fts3Table
*p
, /* Virtual table handle */
2753 Fts3MultiSegReader
*pCsr
, /* Cursor object */
2754 int iCol
, /* Column to match on. */
2755 const char *zTerm
, /* Term to iterate through a doclist for */
2756 int nTerm
/* Number of bytes in zTerm */
2760 int nSegment
= pCsr
->nSegment
;
2761 int (*xCmp
)(Fts3SegReader
*, Fts3SegReader
*) = (
2762 p
->bDescIdx
? fts3SegReaderDoclistCmpRev
: fts3SegReaderDoclistCmp
2765 assert( pCsr
->pFilter
==0 );
2766 assert( zTerm
&& nTerm
>0 );
2768 /* Advance each segment iterator until it points to the term zTerm/nTerm. */
2769 rc
= fts3SegReaderStart(p
, pCsr
, zTerm
, nTerm
);
2770 if( rc
!=SQLITE_OK
) return rc
;
2772 /* Determine how many of the segments actually point to zTerm/nTerm. */
2773 for(i
=0; i
<nSegment
; i
++){
2774 Fts3SegReader
*pSeg
= pCsr
->apSegment
[i
];
2775 if( !pSeg
->aNode
|| fts3SegReaderTermCmp(pSeg
, zTerm
, nTerm
) ){
2781 /* Advance each of the segments to point to the first docid. */
2782 for(i
=0; i
<pCsr
->nAdvance
; i
++){
2783 rc
= fts3SegReaderFirstDocid(p
, pCsr
->apSegment
[i
]);
2784 if( rc
!=SQLITE_OK
) return rc
;
2786 fts3SegReaderSort(pCsr
->apSegment
, i
, i
, xCmp
);
2788 assert( iCol
<0 || iCol
<p
->nColumn
);
2789 pCsr
->iColFilter
= iCol
;
2795 ** This function is called on a MultiSegReader that has been started using
2796 ** sqlite3Fts3MsrIncrStart(). One or more calls to MsrIncrNext() may also
2797 ** have been made. Calling this function puts the MultiSegReader in such
2798 ** a state that if the next two calls are:
2800 ** sqlite3Fts3SegReaderStart()
2801 ** sqlite3Fts3SegReaderStep()
2803 ** then the entire doclist for the term is available in
2804 ** MultiSegReader.aDoclist/nDoclist.
2806 int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader
*pCsr
){
2807 int i
; /* Used to iterate through segment-readers */
2809 assert( pCsr
->zTerm
==0 );
2810 assert( pCsr
->nTerm
==0 );
2811 assert( pCsr
->aDoclist
==0 );
2812 assert( pCsr
->nDoclist
==0 );
2816 for(i
=0; i
<pCsr
->nSegment
; i
++){
2817 pCsr
->apSegment
[i
]->pOffsetList
= 0;
2818 pCsr
->apSegment
[i
]->nOffsetList
= 0;
2819 pCsr
->apSegment
[i
]->iDocid
= 0;
2826 int sqlite3Fts3SegReaderStep(
2827 Fts3Table
*p
, /* Virtual table handle */
2828 Fts3MultiSegReader
*pCsr
/* Cursor object */
2832 int isIgnoreEmpty
= (pCsr
->pFilter
->flags
& FTS3_SEGMENT_IGNORE_EMPTY
);
2833 int isRequirePos
= (pCsr
->pFilter
->flags
& FTS3_SEGMENT_REQUIRE_POS
);
2834 int isColFilter
= (pCsr
->pFilter
->flags
& FTS3_SEGMENT_COLUMN_FILTER
);
2835 int isPrefix
= (pCsr
->pFilter
->flags
& FTS3_SEGMENT_PREFIX
);
2836 int isScan
= (pCsr
->pFilter
->flags
& FTS3_SEGMENT_SCAN
);
2837 int isFirst
= (pCsr
->pFilter
->flags
& FTS3_SEGMENT_FIRST
);
2839 Fts3SegReader
**apSegment
= pCsr
->apSegment
;
2840 int nSegment
= pCsr
->nSegment
;
2841 Fts3SegFilter
*pFilter
= pCsr
->pFilter
;
2842 int (*xCmp
)(Fts3SegReader
*, Fts3SegReader
*) = (
2843 p
->bDescIdx
? fts3SegReaderDoclistCmpRev
: fts3SegReaderDoclistCmp
2846 if( pCsr
->nSegment
==0 ) return SQLITE_OK
;
2852 /* Advance the first pCsr->nAdvance entries in the apSegment[] array
2853 ** forward. Then sort the list in order of current term again.
2855 for(i
=0; i
<pCsr
->nAdvance
; i
++){
2856 Fts3SegReader
*pSeg
= apSegment
[i
];
2857 if( pSeg
->bLookup
){
2858 fts3SegReaderSetEof(pSeg
);
2860 rc
= fts3SegReaderNext(p
, pSeg
, 0);
2862 if( rc
!=SQLITE_OK
) return rc
;
2864 fts3SegReaderSort(apSegment
, nSegment
, pCsr
->nAdvance
, fts3SegReaderCmp
);
2867 /* If all the seg-readers are at EOF, we're finished. return SQLITE_OK. */
2868 assert( rc
==SQLITE_OK
);
2869 if( apSegment
[0]->aNode
==0 ) break;
2871 pCsr
->nTerm
= apSegment
[0]->nTerm
;
2872 pCsr
->zTerm
= apSegment
[0]->zTerm
;
2874 /* If this is a prefix-search, and if the term that apSegment[0] points
2875 ** to does not share a suffix with pFilter->zTerm/nTerm, then all
2876 ** required callbacks have been made. In this case exit early.
2878 ** Similarly, if this is a search for an exact match, and the first term
2879 ** of segment apSegment[0] is not a match, exit early.
2881 if( pFilter
->zTerm
&& !isScan
){
2882 if( pCsr
->nTerm
<pFilter
->nTerm
2883 || (!isPrefix
&& pCsr
->nTerm
>pFilter
->nTerm
)
2884 || memcmp(pCsr
->zTerm
, pFilter
->zTerm
, pFilter
->nTerm
)
2891 while( nMerge
<nSegment
2892 && apSegment
[nMerge
]->aNode
2893 && apSegment
[nMerge
]->nTerm
==pCsr
->nTerm
2894 && 0==memcmp(pCsr
->zTerm
, apSegment
[nMerge
]->zTerm
, pCsr
->nTerm
)
2899 assert( isIgnoreEmpty
|| (isRequirePos
&& !isColFilter
) );
2903 && (p
->bDescIdx
==0 || fts3SegReaderIsPending(apSegment
[0])==0)
2905 pCsr
->nDoclist
= apSegment
[0]->nDoclist
;
2906 if( fts3SegReaderIsPending(apSegment
[0]) ){
2907 rc
= fts3MsrBufferData(pCsr
, apSegment
[0]->aDoclist
, pCsr
->nDoclist
);
2908 pCsr
->aDoclist
= pCsr
->aBuffer
;
2910 pCsr
->aDoclist
= apSegment
[0]->aDoclist
;
2912 if( rc
==SQLITE_OK
) rc
= SQLITE_ROW
;
2914 int nDoclist
= 0; /* Size of doclist */
2915 sqlite3_int64 iPrev
= 0; /* Previous docid stored in doclist */
2917 /* The current term of the first nMerge entries in the array
2918 ** of Fts3SegReader objects is the same. The doclists must be merged
2919 ** and a single term returned with the merged doclist.
2921 for(i
=0; i
<nMerge
; i
++){
2922 fts3SegReaderFirstDocid(p
, apSegment
[i
]);
2924 fts3SegReaderSort(apSegment
, nMerge
, nMerge
, xCmp
);
2925 while( apSegment
[0]->pOffsetList
){
2926 int j
; /* Number of segments that share a docid */
2930 sqlite3_int64 iDocid
= apSegment
[0]->iDocid
;
2931 fts3SegReaderNextDocid(p
, apSegment
[0], &pList
, &nList
);
2934 && apSegment
[j
]->pOffsetList
2935 && apSegment
[j
]->iDocid
==iDocid
2937 fts3SegReaderNextDocid(p
, apSegment
[j
], 0, 0);
2942 fts3ColumnFilter(pFilter
->iCol
, 0, &pList
, &nList
);
2945 if( !isIgnoreEmpty
|| nList
>0 ){
2947 /* Calculate the 'docid' delta value to write into the merged
2949 sqlite3_int64 iDelta
;
2950 if( p
->bDescIdx
&& nDoclist
>0 ){
2951 iDelta
= iPrev
- iDocid
;
2953 iDelta
= iDocid
- iPrev
;
2955 assert( iDelta
>0 || (nDoclist
==0 && iDelta
==iDocid
) );
2956 assert( nDoclist
>0 || iDelta
==iDocid
);
2958 nByte
= sqlite3Fts3VarintLen(iDelta
) + (isRequirePos
?nList
+1:0);
2959 if( nDoclist
+nByte
>pCsr
->nBuffer
){
2961 pCsr
->nBuffer
= (nDoclist
+nByte
)*2;
2962 aNew
= sqlite3_realloc(pCsr
->aBuffer
, pCsr
->nBuffer
);
2964 return SQLITE_NOMEM
;
2966 pCsr
->aBuffer
= aNew
;
2970 char *a
= &pCsr
->aBuffer
[nDoclist
];
2973 nWrite
= sqlite3Fts3FirstFilter(iDelta
, pList
, nList
, a
);
2979 nDoclist
+= sqlite3Fts3PutVarint(&pCsr
->aBuffer
[nDoclist
], iDelta
);
2982 memcpy(&pCsr
->aBuffer
[nDoclist
], pList
, nList
);
2984 pCsr
->aBuffer
[nDoclist
++] = '\0';
2989 fts3SegReaderSort(apSegment
, nMerge
, j
, xCmp
);
2992 pCsr
->aDoclist
= pCsr
->aBuffer
;
2993 pCsr
->nDoclist
= nDoclist
;
2997 pCsr
->nAdvance
= nMerge
;
2998 }while( rc
==SQLITE_OK
);
3004 void sqlite3Fts3SegReaderFinish(
3005 Fts3MultiSegReader
*pCsr
/* Cursor object */
3009 for(i
=0; i
<pCsr
->nSegment
; i
++){
3010 sqlite3Fts3SegReaderFree(pCsr
->apSegment
[i
]);
3012 sqlite3_free(pCsr
->apSegment
);
3013 sqlite3_free(pCsr
->aBuffer
);
3016 pCsr
->apSegment
= 0;
3022 ** Decode the "end_block" field, selected by column iCol of the SELECT
3023 ** statement passed as the first argument.
3025 ** The "end_block" field may contain either an integer, or a text field
3026 ** containing the text representation of two non-negative integers separated
3027 ** by one or more space (0x20) characters. In the first case, set *piEndBlock
3028 ** to the integer value and *pnByte to zero before returning. In the second,
3029 ** set *piEndBlock to the first value and *pnByte to the second.
3031 static void fts3ReadEndBlockField(
3032 sqlite3_stmt
*pStmt
,
3037 const unsigned char *zText
= sqlite3_column_text(pStmt
, iCol
);
3042 for(i
=0; zText
[i
]>='0' && zText
[i
]<='9'; i
++){
3043 iVal
= iVal
*10 + (zText
[i
] - '0');
3046 while( zText
[i
]==' ' ) i
++;
3048 if( zText
[i
]=='-' ){
3052 for(/* no-op */; zText
[i
]>='0' && zText
[i
]<='9'; i
++){
3053 iVal
= iVal
*10 + (zText
[i
] - '0');
3055 *pnByte
= (iVal
* (i64
)iMul
);
3061 ** A segment of size nByte bytes has just been written to absolute level
3062 ** iAbsLevel. Promote any segments that should be promoted as a result.
3064 static int fts3PromoteSegments(
3065 Fts3Table
*p
, /* FTS table handle */
3066 sqlite3_int64 iAbsLevel
, /* Absolute level just updated */
3067 sqlite3_int64 nByte
/* Size of new segment at iAbsLevel */
3070 sqlite3_stmt
*pRange
;
3072 rc
= fts3SqlStmt(p
, SQL_SELECT_LEVEL_RANGE2
, &pRange
, 0);
3074 if( rc
==SQLITE_OK
){
3076 i64 iLast
= (iAbsLevel
/FTS3_SEGDIR_MAXLEVEL
+ 1) * FTS3_SEGDIR_MAXLEVEL
- 1;
3077 i64 nLimit
= (nByte
*3)/2;
3079 /* Loop through all entries in the %_segdir table corresponding to
3080 ** segments in this index on levels greater than iAbsLevel. If there is
3081 ** at least one such segment, and it is possible to determine that all
3082 ** such segments are smaller than nLimit bytes in size, they will be
3083 ** promoted to level iAbsLevel. */
3084 sqlite3_bind_int64(pRange
, 1, iAbsLevel
+1);
3085 sqlite3_bind_int64(pRange
, 2, iLast
);
3086 while( SQLITE_ROW
==sqlite3_step(pRange
) ){
3087 i64 nSize
= 0, dummy
;
3088 fts3ReadEndBlockField(pRange
, 2, &dummy
, &nSize
);
3089 if( nSize
<=0 || nSize
>nLimit
){
3090 /* If nSize==0, then the %_segdir.end_block field does not not
3091 ** contain a size value. This happens if it was written by an
3092 ** old version of FTS. In this case it is not possible to determine
3093 ** the size of the segment, and so segment promotion does not
3100 rc
= sqlite3_reset(pRange
);
3104 sqlite3_stmt
*pUpdate1
= 0;
3105 sqlite3_stmt
*pUpdate2
= 0;
3107 if( rc
==SQLITE_OK
){
3108 rc
= fts3SqlStmt(p
, SQL_UPDATE_LEVEL_IDX
, &pUpdate1
, 0);
3110 if( rc
==SQLITE_OK
){
3111 rc
= fts3SqlStmt(p
, SQL_UPDATE_LEVEL
, &pUpdate2
, 0);
3114 if( rc
==SQLITE_OK
){
3116 /* Loop through all %_segdir entries for segments in this index with
3117 ** levels equal to or greater than iAbsLevel. As each entry is visited,
3118 ** updated it to set (level = -1) and (idx = N), where N is 0 for the
3119 ** oldest segment in the range, 1 for the next oldest, and so on.
3121 ** In other words, move all segments being promoted to level -1,
3122 ** setting the "idx" fields as appropriate to keep them in the same
3123 ** order. The contents of level -1 (which is never used, except
3124 ** transiently here), will be moved back to level iAbsLevel below. */
3125 sqlite3_bind_int64(pRange
, 1, iAbsLevel
);
3126 while( SQLITE_ROW
==sqlite3_step(pRange
) ){
3127 sqlite3_bind_int(pUpdate1
, 1, iIdx
++);
3128 sqlite3_bind_int(pUpdate1
, 2, sqlite3_column_int(pRange
, 0));
3129 sqlite3_bind_int(pUpdate1
, 3, sqlite3_column_int(pRange
, 1));
3130 sqlite3_step(pUpdate1
);
3131 rc
= sqlite3_reset(pUpdate1
);
3132 if( rc
!=SQLITE_OK
){
3133 sqlite3_reset(pRange
);
3138 if( rc
==SQLITE_OK
){
3139 rc
= sqlite3_reset(pRange
);
3142 /* Move level -1 to level iAbsLevel */
3143 if( rc
==SQLITE_OK
){
3144 sqlite3_bind_int64(pUpdate2
, 1, iAbsLevel
);
3145 sqlite3_step(pUpdate2
);
3146 rc
= sqlite3_reset(pUpdate2
);
3156 ** Merge all level iLevel segments in the database into a single
3157 ** iLevel+1 segment. Or, if iLevel<0, merge all segments into a
3158 ** single segment with a level equal to the numerically largest level
3159 ** currently present in the database.
3161 ** If this function is called with iLevel<0, but there is only one
3162 ** segment in the database, SQLITE_DONE is returned immediately.
3163 ** Otherwise, if successful, SQLITE_OK is returned. If an error occurs,
3164 ** an SQLite error code is returned.
3166 static int fts3SegmentMerge(
3168 int iLangid
, /* Language id to merge */
3169 int iIndex
, /* Index in p->aIndex[] to merge */
3170 int iLevel
/* Level to merge */
3172 int rc
; /* Return code */
3173 int iIdx
= 0; /* Index of new segment */
3174 sqlite3_int64 iNewLevel
= 0; /* Level/index to create new segment at */
3175 SegmentWriter
*pWriter
= 0; /* Used to write the new, merged, segment */
3176 Fts3SegFilter filter
; /* Segment term filter condition */
3177 Fts3MultiSegReader csr
; /* Cursor to iterate through level(s) */
3178 int bIgnoreEmpty
= 0; /* True to ignore empty segments */
3179 i64 iMaxLevel
= 0; /* Max level number for this index/langid */
3181 assert( iLevel
==FTS3_SEGCURSOR_ALL
3182 || iLevel
==FTS3_SEGCURSOR_PENDING
3185 assert( iLevel
<FTS3_SEGDIR_MAXLEVEL
);
3186 assert( iIndex
>=0 && iIndex
<p
->nIndex
);
3188 rc
= sqlite3Fts3SegReaderCursor(p
, iLangid
, iIndex
, iLevel
, 0, 0, 1, 0, &csr
);
3189 if( rc
!=SQLITE_OK
|| csr
.nSegment
==0 ) goto finished
;
3191 if( iLevel
!=FTS3_SEGCURSOR_PENDING
){
3192 rc
= fts3SegmentMaxLevel(p
, iLangid
, iIndex
, &iMaxLevel
);
3193 if( rc
!=SQLITE_OK
) goto finished
;
3196 if( iLevel
==FTS3_SEGCURSOR_ALL
){
3197 /* This call is to merge all segments in the database to a single
3198 ** segment. The level of the new segment is equal to the numerically
3199 ** greatest segment level currently present in the database for this
3200 ** index. The idx of the new segment is always 0. */
3201 if( csr
.nSegment
==1 && 0==fts3SegReaderIsPending(csr
.apSegment
[0]) ){
3205 iNewLevel
= iMaxLevel
;
3209 /* This call is to merge all segments at level iLevel. find the next
3210 ** available segment index at level iLevel+1. The call to
3211 ** fts3AllocateSegdirIdx() will merge the segments at level iLevel+1 to
3212 ** a single iLevel+2 segment if necessary. */
3213 assert( FTS3_SEGCURSOR_PENDING
==-1 );
3214 iNewLevel
= getAbsoluteLevel(p
, iLangid
, iIndex
, iLevel
+1);
3215 rc
= fts3AllocateSegdirIdx(p
, iLangid
, iIndex
, iLevel
+1, &iIdx
);
3216 bIgnoreEmpty
= (iLevel
!=FTS3_SEGCURSOR_PENDING
) && (iNewLevel
>iMaxLevel
);
3218 if( rc
!=SQLITE_OK
) goto finished
;
3220 assert( csr
.nSegment
>0 );
3221 assert( iNewLevel
>=getAbsoluteLevel(p
, iLangid
, iIndex
, 0) );
3222 assert( iNewLevel
<getAbsoluteLevel(p
, iLangid
, iIndex
,FTS3_SEGDIR_MAXLEVEL
) );
3224 memset(&filter
, 0, sizeof(Fts3SegFilter
));
3225 filter
.flags
= FTS3_SEGMENT_REQUIRE_POS
;
3226 filter
.flags
|= (bIgnoreEmpty
? FTS3_SEGMENT_IGNORE_EMPTY
: 0);
3228 rc
= sqlite3Fts3SegReaderStart(p
, &csr
, &filter
);
3229 while( SQLITE_OK
==rc
){
3230 rc
= sqlite3Fts3SegReaderStep(p
, &csr
);
3231 if( rc
!=SQLITE_ROW
) break;
3232 rc
= fts3SegWriterAdd(p
, &pWriter
, 1,
3233 csr
.zTerm
, csr
.nTerm
, csr
.aDoclist
, csr
.nDoclist
);
3235 if( rc
!=SQLITE_OK
) goto finished
;
3236 assert( pWriter
|| bIgnoreEmpty
);
3238 if( iLevel
!=FTS3_SEGCURSOR_PENDING
){
3239 rc
= fts3DeleteSegdir(
3240 p
, iLangid
, iIndex
, iLevel
, csr
.apSegment
, csr
.nSegment
3242 if( rc
!=SQLITE_OK
) goto finished
;
3245 rc
= fts3SegWriterFlush(p
, pWriter
, iNewLevel
, iIdx
);
3246 if( rc
==SQLITE_OK
){
3247 if( iLevel
==FTS3_SEGCURSOR_PENDING
|| iNewLevel
<iMaxLevel
){
3248 rc
= fts3PromoteSegments(p
, iNewLevel
, pWriter
->nLeafData
);
3254 fts3SegWriterFree(pWriter
);
3255 sqlite3Fts3SegReaderFinish(&csr
);
3261 ** Flush the contents of pendingTerms to level 0 segments.
3263 int sqlite3Fts3PendingTermsFlush(Fts3Table
*p
){
3267 for(i
=0; rc
==SQLITE_OK
&& i
<p
->nIndex
; i
++){
3268 rc
= fts3SegmentMerge(p
, p
->iPrevLangid
, i
, FTS3_SEGCURSOR_PENDING
);
3269 if( rc
==SQLITE_DONE
) rc
= SQLITE_OK
;
3271 sqlite3Fts3PendingTermsClear(p
);
3273 /* Determine the auto-incr-merge setting if unknown. If enabled,
3274 ** estimate the number of leaf blocks of content to be written
3276 if( rc
==SQLITE_OK
&& p
->bHasStat
3277 && p
->nAutoincrmerge
==0xff && p
->nLeafAdd
>0
3279 sqlite3_stmt
*pStmt
= 0;
3280 rc
= fts3SqlStmt(p
, SQL_SELECT_STAT
, &pStmt
, 0);
3281 if( rc
==SQLITE_OK
){
3282 sqlite3_bind_int(pStmt
, 1, FTS_STAT_AUTOINCRMERGE
);
3283 rc
= sqlite3_step(pStmt
);
3284 if( rc
==SQLITE_ROW
){
3285 p
->nAutoincrmerge
= sqlite3_column_int(pStmt
, 0);
3286 if( p
->nAutoincrmerge
==1 ) p
->nAutoincrmerge
= 8;
3287 }else if( rc
==SQLITE_DONE
){
3288 p
->nAutoincrmerge
= 0;
3290 rc
= sqlite3_reset(pStmt
);
3297 ** Encode N integers as varints into a blob.
3299 static void fts3EncodeIntArray(
3300 int N
, /* The number of integers to encode */
3301 u32
*a
, /* The integer values */
3302 char *zBuf
, /* Write the BLOB here */
3303 int *pNBuf
/* Write number of bytes if zBuf[] used here */
3306 for(i
=j
=0; i
<N
; i
++){
3307 j
+= sqlite3Fts3PutVarint(&zBuf
[j
], (sqlite3_int64
)a
[i
]);
3313 ** Decode a blob of varints into N integers
3315 static void fts3DecodeIntArray(
3316 int N
, /* The number of integers to decode */
3317 u32
*a
, /* Write the integer values */
3318 const char *zBuf
, /* The BLOB containing the varints */
3319 int nBuf
/* size of the BLOB */
3322 UNUSED_PARAMETER(nBuf
);
3323 for(i
=j
=0; i
<N
; i
++){
3325 j
+= sqlite3Fts3GetVarint(&zBuf
[j
], &x
);
3327 a
[i
] = (u32
)(x
& 0xffffffff);
3332 ** Insert the sizes (in tokens) for each column of the document
3333 ** with docid equal to p->iPrevDocid. The sizes are encoded as
3334 ** a blob of varints.
3336 static void fts3InsertDocsize(
3337 int *pRC
, /* Result code */
3338 Fts3Table
*p
, /* Table into which to insert */
3339 u32
*aSz
/* Sizes of each column, in tokens */
3341 char *pBlob
; /* The BLOB encoding of the document size */
3342 int nBlob
; /* Number of bytes in the BLOB */
3343 sqlite3_stmt
*pStmt
; /* Statement used to insert the encoding */
3344 int rc
; /* Result code from subfunctions */
3347 pBlob
= sqlite3_malloc( 10*p
->nColumn
);
3349 *pRC
= SQLITE_NOMEM
;
3352 fts3EncodeIntArray(p
->nColumn
, aSz
, pBlob
, &nBlob
);
3353 rc
= fts3SqlStmt(p
, SQL_REPLACE_DOCSIZE
, &pStmt
, 0);
3355 sqlite3_free(pBlob
);
3359 sqlite3_bind_int64(pStmt
, 1, p
->iPrevDocid
);
3360 sqlite3_bind_blob(pStmt
, 2, pBlob
, nBlob
, sqlite3_free
);
3361 sqlite3_step(pStmt
);
3362 *pRC
= sqlite3_reset(pStmt
);
3366 ** Record 0 of the %_stat table contains a blob consisting of N varints,
3367 ** where N is the number of user defined columns in the fts3 table plus
3368 ** two. If nCol is the number of user defined columns, then values of the
3369 ** varints are set as follows:
3371 ** Varint 0: Total number of rows in the table.
3373 ** Varint 1..nCol: For each column, the total number of tokens stored in
3374 ** the column for all rows of the table.
3376 ** Varint 1+nCol: The total size, in bytes, of all text values in all
3377 ** columns of all rows of the table.
3380 static void fts3UpdateDocTotals(
3381 int *pRC
, /* The result code */
3382 Fts3Table
*p
, /* Table being updated */
3383 u32
*aSzIns
, /* Size increases */
3384 u32
*aSzDel
, /* Size decreases */
3385 int nChng
/* Change in the number of documents */
3387 char *pBlob
; /* Storage for BLOB written into %_stat */
3388 int nBlob
; /* Size of BLOB written into %_stat */
3389 u32
*a
; /* Array of integers that becomes the BLOB */
3390 sqlite3_stmt
*pStmt
; /* Statement for reading and writing */
3391 int i
; /* Loop counter */
3392 int rc
; /* Result code from subfunctions */
3394 const int nStat
= p
->nColumn
+2;
3397 a
= sqlite3_malloc( (sizeof(u32
)+10)*nStat
);
3399 *pRC
= SQLITE_NOMEM
;
3402 pBlob
= (char*)&a
[nStat
];
3403 rc
= fts3SqlStmt(p
, SQL_SELECT_STAT
, &pStmt
, 0);
3409 sqlite3_bind_int(pStmt
, 1, FTS_STAT_DOCTOTAL
);
3410 if( sqlite3_step(pStmt
)==SQLITE_ROW
){
3411 fts3DecodeIntArray(nStat
, a
,
3412 sqlite3_column_blob(pStmt
, 0),
3413 sqlite3_column_bytes(pStmt
, 0));
3415 memset(a
, 0, sizeof(u32
)*(nStat
) );
3417 rc
= sqlite3_reset(pStmt
);
3418 if( rc
!=SQLITE_OK
){
3423 if( nChng
<0 && a
[0]<(u32
)(-nChng
) ){
3428 for(i
=0; i
<p
->nColumn
+1; i
++){
3430 if( x
+aSzIns
[i
] < aSzDel
[i
] ){
3433 x
= x
+ aSzIns
[i
] - aSzDel
[i
];
3437 fts3EncodeIntArray(nStat
, a
, pBlob
, &nBlob
);
3438 rc
= fts3SqlStmt(p
, SQL_REPLACE_STAT
, &pStmt
, 0);
3444 sqlite3_bind_int(pStmt
, 1, FTS_STAT_DOCTOTAL
);
3445 sqlite3_bind_blob(pStmt
, 2, pBlob
, nBlob
, SQLITE_STATIC
);
3446 sqlite3_step(pStmt
);
3447 *pRC
= sqlite3_reset(pStmt
);
3448 sqlite3_bind_null(pStmt
, 2);
3453 ** Merge the entire database so that there is one segment for each
3454 ** iIndex/iLangid combination.
3456 static int fts3DoOptimize(Fts3Table
*p
, int bReturnDone
){
3459 sqlite3_stmt
*pAllLangid
= 0;
3461 rc
= fts3SqlStmt(p
, SQL_SELECT_ALL_LANGID
, &pAllLangid
, 0);
3462 if( rc
==SQLITE_OK
){
3464 sqlite3_bind_int(pAllLangid
, 1, p
->iPrevLangid
);
3465 sqlite3_bind_int(pAllLangid
, 2, p
->nIndex
);
3466 while( sqlite3_step(pAllLangid
)==SQLITE_ROW
){
3468 int iLangid
= sqlite3_column_int(pAllLangid
, 0);
3469 for(i
=0; rc
==SQLITE_OK
&& i
<p
->nIndex
; i
++){
3470 rc
= fts3SegmentMerge(p
, iLangid
, i
, FTS3_SEGCURSOR_ALL
);
3471 if( rc
==SQLITE_DONE
){
3477 rc2
= sqlite3_reset(pAllLangid
);
3478 if( rc
==SQLITE_OK
) rc
= rc2
;
3481 sqlite3Fts3SegmentsClose(p
);
3482 sqlite3Fts3PendingTermsClear(p
);
3484 return (rc
==SQLITE_OK
&& bReturnDone
&& bSeenDone
) ? SQLITE_DONE
: rc
;
3488 ** This function is called when the user executes the following statement:
3490 ** INSERT INTO <tbl>(<tbl>) VALUES('rebuild');
3492 ** The entire FTS index is discarded and rebuilt. If the table is one
3493 ** created using the content=xxx option, then the new index is based on
3494 ** the current contents of the xxx table. Otherwise, it is rebuilt based
3495 ** on the contents of the %_content table.
3497 static int fts3DoRebuild(Fts3Table
*p
){
3498 int rc
; /* Return Code */
3500 rc
= fts3DeleteAll(p
, 0);
3501 if( rc
==SQLITE_OK
){
3505 sqlite3_stmt
*pStmt
= 0;
3508 /* Compose and prepare an SQL statement to loop through the content table */
3509 char *zSql
= sqlite3_mprintf("SELECT %s" , p
->zReadExprlist
);
3513 rc
= sqlite3_prepare_v2(p
->db
, zSql
, -1, &pStmt
, 0);
3517 if( rc
==SQLITE_OK
){
3518 int nByte
= sizeof(u32
) * (p
->nColumn
+1)*3;
3519 aSz
= (u32
*)sqlite3_malloc(nByte
);
3523 memset(aSz
, 0, nByte
);
3524 aSzIns
= &aSz
[p
->nColumn
+1];
3525 aSzDel
= &aSzIns
[p
->nColumn
+1];
3529 while( rc
==SQLITE_OK
&& SQLITE_ROW
==sqlite3_step(pStmt
) ){
3531 int iLangid
= langidFromSelect(p
, pStmt
);
3532 rc
= fts3PendingTermsDocid(p
, 0, iLangid
, sqlite3_column_int64(pStmt
, 0));
3533 memset(aSz
, 0, sizeof(aSz
[0]) * (p
->nColumn
+1));
3534 for(iCol
=0; rc
==SQLITE_OK
&& iCol
<p
->nColumn
; iCol
++){
3535 if( p
->abNotindexed
[iCol
]==0 ){
3536 const char *z
= (const char *) sqlite3_column_text(pStmt
, iCol
+1);
3537 rc
= fts3PendingTermsAdd(p
, iLangid
, z
, iCol
, &aSz
[iCol
]);
3538 aSz
[p
->nColumn
] += sqlite3_column_bytes(pStmt
, iCol
+1);
3541 if( p
->bHasDocsize
){
3542 fts3InsertDocsize(&rc
, p
, aSz
);
3544 if( rc
!=SQLITE_OK
){
3545 sqlite3_finalize(pStmt
);
3549 for(iCol
=0; iCol
<=p
->nColumn
; iCol
++){
3550 aSzIns
[iCol
] += aSz
[iCol
];
3555 fts3UpdateDocTotals(&rc
, p
, aSzIns
, aSzDel
, nEntry
);
3560 int rc2
= sqlite3_finalize(pStmt
);
3561 if( rc
==SQLITE_OK
){
3572 ** This function opens a cursor used to read the input data for an
3573 ** incremental merge operation. Specifically, it opens a cursor to scan
3574 ** the oldest nSeg segments (idx=0 through idx=(nSeg-1)) in absolute
3577 static int fts3IncrmergeCsr(
3578 Fts3Table
*p
, /* FTS3 table handle */
3579 sqlite3_int64 iAbsLevel
, /* Absolute level to open */
3580 int nSeg
, /* Number of segments to merge */
3581 Fts3MultiSegReader
*pCsr
/* Cursor object to populate */
3583 int rc
; /* Return Code */
3584 sqlite3_stmt
*pStmt
= 0; /* Statement used to read %_segdir entry */
3585 int nByte
; /* Bytes allocated at pCsr->apSegment[] */
3587 /* Allocate space for the Fts3MultiSegReader.aCsr[] array */
3588 memset(pCsr
, 0, sizeof(*pCsr
));
3589 nByte
= sizeof(Fts3SegReader
*) * nSeg
;
3590 pCsr
->apSegment
= (Fts3SegReader
**)sqlite3_malloc(nByte
);
3592 if( pCsr
->apSegment
==0 ){
3595 memset(pCsr
->apSegment
, 0, nByte
);
3596 rc
= fts3SqlStmt(p
, SQL_SELECT_LEVEL
, &pStmt
, 0);
3598 if( rc
==SQLITE_OK
){
3601 sqlite3_bind_int64(pStmt
, 1, iAbsLevel
);
3602 assert( pCsr
->nSegment
==0 );
3603 for(i
=0; rc
==SQLITE_OK
&& sqlite3_step(pStmt
)==SQLITE_ROW
&& i
<nSeg
; i
++){
3604 rc
= sqlite3Fts3SegReaderNew(i
, 0,
3605 sqlite3_column_int64(pStmt
, 1), /* segdir.start_block */
3606 sqlite3_column_int64(pStmt
, 2), /* segdir.leaves_end_block */
3607 sqlite3_column_int64(pStmt
, 3), /* segdir.end_block */
3608 sqlite3_column_blob(pStmt
, 4), /* segdir.root */
3609 sqlite3_column_bytes(pStmt
, 4), /* segdir.root */
3614 rc2
= sqlite3_reset(pStmt
);
3615 if( rc
==SQLITE_OK
) rc
= rc2
;
3621 typedef struct IncrmergeWriter IncrmergeWriter
;
3622 typedef struct NodeWriter NodeWriter
;
3623 typedef struct Blob Blob
;
3624 typedef struct NodeReader NodeReader
;
3627 ** An instance of the following structure is used as a dynamic buffer
3628 ** to build up nodes or other blobs of data in.
3630 ** The function blobGrowBuffer() is used to extend the allocation.
3633 char *a
; /* Pointer to allocation */
3634 int n
; /* Number of valid bytes of data in a[] */
3635 int nAlloc
; /* Allocated size of a[] (nAlloc>=n) */
3639 ** This structure is used to build up buffers containing segment b-tree
3643 sqlite3_int64 iBlock
; /* Current block id */
3644 Blob key
; /* Last key written to the current block */
3645 Blob block
; /* Current block image */
3649 ** An object of this type contains the state required to create or append
3650 ** to an appendable b-tree segment.
3652 struct IncrmergeWriter
{
3653 int nLeafEst
; /* Space allocated for leaf blocks */
3654 int nWork
; /* Number of leaf pages flushed */
3655 sqlite3_int64 iAbsLevel
; /* Absolute level of input segments */
3656 int iIdx
; /* Index of *output* segment in iAbsLevel+1 */
3657 sqlite3_int64 iStart
; /* Block number of first allocated block */
3658 sqlite3_int64 iEnd
; /* Block number of last allocated block */
3659 sqlite3_int64 nLeafData
; /* Bytes of leaf page data so far */
3660 u8 bNoLeafData
; /* If true, store 0 for segment size */
3661 NodeWriter aNodeWriter
[FTS_MAX_APPENDABLE_HEIGHT
];
3665 ** An object of the following type is used to read data from a single
3666 ** FTS segment node. See the following functions:
3670 ** nodeReaderRelease()
3675 int iOff
; /* Current offset within aNode[] */
3677 /* Output variables. Containing the current node entry. */
3678 sqlite3_int64 iChild
; /* Pointer to child node */
3679 Blob term
; /* Current term */
3680 const char *aDoclist
; /* Pointer to doclist */
3681 int nDoclist
; /* Size of doclist in bytes */
3685 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
3686 ** Otherwise, if the allocation at pBlob->a is not already at least nMin
3687 ** bytes in size, extend (realloc) it to be so.
3689 ** If an OOM error occurs, set *pRc to SQLITE_NOMEM and leave pBlob->a
3690 ** unmodified. Otherwise, if the allocation succeeds, update pBlob->nAlloc
3691 ** to reflect the new size of the pBlob->a[] buffer.
3693 static void blobGrowBuffer(Blob
*pBlob
, int nMin
, int *pRc
){
3694 if( *pRc
==SQLITE_OK
&& nMin
>pBlob
->nAlloc
){
3696 char *a
= (char *)sqlite3_realloc(pBlob
->a
, nAlloc
);
3698 pBlob
->nAlloc
= nAlloc
;
3701 *pRc
= SQLITE_NOMEM
;
3707 ** Attempt to advance the node-reader object passed as the first argument to
3708 ** the next entry on the node.
3710 ** Return an error code if an error occurs (SQLITE_NOMEM is possible).
3711 ** Otherwise return SQLITE_OK. If there is no next entry on the node
3712 ** (e.g. because the current entry is the last) set NodeReader->aNode to
3713 ** NULL to indicate EOF. Otherwise, populate the NodeReader structure output
3714 ** variables for the new entry.
3716 static int nodeReaderNext(NodeReader
*p
){
3717 int bFirst
= (p
->term
.n
==0); /* True for first term on the node */
3718 int nPrefix
= 0; /* Bytes to copy from previous term */
3719 int nSuffix
= 0; /* Bytes to append to the prefix */
3720 int rc
= SQLITE_OK
; /* Return code */
3723 if( p
->iChild
&& bFirst
==0 ) p
->iChild
++;
3724 if( p
->iOff
>=p
->nNode
){
3729 p
->iOff
+= fts3GetVarint32(&p
->aNode
[p
->iOff
], &nPrefix
);
3731 p
->iOff
+= fts3GetVarint32(&p
->aNode
[p
->iOff
], &nSuffix
);
3733 blobGrowBuffer(&p
->term
, nPrefix
+nSuffix
, &rc
);
3734 if( rc
==SQLITE_OK
){
3735 memcpy(&p
->term
.a
[nPrefix
], &p
->aNode
[p
->iOff
], nSuffix
);
3736 p
->term
.n
= nPrefix
+nSuffix
;
3739 p
->iOff
+= fts3GetVarint32(&p
->aNode
[p
->iOff
], &p
->nDoclist
);
3740 p
->aDoclist
= &p
->aNode
[p
->iOff
];
3741 p
->iOff
+= p
->nDoclist
;
3746 assert( p
->iOff
<=p
->nNode
);
3752 ** Release all dynamic resources held by node-reader object *p.
3754 static void nodeReaderRelease(NodeReader
*p
){
3755 sqlite3_free(p
->term
.a
);
3759 ** Initialize a node-reader object to read the node in buffer aNode/nNode.
3761 ** If successful, SQLITE_OK is returned and the NodeReader object set to
3762 ** point to the first entry on the node (if any). Otherwise, an SQLite
3763 ** error code is returned.
3765 static int nodeReaderInit(NodeReader
*p
, const char *aNode
, int nNode
){
3766 memset(p
, 0, sizeof(NodeReader
));
3770 /* Figure out if this is a leaf or an internal node. */
3772 /* An internal node. */
3773 p
->iOff
= 1 + sqlite3Fts3GetVarint(&p
->aNode
[1], &p
->iChild
);
3778 return nodeReaderNext(p
);
3782 ** This function is called while writing an FTS segment each time a leaf o
3783 ** node is finished and written to disk. The key (zTerm/nTerm) is guaranteed
3784 ** to be greater than the largest key on the node just written, but smaller
3785 ** than or equal to the first key that will be written to the next leaf
3788 ** The block id of the leaf node just written to disk may be found in
3789 ** (pWriter->aNodeWriter[0].iBlock) when this function is called.
3791 static int fts3IncrmergePush(
3792 Fts3Table
*p
, /* Fts3 table handle */
3793 IncrmergeWriter
*pWriter
, /* Writer object */
3794 const char *zTerm
, /* Term to write to internal node */
3795 int nTerm
/* Bytes at zTerm */
3797 sqlite3_int64 iPtr
= pWriter
->aNodeWriter
[0].iBlock
;
3801 for(iLayer
=1; ALWAYS(iLayer
<FTS_MAX_APPENDABLE_HEIGHT
); iLayer
++){
3802 sqlite3_int64 iNextPtr
= 0;
3803 NodeWriter
*pNode
= &pWriter
->aNodeWriter
[iLayer
];
3809 /* Figure out how much space the key will consume if it is written to
3810 ** the current node of layer iLayer. Due to the prefix compression,
3811 ** the space required changes depending on which node the key is to
3813 nPrefix
= fts3PrefixCompress(pNode
->key
.a
, pNode
->key
.n
, zTerm
, nTerm
);
3814 nSuffix
= nTerm
- nPrefix
;
3815 nSpace
= sqlite3Fts3VarintLen(nPrefix
);
3816 nSpace
+= sqlite3Fts3VarintLen(nSuffix
) + nSuffix
;
3818 if( pNode
->key
.n
==0 || (pNode
->block
.n
+ nSpace
)<=p
->nNodeSize
){
3819 /* If the current node of layer iLayer contains zero keys, or if adding
3820 ** the key to it will not cause it to grow to larger than nNodeSize
3821 ** bytes in size, write the key here. */
3823 Blob
*pBlk
= &pNode
->block
;
3825 blobGrowBuffer(pBlk
, p
->nNodeSize
, &rc
);
3826 if( rc
==SQLITE_OK
){
3827 pBlk
->a
[0] = (char)iLayer
;
3828 pBlk
->n
= 1 + sqlite3Fts3PutVarint(&pBlk
->a
[1], iPtr
);
3831 blobGrowBuffer(pBlk
, pBlk
->n
+ nSpace
, &rc
);
3832 blobGrowBuffer(&pNode
->key
, nTerm
, &rc
);
3834 if( rc
==SQLITE_OK
){
3836 pBlk
->n
+= sqlite3Fts3PutVarint(&pBlk
->a
[pBlk
->n
], nPrefix
);
3838 pBlk
->n
+= sqlite3Fts3PutVarint(&pBlk
->a
[pBlk
->n
], nSuffix
);
3839 memcpy(&pBlk
->a
[pBlk
->n
], &zTerm
[nPrefix
], nSuffix
);
3842 memcpy(pNode
->key
.a
, zTerm
, nTerm
);
3843 pNode
->key
.n
= nTerm
;
3846 /* Otherwise, flush the current node of layer iLayer to disk.
3847 ** Then allocate a new, empty sibling node. The key will be written
3848 ** into the parent of this node. */
3849 rc
= fts3WriteSegment(p
, pNode
->iBlock
, pNode
->block
.a
, pNode
->block
.n
);
3851 assert( pNode
->block
.nAlloc
>=p
->nNodeSize
);
3852 pNode
->block
.a
[0] = (char)iLayer
;
3853 pNode
->block
.n
= 1 + sqlite3Fts3PutVarint(&pNode
->block
.a
[1], iPtr
+1);
3855 iNextPtr
= pNode
->iBlock
;
3860 if( rc
!=SQLITE_OK
|| iNextPtr
==0 ) return rc
;
3869 ** Append a term and (optionally) doclist to the FTS segment node currently
3870 ** stored in blob *pNode. The node need not contain any terms, but the
3871 ** header must be written before this function is called.
3873 ** A node header is a single 0x00 byte for a leaf node, or a height varint
3874 ** followed by the left-hand-child varint for an internal node.
3876 ** The term to be appended is passed via arguments zTerm/nTerm. For a
3877 ** leaf node, the doclist is passed as aDoclist/nDoclist. For an internal
3878 ** node, both aDoclist and nDoclist must be passed 0.
3880 ** If the size of the value in blob pPrev is zero, then this is the first
3881 ** term written to the node. Otherwise, pPrev contains a copy of the
3882 ** previous term. Before this function returns, it is updated to contain a
3883 ** copy of zTerm/nTerm.
3885 ** It is assumed that the buffer associated with pNode is already large
3886 ** enough to accommodate the new entry. The buffer associated with pPrev
3887 ** is extended by this function if requrired.
3889 ** If an error (i.e. OOM condition) occurs, an SQLite error code is
3890 ** returned. Otherwise, SQLITE_OK.
3892 static int fts3AppendToNode(
3893 Blob
*pNode
, /* Current node image to append to */
3894 Blob
*pPrev
, /* Buffer containing previous term written */
3895 const char *zTerm
, /* New term to write */
3896 int nTerm
, /* Size of zTerm in bytes */
3897 const char *aDoclist
, /* Doclist (or NULL) to write */
3898 int nDoclist
/* Size of aDoclist in bytes */
3900 int rc
= SQLITE_OK
; /* Return code */
3901 int bFirst
= (pPrev
->n
==0); /* True if this is the first term written */
3902 int nPrefix
; /* Size of term prefix in bytes */
3903 int nSuffix
; /* Size of term suffix in bytes */
3905 /* Node must have already been started. There must be a doclist for a
3906 ** leaf node, and there must not be a doclist for an internal node. */
3907 assert( pNode
->n
>0 );
3908 assert( (pNode
->a
[0]=='\0')==(aDoclist
!=0) );
3910 blobGrowBuffer(pPrev
, nTerm
, &rc
);
3911 if( rc
!=SQLITE_OK
) return rc
;
3913 nPrefix
= fts3PrefixCompress(pPrev
->a
, pPrev
->n
, zTerm
, nTerm
);
3914 nSuffix
= nTerm
- nPrefix
;
3915 memcpy(pPrev
->a
, zTerm
, nTerm
);
3919 pNode
->n
+= sqlite3Fts3PutVarint(&pNode
->a
[pNode
->n
], nPrefix
);
3921 pNode
->n
+= sqlite3Fts3PutVarint(&pNode
->a
[pNode
->n
], nSuffix
);
3922 memcpy(&pNode
->a
[pNode
->n
], &zTerm
[nPrefix
], nSuffix
);
3923 pNode
->n
+= nSuffix
;
3926 pNode
->n
+= sqlite3Fts3PutVarint(&pNode
->a
[pNode
->n
], nDoclist
);
3927 memcpy(&pNode
->a
[pNode
->n
], aDoclist
, nDoclist
);
3928 pNode
->n
+= nDoclist
;
3931 assert( pNode
->n
<=pNode
->nAlloc
);
3937 ** Append the current term and doclist pointed to by cursor pCsr to the
3938 ** appendable b-tree segment opened for writing by pWriter.
3940 ** Return SQLITE_OK if successful, or an SQLite error code otherwise.
3942 static int fts3IncrmergeAppend(
3943 Fts3Table
*p
, /* Fts3 table handle */
3944 IncrmergeWriter
*pWriter
, /* Writer object */
3945 Fts3MultiSegReader
*pCsr
/* Cursor containing term and doclist */
3947 const char *zTerm
= pCsr
->zTerm
;
3948 int nTerm
= pCsr
->nTerm
;
3949 const char *aDoclist
= pCsr
->aDoclist
;
3950 int nDoclist
= pCsr
->nDoclist
;
3951 int rc
= SQLITE_OK
; /* Return code */
3952 int nSpace
; /* Total space in bytes required on leaf */
3953 int nPrefix
; /* Size of prefix shared with previous term */
3954 int nSuffix
; /* Size of suffix (nTerm - nPrefix) */
3955 NodeWriter
*pLeaf
; /* Object used to write leaf nodes */
3957 pLeaf
= &pWriter
->aNodeWriter
[0];
3958 nPrefix
= fts3PrefixCompress(pLeaf
->key
.a
, pLeaf
->key
.n
, zTerm
, nTerm
);
3959 nSuffix
= nTerm
- nPrefix
;
3961 nSpace
= sqlite3Fts3VarintLen(nPrefix
);
3962 nSpace
+= sqlite3Fts3VarintLen(nSuffix
) + nSuffix
;
3963 nSpace
+= sqlite3Fts3VarintLen(nDoclist
) + nDoclist
;
3965 /* If the current block is not empty, and if adding this term/doclist
3966 ** to the current block would make it larger than Fts3Table.nNodeSize
3967 ** bytes, write this block out to the database. */
3968 if( pLeaf
->block
.n
>0 && (pLeaf
->block
.n
+ nSpace
)>p
->nNodeSize
){
3969 rc
= fts3WriteSegment(p
, pLeaf
->iBlock
, pLeaf
->block
.a
, pLeaf
->block
.n
);
3972 /* Add the current term to the parent node. The term added to the
3975 ** a) be greater than the largest term on the leaf node just written
3976 ** to the database (still available in pLeaf->key), and
3978 ** b) be less than or equal to the term about to be added to the new
3979 ** leaf node (zTerm/nTerm).
3981 ** In other words, it must be the prefix of zTerm 1 byte longer than
3982 ** the common prefix (if any) of zTerm and pWriter->zTerm.
3984 if( rc
==SQLITE_OK
){
3985 rc
= fts3IncrmergePush(p
, pWriter
, zTerm
, nPrefix
+1);
3988 /* Advance to the next output block */
3995 nSpace
+= sqlite3Fts3VarintLen(nSuffix
) + nSuffix
;
3996 nSpace
+= sqlite3Fts3VarintLen(nDoclist
) + nDoclist
;
3999 pWriter
->nLeafData
+= nSpace
;
4000 blobGrowBuffer(&pLeaf
->block
, pLeaf
->block
.n
+ nSpace
, &rc
);
4001 if( rc
==SQLITE_OK
){
4002 if( pLeaf
->block
.n
==0 ){
4004 pLeaf
->block
.a
[0] = '\0';
4006 rc
= fts3AppendToNode(
4007 &pLeaf
->block
, &pLeaf
->key
, zTerm
, nTerm
, aDoclist
, nDoclist
4015 ** This function is called to release all dynamic resources held by the
4016 ** merge-writer object pWriter, and if no error has occurred, to flush
4017 ** all outstanding node buffers held by pWriter to disk.
4019 ** If *pRc is not SQLITE_OK when this function is called, then no attempt
4020 ** is made to write any data to disk. Instead, this function serves only
4021 ** to release outstanding resources.
4023 ** Otherwise, if *pRc is initially SQLITE_OK and an error occurs while
4024 ** flushing buffers to disk, *pRc is set to an SQLite error code before
4027 static void fts3IncrmergeRelease(
4028 Fts3Table
*p
, /* FTS3 table handle */
4029 IncrmergeWriter
*pWriter
, /* Merge-writer object */
4030 int *pRc
/* IN/OUT: Error code */
4032 int i
; /* Used to iterate through non-root layers */
4033 int iRoot
; /* Index of root in pWriter->aNodeWriter */
4034 NodeWriter
*pRoot
; /* NodeWriter for root node */
4035 int rc
= *pRc
; /* Error code */
4037 /* Set iRoot to the index in pWriter->aNodeWriter[] of the output segment
4038 ** root node. If the segment fits entirely on a single leaf node, iRoot
4039 ** will be set to 0. If the root node is the parent of the leaves, iRoot
4040 ** will be 1. And so on. */
4041 for(iRoot
=FTS_MAX_APPENDABLE_HEIGHT
-1; iRoot
>=0; iRoot
--){
4042 NodeWriter
*pNode
= &pWriter
->aNodeWriter
[iRoot
];
4043 if( pNode
->block
.n
>0 ) break;
4044 assert( *pRc
|| pNode
->block
.nAlloc
==0 );
4045 assert( *pRc
|| pNode
->key
.nAlloc
==0 );
4046 sqlite3_free(pNode
->block
.a
);
4047 sqlite3_free(pNode
->key
.a
);
4050 /* Empty output segment. This is a no-op. */
4051 if( iRoot
<0 ) return;
4053 /* The entire output segment fits on a single node. Normally, this means
4054 ** the node would be stored as a blob in the "root" column of the %_segdir
4055 ** table. However, this is not permitted in this case. The problem is that
4056 ** space has already been reserved in the %_segments table, and so the
4057 ** start_block and end_block fields of the %_segdir table must be populated.
4058 ** And, by design or by accident, released versions of FTS cannot handle
4059 ** segments that fit entirely on the root node with start_block!=0.
4061 ** Instead, create a synthetic root node that contains nothing but a
4062 ** pointer to the single content node. So that the segment consists of a
4063 ** single leaf and a single interior (root) node.
4065 ** Todo: Better might be to defer allocating space in the %_segments
4066 ** table until we are sure it is needed.
4069 Blob
*pBlock
= &pWriter
->aNodeWriter
[1].block
;
4070 blobGrowBuffer(pBlock
, 1 + FTS3_VARINT_MAX
, &rc
);
4071 if( rc
==SQLITE_OK
){
4072 pBlock
->a
[0] = 0x01;
4073 pBlock
->n
= 1 + sqlite3Fts3PutVarint(
4074 &pBlock
->a
[1], pWriter
->aNodeWriter
[0].iBlock
4079 pRoot
= &pWriter
->aNodeWriter
[iRoot
];
4081 /* Flush all currently outstanding nodes to disk. */
4082 for(i
=0; i
<iRoot
; i
++){
4083 NodeWriter
*pNode
= &pWriter
->aNodeWriter
[i
];
4084 if( pNode
->block
.n
>0 && rc
==SQLITE_OK
){
4085 rc
= fts3WriteSegment(p
, pNode
->iBlock
, pNode
->block
.a
, pNode
->block
.n
);
4087 sqlite3_free(pNode
->block
.a
);
4088 sqlite3_free(pNode
->key
.a
);
4091 /* Write the %_segdir record. */
4092 if( rc
==SQLITE_OK
){
4093 rc
= fts3WriteSegdir(p
,
4094 pWriter
->iAbsLevel
+1, /* level */
4095 pWriter
->iIdx
, /* idx */
4096 pWriter
->iStart
, /* start_block */
4097 pWriter
->aNodeWriter
[0].iBlock
, /* leaves_end_block */
4098 pWriter
->iEnd
, /* end_block */
4099 (pWriter
->bNoLeafData
==0 ? pWriter
->nLeafData
: 0), /* end_block */
4100 pRoot
->block
.a
, pRoot
->block
.n
/* root */
4103 sqlite3_free(pRoot
->block
.a
);
4104 sqlite3_free(pRoot
->key
.a
);
4110 ** Compare the term in buffer zLhs (size in bytes nLhs) with that in
4111 ** zRhs (size in bytes nRhs) using memcmp. If one term is a prefix of
4112 ** the other, it is considered to be smaller than the other.
4114 ** Return -ve if zLhs is smaller than zRhs, 0 if it is equal, or +ve
4115 ** if it is greater.
4117 static int fts3TermCmp(
4118 const char *zLhs
, int nLhs
, /* LHS of comparison */
4119 const char *zRhs
, int nRhs
/* RHS of comparison */
4121 int nCmp
= MIN(nLhs
, nRhs
);
4124 res
= memcmp(zLhs
, zRhs
, nCmp
);
4125 if( res
==0 ) res
= nLhs
- nRhs
;
4132 ** Query to see if the entry in the %_segments table with blockid iEnd is
4133 ** NULL. If no error occurs and the entry is NULL, set *pbRes 1 before
4134 ** returning. Otherwise, set *pbRes to 0.
4136 ** Or, if an error occurs while querying the database, return an SQLite
4137 ** error code. The final value of *pbRes is undefined in this case.
4139 ** This is used to test if a segment is an "appendable" segment. If it
4140 ** is, then a NULL entry has been inserted into the %_segments table
4141 ** with blockid %_segdir.end_block.
4143 static int fts3IsAppendable(Fts3Table
*p
, sqlite3_int64 iEnd
, int *pbRes
){
4144 int bRes
= 0; /* Result to set *pbRes to */
4145 sqlite3_stmt
*pCheck
= 0; /* Statement to query database with */
4146 int rc
; /* Return code */
4148 rc
= fts3SqlStmt(p
, SQL_SEGMENT_IS_APPENDABLE
, &pCheck
, 0);
4149 if( rc
==SQLITE_OK
){
4150 sqlite3_bind_int64(pCheck
, 1, iEnd
);
4151 if( SQLITE_ROW
==sqlite3_step(pCheck
) ) bRes
= 1;
4152 rc
= sqlite3_reset(pCheck
);
4160 ** This function is called when initializing an incremental-merge operation.
4161 ** It checks if the existing segment with index value iIdx at absolute level
4162 ** (iAbsLevel+1) can be appended to by the incremental merge. If it can, the
4163 ** merge-writer object *pWriter is initialized to write to it.
4165 ** An existing segment can be appended to by an incremental merge if:
4167 ** * It was initially created as an appendable segment (with all required
4168 ** space pre-allocated), and
4170 ** * The first key read from the input (arguments zKey and nKey) is
4171 ** greater than the largest key currently stored in the potential
4174 static int fts3IncrmergeLoad(
4175 Fts3Table
*p
, /* Fts3 table handle */
4176 sqlite3_int64 iAbsLevel
, /* Absolute level of input segments */
4177 int iIdx
, /* Index of candidate output segment */
4178 const char *zKey
, /* First key to write */
4179 int nKey
, /* Number of bytes in nKey */
4180 IncrmergeWriter
*pWriter
/* Populate this object */
4182 int rc
; /* Return code */
4183 sqlite3_stmt
*pSelect
= 0; /* SELECT to read %_segdir entry */
4185 rc
= fts3SqlStmt(p
, SQL_SELECT_SEGDIR
, &pSelect
, 0);
4186 if( rc
==SQLITE_OK
){
4187 sqlite3_int64 iStart
= 0; /* Value of %_segdir.start_block */
4188 sqlite3_int64 iLeafEnd
= 0; /* Value of %_segdir.leaves_end_block */
4189 sqlite3_int64 iEnd
= 0; /* Value of %_segdir.end_block */
4190 const char *aRoot
= 0; /* Pointer to %_segdir.root buffer */
4191 int nRoot
= 0; /* Size of aRoot[] in bytes */
4192 int rc2
; /* Return code from sqlite3_reset() */
4193 int bAppendable
= 0; /* Set to true if segment is appendable */
4195 /* Read the %_segdir entry for index iIdx absolute level (iAbsLevel+1) */
4196 sqlite3_bind_int64(pSelect
, 1, iAbsLevel
+1);
4197 sqlite3_bind_int(pSelect
, 2, iIdx
);
4198 if( sqlite3_step(pSelect
)==SQLITE_ROW
){
4199 iStart
= sqlite3_column_int64(pSelect
, 1);
4200 iLeafEnd
= sqlite3_column_int64(pSelect
, 2);
4201 fts3ReadEndBlockField(pSelect
, 3, &iEnd
, &pWriter
->nLeafData
);
4202 if( pWriter
->nLeafData
<0 ){
4203 pWriter
->nLeafData
= pWriter
->nLeafData
* -1;
4205 pWriter
->bNoLeafData
= (pWriter
->nLeafData
==0);
4206 nRoot
= sqlite3_column_bytes(pSelect
, 4);
4207 aRoot
= sqlite3_column_blob(pSelect
, 4);
4209 return sqlite3_reset(pSelect
);
4212 /* Check for the zero-length marker in the %_segments table */
4213 rc
= fts3IsAppendable(p
, iEnd
, &bAppendable
);
4215 /* Check that zKey/nKey is larger than the largest key the candidate */
4216 if( rc
==SQLITE_OK
&& bAppendable
){
4220 rc
= sqlite3Fts3ReadBlock(p
, iLeafEnd
, &aLeaf
, &nLeaf
, 0);
4221 if( rc
==SQLITE_OK
){
4223 for(rc
= nodeReaderInit(&reader
, aLeaf
, nLeaf
);
4224 rc
==SQLITE_OK
&& reader
.aNode
;
4225 rc
= nodeReaderNext(&reader
)
4227 assert( reader
.aNode
);
4229 if( fts3TermCmp(zKey
, nKey
, reader
.term
.a
, reader
.term
.n
)<=0 ){
4232 nodeReaderRelease(&reader
);
4234 sqlite3_free(aLeaf
);
4237 if( rc
==SQLITE_OK
&& bAppendable
){
4238 /* It is possible to append to this segment. Set up the IncrmergeWriter
4239 ** object to do so. */
4241 int nHeight
= (int)aRoot
[0];
4244 pWriter
->nLeafEst
= (int)((iEnd
- iStart
) + 1)/FTS_MAX_APPENDABLE_HEIGHT
;
4245 pWriter
->iStart
= iStart
;
4246 pWriter
->iEnd
= iEnd
;
4247 pWriter
->iAbsLevel
= iAbsLevel
;
4248 pWriter
->iIdx
= iIdx
;
4250 for(i
=nHeight
+1; i
<FTS_MAX_APPENDABLE_HEIGHT
; i
++){
4251 pWriter
->aNodeWriter
[i
].iBlock
= pWriter
->iStart
+ i
*pWriter
->nLeafEst
;
4254 pNode
= &pWriter
->aNodeWriter
[nHeight
];
4255 pNode
->iBlock
= pWriter
->iStart
+ pWriter
->nLeafEst
*nHeight
;
4256 blobGrowBuffer(&pNode
->block
, MAX(nRoot
, p
->nNodeSize
), &rc
);
4257 if( rc
==SQLITE_OK
){
4258 memcpy(pNode
->block
.a
, aRoot
, nRoot
);
4259 pNode
->block
.n
= nRoot
;
4262 for(i
=nHeight
; i
>=0 && rc
==SQLITE_OK
; i
--){
4264 pNode
= &pWriter
->aNodeWriter
[i
];
4266 rc
= nodeReaderInit(&reader
, pNode
->block
.a
, pNode
->block
.n
);
4267 while( reader
.aNode
&& rc
==SQLITE_OK
) rc
= nodeReaderNext(&reader
);
4268 blobGrowBuffer(&pNode
->key
, reader
.term
.n
, &rc
);
4269 if( rc
==SQLITE_OK
){
4270 memcpy(pNode
->key
.a
, reader
.term
.a
, reader
.term
.n
);
4271 pNode
->key
.n
= reader
.term
.n
;
4275 pNode
= &pWriter
->aNodeWriter
[i
-1];
4276 pNode
->iBlock
= reader
.iChild
;
4277 rc
= sqlite3Fts3ReadBlock(p
, reader
.iChild
, &aBlock
, &nBlock
, 0);
4278 blobGrowBuffer(&pNode
->block
, MAX(nBlock
, p
->nNodeSize
), &rc
);
4279 if( rc
==SQLITE_OK
){
4280 memcpy(pNode
->block
.a
, aBlock
, nBlock
);
4281 pNode
->block
.n
= nBlock
;
4283 sqlite3_free(aBlock
);
4286 nodeReaderRelease(&reader
);
4290 rc2
= sqlite3_reset(pSelect
);
4291 if( rc
==SQLITE_OK
) rc
= rc2
;
4298 ** Determine the largest segment index value that exists within absolute
4299 ** level iAbsLevel+1. If no error occurs, set *piIdx to this value plus
4300 ** one before returning SQLITE_OK. Or, if there are no segments at all
4301 ** within level iAbsLevel, set *piIdx to zero.
4303 ** If an error occurs, return an SQLite error code. The final value of
4304 ** *piIdx is undefined in this case.
4306 static int fts3IncrmergeOutputIdx(
4307 Fts3Table
*p
, /* FTS Table handle */
4308 sqlite3_int64 iAbsLevel
, /* Absolute index of input segments */
4309 int *piIdx
/* OUT: Next free index at iAbsLevel+1 */
4312 sqlite3_stmt
*pOutputIdx
= 0; /* SQL used to find output index */
4314 rc
= fts3SqlStmt(p
, SQL_NEXT_SEGMENT_INDEX
, &pOutputIdx
, 0);
4315 if( rc
==SQLITE_OK
){
4316 sqlite3_bind_int64(pOutputIdx
, 1, iAbsLevel
+1);
4317 sqlite3_step(pOutputIdx
);
4318 *piIdx
= sqlite3_column_int(pOutputIdx
, 0);
4319 rc
= sqlite3_reset(pOutputIdx
);
4326 ** Allocate an appendable output segment on absolute level iAbsLevel+1
4327 ** with idx value iIdx.
4329 ** In the %_segdir table, a segment is defined by the values in three
4336 ** When an appendable segment is allocated, it is estimated that the
4337 ** maximum number of leaf blocks that may be required is the sum of the
4338 ** number of leaf blocks consumed by the input segments, plus the number
4339 ** of input segments, multiplied by two. This value is stored in stack
4340 ** variable nLeafEst.
4342 ** A total of 16*nLeafEst blocks are allocated when an appendable segment
4343 ** is created ((1 + end_block - start_block)==16*nLeafEst). The contiguous
4344 ** array of leaf nodes starts at the first block allocated. The array
4345 ** of interior nodes that are parents of the leaf nodes start at block
4346 ** (start_block + (1 + end_block - start_block) / 16). And so on.
4348 ** In the actual code below, the value "16" is replaced with the
4349 ** pre-processor macro FTS_MAX_APPENDABLE_HEIGHT.
4351 static int fts3IncrmergeWriter(
4352 Fts3Table
*p
, /* Fts3 table handle */
4353 sqlite3_int64 iAbsLevel
, /* Absolute level of input segments */
4354 int iIdx
, /* Index of new output segment */
4355 Fts3MultiSegReader
*pCsr
, /* Cursor that data will be read from */
4356 IncrmergeWriter
*pWriter
/* Populate this object */
4358 int rc
; /* Return Code */
4359 int i
; /* Iterator variable */
4360 int nLeafEst
= 0; /* Blocks allocated for leaf nodes */
4361 sqlite3_stmt
*pLeafEst
= 0; /* SQL used to determine nLeafEst */
4362 sqlite3_stmt
*pFirstBlock
= 0; /* SQL used to determine first block */
4364 /* Calculate nLeafEst. */
4365 rc
= fts3SqlStmt(p
, SQL_MAX_LEAF_NODE_ESTIMATE
, &pLeafEst
, 0);
4366 if( rc
==SQLITE_OK
){
4367 sqlite3_bind_int64(pLeafEst
, 1, iAbsLevel
);
4368 sqlite3_bind_int64(pLeafEst
, 2, pCsr
->nSegment
);
4369 if( SQLITE_ROW
==sqlite3_step(pLeafEst
) ){
4370 nLeafEst
= sqlite3_column_int(pLeafEst
, 0);
4372 rc
= sqlite3_reset(pLeafEst
);
4374 if( rc
!=SQLITE_OK
) return rc
;
4376 /* Calculate the first block to use in the output segment */
4377 rc
= fts3SqlStmt(p
, SQL_NEXT_SEGMENTS_ID
, &pFirstBlock
, 0);
4378 if( rc
==SQLITE_OK
){
4379 if( SQLITE_ROW
==sqlite3_step(pFirstBlock
) ){
4380 pWriter
->iStart
= sqlite3_column_int64(pFirstBlock
, 0);
4381 pWriter
->iEnd
= pWriter
->iStart
- 1;
4382 pWriter
->iEnd
+= nLeafEst
* FTS_MAX_APPENDABLE_HEIGHT
;
4384 rc
= sqlite3_reset(pFirstBlock
);
4386 if( rc
!=SQLITE_OK
) return rc
;
4388 /* Insert the marker in the %_segments table to make sure nobody tries
4389 ** to steal the space just allocated. This is also used to identify
4390 ** appendable segments. */
4391 rc
= fts3WriteSegment(p
, pWriter
->iEnd
, 0, 0);
4392 if( rc
!=SQLITE_OK
) return rc
;
4394 pWriter
->iAbsLevel
= iAbsLevel
;
4395 pWriter
->nLeafEst
= nLeafEst
;
4396 pWriter
->iIdx
= iIdx
;
4398 /* Set up the array of NodeWriter objects */
4399 for(i
=0; i
<FTS_MAX_APPENDABLE_HEIGHT
; i
++){
4400 pWriter
->aNodeWriter
[i
].iBlock
= pWriter
->iStart
+ i
*pWriter
->nLeafEst
;
4406 ** Remove an entry from the %_segdir table. This involves running the
4407 ** following two statements:
4409 ** DELETE FROM %_segdir WHERE level = :iAbsLevel AND idx = :iIdx
4410 ** UPDATE %_segdir SET idx = idx - 1 WHERE level = :iAbsLevel AND idx > :iIdx
4412 ** The DELETE statement removes the specific %_segdir level. The UPDATE
4413 ** statement ensures that the remaining segments have contiguously allocated
4416 static int fts3RemoveSegdirEntry(
4417 Fts3Table
*p
, /* FTS3 table handle */
4418 sqlite3_int64 iAbsLevel
, /* Absolute level to delete from */
4419 int iIdx
/* Index of %_segdir entry to delete */
4421 int rc
; /* Return code */
4422 sqlite3_stmt
*pDelete
= 0; /* DELETE statement */
4424 rc
= fts3SqlStmt(p
, SQL_DELETE_SEGDIR_ENTRY
, &pDelete
, 0);
4425 if( rc
==SQLITE_OK
){
4426 sqlite3_bind_int64(pDelete
, 1, iAbsLevel
);
4427 sqlite3_bind_int(pDelete
, 2, iIdx
);
4428 sqlite3_step(pDelete
);
4429 rc
= sqlite3_reset(pDelete
);
4436 ** One or more segments have just been removed from absolute level iAbsLevel.
4437 ** Update the 'idx' values of the remaining segments in the level so that
4438 ** the idx values are a contiguous sequence starting from 0.
4440 static int fts3RepackSegdirLevel(
4441 Fts3Table
*p
, /* FTS3 table handle */
4442 sqlite3_int64 iAbsLevel
/* Absolute level to repack */
4444 int rc
; /* Return code */
4445 int *aIdx
= 0; /* Array of remaining idx values */
4446 int nIdx
= 0; /* Valid entries in aIdx[] */
4447 int nAlloc
= 0; /* Allocated size of aIdx[] */
4448 int i
; /* Iterator variable */
4449 sqlite3_stmt
*pSelect
= 0; /* Select statement to read idx values */
4450 sqlite3_stmt
*pUpdate
= 0; /* Update statement to modify idx values */
4452 rc
= fts3SqlStmt(p
, SQL_SELECT_INDEXES
, &pSelect
, 0);
4453 if( rc
==SQLITE_OK
){
4455 sqlite3_bind_int64(pSelect
, 1, iAbsLevel
);
4456 while( SQLITE_ROW
==sqlite3_step(pSelect
) ){
4460 aNew
= sqlite3_realloc(aIdx
, nAlloc
*sizeof(int));
4467 aIdx
[nIdx
++] = sqlite3_column_int(pSelect
, 0);
4469 rc2
= sqlite3_reset(pSelect
);
4470 if( rc
==SQLITE_OK
) rc
= rc2
;
4473 if( rc
==SQLITE_OK
){
4474 rc
= fts3SqlStmt(p
, SQL_SHIFT_SEGDIR_ENTRY
, &pUpdate
, 0);
4476 if( rc
==SQLITE_OK
){
4477 sqlite3_bind_int64(pUpdate
, 2, iAbsLevel
);
4480 assert( p
->bIgnoreSavepoint
==0 );
4481 p
->bIgnoreSavepoint
= 1;
4482 for(i
=0; rc
==SQLITE_OK
&& i
<nIdx
; i
++){
4484 sqlite3_bind_int(pUpdate
, 3, aIdx
[i
]);
4485 sqlite3_bind_int(pUpdate
, 1, i
);
4486 sqlite3_step(pUpdate
);
4487 rc
= sqlite3_reset(pUpdate
);
4490 p
->bIgnoreSavepoint
= 0;
4496 static void fts3StartNode(Blob
*pNode
, int iHeight
, sqlite3_int64 iChild
){
4497 pNode
->a
[0] = (char)iHeight
;
4499 assert( pNode
->nAlloc
>=1+sqlite3Fts3VarintLen(iChild
) );
4500 pNode
->n
= 1 + sqlite3Fts3PutVarint(&pNode
->a
[1], iChild
);
4502 assert( pNode
->nAlloc
>=1 );
4508 ** The first two arguments are a pointer to and the size of a segment b-tree
4509 ** node. The node may be a leaf or an internal node.
4511 ** This function creates a new node image in blob object *pNew by copying
4512 ** all terms that are greater than or equal to zTerm/nTerm (for leaf nodes)
4513 ** or greater than zTerm/nTerm (for internal nodes) from aNode/nNode.
4515 static int fts3TruncateNode(
4516 const char *aNode
, /* Current node image */
4517 int nNode
, /* Size of aNode in bytes */
4518 Blob
*pNew
, /* OUT: Write new node image here */
4519 const char *zTerm
, /* Omit all terms smaller than this */
4520 int nTerm
, /* Size of zTerm in bytes */
4521 sqlite3_int64
*piBlock
/* OUT: Block number in next layer down */
4523 NodeReader reader
; /* Reader object */
4524 Blob prev
= {0, 0, 0}; /* Previous term written to new node */
4525 int rc
= SQLITE_OK
; /* Return code */
4526 int bLeaf
= aNode
[0]=='\0'; /* True for a leaf node */
4528 /* Allocate required output space */
4529 blobGrowBuffer(pNew
, nNode
, &rc
);
4530 if( rc
!=SQLITE_OK
) return rc
;
4533 /* Populate new node buffer */
4534 for(rc
= nodeReaderInit(&reader
, aNode
, nNode
);
4535 rc
==SQLITE_OK
&& reader
.aNode
;
4536 rc
= nodeReaderNext(&reader
)
4539 int res
= fts3TermCmp(reader
.term
.a
, reader
.term
.n
, zTerm
, nTerm
);
4540 if( res
<0 || (bLeaf
==0 && res
==0) ) continue;
4541 fts3StartNode(pNew
, (int)aNode
[0], reader
.iChild
);
4542 *piBlock
= reader
.iChild
;
4544 rc
= fts3AppendToNode(
4545 pNew
, &prev
, reader
.term
.a
, reader
.term
.n
,
4546 reader
.aDoclist
, reader
.nDoclist
4548 if( rc
!=SQLITE_OK
) break;
4551 fts3StartNode(pNew
, (int)aNode
[0], reader
.iChild
);
4552 *piBlock
= reader
.iChild
;
4554 assert( pNew
->n
<=pNew
->nAlloc
);
4556 nodeReaderRelease(&reader
);
4557 sqlite3_free(prev
.a
);
4562 ** Remove all terms smaller than zTerm/nTerm from segment iIdx in absolute
4563 ** level iAbsLevel. This may involve deleting entries from the %_segments
4564 ** table, and modifying existing entries in both the %_segments and %_segdir
4567 ** SQLITE_OK is returned if the segment is updated successfully. Or an
4568 ** SQLite error code otherwise.
4570 static int fts3TruncateSegment(
4571 Fts3Table
*p
, /* FTS3 table handle */
4572 sqlite3_int64 iAbsLevel
, /* Absolute level of segment to modify */
4573 int iIdx
, /* Index within level of segment to modify */
4574 const char *zTerm
, /* Remove terms smaller than this */
4575 int nTerm
/* Number of bytes in buffer zTerm */
4577 int rc
= SQLITE_OK
; /* Return code */
4578 Blob root
= {0,0,0}; /* New root page image */
4579 Blob block
= {0,0,0}; /* Buffer used for any other block */
4580 sqlite3_int64 iBlock
= 0; /* Block id */
4581 sqlite3_int64 iNewStart
= 0; /* New value for iStartBlock */
4582 sqlite3_int64 iOldStart
= 0; /* Old value for iStartBlock */
4583 sqlite3_stmt
*pFetch
= 0; /* Statement used to fetch segdir */
4585 rc
= fts3SqlStmt(p
, SQL_SELECT_SEGDIR
, &pFetch
, 0);
4586 if( rc
==SQLITE_OK
){
4587 int rc2
; /* sqlite3_reset() return code */
4588 sqlite3_bind_int64(pFetch
, 1, iAbsLevel
);
4589 sqlite3_bind_int(pFetch
, 2, iIdx
);
4590 if( SQLITE_ROW
==sqlite3_step(pFetch
) ){
4591 const char *aRoot
= sqlite3_column_blob(pFetch
, 4);
4592 int nRoot
= sqlite3_column_bytes(pFetch
, 4);
4593 iOldStart
= sqlite3_column_int64(pFetch
, 1);
4594 rc
= fts3TruncateNode(aRoot
, nRoot
, &root
, zTerm
, nTerm
, &iBlock
);
4596 rc2
= sqlite3_reset(pFetch
);
4597 if( rc
==SQLITE_OK
) rc
= rc2
;
4600 while( rc
==SQLITE_OK
&& iBlock
){
4605 rc
= sqlite3Fts3ReadBlock(p
, iBlock
, &aBlock
, &nBlock
, 0);
4606 if( rc
==SQLITE_OK
){
4607 rc
= fts3TruncateNode(aBlock
, nBlock
, &block
, zTerm
, nTerm
, &iBlock
);
4609 if( rc
==SQLITE_OK
){
4610 rc
= fts3WriteSegment(p
, iNewStart
, block
.a
, block
.n
);
4612 sqlite3_free(aBlock
);
4615 /* Variable iNewStart now contains the first valid leaf node. */
4616 if( rc
==SQLITE_OK
&& iNewStart
){
4617 sqlite3_stmt
*pDel
= 0;
4618 rc
= fts3SqlStmt(p
, SQL_DELETE_SEGMENTS_RANGE
, &pDel
, 0);
4619 if( rc
==SQLITE_OK
){
4620 sqlite3_bind_int64(pDel
, 1, iOldStart
);
4621 sqlite3_bind_int64(pDel
, 2, iNewStart
-1);
4623 rc
= sqlite3_reset(pDel
);
4627 if( rc
==SQLITE_OK
){
4628 sqlite3_stmt
*pChomp
= 0;
4629 rc
= fts3SqlStmt(p
, SQL_CHOMP_SEGDIR
, &pChomp
, 0);
4630 if( rc
==SQLITE_OK
){
4631 sqlite3_bind_int64(pChomp
, 1, iNewStart
);
4632 sqlite3_bind_blob(pChomp
, 2, root
.a
, root
.n
, SQLITE_STATIC
);
4633 sqlite3_bind_int64(pChomp
, 3, iAbsLevel
);
4634 sqlite3_bind_int(pChomp
, 4, iIdx
);
4635 sqlite3_step(pChomp
);
4636 rc
= sqlite3_reset(pChomp
);
4637 sqlite3_bind_null(pChomp
, 2);
4641 sqlite3_free(root
.a
);
4642 sqlite3_free(block
.a
);
4647 ** This function is called after an incrmental-merge operation has run to
4648 ** merge (or partially merge) two or more segments from absolute level
4651 ** Each input segment is either removed from the db completely (if all of
4652 ** its data was copied to the output segment by the incrmerge operation)
4653 ** or modified in place so that it no longer contains those entries that
4654 ** have been duplicated in the output segment.
4656 static int fts3IncrmergeChomp(
4657 Fts3Table
*p
, /* FTS table handle */
4658 sqlite3_int64 iAbsLevel
, /* Absolute level containing segments */
4659 Fts3MultiSegReader
*pCsr
, /* Chomp all segments opened by this cursor */
4660 int *pnRem
/* Number of segments not deleted */
4666 for(i
=pCsr
->nSegment
-1; i
>=0 && rc
==SQLITE_OK
; i
--){
4667 Fts3SegReader
*pSeg
= 0;
4670 /* Find the Fts3SegReader object with Fts3SegReader.iIdx==i. It is hiding
4671 ** somewhere in the pCsr->apSegment[] array. */
4672 for(j
=0; ALWAYS(j
<pCsr
->nSegment
); j
++){
4673 pSeg
= pCsr
->apSegment
[j
];
4674 if( pSeg
->iIdx
==i
) break;
4676 assert( j
<pCsr
->nSegment
&& pSeg
->iIdx
==i
);
4678 if( pSeg
->aNode
==0 ){
4679 /* Seg-reader is at EOF. Remove the entire input segment. */
4680 rc
= fts3DeleteSegment(p
, pSeg
);
4681 if( rc
==SQLITE_OK
){
4682 rc
= fts3RemoveSegdirEntry(p
, iAbsLevel
, pSeg
->iIdx
);
4686 /* The incremental merge did not copy all the data from this
4687 ** segment to the upper level. The segment is modified in place
4688 ** so that it contains no keys smaller than zTerm/nTerm. */
4689 const char *zTerm
= pSeg
->zTerm
;
4690 int nTerm
= pSeg
->nTerm
;
4691 rc
= fts3TruncateSegment(p
, iAbsLevel
, pSeg
->iIdx
, zTerm
, nTerm
);
4696 if( rc
==SQLITE_OK
&& nRem
!=pCsr
->nSegment
){
4697 rc
= fts3RepackSegdirLevel(p
, iAbsLevel
);
4705 ** Store an incr-merge hint in the database.
4707 static int fts3IncrmergeHintStore(Fts3Table
*p
, Blob
*pHint
){
4708 sqlite3_stmt
*pReplace
= 0;
4709 int rc
; /* Return code */
4711 rc
= fts3SqlStmt(p
, SQL_REPLACE_STAT
, &pReplace
, 0);
4712 if( rc
==SQLITE_OK
){
4713 sqlite3_bind_int(pReplace
, 1, FTS_STAT_INCRMERGEHINT
);
4714 sqlite3_bind_blob(pReplace
, 2, pHint
->a
, pHint
->n
, SQLITE_STATIC
);
4715 sqlite3_step(pReplace
);
4716 rc
= sqlite3_reset(pReplace
);
4717 sqlite3_bind_null(pReplace
, 2);
4724 ** Load an incr-merge hint from the database. The incr-merge hint, if one
4725 ** exists, is stored in the rowid==1 row of the %_stat table.
4727 ** If successful, populate blob *pHint with the value read from the %_stat
4728 ** table and return SQLITE_OK. Otherwise, if an error occurs, return an
4729 ** SQLite error code.
4731 static int fts3IncrmergeHintLoad(Fts3Table
*p
, Blob
*pHint
){
4732 sqlite3_stmt
*pSelect
= 0;
4736 rc
= fts3SqlStmt(p
, SQL_SELECT_STAT
, &pSelect
, 0);
4737 if( rc
==SQLITE_OK
){
4739 sqlite3_bind_int(pSelect
, 1, FTS_STAT_INCRMERGEHINT
);
4740 if( SQLITE_ROW
==sqlite3_step(pSelect
) ){
4741 const char *aHint
= sqlite3_column_blob(pSelect
, 0);
4742 int nHint
= sqlite3_column_bytes(pSelect
, 0);
4744 blobGrowBuffer(pHint
, nHint
, &rc
);
4745 if( rc
==SQLITE_OK
){
4746 memcpy(pHint
->a
, aHint
, nHint
);
4751 rc2
= sqlite3_reset(pSelect
);
4752 if( rc
==SQLITE_OK
) rc
= rc2
;
4759 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
4760 ** Otherwise, append an entry to the hint stored in blob *pHint. Each entry
4761 ** consists of two varints, the absolute level number of the input segments
4762 ** and the number of input segments.
4764 ** If successful, leave *pRc set to SQLITE_OK and return. If an error occurs,
4765 ** set *pRc to an SQLite error code before returning.
4767 static void fts3IncrmergeHintPush(
4768 Blob
*pHint
, /* Hint blob to append to */
4769 i64 iAbsLevel
, /* First varint to store in hint */
4770 int nInput
, /* Second varint to store in hint */
4771 int *pRc
/* IN/OUT: Error code */
4773 blobGrowBuffer(pHint
, pHint
->n
+ 2*FTS3_VARINT_MAX
, pRc
);
4774 if( *pRc
==SQLITE_OK
){
4775 pHint
->n
+= sqlite3Fts3PutVarint(&pHint
->a
[pHint
->n
], iAbsLevel
);
4776 pHint
->n
+= sqlite3Fts3PutVarint(&pHint
->a
[pHint
->n
], (i64
)nInput
);
4781 ** Read the last entry (most recently pushed) from the hint blob *pHint
4782 ** and then remove the entry. Write the two values read to *piAbsLevel and
4783 ** *pnInput before returning.
4785 ** If no error occurs, return SQLITE_OK. If the hint blob in *pHint does
4786 ** not contain at least two valid varints, return SQLITE_CORRUPT_VTAB.
4788 static int fts3IncrmergeHintPop(Blob
*pHint
, i64
*piAbsLevel
, int *pnInput
){
4789 const int nHint
= pHint
->n
;
4793 while( i
>0 && (pHint
->a
[i
-1] & 0x80) ) i
--;
4794 while( i
>0 && (pHint
->a
[i
-1] & 0x80) ) i
--;
4797 i
+= sqlite3Fts3GetVarint(&pHint
->a
[i
], piAbsLevel
);
4798 i
+= fts3GetVarint32(&pHint
->a
[i
], pnInput
);
4799 if( i
!=nHint
) return FTS_CORRUPT_VTAB
;
4806 ** Attempt an incremental merge that writes nMerge leaf blocks.
4808 ** Incremental merges happen nMin segments at a time. The segments
4809 ** to be merged are the nMin oldest segments (the ones with the smallest
4810 ** values for the _segdir.idx field) in the highest level that contains
4811 ** at least nMin segments. Multiple merges might occur in an attempt to
4812 ** write the quota of nMerge leaf blocks.
4814 int sqlite3Fts3Incrmerge(Fts3Table
*p
, int nMerge
, int nMin
){
4815 int rc
; /* Return code */
4816 int nRem
= nMerge
; /* Number of leaf pages yet to be written */
4817 Fts3MultiSegReader
*pCsr
; /* Cursor used to read input data */
4818 Fts3SegFilter
*pFilter
; /* Filter used with cursor pCsr */
4819 IncrmergeWriter
*pWriter
; /* Writer object */
4820 int nSeg
= 0; /* Number of input segments */
4821 sqlite3_int64 iAbsLevel
= 0; /* Absolute level number to work on */
4822 Blob hint
= {0, 0, 0}; /* Hint read from %_stat table */
4823 int bDirtyHint
= 0; /* True if blob 'hint' has been modified */
4825 /* Allocate space for the cursor, filter and writer objects */
4826 const int nAlloc
= sizeof(*pCsr
) + sizeof(*pFilter
) + sizeof(*pWriter
);
4827 pWriter
= (IncrmergeWriter
*)sqlite3_malloc(nAlloc
);
4828 if( !pWriter
) return SQLITE_NOMEM
;
4829 pFilter
= (Fts3SegFilter
*)&pWriter
[1];
4830 pCsr
= (Fts3MultiSegReader
*)&pFilter
[1];
4832 rc
= fts3IncrmergeHintLoad(p
, &hint
);
4833 while( rc
==SQLITE_OK
&& nRem
>0 ){
4834 const i64 nMod
= FTS3_SEGDIR_MAXLEVEL
* p
->nIndex
;
4835 sqlite3_stmt
*pFindLevel
= 0; /* SQL used to determine iAbsLevel */
4836 int bUseHint
= 0; /* True if attempting to append */
4837 int iIdx
= 0; /* Largest idx in level (iAbsLevel+1) */
4839 /* Search the %_segdir table for the absolute level with the smallest
4840 ** relative level number that contains at least nMin segments, if any.
4841 ** If one is found, set iAbsLevel to the absolute level number and
4842 ** nSeg to nMin. If no level with at least nMin segments can be found,
4845 rc
= fts3SqlStmt(p
, SQL_FIND_MERGE_LEVEL
, &pFindLevel
, 0);
4846 sqlite3_bind_int(pFindLevel
, 1, MAX(2, nMin
));
4847 if( sqlite3_step(pFindLevel
)==SQLITE_ROW
){
4848 iAbsLevel
= sqlite3_column_int64(pFindLevel
, 0);
4849 nSeg
= sqlite3_column_int(pFindLevel
, 1);
4854 rc
= sqlite3_reset(pFindLevel
);
4856 /* If the hint read from the %_stat table is not empty, check if the
4857 ** last entry in it specifies a relative level smaller than or equal
4858 ** to the level identified by the block above (if any). If so, this
4859 ** iteration of the loop will work on merging at the hinted level.
4861 if( rc
==SQLITE_OK
&& hint
.n
){
4863 sqlite3_int64 iHintAbsLevel
= 0; /* Hint level */
4864 int nHintSeg
= 0; /* Hint number of segments */
4866 rc
= fts3IncrmergeHintPop(&hint
, &iHintAbsLevel
, &nHintSeg
);
4867 if( nSeg
<0 || (iAbsLevel
% nMod
) >= (iHintAbsLevel
% nMod
) ){
4868 iAbsLevel
= iHintAbsLevel
;
4873 /* This undoes the effect of the HintPop() above - so that no entry
4874 ** is removed from the hint blob. */
4879 /* If nSeg is less that zero, then there is no level with at least
4880 ** nMin segments and no hint in the %_stat table. No work to do.
4881 ** Exit early in this case. */
4884 /* Open a cursor to iterate through the contents of the oldest nSeg
4885 ** indexes of absolute level iAbsLevel. If this cursor is opened using
4886 ** the 'hint' parameters, it is possible that there are less than nSeg
4887 ** segments available in level iAbsLevel. In this case, no work is
4888 ** done on iAbsLevel - fall through to the next iteration of the loop
4889 ** to start work on some other level. */
4890 memset(pWriter
, 0, nAlloc
);
4891 pFilter
->flags
= FTS3_SEGMENT_REQUIRE_POS
;
4893 if( rc
==SQLITE_OK
){
4894 rc
= fts3IncrmergeOutputIdx(p
, iAbsLevel
, &iIdx
);
4895 assert( bUseHint
==1 || bUseHint
==0 );
4896 if( iIdx
==0 || (bUseHint
&& iIdx
==1) ){
4898 rc
= fts3SegmentIsMaxLevel(p
, iAbsLevel
+1, &bIgnore
);
4900 pFilter
->flags
|= FTS3_SEGMENT_IGNORE_EMPTY
;
4905 if( rc
==SQLITE_OK
){
4906 rc
= fts3IncrmergeCsr(p
, iAbsLevel
, nSeg
, pCsr
);
4908 if( SQLITE_OK
==rc
&& pCsr
->nSegment
==nSeg
4909 && SQLITE_OK
==(rc
= sqlite3Fts3SegReaderStart(p
, pCsr
, pFilter
))
4910 && SQLITE_ROW
==(rc
= sqlite3Fts3SegReaderStep(p
, pCsr
))
4912 if( bUseHint
&& iIdx
>0 ){
4913 const char *zKey
= pCsr
->zTerm
;
4914 int nKey
= pCsr
->nTerm
;
4915 rc
= fts3IncrmergeLoad(p
, iAbsLevel
, iIdx
-1, zKey
, nKey
, pWriter
);
4917 rc
= fts3IncrmergeWriter(p
, iAbsLevel
, iIdx
, pCsr
, pWriter
);
4920 if( rc
==SQLITE_OK
&& pWriter
->nLeafEst
){
4921 fts3LogMerge(nSeg
, iAbsLevel
);
4923 rc
= fts3IncrmergeAppend(p
, pWriter
, pCsr
);
4924 if( rc
==SQLITE_OK
) rc
= sqlite3Fts3SegReaderStep(p
, pCsr
);
4925 if( pWriter
->nWork
>=nRem
&& rc
==SQLITE_ROW
) rc
= SQLITE_OK
;
4926 }while( rc
==SQLITE_ROW
);
4928 /* Update or delete the input segments */
4929 if( rc
==SQLITE_OK
){
4930 nRem
-= (1 + pWriter
->nWork
);
4931 rc
= fts3IncrmergeChomp(p
, iAbsLevel
, pCsr
, &nSeg
);
4934 fts3IncrmergeHintPush(&hint
, iAbsLevel
, nSeg
, &rc
);
4940 pWriter
->nLeafData
= pWriter
->nLeafData
* -1;
4942 fts3IncrmergeRelease(p
, pWriter
, &rc
);
4943 if( nSeg
==0 && pWriter
->bNoLeafData
==0 ){
4944 fts3PromoteSegments(p
, iAbsLevel
+1, pWriter
->nLeafData
);
4948 sqlite3Fts3SegReaderFinish(pCsr
);
4951 /* Write the hint values into the %_stat table for the next incr-merger */
4952 if( bDirtyHint
&& rc
==SQLITE_OK
){
4953 rc
= fts3IncrmergeHintStore(p
, &hint
);
4956 sqlite3_free(pWriter
);
4957 sqlite3_free(hint
.a
);
4962 ** Convert the text beginning at *pz into an integer and return
4963 ** its value. Advance *pz to point to the first character past
4966 ** This function used for parameters to merge= and incrmerge=
4969 static int fts3Getint(const char **pz
){
4970 const char *z
= *pz
;
4972 while( (*z
)>='0' && (*z
)<='9' && i
<214748363 ) i
= 10*i
+ *(z
++) - '0';
4978 ** Process statements of the form:
4980 ** INSERT INTO table(table) VALUES('merge=A,B');
4982 ** A and B are integers that decode to be the number of leaf pages
4983 ** written for the merge, and the minimum number of segments on a level
4984 ** before it will be selected for a merge, respectively.
4986 static int fts3DoIncrmerge(
4987 Fts3Table
*p
, /* FTS3 table handle */
4988 const char *zParam
/* Nul-terminated string containing "A,B" */
4991 int nMin
= (FTS3_MERGE_COUNT
/ 2);
4993 const char *z
= zParam
;
4995 /* Read the first integer value */
4996 nMerge
= fts3Getint(&z
);
4998 /* If the first integer value is followed by a ',', read the second
4999 ** integer value. */
5000 if( z
[0]==',' && z
[1]!='\0' ){
5002 nMin
= fts3Getint(&z
);
5005 if( z
[0]!='\0' || nMin
<2 ){
5010 assert( p
->bFts4
==0 );
5011 sqlite3Fts3CreateStatTable(&rc
, p
);
5013 if( rc
==SQLITE_OK
){
5014 rc
= sqlite3Fts3Incrmerge(p
, nMerge
, nMin
);
5016 sqlite3Fts3SegmentsClose(p
);
5022 ** Process statements of the form:
5024 ** INSERT INTO table(table) VALUES('automerge=X');
5026 ** where X is an integer. X==0 means to turn automerge off. X!=0 means
5027 ** turn it on. The setting is persistent.
5029 static int fts3DoAutoincrmerge(
5030 Fts3Table
*p
, /* FTS3 table handle */
5031 const char *zParam
/* Nul-terminated string containing boolean */
5034 sqlite3_stmt
*pStmt
= 0;
5035 p
->nAutoincrmerge
= fts3Getint(&zParam
);
5036 if( p
->nAutoincrmerge
==1 || p
->nAutoincrmerge
>FTS3_MERGE_COUNT
){
5037 p
->nAutoincrmerge
= 8;
5040 assert( p
->bFts4
==0 );
5041 sqlite3Fts3CreateStatTable(&rc
, p
);
5044 rc
= fts3SqlStmt(p
, SQL_REPLACE_STAT
, &pStmt
, 0);
5046 sqlite3_bind_int(pStmt
, 1, FTS_STAT_AUTOINCRMERGE
);
5047 sqlite3_bind_int(pStmt
, 2, p
->nAutoincrmerge
);
5048 sqlite3_step(pStmt
);
5049 rc
= sqlite3_reset(pStmt
);
5054 ** Return a 64-bit checksum for the FTS index entry specified by the
5055 ** arguments to this function.
5057 static u64
fts3ChecksumEntry(
5058 const char *zTerm
, /* Pointer to buffer containing term */
5059 int nTerm
, /* Size of zTerm in bytes */
5060 int iLangid
, /* Language id for current row */
5061 int iIndex
, /* Index (0..Fts3Table.nIndex-1) */
5062 i64 iDocid
, /* Docid for current row. */
5063 int iCol
, /* Column number */
5064 int iPos
/* Position */
5067 u64 ret
= (u64
)iDocid
;
5069 ret
+= (ret
<<3) + iLangid
;
5070 ret
+= (ret
<<3) + iIndex
;
5071 ret
+= (ret
<<3) + iCol
;
5072 ret
+= (ret
<<3) + iPos
;
5073 for(i
=0; i
<nTerm
; i
++) ret
+= (ret
<<3) + zTerm
[i
];
5079 ** Return a checksum of all entries in the FTS index that correspond to
5080 ** language id iLangid. The checksum is calculated by XORing the checksums
5081 ** of each individual entry (see fts3ChecksumEntry()) together.
5083 ** If successful, the checksum value is returned and *pRc set to SQLITE_OK.
5084 ** Otherwise, if an error occurs, *pRc is set to an SQLite error code. The
5085 ** return value is undefined in this case.
5087 static u64
fts3ChecksumIndex(
5088 Fts3Table
*p
, /* FTS3 table handle */
5089 int iLangid
, /* Language id to return cksum for */
5090 int iIndex
, /* Index to cksum (0..p->nIndex-1) */
5091 int *pRc
/* OUT: Return code */
5093 Fts3SegFilter filter
;
5094 Fts3MultiSegReader csr
;
5098 assert( *pRc
==SQLITE_OK
);
5100 memset(&filter
, 0, sizeof(filter
));
5101 memset(&csr
, 0, sizeof(csr
));
5102 filter
.flags
= FTS3_SEGMENT_REQUIRE_POS
|FTS3_SEGMENT_IGNORE_EMPTY
;
5103 filter
.flags
|= FTS3_SEGMENT_SCAN
;
5105 rc
= sqlite3Fts3SegReaderCursor(
5106 p
, iLangid
, iIndex
, FTS3_SEGCURSOR_ALL
, 0, 0, 0, 1,&csr
5108 if( rc
==SQLITE_OK
){
5109 rc
= sqlite3Fts3SegReaderStart(p
, &csr
, &filter
);
5112 if( rc
==SQLITE_OK
){
5113 while( SQLITE_ROW
==(rc
= sqlite3Fts3SegReaderStep(p
, &csr
)) ){
5114 char *pCsr
= csr
.aDoclist
;
5115 char *pEnd
= &pCsr
[csr
.nDoclist
];
5121 pCsr
+= sqlite3Fts3GetVarint(pCsr
, &iDocid
);
5124 pCsr
+= sqlite3Fts3GetVarint(pCsr
, &iVal
);
5126 if( iVal
==0 || iVal
==1 ){
5130 pCsr
+= sqlite3Fts3GetVarint(pCsr
, &iCol
);
5132 pCsr
+= sqlite3Fts3GetVarint(pCsr
, &iVal
);
5137 cksum
= cksum
^ fts3ChecksumEntry(
5138 csr
.zTerm
, csr
.nTerm
, iLangid
, iIndex
, iDocid
,
5139 (int)iCol
, (int)iPos
5146 sqlite3Fts3SegReaderFinish(&csr
);
5153 ** Check if the contents of the FTS index match the current contents of the
5154 ** content table. If no error occurs and the contents do match, set *pbOk
5155 ** to true and return SQLITE_OK. Or if the contents do not match, set *pbOk
5156 ** to false before returning.
5158 ** If an error occurs (e.g. an OOM or IO error), return an SQLite error
5159 ** code. The final value of *pbOk is undefined in this case.
5161 static int fts3IntegrityCheck(Fts3Table
*p
, int *pbOk
){
5162 int rc
= SQLITE_OK
; /* Return code */
5163 u64 cksum1
= 0; /* Checksum based on FTS index contents */
5164 u64 cksum2
= 0; /* Checksum based on %_content contents */
5165 sqlite3_stmt
*pAllLangid
= 0; /* Statement to return all language-ids */
5167 /* This block calculates the checksum according to the FTS index. */
5168 rc
= fts3SqlStmt(p
, SQL_SELECT_ALL_LANGID
, &pAllLangid
, 0);
5169 if( rc
==SQLITE_OK
){
5171 sqlite3_bind_int(pAllLangid
, 1, p
->iPrevLangid
);
5172 sqlite3_bind_int(pAllLangid
, 2, p
->nIndex
);
5173 while( rc
==SQLITE_OK
&& sqlite3_step(pAllLangid
)==SQLITE_ROW
){
5174 int iLangid
= sqlite3_column_int(pAllLangid
, 0);
5176 for(i
=0; i
<p
->nIndex
; i
++){
5177 cksum1
= cksum1
^ fts3ChecksumIndex(p
, iLangid
, i
, &rc
);
5180 rc2
= sqlite3_reset(pAllLangid
);
5181 if( rc
==SQLITE_OK
) rc
= rc2
;
5184 /* This block calculates the checksum according to the %_content table */
5185 if( rc
==SQLITE_OK
){
5186 sqlite3_tokenizer_module
const *pModule
= p
->pTokenizer
->pModule
;
5187 sqlite3_stmt
*pStmt
= 0;
5190 zSql
= sqlite3_mprintf("SELECT %s" , p
->zReadExprlist
);
5194 rc
= sqlite3_prepare_v2(p
->db
, zSql
, -1, &pStmt
, 0);
5198 while( rc
==SQLITE_OK
&& SQLITE_ROW
==sqlite3_step(pStmt
) ){
5199 i64 iDocid
= sqlite3_column_int64(pStmt
, 0);
5200 int iLang
= langidFromSelect(p
, pStmt
);
5203 for(iCol
=0; rc
==SQLITE_OK
&& iCol
<p
->nColumn
; iCol
++){
5204 if( p
->abNotindexed
[iCol
]==0 ){
5205 const char *zText
= (const char *)sqlite3_column_text(pStmt
, iCol
+1);
5206 int nText
= sqlite3_column_bytes(pStmt
, iCol
+1);
5207 sqlite3_tokenizer_cursor
*pT
= 0;
5209 rc
= sqlite3Fts3OpenTokenizer(p
->pTokenizer
, iLang
, zText
, nText
,&pT
);
5210 while( rc
==SQLITE_OK
){
5211 char const *zToken
; /* Buffer containing token */
5212 int nToken
= 0; /* Number of bytes in token */
5213 int iDum1
= 0, iDum2
= 0; /* Dummy variables */
5214 int iPos
= 0; /* Position of token in zText */
5216 rc
= pModule
->xNext(pT
, &zToken
, &nToken
, &iDum1
, &iDum2
, &iPos
);
5217 if( rc
==SQLITE_OK
){
5219 cksum2
= cksum2
^ fts3ChecksumEntry(
5220 zToken
, nToken
, iLang
, 0, iDocid
, iCol
, iPos
5222 for(i
=1; i
<p
->nIndex
; i
++){
5223 if( p
->aIndex
[i
].nPrefix
<=nToken
){
5224 cksum2
= cksum2
^ fts3ChecksumEntry(
5225 zToken
, p
->aIndex
[i
].nPrefix
, iLang
, i
, iDocid
, iCol
, iPos
5231 if( pT
) pModule
->xClose(pT
);
5232 if( rc
==SQLITE_DONE
) rc
= SQLITE_OK
;
5237 sqlite3_finalize(pStmt
);
5240 *pbOk
= (cksum1
==cksum2
);
5245 ** Run the integrity-check. If no error occurs and the current contents of
5246 ** the FTS index are correct, return SQLITE_OK. Or, if the contents of the
5247 ** FTS index are incorrect, return SQLITE_CORRUPT_VTAB.
5249 ** Or, if an error (e.g. an OOM or IO error) occurs, return an SQLite
5252 ** The integrity-check works as follows. For each token and indexed token
5253 ** prefix in the document set, a 64-bit checksum is calculated (by code
5254 ** in fts3ChecksumEntry()) based on the following:
5256 ** + The index number (0 for the main index, 1 for the first prefix
5258 ** + The token (or token prefix) text itself,
5259 ** + The language-id of the row it appears in,
5260 ** + The docid of the row it appears in,
5261 ** + The column it appears in, and
5262 ** + The tokens position within that column.
5264 ** The checksums for all entries in the index are XORed together to create
5265 ** a single checksum for the entire index.
5267 ** The integrity-check code calculates the same checksum in two ways:
5269 ** 1. By scanning the contents of the FTS index, and
5270 ** 2. By scanning and tokenizing the content table.
5272 ** If the two checksums are identical, the integrity-check is deemed to have
5275 static int fts3DoIntegrityCheck(
5276 Fts3Table
*p
/* FTS3 table handle */
5280 rc
= fts3IntegrityCheck(p
, &bOk
);
5281 if( rc
==SQLITE_OK
&& bOk
==0 ) rc
= FTS_CORRUPT_VTAB
;
5286 ** Handle a 'special' INSERT of the form:
5288 ** "INSERT INTO tbl(tbl) VALUES(<expr>)"
5290 ** Argument pVal contains the result of <expr>. Currently the only
5291 ** meaningful value to insert is the text 'optimize'.
5293 static int fts3SpecialInsert(Fts3Table
*p
, sqlite3_value
*pVal
){
5294 int rc
; /* Return Code */
5295 const char *zVal
= (const char *)sqlite3_value_text(pVal
);
5296 int nVal
= sqlite3_value_bytes(pVal
);
5299 return SQLITE_NOMEM
;
5300 }else if( nVal
==8 && 0==sqlite3_strnicmp(zVal
, "optimize", 8) ){
5301 rc
= fts3DoOptimize(p
, 0);
5302 }else if( nVal
==7 && 0==sqlite3_strnicmp(zVal
, "rebuild", 7) ){
5303 rc
= fts3DoRebuild(p
);
5304 }else if( nVal
==15 && 0==sqlite3_strnicmp(zVal
, "integrity-check", 15) ){
5305 rc
= fts3DoIntegrityCheck(p
);
5306 }else if( nVal
>6 && 0==sqlite3_strnicmp(zVal
, "merge=", 6) ){
5307 rc
= fts3DoIncrmerge(p
, &zVal
[6]);
5308 }else if( nVal
>10 && 0==sqlite3_strnicmp(zVal
, "automerge=", 10) ){
5309 rc
= fts3DoAutoincrmerge(p
, &zVal
[10]);
5311 }else if( nVal
>9 && 0==sqlite3_strnicmp(zVal
, "nodesize=", 9) ){
5312 p
->nNodeSize
= atoi(&zVal
[9]);
5314 }else if( nVal
>11 && 0==sqlite3_strnicmp(zVal
, "maxpending=", 9) ){
5315 p
->nMaxPendingData
= atoi(&zVal
[11]);
5317 }else if( nVal
>21 && 0==sqlite3_strnicmp(zVal
, "test-no-incr-doclist=", 21) ){
5318 p
->bNoIncrDoclist
= atoi(&zVal
[21]);
5328 #ifndef SQLITE_DISABLE_FTS4_DEFERRED
5330 ** Delete all cached deferred doclists. Deferred doclists are cached
5331 ** (allocated) by the sqlite3Fts3CacheDeferredDoclists() function.
5333 void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor
*pCsr
){
5334 Fts3DeferredToken
*pDef
;
5335 for(pDef
=pCsr
->pDeferred
; pDef
; pDef
=pDef
->pNext
){
5336 fts3PendingListDelete(pDef
->pList
);
5342 ** Free all entries in the pCsr->pDeffered list. Entries are added to
5343 ** this list using sqlite3Fts3DeferToken().
5345 void sqlite3Fts3FreeDeferredTokens(Fts3Cursor
*pCsr
){
5346 Fts3DeferredToken
*pDef
;
5347 Fts3DeferredToken
*pNext
;
5348 for(pDef
=pCsr
->pDeferred
; pDef
; pDef
=pNext
){
5349 pNext
= pDef
->pNext
;
5350 fts3PendingListDelete(pDef
->pList
);
5353 pCsr
->pDeferred
= 0;
5357 ** Generate deferred-doclists for all tokens in the pCsr->pDeferred list
5358 ** based on the row that pCsr currently points to.
5360 ** A deferred-doclist is like any other doclist with position information
5361 ** included, except that it only contains entries for a single row of the
5362 ** table, not for all rows.
5364 int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor
*pCsr
){
5365 int rc
= SQLITE_OK
; /* Return code */
5366 if( pCsr
->pDeferred
){
5367 int i
; /* Used to iterate through table columns */
5368 sqlite3_int64 iDocid
; /* Docid of the row pCsr points to */
5369 Fts3DeferredToken
*pDef
; /* Used to iterate through deferred tokens */
5371 Fts3Table
*p
= (Fts3Table
*)pCsr
->base
.pVtab
;
5372 sqlite3_tokenizer
*pT
= p
->pTokenizer
;
5373 sqlite3_tokenizer_module
const *pModule
= pT
->pModule
;
5375 assert( pCsr
->isRequireSeek
==0 );
5376 iDocid
= sqlite3_column_int64(pCsr
->pStmt
, 0);
5378 for(i
=0; i
<p
->nColumn
&& rc
==SQLITE_OK
; i
++){
5379 if( p
->abNotindexed
[i
]==0 ){
5380 const char *zText
= (const char *)sqlite3_column_text(pCsr
->pStmt
, i
+1);
5381 sqlite3_tokenizer_cursor
*pTC
= 0;
5383 rc
= sqlite3Fts3OpenTokenizer(pT
, pCsr
->iLangid
, zText
, -1, &pTC
);
5384 while( rc
==SQLITE_OK
){
5385 char const *zToken
; /* Buffer containing token */
5386 int nToken
= 0; /* Number of bytes in token */
5387 int iDum1
= 0, iDum2
= 0; /* Dummy variables */
5388 int iPos
= 0; /* Position of token in zText */
5390 rc
= pModule
->xNext(pTC
, &zToken
, &nToken
, &iDum1
, &iDum2
, &iPos
);
5391 for(pDef
=pCsr
->pDeferred
; pDef
&& rc
==SQLITE_OK
; pDef
=pDef
->pNext
){
5392 Fts3PhraseToken
*pPT
= pDef
->pToken
;
5393 if( (pDef
->iCol
>=p
->nColumn
|| pDef
->iCol
==i
)
5394 && (pPT
->bFirst
==0 || iPos
==0)
5395 && (pPT
->n
==nToken
|| (pPT
->isPrefix
&& pPT
->n
<nToken
))
5396 && (0==memcmp(zToken
, pPT
->z
, pPT
->n
))
5398 fts3PendingListAppend(&pDef
->pList
, iDocid
, i
, iPos
, &rc
);
5402 if( pTC
) pModule
->xClose(pTC
);
5403 if( rc
==SQLITE_DONE
) rc
= SQLITE_OK
;
5407 for(pDef
=pCsr
->pDeferred
; pDef
&& rc
==SQLITE_OK
; pDef
=pDef
->pNext
){
5409 rc
= fts3PendingListAppendVarint(&pDef
->pList
, 0);
5417 int sqlite3Fts3DeferredTokenList(
5418 Fts3DeferredToken
*p
,
5424 sqlite3_int64 dummy
;
5433 pRet
= (char *)sqlite3_malloc(p
->pList
->nData
);
5434 if( !pRet
) return SQLITE_NOMEM
;
5436 nSkip
= sqlite3Fts3GetVarint(p
->pList
->aData
, &dummy
);
5437 *pnData
= p
->pList
->nData
- nSkip
;
5440 memcpy(pRet
, &p
->pList
->aData
[nSkip
], *pnData
);
5445 ** Add an entry for token pToken to the pCsr->pDeferred list.
5447 int sqlite3Fts3DeferToken(
5448 Fts3Cursor
*pCsr
, /* Fts3 table cursor */
5449 Fts3PhraseToken
*pToken
, /* Token to defer */
5450 int iCol
/* Column that token must appear in (or -1) */
5452 Fts3DeferredToken
*pDeferred
;
5453 pDeferred
= sqlite3_malloc(sizeof(*pDeferred
));
5455 return SQLITE_NOMEM
;
5457 memset(pDeferred
, 0, sizeof(*pDeferred
));
5458 pDeferred
->pToken
= pToken
;
5459 pDeferred
->pNext
= pCsr
->pDeferred
;
5460 pDeferred
->iCol
= iCol
;
5461 pCsr
->pDeferred
= pDeferred
;
5463 assert( pToken
->pDeferred
==0 );
5464 pToken
->pDeferred
= pDeferred
;
5471 ** SQLite value pRowid contains the rowid of a row that may or may not be
5472 ** present in the FTS3 table. If it is, delete it and adjust the contents
5473 ** of subsiduary data structures accordingly.
5475 static int fts3DeleteByRowid(
5477 sqlite3_value
*pRowid
,
5478 int *pnChng
, /* IN/OUT: Decrement if row is deleted */
5481 int rc
= SQLITE_OK
; /* Return code */
5482 int bFound
= 0; /* True if *pRowid really is in the table */
5484 fts3DeleteTerms(&rc
, p
, pRowid
, aSzDel
, &bFound
);
5485 if( bFound
&& rc
==SQLITE_OK
){
5486 int isEmpty
= 0; /* Deleting *pRowid leaves the table empty */
5487 rc
= fts3IsEmpty(p
, pRowid
, &isEmpty
);
5488 if( rc
==SQLITE_OK
){
5490 /* Deleting this row means the whole table is empty. In this case
5491 ** delete the contents of all three tables and throw away any
5492 ** data in the pendingTerms hash table. */
5493 rc
= fts3DeleteAll(p
, 1);
5495 memset(aSzDel
, 0, sizeof(u32
) * (p
->nColumn
+1) * 2);
5497 *pnChng
= *pnChng
- 1;
5498 if( p
->zContentTbl
==0 ){
5499 fts3SqlExec(&rc
, p
, SQL_DELETE_CONTENT
, &pRowid
);
5501 if( p
->bHasDocsize
){
5502 fts3SqlExec(&rc
, p
, SQL_DELETE_DOCSIZE
, &pRowid
);
5512 ** This function does the work for the xUpdate method of FTS3 virtual
5513 ** tables. The schema of the virtual table being:
5515 ** CREATE TABLE <table name>(
5517 ** <table name> HIDDEN,
5524 int sqlite3Fts3UpdateMethod(
5525 sqlite3_vtab
*pVtab
, /* FTS3 vtab object */
5526 int nArg
, /* Size of argument array */
5527 sqlite3_value
**apVal
, /* Array of arguments */
5528 sqlite_int64
*pRowid
/* OUT: The affected (or effected) rowid */
5530 Fts3Table
*p
= (Fts3Table
*)pVtab
;
5531 int rc
= SQLITE_OK
; /* Return Code */
5532 u32
*aSzIns
= 0; /* Sizes of inserted documents */
5533 u32
*aSzDel
= 0; /* Sizes of deleted documents */
5534 int nChng
= 0; /* Net change in number of documents */
5535 int bInsertDone
= 0;
5537 /* At this point it must be known if the %_stat table exists or not.
5538 ** So bHasStat may not be 2. */
5539 assert( p
->bHasStat
==0 || p
->bHasStat
==1 );
5541 assert( p
->pSegments
==0 );
5543 nArg
==1 /* DELETE operations */
5544 || nArg
==(2 + p
->nColumn
+ 3) /* INSERT or UPDATE operations */
5547 /* Check for a "special" INSERT operation. One of the form:
5549 ** INSERT INTO xyz(xyz) VALUES('command');
5552 && sqlite3_value_type(apVal
[0])==SQLITE_NULL
5553 && sqlite3_value_type(apVal
[p
->nColumn
+2])!=SQLITE_NULL
5555 rc
= fts3SpecialInsert(p
, apVal
[p
->nColumn
+2]);
5559 if( nArg
>1 && sqlite3_value_int(apVal
[2 + p
->nColumn
+ 2])<0 ){
5560 rc
= SQLITE_CONSTRAINT
;
5564 /* Allocate space to hold the change in document sizes */
5565 aSzDel
= sqlite3_malloc( sizeof(aSzDel
[0])*(p
->nColumn
+1)*2 );
5570 aSzIns
= &aSzDel
[p
->nColumn
+1];
5571 memset(aSzDel
, 0, sizeof(aSzDel
[0])*(p
->nColumn
+1)*2);
5573 rc
= fts3Writelock(p
);
5574 if( rc
!=SQLITE_OK
) goto update_out
;
5576 /* If this is an INSERT operation, or an UPDATE that modifies the rowid
5577 ** value, then this operation requires constraint handling.
5579 ** If the on-conflict mode is REPLACE, this means that the existing row
5580 ** should be deleted from the database before inserting the new row. Or,
5581 ** if the on-conflict mode is other than REPLACE, then this method must
5582 ** detect the conflict and return SQLITE_CONSTRAINT before beginning to
5583 ** modify the database file.
5585 if( nArg
>1 && p
->zContentTbl
==0 ){
5586 /* Find the value object that holds the new rowid value. */
5587 sqlite3_value
*pNewRowid
= apVal
[3+p
->nColumn
];
5588 if( sqlite3_value_type(pNewRowid
)==SQLITE_NULL
){
5589 pNewRowid
= apVal
[1];
5592 if( sqlite3_value_type(pNewRowid
)!=SQLITE_NULL
&& (
5593 sqlite3_value_type(apVal
[0])==SQLITE_NULL
5594 || sqlite3_value_int64(apVal
[0])!=sqlite3_value_int64(pNewRowid
)
5596 /* The new rowid is not NULL (in this case the rowid will be
5597 ** automatically assigned and there is no chance of a conflict), and
5598 ** the statement is either an INSERT or an UPDATE that modifies the
5599 ** rowid column. So if the conflict mode is REPLACE, then delete any
5600 ** existing row with rowid=pNewRowid.
5602 ** Or, if the conflict mode is not REPLACE, insert the new record into
5603 ** the %_content table. If we hit the duplicate rowid constraint (or any
5604 ** other error) while doing so, return immediately.
5606 ** This branch may also run if pNewRowid contains a value that cannot
5607 ** be losslessly converted to an integer. In this case, the eventual
5608 ** call to fts3InsertData() (either just below or further on in this
5609 ** function) will return SQLITE_MISMATCH. If fts3DeleteByRowid is
5610 ** invoked, it will delete zero rows (since no row will have
5611 ** docid=$pNewRowid if $pNewRowid is not an integer value).
5613 if( sqlite3_vtab_on_conflict(p
->db
)==SQLITE_REPLACE
){
5614 rc
= fts3DeleteByRowid(p
, pNewRowid
, &nChng
, aSzDel
);
5616 rc
= fts3InsertData(p
, apVal
, pRowid
);
5621 if( rc
!=SQLITE_OK
){
5625 /* If this is a DELETE or UPDATE operation, remove the old record. */
5626 if( sqlite3_value_type(apVal
[0])!=SQLITE_NULL
){
5627 assert( sqlite3_value_type(apVal
[0])==SQLITE_INTEGER
);
5628 rc
= fts3DeleteByRowid(p
, apVal
[0], &nChng
, aSzDel
);
5631 /* If this is an INSERT or UPDATE operation, insert the new record. */
5632 if( nArg
>1 && rc
==SQLITE_OK
){
5633 int iLangid
= sqlite3_value_int(apVal
[2 + p
->nColumn
+ 2]);
5634 if( bInsertDone
==0 ){
5635 rc
= fts3InsertData(p
, apVal
, pRowid
);
5636 if( rc
==SQLITE_CONSTRAINT
&& p
->zContentTbl
==0 ){
5637 rc
= FTS_CORRUPT_VTAB
;
5640 if( rc
==SQLITE_OK
){
5641 rc
= fts3PendingTermsDocid(p
, 0, iLangid
, *pRowid
);
5643 if( rc
==SQLITE_OK
){
5644 assert( p
->iPrevDocid
==*pRowid
);
5645 rc
= fts3InsertTerms(p
, iLangid
, apVal
, aSzIns
);
5647 if( p
->bHasDocsize
){
5648 fts3InsertDocsize(&rc
, p
, aSzIns
);
5654 fts3UpdateDocTotals(&rc
, p
, aSzIns
, aSzDel
, nChng
);
5658 sqlite3_free(aSzDel
);
5659 sqlite3Fts3SegmentsClose(p
);
5664 ** Flush any data in the pending-terms hash table to disk. If successful,
5665 ** merge all segments in the database (including the new segment, if
5666 ** there was any data to flush) into a single segment.
5668 int sqlite3Fts3Optimize(Fts3Table
*p
){
5670 rc
= sqlite3_exec(p
->db
, "SAVEPOINT fts3", 0, 0, 0);
5671 if( rc
==SQLITE_OK
){
5672 rc
= fts3DoOptimize(p
, 1);
5673 if( rc
==SQLITE_OK
|| rc
==SQLITE_DONE
){
5674 int rc2
= sqlite3_exec(p
->db
, "RELEASE fts3", 0, 0, 0);
5675 if( rc2
!=SQLITE_OK
) rc
= rc2
;
5677 sqlite3_exec(p
->db
, "ROLLBACK TO fts3", 0, 0, 0);
5678 sqlite3_exec(p
->db
, "RELEASE fts3", 0, 0, 0);
5681 sqlite3Fts3SegmentsClose(p
);