defer memory hook until after xInit
[sqlcipher.git] / ext / fts3 / fts3.c
blobd0e6d9be2172b1a1ca20dd3895c3467e83530174
1 /*
2 ** 2006 Oct 10
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 ******************************************************************************
13 ** This is an SQLite module implementing full-text search.
17 ** The code in this file is only compiled if:
19 ** * The FTS3 module is being built as an extension
20 ** (in which case SQLITE_CORE is not defined), or
22 ** * The FTS3 module is being built into the core of
23 ** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
26 /* The full-text index is stored in a series of b+tree (-like)
27 ** structures called segments which map terms to doclists. The
28 ** structures are like b+trees in layout, but are constructed from the
29 ** bottom up in optimal fashion and are not updatable. Since trees
30 ** are built from the bottom up, things will be described from the
31 ** bottom up.
34 **** Varints ****
35 ** The basic unit of encoding is a variable-length integer called a
36 ** varint. We encode variable-length integers in little-endian order
37 ** using seven bits * per byte as follows:
39 ** KEY:
40 ** A = 0xxxxxxx 7 bits of data and one flag bit
41 ** B = 1xxxxxxx 7 bits of data and one flag bit
43 ** 7 bits - A
44 ** 14 bits - BA
45 ** 21 bits - BBA
46 ** and so on.
48 ** This is similar in concept to how sqlite encodes "varints" but
49 ** the encoding is not the same. SQLite varints are big-endian
50 ** are are limited to 9 bytes in length whereas FTS3 varints are
51 ** little-endian and can be up to 10 bytes in length (in theory).
53 ** Example encodings:
55 ** 1: 0x01
56 ** 127: 0x7f
57 ** 128: 0x81 0x00
60 **** Document lists ****
61 ** A doclist (document list) holds a docid-sorted list of hits for a
62 ** given term. Doclists hold docids and associated token positions.
63 ** A docid is the unique integer identifier for a single document.
64 ** A position is the index of a word within the document. The first
65 ** word of the document has a position of 0.
67 ** FTS3 used to optionally store character offsets using a compile-time
68 ** option. But that functionality is no longer supported.
70 ** A doclist is stored like this:
72 ** array {
73 ** varint docid; (delta from previous doclist)
74 ** array { (position list for column 0)
75 ** varint position; (2 more than the delta from previous position)
76 ** }
77 ** array {
78 ** varint POS_COLUMN; (marks start of position list for new column)
79 ** varint column; (index of new column)
80 ** array {
81 ** varint position; (2 more than the delta from previous position)
82 ** }
83 ** }
84 ** varint POS_END; (marks end of positions for this document.
85 ** }
87 ** Here, array { X } means zero or more occurrences of X, adjacent in
88 ** memory. A "position" is an index of a token in the token stream
89 ** generated by the tokenizer. Note that POS_END and POS_COLUMN occur
90 ** in the same logical place as the position element, and act as sentinals
91 ** ending a position list array. POS_END is 0. POS_COLUMN is 1.
92 ** The positions numbers are not stored literally but rather as two more
93 ** than the difference from the prior position, or the just the position plus
94 ** 2 for the first position. Example:
96 ** label: A B C D E F G H I J K
97 ** value: 123 5 9 1 1 14 35 0 234 72 0
99 ** The 123 value is the first docid. For column zero in this document
100 ** there are two matches at positions 3 and 10 (5-2 and 9-2+3). The 1
101 ** at D signals the start of a new column; the 1 at E indicates that the
102 ** new column is column number 1. There are two positions at 12 and 45
103 ** (14-2 and 35-2+12). The 0 at H indicate the end-of-document. The
104 ** 234 at I is the delta to next docid (357). It has one position 70
105 ** (72-2) and then terminates with the 0 at K.
107 ** A "position-list" is the list of positions for multiple columns for
108 ** a single docid. A "column-list" is the set of positions for a single
109 ** column. Hence, a position-list consists of one or more column-lists,
110 ** a document record consists of a docid followed by a position-list and
111 ** a doclist consists of one or more document records.
113 ** A bare doclist omits the position information, becoming an
114 ** array of varint-encoded docids.
116 **** Segment leaf nodes ****
117 ** Segment leaf nodes store terms and doclists, ordered by term. Leaf
118 ** nodes are written using LeafWriter, and read using LeafReader (to
119 ** iterate through a single leaf node's data) and LeavesReader (to
120 ** iterate through a segment's entire leaf layer). Leaf nodes have
121 ** the format:
123 ** varint iHeight; (height from leaf level, always 0)
124 ** varint nTerm; (length of first term)
125 ** char pTerm[nTerm]; (content of first term)
126 ** varint nDoclist; (length of term's associated doclist)
127 ** char pDoclist[nDoclist]; (content of doclist)
128 ** array {
129 ** (further terms are delta-encoded)
130 ** varint nPrefix; (length of prefix shared with previous term)
131 ** varint nSuffix; (length of unshared suffix)
132 ** char pTermSuffix[nSuffix];(unshared suffix of next term)
133 ** varint nDoclist; (length of term's associated doclist)
134 ** char pDoclist[nDoclist]; (content of doclist)
135 ** }
137 ** Here, array { X } means zero or more occurrences of X, adjacent in
138 ** memory.
140 ** Leaf nodes are broken into blocks which are stored contiguously in
141 ** the %_segments table in sorted order. This means that when the end
142 ** of a node is reached, the next term is in the node with the next
143 ** greater node id.
145 ** New data is spilled to a new leaf node when the current node
146 ** exceeds LEAF_MAX bytes (default 2048). New data which itself is
147 ** larger than STANDALONE_MIN (default 1024) is placed in a standalone
148 ** node (a leaf node with a single term and doclist). The goal of
149 ** these settings is to pack together groups of small doclists while
150 ** making it efficient to directly access large doclists. The
151 ** assumption is that large doclists represent terms which are more
152 ** likely to be query targets.
154 ** TODO(shess) It may be useful for blocking decisions to be more
155 ** dynamic. For instance, it may make more sense to have a 2.5k leaf
156 ** node rather than splitting into 2k and .5k nodes. My intuition is
157 ** that this might extend through 2x or 4x the pagesize.
160 **** Segment interior nodes ****
161 ** Segment interior nodes store blockids for subtree nodes and terms
162 ** to describe what data is stored by the each subtree. Interior
163 ** nodes are written using InteriorWriter, and read using
164 ** InteriorReader. InteriorWriters are created as needed when
165 ** SegmentWriter creates new leaf nodes, or when an interior node
166 ** itself grows too big and must be split. The format of interior
167 ** nodes:
169 ** varint iHeight; (height from leaf level, always >0)
170 ** varint iBlockid; (block id of node's leftmost subtree)
171 ** optional {
172 ** varint nTerm; (length of first term)
173 ** char pTerm[nTerm]; (content of first term)
174 ** array {
175 ** (further terms are delta-encoded)
176 ** varint nPrefix; (length of shared prefix with previous term)
177 ** varint nSuffix; (length of unshared suffix)
178 ** char pTermSuffix[nSuffix]; (unshared suffix of next term)
179 ** }
180 ** }
182 ** Here, optional { X } means an optional element, while array { X }
183 ** means zero or more occurrences of X, adjacent in memory.
185 ** An interior node encodes n terms separating n+1 subtrees. The
186 ** subtree blocks are contiguous, so only the first subtree's blockid
187 ** is encoded. The subtree at iBlockid will contain all terms less
188 ** than the first term encoded (or all terms if no term is encoded).
189 ** Otherwise, for terms greater than or equal to pTerm[i] but less
190 ** than pTerm[i+1], the subtree for that term will be rooted at
191 ** iBlockid+i. Interior nodes only store enough term data to
192 ** distinguish adjacent children (if the rightmost term of the left
193 ** child is "something", and the leftmost term of the right child is
194 ** "wicked", only "w" is stored).
196 ** New data is spilled to a new interior node at the same height when
197 ** the current node exceeds INTERIOR_MAX bytes (default 2048).
198 ** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing
199 ** interior nodes and making the tree too skinny. The interior nodes
200 ** at a given height are naturally tracked by interior nodes at
201 ** height+1, and so on.
204 **** Segment directory ****
205 ** The segment directory in table %_segdir stores meta-information for
206 ** merging and deleting segments, and also the root node of the
207 ** segment's tree.
209 ** The root node is the top node of the segment's tree after encoding
210 ** the entire segment, restricted to ROOT_MAX bytes (default 1024).
211 ** This could be either a leaf node or an interior node. If the top
212 ** node requires more than ROOT_MAX bytes, it is flushed to %_segments
213 ** and a new root interior node is generated (which should always fit
214 ** within ROOT_MAX because it only needs space for 2 varints, the
215 ** height and the blockid of the previous root).
217 ** The meta-information in the segment directory is:
218 ** level - segment level (see below)
219 ** idx - index within level
220 ** - (level,idx uniquely identify a segment)
221 ** start_block - first leaf node
222 ** leaves_end_block - last leaf node
223 ** end_block - last block (including interior nodes)
224 ** root - contents of root node
226 ** If the root node is a leaf node, then start_block,
227 ** leaves_end_block, and end_block are all 0.
230 **** Segment merging ****
231 ** To amortize update costs, segments are grouped into levels and
232 ** merged in batches. Each increase in level represents exponentially
233 ** more documents.
235 ** New documents (actually, document updates) are tokenized and
236 ** written individually (using LeafWriter) to a level 0 segment, with
237 ** incrementing idx. When idx reaches MERGE_COUNT (default 16), all
238 ** level 0 segments are merged into a single level 1 segment. Level 1
239 ** is populated like level 0, and eventually MERGE_COUNT level 1
240 ** segments are merged to a single level 2 segment (representing
241 ** MERGE_COUNT^2 updates), and so on.
243 ** A segment merge traverses all segments at a given level in
244 ** parallel, performing a straightforward sorted merge. Since segment
245 ** leaf nodes are written in to the %_segments table in order, this
246 ** merge traverses the underlying sqlite disk structures efficiently.
247 ** After the merge, all segment blocks from the merged level are
248 ** deleted.
250 ** MERGE_COUNT controls how often we merge segments. 16 seems to be
251 ** somewhat of a sweet spot for insertion performance. 32 and 64 show
252 ** very similar performance numbers to 16 on insertion, though they're
253 ** a tiny bit slower (perhaps due to more overhead in merge-time
254 ** sorting). 8 is about 20% slower than 16, 4 about 50% slower than
255 ** 16, 2 about 66% slower than 16.
257 ** At query time, high MERGE_COUNT increases the number of segments
258 ** which need to be scanned and merged. For instance, with 100k docs
259 ** inserted:
261 ** MERGE_COUNT segments
262 ** 16 25
263 ** 8 12
264 ** 4 10
265 ** 2 6
267 ** This appears to have only a moderate impact on queries for very
268 ** frequent terms (which are somewhat dominated by segment merge
269 ** costs), and infrequent and non-existent terms still seem to be fast
270 ** even with many segments.
272 ** TODO(shess) That said, it would be nice to have a better query-side
273 ** argument for MERGE_COUNT of 16. Also, it is possible/likely that
274 ** optimizations to things like doclist merging will swing the sweet
275 ** spot around.
279 **** Handling of deletions and updates ****
280 ** Since we're using a segmented structure, with no docid-oriented
281 ** index into the term index, we clearly cannot simply update the term
282 ** index when a document is deleted or updated. For deletions, we
283 ** write an empty doclist (varint(docid) varint(POS_END)), for updates
284 ** we simply write the new doclist. Segment merges overwrite older
285 ** data for a particular docid with newer data, so deletes or updates
286 ** will eventually overtake the earlier data and knock it out. The
287 ** query logic likewise merges doclists so that newer data knocks out
288 ** older data.
291 #include "fts3Int.h"
292 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
294 #if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE)
295 # define SQLITE_CORE 1
296 #endif
298 #include <assert.h>
299 #include <stdlib.h>
300 #include <stddef.h>
301 #include <stdio.h>
302 #include <string.h>
303 #include <stdarg.h>
305 #include "fts3.h"
306 #ifndef SQLITE_CORE
307 # include "sqlite3ext.h"
308 SQLITE_EXTENSION_INIT1
309 #endif
311 static int fts3EvalNext(Fts3Cursor *pCsr);
312 static int fts3EvalStart(Fts3Cursor *pCsr);
313 static int fts3TermSegReaderCursor(
314 Fts3Cursor *, const char *, int, int, Fts3MultiSegReader **);
316 #ifndef SQLITE_AMALGAMATION
317 # if defined(SQLITE_DEBUG)
318 int sqlite3Fts3Always(int b) { assert( b ); return b; }
319 int sqlite3Fts3Never(int b) { assert( !b ); return b; }
320 # endif
321 #endif
324 ** Write a 64-bit variable-length integer to memory starting at p[0].
325 ** The length of data written will be between 1 and FTS3_VARINT_MAX bytes.
326 ** The number of bytes written is returned.
328 int sqlite3Fts3PutVarint(char *p, sqlite_int64 v){
329 unsigned char *q = (unsigned char *) p;
330 sqlite_uint64 vu = v;
332 *q++ = (unsigned char) ((vu & 0x7f) | 0x80);
333 vu >>= 7;
334 }while( vu!=0 );
335 q[-1] &= 0x7f; /* turn off high bit in final byte */
336 assert( q - (unsigned char *)p <= FTS3_VARINT_MAX );
337 return (int) (q - (unsigned char *)p);
340 #define GETVARINT_STEP(v, ptr, shift, mask1, mask2, var, ret) \
341 v = (v & mask1) | ( (*ptr++) << shift ); \
342 if( (v & mask2)==0 ){ var = v; return ret; }
343 #define GETVARINT_INIT(v, ptr, shift, mask1, mask2, var, ret) \
344 v = (*ptr++); \
345 if( (v & mask2)==0 ){ var = v; return ret; }
348 ** Read a 64-bit variable-length integer from memory starting at p[0].
349 ** Return the number of bytes read, or 0 on error.
350 ** The value is stored in *v.
352 int sqlite3Fts3GetVarint(const char *pBuf, sqlite_int64 *v){
353 const unsigned char *p = (const unsigned char*)pBuf;
354 const unsigned char *pStart = p;
355 u32 a;
356 u64 b;
357 int shift;
359 GETVARINT_INIT(a, p, 0, 0x00, 0x80, *v, 1);
360 GETVARINT_STEP(a, p, 7, 0x7F, 0x4000, *v, 2);
361 GETVARINT_STEP(a, p, 14, 0x3FFF, 0x200000, *v, 3);
362 GETVARINT_STEP(a, p, 21, 0x1FFFFF, 0x10000000, *v, 4);
363 b = (a & 0x0FFFFFFF );
365 for(shift=28; shift<=63; shift+=7){
366 u64 c = *p++;
367 b += (c&0x7F) << shift;
368 if( (c & 0x80)==0 ) break;
370 *v = b;
371 return (int)(p - pStart);
375 ** Similar to sqlite3Fts3GetVarint(), except that the output is truncated to
376 ** a non-negative 32-bit integer before it is returned.
378 int sqlite3Fts3GetVarint32(const char *p, int *pi){
379 u32 a;
381 #ifndef fts3GetVarint32
382 GETVARINT_INIT(a, p, 0, 0x00, 0x80, *pi, 1);
383 #else
384 a = (*p++);
385 assert( a & 0x80 );
386 #endif
388 GETVARINT_STEP(a, p, 7, 0x7F, 0x4000, *pi, 2);
389 GETVARINT_STEP(a, p, 14, 0x3FFF, 0x200000, *pi, 3);
390 GETVARINT_STEP(a, p, 21, 0x1FFFFF, 0x10000000, *pi, 4);
391 a = (a & 0x0FFFFFFF );
392 *pi = (int)(a | ((u32)(*p & 0x07) << 28));
393 assert( 0==(a & 0x80000000) );
394 assert( *pi>=0 );
395 return 5;
399 ** Return the number of bytes required to encode v as a varint
401 int sqlite3Fts3VarintLen(sqlite3_uint64 v){
402 int i = 0;
404 i++;
405 v >>= 7;
406 }while( v!=0 );
407 return i;
411 ** Convert an SQL-style quoted string into a normal string by removing
412 ** the quote characters. The conversion is done in-place. If the
413 ** input does not begin with a quote character, then this routine
414 ** is a no-op.
416 ** Examples:
418 ** "abc" becomes abc
419 ** 'xyz' becomes xyz
420 ** [pqr] becomes pqr
421 ** `mno` becomes mno
424 void sqlite3Fts3Dequote(char *z){
425 char quote; /* Quote character (if any ) */
427 quote = z[0];
428 if( quote=='[' || quote=='\'' || quote=='"' || quote=='`' ){
429 int iIn = 1; /* Index of next byte to read from input */
430 int iOut = 0; /* Index of next byte to write to output */
432 /* If the first byte was a '[', then the close-quote character is a ']' */
433 if( quote=='[' ) quote = ']';
435 while( z[iIn] ){
436 if( z[iIn]==quote ){
437 if( z[iIn+1]!=quote ) break;
438 z[iOut++] = quote;
439 iIn += 2;
440 }else{
441 z[iOut++] = z[iIn++];
444 z[iOut] = '\0';
449 ** Read a single varint from the doclist at *pp and advance *pp to point
450 ** to the first byte past the end of the varint. Add the value of the varint
451 ** to *pVal.
453 static void fts3GetDeltaVarint(char **pp, sqlite3_int64 *pVal){
454 sqlite3_int64 iVal;
455 *pp += sqlite3Fts3GetVarint(*pp, &iVal);
456 *pVal += iVal;
460 ** When this function is called, *pp points to the first byte following a
461 ** varint that is part of a doclist (or position-list, or any other list
462 ** of varints). This function moves *pp to point to the start of that varint,
463 ** and sets *pVal by the varint value.
465 ** Argument pStart points to the first byte of the doclist that the
466 ** varint is part of.
468 static void fts3GetReverseVarint(
469 char **pp,
470 char *pStart,
471 sqlite3_int64 *pVal
473 sqlite3_int64 iVal;
474 char *p;
476 /* Pointer p now points at the first byte past the varint we are
477 ** interested in. So, unless the doclist is corrupt, the 0x80 bit is
478 ** clear on character p[-1]. */
479 for(p = (*pp)-2; p>=pStart && *p&0x80; p--);
480 p++;
481 *pp = p;
483 sqlite3Fts3GetVarint(p, &iVal);
484 *pVal = iVal;
488 ** The xDisconnect() virtual table method.
490 static int fts3DisconnectMethod(sqlite3_vtab *pVtab){
491 Fts3Table *p = (Fts3Table *)pVtab;
492 int i;
494 assert( p->nPendingData==0 );
495 assert( p->pSegments==0 );
497 /* Free any prepared statements held */
498 sqlite3_finalize(p->pSeekStmt);
499 for(i=0; i<SizeofArray(p->aStmt); i++){
500 sqlite3_finalize(p->aStmt[i]);
502 sqlite3_free(p->zSegmentsTbl);
503 sqlite3_free(p->zReadExprlist);
504 sqlite3_free(p->zWriteExprlist);
505 sqlite3_free(p->zContentTbl);
506 sqlite3_free(p->zLanguageid);
508 /* Invoke the tokenizer destructor to free the tokenizer. */
509 p->pTokenizer->pModule->xDestroy(p->pTokenizer);
511 sqlite3_free(p);
512 return SQLITE_OK;
516 ** Write an error message into *pzErr
518 void sqlite3Fts3ErrMsg(char **pzErr, const char *zFormat, ...){
519 va_list ap;
520 sqlite3_free(*pzErr);
521 va_start(ap, zFormat);
522 *pzErr = sqlite3_vmprintf(zFormat, ap);
523 va_end(ap);
527 ** Construct one or more SQL statements from the format string given
528 ** and then evaluate those statements. The success code is written
529 ** into *pRc.
531 ** If *pRc is initially non-zero then this routine is a no-op.
533 static void fts3DbExec(
534 int *pRc, /* Success code */
535 sqlite3 *db, /* Database in which to run SQL */
536 const char *zFormat, /* Format string for SQL */
537 ... /* Arguments to the format string */
539 va_list ap;
540 char *zSql;
541 if( *pRc ) return;
542 va_start(ap, zFormat);
543 zSql = sqlite3_vmprintf(zFormat, ap);
544 va_end(ap);
545 if( zSql==0 ){
546 *pRc = SQLITE_NOMEM;
547 }else{
548 *pRc = sqlite3_exec(db, zSql, 0, 0, 0);
549 sqlite3_free(zSql);
554 ** The xDestroy() virtual table method.
556 static int fts3DestroyMethod(sqlite3_vtab *pVtab){
557 Fts3Table *p = (Fts3Table *)pVtab;
558 int rc = SQLITE_OK; /* Return code */
559 const char *zDb = p->zDb; /* Name of database (e.g. "main", "temp") */
560 sqlite3 *db = p->db; /* Database handle */
562 /* Drop the shadow tables */
563 if( p->zContentTbl==0 ){
564 fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_content'", zDb, p->zName);
566 fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_segments'", zDb,p->zName);
567 fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_segdir'", zDb, p->zName);
568 fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_docsize'", zDb, p->zName);
569 fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_stat'", zDb, p->zName);
571 /* If everything has worked, invoke fts3DisconnectMethod() to free the
572 ** memory associated with the Fts3Table structure and return SQLITE_OK.
573 ** Otherwise, return an SQLite error code.
575 return (rc==SQLITE_OK ? fts3DisconnectMethod(pVtab) : rc);
580 ** Invoke sqlite3_declare_vtab() to declare the schema for the FTS3 table
581 ** passed as the first argument. This is done as part of the xConnect()
582 ** and xCreate() methods.
584 ** If *pRc is non-zero when this function is called, it is a no-op.
585 ** Otherwise, if an error occurs, an SQLite error code is stored in *pRc
586 ** before returning.
588 static void fts3DeclareVtab(int *pRc, Fts3Table *p){
589 if( *pRc==SQLITE_OK ){
590 int i; /* Iterator variable */
591 int rc; /* Return code */
592 char *zSql; /* SQL statement passed to declare_vtab() */
593 char *zCols; /* List of user defined columns */
594 const char *zLanguageid;
596 zLanguageid = (p->zLanguageid ? p->zLanguageid : "__langid");
597 sqlite3_vtab_config(p->db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1);
599 /* Create a list of user columns for the virtual table */
600 zCols = sqlite3_mprintf("%Q, ", p->azColumn[0]);
601 for(i=1; zCols && i<p->nColumn; i++){
602 zCols = sqlite3_mprintf("%z%Q, ", zCols, p->azColumn[i]);
605 /* Create the whole "CREATE TABLE" statement to pass to SQLite */
606 zSql = sqlite3_mprintf(
607 "CREATE TABLE x(%s %Q HIDDEN, docid HIDDEN, %Q HIDDEN)",
608 zCols, p->zName, zLanguageid
610 if( !zCols || !zSql ){
611 rc = SQLITE_NOMEM;
612 }else{
613 rc = sqlite3_declare_vtab(p->db, zSql);
616 sqlite3_free(zSql);
617 sqlite3_free(zCols);
618 *pRc = rc;
623 ** Create the %_stat table if it does not already exist.
625 void sqlite3Fts3CreateStatTable(int *pRc, Fts3Table *p){
626 fts3DbExec(pRc, p->db,
627 "CREATE TABLE IF NOT EXISTS %Q.'%q_stat'"
628 "(id INTEGER PRIMARY KEY, value BLOB);",
629 p->zDb, p->zName
631 if( (*pRc)==SQLITE_OK ) p->bHasStat = 1;
635 ** Create the backing store tables (%_content, %_segments and %_segdir)
636 ** required by the FTS3 table passed as the only argument. This is done
637 ** as part of the vtab xCreate() method.
639 ** If the p->bHasDocsize boolean is true (indicating that this is an
640 ** FTS4 table, not an FTS3 table) then also create the %_docsize and
641 ** %_stat tables required by FTS4.
643 static int fts3CreateTables(Fts3Table *p){
644 int rc = SQLITE_OK; /* Return code */
645 int i; /* Iterator variable */
646 sqlite3 *db = p->db; /* The database connection */
648 if( p->zContentTbl==0 ){
649 const char *zLanguageid = p->zLanguageid;
650 char *zContentCols; /* Columns of %_content table */
652 /* Create a list of user columns for the content table */
653 zContentCols = sqlite3_mprintf("docid INTEGER PRIMARY KEY");
654 for(i=0; zContentCols && i<p->nColumn; i++){
655 char *z = p->azColumn[i];
656 zContentCols = sqlite3_mprintf("%z, 'c%d%q'", zContentCols, i, z);
658 if( zLanguageid && zContentCols ){
659 zContentCols = sqlite3_mprintf("%z, langid", zContentCols, zLanguageid);
661 if( zContentCols==0 ) rc = SQLITE_NOMEM;
663 /* Create the content table */
664 fts3DbExec(&rc, db,
665 "CREATE TABLE %Q.'%q_content'(%s)",
666 p->zDb, p->zName, zContentCols
668 sqlite3_free(zContentCols);
671 /* Create other tables */
672 fts3DbExec(&rc, db,
673 "CREATE TABLE %Q.'%q_segments'(blockid INTEGER PRIMARY KEY, block BLOB);",
674 p->zDb, p->zName
676 fts3DbExec(&rc, db,
677 "CREATE TABLE %Q.'%q_segdir'("
678 "level INTEGER,"
679 "idx INTEGER,"
680 "start_block INTEGER,"
681 "leaves_end_block INTEGER,"
682 "end_block INTEGER,"
683 "root BLOB,"
684 "PRIMARY KEY(level, idx)"
685 ");",
686 p->zDb, p->zName
688 if( p->bHasDocsize ){
689 fts3DbExec(&rc, db,
690 "CREATE TABLE %Q.'%q_docsize'(docid INTEGER PRIMARY KEY, size BLOB);",
691 p->zDb, p->zName
694 assert( p->bHasStat==p->bFts4 );
695 if( p->bHasStat ){
696 sqlite3Fts3CreateStatTable(&rc, p);
698 return rc;
702 ** Store the current database page-size in bytes in p->nPgsz.
704 ** If *pRc is non-zero when this function is called, it is a no-op.
705 ** Otherwise, if an error occurs, an SQLite error code is stored in *pRc
706 ** before returning.
708 static void fts3DatabasePageSize(int *pRc, Fts3Table *p){
709 if( *pRc==SQLITE_OK ){
710 int rc; /* Return code */
711 char *zSql; /* SQL text "PRAGMA %Q.page_size" */
712 sqlite3_stmt *pStmt; /* Compiled "PRAGMA %Q.page_size" statement */
714 zSql = sqlite3_mprintf("PRAGMA %Q.page_size", p->zDb);
715 if( !zSql ){
716 rc = SQLITE_NOMEM;
717 }else{
718 rc = sqlite3_prepare(p->db, zSql, -1, &pStmt, 0);
719 if( rc==SQLITE_OK ){
720 sqlite3_step(pStmt);
721 p->nPgsz = sqlite3_column_int(pStmt, 0);
722 rc = sqlite3_finalize(pStmt);
723 }else if( rc==SQLITE_AUTH ){
724 p->nPgsz = 1024;
725 rc = SQLITE_OK;
728 assert( p->nPgsz>0 || rc!=SQLITE_OK );
729 sqlite3_free(zSql);
730 *pRc = rc;
735 ** "Special" FTS4 arguments are column specifications of the following form:
737 ** <key> = <value>
739 ** There may not be whitespace surrounding the "=" character. The <value>
740 ** term may be quoted, but the <key> may not.
742 static int fts3IsSpecialColumn(
743 const char *z,
744 int *pnKey,
745 char **pzValue
747 char *zValue;
748 const char *zCsr = z;
750 while( *zCsr!='=' ){
751 if( *zCsr=='\0' ) return 0;
752 zCsr++;
755 *pnKey = (int)(zCsr-z);
756 zValue = sqlite3_mprintf("%s", &zCsr[1]);
757 if( zValue ){
758 sqlite3Fts3Dequote(zValue);
760 *pzValue = zValue;
761 return 1;
765 ** Append the output of a printf() style formatting to an existing string.
767 static void fts3Appendf(
768 int *pRc, /* IN/OUT: Error code */
769 char **pz, /* IN/OUT: Pointer to string buffer */
770 const char *zFormat, /* Printf format string to append */
771 ... /* Arguments for printf format string */
773 if( *pRc==SQLITE_OK ){
774 va_list ap;
775 char *z;
776 va_start(ap, zFormat);
777 z = sqlite3_vmprintf(zFormat, ap);
778 va_end(ap);
779 if( z && *pz ){
780 char *z2 = sqlite3_mprintf("%s%s", *pz, z);
781 sqlite3_free(z);
782 z = z2;
784 if( z==0 ) *pRc = SQLITE_NOMEM;
785 sqlite3_free(*pz);
786 *pz = z;
791 ** Return a copy of input string zInput enclosed in double-quotes (") and
792 ** with all double quote characters escaped. For example:
794 ** fts3QuoteId("un \"zip\"") -> "un \"\"zip\"\""
796 ** The pointer returned points to memory obtained from sqlite3_malloc(). It
797 ** is the callers responsibility to call sqlite3_free() to release this
798 ** memory.
800 static char *fts3QuoteId(char const *zInput){
801 int nRet;
802 char *zRet;
803 nRet = 2 + (int)strlen(zInput)*2 + 1;
804 zRet = sqlite3_malloc(nRet);
805 if( zRet ){
806 int i;
807 char *z = zRet;
808 *(z++) = '"';
809 for(i=0; zInput[i]; i++){
810 if( zInput[i]=='"' ) *(z++) = '"';
811 *(z++) = zInput[i];
813 *(z++) = '"';
814 *(z++) = '\0';
816 return zRet;
820 ** Return a list of comma separated SQL expressions and a FROM clause that
821 ** could be used in a SELECT statement such as the following:
823 ** SELECT <list of expressions> FROM %_content AS x ...
825 ** to return the docid, followed by each column of text data in order
826 ** from left to write. If parameter zFunc is not NULL, then instead of
827 ** being returned directly each column of text data is passed to an SQL
828 ** function named zFunc first. For example, if zFunc is "unzip" and the
829 ** table has the three user-defined columns "a", "b", and "c", the following
830 ** string is returned:
832 ** "docid, unzip(x.'a'), unzip(x.'b'), unzip(x.'c') FROM %_content AS x"
834 ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It
835 ** is the responsibility of the caller to eventually free it.
837 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and
838 ** a NULL pointer is returned). Otherwise, if an OOM error is encountered
839 ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If
840 ** no error occurs, *pRc is left unmodified.
842 static char *fts3ReadExprList(Fts3Table *p, const char *zFunc, int *pRc){
843 char *zRet = 0;
844 char *zFree = 0;
845 char *zFunction;
846 int i;
848 if( p->zContentTbl==0 ){
849 if( !zFunc ){
850 zFunction = "";
851 }else{
852 zFree = zFunction = fts3QuoteId(zFunc);
854 fts3Appendf(pRc, &zRet, "docid");
855 for(i=0; i<p->nColumn; i++){
856 fts3Appendf(pRc, &zRet, ",%s(x.'c%d%q')", zFunction, i, p->azColumn[i]);
858 if( p->zLanguageid ){
859 fts3Appendf(pRc, &zRet, ", x.%Q", "langid");
861 sqlite3_free(zFree);
862 }else{
863 fts3Appendf(pRc, &zRet, "rowid");
864 for(i=0; i<p->nColumn; i++){
865 fts3Appendf(pRc, &zRet, ", x.'%q'", p->azColumn[i]);
867 if( p->zLanguageid ){
868 fts3Appendf(pRc, &zRet, ", x.%Q", p->zLanguageid);
871 fts3Appendf(pRc, &zRet, " FROM '%q'.'%q%s' AS x",
872 p->zDb,
873 (p->zContentTbl ? p->zContentTbl : p->zName),
874 (p->zContentTbl ? "" : "_content")
876 return zRet;
880 ** Return a list of N comma separated question marks, where N is the number
881 ** of columns in the %_content table (one for the docid plus one for each
882 ** user-defined text column).
884 ** If argument zFunc is not NULL, then all but the first question mark
885 ** is preceded by zFunc and an open bracket, and followed by a closed
886 ** bracket. For example, if zFunc is "zip" and the FTS3 table has three
887 ** user-defined text columns, the following string is returned:
889 ** "?, zip(?), zip(?), zip(?)"
891 ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It
892 ** is the responsibility of the caller to eventually free it.
894 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and
895 ** a NULL pointer is returned). Otherwise, if an OOM error is encountered
896 ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If
897 ** no error occurs, *pRc is left unmodified.
899 static char *fts3WriteExprList(Fts3Table *p, const char *zFunc, int *pRc){
900 char *zRet = 0;
901 char *zFree = 0;
902 char *zFunction;
903 int i;
905 if( !zFunc ){
906 zFunction = "";
907 }else{
908 zFree = zFunction = fts3QuoteId(zFunc);
910 fts3Appendf(pRc, &zRet, "?");
911 for(i=0; i<p->nColumn; i++){
912 fts3Appendf(pRc, &zRet, ",%s(?)", zFunction);
914 if( p->zLanguageid ){
915 fts3Appendf(pRc, &zRet, ", ?");
917 sqlite3_free(zFree);
918 return zRet;
922 ** This function interprets the string at (*pp) as a non-negative integer
923 ** value. It reads the integer and sets *pnOut to the value read, then
924 ** sets *pp to point to the byte immediately following the last byte of
925 ** the integer value.
927 ** Only decimal digits ('0'..'9') may be part of an integer value.
929 ** If *pp does not being with a decimal digit SQLITE_ERROR is returned and
930 ** the output value undefined. Otherwise SQLITE_OK is returned.
932 ** This function is used when parsing the "prefix=" FTS4 parameter.
934 static int fts3GobbleInt(const char **pp, int *pnOut){
935 const int MAX_NPREFIX = 10000000;
936 const char *p; /* Iterator pointer */
937 int nInt = 0; /* Output value */
939 for(p=*pp; p[0]>='0' && p[0]<='9'; p++){
940 nInt = nInt * 10 + (p[0] - '0');
941 if( nInt>MAX_NPREFIX ){
942 nInt = 0;
943 break;
946 if( p==*pp ) return SQLITE_ERROR;
947 *pnOut = nInt;
948 *pp = p;
949 return SQLITE_OK;
953 ** This function is called to allocate an array of Fts3Index structures
954 ** representing the indexes maintained by the current FTS table. FTS tables
955 ** always maintain the main "terms" index, but may also maintain one or
956 ** more "prefix" indexes, depending on the value of the "prefix=" parameter
957 ** (if any) specified as part of the CREATE VIRTUAL TABLE statement.
959 ** Argument zParam is passed the value of the "prefix=" option if one was
960 ** specified, or NULL otherwise.
962 ** If no error occurs, SQLITE_OK is returned and *apIndex set to point to
963 ** the allocated array. *pnIndex is set to the number of elements in the
964 ** array. If an error does occur, an SQLite error code is returned.
966 ** Regardless of whether or not an error is returned, it is the responsibility
967 ** of the caller to call sqlite3_free() on the output array to free it.
969 static int fts3PrefixParameter(
970 const char *zParam, /* ABC in prefix=ABC parameter to parse */
971 int *pnIndex, /* OUT: size of *apIndex[] array */
972 struct Fts3Index **apIndex /* OUT: Array of indexes for this table */
974 struct Fts3Index *aIndex; /* Allocated array */
975 int nIndex = 1; /* Number of entries in array */
977 if( zParam && zParam[0] ){
978 const char *p;
979 nIndex++;
980 for(p=zParam; *p; p++){
981 if( *p==',' ) nIndex++;
985 aIndex = sqlite3_malloc(sizeof(struct Fts3Index) * nIndex);
986 *apIndex = aIndex;
987 if( !aIndex ){
988 return SQLITE_NOMEM;
991 memset(aIndex, 0, sizeof(struct Fts3Index) * nIndex);
992 if( zParam ){
993 const char *p = zParam;
994 int i;
995 for(i=1; i<nIndex; i++){
996 int nPrefix = 0;
997 if( fts3GobbleInt(&p, &nPrefix) ) return SQLITE_ERROR;
998 assert( nPrefix>=0 );
999 if( nPrefix==0 ){
1000 nIndex--;
1001 i--;
1002 }else{
1003 aIndex[i].nPrefix = nPrefix;
1005 p++;
1009 *pnIndex = nIndex;
1010 return SQLITE_OK;
1014 ** This function is called when initializing an FTS4 table that uses the
1015 ** content=xxx option. It determines the number of and names of the columns
1016 ** of the new FTS4 table.
1018 ** The third argument passed to this function is the value passed to the
1019 ** config=xxx option (i.e. "xxx"). This function queries the database for
1020 ** a table of that name. If found, the output variables are populated
1021 ** as follows:
1023 ** *pnCol: Set to the number of columns table xxx has,
1025 ** *pnStr: Set to the total amount of space required to store a copy
1026 ** of each columns name, including the nul-terminator.
1028 ** *pazCol: Set to point to an array of *pnCol strings. Each string is
1029 ** the name of the corresponding column in table xxx. The array
1030 ** and its contents are allocated using a single allocation. It
1031 ** is the responsibility of the caller to free this allocation
1032 ** by eventually passing the *pazCol value to sqlite3_free().
1034 ** If the table cannot be found, an error code is returned and the output
1035 ** variables are undefined. Or, if an OOM is encountered, SQLITE_NOMEM is
1036 ** returned (and the output variables are undefined).
1038 static int fts3ContentColumns(
1039 sqlite3 *db, /* Database handle */
1040 const char *zDb, /* Name of db (i.e. "main", "temp" etc.) */
1041 const char *zTbl, /* Name of content table */
1042 const char ***pazCol, /* OUT: Malloc'd array of column names */
1043 int *pnCol, /* OUT: Size of array *pazCol */
1044 int *pnStr, /* OUT: Bytes of string content */
1045 char **pzErr /* OUT: error message */
1047 int rc = SQLITE_OK; /* Return code */
1048 char *zSql; /* "SELECT *" statement on zTbl */
1049 sqlite3_stmt *pStmt = 0; /* Compiled version of zSql */
1051 zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", zDb, zTbl);
1052 if( !zSql ){
1053 rc = SQLITE_NOMEM;
1054 }else{
1055 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
1056 if( rc!=SQLITE_OK ){
1057 sqlite3Fts3ErrMsg(pzErr, "%s", sqlite3_errmsg(db));
1060 sqlite3_free(zSql);
1062 if( rc==SQLITE_OK ){
1063 const char **azCol; /* Output array */
1064 int nStr = 0; /* Size of all column names (incl. 0x00) */
1065 int nCol; /* Number of table columns */
1066 int i; /* Used to iterate through columns */
1068 /* Loop through the returned columns. Set nStr to the number of bytes of
1069 ** space required to store a copy of each column name, including the
1070 ** nul-terminator byte. */
1071 nCol = sqlite3_column_count(pStmt);
1072 for(i=0; i<nCol; i++){
1073 const char *zCol = sqlite3_column_name(pStmt, i);
1074 nStr += (int)strlen(zCol) + 1;
1077 /* Allocate and populate the array to return. */
1078 azCol = (const char **)sqlite3_malloc(sizeof(char *) * nCol + nStr);
1079 if( azCol==0 ){
1080 rc = SQLITE_NOMEM;
1081 }else{
1082 char *p = (char *)&azCol[nCol];
1083 for(i=0; i<nCol; i++){
1084 const char *zCol = sqlite3_column_name(pStmt, i);
1085 int n = (int)strlen(zCol)+1;
1086 memcpy(p, zCol, n);
1087 azCol[i] = p;
1088 p += n;
1091 sqlite3_finalize(pStmt);
1093 /* Set the output variables. */
1094 *pnCol = nCol;
1095 *pnStr = nStr;
1096 *pazCol = azCol;
1099 return rc;
1103 ** This function is the implementation of both the xConnect and xCreate
1104 ** methods of the FTS3 virtual table.
1106 ** The argv[] array contains the following:
1108 ** argv[0] -> module name ("fts3" or "fts4")
1109 ** argv[1] -> database name
1110 ** argv[2] -> table name
1111 ** argv[...] -> "column name" and other module argument fields.
1113 static int fts3InitVtab(
1114 int isCreate, /* True for xCreate, false for xConnect */
1115 sqlite3 *db, /* The SQLite database connection */
1116 void *pAux, /* Hash table containing tokenizers */
1117 int argc, /* Number of elements in argv array */
1118 const char * const *argv, /* xCreate/xConnect argument array */
1119 sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */
1120 char **pzErr /* Write any error message here */
1122 Fts3Hash *pHash = (Fts3Hash *)pAux;
1123 Fts3Table *p = 0; /* Pointer to allocated vtab */
1124 int rc = SQLITE_OK; /* Return code */
1125 int i; /* Iterator variable */
1126 int nByte; /* Size of allocation used for *p */
1127 int iCol; /* Column index */
1128 int nString = 0; /* Bytes required to hold all column names */
1129 int nCol = 0; /* Number of columns in the FTS table */
1130 char *zCsr; /* Space for holding column names */
1131 int nDb; /* Bytes required to hold database name */
1132 int nName; /* Bytes required to hold table name */
1133 int isFts4 = (argv[0][3]=='4'); /* True for FTS4, false for FTS3 */
1134 const char **aCol; /* Array of column names */
1135 sqlite3_tokenizer *pTokenizer = 0; /* Tokenizer for this table */
1137 int nIndex = 0; /* Size of aIndex[] array */
1138 struct Fts3Index *aIndex = 0; /* Array of indexes for this table */
1140 /* The results of parsing supported FTS4 key=value options: */
1141 int bNoDocsize = 0; /* True to omit %_docsize table */
1142 int bDescIdx = 0; /* True to store descending indexes */
1143 char *zPrefix = 0; /* Prefix parameter value (or NULL) */
1144 char *zCompress = 0; /* compress=? parameter (or NULL) */
1145 char *zUncompress = 0; /* uncompress=? parameter (or NULL) */
1146 char *zContent = 0; /* content=? parameter (or NULL) */
1147 char *zLanguageid = 0; /* languageid=? parameter (or NULL) */
1148 char **azNotindexed = 0; /* The set of notindexed= columns */
1149 int nNotindexed = 0; /* Size of azNotindexed[] array */
1151 assert( strlen(argv[0])==4 );
1152 assert( (sqlite3_strnicmp(argv[0], "fts4", 4)==0 && isFts4)
1153 || (sqlite3_strnicmp(argv[0], "fts3", 4)==0 && !isFts4)
1156 nDb = (int)strlen(argv[1]) + 1;
1157 nName = (int)strlen(argv[2]) + 1;
1159 nByte = sizeof(const char *) * (argc-2);
1160 aCol = (const char **)sqlite3_malloc(nByte);
1161 if( aCol ){
1162 memset((void*)aCol, 0, nByte);
1163 azNotindexed = (char **)sqlite3_malloc(nByte);
1165 if( azNotindexed ){
1166 memset(azNotindexed, 0, nByte);
1168 if( !aCol || !azNotindexed ){
1169 rc = SQLITE_NOMEM;
1170 goto fts3_init_out;
1173 /* Loop through all of the arguments passed by the user to the FTS3/4
1174 ** module (i.e. all the column names and special arguments). This loop
1175 ** does the following:
1177 ** + Figures out the number of columns the FTSX table will have, and
1178 ** the number of bytes of space that must be allocated to store copies
1179 ** of the column names.
1181 ** + If there is a tokenizer specification included in the arguments,
1182 ** initializes the tokenizer pTokenizer.
1184 for(i=3; rc==SQLITE_OK && i<argc; i++){
1185 char const *z = argv[i];
1186 int nKey;
1187 char *zVal;
1189 /* Check if this is a tokenizer specification */
1190 if( !pTokenizer
1191 && strlen(z)>8
1192 && 0==sqlite3_strnicmp(z, "tokenize", 8)
1193 && 0==sqlite3Fts3IsIdChar(z[8])
1195 rc = sqlite3Fts3InitTokenizer(pHash, &z[9], &pTokenizer, pzErr);
1198 /* Check if it is an FTS4 special argument. */
1199 else if( isFts4 && fts3IsSpecialColumn(z, &nKey, &zVal) ){
1200 struct Fts4Option {
1201 const char *zOpt;
1202 int nOpt;
1203 } aFts4Opt[] = {
1204 { "matchinfo", 9 }, /* 0 -> MATCHINFO */
1205 { "prefix", 6 }, /* 1 -> PREFIX */
1206 { "compress", 8 }, /* 2 -> COMPRESS */
1207 { "uncompress", 10 }, /* 3 -> UNCOMPRESS */
1208 { "order", 5 }, /* 4 -> ORDER */
1209 { "content", 7 }, /* 5 -> CONTENT */
1210 { "languageid", 10 }, /* 6 -> LANGUAGEID */
1211 { "notindexed", 10 } /* 7 -> NOTINDEXED */
1214 int iOpt;
1215 if( !zVal ){
1216 rc = SQLITE_NOMEM;
1217 }else{
1218 for(iOpt=0; iOpt<SizeofArray(aFts4Opt); iOpt++){
1219 struct Fts4Option *pOp = &aFts4Opt[iOpt];
1220 if( nKey==pOp->nOpt && !sqlite3_strnicmp(z, pOp->zOpt, pOp->nOpt) ){
1221 break;
1224 switch( iOpt ){
1225 case 0: /* MATCHINFO */
1226 if( strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "fts3", 4) ){
1227 sqlite3Fts3ErrMsg(pzErr, "unrecognized matchinfo: %s", zVal);
1228 rc = SQLITE_ERROR;
1230 bNoDocsize = 1;
1231 break;
1233 case 1: /* PREFIX */
1234 sqlite3_free(zPrefix);
1235 zPrefix = zVal;
1236 zVal = 0;
1237 break;
1239 case 2: /* COMPRESS */
1240 sqlite3_free(zCompress);
1241 zCompress = zVal;
1242 zVal = 0;
1243 break;
1245 case 3: /* UNCOMPRESS */
1246 sqlite3_free(zUncompress);
1247 zUncompress = zVal;
1248 zVal = 0;
1249 break;
1251 case 4: /* ORDER */
1252 if( (strlen(zVal)!=3 || sqlite3_strnicmp(zVal, "asc", 3))
1253 && (strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "desc", 4))
1255 sqlite3Fts3ErrMsg(pzErr, "unrecognized order: %s", zVal);
1256 rc = SQLITE_ERROR;
1258 bDescIdx = (zVal[0]=='d' || zVal[0]=='D');
1259 break;
1261 case 5: /* CONTENT */
1262 sqlite3_free(zContent);
1263 zContent = zVal;
1264 zVal = 0;
1265 break;
1267 case 6: /* LANGUAGEID */
1268 assert( iOpt==6 );
1269 sqlite3_free(zLanguageid);
1270 zLanguageid = zVal;
1271 zVal = 0;
1272 break;
1274 case 7: /* NOTINDEXED */
1275 azNotindexed[nNotindexed++] = zVal;
1276 zVal = 0;
1277 break;
1279 default:
1280 assert( iOpt==SizeofArray(aFts4Opt) );
1281 sqlite3Fts3ErrMsg(pzErr, "unrecognized parameter: %s", z);
1282 rc = SQLITE_ERROR;
1283 break;
1285 sqlite3_free(zVal);
1289 /* Otherwise, the argument is a column name. */
1290 else {
1291 nString += (int)(strlen(z) + 1);
1292 aCol[nCol++] = z;
1296 /* If a content=xxx option was specified, the following:
1298 ** 1. Ignore any compress= and uncompress= options.
1300 ** 2. If no column names were specified as part of the CREATE VIRTUAL
1301 ** TABLE statement, use all columns from the content table.
1303 if( rc==SQLITE_OK && zContent ){
1304 sqlite3_free(zCompress);
1305 sqlite3_free(zUncompress);
1306 zCompress = 0;
1307 zUncompress = 0;
1308 if( nCol==0 ){
1309 sqlite3_free((void*)aCol);
1310 aCol = 0;
1311 rc = fts3ContentColumns(db, argv[1], zContent,&aCol,&nCol,&nString,pzErr);
1313 /* If a languageid= option was specified, remove the language id
1314 ** column from the aCol[] array. */
1315 if( rc==SQLITE_OK && zLanguageid ){
1316 int j;
1317 for(j=0; j<nCol; j++){
1318 if( sqlite3_stricmp(zLanguageid, aCol[j])==0 ){
1319 int k;
1320 for(k=j; k<nCol; k++) aCol[k] = aCol[k+1];
1321 nCol--;
1322 break;
1328 if( rc!=SQLITE_OK ) goto fts3_init_out;
1330 if( nCol==0 ){
1331 assert( nString==0 );
1332 aCol[0] = "content";
1333 nString = 8;
1334 nCol = 1;
1337 if( pTokenizer==0 ){
1338 rc = sqlite3Fts3InitTokenizer(pHash, "simple", &pTokenizer, pzErr);
1339 if( rc!=SQLITE_OK ) goto fts3_init_out;
1341 assert( pTokenizer );
1343 rc = fts3PrefixParameter(zPrefix, &nIndex, &aIndex);
1344 if( rc==SQLITE_ERROR ){
1345 assert( zPrefix );
1346 sqlite3Fts3ErrMsg(pzErr, "error parsing prefix parameter: %s", zPrefix);
1348 if( rc!=SQLITE_OK ) goto fts3_init_out;
1350 /* Allocate and populate the Fts3Table structure. */
1351 nByte = sizeof(Fts3Table) + /* Fts3Table */
1352 nCol * sizeof(char *) + /* azColumn */
1353 nIndex * sizeof(struct Fts3Index) + /* aIndex */
1354 nCol * sizeof(u8) + /* abNotindexed */
1355 nName + /* zName */
1356 nDb + /* zDb */
1357 nString; /* Space for azColumn strings */
1358 p = (Fts3Table*)sqlite3_malloc(nByte);
1359 if( p==0 ){
1360 rc = SQLITE_NOMEM;
1361 goto fts3_init_out;
1363 memset(p, 0, nByte);
1364 p->db = db;
1365 p->nColumn = nCol;
1366 p->nPendingData = 0;
1367 p->azColumn = (char **)&p[1];
1368 p->pTokenizer = pTokenizer;
1369 p->nMaxPendingData = FTS3_MAX_PENDING_DATA;
1370 p->bHasDocsize = (isFts4 && bNoDocsize==0);
1371 p->bHasStat = (u8)isFts4;
1372 p->bFts4 = (u8)isFts4;
1373 p->bDescIdx = (u8)bDescIdx;
1374 p->nAutoincrmerge = 0xff; /* 0xff means setting unknown */
1375 p->zContentTbl = zContent;
1376 p->zLanguageid = zLanguageid;
1377 zContent = 0;
1378 zLanguageid = 0;
1379 TESTONLY( p->inTransaction = -1 );
1380 TESTONLY( p->mxSavepoint = -1 );
1382 p->aIndex = (struct Fts3Index *)&p->azColumn[nCol];
1383 memcpy(p->aIndex, aIndex, sizeof(struct Fts3Index) * nIndex);
1384 p->nIndex = nIndex;
1385 for(i=0; i<nIndex; i++){
1386 fts3HashInit(&p->aIndex[i].hPending, FTS3_HASH_STRING, 1);
1388 p->abNotindexed = (u8 *)&p->aIndex[nIndex];
1390 /* Fill in the zName and zDb fields of the vtab structure. */
1391 zCsr = (char *)&p->abNotindexed[nCol];
1392 p->zName = zCsr;
1393 memcpy(zCsr, argv[2], nName);
1394 zCsr += nName;
1395 p->zDb = zCsr;
1396 memcpy(zCsr, argv[1], nDb);
1397 zCsr += nDb;
1399 /* Fill in the azColumn array */
1400 for(iCol=0; iCol<nCol; iCol++){
1401 char *z;
1402 int n = 0;
1403 z = (char *)sqlite3Fts3NextToken(aCol[iCol], &n);
1404 if( n>0 ){
1405 memcpy(zCsr, z, n);
1407 zCsr[n] = '\0';
1408 sqlite3Fts3Dequote(zCsr);
1409 p->azColumn[iCol] = zCsr;
1410 zCsr += n+1;
1411 assert( zCsr <= &((char *)p)[nByte] );
1414 /* Fill in the abNotindexed array */
1415 for(iCol=0; iCol<nCol; iCol++){
1416 int n = (int)strlen(p->azColumn[iCol]);
1417 for(i=0; i<nNotindexed; i++){
1418 char *zNot = azNotindexed[i];
1419 if( zNot && n==(int)strlen(zNot)
1420 && 0==sqlite3_strnicmp(p->azColumn[iCol], zNot, n)
1422 p->abNotindexed[iCol] = 1;
1423 sqlite3_free(zNot);
1424 azNotindexed[i] = 0;
1428 for(i=0; i<nNotindexed; i++){
1429 if( azNotindexed[i] ){
1430 sqlite3Fts3ErrMsg(pzErr, "no such column: %s", azNotindexed[i]);
1431 rc = SQLITE_ERROR;
1435 if( rc==SQLITE_OK && (zCompress==0)!=(zUncompress==0) ){
1436 char const *zMiss = (zCompress==0 ? "compress" : "uncompress");
1437 rc = SQLITE_ERROR;
1438 sqlite3Fts3ErrMsg(pzErr, "missing %s parameter in fts4 constructor", zMiss);
1440 p->zReadExprlist = fts3ReadExprList(p, zUncompress, &rc);
1441 p->zWriteExprlist = fts3WriteExprList(p, zCompress, &rc);
1442 if( rc!=SQLITE_OK ) goto fts3_init_out;
1444 /* If this is an xCreate call, create the underlying tables in the
1445 ** database. TODO: For xConnect(), it could verify that said tables exist.
1447 if( isCreate ){
1448 rc = fts3CreateTables(p);
1451 /* Check to see if a legacy fts3 table has been "upgraded" by the
1452 ** addition of a %_stat table so that it can use incremental merge.
1454 if( !isFts4 && !isCreate ){
1455 p->bHasStat = 2;
1458 /* Figure out the page-size for the database. This is required in order to
1459 ** estimate the cost of loading large doclists from the database. */
1460 fts3DatabasePageSize(&rc, p);
1461 p->nNodeSize = p->nPgsz-35;
1463 /* Declare the table schema to SQLite. */
1464 fts3DeclareVtab(&rc, p);
1466 fts3_init_out:
1467 sqlite3_free(zPrefix);
1468 sqlite3_free(aIndex);
1469 sqlite3_free(zCompress);
1470 sqlite3_free(zUncompress);
1471 sqlite3_free(zContent);
1472 sqlite3_free(zLanguageid);
1473 for(i=0; i<nNotindexed; i++) sqlite3_free(azNotindexed[i]);
1474 sqlite3_free((void *)aCol);
1475 sqlite3_free((void *)azNotindexed);
1476 if( rc!=SQLITE_OK ){
1477 if( p ){
1478 fts3DisconnectMethod((sqlite3_vtab *)p);
1479 }else if( pTokenizer ){
1480 pTokenizer->pModule->xDestroy(pTokenizer);
1482 }else{
1483 assert( p->pSegments==0 );
1484 *ppVTab = &p->base;
1486 return rc;
1490 ** The xConnect() and xCreate() methods for the virtual table. All the
1491 ** work is done in function fts3InitVtab().
1493 static int fts3ConnectMethod(
1494 sqlite3 *db, /* Database connection */
1495 void *pAux, /* Pointer to tokenizer hash table */
1496 int argc, /* Number of elements in argv array */
1497 const char * const *argv, /* xCreate/xConnect argument array */
1498 sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
1499 char **pzErr /* OUT: sqlite3_malloc'd error message */
1501 return fts3InitVtab(0, db, pAux, argc, argv, ppVtab, pzErr);
1503 static int fts3CreateMethod(
1504 sqlite3 *db, /* Database connection */
1505 void *pAux, /* Pointer to tokenizer hash table */
1506 int argc, /* Number of elements in argv array */
1507 const char * const *argv, /* xCreate/xConnect argument array */
1508 sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
1509 char **pzErr /* OUT: sqlite3_malloc'd error message */
1511 return fts3InitVtab(1, db, pAux, argc, argv, ppVtab, pzErr);
1515 ** Set the pIdxInfo->estimatedRows variable to nRow. Unless this
1516 ** extension is currently being used by a version of SQLite too old to
1517 ** support estimatedRows. In that case this function is a no-op.
1519 static void fts3SetEstimatedRows(sqlite3_index_info *pIdxInfo, i64 nRow){
1520 #if SQLITE_VERSION_NUMBER>=3008002
1521 if( sqlite3_libversion_number()>=3008002 ){
1522 pIdxInfo->estimatedRows = nRow;
1524 #endif
1528 ** Set the SQLITE_INDEX_SCAN_UNIQUE flag in pIdxInfo->flags. Unless this
1529 ** extension is currently being used by a version of SQLite too old to
1530 ** support index-info flags. In that case this function is a no-op.
1532 static void fts3SetUniqueFlag(sqlite3_index_info *pIdxInfo){
1533 #if SQLITE_VERSION_NUMBER>=3008012
1534 if( sqlite3_libversion_number()>=3008012 ){
1535 pIdxInfo->idxFlags |= SQLITE_INDEX_SCAN_UNIQUE;
1537 #endif
1541 ** Implementation of the xBestIndex method for FTS3 tables. There
1542 ** are three possible strategies, in order of preference:
1544 ** 1. Direct lookup by rowid or docid.
1545 ** 2. Full-text search using a MATCH operator on a non-docid column.
1546 ** 3. Linear scan of %_content table.
1548 static int fts3BestIndexMethod(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
1549 Fts3Table *p = (Fts3Table *)pVTab;
1550 int i; /* Iterator variable */
1551 int iCons = -1; /* Index of constraint to use */
1553 int iLangidCons = -1; /* Index of langid=x constraint, if present */
1554 int iDocidGe = -1; /* Index of docid>=x constraint, if present */
1555 int iDocidLe = -1; /* Index of docid<=x constraint, if present */
1556 int iIdx;
1558 /* By default use a full table scan. This is an expensive option,
1559 ** so search through the constraints to see if a more efficient
1560 ** strategy is possible.
1562 pInfo->idxNum = FTS3_FULLSCAN_SEARCH;
1563 pInfo->estimatedCost = 5000000;
1564 for(i=0; i<pInfo->nConstraint; i++){
1565 int bDocid; /* True if this constraint is on docid */
1566 struct sqlite3_index_constraint *pCons = &pInfo->aConstraint[i];
1567 if( pCons->usable==0 ){
1568 if( pCons->op==SQLITE_INDEX_CONSTRAINT_MATCH ){
1569 /* There exists an unusable MATCH constraint. This means that if
1570 ** the planner does elect to use the results of this call as part
1571 ** of the overall query plan the user will see an "unable to use
1572 ** function MATCH in the requested context" error. To discourage
1573 ** this, return a very high cost here. */
1574 pInfo->idxNum = FTS3_FULLSCAN_SEARCH;
1575 pInfo->estimatedCost = 1e50;
1576 fts3SetEstimatedRows(pInfo, ((sqlite3_int64)1) << 50);
1577 return SQLITE_OK;
1579 continue;
1582 bDocid = (pCons->iColumn<0 || pCons->iColumn==p->nColumn+1);
1584 /* A direct lookup on the rowid or docid column. Assign a cost of 1.0. */
1585 if( iCons<0 && pCons->op==SQLITE_INDEX_CONSTRAINT_EQ && bDocid ){
1586 pInfo->idxNum = FTS3_DOCID_SEARCH;
1587 pInfo->estimatedCost = 1.0;
1588 iCons = i;
1591 /* A MATCH constraint. Use a full-text search.
1593 ** If there is more than one MATCH constraint available, use the first
1594 ** one encountered. If there is both a MATCH constraint and a direct
1595 ** rowid/docid lookup, prefer the MATCH strategy. This is done even
1596 ** though the rowid/docid lookup is faster than a MATCH query, selecting
1597 ** it would lead to an "unable to use function MATCH in the requested
1598 ** context" error.
1600 if( pCons->op==SQLITE_INDEX_CONSTRAINT_MATCH
1601 && pCons->iColumn>=0 && pCons->iColumn<=p->nColumn
1603 pInfo->idxNum = FTS3_FULLTEXT_SEARCH + pCons->iColumn;
1604 pInfo->estimatedCost = 2.0;
1605 iCons = i;
1608 /* Equality constraint on the langid column */
1609 if( pCons->op==SQLITE_INDEX_CONSTRAINT_EQ
1610 && pCons->iColumn==p->nColumn + 2
1612 iLangidCons = i;
1615 if( bDocid ){
1616 switch( pCons->op ){
1617 case SQLITE_INDEX_CONSTRAINT_GE:
1618 case SQLITE_INDEX_CONSTRAINT_GT:
1619 iDocidGe = i;
1620 break;
1622 case SQLITE_INDEX_CONSTRAINT_LE:
1623 case SQLITE_INDEX_CONSTRAINT_LT:
1624 iDocidLe = i;
1625 break;
1630 /* If using a docid=? or rowid=? strategy, set the UNIQUE flag. */
1631 if( pInfo->idxNum==FTS3_DOCID_SEARCH ) fts3SetUniqueFlag(pInfo);
1633 iIdx = 1;
1634 if( iCons>=0 ){
1635 pInfo->aConstraintUsage[iCons].argvIndex = iIdx++;
1636 pInfo->aConstraintUsage[iCons].omit = 1;
1638 if( iLangidCons>=0 ){
1639 pInfo->idxNum |= FTS3_HAVE_LANGID;
1640 pInfo->aConstraintUsage[iLangidCons].argvIndex = iIdx++;
1642 if( iDocidGe>=0 ){
1643 pInfo->idxNum |= FTS3_HAVE_DOCID_GE;
1644 pInfo->aConstraintUsage[iDocidGe].argvIndex = iIdx++;
1646 if( iDocidLe>=0 ){
1647 pInfo->idxNum |= FTS3_HAVE_DOCID_LE;
1648 pInfo->aConstraintUsage[iDocidLe].argvIndex = iIdx++;
1651 /* Regardless of the strategy selected, FTS can deliver rows in rowid (or
1652 ** docid) order. Both ascending and descending are possible.
1654 if( pInfo->nOrderBy==1 ){
1655 struct sqlite3_index_orderby *pOrder = &pInfo->aOrderBy[0];
1656 if( pOrder->iColumn<0 || pOrder->iColumn==p->nColumn+1 ){
1657 if( pOrder->desc ){
1658 pInfo->idxStr = "DESC";
1659 }else{
1660 pInfo->idxStr = "ASC";
1662 pInfo->orderByConsumed = 1;
1666 assert( p->pSegments==0 );
1667 return SQLITE_OK;
1671 ** Implementation of xOpen method.
1673 static int fts3OpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){
1674 sqlite3_vtab_cursor *pCsr; /* Allocated cursor */
1676 UNUSED_PARAMETER(pVTab);
1678 /* Allocate a buffer large enough for an Fts3Cursor structure. If the
1679 ** allocation succeeds, zero it and return SQLITE_OK. Otherwise,
1680 ** if the allocation fails, return SQLITE_NOMEM.
1682 *ppCsr = pCsr = (sqlite3_vtab_cursor *)sqlite3_malloc(sizeof(Fts3Cursor));
1683 if( !pCsr ){
1684 return SQLITE_NOMEM;
1686 memset(pCsr, 0, sizeof(Fts3Cursor));
1687 return SQLITE_OK;
1691 ** Finalize the statement handle at pCsr->pStmt.
1693 ** Or, if that statement handle is one created by fts3CursorSeekStmt(),
1694 ** and the Fts3Table.pSeekStmt slot is currently NULL, save the statement
1695 ** pointer there instead of finalizing it.
1697 static void fts3CursorFinalizeStmt(Fts3Cursor *pCsr){
1698 if( pCsr->bSeekStmt ){
1699 Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
1700 if( p->pSeekStmt==0 ){
1701 p->pSeekStmt = pCsr->pStmt;
1702 sqlite3_reset(pCsr->pStmt);
1703 pCsr->pStmt = 0;
1705 pCsr->bSeekStmt = 0;
1707 sqlite3_finalize(pCsr->pStmt);
1711 ** Free all resources currently held by the cursor passed as the only
1712 ** argument.
1714 static void fts3ClearCursor(Fts3Cursor *pCsr){
1715 fts3CursorFinalizeStmt(pCsr);
1716 sqlite3Fts3FreeDeferredTokens(pCsr);
1717 sqlite3_free(pCsr->aDoclist);
1718 sqlite3Fts3MIBufferFree(pCsr->pMIBuffer);
1719 sqlite3Fts3ExprFree(pCsr->pExpr);
1720 memset(&(&pCsr->base)[1], 0, sizeof(Fts3Cursor)-sizeof(sqlite3_vtab_cursor));
1724 ** Close the cursor. For additional information see the documentation
1725 ** on the xClose method of the virtual table interface.
1727 static int fts3CloseMethod(sqlite3_vtab_cursor *pCursor){
1728 Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
1729 assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
1730 fts3ClearCursor(pCsr);
1731 assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
1732 sqlite3_free(pCsr);
1733 return SQLITE_OK;
1737 ** If pCsr->pStmt has not been prepared (i.e. if pCsr->pStmt==0), then
1738 ** compose and prepare an SQL statement of the form:
1740 ** "SELECT <columns> FROM %_content WHERE rowid = ?"
1742 ** (or the equivalent for a content=xxx table) and set pCsr->pStmt to
1743 ** it. If an error occurs, return an SQLite error code.
1745 static int fts3CursorSeekStmt(Fts3Cursor *pCsr){
1746 int rc = SQLITE_OK;
1747 if( pCsr->pStmt==0 ){
1748 Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
1749 char *zSql;
1750 if( p->pSeekStmt ){
1751 pCsr->pStmt = p->pSeekStmt;
1752 p->pSeekStmt = 0;
1753 }else{
1754 zSql = sqlite3_mprintf("SELECT %s WHERE rowid = ?", p->zReadExprlist);
1755 if( !zSql ) return SQLITE_NOMEM;
1756 rc = sqlite3_prepare_v3(p->db, zSql,-1,SQLITE_PREPARE_PERSISTENT,&pCsr->pStmt,0);
1757 sqlite3_free(zSql);
1759 if( rc==SQLITE_OK ) pCsr->bSeekStmt = 1;
1761 return rc;
1765 ** Position the pCsr->pStmt statement so that it is on the row
1766 ** of the %_content table that contains the last match. Return
1767 ** SQLITE_OK on success.
1769 static int fts3CursorSeek(sqlite3_context *pContext, Fts3Cursor *pCsr){
1770 int rc = SQLITE_OK;
1771 if( pCsr->isRequireSeek ){
1772 rc = fts3CursorSeekStmt(pCsr);
1773 if( rc==SQLITE_OK ){
1774 sqlite3_bind_int64(pCsr->pStmt, 1, pCsr->iPrevId);
1775 pCsr->isRequireSeek = 0;
1776 if( SQLITE_ROW==sqlite3_step(pCsr->pStmt) ){
1777 return SQLITE_OK;
1778 }else{
1779 rc = sqlite3_reset(pCsr->pStmt);
1780 if( rc==SQLITE_OK && ((Fts3Table *)pCsr->base.pVtab)->zContentTbl==0 ){
1781 /* If no row was found and no error has occurred, then the %_content
1782 ** table is missing a row that is present in the full-text index.
1783 ** The data structures are corrupt. */
1784 rc = FTS_CORRUPT_VTAB;
1785 pCsr->isEof = 1;
1791 if( rc!=SQLITE_OK && pContext ){
1792 sqlite3_result_error_code(pContext, rc);
1794 return rc;
1798 ** This function is used to process a single interior node when searching
1799 ** a b-tree for a term or term prefix. The node data is passed to this
1800 ** function via the zNode/nNode parameters. The term to search for is
1801 ** passed in zTerm/nTerm.
1803 ** If piFirst is not NULL, then this function sets *piFirst to the blockid
1804 ** of the child node that heads the sub-tree that may contain the term.
1806 ** If piLast is not NULL, then *piLast is set to the right-most child node
1807 ** that heads a sub-tree that may contain a term for which zTerm/nTerm is
1808 ** a prefix.
1810 ** If an OOM error occurs, SQLITE_NOMEM is returned. Otherwise, SQLITE_OK.
1812 static int fts3ScanInteriorNode(
1813 const char *zTerm, /* Term to select leaves for */
1814 int nTerm, /* Size of term zTerm in bytes */
1815 const char *zNode, /* Buffer containing segment interior node */
1816 int nNode, /* Size of buffer at zNode */
1817 sqlite3_int64 *piFirst, /* OUT: Selected child node */
1818 sqlite3_int64 *piLast /* OUT: Selected child node */
1820 int rc = SQLITE_OK; /* Return code */
1821 const char *zCsr = zNode; /* Cursor to iterate through node */
1822 const char *zEnd = &zCsr[nNode];/* End of interior node buffer */
1823 char *zBuffer = 0; /* Buffer to load terms into */
1824 int nAlloc = 0; /* Size of allocated buffer */
1825 int isFirstTerm = 1; /* True when processing first term on page */
1826 sqlite3_int64 iChild; /* Block id of child node to descend to */
1828 /* Skip over the 'height' varint that occurs at the start of every
1829 ** interior node. Then load the blockid of the left-child of the b-tree
1830 ** node into variable iChild.
1832 ** Even if the data structure on disk is corrupted, this (reading two
1833 ** varints from the buffer) does not risk an overread. If zNode is a
1834 ** root node, then the buffer comes from a SELECT statement. SQLite does
1835 ** not make this guarantee explicitly, but in practice there are always
1836 ** either more than 20 bytes of allocated space following the nNode bytes of
1837 ** contents, or two zero bytes. Or, if the node is read from the %_segments
1838 ** table, then there are always 20 bytes of zeroed padding following the
1839 ** nNode bytes of content (see sqlite3Fts3ReadBlock() for details).
1841 zCsr += sqlite3Fts3GetVarint(zCsr, &iChild);
1842 zCsr += sqlite3Fts3GetVarint(zCsr, &iChild);
1843 if( zCsr>zEnd ){
1844 return FTS_CORRUPT_VTAB;
1847 while( zCsr<zEnd && (piFirst || piLast) ){
1848 int cmp; /* memcmp() result */
1849 int nSuffix; /* Size of term suffix */
1850 int nPrefix = 0; /* Size of term prefix */
1851 int nBuffer; /* Total term size */
1853 /* Load the next term on the node into zBuffer. Use realloc() to expand
1854 ** the size of zBuffer if required. */
1855 if( !isFirstTerm ){
1856 zCsr += fts3GetVarint32(zCsr, &nPrefix);
1858 isFirstTerm = 0;
1859 zCsr += fts3GetVarint32(zCsr, &nSuffix);
1861 assert( nPrefix>=0 && nSuffix>=0 );
1862 if( &zCsr[nSuffix]>zEnd ){
1863 rc = FTS_CORRUPT_VTAB;
1864 goto finish_scan;
1866 if( nPrefix+nSuffix>nAlloc ){
1867 char *zNew;
1868 nAlloc = (nPrefix+nSuffix) * 2;
1869 zNew = (char *)sqlite3_realloc(zBuffer, nAlloc);
1870 if( !zNew ){
1871 rc = SQLITE_NOMEM;
1872 goto finish_scan;
1874 zBuffer = zNew;
1876 assert( zBuffer );
1877 memcpy(&zBuffer[nPrefix], zCsr, nSuffix);
1878 nBuffer = nPrefix + nSuffix;
1879 zCsr += nSuffix;
1881 /* Compare the term we are searching for with the term just loaded from
1882 ** the interior node. If the specified term is greater than or equal
1883 ** to the term from the interior node, then all terms on the sub-tree
1884 ** headed by node iChild are smaller than zTerm. No need to search
1885 ** iChild.
1887 ** If the interior node term is larger than the specified term, then
1888 ** the tree headed by iChild may contain the specified term.
1890 cmp = memcmp(zTerm, zBuffer, (nBuffer>nTerm ? nTerm : nBuffer));
1891 if( piFirst && (cmp<0 || (cmp==0 && nBuffer>nTerm)) ){
1892 *piFirst = iChild;
1893 piFirst = 0;
1896 if( piLast && cmp<0 ){
1897 *piLast = iChild;
1898 piLast = 0;
1901 iChild++;
1904 if( piFirst ) *piFirst = iChild;
1905 if( piLast ) *piLast = iChild;
1907 finish_scan:
1908 sqlite3_free(zBuffer);
1909 return rc;
1914 ** The buffer pointed to by argument zNode (size nNode bytes) contains an
1915 ** interior node of a b-tree segment. The zTerm buffer (size nTerm bytes)
1916 ** contains a term. This function searches the sub-tree headed by the zNode
1917 ** node for the range of leaf nodes that may contain the specified term
1918 ** or terms for which the specified term is a prefix.
1920 ** If piLeaf is not NULL, then *piLeaf is set to the blockid of the
1921 ** left-most leaf node in the tree that may contain the specified term.
1922 ** If piLeaf2 is not NULL, then *piLeaf2 is set to the blockid of the
1923 ** right-most leaf node that may contain a term for which the specified
1924 ** term is a prefix.
1926 ** It is possible that the range of returned leaf nodes does not contain
1927 ** the specified term or any terms for which it is a prefix. However, if the
1928 ** segment does contain any such terms, they are stored within the identified
1929 ** range. Because this function only inspects interior segment nodes (and
1930 ** never loads leaf nodes into memory), it is not possible to be sure.
1932 ** If an error occurs, an error code other than SQLITE_OK is returned.
1934 static int fts3SelectLeaf(
1935 Fts3Table *p, /* Virtual table handle */
1936 const char *zTerm, /* Term to select leaves for */
1937 int nTerm, /* Size of term zTerm in bytes */
1938 const char *zNode, /* Buffer containing segment interior node */
1939 int nNode, /* Size of buffer at zNode */
1940 sqlite3_int64 *piLeaf, /* Selected leaf node */
1941 sqlite3_int64 *piLeaf2 /* Selected leaf node */
1943 int rc = SQLITE_OK; /* Return code */
1944 int iHeight; /* Height of this node in tree */
1946 assert( piLeaf || piLeaf2 );
1948 fts3GetVarint32(zNode, &iHeight);
1949 rc = fts3ScanInteriorNode(zTerm, nTerm, zNode, nNode, piLeaf, piLeaf2);
1950 assert( !piLeaf2 || !piLeaf || rc!=SQLITE_OK || (*piLeaf<=*piLeaf2) );
1952 if( rc==SQLITE_OK && iHeight>1 ){
1953 char *zBlob = 0; /* Blob read from %_segments table */
1954 int nBlob = 0; /* Size of zBlob in bytes */
1956 if( piLeaf && piLeaf2 && (*piLeaf!=*piLeaf2) ){
1957 rc = sqlite3Fts3ReadBlock(p, *piLeaf, &zBlob, &nBlob, 0);
1958 if( rc==SQLITE_OK ){
1959 rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, 0);
1961 sqlite3_free(zBlob);
1962 piLeaf = 0;
1963 zBlob = 0;
1966 if( rc==SQLITE_OK ){
1967 rc = sqlite3Fts3ReadBlock(p, piLeaf?*piLeaf:*piLeaf2, &zBlob, &nBlob, 0);
1969 if( rc==SQLITE_OK ){
1970 rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, piLeaf2);
1972 sqlite3_free(zBlob);
1975 return rc;
1979 ** This function is used to create delta-encoded serialized lists of FTS3
1980 ** varints. Each call to this function appends a single varint to a list.
1982 static void fts3PutDeltaVarint(
1983 char **pp, /* IN/OUT: Output pointer */
1984 sqlite3_int64 *piPrev, /* IN/OUT: Previous value written to list */
1985 sqlite3_int64 iVal /* Write this value to the list */
1987 assert( iVal-*piPrev > 0 || (*piPrev==0 && iVal==0) );
1988 *pp += sqlite3Fts3PutVarint(*pp, iVal-*piPrev);
1989 *piPrev = iVal;
1993 ** When this function is called, *ppPoslist is assumed to point to the
1994 ** start of a position-list. After it returns, *ppPoslist points to the
1995 ** first byte after the position-list.
1997 ** A position list is list of positions (delta encoded) and columns for
1998 ** a single document record of a doclist. So, in other words, this
1999 ** routine advances *ppPoslist so that it points to the next docid in
2000 ** the doclist, or to the first byte past the end of the doclist.
2002 ** If pp is not NULL, then the contents of the position list are copied
2003 ** to *pp. *pp is set to point to the first byte past the last byte copied
2004 ** before this function returns.
2006 static void fts3PoslistCopy(char **pp, char **ppPoslist){
2007 char *pEnd = *ppPoslist;
2008 char c = 0;
2010 /* The end of a position list is marked by a zero encoded as an FTS3
2011 ** varint. A single POS_END (0) byte. Except, if the 0 byte is preceded by
2012 ** a byte with the 0x80 bit set, then it is not a varint 0, but the tail
2013 ** of some other, multi-byte, value.
2015 ** The following while-loop moves pEnd to point to the first byte that is not
2016 ** immediately preceded by a byte with the 0x80 bit set. Then increments
2017 ** pEnd once more so that it points to the byte immediately following the
2018 ** last byte in the position-list.
2020 while( *pEnd | c ){
2021 c = *pEnd++ & 0x80;
2022 testcase( c!=0 && (*pEnd)==0 );
2024 pEnd++; /* Advance past the POS_END terminator byte */
2026 if( pp ){
2027 int n = (int)(pEnd - *ppPoslist);
2028 char *p = *pp;
2029 memcpy(p, *ppPoslist, n);
2030 p += n;
2031 *pp = p;
2033 *ppPoslist = pEnd;
2037 ** When this function is called, *ppPoslist is assumed to point to the
2038 ** start of a column-list. After it returns, *ppPoslist points to the
2039 ** to the terminator (POS_COLUMN or POS_END) byte of the column-list.
2041 ** A column-list is list of delta-encoded positions for a single column
2042 ** within a single document within a doclist.
2044 ** The column-list is terminated either by a POS_COLUMN varint (1) or
2045 ** a POS_END varint (0). This routine leaves *ppPoslist pointing to
2046 ** the POS_COLUMN or POS_END that terminates the column-list.
2048 ** If pp is not NULL, then the contents of the column-list are copied
2049 ** to *pp. *pp is set to point to the first byte past the last byte copied
2050 ** before this function returns. The POS_COLUMN or POS_END terminator
2051 ** is not copied into *pp.
2053 static void fts3ColumnlistCopy(char **pp, char **ppPoslist){
2054 char *pEnd = *ppPoslist;
2055 char c = 0;
2057 /* A column-list is terminated by either a 0x01 or 0x00 byte that is
2058 ** not part of a multi-byte varint.
2060 while( 0xFE & (*pEnd | c) ){
2061 c = *pEnd++ & 0x80;
2062 testcase( c!=0 && ((*pEnd)&0xfe)==0 );
2064 if( pp ){
2065 int n = (int)(pEnd - *ppPoslist);
2066 char *p = *pp;
2067 memcpy(p, *ppPoslist, n);
2068 p += n;
2069 *pp = p;
2071 *ppPoslist = pEnd;
2075 ** Value used to signify the end of an position-list. This is safe because
2076 ** it is not possible to have a document with 2^31 terms.
2078 #define POSITION_LIST_END 0x7fffffff
2081 ** This function is used to help parse position-lists. When this function is
2082 ** called, *pp may point to the start of the next varint in the position-list
2083 ** being parsed, or it may point to 1 byte past the end of the position-list
2084 ** (in which case **pp will be a terminator bytes POS_END (0) or
2085 ** (1)).
2087 ** If *pp points past the end of the current position-list, set *pi to
2088 ** POSITION_LIST_END and return. Otherwise, read the next varint from *pp,
2089 ** increment the current value of *pi by the value read, and set *pp to
2090 ** point to the next value before returning.
2092 ** Before calling this routine *pi must be initialized to the value of
2093 ** the previous position, or zero if we are reading the first position
2094 ** in the position-list. Because positions are delta-encoded, the value
2095 ** of the previous position is needed in order to compute the value of
2096 ** the next position.
2098 static void fts3ReadNextPos(
2099 char **pp, /* IN/OUT: Pointer into position-list buffer */
2100 sqlite3_int64 *pi /* IN/OUT: Value read from position-list */
2102 if( (**pp)&0xFE ){
2103 fts3GetDeltaVarint(pp, pi);
2104 *pi -= 2;
2105 }else{
2106 *pi = POSITION_LIST_END;
2111 ** If parameter iCol is not 0, write an POS_COLUMN (1) byte followed by
2112 ** the value of iCol encoded as a varint to *pp. This will start a new
2113 ** column list.
2115 ** Set *pp to point to the byte just after the last byte written before
2116 ** returning (do not modify it if iCol==0). Return the total number of bytes
2117 ** written (0 if iCol==0).
2119 static int fts3PutColNumber(char **pp, int iCol){
2120 int n = 0; /* Number of bytes written */
2121 if( iCol ){
2122 char *p = *pp; /* Output pointer */
2123 n = 1 + sqlite3Fts3PutVarint(&p[1], iCol);
2124 *p = 0x01;
2125 *pp = &p[n];
2127 return n;
2131 ** Compute the union of two position lists. The output written
2132 ** into *pp contains all positions of both *pp1 and *pp2 in sorted
2133 ** order and with any duplicates removed. All pointers are
2134 ** updated appropriately. The caller is responsible for insuring
2135 ** that there is enough space in *pp to hold the complete output.
2137 static void fts3PoslistMerge(
2138 char **pp, /* Output buffer */
2139 char **pp1, /* Left input list */
2140 char **pp2 /* Right input list */
2142 char *p = *pp;
2143 char *p1 = *pp1;
2144 char *p2 = *pp2;
2146 while( *p1 || *p2 ){
2147 int iCol1; /* The current column index in pp1 */
2148 int iCol2; /* The current column index in pp2 */
2150 if( *p1==POS_COLUMN ) fts3GetVarint32(&p1[1], &iCol1);
2151 else if( *p1==POS_END ) iCol1 = POSITION_LIST_END;
2152 else iCol1 = 0;
2154 if( *p2==POS_COLUMN ) fts3GetVarint32(&p2[1], &iCol2);
2155 else if( *p2==POS_END ) iCol2 = POSITION_LIST_END;
2156 else iCol2 = 0;
2158 if( iCol1==iCol2 ){
2159 sqlite3_int64 i1 = 0; /* Last position from pp1 */
2160 sqlite3_int64 i2 = 0; /* Last position from pp2 */
2161 sqlite3_int64 iPrev = 0;
2162 int n = fts3PutColNumber(&p, iCol1);
2163 p1 += n;
2164 p2 += n;
2166 /* At this point, both p1 and p2 point to the start of column-lists
2167 ** for the same column (the column with index iCol1 and iCol2).
2168 ** A column-list is a list of non-negative delta-encoded varints, each
2169 ** incremented by 2 before being stored. Each list is terminated by a
2170 ** POS_END (0) or POS_COLUMN (1). The following block merges the two lists
2171 ** and writes the results to buffer p. p is left pointing to the byte
2172 ** after the list written. No terminator (POS_END or POS_COLUMN) is
2173 ** written to the output.
2175 fts3GetDeltaVarint(&p1, &i1);
2176 fts3GetDeltaVarint(&p2, &i2);
2177 do {
2178 fts3PutDeltaVarint(&p, &iPrev, (i1<i2) ? i1 : i2);
2179 iPrev -= 2;
2180 if( i1==i2 ){
2181 fts3ReadNextPos(&p1, &i1);
2182 fts3ReadNextPos(&p2, &i2);
2183 }else if( i1<i2 ){
2184 fts3ReadNextPos(&p1, &i1);
2185 }else{
2186 fts3ReadNextPos(&p2, &i2);
2188 }while( i1!=POSITION_LIST_END || i2!=POSITION_LIST_END );
2189 }else if( iCol1<iCol2 ){
2190 p1 += fts3PutColNumber(&p, iCol1);
2191 fts3ColumnlistCopy(&p, &p1);
2192 }else{
2193 p2 += fts3PutColNumber(&p, iCol2);
2194 fts3ColumnlistCopy(&p, &p2);
2198 *p++ = POS_END;
2199 *pp = p;
2200 *pp1 = p1 + 1;
2201 *pp2 = p2 + 1;
2205 ** This function is used to merge two position lists into one. When it is
2206 ** called, *pp1 and *pp2 must both point to position lists. A position-list is
2207 ** the part of a doclist that follows each document id. For example, if a row
2208 ** contains:
2210 ** 'a b c'|'x y z'|'a b b a'
2212 ** Then the position list for this row for token 'b' would consist of:
2214 ** 0x02 0x01 0x02 0x03 0x03 0x00
2216 ** When this function returns, both *pp1 and *pp2 are left pointing to the
2217 ** byte following the 0x00 terminator of their respective position lists.
2219 ** If isSaveLeft is 0, an entry is added to the output position list for
2220 ** each position in *pp2 for which there exists one or more positions in
2221 ** *pp1 so that (pos(*pp2)>pos(*pp1) && pos(*pp2)-pos(*pp1)<=nToken). i.e.
2222 ** when the *pp1 token appears before the *pp2 token, but not more than nToken
2223 ** slots before it.
2225 ** e.g. nToken==1 searches for adjacent positions.
2227 static int fts3PoslistPhraseMerge(
2228 char **pp, /* IN/OUT: Preallocated output buffer */
2229 int nToken, /* Maximum difference in token positions */
2230 int isSaveLeft, /* Save the left position */
2231 int isExact, /* If *pp1 is exactly nTokens before *pp2 */
2232 char **pp1, /* IN/OUT: Left input list */
2233 char **pp2 /* IN/OUT: Right input list */
2235 char *p = *pp;
2236 char *p1 = *pp1;
2237 char *p2 = *pp2;
2238 int iCol1 = 0;
2239 int iCol2 = 0;
2241 /* Never set both isSaveLeft and isExact for the same invocation. */
2242 assert( isSaveLeft==0 || isExact==0 );
2244 assert( p!=0 && *p1!=0 && *p2!=0 );
2245 if( *p1==POS_COLUMN ){
2246 p1++;
2247 p1 += fts3GetVarint32(p1, &iCol1);
2249 if( *p2==POS_COLUMN ){
2250 p2++;
2251 p2 += fts3GetVarint32(p2, &iCol2);
2254 while( 1 ){
2255 if( iCol1==iCol2 ){
2256 char *pSave = p;
2257 sqlite3_int64 iPrev = 0;
2258 sqlite3_int64 iPos1 = 0;
2259 sqlite3_int64 iPos2 = 0;
2261 if( iCol1 ){
2262 *p++ = POS_COLUMN;
2263 p += sqlite3Fts3PutVarint(p, iCol1);
2266 assert( *p1!=POS_END && *p1!=POS_COLUMN );
2267 assert( *p2!=POS_END && *p2!=POS_COLUMN );
2268 fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2;
2269 fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2;
2271 while( 1 ){
2272 if( iPos2==iPos1+nToken
2273 || (isExact==0 && iPos2>iPos1 && iPos2<=iPos1+nToken)
2275 sqlite3_int64 iSave;
2276 iSave = isSaveLeft ? iPos1 : iPos2;
2277 fts3PutDeltaVarint(&p, &iPrev, iSave+2); iPrev -= 2;
2278 pSave = 0;
2279 assert( p );
2281 if( (!isSaveLeft && iPos2<=(iPos1+nToken)) || iPos2<=iPos1 ){
2282 if( (*p2&0xFE)==0 ) break;
2283 fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2;
2284 }else{
2285 if( (*p1&0xFE)==0 ) break;
2286 fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2;
2290 if( pSave ){
2291 assert( pp && p );
2292 p = pSave;
2295 fts3ColumnlistCopy(0, &p1);
2296 fts3ColumnlistCopy(0, &p2);
2297 assert( (*p1&0xFE)==0 && (*p2&0xFE)==0 );
2298 if( 0==*p1 || 0==*p2 ) break;
2300 p1++;
2301 p1 += fts3GetVarint32(p1, &iCol1);
2302 p2++;
2303 p2 += fts3GetVarint32(p2, &iCol2);
2306 /* Advance pointer p1 or p2 (whichever corresponds to the smaller of
2307 ** iCol1 and iCol2) so that it points to either the 0x00 that marks the
2308 ** end of the position list, or the 0x01 that precedes the next
2309 ** column-number in the position list.
2311 else if( iCol1<iCol2 ){
2312 fts3ColumnlistCopy(0, &p1);
2313 if( 0==*p1 ) break;
2314 p1++;
2315 p1 += fts3GetVarint32(p1, &iCol1);
2316 }else{
2317 fts3ColumnlistCopy(0, &p2);
2318 if( 0==*p2 ) break;
2319 p2++;
2320 p2 += fts3GetVarint32(p2, &iCol2);
2324 fts3PoslistCopy(0, &p2);
2325 fts3PoslistCopy(0, &p1);
2326 *pp1 = p1;
2327 *pp2 = p2;
2328 if( *pp==p ){
2329 return 0;
2331 *p++ = 0x00;
2332 *pp = p;
2333 return 1;
2337 ** Merge two position-lists as required by the NEAR operator. The argument
2338 ** position lists correspond to the left and right phrases of an expression
2339 ** like:
2341 ** "phrase 1" NEAR "phrase number 2"
2343 ** Position list *pp1 corresponds to the left-hand side of the NEAR
2344 ** expression and *pp2 to the right. As usual, the indexes in the position
2345 ** lists are the offsets of the last token in each phrase (tokens "1" and "2"
2346 ** in the example above).
2348 ** The output position list - written to *pp - is a copy of *pp2 with those
2349 ** entries that are not sufficiently NEAR entries in *pp1 removed.
2351 static int fts3PoslistNearMerge(
2352 char **pp, /* Output buffer */
2353 char *aTmp, /* Temporary buffer space */
2354 int nRight, /* Maximum difference in token positions */
2355 int nLeft, /* Maximum difference in token positions */
2356 char **pp1, /* IN/OUT: Left input list */
2357 char **pp2 /* IN/OUT: Right input list */
2359 char *p1 = *pp1;
2360 char *p2 = *pp2;
2362 char *pTmp1 = aTmp;
2363 char *pTmp2;
2364 char *aTmp2;
2365 int res = 1;
2367 fts3PoslistPhraseMerge(&pTmp1, nRight, 0, 0, pp1, pp2);
2368 aTmp2 = pTmp2 = pTmp1;
2369 *pp1 = p1;
2370 *pp2 = p2;
2371 fts3PoslistPhraseMerge(&pTmp2, nLeft, 1, 0, pp2, pp1);
2372 if( pTmp1!=aTmp && pTmp2!=aTmp2 ){
2373 fts3PoslistMerge(pp, &aTmp, &aTmp2);
2374 }else if( pTmp1!=aTmp ){
2375 fts3PoslistCopy(pp, &aTmp);
2376 }else if( pTmp2!=aTmp2 ){
2377 fts3PoslistCopy(pp, &aTmp2);
2378 }else{
2379 res = 0;
2382 return res;
2386 ** An instance of this function is used to merge together the (potentially
2387 ** large number of) doclists for each term that matches a prefix query.
2388 ** See function fts3TermSelectMerge() for details.
2390 typedef struct TermSelect TermSelect;
2391 struct TermSelect {
2392 char *aaOutput[16]; /* Malloc'd output buffers */
2393 int anOutput[16]; /* Size each output buffer in bytes */
2397 ** This function is used to read a single varint from a buffer. Parameter
2398 ** pEnd points 1 byte past the end of the buffer. When this function is
2399 ** called, if *pp points to pEnd or greater, then the end of the buffer
2400 ** has been reached. In this case *pp is set to 0 and the function returns.
2402 ** If *pp does not point to or past pEnd, then a single varint is read
2403 ** from *pp. *pp is then set to point 1 byte past the end of the read varint.
2405 ** If bDescIdx is false, the value read is added to *pVal before returning.
2406 ** If it is true, the value read is subtracted from *pVal before this
2407 ** function returns.
2409 static void fts3GetDeltaVarint3(
2410 char **pp, /* IN/OUT: Point to read varint from */
2411 char *pEnd, /* End of buffer */
2412 int bDescIdx, /* True if docids are descending */
2413 sqlite3_int64 *pVal /* IN/OUT: Integer value */
2415 if( *pp>=pEnd ){
2416 *pp = 0;
2417 }else{
2418 sqlite3_int64 iVal;
2419 *pp += sqlite3Fts3GetVarint(*pp, &iVal);
2420 if( bDescIdx ){
2421 *pVal -= iVal;
2422 }else{
2423 *pVal += iVal;
2429 ** This function is used to write a single varint to a buffer. The varint
2430 ** is written to *pp. Before returning, *pp is set to point 1 byte past the
2431 ** end of the value written.
2433 ** If *pbFirst is zero when this function is called, the value written to
2434 ** the buffer is that of parameter iVal.
2436 ** If *pbFirst is non-zero when this function is called, then the value
2437 ** written is either (iVal-*piPrev) (if bDescIdx is zero) or (*piPrev-iVal)
2438 ** (if bDescIdx is non-zero).
2440 ** Before returning, this function always sets *pbFirst to 1 and *piPrev
2441 ** to the value of parameter iVal.
2443 static void fts3PutDeltaVarint3(
2444 char **pp, /* IN/OUT: Output pointer */
2445 int bDescIdx, /* True for descending docids */
2446 sqlite3_int64 *piPrev, /* IN/OUT: Previous value written to list */
2447 int *pbFirst, /* IN/OUT: True after first int written */
2448 sqlite3_int64 iVal /* Write this value to the list */
2450 sqlite3_int64 iWrite;
2451 if( bDescIdx==0 || *pbFirst==0 ){
2452 iWrite = iVal - *piPrev;
2453 }else{
2454 iWrite = *piPrev - iVal;
2456 assert( *pbFirst || *piPrev==0 );
2457 assert( *pbFirst==0 || iWrite>0 );
2458 *pp += sqlite3Fts3PutVarint(*pp, iWrite);
2459 *piPrev = iVal;
2460 *pbFirst = 1;
2465 ** This macro is used by various functions that merge doclists. The two
2466 ** arguments are 64-bit docid values. If the value of the stack variable
2467 ** bDescDoclist is 0 when this macro is invoked, then it returns (i1-i2).
2468 ** Otherwise, (i2-i1).
2470 ** Using this makes it easier to write code that can merge doclists that are
2471 ** sorted in either ascending or descending order.
2473 #define DOCID_CMP(i1, i2) ((bDescDoclist?-1:1) * (i1-i2))
2476 ** This function does an "OR" merge of two doclists (output contains all
2477 ** positions contained in either argument doclist). If the docids in the
2478 ** input doclists are sorted in ascending order, parameter bDescDoclist
2479 ** should be false. If they are sorted in ascending order, it should be
2480 ** passed a non-zero value.
2482 ** If no error occurs, *paOut is set to point at an sqlite3_malloc'd buffer
2483 ** containing the output doclist and SQLITE_OK is returned. In this case
2484 ** *pnOut is set to the number of bytes in the output doclist.
2486 ** If an error occurs, an SQLite error code is returned. The output values
2487 ** are undefined in this case.
2489 static int fts3DoclistOrMerge(
2490 int bDescDoclist, /* True if arguments are desc */
2491 char *a1, int n1, /* First doclist */
2492 char *a2, int n2, /* Second doclist */
2493 char **paOut, int *pnOut /* OUT: Malloc'd doclist */
2495 sqlite3_int64 i1 = 0;
2496 sqlite3_int64 i2 = 0;
2497 sqlite3_int64 iPrev = 0;
2498 char *pEnd1 = &a1[n1];
2499 char *pEnd2 = &a2[n2];
2500 char *p1 = a1;
2501 char *p2 = a2;
2502 char *p;
2503 char *aOut;
2504 int bFirstOut = 0;
2506 *paOut = 0;
2507 *pnOut = 0;
2509 /* Allocate space for the output. Both the input and output doclists
2510 ** are delta encoded. If they are in ascending order (bDescDoclist==0),
2511 ** then the first docid in each list is simply encoded as a varint. For
2512 ** each subsequent docid, the varint stored is the difference between the
2513 ** current and previous docid (a positive number - since the list is in
2514 ** ascending order).
2516 ** The first docid written to the output is therefore encoded using the
2517 ** same number of bytes as it is in whichever of the input lists it is
2518 ** read from. And each subsequent docid read from the same input list
2519 ** consumes either the same or less bytes as it did in the input (since
2520 ** the difference between it and the previous value in the output must
2521 ** be a positive value less than or equal to the delta value read from
2522 ** the input list). The same argument applies to all but the first docid
2523 ** read from the 'other' list. And to the contents of all position lists
2524 ** that will be copied and merged from the input to the output.
2526 ** However, if the first docid copied to the output is a negative number,
2527 ** then the encoding of the first docid from the 'other' input list may
2528 ** be larger in the output than it was in the input (since the delta value
2529 ** may be a larger positive integer than the actual docid).
2531 ** The space required to store the output is therefore the sum of the
2532 ** sizes of the two inputs, plus enough space for exactly one of the input
2533 ** docids to grow.
2535 ** A symetric argument may be made if the doclists are in descending
2536 ** order.
2538 aOut = sqlite3_malloc(n1+n2+FTS3_VARINT_MAX-1);
2539 if( !aOut ) return SQLITE_NOMEM;
2541 p = aOut;
2542 fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1);
2543 fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2);
2544 while( p1 || p2 ){
2545 sqlite3_int64 iDiff = DOCID_CMP(i1, i2);
2547 if( p2 && p1 && iDiff==0 ){
2548 fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1);
2549 fts3PoslistMerge(&p, &p1, &p2);
2550 fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
2551 fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
2552 }else if( !p2 || (p1 && iDiff<0) ){
2553 fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1);
2554 fts3PoslistCopy(&p, &p1);
2555 fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
2556 }else{
2557 fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i2);
2558 fts3PoslistCopy(&p, &p2);
2559 fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
2563 *paOut = aOut;
2564 *pnOut = (int)(p-aOut);
2565 assert( *pnOut<=n1+n2+FTS3_VARINT_MAX-1 );
2566 return SQLITE_OK;
2570 ** This function does a "phrase" merge of two doclists. In a phrase merge,
2571 ** the output contains a copy of each position from the right-hand input
2572 ** doclist for which there is a position in the left-hand input doclist
2573 ** exactly nDist tokens before it.
2575 ** If the docids in the input doclists are sorted in ascending order,
2576 ** parameter bDescDoclist should be false. If they are sorted in ascending
2577 ** order, it should be passed a non-zero value.
2579 ** The right-hand input doclist is overwritten by this function.
2581 static int fts3DoclistPhraseMerge(
2582 int bDescDoclist, /* True if arguments are desc */
2583 int nDist, /* Distance from left to right (1=adjacent) */
2584 char *aLeft, int nLeft, /* Left doclist */
2585 char **paRight, int *pnRight /* IN/OUT: Right/output doclist */
2587 sqlite3_int64 i1 = 0;
2588 sqlite3_int64 i2 = 0;
2589 sqlite3_int64 iPrev = 0;
2590 char *aRight = *paRight;
2591 char *pEnd1 = &aLeft[nLeft];
2592 char *pEnd2 = &aRight[*pnRight];
2593 char *p1 = aLeft;
2594 char *p2 = aRight;
2595 char *p;
2596 int bFirstOut = 0;
2597 char *aOut;
2599 assert( nDist>0 );
2600 if( bDescDoclist ){
2601 aOut = sqlite3_malloc(*pnRight + FTS3_VARINT_MAX);
2602 if( aOut==0 ) return SQLITE_NOMEM;
2603 }else{
2604 aOut = aRight;
2606 p = aOut;
2608 fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1);
2609 fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2);
2611 while( p1 && p2 ){
2612 sqlite3_int64 iDiff = DOCID_CMP(i1, i2);
2613 if( iDiff==0 ){
2614 char *pSave = p;
2615 sqlite3_int64 iPrevSave = iPrev;
2616 int bFirstOutSave = bFirstOut;
2618 fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1);
2619 if( 0==fts3PoslistPhraseMerge(&p, nDist, 0, 1, &p1, &p2) ){
2620 p = pSave;
2621 iPrev = iPrevSave;
2622 bFirstOut = bFirstOutSave;
2624 fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
2625 fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
2626 }else if( iDiff<0 ){
2627 fts3PoslistCopy(0, &p1);
2628 fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
2629 }else{
2630 fts3PoslistCopy(0, &p2);
2631 fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
2635 *pnRight = (int)(p - aOut);
2636 if( bDescDoclist ){
2637 sqlite3_free(aRight);
2638 *paRight = aOut;
2641 return SQLITE_OK;
2645 ** Argument pList points to a position list nList bytes in size. This
2646 ** function checks to see if the position list contains any entries for
2647 ** a token in position 0 (of any column). If so, it writes argument iDelta
2648 ** to the output buffer pOut, followed by a position list consisting only
2649 ** of the entries from pList at position 0, and terminated by an 0x00 byte.
2650 ** The value returned is the number of bytes written to pOut (if any).
2652 int sqlite3Fts3FirstFilter(
2653 sqlite3_int64 iDelta, /* Varint that may be written to pOut */
2654 char *pList, /* Position list (no 0x00 term) */
2655 int nList, /* Size of pList in bytes */
2656 char *pOut /* Write output here */
2658 int nOut = 0;
2659 int bWritten = 0; /* True once iDelta has been written */
2660 char *p = pList;
2661 char *pEnd = &pList[nList];
2663 if( *p!=0x01 ){
2664 if( *p==0x02 ){
2665 nOut += sqlite3Fts3PutVarint(&pOut[nOut], iDelta);
2666 pOut[nOut++] = 0x02;
2667 bWritten = 1;
2669 fts3ColumnlistCopy(0, &p);
2672 while( p<pEnd ){
2673 sqlite3_int64 iCol;
2674 p++;
2675 p += sqlite3Fts3GetVarint(p, &iCol);
2676 if( *p==0x02 ){
2677 if( bWritten==0 ){
2678 nOut += sqlite3Fts3PutVarint(&pOut[nOut], iDelta);
2679 bWritten = 1;
2681 pOut[nOut++] = 0x01;
2682 nOut += sqlite3Fts3PutVarint(&pOut[nOut], iCol);
2683 pOut[nOut++] = 0x02;
2685 fts3ColumnlistCopy(0, &p);
2687 if( bWritten ){
2688 pOut[nOut++] = 0x00;
2691 return nOut;
2696 ** Merge all doclists in the TermSelect.aaOutput[] array into a single
2697 ** doclist stored in TermSelect.aaOutput[0]. If successful, delete all
2698 ** other doclists (except the aaOutput[0] one) and return SQLITE_OK.
2700 ** If an OOM error occurs, return SQLITE_NOMEM. In this case it is
2701 ** the responsibility of the caller to free any doclists left in the
2702 ** TermSelect.aaOutput[] array.
2704 static int fts3TermSelectFinishMerge(Fts3Table *p, TermSelect *pTS){
2705 char *aOut = 0;
2706 int nOut = 0;
2707 int i;
2709 /* Loop through the doclists in the aaOutput[] array. Merge them all
2710 ** into a single doclist.
2712 for(i=0; i<SizeofArray(pTS->aaOutput); i++){
2713 if( pTS->aaOutput[i] ){
2714 if( !aOut ){
2715 aOut = pTS->aaOutput[i];
2716 nOut = pTS->anOutput[i];
2717 pTS->aaOutput[i] = 0;
2718 }else{
2719 int nNew;
2720 char *aNew;
2722 int rc = fts3DoclistOrMerge(p->bDescIdx,
2723 pTS->aaOutput[i], pTS->anOutput[i], aOut, nOut, &aNew, &nNew
2725 if( rc!=SQLITE_OK ){
2726 sqlite3_free(aOut);
2727 return rc;
2730 sqlite3_free(pTS->aaOutput[i]);
2731 sqlite3_free(aOut);
2732 pTS->aaOutput[i] = 0;
2733 aOut = aNew;
2734 nOut = nNew;
2739 pTS->aaOutput[0] = aOut;
2740 pTS->anOutput[0] = nOut;
2741 return SQLITE_OK;
2745 ** Merge the doclist aDoclist/nDoclist into the TermSelect object passed
2746 ** as the first argument. The merge is an "OR" merge (see function
2747 ** fts3DoclistOrMerge() for details).
2749 ** This function is called with the doclist for each term that matches
2750 ** a queried prefix. It merges all these doclists into one, the doclist
2751 ** for the specified prefix. Since there can be a very large number of
2752 ** doclists to merge, the merging is done pair-wise using the TermSelect
2753 ** object.
2755 ** This function returns SQLITE_OK if the merge is successful, or an
2756 ** SQLite error code (SQLITE_NOMEM) if an error occurs.
2758 static int fts3TermSelectMerge(
2759 Fts3Table *p, /* FTS table handle */
2760 TermSelect *pTS, /* TermSelect object to merge into */
2761 char *aDoclist, /* Pointer to doclist */
2762 int nDoclist /* Size of aDoclist in bytes */
2764 if( pTS->aaOutput[0]==0 ){
2765 /* If this is the first term selected, copy the doclist to the output
2766 ** buffer using memcpy().
2768 ** Add FTS3_VARINT_MAX bytes of unused space to the end of the
2769 ** allocation. This is so as to ensure that the buffer is big enough
2770 ** to hold the current doclist AND'd with any other doclist. If the
2771 ** doclists are stored in order=ASC order, this padding would not be
2772 ** required (since the size of [doclistA AND doclistB] is always less
2773 ** than or equal to the size of [doclistA] in that case). But this is
2774 ** not true for order=DESC. For example, a doclist containing (1, -1)
2775 ** may be smaller than (-1), as in the first example the -1 may be stored
2776 ** as a single-byte delta, whereas in the second it must be stored as a
2777 ** FTS3_VARINT_MAX byte varint.
2779 ** Similar padding is added in the fts3DoclistOrMerge() function.
2781 pTS->aaOutput[0] = sqlite3_malloc(nDoclist + FTS3_VARINT_MAX + 1);
2782 pTS->anOutput[0] = nDoclist;
2783 if( pTS->aaOutput[0] ){
2784 memcpy(pTS->aaOutput[0], aDoclist, nDoclist);
2785 }else{
2786 return SQLITE_NOMEM;
2788 }else{
2789 char *aMerge = aDoclist;
2790 int nMerge = nDoclist;
2791 int iOut;
2793 for(iOut=0; iOut<SizeofArray(pTS->aaOutput); iOut++){
2794 if( pTS->aaOutput[iOut]==0 ){
2795 assert( iOut>0 );
2796 pTS->aaOutput[iOut] = aMerge;
2797 pTS->anOutput[iOut] = nMerge;
2798 break;
2799 }else{
2800 char *aNew;
2801 int nNew;
2803 int rc = fts3DoclistOrMerge(p->bDescIdx, aMerge, nMerge,
2804 pTS->aaOutput[iOut], pTS->anOutput[iOut], &aNew, &nNew
2806 if( rc!=SQLITE_OK ){
2807 if( aMerge!=aDoclist ) sqlite3_free(aMerge);
2808 return rc;
2811 if( aMerge!=aDoclist ) sqlite3_free(aMerge);
2812 sqlite3_free(pTS->aaOutput[iOut]);
2813 pTS->aaOutput[iOut] = 0;
2815 aMerge = aNew;
2816 nMerge = nNew;
2817 if( (iOut+1)==SizeofArray(pTS->aaOutput) ){
2818 pTS->aaOutput[iOut] = aMerge;
2819 pTS->anOutput[iOut] = nMerge;
2824 return SQLITE_OK;
2828 ** Append SegReader object pNew to the end of the pCsr->apSegment[] array.
2830 static int fts3SegReaderCursorAppend(
2831 Fts3MultiSegReader *pCsr,
2832 Fts3SegReader *pNew
2834 if( (pCsr->nSegment%16)==0 ){
2835 Fts3SegReader **apNew;
2836 int nByte = (pCsr->nSegment + 16)*sizeof(Fts3SegReader*);
2837 apNew = (Fts3SegReader **)sqlite3_realloc(pCsr->apSegment, nByte);
2838 if( !apNew ){
2839 sqlite3Fts3SegReaderFree(pNew);
2840 return SQLITE_NOMEM;
2842 pCsr->apSegment = apNew;
2844 pCsr->apSegment[pCsr->nSegment++] = pNew;
2845 return SQLITE_OK;
2849 ** Add seg-reader objects to the Fts3MultiSegReader object passed as the
2850 ** 8th argument.
2852 ** This function returns SQLITE_OK if successful, or an SQLite error code
2853 ** otherwise.
2855 static int fts3SegReaderCursor(
2856 Fts3Table *p, /* FTS3 table handle */
2857 int iLangid, /* Language id */
2858 int iIndex, /* Index to search (from 0 to p->nIndex-1) */
2859 int iLevel, /* Level of segments to scan */
2860 const char *zTerm, /* Term to query for */
2861 int nTerm, /* Size of zTerm in bytes */
2862 int isPrefix, /* True for a prefix search */
2863 int isScan, /* True to scan from zTerm to EOF */
2864 Fts3MultiSegReader *pCsr /* Cursor object to populate */
2866 int rc = SQLITE_OK; /* Error code */
2867 sqlite3_stmt *pStmt = 0; /* Statement to iterate through segments */
2868 int rc2; /* Result of sqlite3_reset() */
2870 /* If iLevel is less than 0 and this is not a scan, include a seg-reader
2871 ** for the pending-terms. If this is a scan, then this call must be being
2872 ** made by an fts4aux module, not an FTS table. In this case calling
2873 ** Fts3SegReaderPending might segfault, as the data structures used by
2874 ** fts4aux are not completely populated. So it's easiest to filter these
2875 ** calls out here. */
2876 if( iLevel<0 && p->aIndex ){
2877 Fts3SegReader *pSeg = 0;
2878 rc = sqlite3Fts3SegReaderPending(p, iIndex, zTerm, nTerm, isPrefix||isScan, &pSeg);
2879 if( rc==SQLITE_OK && pSeg ){
2880 rc = fts3SegReaderCursorAppend(pCsr, pSeg);
2884 if( iLevel!=FTS3_SEGCURSOR_PENDING ){
2885 if( rc==SQLITE_OK ){
2886 rc = sqlite3Fts3AllSegdirs(p, iLangid, iIndex, iLevel, &pStmt);
2889 while( rc==SQLITE_OK && SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){
2890 Fts3SegReader *pSeg = 0;
2892 /* Read the values returned by the SELECT into local variables. */
2893 sqlite3_int64 iStartBlock = sqlite3_column_int64(pStmt, 1);
2894 sqlite3_int64 iLeavesEndBlock = sqlite3_column_int64(pStmt, 2);
2895 sqlite3_int64 iEndBlock = sqlite3_column_int64(pStmt, 3);
2896 int nRoot = sqlite3_column_bytes(pStmt, 4);
2897 char const *zRoot = sqlite3_column_blob(pStmt, 4);
2899 /* If zTerm is not NULL, and this segment is not stored entirely on its
2900 ** root node, the range of leaves scanned can be reduced. Do this. */
2901 if( iStartBlock && zTerm ){
2902 sqlite3_int64 *pi = (isPrefix ? &iLeavesEndBlock : 0);
2903 rc = fts3SelectLeaf(p, zTerm, nTerm, zRoot, nRoot, &iStartBlock, pi);
2904 if( rc!=SQLITE_OK ) goto finished;
2905 if( isPrefix==0 && isScan==0 ) iLeavesEndBlock = iStartBlock;
2908 rc = sqlite3Fts3SegReaderNew(pCsr->nSegment+1,
2909 (isPrefix==0 && isScan==0),
2910 iStartBlock, iLeavesEndBlock,
2911 iEndBlock, zRoot, nRoot, &pSeg
2913 if( rc!=SQLITE_OK ) goto finished;
2914 rc = fts3SegReaderCursorAppend(pCsr, pSeg);
2918 finished:
2919 rc2 = sqlite3_reset(pStmt);
2920 if( rc==SQLITE_DONE ) rc = rc2;
2922 return rc;
2926 ** Set up a cursor object for iterating through a full-text index or a
2927 ** single level therein.
2929 int sqlite3Fts3SegReaderCursor(
2930 Fts3Table *p, /* FTS3 table handle */
2931 int iLangid, /* Language-id to search */
2932 int iIndex, /* Index to search (from 0 to p->nIndex-1) */
2933 int iLevel, /* Level of segments to scan */
2934 const char *zTerm, /* Term to query for */
2935 int nTerm, /* Size of zTerm in bytes */
2936 int isPrefix, /* True for a prefix search */
2937 int isScan, /* True to scan from zTerm to EOF */
2938 Fts3MultiSegReader *pCsr /* Cursor object to populate */
2940 assert( iIndex>=0 && iIndex<p->nIndex );
2941 assert( iLevel==FTS3_SEGCURSOR_ALL
2942 || iLevel==FTS3_SEGCURSOR_PENDING
2943 || iLevel>=0
2945 assert( iLevel<FTS3_SEGDIR_MAXLEVEL );
2946 assert( FTS3_SEGCURSOR_ALL<0 && FTS3_SEGCURSOR_PENDING<0 );
2947 assert( isPrefix==0 || isScan==0 );
2949 memset(pCsr, 0, sizeof(Fts3MultiSegReader));
2950 return fts3SegReaderCursor(
2951 p, iLangid, iIndex, iLevel, zTerm, nTerm, isPrefix, isScan, pCsr
2956 ** In addition to its current configuration, have the Fts3MultiSegReader
2957 ** passed as the 4th argument also scan the doclist for term zTerm/nTerm.
2959 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
2961 static int fts3SegReaderCursorAddZero(
2962 Fts3Table *p, /* FTS virtual table handle */
2963 int iLangid,
2964 const char *zTerm, /* Term to scan doclist of */
2965 int nTerm, /* Number of bytes in zTerm */
2966 Fts3MultiSegReader *pCsr /* Fts3MultiSegReader to modify */
2968 return fts3SegReaderCursor(p,
2969 iLangid, 0, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 0, 0,pCsr
2974 ** Open an Fts3MultiSegReader to scan the doclist for term zTerm/nTerm. Or,
2975 ** if isPrefix is true, to scan the doclist for all terms for which
2976 ** zTerm/nTerm is a prefix. If successful, return SQLITE_OK and write
2977 ** a pointer to the new Fts3MultiSegReader to *ppSegcsr. Otherwise, return
2978 ** an SQLite error code.
2980 ** It is the responsibility of the caller to free this object by eventually
2981 ** passing it to fts3SegReaderCursorFree()
2983 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
2984 ** Output parameter *ppSegcsr is set to 0 if an error occurs.
2986 static int fts3TermSegReaderCursor(
2987 Fts3Cursor *pCsr, /* Virtual table cursor handle */
2988 const char *zTerm, /* Term to query for */
2989 int nTerm, /* Size of zTerm in bytes */
2990 int isPrefix, /* True for a prefix search */
2991 Fts3MultiSegReader **ppSegcsr /* OUT: Allocated seg-reader cursor */
2993 Fts3MultiSegReader *pSegcsr; /* Object to allocate and return */
2994 int rc = SQLITE_NOMEM; /* Return code */
2996 pSegcsr = sqlite3_malloc(sizeof(Fts3MultiSegReader));
2997 if( pSegcsr ){
2998 int i;
2999 int bFound = 0; /* True once an index has been found */
3000 Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
3002 if( isPrefix ){
3003 for(i=1; bFound==0 && i<p->nIndex; i++){
3004 if( p->aIndex[i].nPrefix==nTerm ){
3005 bFound = 1;
3006 rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid,
3007 i, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 0, 0, pSegcsr
3009 pSegcsr->bLookup = 1;
3013 for(i=1; bFound==0 && i<p->nIndex; i++){
3014 if( p->aIndex[i].nPrefix==nTerm+1 ){
3015 bFound = 1;
3016 rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid,
3017 i, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 1, 0, pSegcsr
3019 if( rc==SQLITE_OK ){
3020 rc = fts3SegReaderCursorAddZero(
3021 p, pCsr->iLangid, zTerm, nTerm, pSegcsr
3028 if( bFound==0 ){
3029 rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid,
3030 0, FTS3_SEGCURSOR_ALL, zTerm, nTerm, isPrefix, 0, pSegcsr
3032 pSegcsr->bLookup = !isPrefix;
3036 *ppSegcsr = pSegcsr;
3037 return rc;
3041 ** Free an Fts3MultiSegReader allocated by fts3TermSegReaderCursor().
3043 static void fts3SegReaderCursorFree(Fts3MultiSegReader *pSegcsr){
3044 sqlite3Fts3SegReaderFinish(pSegcsr);
3045 sqlite3_free(pSegcsr);
3049 ** This function retrieves the doclist for the specified term (or term
3050 ** prefix) from the database.
3052 static int fts3TermSelect(
3053 Fts3Table *p, /* Virtual table handle */
3054 Fts3PhraseToken *pTok, /* Token to query for */
3055 int iColumn, /* Column to query (or -ve for all columns) */
3056 int *pnOut, /* OUT: Size of buffer at *ppOut */
3057 char **ppOut /* OUT: Malloced result buffer */
3059 int rc; /* Return code */
3060 Fts3MultiSegReader *pSegcsr; /* Seg-reader cursor for this term */
3061 TermSelect tsc; /* Object for pair-wise doclist merging */
3062 Fts3SegFilter filter; /* Segment term filter configuration */
3064 pSegcsr = pTok->pSegcsr;
3065 memset(&tsc, 0, sizeof(TermSelect));
3067 filter.flags = FTS3_SEGMENT_IGNORE_EMPTY | FTS3_SEGMENT_REQUIRE_POS
3068 | (pTok->isPrefix ? FTS3_SEGMENT_PREFIX : 0)
3069 | (pTok->bFirst ? FTS3_SEGMENT_FIRST : 0)
3070 | (iColumn<p->nColumn ? FTS3_SEGMENT_COLUMN_FILTER : 0);
3071 filter.iCol = iColumn;
3072 filter.zTerm = pTok->z;
3073 filter.nTerm = pTok->n;
3075 rc = sqlite3Fts3SegReaderStart(p, pSegcsr, &filter);
3076 while( SQLITE_OK==rc
3077 && SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pSegcsr))
3079 rc = fts3TermSelectMerge(p, &tsc, pSegcsr->aDoclist, pSegcsr->nDoclist);
3082 if( rc==SQLITE_OK ){
3083 rc = fts3TermSelectFinishMerge(p, &tsc);
3085 if( rc==SQLITE_OK ){
3086 *ppOut = tsc.aaOutput[0];
3087 *pnOut = tsc.anOutput[0];
3088 }else{
3089 int i;
3090 for(i=0; i<SizeofArray(tsc.aaOutput); i++){
3091 sqlite3_free(tsc.aaOutput[i]);
3095 fts3SegReaderCursorFree(pSegcsr);
3096 pTok->pSegcsr = 0;
3097 return rc;
3101 ** This function counts the total number of docids in the doclist stored
3102 ** in buffer aList[], size nList bytes.
3104 ** If the isPoslist argument is true, then it is assumed that the doclist
3105 ** contains a position-list following each docid. Otherwise, it is assumed
3106 ** that the doclist is simply a list of docids stored as delta encoded
3107 ** varints.
3109 static int fts3DoclistCountDocids(char *aList, int nList){
3110 int nDoc = 0; /* Return value */
3111 if( aList ){
3112 char *aEnd = &aList[nList]; /* Pointer to one byte after EOF */
3113 char *p = aList; /* Cursor */
3114 while( p<aEnd ){
3115 nDoc++;
3116 while( (*p++)&0x80 ); /* Skip docid varint */
3117 fts3PoslistCopy(0, &p); /* Skip over position list */
3121 return nDoc;
3125 ** Advance the cursor to the next row in the %_content table that
3126 ** matches the search criteria. For a MATCH search, this will be
3127 ** the next row that matches. For a full-table scan, this will be
3128 ** simply the next row in the %_content table. For a docid lookup,
3129 ** this routine simply sets the EOF flag.
3131 ** Return SQLITE_OK if nothing goes wrong. SQLITE_OK is returned
3132 ** even if we reach end-of-file. The fts3EofMethod() will be called
3133 ** subsequently to determine whether or not an EOF was hit.
3135 static int fts3NextMethod(sqlite3_vtab_cursor *pCursor){
3136 int rc;
3137 Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
3138 if( pCsr->eSearch==FTS3_DOCID_SEARCH || pCsr->eSearch==FTS3_FULLSCAN_SEARCH ){
3139 if( SQLITE_ROW!=sqlite3_step(pCsr->pStmt) ){
3140 pCsr->isEof = 1;
3141 rc = sqlite3_reset(pCsr->pStmt);
3142 }else{
3143 pCsr->iPrevId = sqlite3_column_int64(pCsr->pStmt, 0);
3144 rc = SQLITE_OK;
3146 }else{
3147 rc = fts3EvalNext((Fts3Cursor *)pCursor);
3149 assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
3150 return rc;
3154 ** The following are copied from sqliteInt.h.
3156 ** Constants for the largest and smallest possible 64-bit signed integers.
3157 ** These macros are designed to work correctly on both 32-bit and 64-bit
3158 ** compilers.
3160 #ifndef SQLITE_AMALGAMATION
3161 # define LARGEST_INT64 (0xffffffff|(((sqlite3_int64)0x7fffffff)<<32))
3162 # define SMALLEST_INT64 (((sqlite3_int64)-1) - LARGEST_INT64)
3163 #endif
3166 ** If the numeric type of argument pVal is "integer", then return it
3167 ** converted to a 64-bit signed integer. Otherwise, return a copy of
3168 ** the second parameter, iDefault.
3170 static sqlite3_int64 fts3DocidRange(sqlite3_value *pVal, i64 iDefault){
3171 if( pVal ){
3172 int eType = sqlite3_value_numeric_type(pVal);
3173 if( eType==SQLITE_INTEGER ){
3174 return sqlite3_value_int64(pVal);
3177 return iDefault;
3181 ** This is the xFilter interface for the virtual table. See
3182 ** the virtual table xFilter method documentation for additional
3183 ** information.
3185 ** If idxNum==FTS3_FULLSCAN_SEARCH then do a full table scan against
3186 ** the %_content table.
3188 ** If idxNum==FTS3_DOCID_SEARCH then do a docid lookup for a single entry
3189 ** in the %_content table.
3191 ** If idxNum>=FTS3_FULLTEXT_SEARCH then use the full text index. The
3192 ** column on the left-hand side of the MATCH operator is column
3193 ** number idxNum-FTS3_FULLTEXT_SEARCH, 0 indexed. argv[0] is the right-hand
3194 ** side of the MATCH operator.
3196 static int fts3FilterMethod(
3197 sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */
3198 int idxNum, /* Strategy index */
3199 const char *idxStr, /* Unused */
3200 int nVal, /* Number of elements in apVal */
3201 sqlite3_value **apVal /* Arguments for the indexing scheme */
3203 int rc = SQLITE_OK;
3204 char *zSql; /* SQL statement used to access %_content */
3205 int eSearch;
3206 Fts3Table *p = (Fts3Table *)pCursor->pVtab;
3207 Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
3209 sqlite3_value *pCons = 0; /* The MATCH or rowid constraint, if any */
3210 sqlite3_value *pLangid = 0; /* The "langid = ?" constraint, if any */
3211 sqlite3_value *pDocidGe = 0; /* The "docid >= ?" constraint, if any */
3212 sqlite3_value *pDocidLe = 0; /* The "docid <= ?" constraint, if any */
3213 int iIdx;
3215 UNUSED_PARAMETER(idxStr);
3216 UNUSED_PARAMETER(nVal);
3218 eSearch = (idxNum & 0x0000FFFF);
3219 assert( eSearch>=0 && eSearch<=(FTS3_FULLTEXT_SEARCH+p->nColumn) );
3220 assert( p->pSegments==0 );
3222 /* Collect arguments into local variables */
3223 iIdx = 0;
3224 if( eSearch!=FTS3_FULLSCAN_SEARCH ) pCons = apVal[iIdx++];
3225 if( idxNum & FTS3_HAVE_LANGID ) pLangid = apVal[iIdx++];
3226 if( idxNum & FTS3_HAVE_DOCID_GE ) pDocidGe = apVal[iIdx++];
3227 if( idxNum & FTS3_HAVE_DOCID_LE ) pDocidLe = apVal[iIdx++];
3228 assert( iIdx==nVal );
3230 /* In case the cursor has been used before, clear it now. */
3231 fts3ClearCursor(pCsr);
3233 /* Set the lower and upper bounds on docids to return */
3234 pCsr->iMinDocid = fts3DocidRange(pDocidGe, SMALLEST_INT64);
3235 pCsr->iMaxDocid = fts3DocidRange(pDocidLe, LARGEST_INT64);
3237 if( idxStr ){
3238 pCsr->bDesc = (idxStr[0]=='D');
3239 }else{
3240 pCsr->bDesc = p->bDescIdx;
3242 pCsr->eSearch = (i16)eSearch;
3244 if( eSearch!=FTS3_DOCID_SEARCH && eSearch!=FTS3_FULLSCAN_SEARCH ){
3245 int iCol = eSearch-FTS3_FULLTEXT_SEARCH;
3246 const char *zQuery = (const char *)sqlite3_value_text(pCons);
3248 if( zQuery==0 && sqlite3_value_type(pCons)!=SQLITE_NULL ){
3249 return SQLITE_NOMEM;
3252 pCsr->iLangid = 0;
3253 if( pLangid ) pCsr->iLangid = sqlite3_value_int(pLangid);
3255 assert( p->base.zErrMsg==0 );
3256 rc = sqlite3Fts3ExprParse(p->pTokenizer, pCsr->iLangid,
3257 p->azColumn, p->bFts4, p->nColumn, iCol, zQuery, -1, &pCsr->pExpr,
3258 &p->base.zErrMsg
3260 if( rc!=SQLITE_OK ){
3261 return rc;
3264 rc = fts3EvalStart(pCsr);
3265 sqlite3Fts3SegmentsClose(p);
3266 if( rc!=SQLITE_OK ) return rc;
3267 pCsr->pNextId = pCsr->aDoclist;
3268 pCsr->iPrevId = 0;
3271 /* Compile a SELECT statement for this cursor. For a full-table-scan, the
3272 ** statement loops through all rows of the %_content table. For a
3273 ** full-text query or docid lookup, the statement retrieves a single
3274 ** row by docid.
3276 if( eSearch==FTS3_FULLSCAN_SEARCH ){
3277 if( pDocidGe || pDocidLe ){
3278 zSql = sqlite3_mprintf(
3279 "SELECT %s WHERE rowid BETWEEN %lld AND %lld ORDER BY rowid %s",
3280 p->zReadExprlist, pCsr->iMinDocid, pCsr->iMaxDocid,
3281 (pCsr->bDesc ? "DESC" : "ASC")
3283 }else{
3284 zSql = sqlite3_mprintf("SELECT %s ORDER BY rowid %s",
3285 p->zReadExprlist, (pCsr->bDesc ? "DESC" : "ASC")
3288 if( zSql ){
3289 rc = sqlite3_prepare_v3(p->db,zSql,-1,SQLITE_PREPARE_PERSISTENT,&pCsr->pStmt,0);
3290 sqlite3_free(zSql);
3291 }else{
3292 rc = SQLITE_NOMEM;
3294 }else if( eSearch==FTS3_DOCID_SEARCH ){
3295 rc = fts3CursorSeekStmt(pCsr);
3296 if( rc==SQLITE_OK ){
3297 rc = sqlite3_bind_value(pCsr->pStmt, 1, pCons);
3300 if( rc!=SQLITE_OK ) return rc;
3302 return fts3NextMethod(pCursor);
3306 ** This is the xEof method of the virtual table. SQLite calls this
3307 ** routine to find out if it has reached the end of a result set.
3309 static int fts3EofMethod(sqlite3_vtab_cursor *pCursor){
3310 Fts3Cursor *pCsr = (Fts3Cursor*)pCursor;
3311 if( pCsr->isEof ){
3312 fts3ClearCursor(pCsr);
3313 pCsr->isEof = 1;
3315 return pCsr->isEof;
3319 ** This is the xRowid method. The SQLite core calls this routine to
3320 ** retrieve the rowid for the current row of the result set. fts3
3321 ** exposes %_content.docid as the rowid for the virtual table. The
3322 ** rowid should be written to *pRowid.
3324 static int fts3RowidMethod(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
3325 Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
3326 *pRowid = pCsr->iPrevId;
3327 return SQLITE_OK;
3331 ** This is the xColumn method, called by SQLite to request a value from
3332 ** the row that the supplied cursor currently points to.
3334 ** If:
3336 ** (iCol < p->nColumn) -> The value of the iCol'th user column.
3337 ** (iCol == p->nColumn) -> Magic column with the same name as the table.
3338 ** (iCol == p->nColumn+1) -> Docid column
3339 ** (iCol == p->nColumn+2) -> Langid column
3341 static int fts3ColumnMethod(
3342 sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */
3343 sqlite3_context *pCtx, /* Context for sqlite3_result_xxx() calls */
3344 int iCol /* Index of column to read value from */
3346 int rc = SQLITE_OK; /* Return Code */
3347 Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
3348 Fts3Table *p = (Fts3Table *)pCursor->pVtab;
3350 /* The column value supplied by SQLite must be in range. */
3351 assert( iCol>=0 && iCol<=p->nColumn+2 );
3353 switch( iCol-p->nColumn ){
3354 case 0:
3355 /* The special 'table-name' column */
3356 sqlite3_result_pointer(pCtx, pCsr, "fts3cursor", 0);
3357 break;
3359 case 1:
3360 /* The docid column */
3361 sqlite3_result_int64(pCtx, pCsr->iPrevId);
3362 break;
3364 case 2:
3365 if( pCsr->pExpr ){
3366 sqlite3_result_int64(pCtx, pCsr->iLangid);
3367 break;
3368 }else if( p->zLanguageid==0 ){
3369 sqlite3_result_int(pCtx, 0);
3370 break;
3371 }else{
3372 iCol = p->nColumn;
3373 /* fall-through */
3376 default:
3377 /* A user column. Or, if this is a full-table scan, possibly the
3378 ** language-id column. Seek the cursor. */
3379 rc = fts3CursorSeek(0, pCsr);
3380 if( rc==SQLITE_OK && sqlite3_data_count(pCsr->pStmt)-1>iCol ){
3381 sqlite3_result_value(pCtx, sqlite3_column_value(pCsr->pStmt, iCol+1));
3383 break;
3386 assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
3387 return rc;
3391 ** This function is the implementation of the xUpdate callback used by
3392 ** FTS3 virtual tables. It is invoked by SQLite each time a row is to be
3393 ** inserted, updated or deleted.
3395 static int fts3UpdateMethod(
3396 sqlite3_vtab *pVtab, /* Virtual table handle */
3397 int nArg, /* Size of argument array */
3398 sqlite3_value **apVal, /* Array of arguments */
3399 sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */
3401 return sqlite3Fts3UpdateMethod(pVtab, nArg, apVal, pRowid);
3405 ** Implementation of xSync() method. Flush the contents of the pending-terms
3406 ** hash-table to the database.
3408 static int fts3SyncMethod(sqlite3_vtab *pVtab){
3410 /* Following an incremental-merge operation, assuming that the input
3411 ** segments are not completely consumed (the usual case), they are updated
3412 ** in place to remove the entries that have already been merged. This
3413 ** involves updating the leaf block that contains the smallest unmerged
3414 ** entry and each block (if any) between the leaf and the root node. So
3415 ** if the height of the input segment b-trees is N, and input segments
3416 ** are merged eight at a time, updating the input segments at the end
3417 ** of an incremental-merge requires writing (8*(1+N)) blocks. N is usually
3418 ** small - often between 0 and 2. So the overhead of the incremental
3419 ** merge is somewhere between 8 and 24 blocks. To avoid this overhead
3420 ** dwarfing the actual productive work accomplished, the incremental merge
3421 ** is only attempted if it will write at least 64 leaf blocks. Hence
3422 ** nMinMerge.
3424 ** Of course, updating the input segments also involves deleting a bunch
3425 ** of blocks from the segments table. But this is not considered overhead
3426 ** as it would also be required by a crisis-merge that used the same input
3427 ** segments.
3429 const u32 nMinMerge = 64; /* Minimum amount of incr-merge work to do */
3431 Fts3Table *p = (Fts3Table*)pVtab;
3432 int rc;
3433 i64 iLastRowid = sqlite3_last_insert_rowid(p->db);
3435 rc = sqlite3Fts3PendingTermsFlush(p);
3436 if( rc==SQLITE_OK
3437 && p->nLeafAdd>(nMinMerge/16)
3438 && p->nAutoincrmerge && p->nAutoincrmerge!=0xff
3440 int mxLevel = 0; /* Maximum relative level value in db */
3441 int A; /* Incr-merge parameter A */
3443 rc = sqlite3Fts3MaxLevel(p, &mxLevel);
3444 assert( rc==SQLITE_OK || mxLevel==0 );
3445 A = p->nLeafAdd * mxLevel;
3446 A += (A/2);
3447 if( A>(int)nMinMerge ) rc = sqlite3Fts3Incrmerge(p, A, p->nAutoincrmerge);
3449 sqlite3Fts3SegmentsClose(p);
3450 sqlite3_set_last_insert_rowid(p->db, iLastRowid);
3451 return rc;
3455 ** If it is currently unknown whether or not the FTS table has an %_stat
3456 ** table (if p->bHasStat==2), attempt to determine this (set p->bHasStat
3457 ** to 0 or 1). Return SQLITE_OK if successful, or an SQLite error code
3458 ** if an error occurs.
3460 static int fts3SetHasStat(Fts3Table *p){
3461 int rc = SQLITE_OK;
3462 if( p->bHasStat==2 ){
3463 char *zTbl = sqlite3_mprintf("%s_stat", p->zName);
3464 if( zTbl ){
3465 int res = sqlite3_table_column_metadata(p->db, p->zDb, zTbl, 0,0,0,0,0,0);
3466 sqlite3_free(zTbl);
3467 p->bHasStat = (res==SQLITE_OK);
3468 }else{
3469 rc = SQLITE_NOMEM;
3472 return rc;
3476 ** Implementation of xBegin() method.
3478 static int fts3BeginMethod(sqlite3_vtab *pVtab){
3479 Fts3Table *p = (Fts3Table*)pVtab;
3480 UNUSED_PARAMETER(pVtab);
3481 assert( p->pSegments==0 );
3482 assert( p->nPendingData==0 );
3483 assert( p->inTransaction!=1 );
3484 TESTONLY( p->inTransaction = 1 );
3485 TESTONLY( p->mxSavepoint = -1; );
3486 p->nLeafAdd = 0;
3487 return fts3SetHasStat(p);
3491 ** Implementation of xCommit() method. This is a no-op. The contents of
3492 ** the pending-terms hash-table have already been flushed into the database
3493 ** by fts3SyncMethod().
3495 static int fts3CommitMethod(sqlite3_vtab *pVtab){
3496 TESTONLY( Fts3Table *p = (Fts3Table*)pVtab );
3497 UNUSED_PARAMETER(pVtab);
3498 assert( p->nPendingData==0 );
3499 assert( p->inTransaction!=0 );
3500 assert( p->pSegments==0 );
3501 TESTONLY( p->inTransaction = 0 );
3502 TESTONLY( p->mxSavepoint = -1; );
3503 return SQLITE_OK;
3507 ** Implementation of xRollback(). Discard the contents of the pending-terms
3508 ** hash-table. Any changes made to the database are reverted by SQLite.
3510 static int fts3RollbackMethod(sqlite3_vtab *pVtab){
3511 Fts3Table *p = (Fts3Table*)pVtab;
3512 sqlite3Fts3PendingTermsClear(p);
3513 assert( p->inTransaction!=0 );
3514 TESTONLY( p->inTransaction = 0 );
3515 TESTONLY( p->mxSavepoint = -1; );
3516 return SQLITE_OK;
3520 ** When called, *ppPoslist must point to the byte immediately following the
3521 ** end of a position-list. i.e. ( (*ppPoslist)[-1]==POS_END ). This function
3522 ** moves *ppPoslist so that it instead points to the first byte of the
3523 ** same position list.
3525 static void fts3ReversePoslist(char *pStart, char **ppPoslist){
3526 char *p = &(*ppPoslist)[-2];
3527 char c = 0;
3529 /* Skip backwards passed any trailing 0x00 bytes added by NearTrim() */
3530 while( p>pStart && (c=*p--)==0 );
3532 /* Search backwards for a varint with value zero (the end of the previous
3533 ** poslist). This is an 0x00 byte preceded by some byte that does not
3534 ** have the 0x80 bit set. */
3535 while( p>pStart && (*p & 0x80) | c ){
3536 c = *p--;
3538 assert( p==pStart || c==0 );
3540 /* At this point p points to that preceding byte without the 0x80 bit
3541 ** set. So to find the start of the poslist, skip forward 2 bytes then
3542 ** over a varint.
3544 ** Normally. The other case is that p==pStart and the poslist to return
3545 ** is the first in the doclist. In this case do not skip forward 2 bytes.
3546 ** The second part of the if condition (c==0 && *ppPoslist>&p[2])
3547 ** is required for cases where the first byte of a doclist and the
3548 ** doclist is empty. For example, if the first docid is 10, a doclist
3549 ** that begins with:
3551 ** 0x0A 0x00 <next docid delta varint>
3553 if( p>pStart || (c==0 && *ppPoslist>&p[2]) ){ p = &p[2]; }
3554 while( *p++&0x80 );
3555 *ppPoslist = p;
3559 ** Helper function used by the implementation of the overloaded snippet(),
3560 ** offsets() and optimize() SQL functions.
3562 ** If the value passed as the third argument is a blob of size
3563 ** sizeof(Fts3Cursor*), then the blob contents are copied to the
3564 ** output variable *ppCsr and SQLITE_OK is returned. Otherwise, an error
3565 ** message is written to context pContext and SQLITE_ERROR returned. The
3566 ** string passed via zFunc is used as part of the error message.
3568 static int fts3FunctionArg(
3569 sqlite3_context *pContext, /* SQL function call context */
3570 const char *zFunc, /* Function name */
3571 sqlite3_value *pVal, /* argv[0] passed to function */
3572 Fts3Cursor **ppCsr /* OUT: Store cursor handle here */
3574 int rc;
3575 *ppCsr = (Fts3Cursor*)sqlite3_value_pointer(pVal, "fts3cursor");
3576 if( (*ppCsr)!=0 ){
3577 rc = SQLITE_OK;
3578 }else{
3579 char *zErr = sqlite3_mprintf("illegal first argument to %s", zFunc);
3580 sqlite3_result_error(pContext, zErr, -1);
3581 sqlite3_free(zErr);
3582 rc = SQLITE_ERROR;
3584 return rc;
3588 ** Implementation of the snippet() function for FTS3
3590 static void fts3SnippetFunc(
3591 sqlite3_context *pContext, /* SQLite function call context */
3592 int nVal, /* Size of apVal[] array */
3593 sqlite3_value **apVal /* Array of arguments */
3595 Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */
3596 const char *zStart = "<b>";
3597 const char *zEnd = "</b>";
3598 const char *zEllipsis = "<b>...</b>";
3599 int iCol = -1;
3600 int nToken = 15; /* Default number of tokens in snippet */
3602 /* There must be at least one argument passed to this function (otherwise
3603 ** the non-overloaded version would have been called instead of this one).
3605 assert( nVal>=1 );
3607 if( nVal>6 ){
3608 sqlite3_result_error(pContext,
3609 "wrong number of arguments to function snippet()", -1);
3610 return;
3612 if( fts3FunctionArg(pContext, "snippet", apVal[0], &pCsr) ) return;
3614 switch( nVal ){
3615 case 6: nToken = sqlite3_value_int(apVal[5]);
3616 case 5: iCol = sqlite3_value_int(apVal[4]);
3617 case 4: zEllipsis = (const char*)sqlite3_value_text(apVal[3]);
3618 case 3: zEnd = (const char*)sqlite3_value_text(apVal[2]);
3619 case 2: zStart = (const char*)sqlite3_value_text(apVal[1]);
3621 if( !zEllipsis || !zEnd || !zStart ){
3622 sqlite3_result_error_nomem(pContext);
3623 }else if( nToken==0 ){
3624 sqlite3_result_text(pContext, "", -1, SQLITE_STATIC);
3625 }else if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){
3626 sqlite3Fts3Snippet(pContext, pCsr, zStart, zEnd, zEllipsis, iCol, nToken);
3631 ** Implementation of the offsets() function for FTS3
3633 static void fts3OffsetsFunc(
3634 sqlite3_context *pContext, /* SQLite function call context */
3635 int nVal, /* Size of argument array */
3636 sqlite3_value **apVal /* Array of arguments */
3638 Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */
3640 UNUSED_PARAMETER(nVal);
3642 assert( nVal==1 );
3643 if( fts3FunctionArg(pContext, "offsets", apVal[0], &pCsr) ) return;
3644 assert( pCsr );
3645 if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){
3646 sqlite3Fts3Offsets(pContext, pCsr);
3651 ** Implementation of the special optimize() function for FTS3. This
3652 ** function merges all segments in the database to a single segment.
3653 ** Example usage is:
3655 ** SELECT optimize(t) FROM t LIMIT 1;
3657 ** where 't' is the name of an FTS3 table.
3659 static void fts3OptimizeFunc(
3660 sqlite3_context *pContext, /* SQLite function call context */
3661 int nVal, /* Size of argument array */
3662 sqlite3_value **apVal /* Array of arguments */
3664 int rc; /* Return code */
3665 Fts3Table *p; /* Virtual table handle */
3666 Fts3Cursor *pCursor; /* Cursor handle passed through apVal[0] */
3668 UNUSED_PARAMETER(nVal);
3670 assert( nVal==1 );
3671 if( fts3FunctionArg(pContext, "optimize", apVal[0], &pCursor) ) return;
3672 p = (Fts3Table *)pCursor->base.pVtab;
3673 assert( p );
3675 rc = sqlite3Fts3Optimize(p);
3677 switch( rc ){
3678 case SQLITE_OK:
3679 sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC);
3680 break;
3681 case SQLITE_DONE:
3682 sqlite3_result_text(pContext, "Index already optimal", -1, SQLITE_STATIC);
3683 break;
3684 default:
3685 sqlite3_result_error_code(pContext, rc);
3686 break;
3691 ** Implementation of the matchinfo() function for FTS3
3693 static void fts3MatchinfoFunc(
3694 sqlite3_context *pContext, /* SQLite function call context */
3695 int nVal, /* Size of argument array */
3696 sqlite3_value **apVal /* Array of arguments */
3698 Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */
3699 assert( nVal==1 || nVal==2 );
3700 if( SQLITE_OK==fts3FunctionArg(pContext, "matchinfo", apVal[0], &pCsr) ){
3701 const char *zArg = 0;
3702 if( nVal>1 ){
3703 zArg = (const char *)sqlite3_value_text(apVal[1]);
3705 sqlite3Fts3Matchinfo(pContext, pCsr, zArg);
3710 ** This routine implements the xFindFunction method for the FTS3
3711 ** virtual table.
3713 static int fts3FindFunctionMethod(
3714 sqlite3_vtab *pVtab, /* Virtual table handle */
3715 int nArg, /* Number of SQL function arguments */
3716 const char *zName, /* Name of SQL function */
3717 void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), /* OUT: Result */
3718 void **ppArg /* Unused */
3720 struct Overloaded {
3721 const char *zName;
3722 void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
3723 } aOverload[] = {
3724 { "snippet", fts3SnippetFunc },
3725 { "offsets", fts3OffsetsFunc },
3726 { "optimize", fts3OptimizeFunc },
3727 { "matchinfo", fts3MatchinfoFunc },
3729 int i; /* Iterator variable */
3731 UNUSED_PARAMETER(pVtab);
3732 UNUSED_PARAMETER(nArg);
3733 UNUSED_PARAMETER(ppArg);
3735 for(i=0; i<SizeofArray(aOverload); i++){
3736 if( strcmp(zName, aOverload[i].zName)==0 ){
3737 *pxFunc = aOverload[i].xFunc;
3738 return 1;
3742 /* No function of the specified name was found. Return 0. */
3743 return 0;
3747 ** Implementation of FTS3 xRename method. Rename an fts3 table.
3749 static int fts3RenameMethod(
3750 sqlite3_vtab *pVtab, /* Virtual table handle */
3751 const char *zName /* New name of table */
3753 Fts3Table *p = (Fts3Table *)pVtab;
3754 sqlite3 *db = p->db; /* Database connection */
3755 int rc; /* Return Code */
3757 /* At this point it must be known if the %_stat table exists or not.
3758 ** So bHasStat may not be 2. */
3759 rc = fts3SetHasStat(p);
3761 /* As it happens, the pending terms table is always empty here. This is
3762 ** because an "ALTER TABLE RENAME TABLE" statement inside a transaction
3763 ** always opens a savepoint transaction. And the xSavepoint() method
3764 ** flushes the pending terms table. But leave the (no-op) call to
3765 ** PendingTermsFlush() in in case that changes.
3767 assert( p->nPendingData==0 );
3768 if( rc==SQLITE_OK ){
3769 rc = sqlite3Fts3PendingTermsFlush(p);
3772 if( p->zContentTbl==0 ){
3773 fts3DbExec(&rc, db,
3774 "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';",
3775 p->zDb, p->zName, zName
3779 if( p->bHasDocsize ){
3780 fts3DbExec(&rc, db,
3781 "ALTER TABLE %Q.'%q_docsize' RENAME TO '%q_docsize';",
3782 p->zDb, p->zName, zName
3785 if( p->bHasStat ){
3786 fts3DbExec(&rc, db,
3787 "ALTER TABLE %Q.'%q_stat' RENAME TO '%q_stat';",
3788 p->zDb, p->zName, zName
3791 fts3DbExec(&rc, db,
3792 "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';",
3793 p->zDb, p->zName, zName
3795 fts3DbExec(&rc, db,
3796 "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';",
3797 p->zDb, p->zName, zName
3799 return rc;
3803 ** The xSavepoint() method.
3805 ** Flush the contents of the pending-terms table to disk.
3807 static int fts3SavepointMethod(sqlite3_vtab *pVtab, int iSavepoint){
3808 int rc = SQLITE_OK;
3809 UNUSED_PARAMETER(iSavepoint);
3810 assert( ((Fts3Table *)pVtab)->inTransaction );
3811 assert( ((Fts3Table *)pVtab)->mxSavepoint <= iSavepoint );
3812 TESTONLY( ((Fts3Table *)pVtab)->mxSavepoint = iSavepoint );
3813 if( ((Fts3Table *)pVtab)->bIgnoreSavepoint==0 ){
3814 rc = fts3SyncMethod(pVtab);
3816 return rc;
3820 ** The xRelease() method.
3822 ** This is a no-op.
3824 static int fts3ReleaseMethod(sqlite3_vtab *pVtab, int iSavepoint){
3825 TESTONLY( Fts3Table *p = (Fts3Table*)pVtab );
3826 UNUSED_PARAMETER(iSavepoint);
3827 UNUSED_PARAMETER(pVtab);
3828 assert( p->inTransaction );
3829 assert( p->mxSavepoint >= iSavepoint );
3830 TESTONLY( p->mxSavepoint = iSavepoint-1 );
3831 return SQLITE_OK;
3835 ** The xRollbackTo() method.
3837 ** Discard the contents of the pending terms table.
3839 static int fts3RollbackToMethod(sqlite3_vtab *pVtab, int iSavepoint){
3840 Fts3Table *p = (Fts3Table*)pVtab;
3841 UNUSED_PARAMETER(iSavepoint);
3842 assert( p->inTransaction );
3843 assert( p->mxSavepoint >= iSavepoint );
3844 TESTONLY( p->mxSavepoint = iSavepoint );
3845 sqlite3Fts3PendingTermsClear(p);
3846 return SQLITE_OK;
3849 static const sqlite3_module fts3Module = {
3850 /* iVersion */ 2,
3851 /* xCreate */ fts3CreateMethod,
3852 /* xConnect */ fts3ConnectMethod,
3853 /* xBestIndex */ fts3BestIndexMethod,
3854 /* xDisconnect */ fts3DisconnectMethod,
3855 /* xDestroy */ fts3DestroyMethod,
3856 /* xOpen */ fts3OpenMethod,
3857 /* xClose */ fts3CloseMethod,
3858 /* xFilter */ fts3FilterMethod,
3859 /* xNext */ fts3NextMethod,
3860 /* xEof */ fts3EofMethod,
3861 /* xColumn */ fts3ColumnMethod,
3862 /* xRowid */ fts3RowidMethod,
3863 /* xUpdate */ fts3UpdateMethod,
3864 /* xBegin */ fts3BeginMethod,
3865 /* xSync */ fts3SyncMethod,
3866 /* xCommit */ fts3CommitMethod,
3867 /* xRollback */ fts3RollbackMethod,
3868 /* xFindFunction */ fts3FindFunctionMethod,
3869 /* xRename */ fts3RenameMethod,
3870 /* xSavepoint */ fts3SavepointMethod,
3871 /* xRelease */ fts3ReleaseMethod,
3872 /* xRollbackTo */ fts3RollbackToMethod,
3876 ** This function is registered as the module destructor (called when an
3877 ** FTS3 enabled database connection is closed). It frees the memory
3878 ** allocated for the tokenizer hash table.
3880 static void hashDestroy(void *p){
3881 Fts3Hash *pHash = (Fts3Hash *)p;
3882 sqlite3Fts3HashClear(pHash);
3883 sqlite3_free(pHash);
3887 ** The fts3 built-in tokenizers - "simple", "porter" and "icu"- are
3888 ** implemented in files fts3_tokenizer1.c, fts3_porter.c and fts3_icu.c
3889 ** respectively. The following three forward declarations are for functions
3890 ** declared in these files used to retrieve the respective implementations.
3892 ** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed
3893 ** to by the argument to point to the "simple" tokenizer implementation.
3894 ** And so on.
3896 void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
3897 void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule);
3898 #ifndef SQLITE_DISABLE_FTS3_UNICODE
3899 void sqlite3Fts3UnicodeTokenizer(sqlite3_tokenizer_module const**ppModule);
3900 #endif
3901 #ifdef SQLITE_ENABLE_ICU
3902 void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule);
3903 #endif
3906 ** Initialize the fts3 extension. If this extension is built as part
3907 ** of the sqlite library, then this function is called directly by
3908 ** SQLite. If fts3 is built as a dynamically loadable extension, this
3909 ** function is called by the sqlite3_extension_init() entry point.
3911 int sqlite3Fts3Init(sqlite3 *db){
3912 int rc = SQLITE_OK;
3913 Fts3Hash *pHash = 0;
3914 const sqlite3_tokenizer_module *pSimple = 0;
3915 const sqlite3_tokenizer_module *pPorter = 0;
3916 #ifndef SQLITE_DISABLE_FTS3_UNICODE
3917 const sqlite3_tokenizer_module *pUnicode = 0;
3918 #endif
3920 #ifdef SQLITE_ENABLE_ICU
3921 const sqlite3_tokenizer_module *pIcu = 0;
3922 sqlite3Fts3IcuTokenizerModule(&pIcu);
3923 #endif
3925 #ifndef SQLITE_DISABLE_FTS3_UNICODE
3926 sqlite3Fts3UnicodeTokenizer(&pUnicode);
3927 #endif
3929 #ifdef SQLITE_TEST
3930 rc = sqlite3Fts3InitTerm(db);
3931 if( rc!=SQLITE_OK ) return rc;
3932 #endif
3934 rc = sqlite3Fts3InitAux(db);
3935 if( rc!=SQLITE_OK ) return rc;
3937 sqlite3Fts3SimpleTokenizerModule(&pSimple);
3938 sqlite3Fts3PorterTokenizerModule(&pPorter);
3940 /* Allocate and initialize the hash-table used to store tokenizers. */
3941 pHash = sqlite3_malloc(sizeof(Fts3Hash));
3942 if( !pHash ){
3943 rc = SQLITE_NOMEM;
3944 }else{
3945 sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1);
3948 /* Load the built-in tokenizers into the hash table */
3949 if( rc==SQLITE_OK ){
3950 if( sqlite3Fts3HashInsert(pHash, "simple", 7, (void *)pSimple)
3951 || sqlite3Fts3HashInsert(pHash, "porter", 7, (void *)pPorter)
3953 #ifndef SQLITE_DISABLE_FTS3_UNICODE
3954 || sqlite3Fts3HashInsert(pHash, "unicode61", 10, (void *)pUnicode)
3955 #endif
3956 #ifdef SQLITE_ENABLE_ICU
3957 || (pIcu && sqlite3Fts3HashInsert(pHash, "icu", 4, (void *)pIcu))
3958 #endif
3960 rc = SQLITE_NOMEM;
3964 #ifdef SQLITE_TEST
3965 if( rc==SQLITE_OK ){
3966 rc = sqlite3Fts3ExprInitTestInterface(db, pHash);
3968 #endif
3970 /* Create the virtual table wrapper around the hash-table and overload
3971 ** the four scalar functions. If this is successful, register the
3972 ** module with sqlite.
3974 if( SQLITE_OK==rc
3975 && SQLITE_OK==(rc = sqlite3Fts3InitHashTable(db, pHash, "fts3_tokenizer"))
3976 && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1))
3977 && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", 1))
3978 && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 1))
3979 && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 2))
3980 && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", 1))
3982 rc = sqlite3_create_module_v2(
3983 db, "fts3", &fts3Module, (void *)pHash, hashDestroy
3985 if( rc==SQLITE_OK ){
3986 rc = sqlite3_create_module_v2(
3987 db, "fts4", &fts3Module, (void *)pHash, 0
3990 if( rc==SQLITE_OK ){
3991 rc = sqlite3Fts3InitTok(db, (void *)pHash);
3993 return rc;
3997 /* An error has occurred. Delete the hash table and return the error code. */
3998 assert( rc!=SQLITE_OK );
3999 if( pHash ){
4000 sqlite3Fts3HashClear(pHash);
4001 sqlite3_free(pHash);
4003 return rc;
4007 ** Allocate an Fts3MultiSegReader for each token in the expression headed
4008 ** by pExpr.
4010 ** An Fts3SegReader object is a cursor that can seek or scan a range of
4011 ** entries within a single segment b-tree. An Fts3MultiSegReader uses multiple
4012 ** Fts3SegReader objects internally to provide an interface to seek or scan
4013 ** within the union of all segments of a b-tree. Hence the name.
4015 ** If the allocated Fts3MultiSegReader just seeks to a single entry in a
4016 ** segment b-tree (if the term is not a prefix or it is a prefix for which
4017 ** there exists prefix b-tree of the right length) then it may be traversed
4018 ** and merged incrementally. Otherwise, it has to be merged into an in-memory
4019 ** doclist and then traversed.
4021 static void fts3EvalAllocateReaders(
4022 Fts3Cursor *pCsr, /* FTS cursor handle */
4023 Fts3Expr *pExpr, /* Allocate readers for this expression */
4024 int *pnToken, /* OUT: Total number of tokens in phrase. */
4025 int *pnOr, /* OUT: Total number of OR nodes in expr. */
4026 int *pRc /* IN/OUT: Error code */
4028 if( pExpr && SQLITE_OK==*pRc ){
4029 if( pExpr->eType==FTSQUERY_PHRASE ){
4030 int i;
4031 int nToken = pExpr->pPhrase->nToken;
4032 *pnToken += nToken;
4033 for(i=0; i<nToken; i++){
4034 Fts3PhraseToken *pToken = &pExpr->pPhrase->aToken[i];
4035 int rc = fts3TermSegReaderCursor(pCsr,
4036 pToken->z, pToken->n, pToken->isPrefix, &pToken->pSegcsr
4038 if( rc!=SQLITE_OK ){
4039 *pRc = rc;
4040 return;
4043 assert( pExpr->pPhrase->iDoclistToken==0 );
4044 pExpr->pPhrase->iDoclistToken = -1;
4045 }else{
4046 *pnOr += (pExpr->eType==FTSQUERY_OR);
4047 fts3EvalAllocateReaders(pCsr, pExpr->pLeft, pnToken, pnOr, pRc);
4048 fts3EvalAllocateReaders(pCsr, pExpr->pRight, pnToken, pnOr, pRc);
4054 ** Arguments pList/nList contain the doclist for token iToken of phrase p.
4055 ** It is merged into the main doclist stored in p->doclist.aAll/nAll.
4057 ** This function assumes that pList points to a buffer allocated using
4058 ** sqlite3_malloc(). This function takes responsibility for eventually
4059 ** freeing the buffer.
4061 ** SQLITE_OK is returned if successful, or SQLITE_NOMEM if an error occurs.
4063 static int fts3EvalPhraseMergeToken(
4064 Fts3Table *pTab, /* FTS Table pointer */
4065 Fts3Phrase *p, /* Phrase to merge pList/nList into */
4066 int iToken, /* Token pList/nList corresponds to */
4067 char *pList, /* Pointer to doclist */
4068 int nList /* Number of bytes in pList */
4070 int rc = SQLITE_OK;
4071 assert( iToken!=p->iDoclistToken );
4073 if( pList==0 ){
4074 sqlite3_free(p->doclist.aAll);
4075 p->doclist.aAll = 0;
4076 p->doclist.nAll = 0;
4079 else if( p->iDoclistToken<0 ){
4080 p->doclist.aAll = pList;
4081 p->doclist.nAll = nList;
4084 else if( p->doclist.aAll==0 ){
4085 sqlite3_free(pList);
4088 else {
4089 char *pLeft;
4090 char *pRight;
4091 int nLeft;
4092 int nRight;
4093 int nDiff;
4095 if( p->iDoclistToken<iToken ){
4096 pLeft = p->doclist.aAll;
4097 nLeft = p->doclist.nAll;
4098 pRight = pList;
4099 nRight = nList;
4100 nDiff = iToken - p->iDoclistToken;
4101 }else{
4102 pRight = p->doclist.aAll;
4103 nRight = p->doclist.nAll;
4104 pLeft = pList;
4105 nLeft = nList;
4106 nDiff = p->iDoclistToken - iToken;
4109 rc = fts3DoclistPhraseMerge(
4110 pTab->bDescIdx, nDiff, pLeft, nLeft, &pRight, &nRight
4112 sqlite3_free(pLeft);
4113 p->doclist.aAll = pRight;
4114 p->doclist.nAll = nRight;
4117 if( iToken>p->iDoclistToken ) p->iDoclistToken = iToken;
4118 return rc;
4122 ** Load the doclist for phrase p into p->doclist.aAll/nAll. The loaded doclist
4123 ** does not take deferred tokens into account.
4125 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
4127 static int fts3EvalPhraseLoad(
4128 Fts3Cursor *pCsr, /* FTS Cursor handle */
4129 Fts3Phrase *p /* Phrase object */
4131 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
4132 int iToken;
4133 int rc = SQLITE_OK;
4135 for(iToken=0; rc==SQLITE_OK && iToken<p->nToken; iToken++){
4136 Fts3PhraseToken *pToken = &p->aToken[iToken];
4137 assert( pToken->pDeferred==0 || pToken->pSegcsr==0 );
4139 if( pToken->pSegcsr ){
4140 int nThis = 0;
4141 char *pThis = 0;
4142 rc = fts3TermSelect(pTab, pToken, p->iColumn, &nThis, &pThis);
4143 if( rc==SQLITE_OK ){
4144 rc = fts3EvalPhraseMergeToken(pTab, p, iToken, pThis, nThis);
4147 assert( pToken->pSegcsr==0 );
4150 return rc;
4154 ** This function is called on each phrase after the position lists for
4155 ** any deferred tokens have been loaded into memory. It updates the phrases
4156 ** current position list to include only those positions that are really
4157 ** instances of the phrase (after considering deferred tokens). If this
4158 ** means that the phrase does not appear in the current row, doclist.pList
4159 ** and doclist.nList are both zeroed.
4161 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
4163 static int fts3EvalDeferredPhrase(Fts3Cursor *pCsr, Fts3Phrase *pPhrase){
4164 int iToken; /* Used to iterate through phrase tokens */
4165 char *aPoslist = 0; /* Position list for deferred tokens */
4166 int nPoslist = 0; /* Number of bytes in aPoslist */
4167 int iPrev = -1; /* Token number of previous deferred token */
4169 assert( pPhrase->doclist.bFreeList==0 );
4171 for(iToken=0; iToken<pPhrase->nToken; iToken++){
4172 Fts3PhraseToken *pToken = &pPhrase->aToken[iToken];
4173 Fts3DeferredToken *pDeferred = pToken->pDeferred;
4175 if( pDeferred ){
4176 char *pList;
4177 int nList;
4178 int rc = sqlite3Fts3DeferredTokenList(pDeferred, &pList, &nList);
4179 if( rc!=SQLITE_OK ) return rc;
4181 if( pList==0 ){
4182 sqlite3_free(aPoslist);
4183 pPhrase->doclist.pList = 0;
4184 pPhrase->doclist.nList = 0;
4185 return SQLITE_OK;
4187 }else if( aPoslist==0 ){
4188 aPoslist = pList;
4189 nPoslist = nList;
4191 }else{
4192 char *aOut = pList;
4193 char *p1 = aPoslist;
4194 char *p2 = aOut;
4196 assert( iPrev>=0 );
4197 fts3PoslistPhraseMerge(&aOut, iToken-iPrev, 0, 1, &p1, &p2);
4198 sqlite3_free(aPoslist);
4199 aPoslist = pList;
4200 nPoslist = (int)(aOut - aPoslist);
4201 if( nPoslist==0 ){
4202 sqlite3_free(aPoslist);
4203 pPhrase->doclist.pList = 0;
4204 pPhrase->doclist.nList = 0;
4205 return SQLITE_OK;
4208 iPrev = iToken;
4212 if( iPrev>=0 ){
4213 int nMaxUndeferred = pPhrase->iDoclistToken;
4214 if( nMaxUndeferred<0 ){
4215 pPhrase->doclist.pList = aPoslist;
4216 pPhrase->doclist.nList = nPoslist;
4217 pPhrase->doclist.iDocid = pCsr->iPrevId;
4218 pPhrase->doclist.bFreeList = 1;
4219 }else{
4220 int nDistance;
4221 char *p1;
4222 char *p2;
4223 char *aOut;
4225 if( nMaxUndeferred>iPrev ){
4226 p1 = aPoslist;
4227 p2 = pPhrase->doclist.pList;
4228 nDistance = nMaxUndeferred - iPrev;
4229 }else{
4230 p1 = pPhrase->doclist.pList;
4231 p2 = aPoslist;
4232 nDistance = iPrev - nMaxUndeferred;
4235 aOut = (char *)sqlite3_malloc(nPoslist+8);
4236 if( !aOut ){
4237 sqlite3_free(aPoslist);
4238 return SQLITE_NOMEM;
4241 pPhrase->doclist.pList = aOut;
4242 if( fts3PoslistPhraseMerge(&aOut, nDistance, 0, 1, &p1, &p2) ){
4243 pPhrase->doclist.bFreeList = 1;
4244 pPhrase->doclist.nList = (int)(aOut - pPhrase->doclist.pList);
4245 }else{
4246 sqlite3_free(aOut);
4247 pPhrase->doclist.pList = 0;
4248 pPhrase->doclist.nList = 0;
4250 sqlite3_free(aPoslist);
4254 return SQLITE_OK;
4258 ** Maximum number of tokens a phrase may have to be considered for the
4259 ** incremental doclists strategy.
4261 #define MAX_INCR_PHRASE_TOKENS 4
4264 ** This function is called for each Fts3Phrase in a full-text query
4265 ** expression to initialize the mechanism for returning rows. Once this
4266 ** function has been called successfully on an Fts3Phrase, it may be
4267 ** used with fts3EvalPhraseNext() to iterate through the matching docids.
4269 ** If parameter bOptOk is true, then the phrase may (or may not) use the
4270 ** incremental loading strategy. Otherwise, the entire doclist is loaded into
4271 ** memory within this call.
4273 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
4275 static int fts3EvalPhraseStart(Fts3Cursor *pCsr, int bOptOk, Fts3Phrase *p){
4276 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
4277 int rc = SQLITE_OK; /* Error code */
4278 int i;
4280 /* Determine if doclists may be loaded from disk incrementally. This is
4281 ** possible if the bOptOk argument is true, the FTS doclists will be
4282 ** scanned in forward order, and the phrase consists of
4283 ** MAX_INCR_PHRASE_TOKENS or fewer tokens, none of which are are "^first"
4284 ** tokens or prefix tokens that cannot use a prefix-index. */
4285 int bHaveIncr = 0;
4286 int bIncrOk = (bOptOk
4287 && pCsr->bDesc==pTab->bDescIdx
4288 && p->nToken<=MAX_INCR_PHRASE_TOKENS && p->nToken>0
4289 #ifdef SQLITE_TEST
4290 && pTab->bNoIncrDoclist==0
4291 #endif
4293 for(i=0; bIncrOk==1 && i<p->nToken; i++){
4294 Fts3PhraseToken *pToken = &p->aToken[i];
4295 if( pToken->bFirst || (pToken->pSegcsr!=0 && !pToken->pSegcsr->bLookup) ){
4296 bIncrOk = 0;
4298 if( pToken->pSegcsr ) bHaveIncr = 1;
4301 if( bIncrOk && bHaveIncr ){
4302 /* Use the incremental approach. */
4303 int iCol = (p->iColumn >= pTab->nColumn ? -1 : p->iColumn);
4304 for(i=0; rc==SQLITE_OK && i<p->nToken; i++){
4305 Fts3PhraseToken *pToken = &p->aToken[i];
4306 Fts3MultiSegReader *pSegcsr = pToken->pSegcsr;
4307 if( pSegcsr ){
4308 rc = sqlite3Fts3MsrIncrStart(pTab, pSegcsr, iCol, pToken->z, pToken->n);
4311 p->bIncr = 1;
4312 }else{
4313 /* Load the full doclist for the phrase into memory. */
4314 rc = fts3EvalPhraseLoad(pCsr, p);
4315 p->bIncr = 0;
4318 assert( rc!=SQLITE_OK || p->nToken<1 || p->aToken[0].pSegcsr==0 || p->bIncr );
4319 return rc;
4323 ** This function is used to iterate backwards (from the end to start)
4324 ** through doclists. It is used by this module to iterate through phrase
4325 ** doclists in reverse and by the fts3_write.c module to iterate through
4326 ** pending-terms lists when writing to databases with "order=desc".
4328 ** The doclist may be sorted in ascending (parameter bDescIdx==0) or
4329 ** descending (parameter bDescIdx==1) order of docid. Regardless, this
4330 ** function iterates from the end of the doclist to the beginning.
4332 void sqlite3Fts3DoclistPrev(
4333 int bDescIdx, /* True if the doclist is desc */
4334 char *aDoclist, /* Pointer to entire doclist */
4335 int nDoclist, /* Length of aDoclist in bytes */
4336 char **ppIter, /* IN/OUT: Iterator pointer */
4337 sqlite3_int64 *piDocid, /* IN/OUT: Docid pointer */
4338 int *pnList, /* OUT: List length pointer */
4339 u8 *pbEof /* OUT: End-of-file flag */
4341 char *p = *ppIter;
4343 assert( nDoclist>0 );
4344 assert( *pbEof==0 );
4345 assert( p || *piDocid==0 );
4346 assert( !p || (p>aDoclist && p<&aDoclist[nDoclist]) );
4348 if( p==0 ){
4349 sqlite3_int64 iDocid = 0;
4350 char *pNext = 0;
4351 char *pDocid = aDoclist;
4352 char *pEnd = &aDoclist[nDoclist];
4353 int iMul = 1;
4355 while( pDocid<pEnd ){
4356 sqlite3_int64 iDelta;
4357 pDocid += sqlite3Fts3GetVarint(pDocid, &iDelta);
4358 iDocid += (iMul * iDelta);
4359 pNext = pDocid;
4360 fts3PoslistCopy(0, &pDocid);
4361 while( pDocid<pEnd && *pDocid==0 ) pDocid++;
4362 iMul = (bDescIdx ? -1 : 1);
4365 *pnList = (int)(pEnd - pNext);
4366 *ppIter = pNext;
4367 *piDocid = iDocid;
4368 }else{
4369 int iMul = (bDescIdx ? -1 : 1);
4370 sqlite3_int64 iDelta;
4371 fts3GetReverseVarint(&p, aDoclist, &iDelta);
4372 *piDocid -= (iMul * iDelta);
4374 if( p==aDoclist ){
4375 *pbEof = 1;
4376 }else{
4377 char *pSave = p;
4378 fts3ReversePoslist(aDoclist, &p);
4379 *pnList = (int)(pSave - p);
4381 *ppIter = p;
4386 ** Iterate forwards through a doclist.
4388 void sqlite3Fts3DoclistNext(
4389 int bDescIdx, /* True if the doclist is desc */
4390 char *aDoclist, /* Pointer to entire doclist */
4391 int nDoclist, /* Length of aDoclist in bytes */
4392 char **ppIter, /* IN/OUT: Iterator pointer */
4393 sqlite3_int64 *piDocid, /* IN/OUT: Docid pointer */
4394 u8 *pbEof /* OUT: End-of-file flag */
4396 char *p = *ppIter;
4398 assert( nDoclist>0 );
4399 assert( *pbEof==0 );
4400 assert( p || *piDocid==0 );
4401 assert( !p || (p>=aDoclist && p<=&aDoclist[nDoclist]) );
4403 if( p==0 ){
4404 p = aDoclist;
4405 p += sqlite3Fts3GetVarint(p, piDocid);
4406 }else{
4407 fts3PoslistCopy(0, &p);
4408 while( p<&aDoclist[nDoclist] && *p==0 ) p++;
4409 if( p>=&aDoclist[nDoclist] ){
4410 *pbEof = 1;
4411 }else{
4412 sqlite3_int64 iVar;
4413 p += sqlite3Fts3GetVarint(p, &iVar);
4414 *piDocid += ((bDescIdx ? -1 : 1) * iVar);
4418 *ppIter = p;
4422 ** Advance the iterator pDL to the next entry in pDL->aAll/nAll. Set *pbEof
4423 ** to true if EOF is reached.
4425 static void fts3EvalDlPhraseNext(
4426 Fts3Table *pTab,
4427 Fts3Doclist *pDL,
4428 u8 *pbEof
4430 char *pIter; /* Used to iterate through aAll */
4431 char *pEnd = &pDL->aAll[pDL->nAll]; /* 1 byte past end of aAll */
4433 if( pDL->pNextDocid ){
4434 pIter = pDL->pNextDocid;
4435 }else{
4436 pIter = pDL->aAll;
4439 if( pIter>=pEnd ){
4440 /* We have already reached the end of this doclist. EOF. */
4441 *pbEof = 1;
4442 }else{
4443 sqlite3_int64 iDelta;
4444 pIter += sqlite3Fts3GetVarint(pIter, &iDelta);
4445 if( pTab->bDescIdx==0 || pDL->pNextDocid==0 ){
4446 pDL->iDocid += iDelta;
4447 }else{
4448 pDL->iDocid -= iDelta;
4450 pDL->pList = pIter;
4451 fts3PoslistCopy(0, &pIter);
4452 pDL->nList = (int)(pIter - pDL->pList);
4454 /* pIter now points just past the 0x00 that terminates the position-
4455 ** list for document pDL->iDocid. However, if this position-list was
4456 ** edited in place by fts3EvalNearTrim(), then pIter may not actually
4457 ** point to the start of the next docid value. The following line deals
4458 ** with this case by advancing pIter past the zero-padding added by
4459 ** fts3EvalNearTrim(). */
4460 while( pIter<pEnd && *pIter==0 ) pIter++;
4462 pDL->pNextDocid = pIter;
4463 assert( pIter>=&pDL->aAll[pDL->nAll] || *pIter );
4464 *pbEof = 0;
4469 ** Helper type used by fts3EvalIncrPhraseNext() and incrPhraseTokenNext().
4471 typedef struct TokenDoclist TokenDoclist;
4472 struct TokenDoclist {
4473 int bIgnore;
4474 sqlite3_int64 iDocid;
4475 char *pList;
4476 int nList;
4480 ** Token pToken is an incrementally loaded token that is part of a
4481 ** multi-token phrase. Advance it to the next matching document in the
4482 ** database and populate output variable *p with the details of the new
4483 ** entry. Or, if the iterator has reached EOF, set *pbEof to true.
4485 ** If an error occurs, return an SQLite error code. Otherwise, return
4486 ** SQLITE_OK.
4488 static int incrPhraseTokenNext(
4489 Fts3Table *pTab, /* Virtual table handle */
4490 Fts3Phrase *pPhrase, /* Phrase to advance token of */
4491 int iToken, /* Specific token to advance */
4492 TokenDoclist *p, /* OUT: Docid and doclist for new entry */
4493 u8 *pbEof /* OUT: True if iterator is at EOF */
4495 int rc = SQLITE_OK;
4497 if( pPhrase->iDoclistToken==iToken ){
4498 assert( p->bIgnore==0 );
4499 assert( pPhrase->aToken[iToken].pSegcsr==0 );
4500 fts3EvalDlPhraseNext(pTab, &pPhrase->doclist, pbEof);
4501 p->pList = pPhrase->doclist.pList;
4502 p->nList = pPhrase->doclist.nList;
4503 p->iDocid = pPhrase->doclist.iDocid;
4504 }else{
4505 Fts3PhraseToken *pToken = &pPhrase->aToken[iToken];
4506 assert( pToken->pDeferred==0 );
4507 assert( pToken->pSegcsr || pPhrase->iDoclistToken>=0 );
4508 if( pToken->pSegcsr ){
4509 assert( p->bIgnore==0 );
4510 rc = sqlite3Fts3MsrIncrNext(
4511 pTab, pToken->pSegcsr, &p->iDocid, &p->pList, &p->nList
4513 if( p->pList==0 ) *pbEof = 1;
4514 }else{
4515 p->bIgnore = 1;
4519 return rc;
4524 ** The phrase iterator passed as the second argument:
4526 ** * features at least one token that uses an incremental doclist, and
4528 ** * does not contain any deferred tokens.
4530 ** Advance it to the next matching documnent in the database and populate
4531 ** the Fts3Doclist.pList and nList fields.
4533 ** If there is no "next" entry and no error occurs, then *pbEof is set to
4534 ** 1 before returning. Otherwise, if no error occurs and the iterator is
4535 ** successfully advanced, *pbEof is set to 0.
4537 ** If an error occurs, return an SQLite error code. Otherwise, return
4538 ** SQLITE_OK.
4540 static int fts3EvalIncrPhraseNext(
4541 Fts3Cursor *pCsr, /* FTS Cursor handle */
4542 Fts3Phrase *p, /* Phrase object to advance to next docid */
4543 u8 *pbEof /* OUT: Set to 1 if EOF */
4545 int rc = SQLITE_OK;
4546 Fts3Doclist *pDL = &p->doclist;
4547 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
4548 u8 bEof = 0;
4550 /* This is only called if it is guaranteed that the phrase has at least
4551 ** one incremental token. In which case the bIncr flag is set. */
4552 assert( p->bIncr==1 );
4554 if( p->nToken==1 ){
4555 rc = sqlite3Fts3MsrIncrNext(pTab, p->aToken[0].pSegcsr,
4556 &pDL->iDocid, &pDL->pList, &pDL->nList
4558 if( pDL->pList==0 ) bEof = 1;
4559 }else{
4560 int bDescDoclist = pCsr->bDesc;
4561 struct TokenDoclist a[MAX_INCR_PHRASE_TOKENS];
4563 memset(a, 0, sizeof(a));
4564 assert( p->nToken<=MAX_INCR_PHRASE_TOKENS );
4565 assert( p->iDoclistToken<MAX_INCR_PHRASE_TOKENS );
4567 while( bEof==0 ){
4568 int bMaxSet = 0;
4569 sqlite3_int64 iMax = 0; /* Largest docid for all iterators */
4570 int i; /* Used to iterate through tokens */
4572 /* Advance the iterator for each token in the phrase once. */
4573 for(i=0; rc==SQLITE_OK && i<p->nToken && bEof==0; i++){
4574 rc = incrPhraseTokenNext(pTab, p, i, &a[i], &bEof);
4575 if( a[i].bIgnore==0 && (bMaxSet==0 || DOCID_CMP(iMax, a[i].iDocid)<0) ){
4576 iMax = a[i].iDocid;
4577 bMaxSet = 1;
4580 assert( rc!=SQLITE_OK || (p->nToken>=1 && a[p->nToken-1].bIgnore==0) );
4581 assert( rc!=SQLITE_OK || bMaxSet );
4583 /* Keep advancing iterators until they all point to the same document */
4584 for(i=0; i<p->nToken; i++){
4585 while( rc==SQLITE_OK && bEof==0
4586 && a[i].bIgnore==0 && DOCID_CMP(a[i].iDocid, iMax)<0
4588 rc = incrPhraseTokenNext(pTab, p, i, &a[i], &bEof);
4589 if( DOCID_CMP(a[i].iDocid, iMax)>0 ){
4590 iMax = a[i].iDocid;
4591 i = 0;
4596 /* Check if the current entries really are a phrase match */
4597 if( bEof==0 ){
4598 int nList = 0;
4599 int nByte = a[p->nToken-1].nList;
4600 char *aDoclist = sqlite3_malloc(nByte+1);
4601 if( !aDoclist ) return SQLITE_NOMEM;
4602 memcpy(aDoclist, a[p->nToken-1].pList, nByte+1);
4604 for(i=0; i<(p->nToken-1); i++){
4605 if( a[i].bIgnore==0 ){
4606 char *pL = a[i].pList;
4607 char *pR = aDoclist;
4608 char *pOut = aDoclist;
4609 int nDist = p->nToken-1-i;
4610 int res = fts3PoslistPhraseMerge(&pOut, nDist, 0, 1, &pL, &pR);
4611 if( res==0 ) break;
4612 nList = (int)(pOut - aDoclist);
4615 if( i==(p->nToken-1) ){
4616 pDL->iDocid = iMax;
4617 pDL->pList = aDoclist;
4618 pDL->nList = nList;
4619 pDL->bFreeList = 1;
4620 break;
4622 sqlite3_free(aDoclist);
4627 *pbEof = bEof;
4628 return rc;
4632 ** Attempt to move the phrase iterator to point to the next matching docid.
4633 ** If an error occurs, return an SQLite error code. Otherwise, return
4634 ** SQLITE_OK.
4636 ** If there is no "next" entry and no error occurs, then *pbEof is set to
4637 ** 1 before returning. Otherwise, if no error occurs and the iterator is
4638 ** successfully advanced, *pbEof is set to 0.
4640 static int fts3EvalPhraseNext(
4641 Fts3Cursor *pCsr, /* FTS Cursor handle */
4642 Fts3Phrase *p, /* Phrase object to advance to next docid */
4643 u8 *pbEof /* OUT: Set to 1 if EOF */
4645 int rc = SQLITE_OK;
4646 Fts3Doclist *pDL = &p->doclist;
4647 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
4649 if( p->bIncr ){
4650 rc = fts3EvalIncrPhraseNext(pCsr, p, pbEof);
4651 }else if( pCsr->bDesc!=pTab->bDescIdx && pDL->nAll ){
4652 sqlite3Fts3DoclistPrev(pTab->bDescIdx, pDL->aAll, pDL->nAll,
4653 &pDL->pNextDocid, &pDL->iDocid, &pDL->nList, pbEof
4655 pDL->pList = pDL->pNextDocid;
4656 }else{
4657 fts3EvalDlPhraseNext(pTab, pDL, pbEof);
4660 return rc;
4665 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
4666 ** Otherwise, fts3EvalPhraseStart() is called on all phrases within the
4667 ** expression. Also the Fts3Expr.bDeferred variable is set to true for any
4668 ** expressions for which all descendent tokens are deferred.
4670 ** If parameter bOptOk is zero, then it is guaranteed that the
4671 ** Fts3Phrase.doclist.aAll/nAll variables contain the entire doclist for
4672 ** each phrase in the expression (subject to deferred token processing).
4673 ** Or, if bOptOk is non-zero, then one or more tokens within the expression
4674 ** may be loaded incrementally, meaning doclist.aAll/nAll is not available.
4676 ** If an error occurs within this function, *pRc is set to an SQLite error
4677 ** code before returning.
4679 static void fts3EvalStartReaders(
4680 Fts3Cursor *pCsr, /* FTS Cursor handle */
4681 Fts3Expr *pExpr, /* Expression to initialize phrases in */
4682 int *pRc /* IN/OUT: Error code */
4684 if( pExpr && SQLITE_OK==*pRc ){
4685 if( pExpr->eType==FTSQUERY_PHRASE ){
4686 int nToken = pExpr->pPhrase->nToken;
4687 if( nToken ){
4688 int i;
4689 for(i=0; i<nToken; i++){
4690 if( pExpr->pPhrase->aToken[i].pDeferred==0 ) break;
4692 pExpr->bDeferred = (i==nToken);
4694 *pRc = fts3EvalPhraseStart(pCsr, 1, pExpr->pPhrase);
4695 }else{
4696 fts3EvalStartReaders(pCsr, pExpr->pLeft, pRc);
4697 fts3EvalStartReaders(pCsr, pExpr->pRight, pRc);
4698 pExpr->bDeferred = (pExpr->pLeft->bDeferred && pExpr->pRight->bDeferred);
4704 ** An array of the following structures is assembled as part of the process
4705 ** of selecting tokens to defer before the query starts executing (as part
4706 ** of the xFilter() method). There is one element in the array for each
4707 ** token in the FTS expression.
4709 ** Tokens are divided into AND/NEAR clusters. All tokens in a cluster belong
4710 ** to phrases that are connected only by AND and NEAR operators (not OR or
4711 ** NOT). When determining tokens to defer, each AND/NEAR cluster is considered
4712 ** separately. The root of a tokens AND/NEAR cluster is stored in
4713 ** Fts3TokenAndCost.pRoot.
4715 typedef struct Fts3TokenAndCost Fts3TokenAndCost;
4716 struct Fts3TokenAndCost {
4717 Fts3Phrase *pPhrase; /* The phrase the token belongs to */
4718 int iToken; /* Position of token in phrase */
4719 Fts3PhraseToken *pToken; /* The token itself */
4720 Fts3Expr *pRoot; /* Root of NEAR/AND cluster */
4721 int nOvfl; /* Number of overflow pages to load doclist */
4722 int iCol; /* The column the token must match */
4726 ** This function is used to populate an allocated Fts3TokenAndCost array.
4728 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
4729 ** Otherwise, if an error occurs during execution, *pRc is set to an
4730 ** SQLite error code.
4732 static void fts3EvalTokenCosts(
4733 Fts3Cursor *pCsr, /* FTS Cursor handle */
4734 Fts3Expr *pRoot, /* Root of current AND/NEAR cluster */
4735 Fts3Expr *pExpr, /* Expression to consider */
4736 Fts3TokenAndCost **ppTC, /* Write new entries to *(*ppTC)++ */
4737 Fts3Expr ***ppOr, /* Write new OR root to *(*ppOr)++ */
4738 int *pRc /* IN/OUT: Error code */
4740 if( *pRc==SQLITE_OK ){
4741 if( pExpr->eType==FTSQUERY_PHRASE ){
4742 Fts3Phrase *pPhrase = pExpr->pPhrase;
4743 int i;
4744 for(i=0; *pRc==SQLITE_OK && i<pPhrase->nToken; i++){
4745 Fts3TokenAndCost *pTC = (*ppTC)++;
4746 pTC->pPhrase = pPhrase;
4747 pTC->iToken = i;
4748 pTC->pRoot = pRoot;
4749 pTC->pToken = &pPhrase->aToken[i];
4750 pTC->iCol = pPhrase->iColumn;
4751 *pRc = sqlite3Fts3MsrOvfl(pCsr, pTC->pToken->pSegcsr, &pTC->nOvfl);
4753 }else if( pExpr->eType!=FTSQUERY_NOT ){
4754 assert( pExpr->eType==FTSQUERY_OR
4755 || pExpr->eType==FTSQUERY_AND
4756 || pExpr->eType==FTSQUERY_NEAR
4758 assert( pExpr->pLeft && pExpr->pRight );
4759 if( pExpr->eType==FTSQUERY_OR ){
4760 pRoot = pExpr->pLeft;
4761 **ppOr = pRoot;
4762 (*ppOr)++;
4764 fts3EvalTokenCosts(pCsr, pRoot, pExpr->pLeft, ppTC, ppOr, pRc);
4765 if( pExpr->eType==FTSQUERY_OR ){
4766 pRoot = pExpr->pRight;
4767 **ppOr = pRoot;
4768 (*ppOr)++;
4770 fts3EvalTokenCosts(pCsr, pRoot, pExpr->pRight, ppTC, ppOr, pRc);
4776 ** Determine the average document (row) size in pages. If successful,
4777 ** write this value to *pnPage and return SQLITE_OK. Otherwise, return
4778 ** an SQLite error code.
4780 ** The average document size in pages is calculated by first calculating
4781 ** determining the average size in bytes, B. If B is less than the amount
4782 ** of data that will fit on a single leaf page of an intkey table in
4783 ** this database, then the average docsize is 1. Otherwise, it is 1 plus
4784 ** the number of overflow pages consumed by a record B bytes in size.
4786 static int fts3EvalAverageDocsize(Fts3Cursor *pCsr, int *pnPage){
4787 int rc = SQLITE_OK;
4788 if( pCsr->nRowAvg==0 ){
4789 /* The average document size, which is required to calculate the cost
4790 ** of each doclist, has not yet been determined. Read the required
4791 ** data from the %_stat table to calculate it.
4793 ** Entry 0 of the %_stat table is a blob containing (nCol+1) FTS3
4794 ** varints, where nCol is the number of columns in the FTS3 table.
4795 ** The first varint is the number of documents currently stored in
4796 ** the table. The following nCol varints contain the total amount of
4797 ** data stored in all rows of each column of the table, from left
4798 ** to right.
4800 Fts3Table *p = (Fts3Table*)pCsr->base.pVtab;
4801 sqlite3_stmt *pStmt;
4802 sqlite3_int64 nDoc = 0;
4803 sqlite3_int64 nByte = 0;
4804 const char *pEnd;
4805 const char *a;
4807 rc = sqlite3Fts3SelectDoctotal(p, &pStmt);
4808 if( rc!=SQLITE_OK ) return rc;
4809 a = sqlite3_column_blob(pStmt, 0);
4810 assert( a );
4812 pEnd = &a[sqlite3_column_bytes(pStmt, 0)];
4813 a += sqlite3Fts3GetVarint(a, &nDoc);
4814 while( a<pEnd ){
4815 a += sqlite3Fts3GetVarint(a, &nByte);
4817 if( nDoc==0 || nByte==0 ){
4818 sqlite3_reset(pStmt);
4819 return FTS_CORRUPT_VTAB;
4822 pCsr->nDoc = nDoc;
4823 pCsr->nRowAvg = (int)(((nByte / nDoc) + p->nPgsz) / p->nPgsz);
4824 assert( pCsr->nRowAvg>0 );
4825 rc = sqlite3_reset(pStmt);
4828 *pnPage = pCsr->nRowAvg;
4829 return rc;
4833 ** This function is called to select the tokens (if any) that will be
4834 ** deferred. The array aTC[] has already been populated when this is
4835 ** called.
4837 ** This function is called once for each AND/NEAR cluster in the
4838 ** expression. Each invocation determines which tokens to defer within
4839 ** the cluster with root node pRoot. See comments above the definition
4840 ** of struct Fts3TokenAndCost for more details.
4842 ** If no error occurs, SQLITE_OK is returned and sqlite3Fts3DeferToken()
4843 ** called on each token to defer. Otherwise, an SQLite error code is
4844 ** returned.
4846 static int fts3EvalSelectDeferred(
4847 Fts3Cursor *pCsr, /* FTS Cursor handle */
4848 Fts3Expr *pRoot, /* Consider tokens with this root node */
4849 Fts3TokenAndCost *aTC, /* Array of expression tokens and costs */
4850 int nTC /* Number of entries in aTC[] */
4852 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
4853 int nDocSize = 0; /* Number of pages per doc loaded */
4854 int rc = SQLITE_OK; /* Return code */
4855 int ii; /* Iterator variable for various purposes */
4856 int nOvfl = 0; /* Total overflow pages used by doclists */
4857 int nToken = 0; /* Total number of tokens in cluster */
4859 int nMinEst = 0; /* The minimum count for any phrase so far. */
4860 int nLoad4 = 1; /* (Phrases that will be loaded)^4. */
4862 /* Tokens are never deferred for FTS tables created using the content=xxx
4863 ** option. The reason being that it is not guaranteed that the content
4864 ** table actually contains the same data as the index. To prevent this from
4865 ** causing any problems, the deferred token optimization is completely
4866 ** disabled for content=xxx tables. */
4867 if( pTab->zContentTbl ){
4868 return SQLITE_OK;
4871 /* Count the tokens in this AND/NEAR cluster. If none of the doclists
4872 ** associated with the tokens spill onto overflow pages, or if there is
4873 ** only 1 token, exit early. No tokens to defer in this case. */
4874 for(ii=0; ii<nTC; ii++){
4875 if( aTC[ii].pRoot==pRoot ){
4876 nOvfl += aTC[ii].nOvfl;
4877 nToken++;
4880 if( nOvfl==0 || nToken<2 ) return SQLITE_OK;
4882 /* Obtain the average docsize (in pages). */
4883 rc = fts3EvalAverageDocsize(pCsr, &nDocSize);
4884 assert( rc!=SQLITE_OK || nDocSize>0 );
4887 /* Iterate through all tokens in this AND/NEAR cluster, in ascending order
4888 ** of the number of overflow pages that will be loaded by the pager layer
4889 ** to retrieve the entire doclist for the token from the full-text index.
4890 ** Load the doclists for tokens that are either:
4892 ** a. The cheapest token in the entire query (i.e. the one visited by the
4893 ** first iteration of this loop), or
4895 ** b. Part of a multi-token phrase.
4897 ** After each token doclist is loaded, merge it with the others from the
4898 ** same phrase and count the number of documents that the merged doclist
4899 ** contains. Set variable "nMinEst" to the smallest number of documents in
4900 ** any phrase doclist for which 1 or more token doclists have been loaded.
4901 ** Let nOther be the number of other phrases for which it is certain that
4902 ** one or more tokens will not be deferred.
4904 ** Then, for each token, defer it if loading the doclist would result in
4905 ** loading N or more overflow pages into memory, where N is computed as:
4907 ** (nMinEst + 4^nOther - 1) / (4^nOther)
4909 for(ii=0; ii<nToken && rc==SQLITE_OK; ii++){
4910 int iTC; /* Used to iterate through aTC[] array. */
4911 Fts3TokenAndCost *pTC = 0; /* Set to cheapest remaining token. */
4913 /* Set pTC to point to the cheapest remaining token. */
4914 for(iTC=0; iTC<nTC; iTC++){
4915 if( aTC[iTC].pToken && aTC[iTC].pRoot==pRoot
4916 && (!pTC || aTC[iTC].nOvfl<pTC->nOvfl)
4918 pTC = &aTC[iTC];
4921 assert( pTC );
4923 if( ii && pTC->nOvfl>=((nMinEst+(nLoad4/4)-1)/(nLoad4/4))*nDocSize ){
4924 /* The number of overflow pages to load for this (and therefore all
4925 ** subsequent) tokens is greater than the estimated number of pages
4926 ** that will be loaded if all subsequent tokens are deferred.
4928 Fts3PhraseToken *pToken = pTC->pToken;
4929 rc = sqlite3Fts3DeferToken(pCsr, pToken, pTC->iCol);
4930 fts3SegReaderCursorFree(pToken->pSegcsr);
4931 pToken->pSegcsr = 0;
4932 }else{
4933 /* Set nLoad4 to the value of (4^nOther) for the next iteration of the
4934 ** for-loop. Except, limit the value to 2^24 to prevent it from
4935 ** overflowing the 32-bit integer it is stored in. */
4936 if( ii<12 ) nLoad4 = nLoad4*4;
4938 if( ii==0 || (pTC->pPhrase->nToken>1 && ii!=nToken-1) ){
4939 /* Either this is the cheapest token in the entire query, or it is
4940 ** part of a multi-token phrase. Either way, the entire doclist will
4941 ** (eventually) be loaded into memory. It may as well be now. */
4942 Fts3PhraseToken *pToken = pTC->pToken;
4943 int nList = 0;
4944 char *pList = 0;
4945 rc = fts3TermSelect(pTab, pToken, pTC->iCol, &nList, &pList);
4946 assert( rc==SQLITE_OK || pList==0 );
4947 if( rc==SQLITE_OK ){
4948 rc = fts3EvalPhraseMergeToken(
4949 pTab, pTC->pPhrase, pTC->iToken,pList,nList
4952 if( rc==SQLITE_OK ){
4953 int nCount;
4954 nCount = fts3DoclistCountDocids(
4955 pTC->pPhrase->doclist.aAll, pTC->pPhrase->doclist.nAll
4957 if( ii==0 || nCount<nMinEst ) nMinEst = nCount;
4961 pTC->pToken = 0;
4964 return rc;
4968 ** This function is called from within the xFilter method. It initializes
4969 ** the full-text query currently stored in pCsr->pExpr. To iterate through
4970 ** the results of a query, the caller does:
4972 ** fts3EvalStart(pCsr);
4973 ** while( 1 ){
4974 ** fts3EvalNext(pCsr);
4975 ** if( pCsr->bEof ) break;
4976 ** ... return row pCsr->iPrevId to the caller ...
4977 ** }
4979 static int fts3EvalStart(Fts3Cursor *pCsr){
4980 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
4981 int rc = SQLITE_OK;
4982 int nToken = 0;
4983 int nOr = 0;
4985 /* Allocate a MultiSegReader for each token in the expression. */
4986 fts3EvalAllocateReaders(pCsr, pCsr->pExpr, &nToken, &nOr, &rc);
4988 /* Determine which, if any, tokens in the expression should be deferred. */
4989 #ifndef SQLITE_DISABLE_FTS4_DEFERRED
4990 if( rc==SQLITE_OK && nToken>1 && pTab->bFts4 ){
4991 Fts3TokenAndCost *aTC;
4992 Fts3Expr **apOr;
4993 aTC = (Fts3TokenAndCost *)sqlite3_malloc(
4994 sizeof(Fts3TokenAndCost) * nToken
4995 + sizeof(Fts3Expr *) * nOr * 2
4997 apOr = (Fts3Expr **)&aTC[nToken];
4999 if( !aTC ){
5000 rc = SQLITE_NOMEM;
5001 }else{
5002 int ii;
5003 Fts3TokenAndCost *pTC = aTC;
5004 Fts3Expr **ppOr = apOr;
5006 fts3EvalTokenCosts(pCsr, 0, pCsr->pExpr, &pTC, &ppOr, &rc);
5007 nToken = (int)(pTC-aTC);
5008 nOr = (int)(ppOr-apOr);
5010 if( rc==SQLITE_OK ){
5011 rc = fts3EvalSelectDeferred(pCsr, 0, aTC, nToken);
5012 for(ii=0; rc==SQLITE_OK && ii<nOr; ii++){
5013 rc = fts3EvalSelectDeferred(pCsr, apOr[ii], aTC, nToken);
5017 sqlite3_free(aTC);
5020 #endif
5022 fts3EvalStartReaders(pCsr, pCsr->pExpr, &rc);
5023 return rc;
5027 ** Invalidate the current position list for phrase pPhrase.
5029 static void fts3EvalInvalidatePoslist(Fts3Phrase *pPhrase){
5030 if( pPhrase->doclist.bFreeList ){
5031 sqlite3_free(pPhrase->doclist.pList);
5033 pPhrase->doclist.pList = 0;
5034 pPhrase->doclist.nList = 0;
5035 pPhrase->doclist.bFreeList = 0;
5039 ** This function is called to edit the position list associated with
5040 ** the phrase object passed as the fifth argument according to a NEAR
5041 ** condition. For example:
5043 ** abc NEAR/5 "def ghi"
5045 ** Parameter nNear is passed the NEAR distance of the expression (5 in
5046 ** the example above). When this function is called, *paPoslist points to
5047 ** the position list, and *pnToken is the number of phrase tokens in, the
5048 ** phrase on the other side of the NEAR operator to pPhrase. For example,
5049 ** if pPhrase refers to the "def ghi" phrase, then *paPoslist points to
5050 ** the position list associated with phrase "abc".
5052 ** All positions in the pPhrase position list that are not sufficiently
5053 ** close to a position in the *paPoslist position list are removed. If this
5054 ** leaves 0 positions, zero is returned. Otherwise, non-zero.
5056 ** Before returning, *paPoslist is set to point to the position lsit
5057 ** associated with pPhrase. And *pnToken is set to the number of tokens in
5058 ** pPhrase.
5060 static int fts3EvalNearTrim(
5061 int nNear, /* NEAR distance. As in "NEAR/nNear". */
5062 char *aTmp, /* Temporary space to use */
5063 char **paPoslist, /* IN/OUT: Position list */
5064 int *pnToken, /* IN/OUT: Tokens in phrase of *paPoslist */
5065 Fts3Phrase *pPhrase /* The phrase object to trim the doclist of */
5067 int nParam1 = nNear + pPhrase->nToken;
5068 int nParam2 = nNear + *pnToken;
5069 int nNew;
5070 char *p2;
5071 char *pOut;
5072 int res;
5074 assert( pPhrase->doclist.pList );
5076 p2 = pOut = pPhrase->doclist.pList;
5077 res = fts3PoslistNearMerge(
5078 &pOut, aTmp, nParam1, nParam2, paPoslist, &p2
5080 if( res ){
5081 nNew = (int)(pOut - pPhrase->doclist.pList) - 1;
5082 assert( pPhrase->doclist.pList[nNew]=='\0' );
5083 assert( nNew<=pPhrase->doclist.nList && nNew>0 );
5084 memset(&pPhrase->doclist.pList[nNew], 0, pPhrase->doclist.nList - nNew);
5085 pPhrase->doclist.nList = nNew;
5086 *paPoslist = pPhrase->doclist.pList;
5087 *pnToken = pPhrase->nToken;
5090 return res;
5094 ** This function is a no-op if *pRc is other than SQLITE_OK when it is called.
5095 ** Otherwise, it advances the expression passed as the second argument to
5096 ** point to the next matching row in the database. Expressions iterate through
5097 ** matching rows in docid order. Ascending order if Fts3Cursor.bDesc is zero,
5098 ** or descending if it is non-zero.
5100 ** If an error occurs, *pRc is set to an SQLite error code. Otherwise, if
5101 ** successful, the following variables in pExpr are set:
5103 ** Fts3Expr.bEof (non-zero if EOF - there is no next row)
5104 ** Fts3Expr.iDocid (valid if bEof==0. The docid of the next row)
5106 ** If the expression is of type FTSQUERY_PHRASE, and the expression is not
5107 ** at EOF, then the following variables are populated with the position list
5108 ** for the phrase for the visited row:
5110 ** FTs3Expr.pPhrase->doclist.nList (length of pList in bytes)
5111 ** FTs3Expr.pPhrase->doclist.pList (pointer to position list)
5113 ** It says above that this function advances the expression to the next
5114 ** matching row. This is usually true, but there are the following exceptions:
5116 ** 1. Deferred tokens are not taken into account. If a phrase consists
5117 ** entirely of deferred tokens, it is assumed to match every row in
5118 ** the db. In this case the position-list is not populated at all.
5120 ** Or, if a phrase contains one or more deferred tokens and one or
5121 ** more non-deferred tokens, then the expression is advanced to the
5122 ** next possible match, considering only non-deferred tokens. In other
5123 ** words, if the phrase is "A B C", and "B" is deferred, the expression
5124 ** is advanced to the next row that contains an instance of "A * C",
5125 ** where "*" may match any single token. The position list in this case
5126 ** is populated as for "A * C" before returning.
5128 ** 2. NEAR is treated as AND. If the expression is "x NEAR y", it is
5129 ** advanced to point to the next row that matches "x AND y".
5131 ** See sqlite3Fts3EvalTestDeferred() for details on testing if a row is
5132 ** really a match, taking into account deferred tokens and NEAR operators.
5134 static void fts3EvalNextRow(
5135 Fts3Cursor *pCsr, /* FTS Cursor handle */
5136 Fts3Expr *pExpr, /* Expr. to advance to next matching row */
5137 int *pRc /* IN/OUT: Error code */
5139 if( *pRc==SQLITE_OK ){
5140 int bDescDoclist = pCsr->bDesc; /* Used by DOCID_CMP() macro */
5141 assert( pExpr->bEof==0 );
5142 pExpr->bStart = 1;
5144 switch( pExpr->eType ){
5145 case FTSQUERY_NEAR:
5146 case FTSQUERY_AND: {
5147 Fts3Expr *pLeft = pExpr->pLeft;
5148 Fts3Expr *pRight = pExpr->pRight;
5149 assert( !pLeft->bDeferred || !pRight->bDeferred );
5151 if( pLeft->bDeferred ){
5152 /* LHS is entirely deferred. So we assume it matches every row.
5153 ** Advance the RHS iterator to find the next row visited. */
5154 fts3EvalNextRow(pCsr, pRight, pRc);
5155 pExpr->iDocid = pRight->iDocid;
5156 pExpr->bEof = pRight->bEof;
5157 }else if( pRight->bDeferred ){
5158 /* RHS is entirely deferred. So we assume it matches every row.
5159 ** Advance the LHS iterator to find the next row visited. */
5160 fts3EvalNextRow(pCsr, pLeft, pRc);
5161 pExpr->iDocid = pLeft->iDocid;
5162 pExpr->bEof = pLeft->bEof;
5163 }else{
5164 /* Neither the RHS or LHS are deferred. */
5165 fts3EvalNextRow(pCsr, pLeft, pRc);
5166 fts3EvalNextRow(pCsr, pRight, pRc);
5167 while( !pLeft->bEof && !pRight->bEof && *pRc==SQLITE_OK ){
5168 sqlite3_int64 iDiff = DOCID_CMP(pLeft->iDocid, pRight->iDocid);
5169 if( iDiff==0 ) break;
5170 if( iDiff<0 ){
5171 fts3EvalNextRow(pCsr, pLeft, pRc);
5172 }else{
5173 fts3EvalNextRow(pCsr, pRight, pRc);
5176 pExpr->iDocid = pLeft->iDocid;
5177 pExpr->bEof = (pLeft->bEof || pRight->bEof);
5178 if( pExpr->eType==FTSQUERY_NEAR && pExpr->bEof ){
5179 assert( pRight->eType==FTSQUERY_PHRASE );
5180 if( pRight->pPhrase->doclist.aAll ){
5181 Fts3Doclist *pDl = &pRight->pPhrase->doclist;
5182 while( *pRc==SQLITE_OK && pRight->bEof==0 ){
5183 memset(pDl->pList, 0, pDl->nList);
5184 fts3EvalNextRow(pCsr, pRight, pRc);
5187 if( pLeft->pPhrase && pLeft->pPhrase->doclist.aAll ){
5188 Fts3Doclist *pDl = &pLeft->pPhrase->doclist;
5189 while( *pRc==SQLITE_OK && pLeft->bEof==0 ){
5190 memset(pDl->pList, 0, pDl->nList);
5191 fts3EvalNextRow(pCsr, pLeft, pRc);
5196 break;
5199 case FTSQUERY_OR: {
5200 Fts3Expr *pLeft = pExpr->pLeft;
5201 Fts3Expr *pRight = pExpr->pRight;
5202 sqlite3_int64 iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid);
5204 assert( pLeft->bStart || pLeft->iDocid==pRight->iDocid );
5205 assert( pRight->bStart || pLeft->iDocid==pRight->iDocid );
5207 if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){
5208 fts3EvalNextRow(pCsr, pLeft, pRc);
5209 }else if( pLeft->bEof || iCmp>0 ){
5210 fts3EvalNextRow(pCsr, pRight, pRc);
5211 }else{
5212 fts3EvalNextRow(pCsr, pLeft, pRc);
5213 fts3EvalNextRow(pCsr, pRight, pRc);
5216 pExpr->bEof = (pLeft->bEof && pRight->bEof);
5217 iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid);
5218 if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){
5219 pExpr->iDocid = pLeft->iDocid;
5220 }else{
5221 pExpr->iDocid = pRight->iDocid;
5224 break;
5227 case FTSQUERY_NOT: {
5228 Fts3Expr *pLeft = pExpr->pLeft;
5229 Fts3Expr *pRight = pExpr->pRight;
5231 if( pRight->bStart==0 ){
5232 fts3EvalNextRow(pCsr, pRight, pRc);
5233 assert( *pRc!=SQLITE_OK || pRight->bStart );
5236 fts3EvalNextRow(pCsr, pLeft, pRc);
5237 if( pLeft->bEof==0 ){
5238 while( !*pRc
5239 && !pRight->bEof
5240 && DOCID_CMP(pLeft->iDocid, pRight->iDocid)>0
5242 fts3EvalNextRow(pCsr, pRight, pRc);
5245 pExpr->iDocid = pLeft->iDocid;
5246 pExpr->bEof = pLeft->bEof;
5247 break;
5250 default: {
5251 Fts3Phrase *pPhrase = pExpr->pPhrase;
5252 fts3EvalInvalidatePoslist(pPhrase);
5253 *pRc = fts3EvalPhraseNext(pCsr, pPhrase, &pExpr->bEof);
5254 pExpr->iDocid = pPhrase->doclist.iDocid;
5255 break;
5262 ** If *pRc is not SQLITE_OK, or if pExpr is not the root node of a NEAR
5263 ** cluster, then this function returns 1 immediately.
5265 ** Otherwise, it checks if the current row really does match the NEAR
5266 ** expression, using the data currently stored in the position lists
5267 ** (Fts3Expr->pPhrase.doclist.pList/nList) for each phrase in the expression.
5269 ** If the current row is a match, the position list associated with each
5270 ** phrase in the NEAR expression is edited in place to contain only those
5271 ** phrase instances sufficiently close to their peers to satisfy all NEAR
5272 ** constraints. In this case it returns 1. If the NEAR expression does not
5273 ** match the current row, 0 is returned. The position lists may or may not
5274 ** be edited if 0 is returned.
5276 static int fts3EvalNearTest(Fts3Expr *pExpr, int *pRc){
5277 int res = 1;
5279 /* The following block runs if pExpr is the root of a NEAR query.
5280 ** For example, the query:
5282 ** "w" NEAR "x" NEAR "y" NEAR "z"
5284 ** which is represented in tree form as:
5286 ** |
5287 ** +--NEAR--+ <-- root of NEAR query
5288 ** | |
5289 ** +--NEAR--+ "z"
5290 ** | |
5291 ** +--NEAR--+ "y"
5292 ** | |
5293 ** "w" "x"
5295 ** The right-hand child of a NEAR node is always a phrase. The
5296 ** left-hand child may be either a phrase or a NEAR node. There are
5297 ** no exceptions to this - it's the way the parser in fts3_expr.c works.
5299 if( *pRc==SQLITE_OK
5300 && pExpr->eType==FTSQUERY_NEAR
5301 && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR)
5303 Fts3Expr *p;
5304 int nTmp = 0; /* Bytes of temp space */
5305 char *aTmp; /* Temp space for PoslistNearMerge() */
5307 /* Allocate temporary working space. */
5308 for(p=pExpr; p->pLeft; p=p->pLeft){
5309 assert( p->pRight->pPhrase->doclist.nList>0 );
5310 nTmp += p->pRight->pPhrase->doclist.nList;
5312 nTmp += p->pPhrase->doclist.nList;
5313 aTmp = sqlite3_malloc(nTmp*2);
5314 if( !aTmp ){
5315 *pRc = SQLITE_NOMEM;
5316 res = 0;
5317 }else{
5318 char *aPoslist = p->pPhrase->doclist.pList;
5319 int nToken = p->pPhrase->nToken;
5321 for(p=p->pParent;res && p && p->eType==FTSQUERY_NEAR; p=p->pParent){
5322 Fts3Phrase *pPhrase = p->pRight->pPhrase;
5323 int nNear = p->nNear;
5324 res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase);
5327 aPoslist = pExpr->pRight->pPhrase->doclist.pList;
5328 nToken = pExpr->pRight->pPhrase->nToken;
5329 for(p=pExpr->pLeft; p && res; p=p->pLeft){
5330 int nNear;
5331 Fts3Phrase *pPhrase;
5332 assert( p->pParent && p->pParent->pLeft==p );
5333 nNear = p->pParent->nNear;
5334 pPhrase = (
5335 p->eType==FTSQUERY_NEAR ? p->pRight->pPhrase : p->pPhrase
5337 res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase);
5341 sqlite3_free(aTmp);
5344 return res;
5348 ** This function is a helper function for sqlite3Fts3EvalTestDeferred().
5349 ** Assuming no error occurs or has occurred, It returns non-zero if the
5350 ** expression passed as the second argument matches the row that pCsr
5351 ** currently points to, or zero if it does not.
5353 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
5354 ** If an error occurs during execution of this function, *pRc is set to
5355 ** the appropriate SQLite error code. In this case the returned value is
5356 ** undefined.
5358 static int fts3EvalTestExpr(
5359 Fts3Cursor *pCsr, /* FTS cursor handle */
5360 Fts3Expr *pExpr, /* Expr to test. May or may not be root. */
5361 int *pRc /* IN/OUT: Error code */
5363 int bHit = 1; /* Return value */
5364 if( *pRc==SQLITE_OK ){
5365 switch( pExpr->eType ){
5366 case FTSQUERY_NEAR:
5367 case FTSQUERY_AND:
5368 bHit = (
5369 fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc)
5370 && fts3EvalTestExpr(pCsr, pExpr->pRight, pRc)
5371 && fts3EvalNearTest(pExpr, pRc)
5374 /* If the NEAR expression does not match any rows, zero the doclist for
5375 ** all phrases involved in the NEAR. This is because the snippet(),
5376 ** offsets() and matchinfo() functions are not supposed to recognize
5377 ** any instances of phrases that are part of unmatched NEAR queries.
5378 ** For example if this expression:
5380 ** ... MATCH 'a OR (b NEAR c)'
5382 ** is matched against a row containing:
5384 ** 'a b d e'
5386 ** then any snippet() should ony highlight the "a" term, not the "b"
5387 ** (as "b" is part of a non-matching NEAR clause).
5389 if( bHit==0
5390 && pExpr->eType==FTSQUERY_NEAR
5391 && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR)
5393 Fts3Expr *p;
5394 for(p=pExpr; p->pPhrase==0; p=p->pLeft){
5395 if( p->pRight->iDocid==pCsr->iPrevId ){
5396 fts3EvalInvalidatePoslist(p->pRight->pPhrase);
5399 if( p->iDocid==pCsr->iPrevId ){
5400 fts3EvalInvalidatePoslist(p->pPhrase);
5404 break;
5406 case FTSQUERY_OR: {
5407 int bHit1 = fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc);
5408 int bHit2 = fts3EvalTestExpr(pCsr, pExpr->pRight, pRc);
5409 bHit = bHit1 || bHit2;
5410 break;
5413 case FTSQUERY_NOT:
5414 bHit = (
5415 fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc)
5416 && !fts3EvalTestExpr(pCsr, pExpr->pRight, pRc)
5418 break;
5420 default: {
5421 #ifndef SQLITE_DISABLE_FTS4_DEFERRED
5422 if( pCsr->pDeferred
5423 && (pExpr->iDocid==pCsr->iPrevId || pExpr->bDeferred)
5425 Fts3Phrase *pPhrase = pExpr->pPhrase;
5426 assert( pExpr->bDeferred || pPhrase->doclist.bFreeList==0 );
5427 if( pExpr->bDeferred ){
5428 fts3EvalInvalidatePoslist(pPhrase);
5430 *pRc = fts3EvalDeferredPhrase(pCsr, pPhrase);
5431 bHit = (pPhrase->doclist.pList!=0);
5432 pExpr->iDocid = pCsr->iPrevId;
5433 }else
5434 #endif
5436 bHit = (pExpr->bEof==0 && pExpr->iDocid==pCsr->iPrevId);
5438 break;
5442 return bHit;
5446 ** This function is called as the second part of each xNext operation when
5447 ** iterating through the results of a full-text query. At this point the
5448 ** cursor points to a row that matches the query expression, with the
5449 ** following caveats:
5451 ** * Up until this point, "NEAR" operators in the expression have been
5452 ** treated as "AND".
5454 ** * Deferred tokens have not yet been considered.
5456 ** If *pRc is not SQLITE_OK when this function is called, it immediately
5457 ** returns 0. Otherwise, it tests whether or not after considering NEAR
5458 ** operators and deferred tokens the current row is still a match for the
5459 ** expression. It returns 1 if both of the following are true:
5461 ** 1. *pRc is SQLITE_OK when this function returns, and
5463 ** 2. After scanning the current FTS table row for the deferred tokens,
5464 ** it is determined that the row does *not* match the query.
5466 ** Or, if no error occurs and it seems the current row does match the FTS
5467 ** query, return 0.
5469 int sqlite3Fts3EvalTestDeferred(Fts3Cursor *pCsr, int *pRc){
5470 int rc = *pRc;
5471 int bMiss = 0;
5472 if( rc==SQLITE_OK ){
5474 /* If there are one or more deferred tokens, load the current row into
5475 ** memory and scan it to determine the position list for each deferred
5476 ** token. Then, see if this row is really a match, considering deferred
5477 ** tokens and NEAR operators (neither of which were taken into account
5478 ** earlier, by fts3EvalNextRow()).
5480 if( pCsr->pDeferred ){
5481 rc = fts3CursorSeek(0, pCsr);
5482 if( rc==SQLITE_OK ){
5483 rc = sqlite3Fts3CacheDeferredDoclists(pCsr);
5486 bMiss = (0==fts3EvalTestExpr(pCsr, pCsr->pExpr, &rc));
5488 /* Free the position-lists accumulated for each deferred token above. */
5489 sqlite3Fts3FreeDeferredDoclists(pCsr);
5490 *pRc = rc;
5492 return (rc==SQLITE_OK && bMiss);
5496 ** Advance to the next document that matches the FTS expression in
5497 ** Fts3Cursor.pExpr.
5499 static int fts3EvalNext(Fts3Cursor *pCsr){
5500 int rc = SQLITE_OK; /* Return Code */
5501 Fts3Expr *pExpr = pCsr->pExpr;
5502 assert( pCsr->isEof==0 );
5503 if( pExpr==0 ){
5504 pCsr->isEof = 1;
5505 }else{
5506 do {
5507 if( pCsr->isRequireSeek==0 ){
5508 sqlite3_reset(pCsr->pStmt);
5510 assert( sqlite3_data_count(pCsr->pStmt)==0 );
5511 fts3EvalNextRow(pCsr, pExpr, &rc);
5512 pCsr->isEof = pExpr->bEof;
5513 pCsr->isRequireSeek = 1;
5514 pCsr->isMatchinfoNeeded = 1;
5515 pCsr->iPrevId = pExpr->iDocid;
5516 }while( pCsr->isEof==0 && sqlite3Fts3EvalTestDeferred(pCsr, &rc) );
5519 /* Check if the cursor is past the end of the docid range specified
5520 ** by Fts3Cursor.iMinDocid/iMaxDocid. If so, set the EOF flag. */
5521 if( rc==SQLITE_OK && (
5522 (pCsr->bDesc==0 && pCsr->iPrevId>pCsr->iMaxDocid)
5523 || (pCsr->bDesc!=0 && pCsr->iPrevId<pCsr->iMinDocid)
5525 pCsr->isEof = 1;
5528 return rc;
5532 ** Restart interation for expression pExpr so that the next call to
5533 ** fts3EvalNext() visits the first row. Do not allow incremental
5534 ** loading or merging of phrase doclists for this iteration.
5536 ** If *pRc is other than SQLITE_OK when this function is called, it is
5537 ** a no-op. If an error occurs within this function, *pRc is set to an
5538 ** SQLite error code before returning.
5540 static void fts3EvalRestart(
5541 Fts3Cursor *pCsr,
5542 Fts3Expr *pExpr,
5543 int *pRc
5545 if( pExpr && *pRc==SQLITE_OK ){
5546 Fts3Phrase *pPhrase = pExpr->pPhrase;
5548 if( pPhrase ){
5549 fts3EvalInvalidatePoslist(pPhrase);
5550 if( pPhrase->bIncr ){
5551 int i;
5552 for(i=0; i<pPhrase->nToken; i++){
5553 Fts3PhraseToken *pToken = &pPhrase->aToken[i];
5554 assert( pToken->pDeferred==0 );
5555 if( pToken->pSegcsr ){
5556 sqlite3Fts3MsrIncrRestart(pToken->pSegcsr);
5559 *pRc = fts3EvalPhraseStart(pCsr, 0, pPhrase);
5561 pPhrase->doclist.pNextDocid = 0;
5562 pPhrase->doclist.iDocid = 0;
5563 pPhrase->pOrPoslist = 0;
5566 pExpr->iDocid = 0;
5567 pExpr->bEof = 0;
5568 pExpr->bStart = 0;
5570 fts3EvalRestart(pCsr, pExpr->pLeft, pRc);
5571 fts3EvalRestart(pCsr, pExpr->pRight, pRc);
5576 ** After allocating the Fts3Expr.aMI[] array for each phrase in the
5577 ** expression rooted at pExpr, the cursor iterates through all rows matched
5578 ** by pExpr, calling this function for each row. This function increments
5579 ** the values in Fts3Expr.aMI[] according to the position-list currently
5580 ** found in Fts3Expr.pPhrase->doclist.pList for each of the phrase
5581 ** expression nodes.
5583 static void fts3EvalUpdateCounts(Fts3Expr *pExpr){
5584 if( pExpr ){
5585 Fts3Phrase *pPhrase = pExpr->pPhrase;
5586 if( pPhrase && pPhrase->doclist.pList ){
5587 int iCol = 0;
5588 char *p = pPhrase->doclist.pList;
5590 assert( *p );
5591 while( 1 ){
5592 u8 c = 0;
5593 int iCnt = 0;
5594 while( 0xFE & (*p | c) ){
5595 if( (c&0x80)==0 ) iCnt++;
5596 c = *p++ & 0x80;
5599 /* aMI[iCol*3 + 1] = Number of occurrences
5600 ** aMI[iCol*3 + 2] = Number of rows containing at least one instance
5602 pExpr->aMI[iCol*3 + 1] += iCnt;
5603 pExpr->aMI[iCol*3 + 2] += (iCnt>0);
5604 if( *p==0x00 ) break;
5605 p++;
5606 p += fts3GetVarint32(p, &iCol);
5610 fts3EvalUpdateCounts(pExpr->pLeft);
5611 fts3EvalUpdateCounts(pExpr->pRight);
5616 ** Expression pExpr must be of type FTSQUERY_PHRASE.
5618 ** If it is not already allocated and populated, this function allocates and
5619 ** populates the Fts3Expr.aMI[] array for expression pExpr. If pExpr is part
5620 ** of a NEAR expression, then it also allocates and populates the same array
5621 ** for all other phrases that are part of the NEAR expression.
5623 ** SQLITE_OK is returned if the aMI[] array is successfully allocated and
5624 ** populated. Otherwise, if an error occurs, an SQLite error code is returned.
5626 static int fts3EvalGatherStats(
5627 Fts3Cursor *pCsr, /* Cursor object */
5628 Fts3Expr *pExpr /* FTSQUERY_PHRASE expression */
5630 int rc = SQLITE_OK; /* Return code */
5632 assert( pExpr->eType==FTSQUERY_PHRASE );
5633 if( pExpr->aMI==0 ){
5634 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
5635 Fts3Expr *pRoot; /* Root of NEAR expression */
5636 Fts3Expr *p; /* Iterator used for several purposes */
5638 sqlite3_int64 iPrevId = pCsr->iPrevId;
5639 sqlite3_int64 iDocid;
5640 u8 bEof;
5642 /* Find the root of the NEAR expression */
5643 pRoot = pExpr;
5644 while( pRoot->pParent && pRoot->pParent->eType==FTSQUERY_NEAR ){
5645 pRoot = pRoot->pParent;
5647 iDocid = pRoot->iDocid;
5648 bEof = pRoot->bEof;
5649 assert( pRoot->bStart );
5651 /* Allocate space for the aMSI[] array of each FTSQUERY_PHRASE node */
5652 for(p=pRoot; p; p=p->pLeft){
5653 Fts3Expr *pE = (p->eType==FTSQUERY_PHRASE?p:p->pRight);
5654 assert( pE->aMI==0 );
5655 pE->aMI = (u32 *)sqlite3_malloc(pTab->nColumn * 3 * sizeof(u32));
5656 if( !pE->aMI ) return SQLITE_NOMEM;
5657 memset(pE->aMI, 0, pTab->nColumn * 3 * sizeof(u32));
5660 fts3EvalRestart(pCsr, pRoot, &rc);
5662 while( pCsr->isEof==0 && rc==SQLITE_OK ){
5664 do {
5665 /* Ensure the %_content statement is reset. */
5666 if( pCsr->isRequireSeek==0 ) sqlite3_reset(pCsr->pStmt);
5667 assert( sqlite3_data_count(pCsr->pStmt)==0 );
5669 /* Advance to the next document */
5670 fts3EvalNextRow(pCsr, pRoot, &rc);
5671 pCsr->isEof = pRoot->bEof;
5672 pCsr->isRequireSeek = 1;
5673 pCsr->isMatchinfoNeeded = 1;
5674 pCsr->iPrevId = pRoot->iDocid;
5675 }while( pCsr->isEof==0
5676 && pRoot->eType==FTSQUERY_NEAR
5677 && sqlite3Fts3EvalTestDeferred(pCsr, &rc)
5680 if( rc==SQLITE_OK && pCsr->isEof==0 ){
5681 fts3EvalUpdateCounts(pRoot);
5685 pCsr->isEof = 0;
5686 pCsr->iPrevId = iPrevId;
5688 if( bEof ){
5689 pRoot->bEof = bEof;
5690 }else{
5691 /* Caution: pRoot may iterate through docids in ascending or descending
5692 ** order. For this reason, even though it seems more defensive, the
5693 ** do loop can not be written:
5695 ** do {...} while( pRoot->iDocid<iDocid && rc==SQLITE_OK );
5697 fts3EvalRestart(pCsr, pRoot, &rc);
5698 do {
5699 fts3EvalNextRow(pCsr, pRoot, &rc);
5700 assert( pRoot->bEof==0 );
5701 }while( pRoot->iDocid!=iDocid && rc==SQLITE_OK );
5704 return rc;
5708 ** This function is used by the matchinfo() module to query a phrase
5709 ** expression node for the following information:
5711 ** 1. The total number of occurrences of the phrase in each column of
5712 ** the FTS table (considering all rows), and
5714 ** 2. For each column, the number of rows in the table for which the
5715 ** column contains at least one instance of the phrase.
5717 ** If no error occurs, SQLITE_OK is returned and the values for each column
5718 ** written into the array aiOut as follows:
5720 ** aiOut[iCol*3 + 1] = Number of occurrences
5721 ** aiOut[iCol*3 + 2] = Number of rows containing at least one instance
5723 ** Caveats:
5725 ** * If a phrase consists entirely of deferred tokens, then all output
5726 ** values are set to the number of documents in the table. In other
5727 ** words we assume that very common tokens occur exactly once in each
5728 ** column of each row of the table.
5730 ** * If a phrase contains some deferred tokens (and some non-deferred
5731 ** tokens), count the potential occurrence identified by considering
5732 ** the non-deferred tokens instead of actual phrase occurrences.
5734 ** * If the phrase is part of a NEAR expression, then only phrase instances
5735 ** that meet the NEAR constraint are included in the counts.
5737 int sqlite3Fts3EvalPhraseStats(
5738 Fts3Cursor *pCsr, /* FTS cursor handle */
5739 Fts3Expr *pExpr, /* Phrase expression */
5740 u32 *aiOut /* Array to write results into (see above) */
5742 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
5743 int rc = SQLITE_OK;
5744 int iCol;
5746 if( pExpr->bDeferred && pExpr->pParent->eType!=FTSQUERY_NEAR ){
5747 assert( pCsr->nDoc>0 );
5748 for(iCol=0; iCol<pTab->nColumn; iCol++){
5749 aiOut[iCol*3 + 1] = (u32)pCsr->nDoc;
5750 aiOut[iCol*3 + 2] = (u32)pCsr->nDoc;
5752 }else{
5753 rc = fts3EvalGatherStats(pCsr, pExpr);
5754 if( rc==SQLITE_OK ){
5755 assert( pExpr->aMI );
5756 for(iCol=0; iCol<pTab->nColumn; iCol++){
5757 aiOut[iCol*3 + 1] = pExpr->aMI[iCol*3 + 1];
5758 aiOut[iCol*3 + 2] = pExpr->aMI[iCol*3 + 2];
5763 return rc;
5767 ** The expression pExpr passed as the second argument to this function
5768 ** must be of type FTSQUERY_PHRASE.
5770 ** The returned value is either NULL or a pointer to a buffer containing
5771 ** a position-list indicating the occurrences of the phrase in column iCol
5772 ** of the current row.
5774 ** More specifically, the returned buffer contains 1 varint for each
5775 ** occurrence of the phrase in the column, stored using the normal (delta+2)
5776 ** compression and is terminated by either an 0x01 or 0x00 byte. For example,
5777 ** if the requested column contains "a b X c d X X" and the position-list
5778 ** for 'X' is requested, the buffer returned may contain:
5780 ** 0x04 0x05 0x03 0x01 or 0x04 0x05 0x03 0x00
5782 ** This function works regardless of whether or not the phrase is deferred,
5783 ** incremental, or neither.
5785 int sqlite3Fts3EvalPhrasePoslist(
5786 Fts3Cursor *pCsr, /* FTS3 cursor object */
5787 Fts3Expr *pExpr, /* Phrase to return doclist for */
5788 int iCol, /* Column to return position list for */
5789 char **ppOut /* OUT: Pointer to position list */
5791 Fts3Phrase *pPhrase = pExpr->pPhrase;
5792 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
5793 char *pIter;
5794 int iThis;
5795 sqlite3_int64 iDocid;
5797 /* If this phrase is applies specifically to some column other than
5798 ** column iCol, return a NULL pointer. */
5799 *ppOut = 0;
5800 assert( iCol>=0 && iCol<pTab->nColumn );
5801 if( (pPhrase->iColumn<pTab->nColumn && pPhrase->iColumn!=iCol) ){
5802 return SQLITE_OK;
5805 iDocid = pExpr->iDocid;
5806 pIter = pPhrase->doclist.pList;
5807 if( iDocid!=pCsr->iPrevId || pExpr->bEof ){
5808 int rc = SQLITE_OK;
5809 int bDescDoclist = pTab->bDescIdx; /* For DOCID_CMP macro */
5810 int bOr = 0;
5811 u8 bTreeEof = 0;
5812 Fts3Expr *p; /* Used to iterate from pExpr to root */
5813 Fts3Expr *pNear; /* Most senior NEAR ancestor (or pExpr) */
5814 int bMatch;
5816 /* Check if this phrase descends from an OR expression node. If not,
5817 ** return NULL. Otherwise, the entry that corresponds to docid
5818 ** pCsr->iPrevId may lie earlier in the doclist buffer. Or, if the
5819 ** tree that the node is part of has been marked as EOF, but the node
5820 ** itself is not EOF, then it may point to an earlier entry. */
5821 pNear = pExpr;
5822 for(p=pExpr->pParent; p; p=p->pParent){
5823 if( p->eType==FTSQUERY_OR ) bOr = 1;
5824 if( p->eType==FTSQUERY_NEAR ) pNear = p;
5825 if( p->bEof ) bTreeEof = 1;
5827 if( bOr==0 ) return SQLITE_OK;
5829 /* This is the descendent of an OR node. In this case we cannot use
5830 ** an incremental phrase. Load the entire doclist for the phrase
5831 ** into memory in this case. */
5832 if( pPhrase->bIncr ){
5833 int bEofSave = pNear->bEof;
5834 fts3EvalRestart(pCsr, pNear, &rc);
5835 while( rc==SQLITE_OK && !pNear->bEof ){
5836 fts3EvalNextRow(pCsr, pNear, &rc);
5837 if( bEofSave==0 && pNear->iDocid==iDocid ) break;
5839 assert( rc!=SQLITE_OK || pPhrase->bIncr==0 );
5841 if( bTreeEof ){
5842 while( rc==SQLITE_OK && !pNear->bEof ){
5843 fts3EvalNextRow(pCsr, pNear, &rc);
5846 if( rc!=SQLITE_OK ) return rc;
5848 bMatch = 1;
5849 for(p=pNear; p; p=p->pLeft){
5850 u8 bEof = 0;
5851 Fts3Expr *pTest = p;
5852 Fts3Phrase *pPh;
5853 assert( pTest->eType==FTSQUERY_NEAR || pTest->eType==FTSQUERY_PHRASE );
5854 if( pTest->eType==FTSQUERY_NEAR ) pTest = pTest->pRight;
5855 assert( pTest->eType==FTSQUERY_PHRASE );
5856 pPh = pTest->pPhrase;
5858 pIter = pPh->pOrPoslist;
5859 iDocid = pPh->iOrDocid;
5860 if( pCsr->bDesc==bDescDoclist ){
5861 bEof = !pPh->doclist.nAll ||
5862 (pIter >= (pPh->doclist.aAll + pPh->doclist.nAll));
5863 while( (pIter==0 || DOCID_CMP(iDocid, pCsr->iPrevId)<0 ) && bEof==0 ){
5864 sqlite3Fts3DoclistNext(
5865 bDescDoclist, pPh->doclist.aAll, pPh->doclist.nAll,
5866 &pIter, &iDocid, &bEof
5869 }else{
5870 bEof = !pPh->doclist.nAll || (pIter && pIter<=pPh->doclist.aAll);
5871 while( (pIter==0 || DOCID_CMP(iDocid, pCsr->iPrevId)>0 ) && bEof==0 ){
5872 int dummy;
5873 sqlite3Fts3DoclistPrev(
5874 bDescDoclist, pPh->doclist.aAll, pPh->doclist.nAll,
5875 &pIter, &iDocid, &dummy, &bEof
5879 pPh->pOrPoslist = pIter;
5880 pPh->iOrDocid = iDocid;
5881 if( bEof || iDocid!=pCsr->iPrevId ) bMatch = 0;
5884 if( bMatch ){
5885 pIter = pPhrase->pOrPoslist;
5886 }else{
5887 pIter = 0;
5890 if( pIter==0 ) return SQLITE_OK;
5892 if( *pIter==0x01 ){
5893 pIter++;
5894 pIter += fts3GetVarint32(pIter, &iThis);
5895 }else{
5896 iThis = 0;
5898 while( iThis<iCol ){
5899 fts3ColumnlistCopy(0, &pIter);
5900 if( *pIter==0x00 ) return SQLITE_OK;
5901 pIter++;
5902 pIter += fts3GetVarint32(pIter, &iThis);
5904 if( *pIter==0x00 ){
5905 pIter = 0;
5908 *ppOut = ((iCol==iThis)?pIter:0);
5909 return SQLITE_OK;
5913 ** Free all components of the Fts3Phrase structure that were allocated by
5914 ** the eval module. Specifically, this means to free:
5916 ** * the contents of pPhrase->doclist, and
5917 ** * any Fts3MultiSegReader objects held by phrase tokens.
5919 void sqlite3Fts3EvalPhraseCleanup(Fts3Phrase *pPhrase){
5920 if( pPhrase ){
5921 int i;
5922 sqlite3_free(pPhrase->doclist.aAll);
5923 fts3EvalInvalidatePoslist(pPhrase);
5924 memset(&pPhrase->doclist, 0, sizeof(Fts3Doclist));
5925 for(i=0; i<pPhrase->nToken; i++){
5926 fts3SegReaderCursorFree(pPhrase->aToken[i].pSegcsr);
5927 pPhrase->aToken[i].pSegcsr = 0;
5934 ** Return SQLITE_CORRUPT_VTAB.
5936 #ifdef SQLITE_DEBUG
5937 int sqlite3Fts3Corrupt(){
5938 return SQLITE_CORRUPT_VTAB;
5940 #endif
5942 #if !SQLITE_CORE
5944 ** Initialize API pointer table, if required.
5946 #ifdef _WIN32
5947 __declspec(dllexport)
5948 #endif
5949 int sqlite3_fts3_init(
5950 sqlite3 *db,
5951 char **pzErrMsg,
5952 const sqlite3_api_routines *pApi
5954 SQLITE_EXTENSION_INIT2(pApi)
5955 return sqlite3Fts3Init(db);
5957 #endif
5959 #endif