4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 ******************************************************************************
13 ** This is an SQLite module implementing full-text search.
17 ** The code in this file is only compiled if:
19 ** * The FTS3 module is being built as an extension
20 ** (in which case SQLITE_CORE is not defined), or
22 ** * The FTS3 module is being built into the core of
23 ** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
26 /* The full-text index is stored in a series of b+tree (-like)
27 ** structures called segments which map terms to doclists. The
28 ** structures are like b+trees in layout, but are constructed from the
29 ** bottom up in optimal fashion and are not updatable. Since trees
30 ** are built from the bottom up, things will be described from the
35 ** The basic unit of encoding is a variable-length integer called a
36 ** varint. We encode variable-length integers in little-endian order
37 ** using seven bits * per byte as follows:
40 ** A = 0xxxxxxx 7 bits of data and one flag bit
41 ** B = 1xxxxxxx 7 bits of data and one flag bit
48 ** This is similar in concept to how sqlite encodes "varints" but
49 ** the encoding is not the same. SQLite varints are big-endian
50 ** are are limited to 9 bytes in length whereas FTS3 varints are
51 ** little-endian and can be up to 10 bytes in length (in theory).
60 **** Document lists ****
61 ** A doclist (document list) holds a docid-sorted list of hits for a
62 ** given term. Doclists hold docids and associated token positions.
63 ** A docid is the unique integer identifier for a single document.
64 ** A position is the index of a word within the document. The first
65 ** word of the document has a position of 0.
67 ** FTS3 used to optionally store character offsets using a compile-time
68 ** option. But that functionality is no longer supported.
70 ** A doclist is stored like this:
73 ** varint docid; (delta from previous doclist)
74 ** array { (position list for column 0)
75 ** varint position; (2 more than the delta from previous position)
78 ** varint POS_COLUMN; (marks start of position list for new column)
79 ** varint column; (index of new column)
81 ** varint position; (2 more than the delta from previous position)
84 ** varint POS_END; (marks end of positions for this document.
87 ** Here, array { X } means zero or more occurrences of X, adjacent in
88 ** memory. A "position" is an index of a token in the token stream
89 ** generated by the tokenizer. Note that POS_END and POS_COLUMN occur
90 ** in the same logical place as the position element, and act as sentinals
91 ** ending a position list array. POS_END is 0. POS_COLUMN is 1.
92 ** The positions numbers are not stored literally but rather as two more
93 ** than the difference from the prior position, or the just the position plus
94 ** 2 for the first position. Example:
96 ** label: A B C D E F G H I J K
97 ** value: 123 5 9 1 1 14 35 0 234 72 0
99 ** The 123 value is the first docid. For column zero in this document
100 ** there are two matches at positions 3 and 10 (5-2 and 9-2+3). The 1
101 ** at D signals the start of a new column; the 1 at E indicates that the
102 ** new column is column number 1. There are two positions at 12 and 45
103 ** (14-2 and 35-2+12). The 0 at H indicate the end-of-document. The
104 ** 234 at I is the delta to next docid (357). It has one position 70
105 ** (72-2) and then terminates with the 0 at K.
107 ** A "position-list" is the list of positions for multiple columns for
108 ** a single docid. A "column-list" is the set of positions for a single
109 ** column. Hence, a position-list consists of one or more column-lists,
110 ** a document record consists of a docid followed by a position-list and
111 ** a doclist consists of one or more document records.
113 ** A bare doclist omits the position information, becoming an
114 ** array of varint-encoded docids.
116 **** Segment leaf nodes ****
117 ** Segment leaf nodes store terms and doclists, ordered by term. Leaf
118 ** nodes are written using LeafWriter, and read using LeafReader (to
119 ** iterate through a single leaf node's data) and LeavesReader (to
120 ** iterate through a segment's entire leaf layer). Leaf nodes have
123 ** varint iHeight; (height from leaf level, always 0)
124 ** varint nTerm; (length of first term)
125 ** char pTerm[nTerm]; (content of first term)
126 ** varint nDoclist; (length of term's associated doclist)
127 ** char pDoclist[nDoclist]; (content of doclist)
129 ** (further terms are delta-encoded)
130 ** varint nPrefix; (length of prefix shared with previous term)
131 ** varint nSuffix; (length of unshared suffix)
132 ** char pTermSuffix[nSuffix];(unshared suffix of next term)
133 ** varint nDoclist; (length of term's associated doclist)
134 ** char pDoclist[nDoclist]; (content of doclist)
137 ** Here, array { X } means zero or more occurrences of X, adjacent in
140 ** Leaf nodes are broken into blocks which are stored contiguously in
141 ** the %_segments table in sorted order. This means that when the end
142 ** of a node is reached, the next term is in the node with the next
145 ** New data is spilled to a new leaf node when the current node
146 ** exceeds LEAF_MAX bytes (default 2048). New data which itself is
147 ** larger than STANDALONE_MIN (default 1024) is placed in a standalone
148 ** node (a leaf node with a single term and doclist). The goal of
149 ** these settings is to pack together groups of small doclists while
150 ** making it efficient to directly access large doclists. The
151 ** assumption is that large doclists represent terms which are more
152 ** likely to be query targets.
154 ** TODO(shess) It may be useful for blocking decisions to be more
155 ** dynamic. For instance, it may make more sense to have a 2.5k leaf
156 ** node rather than splitting into 2k and .5k nodes. My intuition is
157 ** that this might extend through 2x or 4x the pagesize.
160 **** Segment interior nodes ****
161 ** Segment interior nodes store blockids for subtree nodes and terms
162 ** to describe what data is stored by the each subtree. Interior
163 ** nodes are written using InteriorWriter, and read using
164 ** InteriorReader. InteriorWriters are created as needed when
165 ** SegmentWriter creates new leaf nodes, or when an interior node
166 ** itself grows too big and must be split. The format of interior
169 ** varint iHeight; (height from leaf level, always >0)
170 ** varint iBlockid; (block id of node's leftmost subtree)
172 ** varint nTerm; (length of first term)
173 ** char pTerm[nTerm]; (content of first term)
175 ** (further terms are delta-encoded)
176 ** varint nPrefix; (length of shared prefix with previous term)
177 ** varint nSuffix; (length of unshared suffix)
178 ** char pTermSuffix[nSuffix]; (unshared suffix of next term)
182 ** Here, optional { X } means an optional element, while array { X }
183 ** means zero or more occurrences of X, adjacent in memory.
185 ** An interior node encodes n terms separating n+1 subtrees. The
186 ** subtree blocks are contiguous, so only the first subtree's blockid
187 ** is encoded. The subtree at iBlockid will contain all terms less
188 ** than the first term encoded (or all terms if no term is encoded).
189 ** Otherwise, for terms greater than or equal to pTerm[i] but less
190 ** than pTerm[i+1], the subtree for that term will be rooted at
191 ** iBlockid+i. Interior nodes only store enough term data to
192 ** distinguish adjacent children (if the rightmost term of the left
193 ** child is "something", and the leftmost term of the right child is
194 ** "wicked", only "w" is stored).
196 ** New data is spilled to a new interior node at the same height when
197 ** the current node exceeds INTERIOR_MAX bytes (default 2048).
198 ** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing
199 ** interior nodes and making the tree too skinny. The interior nodes
200 ** at a given height are naturally tracked by interior nodes at
201 ** height+1, and so on.
204 **** Segment directory ****
205 ** The segment directory in table %_segdir stores meta-information for
206 ** merging and deleting segments, and also the root node of the
209 ** The root node is the top node of the segment's tree after encoding
210 ** the entire segment, restricted to ROOT_MAX bytes (default 1024).
211 ** This could be either a leaf node or an interior node. If the top
212 ** node requires more than ROOT_MAX bytes, it is flushed to %_segments
213 ** and a new root interior node is generated (which should always fit
214 ** within ROOT_MAX because it only needs space for 2 varints, the
215 ** height and the blockid of the previous root).
217 ** The meta-information in the segment directory is:
218 ** level - segment level (see below)
219 ** idx - index within level
220 ** - (level,idx uniquely identify a segment)
221 ** start_block - first leaf node
222 ** leaves_end_block - last leaf node
223 ** end_block - last block (including interior nodes)
224 ** root - contents of root node
226 ** If the root node is a leaf node, then start_block,
227 ** leaves_end_block, and end_block are all 0.
230 **** Segment merging ****
231 ** To amortize update costs, segments are grouped into levels and
232 ** merged in batches. Each increase in level represents exponentially
235 ** New documents (actually, document updates) are tokenized and
236 ** written individually (using LeafWriter) to a level 0 segment, with
237 ** incrementing idx. When idx reaches MERGE_COUNT (default 16), all
238 ** level 0 segments are merged into a single level 1 segment. Level 1
239 ** is populated like level 0, and eventually MERGE_COUNT level 1
240 ** segments are merged to a single level 2 segment (representing
241 ** MERGE_COUNT^2 updates), and so on.
243 ** A segment merge traverses all segments at a given level in
244 ** parallel, performing a straightforward sorted merge. Since segment
245 ** leaf nodes are written in to the %_segments table in order, this
246 ** merge traverses the underlying sqlite disk structures efficiently.
247 ** After the merge, all segment blocks from the merged level are
250 ** MERGE_COUNT controls how often we merge segments. 16 seems to be
251 ** somewhat of a sweet spot for insertion performance. 32 and 64 show
252 ** very similar performance numbers to 16 on insertion, though they're
253 ** a tiny bit slower (perhaps due to more overhead in merge-time
254 ** sorting). 8 is about 20% slower than 16, 4 about 50% slower than
255 ** 16, 2 about 66% slower than 16.
257 ** At query time, high MERGE_COUNT increases the number of segments
258 ** which need to be scanned and merged. For instance, with 100k docs
261 ** MERGE_COUNT segments
267 ** This appears to have only a moderate impact on queries for very
268 ** frequent terms (which are somewhat dominated by segment merge
269 ** costs), and infrequent and non-existent terms still seem to be fast
270 ** even with many segments.
272 ** TODO(shess) That said, it would be nice to have a better query-side
273 ** argument for MERGE_COUNT of 16. Also, it is possible/likely that
274 ** optimizations to things like doclist merging will swing the sweet
279 **** Handling of deletions and updates ****
280 ** Since we're using a segmented structure, with no docid-oriented
281 ** index into the term index, we clearly cannot simply update the term
282 ** index when a document is deleted or updated. For deletions, we
283 ** write an empty doclist (varint(docid) varint(POS_END)), for updates
284 ** we simply write the new doclist. Segment merges overwrite older
285 ** data for a particular docid with newer data, so deletes or updates
286 ** will eventually overtake the earlier data and knock it out. The
287 ** query logic likewise merges doclists so that newer data knocks out
292 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
294 #if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE)
295 # define SQLITE_CORE 1
307 # include "sqlite3ext.h"
308 SQLITE_EXTENSION_INIT1
311 static int fts3EvalNext(Fts3Cursor
*pCsr
);
312 static int fts3EvalStart(Fts3Cursor
*pCsr
);
313 static int fts3TermSegReaderCursor(
314 Fts3Cursor
*, const char *, int, int, Fts3MultiSegReader
**);
316 #ifndef SQLITE_AMALGAMATION
317 # if defined(SQLITE_DEBUG)
318 int sqlite3Fts3Always(int b
) { assert( b
); return b
; }
319 int sqlite3Fts3Never(int b
) { assert( !b
); return b
; }
324 ** Write a 64-bit variable-length integer to memory starting at p[0].
325 ** The length of data written will be between 1 and FTS3_VARINT_MAX bytes.
326 ** The number of bytes written is returned.
328 int sqlite3Fts3PutVarint(char *p
, sqlite_int64 v
){
329 unsigned char *q
= (unsigned char *) p
;
330 sqlite_uint64 vu
= v
;
332 *q
++ = (unsigned char) ((vu
& 0x7f) | 0x80);
335 q
[-1] &= 0x7f; /* turn off high bit in final byte */
336 assert( q
- (unsigned char *)p
<= FTS3_VARINT_MAX
);
337 return (int) (q
- (unsigned char *)p
);
340 #define GETVARINT_STEP(v, ptr, shift, mask1, mask2, var, ret) \
341 v = (v & mask1) | ( (*ptr++) << shift ); \
342 if( (v & mask2)==0 ){ var = v; return ret; }
343 #define GETVARINT_INIT(v, ptr, shift, mask1, mask2, var, ret) \
345 if( (v & mask2)==0 ){ var = v; return ret; }
348 ** Read a 64-bit variable-length integer from memory starting at p[0].
349 ** Return the number of bytes read, or 0 on error.
350 ** The value is stored in *v.
352 int sqlite3Fts3GetVarint(const char *pBuf
, sqlite_int64
*v
){
353 const unsigned char *p
= (const unsigned char*)pBuf
;
354 const unsigned char *pStart
= p
;
359 GETVARINT_INIT(a
, p
, 0, 0x00, 0x80, *v
, 1);
360 GETVARINT_STEP(a
, p
, 7, 0x7F, 0x4000, *v
, 2);
361 GETVARINT_STEP(a
, p
, 14, 0x3FFF, 0x200000, *v
, 3);
362 GETVARINT_STEP(a
, p
, 21, 0x1FFFFF, 0x10000000, *v
, 4);
363 b
= (a
& 0x0FFFFFFF );
365 for(shift
=28; shift
<=63; shift
+=7){
367 b
+= (c
&0x7F) << shift
;
368 if( (c
& 0x80)==0 ) break;
371 return (int)(p
- pStart
);
375 ** Similar to sqlite3Fts3GetVarint(), except that the output is truncated to
376 ** a non-negative 32-bit integer before it is returned.
378 int sqlite3Fts3GetVarint32(const char *p
, int *pi
){
381 #ifndef fts3GetVarint32
382 GETVARINT_INIT(a
, p
, 0, 0x00, 0x80, *pi
, 1);
388 GETVARINT_STEP(a
, p
, 7, 0x7F, 0x4000, *pi
, 2);
389 GETVARINT_STEP(a
, p
, 14, 0x3FFF, 0x200000, *pi
, 3);
390 GETVARINT_STEP(a
, p
, 21, 0x1FFFFF, 0x10000000, *pi
, 4);
391 a
= (a
& 0x0FFFFFFF );
392 *pi
= (int)(a
| ((u32
)(*p
& 0x07) << 28));
393 assert( 0==(a
& 0x80000000) );
399 ** Return the number of bytes required to encode v as a varint
401 int sqlite3Fts3VarintLen(sqlite3_uint64 v
){
411 ** Convert an SQL-style quoted string into a normal string by removing
412 ** the quote characters. The conversion is done in-place. If the
413 ** input does not begin with a quote character, then this routine
424 void sqlite3Fts3Dequote(char *z
){
425 char quote
; /* Quote character (if any ) */
428 if( quote
=='[' || quote
=='\'' || quote
=='"' || quote
=='`' ){
429 int iIn
= 1; /* Index of next byte to read from input */
430 int iOut
= 0; /* Index of next byte to write to output */
432 /* If the first byte was a '[', then the close-quote character is a ']' */
433 if( quote
=='[' ) quote
= ']';
437 if( z
[iIn
+1]!=quote
) break;
441 z
[iOut
++] = z
[iIn
++];
449 ** Read a single varint from the doclist at *pp and advance *pp to point
450 ** to the first byte past the end of the varint. Add the value of the varint
453 static void fts3GetDeltaVarint(char **pp
, sqlite3_int64
*pVal
){
455 *pp
+= sqlite3Fts3GetVarint(*pp
, &iVal
);
460 ** When this function is called, *pp points to the first byte following a
461 ** varint that is part of a doclist (or position-list, or any other list
462 ** of varints). This function moves *pp to point to the start of that varint,
463 ** and sets *pVal by the varint value.
465 ** Argument pStart points to the first byte of the doclist that the
466 ** varint is part of.
468 static void fts3GetReverseVarint(
476 /* Pointer p now points at the first byte past the varint we are
477 ** interested in. So, unless the doclist is corrupt, the 0x80 bit is
478 ** clear on character p[-1]. */
479 for(p
= (*pp
)-2; p
>=pStart
&& *p
&0x80; p
--);
483 sqlite3Fts3GetVarint(p
, &iVal
);
488 ** The xDisconnect() virtual table method.
490 static int fts3DisconnectMethod(sqlite3_vtab
*pVtab
){
491 Fts3Table
*p
= (Fts3Table
*)pVtab
;
494 assert( p
->nPendingData
==0 );
495 assert( p
->pSegments
==0 );
497 /* Free any prepared statements held */
498 sqlite3_finalize(p
->pSeekStmt
);
499 for(i
=0; i
<SizeofArray(p
->aStmt
); i
++){
500 sqlite3_finalize(p
->aStmt
[i
]);
502 sqlite3_free(p
->zSegmentsTbl
);
503 sqlite3_free(p
->zReadExprlist
);
504 sqlite3_free(p
->zWriteExprlist
);
505 sqlite3_free(p
->zContentTbl
);
506 sqlite3_free(p
->zLanguageid
);
508 /* Invoke the tokenizer destructor to free the tokenizer. */
509 p
->pTokenizer
->pModule
->xDestroy(p
->pTokenizer
);
516 ** Write an error message into *pzErr
518 void sqlite3Fts3ErrMsg(char **pzErr
, const char *zFormat
, ...){
520 sqlite3_free(*pzErr
);
521 va_start(ap
, zFormat
);
522 *pzErr
= sqlite3_vmprintf(zFormat
, ap
);
527 ** Construct one or more SQL statements from the format string given
528 ** and then evaluate those statements. The success code is written
531 ** If *pRc is initially non-zero then this routine is a no-op.
533 static void fts3DbExec(
534 int *pRc
, /* Success code */
535 sqlite3
*db
, /* Database in which to run SQL */
536 const char *zFormat
, /* Format string for SQL */
537 ... /* Arguments to the format string */
542 va_start(ap
, zFormat
);
543 zSql
= sqlite3_vmprintf(zFormat
, ap
);
548 *pRc
= sqlite3_exec(db
, zSql
, 0, 0, 0);
554 ** The xDestroy() virtual table method.
556 static int fts3DestroyMethod(sqlite3_vtab
*pVtab
){
557 Fts3Table
*p
= (Fts3Table
*)pVtab
;
558 int rc
= SQLITE_OK
; /* Return code */
559 const char *zDb
= p
->zDb
; /* Name of database (e.g. "main", "temp") */
560 sqlite3
*db
= p
->db
; /* Database handle */
562 /* Drop the shadow tables */
563 if( p
->zContentTbl
==0 ){
564 fts3DbExec(&rc
, db
, "DROP TABLE IF EXISTS %Q.'%q_content'", zDb
, p
->zName
);
566 fts3DbExec(&rc
, db
, "DROP TABLE IF EXISTS %Q.'%q_segments'", zDb
,p
->zName
);
567 fts3DbExec(&rc
, db
, "DROP TABLE IF EXISTS %Q.'%q_segdir'", zDb
, p
->zName
);
568 fts3DbExec(&rc
, db
, "DROP TABLE IF EXISTS %Q.'%q_docsize'", zDb
, p
->zName
);
569 fts3DbExec(&rc
, db
, "DROP TABLE IF EXISTS %Q.'%q_stat'", zDb
, p
->zName
);
571 /* If everything has worked, invoke fts3DisconnectMethod() to free the
572 ** memory associated with the Fts3Table structure and return SQLITE_OK.
573 ** Otherwise, return an SQLite error code.
575 return (rc
==SQLITE_OK
? fts3DisconnectMethod(pVtab
) : rc
);
580 ** Invoke sqlite3_declare_vtab() to declare the schema for the FTS3 table
581 ** passed as the first argument. This is done as part of the xConnect()
582 ** and xCreate() methods.
584 ** If *pRc is non-zero when this function is called, it is a no-op.
585 ** Otherwise, if an error occurs, an SQLite error code is stored in *pRc
588 static void fts3DeclareVtab(int *pRc
, Fts3Table
*p
){
589 if( *pRc
==SQLITE_OK
){
590 int i
; /* Iterator variable */
591 int rc
; /* Return code */
592 char *zSql
; /* SQL statement passed to declare_vtab() */
593 char *zCols
; /* List of user defined columns */
594 const char *zLanguageid
;
596 zLanguageid
= (p
->zLanguageid
? p
->zLanguageid
: "__langid");
597 sqlite3_vtab_config(p
->db
, SQLITE_VTAB_CONSTRAINT_SUPPORT
, 1);
599 /* Create a list of user columns for the virtual table */
600 zCols
= sqlite3_mprintf("%Q, ", p
->azColumn
[0]);
601 for(i
=1; zCols
&& i
<p
->nColumn
; i
++){
602 zCols
= sqlite3_mprintf("%z%Q, ", zCols
, p
->azColumn
[i
]);
605 /* Create the whole "CREATE TABLE" statement to pass to SQLite */
606 zSql
= sqlite3_mprintf(
607 "CREATE TABLE x(%s %Q HIDDEN, docid HIDDEN, %Q HIDDEN)",
608 zCols
, p
->zName
, zLanguageid
610 if( !zCols
|| !zSql
){
613 rc
= sqlite3_declare_vtab(p
->db
, zSql
);
623 ** Create the %_stat table if it does not already exist.
625 void sqlite3Fts3CreateStatTable(int *pRc
, Fts3Table
*p
){
626 fts3DbExec(pRc
, p
->db
,
627 "CREATE TABLE IF NOT EXISTS %Q.'%q_stat'"
628 "(id INTEGER PRIMARY KEY, value BLOB);",
631 if( (*pRc
)==SQLITE_OK
) p
->bHasStat
= 1;
635 ** Create the backing store tables (%_content, %_segments and %_segdir)
636 ** required by the FTS3 table passed as the only argument. This is done
637 ** as part of the vtab xCreate() method.
639 ** If the p->bHasDocsize boolean is true (indicating that this is an
640 ** FTS4 table, not an FTS3 table) then also create the %_docsize and
641 ** %_stat tables required by FTS4.
643 static int fts3CreateTables(Fts3Table
*p
){
644 int rc
= SQLITE_OK
; /* Return code */
645 int i
; /* Iterator variable */
646 sqlite3
*db
= p
->db
; /* The database connection */
648 if( p
->zContentTbl
==0 ){
649 const char *zLanguageid
= p
->zLanguageid
;
650 char *zContentCols
; /* Columns of %_content table */
652 /* Create a list of user columns for the content table */
653 zContentCols
= sqlite3_mprintf("docid INTEGER PRIMARY KEY");
654 for(i
=0; zContentCols
&& i
<p
->nColumn
; i
++){
655 char *z
= p
->azColumn
[i
];
656 zContentCols
= sqlite3_mprintf("%z, 'c%d%q'", zContentCols
, i
, z
);
658 if( zLanguageid
&& zContentCols
){
659 zContentCols
= sqlite3_mprintf("%z, langid", zContentCols
, zLanguageid
);
661 if( zContentCols
==0 ) rc
= SQLITE_NOMEM
;
663 /* Create the content table */
665 "CREATE TABLE %Q.'%q_content'(%s)",
666 p
->zDb
, p
->zName
, zContentCols
668 sqlite3_free(zContentCols
);
671 /* Create other tables */
673 "CREATE TABLE %Q.'%q_segments'(blockid INTEGER PRIMARY KEY, block BLOB);",
677 "CREATE TABLE %Q.'%q_segdir'("
680 "start_block INTEGER,"
681 "leaves_end_block INTEGER,"
684 "PRIMARY KEY(level, idx)"
688 if( p
->bHasDocsize
){
690 "CREATE TABLE %Q.'%q_docsize'(docid INTEGER PRIMARY KEY, size BLOB);",
694 assert( p
->bHasStat
==p
->bFts4
);
696 sqlite3Fts3CreateStatTable(&rc
, p
);
702 ** Store the current database page-size in bytes in p->nPgsz.
704 ** If *pRc is non-zero when this function is called, it is a no-op.
705 ** Otherwise, if an error occurs, an SQLite error code is stored in *pRc
708 static void fts3DatabasePageSize(int *pRc
, Fts3Table
*p
){
709 if( *pRc
==SQLITE_OK
){
710 int rc
; /* Return code */
711 char *zSql
; /* SQL text "PRAGMA %Q.page_size" */
712 sqlite3_stmt
*pStmt
; /* Compiled "PRAGMA %Q.page_size" statement */
714 zSql
= sqlite3_mprintf("PRAGMA %Q.page_size", p
->zDb
);
718 rc
= sqlite3_prepare(p
->db
, zSql
, -1, &pStmt
, 0);
721 p
->nPgsz
= sqlite3_column_int(pStmt
, 0);
722 rc
= sqlite3_finalize(pStmt
);
723 }else if( rc
==SQLITE_AUTH
){
728 assert( p
->nPgsz
>0 || rc
!=SQLITE_OK
);
735 ** "Special" FTS4 arguments are column specifications of the following form:
739 ** There may not be whitespace surrounding the "=" character. The <value>
740 ** term may be quoted, but the <key> may not.
742 static int fts3IsSpecialColumn(
748 const char *zCsr
= z
;
751 if( *zCsr
=='\0' ) return 0;
755 *pnKey
= (int)(zCsr
-z
);
756 zValue
= sqlite3_mprintf("%s", &zCsr
[1]);
758 sqlite3Fts3Dequote(zValue
);
765 ** Append the output of a printf() style formatting to an existing string.
767 static void fts3Appendf(
768 int *pRc
, /* IN/OUT: Error code */
769 char **pz
, /* IN/OUT: Pointer to string buffer */
770 const char *zFormat
, /* Printf format string to append */
771 ... /* Arguments for printf format string */
773 if( *pRc
==SQLITE_OK
){
776 va_start(ap
, zFormat
);
777 z
= sqlite3_vmprintf(zFormat
, ap
);
780 char *z2
= sqlite3_mprintf("%s%s", *pz
, z
);
784 if( z
==0 ) *pRc
= SQLITE_NOMEM
;
791 ** Return a copy of input string zInput enclosed in double-quotes (") and
792 ** with all double quote characters escaped. For example:
794 ** fts3QuoteId("un \"zip\"") -> "un \"\"zip\"\""
796 ** The pointer returned points to memory obtained from sqlite3_malloc(). It
797 ** is the callers responsibility to call sqlite3_free() to release this
800 static char *fts3QuoteId(char const *zInput
){
803 nRet
= 2 + (int)strlen(zInput
)*2 + 1;
804 zRet
= sqlite3_malloc(nRet
);
809 for(i
=0; zInput
[i
]; i
++){
810 if( zInput
[i
]=='"' ) *(z
++) = '"';
820 ** Return a list of comma separated SQL expressions and a FROM clause that
821 ** could be used in a SELECT statement such as the following:
823 ** SELECT <list of expressions> FROM %_content AS x ...
825 ** to return the docid, followed by each column of text data in order
826 ** from left to write. If parameter zFunc is not NULL, then instead of
827 ** being returned directly each column of text data is passed to an SQL
828 ** function named zFunc first. For example, if zFunc is "unzip" and the
829 ** table has the three user-defined columns "a", "b", and "c", the following
830 ** string is returned:
832 ** "docid, unzip(x.'a'), unzip(x.'b'), unzip(x.'c') FROM %_content AS x"
834 ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It
835 ** is the responsibility of the caller to eventually free it.
837 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and
838 ** a NULL pointer is returned). Otherwise, if an OOM error is encountered
839 ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If
840 ** no error occurs, *pRc is left unmodified.
842 static char *fts3ReadExprList(Fts3Table
*p
, const char *zFunc
, int *pRc
){
848 if( p
->zContentTbl
==0 ){
852 zFree
= zFunction
= fts3QuoteId(zFunc
);
854 fts3Appendf(pRc
, &zRet
, "docid");
855 for(i
=0; i
<p
->nColumn
; i
++){
856 fts3Appendf(pRc
, &zRet
, ",%s(x.'c%d%q')", zFunction
, i
, p
->azColumn
[i
]);
858 if( p
->zLanguageid
){
859 fts3Appendf(pRc
, &zRet
, ", x.%Q", "langid");
863 fts3Appendf(pRc
, &zRet
, "rowid");
864 for(i
=0; i
<p
->nColumn
; i
++){
865 fts3Appendf(pRc
, &zRet
, ", x.'%q'", p
->azColumn
[i
]);
867 if( p
->zLanguageid
){
868 fts3Appendf(pRc
, &zRet
, ", x.%Q", p
->zLanguageid
);
871 fts3Appendf(pRc
, &zRet
, " FROM '%q'.'%q%s' AS x",
873 (p
->zContentTbl
? p
->zContentTbl
: p
->zName
),
874 (p
->zContentTbl
? "" : "_content")
880 ** Return a list of N comma separated question marks, where N is the number
881 ** of columns in the %_content table (one for the docid plus one for each
882 ** user-defined text column).
884 ** If argument zFunc is not NULL, then all but the first question mark
885 ** is preceded by zFunc and an open bracket, and followed by a closed
886 ** bracket. For example, if zFunc is "zip" and the FTS3 table has three
887 ** user-defined text columns, the following string is returned:
889 ** "?, zip(?), zip(?), zip(?)"
891 ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It
892 ** is the responsibility of the caller to eventually free it.
894 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and
895 ** a NULL pointer is returned). Otherwise, if an OOM error is encountered
896 ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If
897 ** no error occurs, *pRc is left unmodified.
899 static char *fts3WriteExprList(Fts3Table
*p
, const char *zFunc
, int *pRc
){
908 zFree
= zFunction
= fts3QuoteId(zFunc
);
910 fts3Appendf(pRc
, &zRet
, "?");
911 for(i
=0; i
<p
->nColumn
; i
++){
912 fts3Appendf(pRc
, &zRet
, ",%s(?)", zFunction
);
914 if( p
->zLanguageid
){
915 fts3Appendf(pRc
, &zRet
, ", ?");
922 ** This function interprets the string at (*pp) as a non-negative integer
923 ** value. It reads the integer and sets *pnOut to the value read, then
924 ** sets *pp to point to the byte immediately following the last byte of
925 ** the integer value.
927 ** Only decimal digits ('0'..'9') may be part of an integer value.
929 ** If *pp does not being with a decimal digit SQLITE_ERROR is returned and
930 ** the output value undefined. Otherwise SQLITE_OK is returned.
932 ** This function is used when parsing the "prefix=" FTS4 parameter.
934 static int fts3GobbleInt(const char **pp
, int *pnOut
){
935 const int MAX_NPREFIX
= 10000000;
936 const char *p
; /* Iterator pointer */
937 int nInt
= 0; /* Output value */
939 for(p
=*pp
; p
[0]>='0' && p
[0]<='9'; p
++){
940 nInt
= nInt
* 10 + (p
[0] - '0');
941 if( nInt
>MAX_NPREFIX
){
946 if( p
==*pp
) return SQLITE_ERROR
;
953 ** This function is called to allocate an array of Fts3Index structures
954 ** representing the indexes maintained by the current FTS table. FTS tables
955 ** always maintain the main "terms" index, but may also maintain one or
956 ** more "prefix" indexes, depending on the value of the "prefix=" parameter
957 ** (if any) specified as part of the CREATE VIRTUAL TABLE statement.
959 ** Argument zParam is passed the value of the "prefix=" option if one was
960 ** specified, or NULL otherwise.
962 ** If no error occurs, SQLITE_OK is returned and *apIndex set to point to
963 ** the allocated array. *pnIndex is set to the number of elements in the
964 ** array. If an error does occur, an SQLite error code is returned.
966 ** Regardless of whether or not an error is returned, it is the responsibility
967 ** of the caller to call sqlite3_free() on the output array to free it.
969 static int fts3PrefixParameter(
970 const char *zParam
, /* ABC in prefix=ABC parameter to parse */
971 int *pnIndex
, /* OUT: size of *apIndex[] array */
972 struct Fts3Index
**apIndex
/* OUT: Array of indexes for this table */
974 struct Fts3Index
*aIndex
; /* Allocated array */
975 int nIndex
= 1; /* Number of entries in array */
977 if( zParam
&& zParam
[0] ){
980 for(p
=zParam
; *p
; p
++){
981 if( *p
==',' ) nIndex
++;
985 aIndex
= sqlite3_malloc(sizeof(struct Fts3Index
) * nIndex
);
991 memset(aIndex
, 0, sizeof(struct Fts3Index
) * nIndex
);
993 const char *p
= zParam
;
995 for(i
=1; i
<nIndex
; i
++){
997 if( fts3GobbleInt(&p
, &nPrefix
) ) return SQLITE_ERROR
;
998 assert( nPrefix
>=0 );
1003 aIndex
[i
].nPrefix
= nPrefix
;
1014 ** This function is called when initializing an FTS4 table that uses the
1015 ** content=xxx option. It determines the number of and names of the columns
1016 ** of the new FTS4 table.
1018 ** The third argument passed to this function is the value passed to the
1019 ** config=xxx option (i.e. "xxx"). This function queries the database for
1020 ** a table of that name. If found, the output variables are populated
1023 ** *pnCol: Set to the number of columns table xxx has,
1025 ** *pnStr: Set to the total amount of space required to store a copy
1026 ** of each columns name, including the nul-terminator.
1028 ** *pazCol: Set to point to an array of *pnCol strings. Each string is
1029 ** the name of the corresponding column in table xxx. The array
1030 ** and its contents are allocated using a single allocation. It
1031 ** is the responsibility of the caller to free this allocation
1032 ** by eventually passing the *pazCol value to sqlite3_free().
1034 ** If the table cannot be found, an error code is returned and the output
1035 ** variables are undefined. Or, if an OOM is encountered, SQLITE_NOMEM is
1036 ** returned (and the output variables are undefined).
1038 static int fts3ContentColumns(
1039 sqlite3
*db
, /* Database handle */
1040 const char *zDb
, /* Name of db (i.e. "main", "temp" etc.) */
1041 const char *zTbl
, /* Name of content table */
1042 const char ***pazCol
, /* OUT: Malloc'd array of column names */
1043 int *pnCol
, /* OUT: Size of array *pazCol */
1044 int *pnStr
, /* OUT: Bytes of string content */
1045 char **pzErr
/* OUT: error message */
1047 int rc
= SQLITE_OK
; /* Return code */
1048 char *zSql
; /* "SELECT *" statement on zTbl */
1049 sqlite3_stmt
*pStmt
= 0; /* Compiled version of zSql */
1051 zSql
= sqlite3_mprintf("SELECT * FROM %Q.%Q", zDb
, zTbl
);
1055 rc
= sqlite3_prepare(db
, zSql
, -1, &pStmt
, 0);
1056 if( rc
!=SQLITE_OK
){
1057 sqlite3Fts3ErrMsg(pzErr
, "%s", sqlite3_errmsg(db
));
1062 if( rc
==SQLITE_OK
){
1063 const char **azCol
; /* Output array */
1064 int nStr
= 0; /* Size of all column names (incl. 0x00) */
1065 int nCol
; /* Number of table columns */
1066 int i
; /* Used to iterate through columns */
1068 /* Loop through the returned columns. Set nStr to the number of bytes of
1069 ** space required to store a copy of each column name, including the
1070 ** nul-terminator byte. */
1071 nCol
= sqlite3_column_count(pStmt
);
1072 for(i
=0; i
<nCol
; i
++){
1073 const char *zCol
= sqlite3_column_name(pStmt
, i
);
1074 nStr
+= (int)strlen(zCol
) + 1;
1077 /* Allocate and populate the array to return. */
1078 azCol
= (const char **)sqlite3_malloc(sizeof(char *) * nCol
+ nStr
);
1082 char *p
= (char *)&azCol
[nCol
];
1083 for(i
=0; i
<nCol
; i
++){
1084 const char *zCol
= sqlite3_column_name(pStmt
, i
);
1085 int n
= (int)strlen(zCol
)+1;
1091 sqlite3_finalize(pStmt
);
1093 /* Set the output variables. */
1103 ** This function is the implementation of both the xConnect and xCreate
1104 ** methods of the FTS3 virtual table.
1106 ** The argv[] array contains the following:
1108 ** argv[0] -> module name ("fts3" or "fts4")
1109 ** argv[1] -> database name
1110 ** argv[2] -> table name
1111 ** argv[...] -> "column name" and other module argument fields.
1113 static int fts3InitVtab(
1114 int isCreate
, /* True for xCreate, false for xConnect */
1115 sqlite3
*db
, /* The SQLite database connection */
1116 void *pAux
, /* Hash table containing tokenizers */
1117 int argc
, /* Number of elements in argv array */
1118 const char * const *argv
, /* xCreate/xConnect argument array */
1119 sqlite3_vtab
**ppVTab
, /* Write the resulting vtab structure here */
1120 char **pzErr
/* Write any error message here */
1122 Fts3Hash
*pHash
= (Fts3Hash
*)pAux
;
1123 Fts3Table
*p
= 0; /* Pointer to allocated vtab */
1124 int rc
= SQLITE_OK
; /* Return code */
1125 int i
; /* Iterator variable */
1126 int nByte
; /* Size of allocation used for *p */
1127 int iCol
; /* Column index */
1128 int nString
= 0; /* Bytes required to hold all column names */
1129 int nCol
= 0; /* Number of columns in the FTS table */
1130 char *zCsr
; /* Space for holding column names */
1131 int nDb
; /* Bytes required to hold database name */
1132 int nName
; /* Bytes required to hold table name */
1133 int isFts4
= (argv
[0][3]=='4'); /* True for FTS4, false for FTS3 */
1134 const char **aCol
; /* Array of column names */
1135 sqlite3_tokenizer
*pTokenizer
= 0; /* Tokenizer for this table */
1137 int nIndex
= 0; /* Size of aIndex[] array */
1138 struct Fts3Index
*aIndex
= 0; /* Array of indexes for this table */
1140 /* The results of parsing supported FTS4 key=value options: */
1141 int bNoDocsize
= 0; /* True to omit %_docsize table */
1142 int bDescIdx
= 0; /* True to store descending indexes */
1143 char *zPrefix
= 0; /* Prefix parameter value (or NULL) */
1144 char *zCompress
= 0; /* compress=? parameter (or NULL) */
1145 char *zUncompress
= 0; /* uncompress=? parameter (or NULL) */
1146 char *zContent
= 0; /* content=? parameter (or NULL) */
1147 char *zLanguageid
= 0; /* languageid=? parameter (or NULL) */
1148 char **azNotindexed
= 0; /* The set of notindexed= columns */
1149 int nNotindexed
= 0; /* Size of azNotindexed[] array */
1151 assert( strlen(argv
[0])==4 );
1152 assert( (sqlite3_strnicmp(argv
[0], "fts4", 4)==0 && isFts4
)
1153 || (sqlite3_strnicmp(argv
[0], "fts3", 4)==0 && !isFts4
)
1156 nDb
= (int)strlen(argv
[1]) + 1;
1157 nName
= (int)strlen(argv
[2]) + 1;
1159 nByte
= sizeof(const char *) * (argc
-2);
1160 aCol
= (const char **)sqlite3_malloc(nByte
);
1162 memset((void*)aCol
, 0, nByte
);
1163 azNotindexed
= (char **)sqlite3_malloc(nByte
);
1166 memset(azNotindexed
, 0, nByte
);
1168 if( !aCol
|| !azNotindexed
){
1173 /* Loop through all of the arguments passed by the user to the FTS3/4
1174 ** module (i.e. all the column names and special arguments). This loop
1175 ** does the following:
1177 ** + Figures out the number of columns the FTSX table will have, and
1178 ** the number of bytes of space that must be allocated to store copies
1179 ** of the column names.
1181 ** + If there is a tokenizer specification included in the arguments,
1182 ** initializes the tokenizer pTokenizer.
1184 for(i
=3; rc
==SQLITE_OK
&& i
<argc
; i
++){
1185 char const *z
= argv
[i
];
1189 /* Check if this is a tokenizer specification */
1192 && 0==sqlite3_strnicmp(z
, "tokenize", 8)
1193 && 0==sqlite3Fts3IsIdChar(z
[8])
1195 rc
= sqlite3Fts3InitTokenizer(pHash
, &z
[9], &pTokenizer
, pzErr
);
1198 /* Check if it is an FTS4 special argument. */
1199 else if( isFts4
&& fts3IsSpecialColumn(z
, &nKey
, &zVal
) ){
1204 { "matchinfo", 9 }, /* 0 -> MATCHINFO */
1205 { "prefix", 6 }, /* 1 -> PREFIX */
1206 { "compress", 8 }, /* 2 -> COMPRESS */
1207 { "uncompress", 10 }, /* 3 -> UNCOMPRESS */
1208 { "order", 5 }, /* 4 -> ORDER */
1209 { "content", 7 }, /* 5 -> CONTENT */
1210 { "languageid", 10 }, /* 6 -> LANGUAGEID */
1211 { "notindexed", 10 } /* 7 -> NOTINDEXED */
1218 for(iOpt
=0; iOpt
<SizeofArray(aFts4Opt
); iOpt
++){
1219 struct Fts4Option
*pOp
= &aFts4Opt
[iOpt
];
1220 if( nKey
==pOp
->nOpt
&& !sqlite3_strnicmp(z
, pOp
->zOpt
, pOp
->nOpt
) ){
1225 case 0: /* MATCHINFO */
1226 if( strlen(zVal
)!=4 || sqlite3_strnicmp(zVal
, "fts3", 4) ){
1227 sqlite3Fts3ErrMsg(pzErr
, "unrecognized matchinfo: %s", zVal
);
1233 case 1: /* PREFIX */
1234 sqlite3_free(zPrefix
);
1239 case 2: /* COMPRESS */
1240 sqlite3_free(zCompress
);
1245 case 3: /* UNCOMPRESS */
1246 sqlite3_free(zUncompress
);
1252 if( (strlen(zVal
)!=3 || sqlite3_strnicmp(zVal
, "asc", 3))
1253 && (strlen(zVal
)!=4 || sqlite3_strnicmp(zVal
, "desc", 4))
1255 sqlite3Fts3ErrMsg(pzErr
, "unrecognized order: %s", zVal
);
1258 bDescIdx
= (zVal
[0]=='d' || zVal
[0]=='D');
1261 case 5: /* CONTENT */
1262 sqlite3_free(zContent
);
1267 case 6: /* LANGUAGEID */
1269 sqlite3_free(zLanguageid
);
1274 case 7: /* NOTINDEXED */
1275 azNotindexed
[nNotindexed
++] = zVal
;
1280 assert( iOpt
==SizeofArray(aFts4Opt
) );
1281 sqlite3Fts3ErrMsg(pzErr
, "unrecognized parameter: %s", z
);
1289 /* Otherwise, the argument is a column name. */
1291 nString
+= (int)(strlen(z
) + 1);
1296 /* If a content=xxx option was specified, the following:
1298 ** 1. Ignore any compress= and uncompress= options.
1300 ** 2. If no column names were specified as part of the CREATE VIRTUAL
1301 ** TABLE statement, use all columns from the content table.
1303 if( rc
==SQLITE_OK
&& zContent
){
1304 sqlite3_free(zCompress
);
1305 sqlite3_free(zUncompress
);
1309 sqlite3_free((void*)aCol
);
1311 rc
= fts3ContentColumns(db
, argv
[1], zContent
,&aCol
,&nCol
,&nString
,pzErr
);
1313 /* If a languageid= option was specified, remove the language id
1314 ** column from the aCol[] array. */
1315 if( rc
==SQLITE_OK
&& zLanguageid
){
1317 for(j
=0; j
<nCol
; j
++){
1318 if( sqlite3_stricmp(zLanguageid
, aCol
[j
])==0 ){
1320 for(k
=j
; k
<nCol
; k
++) aCol
[k
] = aCol
[k
+1];
1328 if( rc
!=SQLITE_OK
) goto fts3_init_out
;
1331 assert( nString
==0 );
1332 aCol
[0] = "content";
1337 if( pTokenizer
==0 ){
1338 rc
= sqlite3Fts3InitTokenizer(pHash
, "simple", &pTokenizer
, pzErr
);
1339 if( rc
!=SQLITE_OK
) goto fts3_init_out
;
1341 assert( pTokenizer
);
1343 rc
= fts3PrefixParameter(zPrefix
, &nIndex
, &aIndex
);
1344 if( rc
==SQLITE_ERROR
){
1346 sqlite3Fts3ErrMsg(pzErr
, "error parsing prefix parameter: %s", zPrefix
);
1348 if( rc
!=SQLITE_OK
) goto fts3_init_out
;
1350 /* Allocate and populate the Fts3Table structure. */
1351 nByte
= sizeof(Fts3Table
) + /* Fts3Table */
1352 nCol
* sizeof(char *) + /* azColumn */
1353 nIndex
* sizeof(struct Fts3Index
) + /* aIndex */
1354 nCol
* sizeof(u8
) + /* abNotindexed */
1357 nString
; /* Space for azColumn strings */
1358 p
= (Fts3Table
*)sqlite3_malloc(nByte
);
1363 memset(p
, 0, nByte
);
1366 p
->nPendingData
= 0;
1367 p
->azColumn
= (char **)&p
[1];
1368 p
->pTokenizer
= pTokenizer
;
1369 p
->nMaxPendingData
= FTS3_MAX_PENDING_DATA
;
1370 p
->bHasDocsize
= (isFts4
&& bNoDocsize
==0);
1371 p
->bHasStat
= (u8
)isFts4
;
1372 p
->bFts4
= (u8
)isFts4
;
1373 p
->bDescIdx
= (u8
)bDescIdx
;
1374 p
->nAutoincrmerge
= 0xff; /* 0xff means setting unknown */
1375 p
->zContentTbl
= zContent
;
1376 p
->zLanguageid
= zLanguageid
;
1379 TESTONLY( p
->inTransaction
= -1 );
1380 TESTONLY( p
->mxSavepoint
= -1 );
1382 p
->aIndex
= (struct Fts3Index
*)&p
->azColumn
[nCol
];
1383 memcpy(p
->aIndex
, aIndex
, sizeof(struct Fts3Index
) * nIndex
);
1385 for(i
=0; i
<nIndex
; i
++){
1386 fts3HashInit(&p
->aIndex
[i
].hPending
, FTS3_HASH_STRING
, 1);
1388 p
->abNotindexed
= (u8
*)&p
->aIndex
[nIndex
];
1390 /* Fill in the zName and zDb fields of the vtab structure. */
1391 zCsr
= (char *)&p
->abNotindexed
[nCol
];
1393 memcpy(zCsr
, argv
[2], nName
);
1396 memcpy(zCsr
, argv
[1], nDb
);
1399 /* Fill in the azColumn array */
1400 for(iCol
=0; iCol
<nCol
; iCol
++){
1403 z
= (char *)sqlite3Fts3NextToken(aCol
[iCol
], &n
);
1408 sqlite3Fts3Dequote(zCsr
);
1409 p
->azColumn
[iCol
] = zCsr
;
1411 assert( zCsr
<= &((char *)p
)[nByte
] );
1414 /* Fill in the abNotindexed array */
1415 for(iCol
=0; iCol
<nCol
; iCol
++){
1416 int n
= (int)strlen(p
->azColumn
[iCol
]);
1417 for(i
=0; i
<nNotindexed
; i
++){
1418 char *zNot
= azNotindexed
[i
];
1419 if( zNot
&& n
==(int)strlen(zNot
)
1420 && 0==sqlite3_strnicmp(p
->azColumn
[iCol
], zNot
, n
)
1422 p
->abNotindexed
[iCol
] = 1;
1424 azNotindexed
[i
] = 0;
1428 for(i
=0; i
<nNotindexed
; i
++){
1429 if( azNotindexed
[i
] ){
1430 sqlite3Fts3ErrMsg(pzErr
, "no such column: %s", azNotindexed
[i
]);
1435 if( rc
==SQLITE_OK
&& (zCompress
==0)!=(zUncompress
==0) ){
1436 char const *zMiss
= (zCompress
==0 ? "compress" : "uncompress");
1438 sqlite3Fts3ErrMsg(pzErr
, "missing %s parameter in fts4 constructor", zMiss
);
1440 p
->zReadExprlist
= fts3ReadExprList(p
, zUncompress
, &rc
);
1441 p
->zWriteExprlist
= fts3WriteExprList(p
, zCompress
, &rc
);
1442 if( rc
!=SQLITE_OK
) goto fts3_init_out
;
1444 /* If this is an xCreate call, create the underlying tables in the
1445 ** database. TODO: For xConnect(), it could verify that said tables exist.
1448 rc
= fts3CreateTables(p
);
1451 /* Check to see if a legacy fts3 table has been "upgraded" by the
1452 ** addition of a %_stat table so that it can use incremental merge.
1454 if( !isFts4
&& !isCreate
){
1458 /* Figure out the page-size for the database. This is required in order to
1459 ** estimate the cost of loading large doclists from the database. */
1460 fts3DatabasePageSize(&rc
, p
);
1461 p
->nNodeSize
= p
->nPgsz
-35;
1463 /* Declare the table schema to SQLite. */
1464 fts3DeclareVtab(&rc
, p
);
1467 sqlite3_free(zPrefix
);
1468 sqlite3_free(aIndex
);
1469 sqlite3_free(zCompress
);
1470 sqlite3_free(zUncompress
);
1471 sqlite3_free(zContent
);
1472 sqlite3_free(zLanguageid
);
1473 for(i
=0; i
<nNotindexed
; i
++) sqlite3_free(azNotindexed
[i
]);
1474 sqlite3_free((void *)aCol
);
1475 sqlite3_free((void *)azNotindexed
);
1476 if( rc
!=SQLITE_OK
){
1478 fts3DisconnectMethod((sqlite3_vtab
*)p
);
1479 }else if( pTokenizer
){
1480 pTokenizer
->pModule
->xDestroy(pTokenizer
);
1483 assert( p
->pSegments
==0 );
1490 ** The xConnect() and xCreate() methods for the virtual table. All the
1491 ** work is done in function fts3InitVtab().
1493 static int fts3ConnectMethod(
1494 sqlite3
*db
, /* Database connection */
1495 void *pAux
, /* Pointer to tokenizer hash table */
1496 int argc
, /* Number of elements in argv array */
1497 const char * const *argv
, /* xCreate/xConnect argument array */
1498 sqlite3_vtab
**ppVtab
, /* OUT: New sqlite3_vtab object */
1499 char **pzErr
/* OUT: sqlite3_malloc'd error message */
1501 return fts3InitVtab(0, db
, pAux
, argc
, argv
, ppVtab
, pzErr
);
1503 static int fts3CreateMethod(
1504 sqlite3
*db
, /* Database connection */
1505 void *pAux
, /* Pointer to tokenizer hash table */
1506 int argc
, /* Number of elements in argv array */
1507 const char * const *argv
, /* xCreate/xConnect argument array */
1508 sqlite3_vtab
**ppVtab
, /* OUT: New sqlite3_vtab object */
1509 char **pzErr
/* OUT: sqlite3_malloc'd error message */
1511 return fts3InitVtab(1, db
, pAux
, argc
, argv
, ppVtab
, pzErr
);
1515 ** Set the pIdxInfo->estimatedRows variable to nRow. Unless this
1516 ** extension is currently being used by a version of SQLite too old to
1517 ** support estimatedRows. In that case this function is a no-op.
1519 static void fts3SetEstimatedRows(sqlite3_index_info
*pIdxInfo
, i64 nRow
){
1520 #if SQLITE_VERSION_NUMBER>=3008002
1521 if( sqlite3_libversion_number()>=3008002 ){
1522 pIdxInfo
->estimatedRows
= nRow
;
1528 ** Set the SQLITE_INDEX_SCAN_UNIQUE flag in pIdxInfo->flags. Unless this
1529 ** extension is currently being used by a version of SQLite too old to
1530 ** support index-info flags. In that case this function is a no-op.
1532 static void fts3SetUniqueFlag(sqlite3_index_info
*pIdxInfo
){
1533 #if SQLITE_VERSION_NUMBER>=3008012
1534 if( sqlite3_libversion_number()>=3008012 ){
1535 pIdxInfo
->idxFlags
|= SQLITE_INDEX_SCAN_UNIQUE
;
1541 ** Implementation of the xBestIndex method for FTS3 tables. There
1542 ** are three possible strategies, in order of preference:
1544 ** 1. Direct lookup by rowid or docid.
1545 ** 2. Full-text search using a MATCH operator on a non-docid column.
1546 ** 3. Linear scan of %_content table.
1548 static int fts3BestIndexMethod(sqlite3_vtab
*pVTab
, sqlite3_index_info
*pInfo
){
1549 Fts3Table
*p
= (Fts3Table
*)pVTab
;
1550 int i
; /* Iterator variable */
1551 int iCons
= -1; /* Index of constraint to use */
1553 int iLangidCons
= -1; /* Index of langid=x constraint, if present */
1554 int iDocidGe
= -1; /* Index of docid>=x constraint, if present */
1555 int iDocidLe
= -1; /* Index of docid<=x constraint, if present */
1558 /* By default use a full table scan. This is an expensive option,
1559 ** so search through the constraints to see if a more efficient
1560 ** strategy is possible.
1562 pInfo
->idxNum
= FTS3_FULLSCAN_SEARCH
;
1563 pInfo
->estimatedCost
= 5000000;
1564 for(i
=0; i
<pInfo
->nConstraint
; i
++){
1565 int bDocid
; /* True if this constraint is on docid */
1566 struct sqlite3_index_constraint
*pCons
= &pInfo
->aConstraint
[i
];
1567 if( pCons
->usable
==0 ){
1568 if( pCons
->op
==SQLITE_INDEX_CONSTRAINT_MATCH
){
1569 /* There exists an unusable MATCH constraint. This means that if
1570 ** the planner does elect to use the results of this call as part
1571 ** of the overall query plan the user will see an "unable to use
1572 ** function MATCH in the requested context" error. To discourage
1573 ** this, return a very high cost here. */
1574 pInfo
->idxNum
= FTS3_FULLSCAN_SEARCH
;
1575 pInfo
->estimatedCost
= 1e50
;
1576 fts3SetEstimatedRows(pInfo
, ((sqlite3_int64
)1) << 50);
1582 bDocid
= (pCons
->iColumn
<0 || pCons
->iColumn
==p
->nColumn
+1);
1584 /* A direct lookup on the rowid or docid column. Assign a cost of 1.0. */
1585 if( iCons
<0 && pCons
->op
==SQLITE_INDEX_CONSTRAINT_EQ
&& bDocid
){
1586 pInfo
->idxNum
= FTS3_DOCID_SEARCH
;
1587 pInfo
->estimatedCost
= 1.0;
1591 /* A MATCH constraint. Use a full-text search.
1593 ** If there is more than one MATCH constraint available, use the first
1594 ** one encountered. If there is both a MATCH constraint and a direct
1595 ** rowid/docid lookup, prefer the MATCH strategy. This is done even
1596 ** though the rowid/docid lookup is faster than a MATCH query, selecting
1597 ** it would lead to an "unable to use function MATCH in the requested
1600 if( pCons
->op
==SQLITE_INDEX_CONSTRAINT_MATCH
1601 && pCons
->iColumn
>=0 && pCons
->iColumn
<=p
->nColumn
1603 pInfo
->idxNum
= FTS3_FULLTEXT_SEARCH
+ pCons
->iColumn
;
1604 pInfo
->estimatedCost
= 2.0;
1608 /* Equality constraint on the langid column */
1609 if( pCons
->op
==SQLITE_INDEX_CONSTRAINT_EQ
1610 && pCons
->iColumn
==p
->nColumn
+ 2
1616 switch( pCons
->op
){
1617 case SQLITE_INDEX_CONSTRAINT_GE
:
1618 case SQLITE_INDEX_CONSTRAINT_GT
:
1622 case SQLITE_INDEX_CONSTRAINT_LE
:
1623 case SQLITE_INDEX_CONSTRAINT_LT
:
1630 /* If using a docid=? or rowid=? strategy, set the UNIQUE flag. */
1631 if( pInfo
->idxNum
==FTS3_DOCID_SEARCH
) fts3SetUniqueFlag(pInfo
);
1635 pInfo
->aConstraintUsage
[iCons
].argvIndex
= iIdx
++;
1636 pInfo
->aConstraintUsage
[iCons
].omit
= 1;
1638 if( iLangidCons
>=0 ){
1639 pInfo
->idxNum
|= FTS3_HAVE_LANGID
;
1640 pInfo
->aConstraintUsage
[iLangidCons
].argvIndex
= iIdx
++;
1643 pInfo
->idxNum
|= FTS3_HAVE_DOCID_GE
;
1644 pInfo
->aConstraintUsage
[iDocidGe
].argvIndex
= iIdx
++;
1647 pInfo
->idxNum
|= FTS3_HAVE_DOCID_LE
;
1648 pInfo
->aConstraintUsage
[iDocidLe
].argvIndex
= iIdx
++;
1651 /* Regardless of the strategy selected, FTS can deliver rows in rowid (or
1652 ** docid) order. Both ascending and descending are possible.
1654 if( pInfo
->nOrderBy
==1 ){
1655 struct sqlite3_index_orderby
*pOrder
= &pInfo
->aOrderBy
[0];
1656 if( pOrder
->iColumn
<0 || pOrder
->iColumn
==p
->nColumn
+1 ){
1658 pInfo
->idxStr
= "DESC";
1660 pInfo
->idxStr
= "ASC";
1662 pInfo
->orderByConsumed
= 1;
1666 assert( p
->pSegments
==0 );
1671 ** Implementation of xOpen method.
1673 static int fts3OpenMethod(sqlite3_vtab
*pVTab
, sqlite3_vtab_cursor
**ppCsr
){
1674 sqlite3_vtab_cursor
*pCsr
; /* Allocated cursor */
1676 UNUSED_PARAMETER(pVTab
);
1678 /* Allocate a buffer large enough for an Fts3Cursor structure. If the
1679 ** allocation succeeds, zero it and return SQLITE_OK. Otherwise,
1680 ** if the allocation fails, return SQLITE_NOMEM.
1682 *ppCsr
= pCsr
= (sqlite3_vtab_cursor
*)sqlite3_malloc(sizeof(Fts3Cursor
));
1684 return SQLITE_NOMEM
;
1686 memset(pCsr
, 0, sizeof(Fts3Cursor
));
1691 ** Finalize the statement handle at pCsr->pStmt.
1693 ** Or, if that statement handle is one created by fts3CursorSeekStmt(),
1694 ** and the Fts3Table.pSeekStmt slot is currently NULL, save the statement
1695 ** pointer there instead of finalizing it.
1697 static void fts3CursorFinalizeStmt(Fts3Cursor
*pCsr
){
1698 if( pCsr
->bSeekStmt
){
1699 Fts3Table
*p
= (Fts3Table
*)pCsr
->base
.pVtab
;
1700 if( p
->pSeekStmt
==0 ){
1701 p
->pSeekStmt
= pCsr
->pStmt
;
1702 sqlite3_reset(pCsr
->pStmt
);
1705 pCsr
->bSeekStmt
= 0;
1707 sqlite3_finalize(pCsr
->pStmt
);
1711 ** Free all resources currently held by the cursor passed as the only
1714 static void fts3ClearCursor(Fts3Cursor
*pCsr
){
1715 fts3CursorFinalizeStmt(pCsr
);
1716 sqlite3Fts3FreeDeferredTokens(pCsr
);
1717 sqlite3_free(pCsr
->aDoclist
);
1718 sqlite3Fts3MIBufferFree(pCsr
->pMIBuffer
);
1719 sqlite3Fts3ExprFree(pCsr
->pExpr
);
1720 memset(&(&pCsr
->base
)[1], 0, sizeof(Fts3Cursor
)-sizeof(sqlite3_vtab_cursor
));
1724 ** Close the cursor. For additional information see the documentation
1725 ** on the xClose method of the virtual table interface.
1727 static int fts3CloseMethod(sqlite3_vtab_cursor
*pCursor
){
1728 Fts3Cursor
*pCsr
= (Fts3Cursor
*)pCursor
;
1729 assert( ((Fts3Table
*)pCsr
->base
.pVtab
)->pSegments
==0 );
1730 fts3ClearCursor(pCsr
);
1731 assert( ((Fts3Table
*)pCsr
->base
.pVtab
)->pSegments
==0 );
1737 ** If pCsr->pStmt has not been prepared (i.e. if pCsr->pStmt==0), then
1738 ** compose and prepare an SQL statement of the form:
1740 ** "SELECT <columns> FROM %_content WHERE rowid = ?"
1742 ** (or the equivalent for a content=xxx table) and set pCsr->pStmt to
1743 ** it. If an error occurs, return an SQLite error code.
1745 static int fts3CursorSeekStmt(Fts3Cursor
*pCsr
){
1747 if( pCsr
->pStmt
==0 ){
1748 Fts3Table
*p
= (Fts3Table
*)pCsr
->base
.pVtab
;
1751 pCsr
->pStmt
= p
->pSeekStmt
;
1754 zSql
= sqlite3_mprintf("SELECT %s WHERE rowid = ?", p
->zReadExprlist
);
1755 if( !zSql
) return SQLITE_NOMEM
;
1756 rc
= sqlite3_prepare_v3(p
->db
, zSql
,-1,SQLITE_PREPARE_PERSISTENT
,&pCsr
->pStmt
,0);
1759 if( rc
==SQLITE_OK
) pCsr
->bSeekStmt
= 1;
1765 ** Position the pCsr->pStmt statement so that it is on the row
1766 ** of the %_content table that contains the last match. Return
1767 ** SQLITE_OK on success.
1769 static int fts3CursorSeek(sqlite3_context
*pContext
, Fts3Cursor
*pCsr
){
1771 if( pCsr
->isRequireSeek
){
1772 rc
= fts3CursorSeekStmt(pCsr
);
1773 if( rc
==SQLITE_OK
){
1774 sqlite3_bind_int64(pCsr
->pStmt
, 1, pCsr
->iPrevId
);
1775 pCsr
->isRequireSeek
= 0;
1776 if( SQLITE_ROW
==sqlite3_step(pCsr
->pStmt
) ){
1779 rc
= sqlite3_reset(pCsr
->pStmt
);
1780 if( rc
==SQLITE_OK
&& ((Fts3Table
*)pCsr
->base
.pVtab
)->zContentTbl
==0 ){
1781 /* If no row was found and no error has occurred, then the %_content
1782 ** table is missing a row that is present in the full-text index.
1783 ** The data structures are corrupt. */
1784 rc
= FTS_CORRUPT_VTAB
;
1791 if( rc
!=SQLITE_OK
&& pContext
){
1792 sqlite3_result_error_code(pContext
, rc
);
1798 ** This function is used to process a single interior node when searching
1799 ** a b-tree for a term or term prefix. The node data is passed to this
1800 ** function via the zNode/nNode parameters. The term to search for is
1801 ** passed in zTerm/nTerm.
1803 ** If piFirst is not NULL, then this function sets *piFirst to the blockid
1804 ** of the child node that heads the sub-tree that may contain the term.
1806 ** If piLast is not NULL, then *piLast is set to the right-most child node
1807 ** that heads a sub-tree that may contain a term for which zTerm/nTerm is
1810 ** If an OOM error occurs, SQLITE_NOMEM is returned. Otherwise, SQLITE_OK.
1812 static int fts3ScanInteriorNode(
1813 const char *zTerm
, /* Term to select leaves for */
1814 int nTerm
, /* Size of term zTerm in bytes */
1815 const char *zNode
, /* Buffer containing segment interior node */
1816 int nNode
, /* Size of buffer at zNode */
1817 sqlite3_int64
*piFirst
, /* OUT: Selected child node */
1818 sqlite3_int64
*piLast
/* OUT: Selected child node */
1820 int rc
= SQLITE_OK
; /* Return code */
1821 const char *zCsr
= zNode
; /* Cursor to iterate through node */
1822 const char *zEnd
= &zCsr
[nNode
];/* End of interior node buffer */
1823 char *zBuffer
= 0; /* Buffer to load terms into */
1824 int nAlloc
= 0; /* Size of allocated buffer */
1825 int isFirstTerm
= 1; /* True when processing first term on page */
1826 sqlite3_int64 iChild
; /* Block id of child node to descend to */
1828 /* Skip over the 'height' varint that occurs at the start of every
1829 ** interior node. Then load the blockid of the left-child of the b-tree
1830 ** node into variable iChild.
1832 ** Even if the data structure on disk is corrupted, this (reading two
1833 ** varints from the buffer) does not risk an overread. If zNode is a
1834 ** root node, then the buffer comes from a SELECT statement. SQLite does
1835 ** not make this guarantee explicitly, but in practice there are always
1836 ** either more than 20 bytes of allocated space following the nNode bytes of
1837 ** contents, or two zero bytes. Or, if the node is read from the %_segments
1838 ** table, then there are always 20 bytes of zeroed padding following the
1839 ** nNode bytes of content (see sqlite3Fts3ReadBlock() for details).
1841 zCsr
+= sqlite3Fts3GetVarint(zCsr
, &iChild
);
1842 zCsr
+= sqlite3Fts3GetVarint(zCsr
, &iChild
);
1844 return FTS_CORRUPT_VTAB
;
1847 while( zCsr
<zEnd
&& (piFirst
|| piLast
) ){
1848 int cmp
; /* memcmp() result */
1849 int nSuffix
; /* Size of term suffix */
1850 int nPrefix
= 0; /* Size of term prefix */
1851 int nBuffer
; /* Total term size */
1853 /* Load the next term on the node into zBuffer. Use realloc() to expand
1854 ** the size of zBuffer if required. */
1856 zCsr
+= fts3GetVarint32(zCsr
, &nPrefix
);
1859 zCsr
+= fts3GetVarint32(zCsr
, &nSuffix
);
1861 assert( nPrefix
>=0 && nSuffix
>=0 );
1862 if( &zCsr
[nSuffix
]>zEnd
){
1863 rc
= FTS_CORRUPT_VTAB
;
1866 if( nPrefix
+nSuffix
>nAlloc
){
1868 nAlloc
= (nPrefix
+nSuffix
) * 2;
1869 zNew
= (char *)sqlite3_realloc(zBuffer
, nAlloc
);
1877 memcpy(&zBuffer
[nPrefix
], zCsr
, nSuffix
);
1878 nBuffer
= nPrefix
+ nSuffix
;
1881 /* Compare the term we are searching for with the term just loaded from
1882 ** the interior node. If the specified term is greater than or equal
1883 ** to the term from the interior node, then all terms on the sub-tree
1884 ** headed by node iChild are smaller than zTerm. No need to search
1887 ** If the interior node term is larger than the specified term, then
1888 ** the tree headed by iChild may contain the specified term.
1890 cmp
= memcmp(zTerm
, zBuffer
, (nBuffer
>nTerm
? nTerm
: nBuffer
));
1891 if( piFirst
&& (cmp
<0 || (cmp
==0 && nBuffer
>nTerm
)) ){
1896 if( piLast
&& cmp
<0 ){
1904 if( piFirst
) *piFirst
= iChild
;
1905 if( piLast
) *piLast
= iChild
;
1908 sqlite3_free(zBuffer
);
1914 ** The buffer pointed to by argument zNode (size nNode bytes) contains an
1915 ** interior node of a b-tree segment. The zTerm buffer (size nTerm bytes)
1916 ** contains a term. This function searches the sub-tree headed by the zNode
1917 ** node for the range of leaf nodes that may contain the specified term
1918 ** or terms for which the specified term is a prefix.
1920 ** If piLeaf is not NULL, then *piLeaf is set to the blockid of the
1921 ** left-most leaf node in the tree that may contain the specified term.
1922 ** If piLeaf2 is not NULL, then *piLeaf2 is set to the blockid of the
1923 ** right-most leaf node that may contain a term for which the specified
1924 ** term is a prefix.
1926 ** It is possible that the range of returned leaf nodes does not contain
1927 ** the specified term or any terms for which it is a prefix. However, if the
1928 ** segment does contain any such terms, they are stored within the identified
1929 ** range. Because this function only inspects interior segment nodes (and
1930 ** never loads leaf nodes into memory), it is not possible to be sure.
1932 ** If an error occurs, an error code other than SQLITE_OK is returned.
1934 static int fts3SelectLeaf(
1935 Fts3Table
*p
, /* Virtual table handle */
1936 const char *zTerm
, /* Term to select leaves for */
1937 int nTerm
, /* Size of term zTerm in bytes */
1938 const char *zNode
, /* Buffer containing segment interior node */
1939 int nNode
, /* Size of buffer at zNode */
1940 sqlite3_int64
*piLeaf
, /* Selected leaf node */
1941 sqlite3_int64
*piLeaf2
/* Selected leaf node */
1943 int rc
= SQLITE_OK
; /* Return code */
1944 int iHeight
; /* Height of this node in tree */
1946 assert( piLeaf
|| piLeaf2
);
1948 fts3GetVarint32(zNode
, &iHeight
);
1949 rc
= fts3ScanInteriorNode(zTerm
, nTerm
, zNode
, nNode
, piLeaf
, piLeaf2
);
1950 assert( !piLeaf2
|| !piLeaf
|| rc
!=SQLITE_OK
|| (*piLeaf
<=*piLeaf2
) );
1952 if( rc
==SQLITE_OK
&& iHeight
>1 ){
1953 char *zBlob
= 0; /* Blob read from %_segments table */
1954 int nBlob
= 0; /* Size of zBlob in bytes */
1956 if( piLeaf
&& piLeaf2
&& (*piLeaf
!=*piLeaf2
) ){
1957 rc
= sqlite3Fts3ReadBlock(p
, *piLeaf
, &zBlob
, &nBlob
, 0);
1958 if( rc
==SQLITE_OK
){
1959 rc
= fts3SelectLeaf(p
, zTerm
, nTerm
, zBlob
, nBlob
, piLeaf
, 0);
1961 sqlite3_free(zBlob
);
1966 if( rc
==SQLITE_OK
){
1967 rc
= sqlite3Fts3ReadBlock(p
, piLeaf
?*piLeaf
:*piLeaf2
, &zBlob
, &nBlob
, 0);
1969 if( rc
==SQLITE_OK
){
1970 rc
= fts3SelectLeaf(p
, zTerm
, nTerm
, zBlob
, nBlob
, piLeaf
, piLeaf2
);
1972 sqlite3_free(zBlob
);
1979 ** This function is used to create delta-encoded serialized lists of FTS3
1980 ** varints. Each call to this function appends a single varint to a list.
1982 static void fts3PutDeltaVarint(
1983 char **pp
, /* IN/OUT: Output pointer */
1984 sqlite3_int64
*piPrev
, /* IN/OUT: Previous value written to list */
1985 sqlite3_int64 iVal
/* Write this value to the list */
1987 assert( iVal
-*piPrev
> 0 || (*piPrev
==0 && iVal
==0) );
1988 *pp
+= sqlite3Fts3PutVarint(*pp
, iVal
-*piPrev
);
1993 ** When this function is called, *ppPoslist is assumed to point to the
1994 ** start of a position-list. After it returns, *ppPoslist points to the
1995 ** first byte after the position-list.
1997 ** A position list is list of positions (delta encoded) and columns for
1998 ** a single document record of a doclist. So, in other words, this
1999 ** routine advances *ppPoslist so that it points to the next docid in
2000 ** the doclist, or to the first byte past the end of the doclist.
2002 ** If pp is not NULL, then the contents of the position list are copied
2003 ** to *pp. *pp is set to point to the first byte past the last byte copied
2004 ** before this function returns.
2006 static void fts3PoslistCopy(char **pp
, char **ppPoslist
){
2007 char *pEnd
= *ppPoslist
;
2010 /* The end of a position list is marked by a zero encoded as an FTS3
2011 ** varint. A single POS_END (0) byte. Except, if the 0 byte is preceded by
2012 ** a byte with the 0x80 bit set, then it is not a varint 0, but the tail
2013 ** of some other, multi-byte, value.
2015 ** The following while-loop moves pEnd to point to the first byte that is not
2016 ** immediately preceded by a byte with the 0x80 bit set. Then increments
2017 ** pEnd once more so that it points to the byte immediately following the
2018 ** last byte in the position-list.
2022 testcase( c
!=0 && (*pEnd
)==0 );
2024 pEnd
++; /* Advance past the POS_END terminator byte */
2027 int n
= (int)(pEnd
- *ppPoslist
);
2029 memcpy(p
, *ppPoslist
, n
);
2037 ** When this function is called, *ppPoslist is assumed to point to the
2038 ** start of a column-list. After it returns, *ppPoslist points to the
2039 ** to the terminator (POS_COLUMN or POS_END) byte of the column-list.
2041 ** A column-list is list of delta-encoded positions for a single column
2042 ** within a single document within a doclist.
2044 ** The column-list is terminated either by a POS_COLUMN varint (1) or
2045 ** a POS_END varint (0). This routine leaves *ppPoslist pointing to
2046 ** the POS_COLUMN or POS_END that terminates the column-list.
2048 ** If pp is not NULL, then the contents of the column-list are copied
2049 ** to *pp. *pp is set to point to the first byte past the last byte copied
2050 ** before this function returns. The POS_COLUMN or POS_END terminator
2051 ** is not copied into *pp.
2053 static void fts3ColumnlistCopy(char **pp
, char **ppPoslist
){
2054 char *pEnd
= *ppPoslist
;
2057 /* A column-list is terminated by either a 0x01 or 0x00 byte that is
2058 ** not part of a multi-byte varint.
2060 while( 0xFE & (*pEnd
| c
) ){
2062 testcase( c
!=0 && ((*pEnd
)&0xfe)==0 );
2065 int n
= (int)(pEnd
- *ppPoslist
);
2067 memcpy(p
, *ppPoslist
, n
);
2075 ** Value used to signify the end of an position-list. This is safe because
2076 ** it is not possible to have a document with 2^31 terms.
2078 #define POSITION_LIST_END 0x7fffffff
2081 ** This function is used to help parse position-lists. When this function is
2082 ** called, *pp may point to the start of the next varint in the position-list
2083 ** being parsed, or it may point to 1 byte past the end of the position-list
2084 ** (in which case **pp will be a terminator bytes POS_END (0) or
2087 ** If *pp points past the end of the current position-list, set *pi to
2088 ** POSITION_LIST_END and return. Otherwise, read the next varint from *pp,
2089 ** increment the current value of *pi by the value read, and set *pp to
2090 ** point to the next value before returning.
2092 ** Before calling this routine *pi must be initialized to the value of
2093 ** the previous position, or zero if we are reading the first position
2094 ** in the position-list. Because positions are delta-encoded, the value
2095 ** of the previous position is needed in order to compute the value of
2096 ** the next position.
2098 static void fts3ReadNextPos(
2099 char **pp
, /* IN/OUT: Pointer into position-list buffer */
2100 sqlite3_int64
*pi
/* IN/OUT: Value read from position-list */
2103 fts3GetDeltaVarint(pp
, pi
);
2106 *pi
= POSITION_LIST_END
;
2111 ** If parameter iCol is not 0, write an POS_COLUMN (1) byte followed by
2112 ** the value of iCol encoded as a varint to *pp. This will start a new
2115 ** Set *pp to point to the byte just after the last byte written before
2116 ** returning (do not modify it if iCol==0). Return the total number of bytes
2117 ** written (0 if iCol==0).
2119 static int fts3PutColNumber(char **pp
, int iCol
){
2120 int n
= 0; /* Number of bytes written */
2122 char *p
= *pp
; /* Output pointer */
2123 n
= 1 + sqlite3Fts3PutVarint(&p
[1], iCol
);
2131 ** Compute the union of two position lists. The output written
2132 ** into *pp contains all positions of both *pp1 and *pp2 in sorted
2133 ** order and with any duplicates removed. All pointers are
2134 ** updated appropriately. The caller is responsible for insuring
2135 ** that there is enough space in *pp to hold the complete output.
2137 static void fts3PoslistMerge(
2138 char **pp
, /* Output buffer */
2139 char **pp1
, /* Left input list */
2140 char **pp2
/* Right input list */
2146 while( *p1
|| *p2
){
2147 int iCol1
; /* The current column index in pp1 */
2148 int iCol2
; /* The current column index in pp2 */
2150 if( *p1
==POS_COLUMN
) fts3GetVarint32(&p1
[1], &iCol1
);
2151 else if( *p1
==POS_END
) iCol1
= POSITION_LIST_END
;
2154 if( *p2
==POS_COLUMN
) fts3GetVarint32(&p2
[1], &iCol2
);
2155 else if( *p2
==POS_END
) iCol2
= POSITION_LIST_END
;
2159 sqlite3_int64 i1
= 0; /* Last position from pp1 */
2160 sqlite3_int64 i2
= 0; /* Last position from pp2 */
2161 sqlite3_int64 iPrev
= 0;
2162 int n
= fts3PutColNumber(&p
, iCol1
);
2166 /* At this point, both p1 and p2 point to the start of column-lists
2167 ** for the same column (the column with index iCol1 and iCol2).
2168 ** A column-list is a list of non-negative delta-encoded varints, each
2169 ** incremented by 2 before being stored. Each list is terminated by a
2170 ** POS_END (0) or POS_COLUMN (1). The following block merges the two lists
2171 ** and writes the results to buffer p. p is left pointing to the byte
2172 ** after the list written. No terminator (POS_END or POS_COLUMN) is
2173 ** written to the output.
2175 fts3GetDeltaVarint(&p1
, &i1
);
2176 fts3GetDeltaVarint(&p2
, &i2
);
2178 fts3PutDeltaVarint(&p
, &iPrev
, (i1
<i2
) ? i1
: i2
);
2181 fts3ReadNextPos(&p1
, &i1
);
2182 fts3ReadNextPos(&p2
, &i2
);
2184 fts3ReadNextPos(&p1
, &i1
);
2186 fts3ReadNextPos(&p2
, &i2
);
2188 }while( i1
!=POSITION_LIST_END
|| i2
!=POSITION_LIST_END
);
2189 }else if( iCol1
<iCol2
){
2190 p1
+= fts3PutColNumber(&p
, iCol1
);
2191 fts3ColumnlistCopy(&p
, &p1
);
2193 p2
+= fts3PutColNumber(&p
, iCol2
);
2194 fts3ColumnlistCopy(&p
, &p2
);
2205 ** This function is used to merge two position lists into one. When it is
2206 ** called, *pp1 and *pp2 must both point to position lists. A position-list is
2207 ** the part of a doclist that follows each document id. For example, if a row
2210 ** 'a b c'|'x y z'|'a b b a'
2212 ** Then the position list for this row for token 'b' would consist of:
2214 ** 0x02 0x01 0x02 0x03 0x03 0x00
2216 ** When this function returns, both *pp1 and *pp2 are left pointing to the
2217 ** byte following the 0x00 terminator of their respective position lists.
2219 ** If isSaveLeft is 0, an entry is added to the output position list for
2220 ** each position in *pp2 for which there exists one or more positions in
2221 ** *pp1 so that (pos(*pp2)>pos(*pp1) && pos(*pp2)-pos(*pp1)<=nToken). i.e.
2222 ** when the *pp1 token appears before the *pp2 token, but not more than nToken
2225 ** e.g. nToken==1 searches for adjacent positions.
2227 static int fts3PoslistPhraseMerge(
2228 char **pp
, /* IN/OUT: Preallocated output buffer */
2229 int nToken
, /* Maximum difference in token positions */
2230 int isSaveLeft
, /* Save the left position */
2231 int isExact
, /* If *pp1 is exactly nTokens before *pp2 */
2232 char **pp1
, /* IN/OUT: Left input list */
2233 char **pp2
/* IN/OUT: Right input list */
2241 /* Never set both isSaveLeft and isExact for the same invocation. */
2242 assert( isSaveLeft
==0 || isExact
==0 );
2244 assert( p
!=0 && *p1
!=0 && *p2
!=0 );
2245 if( *p1
==POS_COLUMN
){
2247 p1
+= fts3GetVarint32(p1
, &iCol1
);
2249 if( *p2
==POS_COLUMN
){
2251 p2
+= fts3GetVarint32(p2
, &iCol2
);
2257 sqlite3_int64 iPrev
= 0;
2258 sqlite3_int64 iPos1
= 0;
2259 sqlite3_int64 iPos2
= 0;
2263 p
+= sqlite3Fts3PutVarint(p
, iCol1
);
2266 assert( *p1
!=POS_END
&& *p1
!=POS_COLUMN
);
2267 assert( *p2
!=POS_END
&& *p2
!=POS_COLUMN
);
2268 fts3GetDeltaVarint(&p1
, &iPos1
); iPos1
-= 2;
2269 fts3GetDeltaVarint(&p2
, &iPos2
); iPos2
-= 2;
2272 if( iPos2
==iPos1
+nToken
2273 || (isExact
==0 && iPos2
>iPos1
&& iPos2
<=iPos1
+nToken
)
2275 sqlite3_int64 iSave
;
2276 iSave
= isSaveLeft
? iPos1
: iPos2
;
2277 fts3PutDeltaVarint(&p
, &iPrev
, iSave
+2); iPrev
-= 2;
2281 if( (!isSaveLeft
&& iPos2
<=(iPos1
+nToken
)) || iPos2
<=iPos1
){
2282 if( (*p2
&0xFE)==0 ) break;
2283 fts3GetDeltaVarint(&p2
, &iPos2
); iPos2
-= 2;
2285 if( (*p1
&0xFE)==0 ) break;
2286 fts3GetDeltaVarint(&p1
, &iPos1
); iPos1
-= 2;
2295 fts3ColumnlistCopy(0, &p1
);
2296 fts3ColumnlistCopy(0, &p2
);
2297 assert( (*p1
&0xFE)==0 && (*p2
&0xFE)==0 );
2298 if( 0==*p1
|| 0==*p2
) break;
2301 p1
+= fts3GetVarint32(p1
, &iCol1
);
2303 p2
+= fts3GetVarint32(p2
, &iCol2
);
2306 /* Advance pointer p1 or p2 (whichever corresponds to the smaller of
2307 ** iCol1 and iCol2) so that it points to either the 0x00 that marks the
2308 ** end of the position list, or the 0x01 that precedes the next
2309 ** column-number in the position list.
2311 else if( iCol1
<iCol2
){
2312 fts3ColumnlistCopy(0, &p1
);
2315 p1
+= fts3GetVarint32(p1
, &iCol1
);
2317 fts3ColumnlistCopy(0, &p2
);
2320 p2
+= fts3GetVarint32(p2
, &iCol2
);
2324 fts3PoslistCopy(0, &p2
);
2325 fts3PoslistCopy(0, &p1
);
2337 ** Merge two position-lists as required by the NEAR operator. The argument
2338 ** position lists correspond to the left and right phrases of an expression
2341 ** "phrase 1" NEAR "phrase number 2"
2343 ** Position list *pp1 corresponds to the left-hand side of the NEAR
2344 ** expression and *pp2 to the right. As usual, the indexes in the position
2345 ** lists are the offsets of the last token in each phrase (tokens "1" and "2"
2346 ** in the example above).
2348 ** The output position list - written to *pp - is a copy of *pp2 with those
2349 ** entries that are not sufficiently NEAR entries in *pp1 removed.
2351 static int fts3PoslistNearMerge(
2352 char **pp
, /* Output buffer */
2353 char *aTmp
, /* Temporary buffer space */
2354 int nRight
, /* Maximum difference in token positions */
2355 int nLeft
, /* Maximum difference in token positions */
2356 char **pp1
, /* IN/OUT: Left input list */
2357 char **pp2
/* IN/OUT: Right input list */
2367 fts3PoslistPhraseMerge(&pTmp1
, nRight
, 0, 0, pp1
, pp2
);
2368 aTmp2
= pTmp2
= pTmp1
;
2371 fts3PoslistPhraseMerge(&pTmp2
, nLeft
, 1, 0, pp2
, pp1
);
2372 if( pTmp1
!=aTmp
&& pTmp2
!=aTmp2
){
2373 fts3PoslistMerge(pp
, &aTmp
, &aTmp2
);
2374 }else if( pTmp1
!=aTmp
){
2375 fts3PoslistCopy(pp
, &aTmp
);
2376 }else if( pTmp2
!=aTmp2
){
2377 fts3PoslistCopy(pp
, &aTmp2
);
2386 ** An instance of this function is used to merge together the (potentially
2387 ** large number of) doclists for each term that matches a prefix query.
2388 ** See function fts3TermSelectMerge() for details.
2390 typedef struct TermSelect TermSelect
;
2392 char *aaOutput
[16]; /* Malloc'd output buffers */
2393 int anOutput
[16]; /* Size each output buffer in bytes */
2397 ** This function is used to read a single varint from a buffer. Parameter
2398 ** pEnd points 1 byte past the end of the buffer. When this function is
2399 ** called, if *pp points to pEnd or greater, then the end of the buffer
2400 ** has been reached. In this case *pp is set to 0 and the function returns.
2402 ** If *pp does not point to or past pEnd, then a single varint is read
2403 ** from *pp. *pp is then set to point 1 byte past the end of the read varint.
2405 ** If bDescIdx is false, the value read is added to *pVal before returning.
2406 ** If it is true, the value read is subtracted from *pVal before this
2407 ** function returns.
2409 static void fts3GetDeltaVarint3(
2410 char **pp
, /* IN/OUT: Point to read varint from */
2411 char *pEnd
, /* End of buffer */
2412 int bDescIdx
, /* True if docids are descending */
2413 sqlite3_int64
*pVal
/* IN/OUT: Integer value */
2419 *pp
+= sqlite3Fts3GetVarint(*pp
, &iVal
);
2429 ** This function is used to write a single varint to a buffer. The varint
2430 ** is written to *pp. Before returning, *pp is set to point 1 byte past the
2431 ** end of the value written.
2433 ** If *pbFirst is zero when this function is called, the value written to
2434 ** the buffer is that of parameter iVal.
2436 ** If *pbFirst is non-zero when this function is called, then the value
2437 ** written is either (iVal-*piPrev) (if bDescIdx is zero) or (*piPrev-iVal)
2438 ** (if bDescIdx is non-zero).
2440 ** Before returning, this function always sets *pbFirst to 1 and *piPrev
2441 ** to the value of parameter iVal.
2443 static void fts3PutDeltaVarint3(
2444 char **pp
, /* IN/OUT: Output pointer */
2445 int bDescIdx
, /* True for descending docids */
2446 sqlite3_int64
*piPrev
, /* IN/OUT: Previous value written to list */
2447 int *pbFirst
, /* IN/OUT: True after first int written */
2448 sqlite3_int64 iVal
/* Write this value to the list */
2450 sqlite3_int64 iWrite
;
2451 if( bDescIdx
==0 || *pbFirst
==0 ){
2452 iWrite
= iVal
- *piPrev
;
2454 iWrite
= *piPrev
- iVal
;
2456 assert( *pbFirst
|| *piPrev
==0 );
2457 assert( *pbFirst
==0 || iWrite
>0 );
2458 *pp
+= sqlite3Fts3PutVarint(*pp
, iWrite
);
2465 ** This macro is used by various functions that merge doclists. The two
2466 ** arguments are 64-bit docid values. If the value of the stack variable
2467 ** bDescDoclist is 0 when this macro is invoked, then it returns (i1-i2).
2468 ** Otherwise, (i2-i1).
2470 ** Using this makes it easier to write code that can merge doclists that are
2471 ** sorted in either ascending or descending order.
2473 #define DOCID_CMP(i1, i2) ((bDescDoclist?-1:1) * (i1-i2))
2476 ** This function does an "OR" merge of two doclists (output contains all
2477 ** positions contained in either argument doclist). If the docids in the
2478 ** input doclists are sorted in ascending order, parameter bDescDoclist
2479 ** should be false. If they are sorted in ascending order, it should be
2480 ** passed a non-zero value.
2482 ** If no error occurs, *paOut is set to point at an sqlite3_malloc'd buffer
2483 ** containing the output doclist and SQLITE_OK is returned. In this case
2484 ** *pnOut is set to the number of bytes in the output doclist.
2486 ** If an error occurs, an SQLite error code is returned. The output values
2487 ** are undefined in this case.
2489 static int fts3DoclistOrMerge(
2490 int bDescDoclist
, /* True if arguments are desc */
2491 char *a1
, int n1
, /* First doclist */
2492 char *a2
, int n2
, /* Second doclist */
2493 char **paOut
, int *pnOut
/* OUT: Malloc'd doclist */
2495 sqlite3_int64 i1
= 0;
2496 sqlite3_int64 i2
= 0;
2497 sqlite3_int64 iPrev
= 0;
2498 char *pEnd1
= &a1
[n1
];
2499 char *pEnd2
= &a2
[n2
];
2509 /* Allocate space for the output. Both the input and output doclists
2510 ** are delta encoded. If they are in ascending order (bDescDoclist==0),
2511 ** then the first docid in each list is simply encoded as a varint. For
2512 ** each subsequent docid, the varint stored is the difference between the
2513 ** current and previous docid (a positive number - since the list is in
2514 ** ascending order).
2516 ** The first docid written to the output is therefore encoded using the
2517 ** same number of bytes as it is in whichever of the input lists it is
2518 ** read from. And each subsequent docid read from the same input list
2519 ** consumes either the same or less bytes as it did in the input (since
2520 ** the difference between it and the previous value in the output must
2521 ** be a positive value less than or equal to the delta value read from
2522 ** the input list). The same argument applies to all but the first docid
2523 ** read from the 'other' list. And to the contents of all position lists
2524 ** that will be copied and merged from the input to the output.
2526 ** However, if the first docid copied to the output is a negative number,
2527 ** then the encoding of the first docid from the 'other' input list may
2528 ** be larger in the output than it was in the input (since the delta value
2529 ** may be a larger positive integer than the actual docid).
2531 ** The space required to store the output is therefore the sum of the
2532 ** sizes of the two inputs, plus enough space for exactly one of the input
2535 ** A symetric argument may be made if the doclists are in descending
2538 aOut
= sqlite3_malloc(n1
+n2
+FTS3_VARINT_MAX
-1);
2539 if( !aOut
) return SQLITE_NOMEM
;
2542 fts3GetDeltaVarint3(&p1
, pEnd1
, 0, &i1
);
2543 fts3GetDeltaVarint3(&p2
, pEnd2
, 0, &i2
);
2545 sqlite3_int64 iDiff
= DOCID_CMP(i1
, i2
);
2547 if( p2
&& p1
&& iDiff
==0 ){
2548 fts3PutDeltaVarint3(&p
, bDescDoclist
, &iPrev
, &bFirstOut
, i1
);
2549 fts3PoslistMerge(&p
, &p1
, &p2
);
2550 fts3GetDeltaVarint3(&p1
, pEnd1
, bDescDoclist
, &i1
);
2551 fts3GetDeltaVarint3(&p2
, pEnd2
, bDescDoclist
, &i2
);
2552 }else if( !p2
|| (p1
&& iDiff
<0) ){
2553 fts3PutDeltaVarint3(&p
, bDescDoclist
, &iPrev
, &bFirstOut
, i1
);
2554 fts3PoslistCopy(&p
, &p1
);
2555 fts3GetDeltaVarint3(&p1
, pEnd1
, bDescDoclist
, &i1
);
2557 fts3PutDeltaVarint3(&p
, bDescDoclist
, &iPrev
, &bFirstOut
, i2
);
2558 fts3PoslistCopy(&p
, &p2
);
2559 fts3GetDeltaVarint3(&p2
, pEnd2
, bDescDoclist
, &i2
);
2564 *pnOut
= (int)(p
-aOut
);
2565 assert( *pnOut
<=n1
+n2
+FTS3_VARINT_MAX
-1 );
2570 ** This function does a "phrase" merge of two doclists. In a phrase merge,
2571 ** the output contains a copy of each position from the right-hand input
2572 ** doclist for which there is a position in the left-hand input doclist
2573 ** exactly nDist tokens before it.
2575 ** If the docids in the input doclists are sorted in ascending order,
2576 ** parameter bDescDoclist should be false. If they are sorted in ascending
2577 ** order, it should be passed a non-zero value.
2579 ** The right-hand input doclist is overwritten by this function.
2581 static int fts3DoclistPhraseMerge(
2582 int bDescDoclist
, /* True if arguments are desc */
2583 int nDist
, /* Distance from left to right (1=adjacent) */
2584 char *aLeft
, int nLeft
, /* Left doclist */
2585 char **paRight
, int *pnRight
/* IN/OUT: Right/output doclist */
2587 sqlite3_int64 i1
= 0;
2588 sqlite3_int64 i2
= 0;
2589 sqlite3_int64 iPrev
= 0;
2590 char *aRight
= *paRight
;
2591 char *pEnd1
= &aLeft
[nLeft
];
2592 char *pEnd2
= &aRight
[*pnRight
];
2601 aOut
= sqlite3_malloc(*pnRight
+ FTS3_VARINT_MAX
);
2602 if( aOut
==0 ) return SQLITE_NOMEM
;
2608 fts3GetDeltaVarint3(&p1
, pEnd1
, 0, &i1
);
2609 fts3GetDeltaVarint3(&p2
, pEnd2
, 0, &i2
);
2612 sqlite3_int64 iDiff
= DOCID_CMP(i1
, i2
);
2615 sqlite3_int64 iPrevSave
= iPrev
;
2616 int bFirstOutSave
= bFirstOut
;
2618 fts3PutDeltaVarint3(&p
, bDescDoclist
, &iPrev
, &bFirstOut
, i1
);
2619 if( 0==fts3PoslistPhraseMerge(&p
, nDist
, 0, 1, &p1
, &p2
) ){
2622 bFirstOut
= bFirstOutSave
;
2624 fts3GetDeltaVarint3(&p1
, pEnd1
, bDescDoclist
, &i1
);
2625 fts3GetDeltaVarint3(&p2
, pEnd2
, bDescDoclist
, &i2
);
2626 }else if( iDiff
<0 ){
2627 fts3PoslistCopy(0, &p1
);
2628 fts3GetDeltaVarint3(&p1
, pEnd1
, bDescDoclist
, &i1
);
2630 fts3PoslistCopy(0, &p2
);
2631 fts3GetDeltaVarint3(&p2
, pEnd2
, bDescDoclist
, &i2
);
2635 *pnRight
= (int)(p
- aOut
);
2637 sqlite3_free(aRight
);
2645 ** Argument pList points to a position list nList bytes in size. This
2646 ** function checks to see if the position list contains any entries for
2647 ** a token in position 0 (of any column). If so, it writes argument iDelta
2648 ** to the output buffer pOut, followed by a position list consisting only
2649 ** of the entries from pList at position 0, and terminated by an 0x00 byte.
2650 ** The value returned is the number of bytes written to pOut (if any).
2652 int sqlite3Fts3FirstFilter(
2653 sqlite3_int64 iDelta
, /* Varint that may be written to pOut */
2654 char *pList
, /* Position list (no 0x00 term) */
2655 int nList
, /* Size of pList in bytes */
2656 char *pOut
/* Write output here */
2659 int bWritten
= 0; /* True once iDelta has been written */
2661 char *pEnd
= &pList
[nList
];
2665 nOut
+= sqlite3Fts3PutVarint(&pOut
[nOut
], iDelta
);
2666 pOut
[nOut
++] = 0x02;
2669 fts3ColumnlistCopy(0, &p
);
2675 p
+= sqlite3Fts3GetVarint(p
, &iCol
);
2678 nOut
+= sqlite3Fts3PutVarint(&pOut
[nOut
], iDelta
);
2681 pOut
[nOut
++] = 0x01;
2682 nOut
+= sqlite3Fts3PutVarint(&pOut
[nOut
], iCol
);
2683 pOut
[nOut
++] = 0x02;
2685 fts3ColumnlistCopy(0, &p
);
2688 pOut
[nOut
++] = 0x00;
2696 ** Merge all doclists in the TermSelect.aaOutput[] array into a single
2697 ** doclist stored in TermSelect.aaOutput[0]. If successful, delete all
2698 ** other doclists (except the aaOutput[0] one) and return SQLITE_OK.
2700 ** If an OOM error occurs, return SQLITE_NOMEM. In this case it is
2701 ** the responsibility of the caller to free any doclists left in the
2702 ** TermSelect.aaOutput[] array.
2704 static int fts3TermSelectFinishMerge(Fts3Table
*p
, TermSelect
*pTS
){
2709 /* Loop through the doclists in the aaOutput[] array. Merge them all
2710 ** into a single doclist.
2712 for(i
=0; i
<SizeofArray(pTS
->aaOutput
); i
++){
2713 if( pTS
->aaOutput
[i
] ){
2715 aOut
= pTS
->aaOutput
[i
];
2716 nOut
= pTS
->anOutput
[i
];
2717 pTS
->aaOutput
[i
] = 0;
2722 int rc
= fts3DoclistOrMerge(p
->bDescIdx
,
2723 pTS
->aaOutput
[i
], pTS
->anOutput
[i
], aOut
, nOut
, &aNew
, &nNew
2725 if( rc
!=SQLITE_OK
){
2730 sqlite3_free(pTS
->aaOutput
[i
]);
2732 pTS
->aaOutput
[i
] = 0;
2739 pTS
->aaOutput
[0] = aOut
;
2740 pTS
->anOutput
[0] = nOut
;
2745 ** Merge the doclist aDoclist/nDoclist into the TermSelect object passed
2746 ** as the first argument. The merge is an "OR" merge (see function
2747 ** fts3DoclistOrMerge() for details).
2749 ** This function is called with the doclist for each term that matches
2750 ** a queried prefix. It merges all these doclists into one, the doclist
2751 ** for the specified prefix. Since there can be a very large number of
2752 ** doclists to merge, the merging is done pair-wise using the TermSelect
2755 ** This function returns SQLITE_OK if the merge is successful, or an
2756 ** SQLite error code (SQLITE_NOMEM) if an error occurs.
2758 static int fts3TermSelectMerge(
2759 Fts3Table
*p
, /* FTS table handle */
2760 TermSelect
*pTS
, /* TermSelect object to merge into */
2761 char *aDoclist
, /* Pointer to doclist */
2762 int nDoclist
/* Size of aDoclist in bytes */
2764 if( pTS
->aaOutput
[0]==0 ){
2765 /* If this is the first term selected, copy the doclist to the output
2766 ** buffer using memcpy().
2768 ** Add FTS3_VARINT_MAX bytes of unused space to the end of the
2769 ** allocation. This is so as to ensure that the buffer is big enough
2770 ** to hold the current doclist AND'd with any other doclist. If the
2771 ** doclists are stored in order=ASC order, this padding would not be
2772 ** required (since the size of [doclistA AND doclistB] is always less
2773 ** than or equal to the size of [doclistA] in that case). But this is
2774 ** not true for order=DESC. For example, a doclist containing (1, -1)
2775 ** may be smaller than (-1), as in the first example the -1 may be stored
2776 ** as a single-byte delta, whereas in the second it must be stored as a
2777 ** FTS3_VARINT_MAX byte varint.
2779 ** Similar padding is added in the fts3DoclistOrMerge() function.
2781 pTS
->aaOutput
[0] = sqlite3_malloc(nDoclist
+ FTS3_VARINT_MAX
+ 1);
2782 pTS
->anOutput
[0] = nDoclist
;
2783 if( pTS
->aaOutput
[0] ){
2784 memcpy(pTS
->aaOutput
[0], aDoclist
, nDoclist
);
2786 return SQLITE_NOMEM
;
2789 char *aMerge
= aDoclist
;
2790 int nMerge
= nDoclist
;
2793 for(iOut
=0; iOut
<SizeofArray(pTS
->aaOutput
); iOut
++){
2794 if( pTS
->aaOutput
[iOut
]==0 ){
2796 pTS
->aaOutput
[iOut
] = aMerge
;
2797 pTS
->anOutput
[iOut
] = nMerge
;
2803 int rc
= fts3DoclistOrMerge(p
->bDescIdx
, aMerge
, nMerge
,
2804 pTS
->aaOutput
[iOut
], pTS
->anOutput
[iOut
], &aNew
, &nNew
2806 if( rc
!=SQLITE_OK
){
2807 if( aMerge
!=aDoclist
) sqlite3_free(aMerge
);
2811 if( aMerge
!=aDoclist
) sqlite3_free(aMerge
);
2812 sqlite3_free(pTS
->aaOutput
[iOut
]);
2813 pTS
->aaOutput
[iOut
] = 0;
2817 if( (iOut
+1)==SizeofArray(pTS
->aaOutput
) ){
2818 pTS
->aaOutput
[iOut
] = aMerge
;
2819 pTS
->anOutput
[iOut
] = nMerge
;
2828 ** Append SegReader object pNew to the end of the pCsr->apSegment[] array.
2830 static int fts3SegReaderCursorAppend(
2831 Fts3MultiSegReader
*pCsr
,
2834 if( (pCsr
->nSegment
%16)==0 ){
2835 Fts3SegReader
**apNew
;
2836 int nByte
= (pCsr
->nSegment
+ 16)*sizeof(Fts3SegReader
*);
2837 apNew
= (Fts3SegReader
**)sqlite3_realloc(pCsr
->apSegment
, nByte
);
2839 sqlite3Fts3SegReaderFree(pNew
);
2840 return SQLITE_NOMEM
;
2842 pCsr
->apSegment
= apNew
;
2844 pCsr
->apSegment
[pCsr
->nSegment
++] = pNew
;
2849 ** Add seg-reader objects to the Fts3MultiSegReader object passed as the
2852 ** This function returns SQLITE_OK if successful, or an SQLite error code
2855 static int fts3SegReaderCursor(
2856 Fts3Table
*p
, /* FTS3 table handle */
2857 int iLangid
, /* Language id */
2858 int iIndex
, /* Index to search (from 0 to p->nIndex-1) */
2859 int iLevel
, /* Level of segments to scan */
2860 const char *zTerm
, /* Term to query for */
2861 int nTerm
, /* Size of zTerm in bytes */
2862 int isPrefix
, /* True for a prefix search */
2863 int isScan
, /* True to scan from zTerm to EOF */
2864 Fts3MultiSegReader
*pCsr
/* Cursor object to populate */
2866 int rc
= SQLITE_OK
; /* Error code */
2867 sqlite3_stmt
*pStmt
= 0; /* Statement to iterate through segments */
2868 int rc2
; /* Result of sqlite3_reset() */
2870 /* If iLevel is less than 0 and this is not a scan, include a seg-reader
2871 ** for the pending-terms. If this is a scan, then this call must be being
2872 ** made by an fts4aux module, not an FTS table. In this case calling
2873 ** Fts3SegReaderPending might segfault, as the data structures used by
2874 ** fts4aux are not completely populated. So it's easiest to filter these
2875 ** calls out here. */
2876 if( iLevel
<0 && p
->aIndex
){
2877 Fts3SegReader
*pSeg
= 0;
2878 rc
= sqlite3Fts3SegReaderPending(p
, iIndex
, zTerm
, nTerm
, isPrefix
||isScan
, &pSeg
);
2879 if( rc
==SQLITE_OK
&& pSeg
){
2880 rc
= fts3SegReaderCursorAppend(pCsr
, pSeg
);
2884 if( iLevel
!=FTS3_SEGCURSOR_PENDING
){
2885 if( rc
==SQLITE_OK
){
2886 rc
= sqlite3Fts3AllSegdirs(p
, iLangid
, iIndex
, iLevel
, &pStmt
);
2889 while( rc
==SQLITE_OK
&& SQLITE_ROW
==(rc
= sqlite3_step(pStmt
)) ){
2890 Fts3SegReader
*pSeg
= 0;
2892 /* Read the values returned by the SELECT into local variables. */
2893 sqlite3_int64 iStartBlock
= sqlite3_column_int64(pStmt
, 1);
2894 sqlite3_int64 iLeavesEndBlock
= sqlite3_column_int64(pStmt
, 2);
2895 sqlite3_int64 iEndBlock
= sqlite3_column_int64(pStmt
, 3);
2896 int nRoot
= sqlite3_column_bytes(pStmt
, 4);
2897 char const *zRoot
= sqlite3_column_blob(pStmt
, 4);
2899 /* If zTerm is not NULL, and this segment is not stored entirely on its
2900 ** root node, the range of leaves scanned can be reduced. Do this. */
2901 if( iStartBlock
&& zTerm
){
2902 sqlite3_int64
*pi
= (isPrefix
? &iLeavesEndBlock
: 0);
2903 rc
= fts3SelectLeaf(p
, zTerm
, nTerm
, zRoot
, nRoot
, &iStartBlock
, pi
);
2904 if( rc
!=SQLITE_OK
) goto finished
;
2905 if( isPrefix
==0 && isScan
==0 ) iLeavesEndBlock
= iStartBlock
;
2908 rc
= sqlite3Fts3SegReaderNew(pCsr
->nSegment
+1,
2909 (isPrefix
==0 && isScan
==0),
2910 iStartBlock
, iLeavesEndBlock
,
2911 iEndBlock
, zRoot
, nRoot
, &pSeg
2913 if( rc
!=SQLITE_OK
) goto finished
;
2914 rc
= fts3SegReaderCursorAppend(pCsr
, pSeg
);
2919 rc2
= sqlite3_reset(pStmt
);
2920 if( rc
==SQLITE_DONE
) rc
= rc2
;
2926 ** Set up a cursor object for iterating through a full-text index or a
2927 ** single level therein.
2929 int sqlite3Fts3SegReaderCursor(
2930 Fts3Table
*p
, /* FTS3 table handle */
2931 int iLangid
, /* Language-id to search */
2932 int iIndex
, /* Index to search (from 0 to p->nIndex-1) */
2933 int iLevel
, /* Level of segments to scan */
2934 const char *zTerm
, /* Term to query for */
2935 int nTerm
, /* Size of zTerm in bytes */
2936 int isPrefix
, /* True for a prefix search */
2937 int isScan
, /* True to scan from zTerm to EOF */
2938 Fts3MultiSegReader
*pCsr
/* Cursor object to populate */
2940 assert( iIndex
>=0 && iIndex
<p
->nIndex
);
2941 assert( iLevel
==FTS3_SEGCURSOR_ALL
2942 || iLevel
==FTS3_SEGCURSOR_PENDING
2945 assert( iLevel
<FTS3_SEGDIR_MAXLEVEL
);
2946 assert( FTS3_SEGCURSOR_ALL
<0 && FTS3_SEGCURSOR_PENDING
<0 );
2947 assert( isPrefix
==0 || isScan
==0 );
2949 memset(pCsr
, 0, sizeof(Fts3MultiSegReader
));
2950 return fts3SegReaderCursor(
2951 p
, iLangid
, iIndex
, iLevel
, zTerm
, nTerm
, isPrefix
, isScan
, pCsr
2956 ** In addition to its current configuration, have the Fts3MultiSegReader
2957 ** passed as the 4th argument also scan the doclist for term zTerm/nTerm.
2959 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
2961 static int fts3SegReaderCursorAddZero(
2962 Fts3Table
*p
, /* FTS virtual table handle */
2964 const char *zTerm
, /* Term to scan doclist of */
2965 int nTerm
, /* Number of bytes in zTerm */
2966 Fts3MultiSegReader
*pCsr
/* Fts3MultiSegReader to modify */
2968 return fts3SegReaderCursor(p
,
2969 iLangid
, 0, FTS3_SEGCURSOR_ALL
, zTerm
, nTerm
, 0, 0,pCsr
2974 ** Open an Fts3MultiSegReader to scan the doclist for term zTerm/nTerm. Or,
2975 ** if isPrefix is true, to scan the doclist for all terms for which
2976 ** zTerm/nTerm is a prefix. If successful, return SQLITE_OK and write
2977 ** a pointer to the new Fts3MultiSegReader to *ppSegcsr. Otherwise, return
2978 ** an SQLite error code.
2980 ** It is the responsibility of the caller to free this object by eventually
2981 ** passing it to fts3SegReaderCursorFree()
2983 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
2984 ** Output parameter *ppSegcsr is set to 0 if an error occurs.
2986 static int fts3TermSegReaderCursor(
2987 Fts3Cursor
*pCsr
, /* Virtual table cursor handle */
2988 const char *zTerm
, /* Term to query for */
2989 int nTerm
, /* Size of zTerm in bytes */
2990 int isPrefix
, /* True for a prefix search */
2991 Fts3MultiSegReader
**ppSegcsr
/* OUT: Allocated seg-reader cursor */
2993 Fts3MultiSegReader
*pSegcsr
; /* Object to allocate and return */
2994 int rc
= SQLITE_NOMEM
; /* Return code */
2996 pSegcsr
= sqlite3_malloc(sizeof(Fts3MultiSegReader
));
2999 int bFound
= 0; /* True once an index has been found */
3000 Fts3Table
*p
= (Fts3Table
*)pCsr
->base
.pVtab
;
3003 for(i
=1; bFound
==0 && i
<p
->nIndex
; i
++){
3004 if( p
->aIndex
[i
].nPrefix
==nTerm
){
3006 rc
= sqlite3Fts3SegReaderCursor(p
, pCsr
->iLangid
,
3007 i
, FTS3_SEGCURSOR_ALL
, zTerm
, nTerm
, 0, 0, pSegcsr
3009 pSegcsr
->bLookup
= 1;
3013 for(i
=1; bFound
==0 && i
<p
->nIndex
; i
++){
3014 if( p
->aIndex
[i
].nPrefix
==nTerm
+1 ){
3016 rc
= sqlite3Fts3SegReaderCursor(p
, pCsr
->iLangid
,
3017 i
, FTS3_SEGCURSOR_ALL
, zTerm
, nTerm
, 1, 0, pSegcsr
3019 if( rc
==SQLITE_OK
){
3020 rc
= fts3SegReaderCursorAddZero(
3021 p
, pCsr
->iLangid
, zTerm
, nTerm
, pSegcsr
3029 rc
= sqlite3Fts3SegReaderCursor(p
, pCsr
->iLangid
,
3030 0, FTS3_SEGCURSOR_ALL
, zTerm
, nTerm
, isPrefix
, 0, pSegcsr
3032 pSegcsr
->bLookup
= !isPrefix
;
3036 *ppSegcsr
= pSegcsr
;
3041 ** Free an Fts3MultiSegReader allocated by fts3TermSegReaderCursor().
3043 static void fts3SegReaderCursorFree(Fts3MultiSegReader
*pSegcsr
){
3044 sqlite3Fts3SegReaderFinish(pSegcsr
);
3045 sqlite3_free(pSegcsr
);
3049 ** This function retrieves the doclist for the specified term (or term
3050 ** prefix) from the database.
3052 static int fts3TermSelect(
3053 Fts3Table
*p
, /* Virtual table handle */
3054 Fts3PhraseToken
*pTok
, /* Token to query for */
3055 int iColumn
, /* Column to query (or -ve for all columns) */
3056 int *pnOut
, /* OUT: Size of buffer at *ppOut */
3057 char **ppOut
/* OUT: Malloced result buffer */
3059 int rc
; /* Return code */
3060 Fts3MultiSegReader
*pSegcsr
; /* Seg-reader cursor for this term */
3061 TermSelect tsc
; /* Object for pair-wise doclist merging */
3062 Fts3SegFilter filter
; /* Segment term filter configuration */
3064 pSegcsr
= pTok
->pSegcsr
;
3065 memset(&tsc
, 0, sizeof(TermSelect
));
3067 filter
.flags
= FTS3_SEGMENT_IGNORE_EMPTY
| FTS3_SEGMENT_REQUIRE_POS
3068 | (pTok
->isPrefix
? FTS3_SEGMENT_PREFIX
: 0)
3069 | (pTok
->bFirst
? FTS3_SEGMENT_FIRST
: 0)
3070 | (iColumn
<p
->nColumn
? FTS3_SEGMENT_COLUMN_FILTER
: 0);
3071 filter
.iCol
= iColumn
;
3072 filter
.zTerm
= pTok
->z
;
3073 filter
.nTerm
= pTok
->n
;
3075 rc
= sqlite3Fts3SegReaderStart(p
, pSegcsr
, &filter
);
3076 while( SQLITE_OK
==rc
3077 && SQLITE_ROW
==(rc
= sqlite3Fts3SegReaderStep(p
, pSegcsr
))
3079 rc
= fts3TermSelectMerge(p
, &tsc
, pSegcsr
->aDoclist
, pSegcsr
->nDoclist
);
3082 if( rc
==SQLITE_OK
){
3083 rc
= fts3TermSelectFinishMerge(p
, &tsc
);
3085 if( rc
==SQLITE_OK
){
3086 *ppOut
= tsc
.aaOutput
[0];
3087 *pnOut
= tsc
.anOutput
[0];
3090 for(i
=0; i
<SizeofArray(tsc
.aaOutput
); i
++){
3091 sqlite3_free(tsc
.aaOutput
[i
]);
3095 fts3SegReaderCursorFree(pSegcsr
);
3101 ** This function counts the total number of docids in the doclist stored
3102 ** in buffer aList[], size nList bytes.
3104 ** If the isPoslist argument is true, then it is assumed that the doclist
3105 ** contains a position-list following each docid. Otherwise, it is assumed
3106 ** that the doclist is simply a list of docids stored as delta encoded
3109 static int fts3DoclistCountDocids(char *aList
, int nList
){
3110 int nDoc
= 0; /* Return value */
3112 char *aEnd
= &aList
[nList
]; /* Pointer to one byte after EOF */
3113 char *p
= aList
; /* Cursor */
3116 while( (*p
++)&0x80 ); /* Skip docid varint */
3117 fts3PoslistCopy(0, &p
); /* Skip over position list */
3125 ** Advance the cursor to the next row in the %_content table that
3126 ** matches the search criteria. For a MATCH search, this will be
3127 ** the next row that matches. For a full-table scan, this will be
3128 ** simply the next row in the %_content table. For a docid lookup,
3129 ** this routine simply sets the EOF flag.
3131 ** Return SQLITE_OK if nothing goes wrong. SQLITE_OK is returned
3132 ** even if we reach end-of-file. The fts3EofMethod() will be called
3133 ** subsequently to determine whether or not an EOF was hit.
3135 static int fts3NextMethod(sqlite3_vtab_cursor
*pCursor
){
3137 Fts3Cursor
*pCsr
= (Fts3Cursor
*)pCursor
;
3138 if( pCsr
->eSearch
==FTS3_DOCID_SEARCH
|| pCsr
->eSearch
==FTS3_FULLSCAN_SEARCH
){
3139 if( SQLITE_ROW
!=sqlite3_step(pCsr
->pStmt
) ){
3141 rc
= sqlite3_reset(pCsr
->pStmt
);
3143 pCsr
->iPrevId
= sqlite3_column_int64(pCsr
->pStmt
, 0);
3147 rc
= fts3EvalNext((Fts3Cursor
*)pCursor
);
3149 assert( ((Fts3Table
*)pCsr
->base
.pVtab
)->pSegments
==0 );
3154 ** The following are copied from sqliteInt.h.
3156 ** Constants for the largest and smallest possible 64-bit signed integers.
3157 ** These macros are designed to work correctly on both 32-bit and 64-bit
3160 #ifndef SQLITE_AMALGAMATION
3161 # define LARGEST_INT64 (0xffffffff|(((sqlite3_int64)0x7fffffff)<<32))
3162 # define SMALLEST_INT64 (((sqlite3_int64)-1) - LARGEST_INT64)
3166 ** If the numeric type of argument pVal is "integer", then return it
3167 ** converted to a 64-bit signed integer. Otherwise, return a copy of
3168 ** the second parameter, iDefault.
3170 static sqlite3_int64
fts3DocidRange(sqlite3_value
*pVal
, i64 iDefault
){
3172 int eType
= sqlite3_value_numeric_type(pVal
);
3173 if( eType
==SQLITE_INTEGER
){
3174 return sqlite3_value_int64(pVal
);
3181 ** This is the xFilter interface for the virtual table. See
3182 ** the virtual table xFilter method documentation for additional
3185 ** If idxNum==FTS3_FULLSCAN_SEARCH then do a full table scan against
3186 ** the %_content table.
3188 ** If idxNum==FTS3_DOCID_SEARCH then do a docid lookup for a single entry
3189 ** in the %_content table.
3191 ** If idxNum>=FTS3_FULLTEXT_SEARCH then use the full text index. The
3192 ** column on the left-hand side of the MATCH operator is column
3193 ** number idxNum-FTS3_FULLTEXT_SEARCH, 0 indexed. argv[0] is the right-hand
3194 ** side of the MATCH operator.
3196 static int fts3FilterMethod(
3197 sqlite3_vtab_cursor
*pCursor
, /* The cursor used for this query */
3198 int idxNum
, /* Strategy index */
3199 const char *idxStr
, /* Unused */
3200 int nVal
, /* Number of elements in apVal */
3201 sqlite3_value
**apVal
/* Arguments for the indexing scheme */
3204 char *zSql
; /* SQL statement used to access %_content */
3206 Fts3Table
*p
= (Fts3Table
*)pCursor
->pVtab
;
3207 Fts3Cursor
*pCsr
= (Fts3Cursor
*)pCursor
;
3209 sqlite3_value
*pCons
= 0; /* The MATCH or rowid constraint, if any */
3210 sqlite3_value
*pLangid
= 0; /* The "langid = ?" constraint, if any */
3211 sqlite3_value
*pDocidGe
= 0; /* The "docid >= ?" constraint, if any */
3212 sqlite3_value
*pDocidLe
= 0; /* The "docid <= ?" constraint, if any */
3215 UNUSED_PARAMETER(idxStr
);
3216 UNUSED_PARAMETER(nVal
);
3218 eSearch
= (idxNum
& 0x0000FFFF);
3219 assert( eSearch
>=0 && eSearch
<=(FTS3_FULLTEXT_SEARCH
+p
->nColumn
) );
3220 assert( p
->pSegments
==0 );
3222 /* Collect arguments into local variables */
3224 if( eSearch
!=FTS3_FULLSCAN_SEARCH
) pCons
= apVal
[iIdx
++];
3225 if( idxNum
& FTS3_HAVE_LANGID
) pLangid
= apVal
[iIdx
++];
3226 if( idxNum
& FTS3_HAVE_DOCID_GE
) pDocidGe
= apVal
[iIdx
++];
3227 if( idxNum
& FTS3_HAVE_DOCID_LE
) pDocidLe
= apVal
[iIdx
++];
3228 assert( iIdx
==nVal
);
3230 /* In case the cursor has been used before, clear it now. */
3231 fts3ClearCursor(pCsr
);
3233 /* Set the lower and upper bounds on docids to return */
3234 pCsr
->iMinDocid
= fts3DocidRange(pDocidGe
, SMALLEST_INT64
);
3235 pCsr
->iMaxDocid
= fts3DocidRange(pDocidLe
, LARGEST_INT64
);
3238 pCsr
->bDesc
= (idxStr
[0]=='D');
3240 pCsr
->bDesc
= p
->bDescIdx
;
3242 pCsr
->eSearch
= (i16
)eSearch
;
3244 if( eSearch
!=FTS3_DOCID_SEARCH
&& eSearch
!=FTS3_FULLSCAN_SEARCH
){
3245 int iCol
= eSearch
-FTS3_FULLTEXT_SEARCH
;
3246 const char *zQuery
= (const char *)sqlite3_value_text(pCons
);
3248 if( zQuery
==0 && sqlite3_value_type(pCons
)!=SQLITE_NULL
){
3249 return SQLITE_NOMEM
;
3253 if( pLangid
) pCsr
->iLangid
= sqlite3_value_int(pLangid
);
3255 assert( p
->base
.zErrMsg
==0 );
3256 rc
= sqlite3Fts3ExprParse(p
->pTokenizer
, pCsr
->iLangid
,
3257 p
->azColumn
, p
->bFts4
, p
->nColumn
, iCol
, zQuery
, -1, &pCsr
->pExpr
,
3260 if( rc
!=SQLITE_OK
){
3264 rc
= fts3EvalStart(pCsr
);
3265 sqlite3Fts3SegmentsClose(p
);
3266 if( rc
!=SQLITE_OK
) return rc
;
3267 pCsr
->pNextId
= pCsr
->aDoclist
;
3271 /* Compile a SELECT statement for this cursor. For a full-table-scan, the
3272 ** statement loops through all rows of the %_content table. For a
3273 ** full-text query or docid lookup, the statement retrieves a single
3276 if( eSearch
==FTS3_FULLSCAN_SEARCH
){
3277 if( pDocidGe
|| pDocidLe
){
3278 zSql
= sqlite3_mprintf(
3279 "SELECT %s WHERE rowid BETWEEN %lld AND %lld ORDER BY rowid %s",
3280 p
->zReadExprlist
, pCsr
->iMinDocid
, pCsr
->iMaxDocid
,
3281 (pCsr
->bDesc
? "DESC" : "ASC")
3284 zSql
= sqlite3_mprintf("SELECT %s ORDER BY rowid %s",
3285 p
->zReadExprlist
, (pCsr
->bDesc
? "DESC" : "ASC")
3289 rc
= sqlite3_prepare_v3(p
->db
,zSql
,-1,SQLITE_PREPARE_PERSISTENT
,&pCsr
->pStmt
,0);
3294 }else if( eSearch
==FTS3_DOCID_SEARCH
){
3295 rc
= fts3CursorSeekStmt(pCsr
);
3296 if( rc
==SQLITE_OK
){
3297 rc
= sqlite3_bind_value(pCsr
->pStmt
, 1, pCons
);
3300 if( rc
!=SQLITE_OK
) return rc
;
3302 return fts3NextMethod(pCursor
);
3306 ** This is the xEof method of the virtual table. SQLite calls this
3307 ** routine to find out if it has reached the end of a result set.
3309 static int fts3EofMethod(sqlite3_vtab_cursor
*pCursor
){
3310 Fts3Cursor
*pCsr
= (Fts3Cursor
*)pCursor
;
3312 fts3ClearCursor(pCsr
);
3319 ** This is the xRowid method. The SQLite core calls this routine to
3320 ** retrieve the rowid for the current row of the result set. fts3
3321 ** exposes %_content.docid as the rowid for the virtual table. The
3322 ** rowid should be written to *pRowid.
3324 static int fts3RowidMethod(sqlite3_vtab_cursor
*pCursor
, sqlite_int64
*pRowid
){
3325 Fts3Cursor
*pCsr
= (Fts3Cursor
*) pCursor
;
3326 *pRowid
= pCsr
->iPrevId
;
3331 ** This is the xColumn method, called by SQLite to request a value from
3332 ** the row that the supplied cursor currently points to.
3336 ** (iCol < p->nColumn) -> The value of the iCol'th user column.
3337 ** (iCol == p->nColumn) -> Magic column with the same name as the table.
3338 ** (iCol == p->nColumn+1) -> Docid column
3339 ** (iCol == p->nColumn+2) -> Langid column
3341 static int fts3ColumnMethod(
3342 sqlite3_vtab_cursor
*pCursor
, /* Cursor to retrieve value from */
3343 sqlite3_context
*pCtx
, /* Context for sqlite3_result_xxx() calls */
3344 int iCol
/* Index of column to read value from */
3346 int rc
= SQLITE_OK
; /* Return Code */
3347 Fts3Cursor
*pCsr
= (Fts3Cursor
*) pCursor
;
3348 Fts3Table
*p
= (Fts3Table
*)pCursor
->pVtab
;
3350 /* The column value supplied by SQLite must be in range. */
3351 assert( iCol
>=0 && iCol
<=p
->nColumn
+2 );
3353 switch( iCol
-p
->nColumn
){
3355 /* The special 'table-name' column */
3356 sqlite3_result_pointer(pCtx
, pCsr
, "fts3cursor", 0);
3360 /* The docid column */
3361 sqlite3_result_int64(pCtx
, pCsr
->iPrevId
);
3366 sqlite3_result_int64(pCtx
, pCsr
->iLangid
);
3368 }else if( p
->zLanguageid
==0 ){
3369 sqlite3_result_int(pCtx
, 0);
3377 /* A user column. Or, if this is a full-table scan, possibly the
3378 ** language-id column. Seek the cursor. */
3379 rc
= fts3CursorSeek(0, pCsr
);
3380 if( rc
==SQLITE_OK
&& sqlite3_data_count(pCsr
->pStmt
)-1>iCol
){
3381 sqlite3_result_value(pCtx
, sqlite3_column_value(pCsr
->pStmt
, iCol
+1));
3386 assert( ((Fts3Table
*)pCsr
->base
.pVtab
)->pSegments
==0 );
3391 ** This function is the implementation of the xUpdate callback used by
3392 ** FTS3 virtual tables. It is invoked by SQLite each time a row is to be
3393 ** inserted, updated or deleted.
3395 static int fts3UpdateMethod(
3396 sqlite3_vtab
*pVtab
, /* Virtual table handle */
3397 int nArg
, /* Size of argument array */
3398 sqlite3_value
**apVal
, /* Array of arguments */
3399 sqlite_int64
*pRowid
/* OUT: The affected (or effected) rowid */
3401 return sqlite3Fts3UpdateMethod(pVtab
, nArg
, apVal
, pRowid
);
3405 ** Implementation of xSync() method. Flush the contents of the pending-terms
3406 ** hash-table to the database.
3408 static int fts3SyncMethod(sqlite3_vtab
*pVtab
){
3410 /* Following an incremental-merge operation, assuming that the input
3411 ** segments are not completely consumed (the usual case), they are updated
3412 ** in place to remove the entries that have already been merged. This
3413 ** involves updating the leaf block that contains the smallest unmerged
3414 ** entry and each block (if any) between the leaf and the root node. So
3415 ** if the height of the input segment b-trees is N, and input segments
3416 ** are merged eight at a time, updating the input segments at the end
3417 ** of an incremental-merge requires writing (8*(1+N)) blocks. N is usually
3418 ** small - often between 0 and 2. So the overhead of the incremental
3419 ** merge is somewhere between 8 and 24 blocks. To avoid this overhead
3420 ** dwarfing the actual productive work accomplished, the incremental merge
3421 ** is only attempted if it will write at least 64 leaf blocks. Hence
3424 ** Of course, updating the input segments also involves deleting a bunch
3425 ** of blocks from the segments table. But this is not considered overhead
3426 ** as it would also be required by a crisis-merge that used the same input
3429 const u32 nMinMerge
= 64; /* Minimum amount of incr-merge work to do */
3431 Fts3Table
*p
= (Fts3Table
*)pVtab
;
3433 i64 iLastRowid
= sqlite3_last_insert_rowid(p
->db
);
3435 rc
= sqlite3Fts3PendingTermsFlush(p
);
3437 && p
->nLeafAdd
>(nMinMerge
/16)
3438 && p
->nAutoincrmerge
&& p
->nAutoincrmerge
!=0xff
3440 int mxLevel
= 0; /* Maximum relative level value in db */
3441 int A
; /* Incr-merge parameter A */
3443 rc
= sqlite3Fts3MaxLevel(p
, &mxLevel
);
3444 assert( rc
==SQLITE_OK
|| mxLevel
==0 );
3445 A
= p
->nLeafAdd
* mxLevel
;
3447 if( A
>(int)nMinMerge
) rc
= sqlite3Fts3Incrmerge(p
, A
, p
->nAutoincrmerge
);
3449 sqlite3Fts3SegmentsClose(p
);
3450 sqlite3_set_last_insert_rowid(p
->db
, iLastRowid
);
3455 ** If it is currently unknown whether or not the FTS table has an %_stat
3456 ** table (if p->bHasStat==2), attempt to determine this (set p->bHasStat
3457 ** to 0 or 1). Return SQLITE_OK if successful, or an SQLite error code
3458 ** if an error occurs.
3460 static int fts3SetHasStat(Fts3Table
*p
){
3462 if( p
->bHasStat
==2 ){
3463 char *zTbl
= sqlite3_mprintf("%s_stat", p
->zName
);
3465 int res
= sqlite3_table_column_metadata(p
->db
, p
->zDb
, zTbl
, 0,0,0,0,0,0);
3467 p
->bHasStat
= (res
==SQLITE_OK
);
3476 ** Implementation of xBegin() method.
3478 static int fts3BeginMethod(sqlite3_vtab
*pVtab
){
3479 Fts3Table
*p
= (Fts3Table
*)pVtab
;
3480 UNUSED_PARAMETER(pVtab
);
3481 assert( p
->pSegments
==0 );
3482 assert( p
->nPendingData
==0 );
3483 assert( p
->inTransaction
!=1 );
3484 TESTONLY( p
->inTransaction
= 1 );
3485 TESTONLY( p
->mxSavepoint
= -1; );
3487 return fts3SetHasStat(p
);
3491 ** Implementation of xCommit() method. This is a no-op. The contents of
3492 ** the pending-terms hash-table have already been flushed into the database
3493 ** by fts3SyncMethod().
3495 static int fts3CommitMethod(sqlite3_vtab
*pVtab
){
3496 TESTONLY( Fts3Table
*p
= (Fts3Table
*)pVtab
);
3497 UNUSED_PARAMETER(pVtab
);
3498 assert( p
->nPendingData
==0 );
3499 assert( p
->inTransaction
!=0 );
3500 assert( p
->pSegments
==0 );
3501 TESTONLY( p
->inTransaction
= 0 );
3502 TESTONLY( p
->mxSavepoint
= -1; );
3507 ** Implementation of xRollback(). Discard the contents of the pending-terms
3508 ** hash-table. Any changes made to the database are reverted by SQLite.
3510 static int fts3RollbackMethod(sqlite3_vtab
*pVtab
){
3511 Fts3Table
*p
= (Fts3Table
*)pVtab
;
3512 sqlite3Fts3PendingTermsClear(p
);
3513 assert( p
->inTransaction
!=0 );
3514 TESTONLY( p
->inTransaction
= 0 );
3515 TESTONLY( p
->mxSavepoint
= -1; );
3520 ** When called, *ppPoslist must point to the byte immediately following the
3521 ** end of a position-list. i.e. ( (*ppPoslist)[-1]==POS_END ). This function
3522 ** moves *ppPoslist so that it instead points to the first byte of the
3523 ** same position list.
3525 static void fts3ReversePoslist(char *pStart
, char **ppPoslist
){
3526 char *p
= &(*ppPoslist
)[-2];
3529 /* Skip backwards passed any trailing 0x00 bytes added by NearTrim() */
3530 while( p
>pStart
&& (c
=*p
--)==0 );
3532 /* Search backwards for a varint with value zero (the end of the previous
3533 ** poslist). This is an 0x00 byte preceded by some byte that does not
3534 ** have the 0x80 bit set. */
3535 while( p
>pStart
&& (*p
& 0x80) | c
){
3538 assert( p
==pStart
|| c
==0 );
3540 /* At this point p points to that preceding byte without the 0x80 bit
3541 ** set. So to find the start of the poslist, skip forward 2 bytes then
3544 ** Normally. The other case is that p==pStart and the poslist to return
3545 ** is the first in the doclist. In this case do not skip forward 2 bytes.
3546 ** The second part of the if condition (c==0 && *ppPoslist>&p[2])
3547 ** is required for cases where the first byte of a doclist and the
3548 ** doclist is empty. For example, if the first docid is 10, a doclist
3549 ** that begins with:
3551 ** 0x0A 0x00 <next docid delta varint>
3553 if( p
>pStart
|| (c
==0 && *ppPoslist
>&p
[2]) ){ p
= &p
[2]; }
3559 ** Helper function used by the implementation of the overloaded snippet(),
3560 ** offsets() and optimize() SQL functions.
3562 ** If the value passed as the third argument is a blob of size
3563 ** sizeof(Fts3Cursor*), then the blob contents are copied to the
3564 ** output variable *ppCsr and SQLITE_OK is returned. Otherwise, an error
3565 ** message is written to context pContext and SQLITE_ERROR returned. The
3566 ** string passed via zFunc is used as part of the error message.
3568 static int fts3FunctionArg(
3569 sqlite3_context
*pContext
, /* SQL function call context */
3570 const char *zFunc
, /* Function name */
3571 sqlite3_value
*pVal
, /* argv[0] passed to function */
3572 Fts3Cursor
**ppCsr
/* OUT: Store cursor handle here */
3575 *ppCsr
= (Fts3Cursor
*)sqlite3_value_pointer(pVal
, "fts3cursor");
3579 char *zErr
= sqlite3_mprintf("illegal first argument to %s", zFunc
);
3580 sqlite3_result_error(pContext
, zErr
, -1);
3588 ** Implementation of the snippet() function for FTS3
3590 static void fts3SnippetFunc(
3591 sqlite3_context
*pContext
, /* SQLite function call context */
3592 int nVal
, /* Size of apVal[] array */
3593 sqlite3_value
**apVal
/* Array of arguments */
3595 Fts3Cursor
*pCsr
; /* Cursor handle passed through apVal[0] */
3596 const char *zStart
= "<b>";
3597 const char *zEnd
= "</b>";
3598 const char *zEllipsis
= "<b>...</b>";
3600 int nToken
= 15; /* Default number of tokens in snippet */
3602 /* There must be at least one argument passed to this function (otherwise
3603 ** the non-overloaded version would have been called instead of this one).
3608 sqlite3_result_error(pContext
,
3609 "wrong number of arguments to function snippet()", -1);
3612 if( fts3FunctionArg(pContext
, "snippet", apVal
[0], &pCsr
) ) return;
3615 case 6: nToken
= sqlite3_value_int(apVal
[5]);
3616 case 5: iCol
= sqlite3_value_int(apVal
[4]);
3617 case 4: zEllipsis
= (const char*)sqlite3_value_text(apVal
[3]);
3618 case 3: zEnd
= (const char*)sqlite3_value_text(apVal
[2]);
3619 case 2: zStart
= (const char*)sqlite3_value_text(apVal
[1]);
3621 if( !zEllipsis
|| !zEnd
|| !zStart
){
3622 sqlite3_result_error_nomem(pContext
);
3623 }else if( nToken
==0 ){
3624 sqlite3_result_text(pContext
, "", -1, SQLITE_STATIC
);
3625 }else if( SQLITE_OK
==fts3CursorSeek(pContext
, pCsr
) ){
3626 sqlite3Fts3Snippet(pContext
, pCsr
, zStart
, zEnd
, zEllipsis
, iCol
, nToken
);
3631 ** Implementation of the offsets() function for FTS3
3633 static void fts3OffsetsFunc(
3634 sqlite3_context
*pContext
, /* SQLite function call context */
3635 int nVal
, /* Size of argument array */
3636 sqlite3_value
**apVal
/* Array of arguments */
3638 Fts3Cursor
*pCsr
; /* Cursor handle passed through apVal[0] */
3640 UNUSED_PARAMETER(nVal
);
3643 if( fts3FunctionArg(pContext
, "offsets", apVal
[0], &pCsr
) ) return;
3645 if( SQLITE_OK
==fts3CursorSeek(pContext
, pCsr
) ){
3646 sqlite3Fts3Offsets(pContext
, pCsr
);
3651 ** Implementation of the special optimize() function for FTS3. This
3652 ** function merges all segments in the database to a single segment.
3653 ** Example usage is:
3655 ** SELECT optimize(t) FROM t LIMIT 1;
3657 ** where 't' is the name of an FTS3 table.
3659 static void fts3OptimizeFunc(
3660 sqlite3_context
*pContext
, /* SQLite function call context */
3661 int nVal
, /* Size of argument array */
3662 sqlite3_value
**apVal
/* Array of arguments */
3664 int rc
; /* Return code */
3665 Fts3Table
*p
; /* Virtual table handle */
3666 Fts3Cursor
*pCursor
; /* Cursor handle passed through apVal[0] */
3668 UNUSED_PARAMETER(nVal
);
3671 if( fts3FunctionArg(pContext
, "optimize", apVal
[0], &pCursor
) ) return;
3672 p
= (Fts3Table
*)pCursor
->base
.pVtab
;
3675 rc
= sqlite3Fts3Optimize(p
);
3679 sqlite3_result_text(pContext
, "Index optimized", -1, SQLITE_STATIC
);
3682 sqlite3_result_text(pContext
, "Index already optimal", -1, SQLITE_STATIC
);
3685 sqlite3_result_error_code(pContext
, rc
);
3691 ** Implementation of the matchinfo() function for FTS3
3693 static void fts3MatchinfoFunc(
3694 sqlite3_context
*pContext
, /* SQLite function call context */
3695 int nVal
, /* Size of argument array */
3696 sqlite3_value
**apVal
/* Array of arguments */
3698 Fts3Cursor
*pCsr
; /* Cursor handle passed through apVal[0] */
3699 assert( nVal
==1 || nVal
==2 );
3700 if( SQLITE_OK
==fts3FunctionArg(pContext
, "matchinfo", apVal
[0], &pCsr
) ){
3701 const char *zArg
= 0;
3703 zArg
= (const char *)sqlite3_value_text(apVal
[1]);
3705 sqlite3Fts3Matchinfo(pContext
, pCsr
, zArg
);
3710 ** This routine implements the xFindFunction method for the FTS3
3713 static int fts3FindFunctionMethod(
3714 sqlite3_vtab
*pVtab
, /* Virtual table handle */
3715 int nArg
, /* Number of SQL function arguments */
3716 const char *zName
, /* Name of SQL function */
3717 void (**pxFunc
)(sqlite3_context
*,int,sqlite3_value
**), /* OUT: Result */
3718 void **ppArg
/* Unused */
3722 void (*xFunc
)(sqlite3_context
*,int,sqlite3_value
**);
3724 { "snippet", fts3SnippetFunc
},
3725 { "offsets", fts3OffsetsFunc
},
3726 { "optimize", fts3OptimizeFunc
},
3727 { "matchinfo", fts3MatchinfoFunc
},
3729 int i
; /* Iterator variable */
3731 UNUSED_PARAMETER(pVtab
);
3732 UNUSED_PARAMETER(nArg
);
3733 UNUSED_PARAMETER(ppArg
);
3735 for(i
=0; i
<SizeofArray(aOverload
); i
++){
3736 if( strcmp(zName
, aOverload
[i
].zName
)==0 ){
3737 *pxFunc
= aOverload
[i
].xFunc
;
3742 /* No function of the specified name was found. Return 0. */
3747 ** Implementation of FTS3 xRename method. Rename an fts3 table.
3749 static int fts3RenameMethod(
3750 sqlite3_vtab
*pVtab
, /* Virtual table handle */
3751 const char *zName
/* New name of table */
3753 Fts3Table
*p
= (Fts3Table
*)pVtab
;
3754 sqlite3
*db
= p
->db
; /* Database connection */
3755 int rc
; /* Return Code */
3757 /* At this point it must be known if the %_stat table exists or not.
3758 ** So bHasStat may not be 2. */
3759 rc
= fts3SetHasStat(p
);
3761 /* As it happens, the pending terms table is always empty here. This is
3762 ** because an "ALTER TABLE RENAME TABLE" statement inside a transaction
3763 ** always opens a savepoint transaction. And the xSavepoint() method
3764 ** flushes the pending terms table. But leave the (no-op) call to
3765 ** PendingTermsFlush() in in case that changes.
3767 assert( p
->nPendingData
==0 );
3768 if( rc
==SQLITE_OK
){
3769 rc
= sqlite3Fts3PendingTermsFlush(p
);
3772 if( p
->zContentTbl
==0 ){
3774 "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';",
3775 p
->zDb
, p
->zName
, zName
3779 if( p
->bHasDocsize
){
3781 "ALTER TABLE %Q.'%q_docsize' RENAME TO '%q_docsize';",
3782 p
->zDb
, p
->zName
, zName
3787 "ALTER TABLE %Q.'%q_stat' RENAME TO '%q_stat';",
3788 p
->zDb
, p
->zName
, zName
3792 "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';",
3793 p
->zDb
, p
->zName
, zName
3796 "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';",
3797 p
->zDb
, p
->zName
, zName
3803 ** The xSavepoint() method.
3805 ** Flush the contents of the pending-terms table to disk.
3807 static int fts3SavepointMethod(sqlite3_vtab
*pVtab
, int iSavepoint
){
3809 UNUSED_PARAMETER(iSavepoint
);
3810 assert( ((Fts3Table
*)pVtab
)->inTransaction
);
3811 assert( ((Fts3Table
*)pVtab
)->mxSavepoint
<= iSavepoint
);
3812 TESTONLY( ((Fts3Table
*)pVtab
)->mxSavepoint
= iSavepoint
);
3813 if( ((Fts3Table
*)pVtab
)->bIgnoreSavepoint
==0 ){
3814 rc
= fts3SyncMethod(pVtab
);
3820 ** The xRelease() method.
3824 static int fts3ReleaseMethod(sqlite3_vtab
*pVtab
, int iSavepoint
){
3825 TESTONLY( Fts3Table
*p
= (Fts3Table
*)pVtab
);
3826 UNUSED_PARAMETER(iSavepoint
);
3827 UNUSED_PARAMETER(pVtab
);
3828 assert( p
->inTransaction
);
3829 assert( p
->mxSavepoint
>= iSavepoint
);
3830 TESTONLY( p
->mxSavepoint
= iSavepoint
-1 );
3835 ** The xRollbackTo() method.
3837 ** Discard the contents of the pending terms table.
3839 static int fts3RollbackToMethod(sqlite3_vtab
*pVtab
, int iSavepoint
){
3840 Fts3Table
*p
= (Fts3Table
*)pVtab
;
3841 UNUSED_PARAMETER(iSavepoint
);
3842 assert( p
->inTransaction
);
3843 assert( p
->mxSavepoint
>= iSavepoint
);
3844 TESTONLY( p
->mxSavepoint
= iSavepoint
);
3845 sqlite3Fts3PendingTermsClear(p
);
3849 static const sqlite3_module fts3Module
= {
3851 /* xCreate */ fts3CreateMethod
,
3852 /* xConnect */ fts3ConnectMethod
,
3853 /* xBestIndex */ fts3BestIndexMethod
,
3854 /* xDisconnect */ fts3DisconnectMethod
,
3855 /* xDestroy */ fts3DestroyMethod
,
3856 /* xOpen */ fts3OpenMethod
,
3857 /* xClose */ fts3CloseMethod
,
3858 /* xFilter */ fts3FilterMethod
,
3859 /* xNext */ fts3NextMethod
,
3860 /* xEof */ fts3EofMethod
,
3861 /* xColumn */ fts3ColumnMethod
,
3862 /* xRowid */ fts3RowidMethod
,
3863 /* xUpdate */ fts3UpdateMethod
,
3864 /* xBegin */ fts3BeginMethod
,
3865 /* xSync */ fts3SyncMethod
,
3866 /* xCommit */ fts3CommitMethod
,
3867 /* xRollback */ fts3RollbackMethod
,
3868 /* xFindFunction */ fts3FindFunctionMethod
,
3869 /* xRename */ fts3RenameMethod
,
3870 /* xSavepoint */ fts3SavepointMethod
,
3871 /* xRelease */ fts3ReleaseMethod
,
3872 /* xRollbackTo */ fts3RollbackToMethod
,
3876 ** This function is registered as the module destructor (called when an
3877 ** FTS3 enabled database connection is closed). It frees the memory
3878 ** allocated for the tokenizer hash table.
3880 static void hashDestroy(void *p
){
3881 Fts3Hash
*pHash
= (Fts3Hash
*)p
;
3882 sqlite3Fts3HashClear(pHash
);
3883 sqlite3_free(pHash
);
3887 ** The fts3 built-in tokenizers - "simple", "porter" and "icu"- are
3888 ** implemented in files fts3_tokenizer1.c, fts3_porter.c and fts3_icu.c
3889 ** respectively. The following three forward declarations are for functions
3890 ** declared in these files used to retrieve the respective implementations.
3892 ** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed
3893 ** to by the argument to point to the "simple" tokenizer implementation.
3896 void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module
const**ppModule
);
3897 void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module
const**ppModule
);
3898 #ifndef SQLITE_DISABLE_FTS3_UNICODE
3899 void sqlite3Fts3UnicodeTokenizer(sqlite3_tokenizer_module
const**ppModule
);
3901 #ifdef SQLITE_ENABLE_ICU
3902 void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module
const**ppModule
);
3906 ** Initialize the fts3 extension. If this extension is built as part
3907 ** of the sqlite library, then this function is called directly by
3908 ** SQLite. If fts3 is built as a dynamically loadable extension, this
3909 ** function is called by the sqlite3_extension_init() entry point.
3911 int sqlite3Fts3Init(sqlite3
*db
){
3913 Fts3Hash
*pHash
= 0;
3914 const sqlite3_tokenizer_module
*pSimple
= 0;
3915 const sqlite3_tokenizer_module
*pPorter
= 0;
3916 #ifndef SQLITE_DISABLE_FTS3_UNICODE
3917 const sqlite3_tokenizer_module
*pUnicode
= 0;
3920 #ifdef SQLITE_ENABLE_ICU
3921 const sqlite3_tokenizer_module
*pIcu
= 0;
3922 sqlite3Fts3IcuTokenizerModule(&pIcu
);
3925 #ifndef SQLITE_DISABLE_FTS3_UNICODE
3926 sqlite3Fts3UnicodeTokenizer(&pUnicode
);
3930 rc
= sqlite3Fts3InitTerm(db
);
3931 if( rc
!=SQLITE_OK
) return rc
;
3934 rc
= sqlite3Fts3InitAux(db
);
3935 if( rc
!=SQLITE_OK
) return rc
;
3937 sqlite3Fts3SimpleTokenizerModule(&pSimple
);
3938 sqlite3Fts3PorterTokenizerModule(&pPorter
);
3940 /* Allocate and initialize the hash-table used to store tokenizers. */
3941 pHash
= sqlite3_malloc(sizeof(Fts3Hash
));
3945 sqlite3Fts3HashInit(pHash
, FTS3_HASH_STRING
, 1);
3948 /* Load the built-in tokenizers into the hash table */
3949 if( rc
==SQLITE_OK
){
3950 if( sqlite3Fts3HashInsert(pHash
, "simple", 7, (void *)pSimple
)
3951 || sqlite3Fts3HashInsert(pHash
, "porter", 7, (void *)pPorter
)
3953 #ifndef SQLITE_DISABLE_FTS3_UNICODE
3954 || sqlite3Fts3HashInsert(pHash
, "unicode61", 10, (void *)pUnicode
)
3956 #ifdef SQLITE_ENABLE_ICU
3957 || (pIcu
&& sqlite3Fts3HashInsert(pHash
, "icu", 4, (void *)pIcu
))
3965 if( rc
==SQLITE_OK
){
3966 rc
= sqlite3Fts3ExprInitTestInterface(db
, pHash
);
3970 /* Create the virtual table wrapper around the hash-table and overload
3971 ** the four scalar functions. If this is successful, register the
3972 ** module with sqlite.
3975 && SQLITE_OK
==(rc
= sqlite3Fts3InitHashTable(db
, pHash
, "fts3_tokenizer"))
3976 && SQLITE_OK
==(rc
= sqlite3_overload_function(db
, "snippet", -1))
3977 && SQLITE_OK
==(rc
= sqlite3_overload_function(db
, "offsets", 1))
3978 && SQLITE_OK
==(rc
= sqlite3_overload_function(db
, "matchinfo", 1))
3979 && SQLITE_OK
==(rc
= sqlite3_overload_function(db
, "matchinfo", 2))
3980 && SQLITE_OK
==(rc
= sqlite3_overload_function(db
, "optimize", 1))
3982 rc
= sqlite3_create_module_v2(
3983 db
, "fts3", &fts3Module
, (void *)pHash
, hashDestroy
3985 if( rc
==SQLITE_OK
){
3986 rc
= sqlite3_create_module_v2(
3987 db
, "fts4", &fts3Module
, (void *)pHash
, 0
3990 if( rc
==SQLITE_OK
){
3991 rc
= sqlite3Fts3InitTok(db
, (void *)pHash
);
3997 /* An error has occurred. Delete the hash table and return the error code. */
3998 assert( rc
!=SQLITE_OK
);
4000 sqlite3Fts3HashClear(pHash
);
4001 sqlite3_free(pHash
);
4007 ** Allocate an Fts3MultiSegReader for each token in the expression headed
4010 ** An Fts3SegReader object is a cursor that can seek or scan a range of
4011 ** entries within a single segment b-tree. An Fts3MultiSegReader uses multiple
4012 ** Fts3SegReader objects internally to provide an interface to seek or scan
4013 ** within the union of all segments of a b-tree. Hence the name.
4015 ** If the allocated Fts3MultiSegReader just seeks to a single entry in a
4016 ** segment b-tree (if the term is not a prefix or it is a prefix for which
4017 ** there exists prefix b-tree of the right length) then it may be traversed
4018 ** and merged incrementally. Otherwise, it has to be merged into an in-memory
4019 ** doclist and then traversed.
4021 static void fts3EvalAllocateReaders(
4022 Fts3Cursor
*pCsr
, /* FTS cursor handle */
4023 Fts3Expr
*pExpr
, /* Allocate readers for this expression */
4024 int *pnToken
, /* OUT: Total number of tokens in phrase. */
4025 int *pnOr
, /* OUT: Total number of OR nodes in expr. */
4026 int *pRc
/* IN/OUT: Error code */
4028 if( pExpr
&& SQLITE_OK
==*pRc
){
4029 if( pExpr
->eType
==FTSQUERY_PHRASE
){
4031 int nToken
= pExpr
->pPhrase
->nToken
;
4033 for(i
=0; i
<nToken
; i
++){
4034 Fts3PhraseToken
*pToken
= &pExpr
->pPhrase
->aToken
[i
];
4035 int rc
= fts3TermSegReaderCursor(pCsr
,
4036 pToken
->z
, pToken
->n
, pToken
->isPrefix
, &pToken
->pSegcsr
4038 if( rc
!=SQLITE_OK
){
4043 assert( pExpr
->pPhrase
->iDoclistToken
==0 );
4044 pExpr
->pPhrase
->iDoclistToken
= -1;
4046 *pnOr
+= (pExpr
->eType
==FTSQUERY_OR
);
4047 fts3EvalAllocateReaders(pCsr
, pExpr
->pLeft
, pnToken
, pnOr
, pRc
);
4048 fts3EvalAllocateReaders(pCsr
, pExpr
->pRight
, pnToken
, pnOr
, pRc
);
4054 ** Arguments pList/nList contain the doclist for token iToken of phrase p.
4055 ** It is merged into the main doclist stored in p->doclist.aAll/nAll.
4057 ** This function assumes that pList points to a buffer allocated using
4058 ** sqlite3_malloc(). This function takes responsibility for eventually
4059 ** freeing the buffer.
4061 ** SQLITE_OK is returned if successful, or SQLITE_NOMEM if an error occurs.
4063 static int fts3EvalPhraseMergeToken(
4064 Fts3Table
*pTab
, /* FTS Table pointer */
4065 Fts3Phrase
*p
, /* Phrase to merge pList/nList into */
4066 int iToken
, /* Token pList/nList corresponds to */
4067 char *pList
, /* Pointer to doclist */
4068 int nList
/* Number of bytes in pList */
4071 assert( iToken
!=p
->iDoclistToken
);
4074 sqlite3_free(p
->doclist
.aAll
);
4075 p
->doclist
.aAll
= 0;
4076 p
->doclist
.nAll
= 0;
4079 else if( p
->iDoclistToken
<0 ){
4080 p
->doclist
.aAll
= pList
;
4081 p
->doclist
.nAll
= nList
;
4084 else if( p
->doclist
.aAll
==0 ){
4085 sqlite3_free(pList
);
4095 if( p
->iDoclistToken
<iToken
){
4096 pLeft
= p
->doclist
.aAll
;
4097 nLeft
= p
->doclist
.nAll
;
4100 nDiff
= iToken
- p
->iDoclistToken
;
4102 pRight
= p
->doclist
.aAll
;
4103 nRight
= p
->doclist
.nAll
;
4106 nDiff
= p
->iDoclistToken
- iToken
;
4109 rc
= fts3DoclistPhraseMerge(
4110 pTab
->bDescIdx
, nDiff
, pLeft
, nLeft
, &pRight
, &nRight
4112 sqlite3_free(pLeft
);
4113 p
->doclist
.aAll
= pRight
;
4114 p
->doclist
.nAll
= nRight
;
4117 if( iToken
>p
->iDoclistToken
) p
->iDoclistToken
= iToken
;
4122 ** Load the doclist for phrase p into p->doclist.aAll/nAll. The loaded doclist
4123 ** does not take deferred tokens into account.
4125 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
4127 static int fts3EvalPhraseLoad(
4128 Fts3Cursor
*pCsr
, /* FTS Cursor handle */
4129 Fts3Phrase
*p
/* Phrase object */
4131 Fts3Table
*pTab
= (Fts3Table
*)pCsr
->base
.pVtab
;
4135 for(iToken
=0; rc
==SQLITE_OK
&& iToken
<p
->nToken
; iToken
++){
4136 Fts3PhraseToken
*pToken
= &p
->aToken
[iToken
];
4137 assert( pToken
->pDeferred
==0 || pToken
->pSegcsr
==0 );
4139 if( pToken
->pSegcsr
){
4142 rc
= fts3TermSelect(pTab
, pToken
, p
->iColumn
, &nThis
, &pThis
);
4143 if( rc
==SQLITE_OK
){
4144 rc
= fts3EvalPhraseMergeToken(pTab
, p
, iToken
, pThis
, nThis
);
4147 assert( pToken
->pSegcsr
==0 );
4154 ** This function is called on each phrase after the position lists for
4155 ** any deferred tokens have been loaded into memory. It updates the phrases
4156 ** current position list to include only those positions that are really
4157 ** instances of the phrase (after considering deferred tokens). If this
4158 ** means that the phrase does not appear in the current row, doclist.pList
4159 ** and doclist.nList are both zeroed.
4161 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
4163 static int fts3EvalDeferredPhrase(Fts3Cursor
*pCsr
, Fts3Phrase
*pPhrase
){
4164 int iToken
; /* Used to iterate through phrase tokens */
4165 char *aPoslist
= 0; /* Position list for deferred tokens */
4166 int nPoslist
= 0; /* Number of bytes in aPoslist */
4167 int iPrev
= -1; /* Token number of previous deferred token */
4169 assert( pPhrase
->doclist
.bFreeList
==0 );
4171 for(iToken
=0; iToken
<pPhrase
->nToken
; iToken
++){
4172 Fts3PhraseToken
*pToken
= &pPhrase
->aToken
[iToken
];
4173 Fts3DeferredToken
*pDeferred
= pToken
->pDeferred
;
4178 int rc
= sqlite3Fts3DeferredTokenList(pDeferred
, &pList
, &nList
);
4179 if( rc
!=SQLITE_OK
) return rc
;
4182 sqlite3_free(aPoslist
);
4183 pPhrase
->doclist
.pList
= 0;
4184 pPhrase
->doclist
.nList
= 0;
4187 }else if( aPoslist
==0 ){
4193 char *p1
= aPoslist
;
4197 fts3PoslistPhraseMerge(&aOut
, iToken
-iPrev
, 0, 1, &p1
, &p2
);
4198 sqlite3_free(aPoslist
);
4200 nPoslist
= (int)(aOut
- aPoslist
);
4202 sqlite3_free(aPoslist
);
4203 pPhrase
->doclist
.pList
= 0;
4204 pPhrase
->doclist
.nList
= 0;
4213 int nMaxUndeferred
= pPhrase
->iDoclistToken
;
4214 if( nMaxUndeferred
<0 ){
4215 pPhrase
->doclist
.pList
= aPoslist
;
4216 pPhrase
->doclist
.nList
= nPoslist
;
4217 pPhrase
->doclist
.iDocid
= pCsr
->iPrevId
;
4218 pPhrase
->doclist
.bFreeList
= 1;
4225 if( nMaxUndeferred
>iPrev
){
4227 p2
= pPhrase
->doclist
.pList
;
4228 nDistance
= nMaxUndeferred
- iPrev
;
4230 p1
= pPhrase
->doclist
.pList
;
4232 nDistance
= iPrev
- nMaxUndeferred
;
4235 aOut
= (char *)sqlite3_malloc(nPoslist
+8);
4237 sqlite3_free(aPoslist
);
4238 return SQLITE_NOMEM
;
4241 pPhrase
->doclist
.pList
= aOut
;
4242 if( fts3PoslistPhraseMerge(&aOut
, nDistance
, 0, 1, &p1
, &p2
) ){
4243 pPhrase
->doclist
.bFreeList
= 1;
4244 pPhrase
->doclist
.nList
= (int)(aOut
- pPhrase
->doclist
.pList
);
4247 pPhrase
->doclist
.pList
= 0;
4248 pPhrase
->doclist
.nList
= 0;
4250 sqlite3_free(aPoslist
);
4258 ** Maximum number of tokens a phrase may have to be considered for the
4259 ** incremental doclists strategy.
4261 #define MAX_INCR_PHRASE_TOKENS 4
4264 ** This function is called for each Fts3Phrase in a full-text query
4265 ** expression to initialize the mechanism for returning rows. Once this
4266 ** function has been called successfully on an Fts3Phrase, it may be
4267 ** used with fts3EvalPhraseNext() to iterate through the matching docids.
4269 ** If parameter bOptOk is true, then the phrase may (or may not) use the
4270 ** incremental loading strategy. Otherwise, the entire doclist is loaded into
4271 ** memory within this call.
4273 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
4275 static int fts3EvalPhraseStart(Fts3Cursor
*pCsr
, int bOptOk
, Fts3Phrase
*p
){
4276 Fts3Table
*pTab
= (Fts3Table
*)pCsr
->base
.pVtab
;
4277 int rc
= SQLITE_OK
; /* Error code */
4280 /* Determine if doclists may be loaded from disk incrementally. This is
4281 ** possible if the bOptOk argument is true, the FTS doclists will be
4282 ** scanned in forward order, and the phrase consists of
4283 ** MAX_INCR_PHRASE_TOKENS or fewer tokens, none of which are are "^first"
4284 ** tokens or prefix tokens that cannot use a prefix-index. */
4286 int bIncrOk
= (bOptOk
4287 && pCsr
->bDesc
==pTab
->bDescIdx
4288 && p
->nToken
<=MAX_INCR_PHRASE_TOKENS
&& p
->nToken
>0
4290 && pTab
->bNoIncrDoclist
==0
4293 for(i
=0; bIncrOk
==1 && i
<p
->nToken
; i
++){
4294 Fts3PhraseToken
*pToken
= &p
->aToken
[i
];
4295 if( pToken
->bFirst
|| (pToken
->pSegcsr
!=0 && !pToken
->pSegcsr
->bLookup
) ){
4298 if( pToken
->pSegcsr
) bHaveIncr
= 1;
4301 if( bIncrOk
&& bHaveIncr
){
4302 /* Use the incremental approach. */
4303 int iCol
= (p
->iColumn
>= pTab
->nColumn
? -1 : p
->iColumn
);
4304 for(i
=0; rc
==SQLITE_OK
&& i
<p
->nToken
; i
++){
4305 Fts3PhraseToken
*pToken
= &p
->aToken
[i
];
4306 Fts3MultiSegReader
*pSegcsr
= pToken
->pSegcsr
;
4308 rc
= sqlite3Fts3MsrIncrStart(pTab
, pSegcsr
, iCol
, pToken
->z
, pToken
->n
);
4313 /* Load the full doclist for the phrase into memory. */
4314 rc
= fts3EvalPhraseLoad(pCsr
, p
);
4318 assert( rc
!=SQLITE_OK
|| p
->nToken
<1 || p
->aToken
[0].pSegcsr
==0 || p
->bIncr
);
4323 ** This function is used to iterate backwards (from the end to start)
4324 ** through doclists. It is used by this module to iterate through phrase
4325 ** doclists in reverse and by the fts3_write.c module to iterate through
4326 ** pending-terms lists when writing to databases with "order=desc".
4328 ** The doclist may be sorted in ascending (parameter bDescIdx==0) or
4329 ** descending (parameter bDescIdx==1) order of docid. Regardless, this
4330 ** function iterates from the end of the doclist to the beginning.
4332 void sqlite3Fts3DoclistPrev(
4333 int bDescIdx
, /* True if the doclist is desc */
4334 char *aDoclist
, /* Pointer to entire doclist */
4335 int nDoclist
, /* Length of aDoclist in bytes */
4336 char **ppIter
, /* IN/OUT: Iterator pointer */
4337 sqlite3_int64
*piDocid
, /* IN/OUT: Docid pointer */
4338 int *pnList
, /* OUT: List length pointer */
4339 u8
*pbEof
/* OUT: End-of-file flag */
4343 assert( nDoclist
>0 );
4344 assert( *pbEof
==0 );
4345 assert( p
|| *piDocid
==0 );
4346 assert( !p
|| (p
>aDoclist
&& p
<&aDoclist
[nDoclist
]) );
4349 sqlite3_int64 iDocid
= 0;
4351 char *pDocid
= aDoclist
;
4352 char *pEnd
= &aDoclist
[nDoclist
];
4355 while( pDocid
<pEnd
){
4356 sqlite3_int64 iDelta
;
4357 pDocid
+= sqlite3Fts3GetVarint(pDocid
, &iDelta
);
4358 iDocid
+= (iMul
* iDelta
);
4360 fts3PoslistCopy(0, &pDocid
);
4361 while( pDocid
<pEnd
&& *pDocid
==0 ) pDocid
++;
4362 iMul
= (bDescIdx
? -1 : 1);
4365 *pnList
= (int)(pEnd
- pNext
);
4369 int iMul
= (bDescIdx
? -1 : 1);
4370 sqlite3_int64 iDelta
;
4371 fts3GetReverseVarint(&p
, aDoclist
, &iDelta
);
4372 *piDocid
-= (iMul
* iDelta
);
4378 fts3ReversePoslist(aDoclist
, &p
);
4379 *pnList
= (int)(pSave
- p
);
4386 ** Iterate forwards through a doclist.
4388 void sqlite3Fts3DoclistNext(
4389 int bDescIdx
, /* True if the doclist is desc */
4390 char *aDoclist
, /* Pointer to entire doclist */
4391 int nDoclist
, /* Length of aDoclist in bytes */
4392 char **ppIter
, /* IN/OUT: Iterator pointer */
4393 sqlite3_int64
*piDocid
, /* IN/OUT: Docid pointer */
4394 u8
*pbEof
/* OUT: End-of-file flag */
4398 assert( nDoclist
>0 );
4399 assert( *pbEof
==0 );
4400 assert( p
|| *piDocid
==0 );
4401 assert( !p
|| (p
>=aDoclist
&& p
<=&aDoclist
[nDoclist
]) );
4405 p
+= sqlite3Fts3GetVarint(p
, piDocid
);
4407 fts3PoslistCopy(0, &p
);
4408 while( p
<&aDoclist
[nDoclist
] && *p
==0 ) p
++;
4409 if( p
>=&aDoclist
[nDoclist
] ){
4413 p
+= sqlite3Fts3GetVarint(p
, &iVar
);
4414 *piDocid
+= ((bDescIdx
? -1 : 1) * iVar
);
4422 ** Advance the iterator pDL to the next entry in pDL->aAll/nAll. Set *pbEof
4423 ** to true if EOF is reached.
4425 static void fts3EvalDlPhraseNext(
4430 char *pIter
; /* Used to iterate through aAll */
4431 char *pEnd
= &pDL
->aAll
[pDL
->nAll
]; /* 1 byte past end of aAll */
4433 if( pDL
->pNextDocid
){
4434 pIter
= pDL
->pNextDocid
;
4440 /* We have already reached the end of this doclist. EOF. */
4443 sqlite3_int64 iDelta
;
4444 pIter
+= sqlite3Fts3GetVarint(pIter
, &iDelta
);
4445 if( pTab
->bDescIdx
==0 || pDL
->pNextDocid
==0 ){
4446 pDL
->iDocid
+= iDelta
;
4448 pDL
->iDocid
-= iDelta
;
4451 fts3PoslistCopy(0, &pIter
);
4452 pDL
->nList
= (int)(pIter
- pDL
->pList
);
4454 /* pIter now points just past the 0x00 that terminates the position-
4455 ** list for document pDL->iDocid. However, if this position-list was
4456 ** edited in place by fts3EvalNearTrim(), then pIter may not actually
4457 ** point to the start of the next docid value. The following line deals
4458 ** with this case by advancing pIter past the zero-padding added by
4459 ** fts3EvalNearTrim(). */
4460 while( pIter
<pEnd
&& *pIter
==0 ) pIter
++;
4462 pDL
->pNextDocid
= pIter
;
4463 assert( pIter
>=&pDL
->aAll
[pDL
->nAll
] || *pIter
);
4469 ** Helper type used by fts3EvalIncrPhraseNext() and incrPhraseTokenNext().
4471 typedef struct TokenDoclist TokenDoclist
;
4472 struct TokenDoclist
{
4474 sqlite3_int64 iDocid
;
4480 ** Token pToken is an incrementally loaded token that is part of a
4481 ** multi-token phrase. Advance it to the next matching document in the
4482 ** database and populate output variable *p with the details of the new
4483 ** entry. Or, if the iterator has reached EOF, set *pbEof to true.
4485 ** If an error occurs, return an SQLite error code. Otherwise, return
4488 static int incrPhraseTokenNext(
4489 Fts3Table
*pTab
, /* Virtual table handle */
4490 Fts3Phrase
*pPhrase
, /* Phrase to advance token of */
4491 int iToken
, /* Specific token to advance */
4492 TokenDoclist
*p
, /* OUT: Docid and doclist for new entry */
4493 u8
*pbEof
/* OUT: True if iterator is at EOF */
4497 if( pPhrase
->iDoclistToken
==iToken
){
4498 assert( p
->bIgnore
==0 );
4499 assert( pPhrase
->aToken
[iToken
].pSegcsr
==0 );
4500 fts3EvalDlPhraseNext(pTab
, &pPhrase
->doclist
, pbEof
);
4501 p
->pList
= pPhrase
->doclist
.pList
;
4502 p
->nList
= pPhrase
->doclist
.nList
;
4503 p
->iDocid
= pPhrase
->doclist
.iDocid
;
4505 Fts3PhraseToken
*pToken
= &pPhrase
->aToken
[iToken
];
4506 assert( pToken
->pDeferred
==0 );
4507 assert( pToken
->pSegcsr
|| pPhrase
->iDoclistToken
>=0 );
4508 if( pToken
->pSegcsr
){
4509 assert( p
->bIgnore
==0 );
4510 rc
= sqlite3Fts3MsrIncrNext(
4511 pTab
, pToken
->pSegcsr
, &p
->iDocid
, &p
->pList
, &p
->nList
4513 if( p
->pList
==0 ) *pbEof
= 1;
4524 ** The phrase iterator passed as the second argument:
4526 ** * features at least one token that uses an incremental doclist, and
4528 ** * does not contain any deferred tokens.
4530 ** Advance it to the next matching documnent in the database and populate
4531 ** the Fts3Doclist.pList and nList fields.
4533 ** If there is no "next" entry and no error occurs, then *pbEof is set to
4534 ** 1 before returning. Otherwise, if no error occurs and the iterator is
4535 ** successfully advanced, *pbEof is set to 0.
4537 ** If an error occurs, return an SQLite error code. Otherwise, return
4540 static int fts3EvalIncrPhraseNext(
4541 Fts3Cursor
*pCsr
, /* FTS Cursor handle */
4542 Fts3Phrase
*p
, /* Phrase object to advance to next docid */
4543 u8
*pbEof
/* OUT: Set to 1 if EOF */
4546 Fts3Doclist
*pDL
= &p
->doclist
;
4547 Fts3Table
*pTab
= (Fts3Table
*)pCsr
->base
.pVtab
;
4550 /* This is only called if it is guaranteed that the phrase has at least
4551 ** one incremental token. In which case the bIncr flag is set. */
4552 assert( p
->bIncr
==1 );
4555 rc
= sqlite3Fts3MsrIncrNext(pTab
, p
->aToken
[0].pSegcsr
,
4556 &pDL
->iDocid
, &pDL
->pList
, &pDL
->nList
4558 if( pDL
->pList
==0 ) bEof
= 1;
4560 int bDescDoclist
= pCsr
->bDesc
;
4561 struct TokenDoclist a
[MAX_INCR_PHRASE_TOKENS
];
4563 memset(a
, 0, sizeof(a
));
4564 assert( p
->nToken
<=MAX_INCR_PHRASE_TOKENS
);
4565 assert( p
->iDoclistToken
<MAX_INCR_PHRASE_TOKENS
);
4569 sqlite3_int64 iMax
= 0; /* Largest docid for all iterators */
4570 int i
; /* Used to iterate through tokens */
4572 /* Advance the iterator for each token in the phrase once. */
4573 for(i
=0; rc
==SQLITE_OK
&& i
<p
->nToken
&& bEof
==0; i
++){
4574 rc
= incrPhraseTokenNext(pTab
, p
, i
, &a
[i
], &bEof
);
4575 if( a
[i
].bIgnore
==0 && (bMaxSet
==0 || DOCID_CMP(iMax
, a
[i
].iDocid
)<0) ){
4580 assert( rc
!=SQLITE_OK
|| (p
->nToken
>=1 && a
[p
->nToken
-1].bIgnore
==0) );
4581 assert( rc
!=SQLITE_OK
|| bMaxSet
);
4583 /* Keep advancing iterators until they all point to the same document */
4584 for(i
=0; i
<p
->nToken
; i
++){
4585 while( rc
==SQLITE_OK
&& bEof
==0
4586 && a
[i
].bIgnore
==0 && DOCID_CMP(a
[i
].iDocid
, iMax
)<0
4588 rc
= incrPhraseTokenNext(pTab
, p
, i
, &a
[i
], &bEof
);
4589 if( DOCID_CMP(a
[i
].iDocid
, iMax
)>0 ){
4596 /* Check if the current entries really are a phrase match */
4599 int nByte
= a
[p
->nToken
-1].nList
;
4600 char *aDoclist
= sqlite3_malloc(nByte
+1);
4601 if( !aDoclist
) return SQLITE_NOMEM
;
4602 memcpy(aDoclist
, a
[p
->nToken
-1].pList
, nByte
+1);
4604 for(i
=0; i
<(p
->nToken
-1); i
++){
4605 if( a
[i
].bIgnore
==0 ){
4606 char *pL
= a
[i
].pList
;
4607 char *pR
= aDoclist
;
4608 char *pOut
= aDoclist
;
4609 int nDist
= p
->nToken
-1-i
;
4610 int res
= fts3PoslistPhraseMerge(&pOut
, nDist
, 0, 1, &pL
, &pR
);
4612 nList
= (int)(pOut
- aDoclist
);
4615 if( i
==(p
->nToken
-1) ){
4617 pDL
->pList
= aDoclist
;
4622 sqlite3_free(aDoclist
);
4632 ** Attempt to move the phrase iterator to point to the next matching docid.
4633 ** If an error occurs, return an SQLite error code. Otherwise, return
4636 ** If there is no "next" entry and no error occurs, then *pbEof is set to
4637 ** 1 before returning. Otherwise, if no error occurs and the iterator is
4638 ** successfully advanced, *pbEof is set to 0.
4640 static int fts3EvalPhraseNext(
4641 Fts3Cursor
*pCsr
, /* FTS Cursor handle */
4642 Fts3Phrase
*p
, /* Phrase object to advance to next docid */
4643 u8
*pbEof
/* OUT: Set to 1 if EOF */
4646 Fts3Doclist
*pDL
= &p
->doclist
;
4647 Fts3Table
*pTab
= (Fts3Table
*)pCsr
->base
.pVtab
;
4650 rc
= fts3EvalIncrPhraseNext(pCsr
, p
, pbEof
);
4651 }else if( pCsr
->bDesc
!=pTab
->bDescIdx
&& pDL
->nAll
){
4652 sqlite3Fts3DoclistPrev(pTab
->bDescIdx
, pDL
->aAll
, pDL
->nAll
,
4653 &pDL
->pNextDocid
, &pDL
->iDocid
, &pDL
->nList
, pbEof
4655 pDL
->pList
= pDL
->pNextDocid
;
4657 fts3EvalDlPhraseNext(pTab
, pDL
, pbEof
);
4665 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
4666 ** Otherwise, fts3EvalPhraseStart() is called on all phrases within the
4667 ** expression. Also the Fts3Expr.bDeferred variable is set to true for any
4668 ** expressions for which all descendent tokens are deferred.
4670 ** If parameter bOptOk is zero, then it is guaranteed that the
4671 ** Fts3Phrase.doclist.aAll/nAll variables contain the entire doclist for
4672 ** each phrase in the expression (subject to deferred token processing).
4673 ** Or, if bOptOk is non-zero, then one or more tokens within the expression
4674 ** may be loaded incrementally, meaning doclist.aAll/nAll is not available.
4676 ** If an error occurs within this function, *pRc is set to an SQLite error
4677 ** code before returning.
4679 static void fts3EvalStartReaders(
4680 Fts3Cursor
*pCsr
, /* FTS Cursor handle */
4681 Fts3Expr
*pExpr
, /* Expression to initialize phrases in */
4682 int *pRc
/* IN/OUT: Error code */
4684 if( pExpr
&& SQLITE_OK
==*pRc
){
4685 if( pExpr
->eType
==FTSQUERY_PHRASE
){
4686 int nToken
= pExpr
->pPhrase
->nToken
;
4689 for(i
=0; i
<nToken
; i
++){
4690 if( pExpr
->pPhrase
->aToken
[i
].pDeferred
==0 ) break;
4692 pExpr
->bDeferred
= (i
==nToken
);
4694 *pRc
= fts3EvalPhraseStart(pCsr
, 1, pExpr
->pPhrase
);
4696 fts3EvalStartReaders(pCsr
, pExpr
->pLeft
, pRc
);
4697 fts3EvalStartReaders(pCsr
, pExpr
->pRight
, pRc
);
4698 pExpr
->bDeferred
= (pExpr
->pLeft
->bDeferred
&& pExpr
->pRight
->bDeferred
);
4704 ** An array of the following structures is assembled as part of the process
4705 ** of selecting tokens to defer before the query starts executing (as part
4706 ** of the xFilter() method). There is one element in the array for each
4707 ** token in the FTS expression.
4709 ** Tokens are divided into AND/NEAR clusters. All tokens in a cluster belong
4710 ** to phrases that are connected only by AND and NEAR operators (not OR or
4711 ** NOT). When determining tokens to defer, each AND/NEAR cluster is considered
4712 ** separately. The root of a tokens AND/NEAR cluster is stored in
4713 ** Fts3TokenAndCost.pRoot.
4715 typedef struct Fts3TokenAndCost Fts3TokenAndCost
;
4716 struct Fts3TokenAndCost
{
4717 Fts3Phrase
*pPhrase
; /* The phrase the token belongs to */
4718 int iToken
; /* Position of token in phrase */
4719 Fts3PhraseToken
*pToken
; /* The token itself */
4720 Fts3Expr
*pRoot
; /* Root of NEAR/AND cluster */
4721 int nOvfl
; /* Number of overflow pages to load doclist */
4722 int iCol
; /* The column the token must match */
4726 ** This function is used to populate an allocated Fts3TokenAndCost array.
4728 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
4729 ** Otherwise, if an error occurs during execution, *pRc is set to an
4730 ** SQLite error code.
4732 static void fts3EvalTokenCosts(
4733 Fts3Cursor
*pCsr
, /* FTS Cursor handle */
4734 Fts3Expr
*pRoot
, /* Root of current AND/NEAR cluster */
4735 Fts3Expr
*pExpr
, /* Expression to consider */
4736 Fts3TokenAndCost
**ppTC
, /* Write new entries to *(*ppTC)++ */
4737 Fts3Expr
***ppOr
, /* Write new OR root to *(*ppOr)++ */
4738 int *pRc
/* IN/OUT: Error code */
4740 if( *pRc
==SQLITE_OK
){
4741 if( pExpr
->eType
==FTSQUERY_PHRASE
){
4742 Fts3Phrase
*pPhrase
= pExpr
->pPhrase
;
4744 for(i
=0; *pRc
==SQLITE_OK
&& i
<pPhrase
->nToken
; i
++){
4745 Fts3TokenAndCost
*pTC
= (*ppTC
)++;
4746 pTC
->pPhrase
= pPhrase
;
4749 pTC
->pToken
= &pPhrase
->aToken
[i
];
4750 pTC
->iCol
= pPhrase
->iColumn
;
4751 *pRc
= sqlite3Fts3MsrOvfl(pCsr
, pTC
->pToken
->pSegcsr
, &pTC
->nOvfl
);
4753 }else if( pExpr
->eType
!=FTSQUERY_NOT
){
4754 assert( pExpr
->eType
==FTSQUERY_OR
4755 || pExpr
->eType
==FTSQUERY_AND
4756 || pExpr
->eType
==FTSQUERY_NEAR
4758 assert( pExpr
->pLeft
&& pExpr
->pRight
);
4759 if( pExpr
->eType
==FTSQUERY_OR
){
4760 pRoot
= pExpr
->pLeft
;
4764 fts3EvalTokenCosts(pCsr
, pRoot
, pExpr
->pLeft
, ppTC
, ppOr
, pRc
);
4765 if( pExpr
->eType
==FTSQUERY_OR
){
4766 pRoot
= pExpr
->pRight
;
4770 fts3EvalTokenCosts(pCsr
, pRoot
, pExpr
->pRight
, ppTC
, ppOr
, pRc
);
4776 ** Determine the average document (row) size in pages. If successful,
4777 ** write this value to *pnPage and return SQLITE_OK. Otherwise, return
4778 ** an SQLite error code.
4780 ** The average document size in pages is calculated by first calculating
4781 ** determining the average size in bytes, B. If B is less than the amount
4782 ** of data that will fit on a single leaf page of an intkey table in
4783 ** this database, then the average docsize is 1. Otherwise, it is 1 plus
4784 ** the number of overflow pages consumed by a record B bytes in size.
4786 static int fts3EvalAverageDocsize(Fts3Cursor
*pCsr
, int *pnPage
){
4788 if( pCsr
->nRowAvg
==0 ){
4789 /* The average document size, which is required to calculate the cost
4790 ** of each doclist, has not yet been determined. Read the required
4791 ** data from the %_stat table to calculate it.
4793 ** Entry 0 of the %_stat table is a blob containing (nCol+1) FTS3
4794 ** varints, where nCol is the number of columns in the FTS3 table.
4795 ** The first varint is the number of documents currently stored in
4796 ** the table. The following nCol varints contain the total amount of
4797 ** data stored in all rows of each column of the table, from left
4800 Fts3Table
*p
= (Fts3Table
*)pCsr
->base
.pVtab
;
4801 sqlite3_stmt
*pStmt
;
4802 sqlite3_int64 nDoc
= 0;
4803 sqlite3_int64 nByte
= 0;
4807 rc
= sqlite3Fts3SelectDoctotal(p
, &pStmt
);
4808 if( rc
!=SQLITE_OK
) return rc
;
4809 a
= sqlite3_column_blob(pStmt
, 0);
4812 pEnd
= &a
[sqlite3_column_bytes(pStmt
, 0)];
4813 a
+= sqlite3Fts3GetVarint(a
, &nDoc
);
4815 a
+= sqlite3Fts3GetVarint(a
, &nByte
);
4817 if( nDoc
==0 || nByte
==0 ){
4818 sqlite3_reset(pStmt
);
4819 return FTS_CORRUPT_VTAB
;
4823 pCsr
->nRowAvg
= (int)(((nByte
/ nDoc
) + p
->nPgsz
) / p
->nPgsz
);
4824 assert( pCsr
->nRowAvg
>0 );
4825 rc
= sqlite3_reset(pStmt
);
4828 *pnPage
= pCsr
->nRowAvg
;
4833 ** This function is called to select the tokens (if any) that will be
4834 ** deferred. The array aTC[] has already been populated when this is
4837 ** This function is called once for each AND/NEAR cluster in the
4838 ** expression. Each invocation determines which tokens to defer within
4839 ** the cluster with root node pRoot. See comments above the definition
4840 ** of struct Fts3TokenAndCost for more details.
4842 ** If no error occurs, SQLITE_OK is returned and sqlite3Fts3DeferToken()
4843 ** called on each token to defer. Otherwise, an SQLite error code is
4846 static int fts3EvalSelectDeferred(
4847 Fts3Cursor
*pCsr
, /* FTS Cursor handle */
4848 Fts3Expr
*pRoot
, /* Consider tokens with this root node */
4849 Fts3TokenAndCost
*aTC
, /* Array of expression tokens and costs */
4850 int nTC
/* Number of entries in aTC[] */
4852 Fts3Table
*pTab
= (Fts3Table
*)pCsr
->base
.pVtab
;
4853 int nDocSize
= 0; /* Number of pages per doc loaded */
4854 int rc
= SQLITE_OK
; /* Return code */
4855 int ii
; /* Iterator variable for various purposes */
4856 int nOvfl
= 0; /* Total overflow pages used by doclists */
4857 int nToken
= 0; /* Total number of tokens in cluster */
4859 int nMinEst
= 0; /* The minimum count for any phrase so far. */
4860 int nLoad4
= 1; /* (Phrases that will be loaded)^4. */
4862 /* Tokens are never deferred for FTS tables created using the content=xxx
4863 ** option. The reason being that it is not guaranteed that the content
4864 ** table actually contains the same data as the index. To prevent this from
4865 ** causing any problems, the deferred token optimization is completely
4866 ** disabled for content=xxx tables. */
4867 if( pTab
->zContentTbl
){
4871 /* Count the tokens in this AND/NEAR cluster. If none of the doclists
4872 ** associated with the tokens spill onto overflow pages, or if there is
4873 ** only 1 token, exit early. No tokens to defer in this case. */
4874 for(ii
=0; ii
<nTC
; ii
++){
4875 if( aTC
[ii
].pRoot
==pRoot
){
4876 nOvfl
+= aTC
[ii
].nOvfl
;
4880 if( nOvfl
==0 || nToken
<2 ) return SQLITE_OK
;
4882 /* Obtain the average docsize (in pages). */
4883 rc
= fts3EvalAverageDocsize(pCsr
, &nDocSize
);
4884 assert( rc
!=SQLITE_OK
|| nDocSize
>0 );
4887 /* Iterate through all tokens in this AND/NEAR cluster, in ascending order
4888 ** of the number of overflow pages that will be loaded by the pager layer
4889 ** to retrieve the entire doclist for the token from the full-text index.
4890 ** Load the doclists for tokens that are either:
4892 ** a. The cheapest token in the entire query (i.e. the one visited by the
4893 ** first iteration of this loop), or
4895 ** b. Part of a multi-token phrase.
4897 ** After each token doclist is loaded, merge it with the others from the
4898 ** same phrase and count the number of documents that the merged doclist
4899 ** contains. Set variable "nMinEst" to the smallest number of documents in
4900 ** any phrase doclist for which 1 or more token doclists have been loaded.
4901 ** Let nOther be the number of other phrases for which it is certain that
4902 ** one or more tokens will not be deferred.
4904 ** Then, for each token, defer it if loading the doclist would result in
4905 ** loading N or more overflow pages into memory, where N is computed as:
4907 ** (nMinEst + 4^nOther - 1) / (4^nOther)
4909 for(ii
=0; ii
<nToken
&& rc
==SQLITE_OK
; ii
++){
4910 int iTC
; /* Used to iterate through aTC[] array. */
4911 Fts3TokenAndCost
*pTC
= 0; /* Set to cheapest remaining token. */
4913 /* Set pTC to point to the cheapest remaining token. */
4914 for(iTC
=0; iTC
<nTC
; iTC
++){
4915 if( aTC
[iTC
].pToken
&& aTC
[iTC
].pRoot
==pRoot
4916 && (!pTC
|| aTC
[iTC
].nOvfl
<pTC
->nOvfl
)
4923 if( ii
&& pTC
->nOvfl
>=((nMinEst
+(nLoad4
/4)-1)/(nLoad4
/4))*nDocSize
){
4924 /* The number of overflow pages to load for this (and therefore all
4925 ** subsequent) tokens is greater than the estimated number of pages
4926 ** that will be loaded if all subsequent tokens are deferred.
4928 Fts3PhraseToken
*pToken
= pTC
->pToken
;
4929 rc
= sqlite3Fts3DeferToken(pCsr
, pToken
, pTC
->iCol
);
4930 fts3SegReaderCursorFree(pToken
->pSegcsr
);
4931 pToken
->pSegcsr
= 0;
4933 /* Set nLoad4 to the value of (4^nOther) for the next iteration of the
4934 ** for-loop. Except, limit the value to 2^24 to prevent it from
4935 ** overflowing the 32-bit integer it is stored in. */
4936 if( ii
<12 ) nLoad4
= nLoad4
*4;
4938 if( ii
==0 || (pTC
->pPhrase
->nToken
>1 && ii
!=nToken
-1) ){
4939 /* Either this is the cheapest token in the entire query, or it is
4940 ** part of a multi-token phrase. Either way, the entire doclist will
4941 ** (eventually) be loaded into memory. It may as well be now. */
4942 Fts3PhraseToken
*pToken
= pTC
->pToken
;
4945 rc
= fts3TermSelect(pTab
, pToken
, pTC
->iCol
, &nList
, &pList
);
4946 assert( rc
==SQLITE_OK
|| pList
==0 );
4947 if( rc
==SQLITE_OK
){
4948 rc
= fts3EvalPhraseMergeToken(
4949 pTab
, pTC
->pPhrase
, pTC
->iToken
,pList
,nList
4952 if( rc
==SQLITE_OK
){
4954 nCount
= fts3DoclistCountDocids(
4955 pTC
->pPhrase
->doclist
.aAll
, pTC
->pPhrase
->doclist
.nAll
4957 if( ii
==0 || nCount
<nMinEst
) nMinEst
= nCount
;
4968 ** This function is called from within the xFilter method. It initializes
4969 ** the full-text query currently stored in pCsr->pExpr. To iterate through
4970 ** the results of a query, the caller does:
4972 ** fts3EvalStart(pCsr);
4974 ** fts3EvalNext(pCsr);
4975 ** if( pCsr->bEof ) break;
4976 ** ... return row pCsr->iPrevId to the caller ...
4979 static int fts3EvalStart(Fts3Cursor
*pCsr
){
4980 Fts3Table
*pTab
= (Fts3Table
*)pCsr
->base
.pVtab
;
4985 /* Allocate a MultiSegReader for each token in the expression. */
4986 fts3EvalAllocateReaders(pCsr
, pCsr
->pExpr
, &nToken
, &nOr
, &rc
);
4988 /* Determine which, if any, tokens in the expression should be deferred. */
4989 #ifndef SQLITE_DISABLE_FTS4_DEFERRED
4990 if( rc
==SQLITE_OK
&& nToken
>1 && pTab
->bFts4
){
4991 Fts3TokenAndCost
*aTC
;
4993 aTC
= (Fts3TokenAndCost
*)sqlite3_malloc(
4994 sizeof(Fts3TokenAndCost
) * nToken
4995 + sizeof(Fts3Expr
*) * nOr
* 2
4997 apOr
= (Fts3Expr
**)&aTC
[nToken
];
5003 Fts3TokenAndCost
*pTC
= aTC
;
5004 Fts3Expr
**ppOr
= apOr
;
5006 fts3EvalTokenCosts(pCsr
, 0, pCsr
->pExpr
, &pTC
, &ppOr
, &rc
);
5007 nToken
= (int)(pTC
-aTC
);
5008 nOr
= (int)(ppOr
-apOr
);
5010 if( rc
==SQLITE_OK
){
5011 rc
= fts3EvalSelectDeferred(pCsr
, 0, aTC
, nToken
);
5012 for(ii
=0; rc
==SQLITE_OK
&& ii
<nOr
; ii
++){
5013 rc
= fts3EvalSelectDeferred(pCsr
, apOr
[ii
], aTC
, nToken
);
5022 fts3EvalStartReaders(pCsr
, pCsr
->pExpr
, &rc
);
5027 ** Invalidate the current position list for phrase pPhrase.
5029 static void fts3EvalInvalidatePoslist(Fts3Phrase
*pPhrase
){
5030 if( pPhrase
->doclist
.bFreeList
){
5031 sqlite3_free(pPhrase
->doclist
.pList
);
5033 pPhrase
->doclist
.pList
= 0;
5034 pPhrase
->doclist
.nList
= 0;
5035 pPhrase
->doclist
.bFreeList
= 0;
5039 ** This function is called to edit the position list associated with
5040 ** the phrase object passed as the fifth argument according to a NEAR
5041 ** condition. For example:
5043 ** abc NEAR/5 "def ghi"
5045 ** Parameter nNear is passed the NEAR distance of the expression (5 in
5046 ** the example above). When this function is called, *paPoslist points to
5047 ** the position list, and *pnToken is the number of phrase tokens in, the
5048 ** phrase on the other side of the NEAR operator to pPhrase. For example,
5049 ** if pPhrase refers to the "def ghi" phrase, then *paPoslist points to
5050 ** the position list associated with phrase "abc".
5052 ** All positions in the pPhrase position list that are not sufficiently
5053 ** close to a position in the *paPoslist position list are removed. If this
5054 ** leaves 0 positions, zero is returned. Otherwise, non-zero.
5056 ** Before returning, *paPoslist is set to point to the position lsit
5057 ** associated with pPhrase. And *pnToken is set to the number of tokens in
5060 static int fts3EvalNearTrim(
5061 int nNear
, /* NEAR distance. As in "NEAR/nNear". */
5062 char *aTmp
, /* Temporary space to use */
5063 char **paPoslist
, /* IN/OUT: Position list */
5064 int *pnToken
, /* IN/OUT: Tokens in phrase of *paPoslist */
5065 Fts3Phrase
*pPhrase
/* The phrase object to trim the doclist of */
5067 int nParam1
= nNear
+ pPhrase
->nToken
;
5068 int nParam2
= nNear
+ *pnToken
;
5074 assert( pPhrase
->doclist
.pList
);
5076 p2
= pOut
= pPhrase
->doclist
.pList
;
5077 res
= fts3PoslistNearMerge(
5078 &pOut
, aTmp
, nParam1
, nParam2
, paPoslist
, &p2
5081 nNew
= (int)(pOut
- pPhrase
->doclist
.pList
) - 1;
5082 assert( pPhrase
->doclist
.pList
[nNew
]=='\0' );
5083 assert( nNew
<=pPhrase
->doclist
.nList
&& nNew
>0 );
5084 memset(&pPhrase
->doclist
.pList
[nNew
], 0, pPhrase
->doclist
.nList
- nNew
);
5085 pPhrase
->doclist
.nList
= nNew
;
5086 *paPoslist
= pPhrase
->doclist
.pList
;
5087 *pnToken
= pPhrase
->nToken
;
5094 ** This function is a no-op if *pRc is other than SQLITE_OK when it is called.
5095 ** Otherwise, it advances the expression passed as the second argument to
5096 ** point to the next matching row in the database. Expressions iterate through
5097 ** matching rows in docid order. Ascending order if Fts3Cursor.bDesc is zero,
5098 ** or descending if it is non-zero.
5100 ** If an error occurs, *pRc is set to an SQLite error code. Otherwise, if
5101 ** successful, the following variables in pExpr are set:
5103 ** Fts3Expr.bEof (non-zero if EOF - there is no next row)
5104 ** Fts3Expr.iDocid (valid if bEof==0. The docid of the next row)
5106 ** If the expression is of type FTSQUERY_PHRASE, and the expression is not
5107 ** at EOF, then the following variables are populated with the position list
5108 ** for the phrase for the visited row:
5110 ** FTs3Expr.pPhrase->doclist.nList (length of pList in bytes)
5111 ** FTs3Expr.pPhrase->doclist.pList (pointer to position list)
5113 ** It says above that this function advances the expression to the next
5114 ** matching row. This is usually true, but there are the following exceptions:
5116 ** 1. Deferred tokens are not taken into account. If a phrase consists
5117 ** entirely of deferred tokens, it is assumed to match every row in
5118 ** the db. In this case the position-list is not populated at all.
5120 ** Or, if a phrase contains one or more deferred tokens and one or
5121 ** more non-deferred tokens, then the expression is advanced to the
5122 ** next possible match, considering only non-deferred tokens. In other
5123 ** words, if the phrase is "A B C", and "B" is deferred, the expression
5124 ** is advanced to the next row that contains an instance of "A * C",
5125 ** where "*" may match any single token. The position list in this case
5126 ** is populated as for "A * C" before returning.
5128 ** 2. NEAR is treated as AND. If the expression is "x NEAR y", it is
5129 ** advanced to point to the next row that matches "x AND y".
5131 ** See sqlite3Fts3EvalTestDeferred() for details on testing if a row is
5132 ** really a match, taking into account deferred tokens and NEAR operators.
5134 static void fts3EvalNextRow(
5135 Fts3Cursor
*pCsr
, /* FTS Cursor handle */
5136 Fts3Expr
*pExpr
, /* Expr. to advance to next matching row */
5137 int *pRc
/* IN/OUT: Error code */
5139 if( *pRc
==SQLITE_OK
){
5140 int bDescDoclist
= pCsr
->bDesc
; /* Used by DOCID_CMP() macro */
5141 assert( pExpr
->bEof
==0 );
5144 switch( pExpr
->eType
){
5146 case FTSQUERY_AND
: {
5147 Fts3Expr
*pLeft
= pExpr
->pLeft
;
5148 Fts3Expr
*pRight
= pExpr
->pRight
;
5149 assert( !pLeft
->bDeferred
|| !pRight
->bDeferred
);
5151 if( pLeft
->bDeferred
){
5152 /* LHS is entirely deferred. So we assume it matches every row.
5153 ** Advance the RHS iterator to find the next row visited. */
5154 fts3EvalNextRow(pCsr
, pRight
, pRc
);
5155 pExpr
->iDocid
= pRight
->iDocid
;
5156 pExpr
->bEof
= pRight
->bEof
;
5157 }else if( pRight
->bDeferred
){
5158 /* RHS is entirely deferred. So we assume it matches every row.
5159 ** Advance the LHS iterator to find the next row visited. */
5160 fts3EvalNextRow(pCsr
, pLeft
, pRc
);
5161 pExpr
->iDocid
= pLeft
->iDocid
;
5162 pExpr
->bEof
= pLeft
->bEof
;
5164 /* Neither the RHS or LHS are deferred. */
5165 fts3EvalNextRow(pCsr
, pLeft
, pRc
);
5166 fts3EvalNextRow(pCsr
, pRight
, pRc
);
5167 while( !pLeft
->bEof
&& !pRight
->bEof
&& *pRc
==SQLITE_OK
){
5168 sqlite3_int64 iDiff
= DOCID_CMP(pLeft
->iDocid
, pRight
->iDocid
);
5169 if( iDiff
==0 ) break;
5171 fts3EvalNextRow(pCsr
, pLeft
, pRc
);
5173 fts3EvalNextRow(pCsr
, pRight
, pRc
);
5176 pExpr
->iDocid
= pLeft
->iDocid
;
5177 pExpr
->bEof
= (pLeft
->bEof
|| pRight
->bEof
);
5178 if( pExpr
->eType
==FTSQUERY_NEAR
&& pExpr
->bEof
){
5179 assert( pRight
->eType
==FTSQUERY_PHRASE
);
5180 if( pRight
->pPhrase
->doclist
.aAll
){
5181 Fts3Doclist
*pDl
= &pRight
->pPhrase
->doclist
;
5182 while( *pRc
==SQLITE_OK
&& pRight
->bEof
==0 ){
5183 memset(pDl
->pList
, 0, pDl
->nList
);
5184 fts3EvalNextRow(pCsr
, pRight
, pRc
);
5187 if( pLeft
->pPhrase
&& pLeft
->pPhrase
->doclist
.aAll
){
5188 Fts3Doclist
*pDl
= &pLeft
->pPhrase
->doclist
;
5189 while( *pRc
==SQLITE_OK
&& pLeft
->bEof
==0 ){
5190 memset(pDl
->pList
, 0, pDl
->nList
);
5191 fts3EvalNextRow(pCsr
, pLeft
, pRc
);
5200 Fts3Expr
*pLeft
= pExpr
->pLeft
;
5201 Fts3Expr
*pRight
= pExpr
->pRight
;
5202 sqlite3_int64 iCmp
= DOCID_CMP(pLeft
->iDocid
, pRight
->iDocid
);
5204 assert( pLeft
->bStart
|| pLeft
->iDocid
==pRight
->iDocid
);
5205 assert( pRight
->bStart
|| pLeft
->iDocid
==pRight
->iDocid
);
5207 if( pRight
->bEof
|| (pLeft
->bEof
==0 && iCmp
<0) ){
5208 fts3EvalNextRow(pCsr
, pLeft
, pRc
);
5209 }else if( pLeft
->bEof
|| iCmp
>0 ){
5210 fts3EvalNextRow(pCsr
, pRight
, pRc
);
5212 fts3EvalNextRow(pCsr
, pLeft
, pRc
);
5213 fts3EvalNextRow(pCsr
, pRight
, pRc
);
5216 pExpr
->bEof
= (pLeft
->bEof
&& pRight
->bEof
);
5217 iCmp
= DOCID_CMP(pLeft
->iDocid
, pRight
->iDocid
);
5218 if( pRight
->bEof
|| (pLeft
->bEof
==0 && iCmp
<0) ){
5219 pExpr
->iDocid
= pLeft
->iDocid
;
5221 pExpr
->iDocid
= pRight
->iDocid
;
5227 case FTSQUERY_NOT
: {
5228 Fts3Expr
*pLeft
= pExpr
->pLeft
;
5229 Fts3Expr
*pRight
= pExpr
->pRight
;
5231 if( pRight
->bStart
==0 ){
5232 fts3EvalNextRow(pCsr
, pRight
, pRc
);
5233 assert( *pRc
!=SQLITE_OK
|| pRight
->bStart
);
5236 fts3EvalNextRow(pCsr
, pLeft
, pRc
);
5237 if( pLeft
->bEof
==0 ){
5240 && DOCID_CMP(pLeft
->iDocid
, pRight
->iDocid
)>0
5242 fts3EvalNextRow(pCsr
, pRight
, pRc
);
5245 pExpr
->iDocid
= pLeft
->iDocid
;
5246 pExpr
->bEof
= pLeft
->bEof
;
5251 Fts3Phrase
*pPhrase
= pExpr
->pPhrase
;
5252 fts3EvalInvalidatePoslist(pPhrase
);
5253 *pRc
= fts3EvalPhraseNext(pCsr
, pPhrase
, &pExpr
->bEof
);
5254 pExpr
->iDocid
= pPhrase
->doclist
.iDocid
;
5262 ** If *pRc is not SQLITE_OK, or if pExpr is not the root node of a NEAR
5263 ** cluster, then this function returns 1 immediately.
5265 ** Otherwise, it checks if the current row really does match the NEAR
5266 ** expression, using the data currently stored in the position lists
5267 ** (Fts3Expr->pPhrase.doclist.pList/nList) for each phrase in the expression.
5269 ** If the current row is a match, the position list associated with each
5270 ** phrase in the NEAR expression is edited in place to contain only those
5271 ** phrase instances sufficiently close to their peers to satisfy all NEAR
5272 ** constraints. In this case it returns 1. If the NEAR expression does not
5273 ** match the current row, 0 is returned. The position lists may or may not
5274 ** be edited if 0 is returned.
5276 static int fts3EvalNearTest(Fts3Expr
*pExpr
, int *pRc
){
5279 /* The following block runs if pExpr is the root of a NEAR query.
5280 ** For example, the query:
5282 ** "w" NEAR "x" NEAR "y" NEAR "z"
5284 ** which is represented in tree form as:
5287 ** +--NEAR--+ <-- root of NEAR query
5295 ** The right-hand child of a NEAR node is always a phrase. The
5296 ** left-hand child may be either a phrase or a NEAR node. There are
5297 ** no exceptions to this - it's the way the parser in fts3_expr.c works.
5300 && pExpr
->eType
==FTSQUERY_NEAR
5301 && (pExpr
->pParent
==0 || pExpr
->pParent
->eType
!=FTSQUERY_NEAR
)
5304 int nTmp
= 0; /* Bytes of temp space */
5305 char *aTmp
; /* Temp space for PoslistNearMerge() */
5307 /* Allocate temporary working space. */
5308 for(p
=pExpr
; p
->pLeft
; p
=p
->pLeft
){
5309 assert( p
->pRight
->pPhrase
->doclist
.nList
>0 );
5310 nTmp
+= p
->pRight
->pPhrase
->doclist
.nList
;
5312 nTmp
+= p
->pPhrase
->doclist
.nList
;
5313 aTmp
= sqlite3_malloc(nTmp
*2);
5315 *pRc
= SQLITE_NOMEM
;
5318 char *aPoslist
= p
->pPhrase
->doclist
.pList
;
5319 int nToken
= p
->pPhrase
->nToken
;
5321 for(p
=p
->pParent
;res
&& p
&& p
->eType
==FTSQUERY_NEAR
; p
=p
->pParent
){
5322 Fts3Phrase
*pPhrase
= p
->pRight
->pPhrase
;
5323 int nNear
= p
->nNear
;
5324 res
= fts3EvalNearTrim(nNear
, aTmp
, &aPoslist
, &nToken
, pPhrase
);
5327 aPoslist
= pExpr
->pRight
->pPhrase
->doclist
.pList
;
5328 nToken
= pExpr
->pRight
->pPhrase
->nToken
;
5329 for(p
=pExpr
->pLeft
; p
&& res
; p
=p
->pLeft
){
5331 Fts3Phrase
*pPhrase
;
5332 assert( p
->pParent
&& p
->pParent
->pLeft
==p
);
5333 nNear
= p
->pParent
->nNear
;
5335 p
->eType
==FTSQUERY_NEAR
? p
->pRight
->pPhrase
: p
->pPhrase
5337 res
= fts3EvalNearTrim(nNear
, aTmp
, &aPoslist
, &nToken
, pPhrase
);
5348 ** This function is a helper function for sqlite3Fts3EvalTestDeferred().
5349 ** Assuming no error occurs or has occurred, It returns non-zero if the
5350 ** expression passed as the second argument matches the row that pCsr
5351 ** currently points to, or zero if it does not.
5353 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
5354 ** If an error occurs during execution of this function, *pRc is set to
5355 ** the appropriate SQLite error code. In this case the returned value is
5358 static int fts3EvalTestExpr(
5359 Fts3Cursor
*pCsr
, /* FTS cursor handle */
5360 Fts3Expr
*pExpr
, /* Expr to test. May or may not be root. */
5361 int *pRc
/* IN/OUT: Error code */
5363 int bHit
= 1; /* Return value */
5364 if( *pRc
==SQLITE_OK
){
5365 switch( pExpr
->eType
){
5369 fts3EvalTestExpr(pCsr
, pExpr
->pLeft
, pRc
)
5370 && fts3EvalTestExpr(pCsr
, pExpr
->pRight
, pRc
)
5371 && fts3EvalNearTest(pExpr
, pRc
)
5374 /* If the NEAR expression does not match any rows, zero the doclist for
5375 ** all phrases involved in the NEAR. This is because the snippet(),
5376 ** offsets() and matchinfo() functions are not supposed to recognize
5377 ** any instances of phrases that are part of unmatched NEAR queries.
5378 ** For example if this expression:
5380 ** ... MATCH 'a OR (b NEAR c)'
5382 ** is matched against a row containing:
5386 ** then any snippet() should ony highlight the "a" term, not the "b"
5387 ** (as "b" is part of a non-matching NEAR clause).
5390 && pExpr
->eType
==FTSQUERY_NEAR
5391 && (pExpr
->pParent
==0 || pExpr
->pParent
->eType
!=FTSQUERY_NEAR
)
5394 for(p
=pExpr
; p
->pPhrase
==0; p
=p
->pLeft
){
5395 if( p
->pRight
->iDocid
==pCsr
->iPrevId
){
5396 fts3EvalInvalidatePoslist(p
->pRight
->pPhrase
);
5399 if( p
->iDocid
==pCsr
->iPrevId
){
5400 fts3EvalInvalidatePoslist(p
->pPhrase
);
5407 int bHit1
= fts3EvalTestExpr(pCsr
, pExpr
->pLeft
, pRc
);
5408 int bHit2
= fts3EvalTestExpr(pCsr
, pExpr
->pRight
, pRc
);
5409 bHit
= bHit1
|| bHit2
;
5415 fts3EvalTestExpr(pCsr
, pExpr
->pLeft
, pRc
)
5416 && !fts3EvalTestExpr(pCsr
, pExpr
->pRight
, pRc
)
5421 #ifndef SQLITE_DISABLE_FTS4_DEFERRED
5423 && (pExpr
->iDocid
==pCsr
->iPrevId
|| pExpr
->bDeferred
)
5425 Fts3Phrase
*pPhrase
= pExpr
->pPhrase
;
5426 assert( pExpr
->bDeferred
|| pPhrase
->doclist
.bFreeList
==0 );
5427 if( pExpr
->bDeferred
){
5428 fts3EvalInvalidatePoslist(pPhrase
);
5430 *pRc
= fts3EvalDeferredPhrase(pCsr
, pPhrase
);
5431 bHit
= (pPhrase
->doclist
.pList
!=0);
5432 pExpr
->iDocid
= pCsr
->iPrevId
;
5436 bHit
= (pExpr
->bEof
==0 && pExpr
->iDocid
==pCsr
->iPrevId
);
5446 ** This function is called as the second part of each xNext operation when
5447 ** iterating through the results of a full-text query. At this point the
5448 ** cursor points to a row that matches the query expression, with the
5449 ** following caveats:
5451 ** * Up until this point, "NEAR" operators in the expression have been
5452 ** treated as "AND".
5454 ** * Deferred tokens have not yet been considered.
5456 ** If *pRc is not SQLITE_OK when this function is called, it immediately
5457 ** returns 0. Otherwise, it tests whether or not after considering NEAR
5458 ** operators and deferred tokens the current row is still a match for the
5459 ** expression. It returns 1 if both of the following are true:
5461 ** 1. *pRc is SQLITE_OK when this function returns, and
5463 ** 2. After scanning the current FTS table row for the deferred tokens,
5464 ** it is determined that the row does *not* match the query.
5466 ** Or, if no error occurs and it seems the current row does match the FTS
5469 int sqlite3Fts3EvalTestDeferred(Fts3Cursor
*pCsr
, int *pRc
){
5472 if( rc
==SQLITE_OK
){
5474 /* If there are one or more deferred tokens, load the current row into
5475 ** memory and scan it to determine the position list for each deferred
5476 ** token. Then, see if this row is really a match, considering deferred
5477 ** tokens and NEAR operators (neither of which were taken into account
5478 ** earlier, by fts3EvalNextRow()).
5480 if( pCsr
->pDeferred
){
5481 rc
= fts3CursorSeek(0, pCsr
);
5482 if( rc
==SQLITE_OK
){
5483 rc
= sqlite3Fts3CacheDeferredDoclists(pCsr
);
5486 bMiss
= (0==fts3EvalTestExpr(pCsr
, pCsr
->pExpr
, &rc
));
5488 /* Free the position-lists accumulated for each deferred token above. */
5489 sqlite3Fts3FreeDeferredDoclists(pCsr
);
5492 return (rc
==SQLITE_OK
&& bMiss
);
5496 ** Advance to the next document that matches the FTS expression in
5497 ** Fts3Cursor.pExpr.
5499 static int fts3EvalNext(Fts3Cursor
*pCsr
){
5500 int rc
= SQLITE_OK
; /* Return Code */
5501 Fts3Expr
*pExpr
= pCsr
->pExpr
;
5502 assert( pCsr
->isEof
==0 );
5507 if( pCsr
->isRequireSeek
==0 ){
5508 sqlite3_reset(pCsr
->pStmt
);
5510 assert( sqlite3_data_count(pCsr
->pStmt
)==0 );
5511 fts3EvalNextRow(pCsr
, pExpr
, &rc
);
5512 pCsr
->isEof
= pExpr
->bEof
;
5513 pCsr
->isRequireSeek
= 1;
5514 pCsr
->isMatchinfoNeeded
= 1;
5515 pCsr
->iPrevId
= pExpr
->iDocid
;
5516 }while( pCsr
->isEof
==0 && sqlite3Fts3EvalTestDeferred(pCsr
, &rc
) );
5519 /* Check if the cursor is past the end of the docid range specified
5520 ** by Fts3Cursor.iMinDocid/iMaxDocid. If so, set the EOF flag. */
5521 if( rc
==SQLITE_OK
&& (
5522 (pCsr
->bDesc
==0 && pCsr
->iPrevId
>pCsr
->iMaxDocid
)
5523 || (pCsr
->bDesc
!=0 && pCsr
->iPrevId
<pCsr
->iMinDocid
)
5532 ** Restart interation for expression pExpr so that the next call to
5533 ** fts3EvalNext() visits the first row. Do not allow incremental
5534 ** loading or merging of phrase doclists for this iteration.
5536 ** If *pRc is other than SQLITE_OK when this function is called, it is
5537 ** a no-op. If an error occurs within this function, *pRc is set to an
5538 ** SQLite error code before returning.
5540 static void fts3EvalRestart(
5545 if( pExpr
&& *pRc
==SQLITE_OK
){
5546 Fts3Phrase
*pPhrase
= pExpr
->pPhrase
;
5549 fts3EvalInvalidatePoslist(pPhrase
);
5550 if( pPhrase
->bIncr
){
5552 for(i
=0; i
<pPhrase
->nToken
; i
++){
5553 Fts3PhraseToken
*pToken
= &pPhrase
->aToken
[i
];
5554 assert( pToken
->pDeferred
==0 );
5555 if( pToken
->pSegcsr
){
5556 sqlite3Fts3MsrIncrRestart(pToken
->pSegcsr
);
5559 *pRc
= fts3EvalPhraseStart(pCsr
, 0, pPhrase
);
5561 pPhrase
->doclist
.pNextDocid
= 0;
5562 pPhrase
->doclist
.iDocid
= 0;
5563 pPhrase
->pOrPoslist
= 0;
5570 fts3EvalRestart(pCsr
, pExpr
->pLeft
, pRc
);
5571 fts3EvalRestart(pCsr
, pExpr
->pRight
, pRc
);
5576 ** After allocating the Fts3Expr.aMI[] array for each phrase in the
5577 ** expression rooted at pExpr, the cursor iterates through all rows matched
5578 ** by pExpr, calling this function for each row. This function increments
5579 ** the values in Fts3Expr.aMI[] according to the position-list currently
5580 ** found in Fts3Expr.pPhrase->doclist.pList for each of the phrase
5581 ** expression nodes.
5583 static void fts3EvalUpdateCounts(Fts3Expr
*pExpr
){
5585 Fts3Phrase
*pPhrase
= pExpr
->pPhrase
;
5586 if( pPhrase
&& pPhrase
->doclist
.pList
){
5588 char *p
= pPhrase
->doclist
.pList
;
5594 while( 0xFE & (*p
| c
) ){
5595 if( (c
&0x80)==0 ) iCnt
++;
5599 /* aMI[iCol*3 + 1] = Number of occurrences
5600 ** aMI[iCol*3 + 2] = Number of rows containing at least one instance
5602 pExpr
->aMI
[iCol
*3 + 1] += iCnt
;
5603 pExpr
->aMI
[iCol
*3 + 2] += (iCnt
>0);
5604 if( *p
==0x00 ) break;
5606 p
+= fts3GetVarint32(p
, &iCol
);
5610 fts3EvalUpdateCounts(pExpr
->pLeft
);
5611 fts3EvalUpdateCounts(pExpr
->pRight
);
5616 ** Expression pExpr must be of type FTSQUERY_PHRASE.
5618 ** If it is not already allocated and populated, this function allocates and
5619 ** populates the Fts3Expr.aMI[] array for expression pExpr. If pExpr is part
5620 ** of a NEAR expression, then it also allocates and populates the same array
5621 ** for all other phrases that are part of the NEAR expression.
5623 ** SQLITE_OK is returned if the aMI[] array is successfully allocated and
5624 ** populated. Otherwise, if an error occurs, an SQLite error code is returned.
5626 static int fts3EvalGatherStats(
5627 Fts3Cursor
*pCsr
, /* Cursor object */
5628 Fts3Expr
*pExpr
/* FTSQUERY_PHRASE expression */
5630 int rc
= SQLITE_OK
; /* Return code */
5632 assert( pExpr
->eType
==FTSQUERY_PHRASE
);
5633 if( pExpr
->aMI
==0 ){
5634 Fts3Table
*pTab
= (Fts3Table
*)pCsr
->base
.pVtab
;
5635 Fts3Expr
*pRoot
; /* Root of NEAR expression */
5636 Fts3Expr
*p
; /* Iterator used for several purposes */
5638 sqlite3_int64 iPrevId
= pCsr
->iPrevId
;
5639 sqlite3_int64 iDocid
;
5642 /* Find the root of the NEAR expression */
5644 while( pRoot
->pParent
&& pRoot
->pParent
->eType
==FTSQUERY_NEAR
){
5645 pRoot
= pRoot
->pParent
;
5647 iDocid
= pRoot
->iDocid
;
5649 assert( pRoot
->bStart
);
5651 /* Allocate space for the aMSI[] array of each FTSQUERY_PHRASE node */
5652 for(p
=pRoot
; p
; p
=p
->pLeft
){
5653 Fts3Expr
*pE
= (p
->eType
==FTSQUERY_PHRASE
?p
:p
->pRight
);
5654 assert( pE
->aMI
==0 );
5655 pE
->aMI
= (u32
*)sqlite3_malloc(pTab
->nColumn
* 3 * sizeof(u32
));
5656 if( !pE
->aMI
) return SQLITE_NOMEM
;
5657 memset(pE
->aMI
, 0, pTab
->nColumn
* 3 * sizeof(u32
));
5660 fts3EvalRestart(pCsr
, pRoot
, &rc
);
5662 while( pCsr
->isEof
==0 && rc
==SQLITE_OK
){
5665 /* Ensure the %_content statement is reset. */
5666 if( pCsr
->isRequireSeek
==0 ) sqlite3_reset(pCsr
->pStmt
);
5667 assert( sqlite3_data_count(pCsr
->pStmt
)==0 );
5669 /* Advance to the next document */
5670 fts3EvalNextRow(pCsr
, pRoot
, &rc
);
5671 pCsr
->isEof
= pRoot
->bEof
;
5672 pCsr
->isRequireSeek
= 1;
5673 pCsr
->isMatchinfoNeeded
= 1;
5674 pCsr
->iPrevId
= pRoot
->iDocid
;
5675 }while( pCsr
->isEof
==0
5676 && pRoot
->eType
==FTSQUERY_NEAR
5677 && sqlite3Fts3EvalTestDeferred(pCsr
, &rc
)
5680 if( rc
==SQLITE_OK
&& pCsr
->isEof
==0 ){
5681 fts3EvalUpdateCounts(pRoot
);
5686 pCsr
->iPrevId
= iPrevId
;
5691 /* Caution: pRoot may iterate through docids in ascending or descending
5692 ** order. For this reason, even though it seems more defensive, the
5693 ** do loop can not be written:
5695 ** do {...} while( pRoot->iDocid<iDocid && rc==SQLITE_OK );
5697 fts3EvalRestart(pCsr
, pRoot
, &rc
);
5699 fts3EvalNextRow(pCsr
, pRoot
, &rc
);
5700 assert( pRoot
->bEof
==0 );
5701 }while( pRoot
->iDocid
!=iDocid
&& rc
==SQLITE_OK
);
5708 ** This function is used by the matchinfo() module to query a phrase
5709 ** expression node for the following information:
5711 ** 1. The total number of occurrences of the phrase in each column of
5712 ** the FTS table (considering all rows), and
5714 ** 2. For each column, the number of rows in the table for which the
5715 ** column contains at least one instance of the phrase.
5717 ** If no error occurs, SQLITE_OK is returned and the values for each column
5718 ** written into the array aiOut as follows:
5720 ** aiOut[iCol*3 + 1] = Number of occurrences
5721 ** aiOut[iCol*3 + 2] = Number of rows containing at least one instance
5725 ** * If a phrase consists entirely of deferred tokens, then all output
5726 ** values are set to the number of documents in the table. In other
5727 ** words we assume that very common tokens occur exactly once in each
5728 ** column of each row of the table.
5730 ** * If a phrase contains some deferred tokens (and some non-deferred
5731 ** tokens), count the potential occurrence identified by considering
5732 ** the non-deferred tokens instead of actual phrase occurrences.
5734 ** * If the phrase is part of a NEAR expression, then only phrase instances
5735 ** that meet the NEAR constraint are included in the counts.
5737 int sqlite3Fts3EvalPhraseStats(
5738 Fts3Cursor
*pCsr
, /* FTS cursor handle */
5739 Fts3Expr
*pExpr
, /* Phrase expression */
5740 u32
*aiOut
/* Array to write results into (see above) */
5742 Fts3Table
*pTab
= (Fts3Table
*)pCsr
->base
.pVtab
;
5746 if( pExpr
->bDeferred
&& pExpr
->pParent
->eType
!=FTSQUERY_NEAR
){
5747 assert( pCsr
->nDoc
>0 );
5748 for(iCol
=0; iCol
<pTab
->nColumn
; iCol
++){
5749 aiOut
[iCol
*3 + 1] = (u32
)pCsr
->nDoc
;
5750 aiOut
[iCol
*3 + 2] = (u32
)pCsr
->nDoc
;
5753 rc
= fts3EvalGatherStats(pCsr
, pExpr
);
5754 if( rc
==SQLITE_OK
){
5755 assert( pExpr
->aMI
);
5756 for(iCol
=0; iCol
<pTab
->nColumn
; iCol
++){
5757 aiOut
[iCol
*3 + 1] = pExpr
->aMI
[iCol
*3 + 1];
5758 aiOut
[iCol
*3 + 2] = pExpr
->aMI
[iCol
*3 + 2];
5767 ** The expression pExpr passed as the second argument to this function
5768 ** must be of type FTSQUERY_PHRASE.
5770 ** The returned value is either NULL or a pointer to a buffer containing
5771 ** a position-list indicating the occurrences of the phrase in column iCol
5772 ** of the current row.
5774 ** More specifically, the returned buffer contains 1 varint for each
5775 ** occurrence of the phrase in the column, stored using the normal (delta+2)
5776 ** compression and is terminated by either an 0x01 or 0x00 byte. For example,
5777 ** if the requested column contains "a b X c d X X" and the position-list
5778 ** for 'X' is requested, the buffer returned may contain:
5780 ** 0x04 0x05 0x03 0x01 or 0x04 0x05 0x03 0x00
5782 ** This function works regardless of whether or not the phrase is deferred,
5783 ** incremental, or neither.
5785 int sqlite3Fts3EvalPhrasePoslist(
5786 Fts3Cursor
*pCsr
, /* FTS3 cursor object */
5787 Fts3Expr
*pExpr
, /* Phrase to return doclist for */
5788 int iCol
, /* Column to return position list for */
5789 char **ppOut
/* OUT: Pointer to position list */
5791 Fts3Phrase
*pPhrase
= pExpr
->pPhrase
;
5792 Fts3Table
*pTab
= (Fts3Table
*)pCsr
->base
.pVtab
;
5795 sqlite3_int64 iDocid
;
5797 /* If this phrase is applies specifically to some column other than
5798 ** column iCol, return a NULL pointer. */
5800 assert( iCol
>=0 && iCol
<pTab
->nColumn
);
5801 if( (pPhrase
->iColumn
<pTab
->nColumn
&& pPhrase
->iColumn
!=iCol
) ){
5805 iDocid
= pExpr
->iDocid
;
5806 pIter
= pPhrase
->doclist
.pList
;
5807 if( iDocid
!=pCsr
->iPrevId
|| pExpr
->bEof
){
5809 int bDescDoclist
= pTab
->bDescIdx
; /* For DOCID_CMP macro */
5812 Fts3Expr
*p
; /* Used to iterate from pExpr to root */
5813 Fts3Expr
*pNear
; /* Most senior NEAR ancestor (or pExpr) */
5816 /* Check if this phrase descends from an OR expression node. If not,
5817 ** return NULL. Otherwise, the entry that corresponds to docid
5818 ** pCsr->iPrevId may lie earlier in the doclist buffer. Or, if the
5819 ** tree that the node is part of has been marked as EOF, but the node
5820 ** itself is not EOF, then it may point to an earlier entry. */
5822 for(p
=pExpr
->pParent
; p
; p
=p
->pParent
){
5823 if( p
->eType
==FTSQUERY_OR
) bOr
= 1;
5824 if( p
->eType
==FTSQUERY_NEAR
) pNear
= p
;
5825 if( p
->bEof
) bTreeEof
= 1;
5827 if( bOr
==0 ) return SQLITE_OK
;
5829 /* This is the descendent of an OR node. In this case we cannot use
5830 ** an incremental phrase. Load the entire doclist for the phrase
5831 ** into memory in this case. */
5832 if( pPhrase
->bIncr
){
5833 int bEofSave
= pNear
->bEof
;
5834 fts3EvalRestart(pCsr
, pNear
, &rc
);
5835 while( rc
==SQLITE_OK
&& !pNear
->bEof
){
5836 fts3EvalNextRow(pCsr
, pNear
, &rc
);
5837 if( bEofSave
==0 && pNear
->iDocid
==iDocid
) break;
5839 assert( rc
!=SQLITE_OK
|| pPhrase
->bIncr
==0 );
5842 while( rc
==SQLITE_OK
&& !pNear
->bEof
){
5843 fts3EvalNextRow(pCsr
, pNear
, &rc
);
5846 if( rc
!=SQLITE_OK
) return rc
;
5849 for(p
=pNear
; p
; p
=p
->pLeft
){
5851 Fts3Expr
*pTest
= p
;
5853 assert( pTest
->eType
==FTSQUERY_NEAR
|| pTest
->eType
==FTSQUERY_PHRASE
);
5854 if( pTest
->eType
==FTSQUERY_NEAR
) pTest
= pTest
->pRight
;
5855 assert( pTest
->eType
==FTSQUERY_PHRASE
);
5856 pPh
= pTest
->pPhrase
;
5858 pIter
= pPh
->pOrPoslist
;
5859 iDocid
= pPh
->iOrDocid
;
5860 if( pCsr
->bDesc
==bDescDoclist
){
5861 bEof
= !pPh
->doclist
.nAll
||
5862 (pIter
>= (pPh
->doclist
.aAll
+ pPh
->doclist
.nAll
));
5863 while( (pIter
==0 || DOCID_CMP(iDocid
, pCsr
->iPrevId
)<0 ) && bEof
==0 ){
5864 sqlite3Fts3DoclistNext(
5865 bDescDoclist
, pPh
->doclist
.aAll
, pPh
->doclist
.nAll
,
5866 &pIter
, &iDocid
, &bEof
5870 bEof
= !pPh
->doclist
.nAll
|| (pIter
&& pIter
<=pPh
->doclist
.aAll
);
5871 while( (pIter
==0 || DOCID_CMP(iDocid
, pCsr
->iPrevId
)>0 ) && bEof
==0 ){
5873 sqlite3Fts3DoclistPrev(
5874 bDescDoclist
, pPh
->doclist
.aAll
, pPh
->doclist
.nAll
,
5875 &pIter
, &iDocid
, &dummy
, &bEof
5879 pPh
->pOrPoslist
= pIter
;
5880 pPh
->iOrDocid
= iDocid
;
5881 if( bEof
|| iDocid
!=pCsr
->iPrevId
) bMatch
= 0;
5885 pIter
= pPhrase
->pOrPoslist
;
5890 if( pIter
==0 ) return SQLITE_OK
;
5894 pIter
+= fts3GetVarint32(pIter
, &iThis
);
5898 while( iThis
<iCol
){
5899 fts3ColumnlistCopy(0, &pIter
);
5900 if( *pIter
==0x00 ) return SQLITE_OK
;
5902 pIter
+= fts3GetVarint32(pIter
, &iThis
);
5908 *ppOut
= ((iCol
==iThis
)?pIter
:0);
5913 ** Free all components of the Fts3Phrase structure that were allocated by
5914 ** the eval module. Specifically, this means to free:
5916 ** * the contents of pPhrase->doclist, and
5917 ** * any Fts3MultiSegReader objects held by phrase tokens.
5919 void sqlite3Fts3EvalPhraseCleanup(Fts3Phrase
*pPhrase
){
5922 sqlite3_free(pPhrase
->doclist
.aAll
);
5923 fts3EvalInvalidatePoslist(pPhrase
);
5924 memset(&pPhrase
->doclist
, 0, sizeof(Fts3Doclist
));
5925 for(i
=0; i
<pPhrase
->nToken
; i
++){
5926 fts3SegReaderCursorFree(pPhrase
->aToken
[i
].pSegcsr
);
5927 pPhrase
->aToken
[i
].pSegcsr
= 0;
5934 ** Return SQLITE_CORRUPT_VTAB.
5937 int sqlite3Fts3Corrupt(){
5938 return SQLITE_CORRUPT_VTAB
;
5944 ** Initialize API pointer table, if required.
5947 __declspec(dllexport
)
5949 int sqlite3_fts3_init(
5952 const sqlite3_api_routines
*pApi
5954 SQLITE_EXTENSION_INIT2(pApi
)
5955 return sqlite3Fts3Init(db
);