Snapshot of upstream SQLite 3.37.2
[sqlcipher.git] / src / whereexpr.c
blob53dd14031cd4e45adde2c751c85b9b196ae45cb4
1 /*
2 ** 2015-06-08
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
15 ** This file was originally part of where.c but was split out to improve
16 ** readability and editabiliity. This file contains utility routines for
17 ** analyzing Expr objects in the WHERE clause.
19 #include "sqliteInt.h"
20 #include "whereInt.h"
22 /* Forward declarations */
23 static void exprAnalyze(SrcList*, WhereClause*, int);
26 ** Deallocate all memory associated with a WhereOrInfo object.
28 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){
29 sqlite3WhereClauseClear(&p->wc);
30 sqlite3DbFree(db, p);
34 ** Deallocate all memory associated with a WhereAndInfo object.
36 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){
37 sqlite3WhereClauseClear(&p->wc);
38 sqlite3DbFree(db, p);
42 ** Add a single new WhereTerm entry to the WhereClause object pWC.
43 ** The new WhereTerm object is constructed from Expr p and with wtFlags.
44 ** The index in pWC->a[] of the new WhereTerm is returned on success.
45 ** 0 is returned if the new WhereTerm could not be added due to a memory
46 ** allocation error. The memory allocation failure will be recorded in
47 ** the db->mallocFailed flag so that higher-level functions can detect it.
49 ** This routine will increase the size of the pWC->a[] array as necessary.
51 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility
52 ** for freeing the expression p is assumed by the WhereClause object pWC.
53 ** This is true even if this routine fails to allocate a new WhereTerm.
55 ** WARNING: This routine might reallocate the space used to store
56 ** WhereTerms. All pointers to WhereTerms should be invalidated after
57 ** calling this routine. Such pointers may be reinitialized by referencing
58 ** the pWC->a[] array.
60 static int whereClauseInsert(WhereClause *pWC, Expr *p, u16 wtFlags){
61 WhereTerm *pTerm;
62 int idx;
63 testcase( wtFlags & TERM_VIRTUAL );
64 if( pWC->nTerm>=pWC->nSlot ){
65 WhereTerm *pOld = pWC->a;
66 sqlite3 *db = pWC->pWInfo->pParse->db;
67 pWC->a = sqlite3DbMallocRawNN(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
68 if( pWC->a==0 ){
69 if( wtFlags & TERM_DYNAMIC ){
70 sqlite3ExprDelete(db, p);
72 pWC->a = pOld;
73 return 0;
75 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
76 if( pOld!=pWC->aStatic ){
77 sqlite3DbFree(db, pOld);
79 pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]);
81 pTerm = &pWC->a[idx = pWC->nTerm++];
82 if( p && ExprHasProperty(p, EP_Unlikely) ){
83 pTerm->truthProb = sqlite3LogEst(p->iTable) - 270;
84 }else{
85 pTerm->truthProb = 1;
87 pTerm->pExpr = sqlite3ExprSkipCollateAndLikely(p);
88 pTerm->wtFlags = wtFlags;
89 pTerm->pWC = pWC;
90 pTerm->iParent = -1;
91 memset(&pTerm->eOperator, 0,
92 sizeof(WhereTerm) - offsetof(WhereTerm,eOperator));
93 return idx;
97 ** Return TRUE if the given operator is one of the operators that is
98 ** allowed for an indexable WHERE clause term. The allowed operators are
99 ** "=", "<", ">", "<=", ">=", "IN", "IS", and "IS NULL"
101 static int allowedOp(int op){
102 assert( TK_GT>TK_EQ && TK_GT<TK_GE );
103 assert( TK_LT>TK_EQ && TK_LT<TK_GE );
104 assert( TK_LE>TK_EQ && TK_LE<TK_GE );
105 assert( TK_GE==TK_EQ+4 );
106 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL || op==TK_IS;
110 ** Commute a comparison operator. Expressions of the form "X op Y"
111 ** are converted into "Y op X".
113 static u16 exprCommute(Parse *pParse, Expr *pExpr){
114 if( pExpr->pLeft->op==TK_VECTOR
115 || pExpr->pRight->op==TK_VECTOR
116 || sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pRight) !=
117 sqlite3BinaryCompareCollSeq(pParse, pExpr->pRight, pExpr->pLeft)
119 pExpr->flags ^= EP_Commuted;
121 SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
122 if( pExpr->op>=TK_GT ){
123 assert( TK_LT==TK_GT+2 );
124 assert( TK_GE==TK_LE+2 );
125 assert( TK_GT>TK_EQ );
126 assert( TK_GT<TK_LE );
127 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
128 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
130 return 0;
134 ** Translate from TK_xx operator to WO_xx bitmask.
136 static u16 operatorMask(int op){
137 u16 c;
138 assert( allowedOp(op) );
139 if( op==TK_IN ){
140 c = WO_IN;
141 }else if( op==TK_ISNULL ){
142 c = WO_ISNULL;
143 }else if( op==TK_IS ){
144 c = WO_IS;
145 }else{
146 assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff );
147 c = (u16)(WO_EQ<<(op-TK_EQ));
149 assert( op!=TK_ISNULL || c==WO_ISNULL );
150 assert( op!=TK_IN || c==WO_IN );
151 assert( op!=TK_EQ || c==WO_EQ );
152 assert( op!=TK_LT || c==WO_LT );
153 assert( op!=TK_LE || c==WO_LE );
154 assert( op!=TK_GT || c==WO_GT );
155 assert( op!=TK_GE || c==WO_GE );
156 assert( op!=TK_IS || c==WO_IS );
157 return c;
161 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
163 ** Check to see if the given expression is a LIKE or GLOB operator that
164 ** can be optimized using inequality constraints. Return TRUE if it is
165 ** so and false if not.
167 ** In order for the operator to be optimizible, the RHS must be a string
168 ** literal that does not begin with a wildcard. The LHS must be a column
169 ** that may only be NULL, a string, or a BLOB, never a number. (This means
170 ** that virtual tables cannot participate in the LIKE optimization.) The
171 ** collating sequence for the column on the LHS must be appropriate for
172 ** the operator.
174 static int isLikeOrGlob(
175 Parse *pParse, /* Parsing and code generating context */
176 Expr *pExpr, /* Test this expression */
177 Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */
178 int *pisComplete, /* True if the only wildcard is % in the last character */
179 int *pnoCase /* True if uppercase is equivalent to lowercase */
181 const u8 *z = 0; /* String on RHS of LIKE operator */
182 Expr *pRight, *pLeft; /* Right and left size of LIKE operator */
183 ExprList *pList; /* List of operands to the LIKE operator */
184 u8 c; /* One character in z[] */
185 int cnt; /* Number of non-wildcard prefix characters */
186 u8 wc[4]; /* Wildcard characters */
187 sqlite3 *db = pParse->db; /* Database connection */
188 sqlite3_value *pVal = 0;
189 int op; /* Opcode of pRight */
190 int rc; /* Result code to return */
192 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, (char*)wc) ){
193 return 0;
195 #ifdef SQLITE_EBCDIC
196 if( *pnoCase ) return 0;
197 #endif
198 assert( ExprUseXList(pExpr) );
199 pList = pExpr->x.pList;
200 pLeft = pList->a[1].pExpr;
202 pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr);
203 op = pRight->op;
204 if( op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){
205 Vdbe *pReprepare = pParse->pReprepare;
206 int iCol = pRight->iColumn;
207 pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_BLOB);
208 if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){
209 z = sqlite3_value_text(pVal);
211 sqlite3VdbeSetVarmask(pParse->pVdbe, iCol);
212 assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER );
213 }else if( op==TK_STRING ){
214 assert( !ExprHasProperty(pRight, EP_IntValue) );
215 z = (u8*)pRight->u.zToken;
217 if( z ){
219 /* Count the number of prefix characters prior to the first wildcard */
220 cnt = 0;
221 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){
222 cnt++;
223 if( c==wc[3] && z[cnt]!=0 ) cnt++;
226 /* The optimization is possible only if (1) the pattern does not begin
227 ** with a wildcard and if (2) the non-wildcard prefix does not end with
228 ** an (illegal 0xff) character, or (3) the pattern does not consist of
229 ** a single escape character. The second condition is necessary so
230 ** that we can increment the prefix key to find an upper bound for the
231 ** range search. The third is because the caller assumes that the pattern
232 ** consists of at least one character after all escapes have been
233 ** removed. */
234 if( cnt!=0 && 255!=(u8)z[cnt-1] && (cnt>1 || z[0]!=wc[3]) ){
235 Expr *pPrefix;
237 /* A "complete" match if the pattern ends with "*" or "%" */
238 *pisComplete = c==wc[0] && z[cnt+1]==0;
240 /* Get the pattern prefix. Remove all escapes from the prefix. */
241 pPrefix = sqlite3Expr(db, TK_STRING, (char*)z);
242 if( pPrefix ){
243 int iFrom, iTo;
244 char *zNew;
245 assert( !ExprHasProperty(pPrefix, EP_IntValue) );
246 zNew = pPrefix->u.zToken;
247 zNew[cnt] = 0;
248 for(iFrom=iTo=0; iFrom<cnt; iFrom++){
249 if( zNew[iFrom]==wc[3] ) iFrom++;
250 zNew[iTo++] = zNew[iFrom];
252 zNew[iTo] = 0;
253 assert( iTo>0 );
255 /* If the LHS is not an ordinary column with TEXT affinity, then the
256 ** pattern prefix boundaries (both the start and end boundaries) must
257 ** not look like a number. Otherwise the pattern might be treated as
258 ** a number, which will invalidate the LIKE optimization.
260 ** Getting this right has been a persistent source of bugs in the
261 ** LIKE optimization. See, for example:
262 ** 2018-09-10 https://sqlite.org/src/info/c94369cae9b561b1
263 ** 2019-05-02 https://sqlite.org/src/info/b043a54c3de54b28
264 ** 2019-06-10 https://sqlite.org/src/info/fd76310a5e843e07
265 ** 2019-06-14 https://sqlite.org/src/info/ce8717f0885af975
266 ** 2019-09-03 https://sqlite.org/src/info/0f0428096f17252a
268 if( pLeft->op!=TK_COLUMN
269 || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT
270 || (ALWAYS( ExprUseYTab(pLeft) )
271 && pLeft->y.pTab
272 && IsVirtual(pLeft->y.pTab)) /* Might be numeric */
274 int isNum;
275 double rDummy;
276 isNum = sqlite3AtoF(zNew, &rDummy, iTo, SQLITE_UTF8);
277 if( isNum<=0 ){
278 if( iTo==1 && zNew[0]=='-' ){
279 isNum = +1;
280 }else{
281 zNew[iTo-1]++;
282 isNum = sqlite3AtoF(zNew, &rDummy, iTo, SQLITE_UTF8);
283 zNew[iTo-1]--;
286 if( isNum>0 ){
287 sqlite3ExprDelete(db, pPrefix);
288 sqlite3ValueFree(pVal);
289 return 0;
293 *ppPrefix = pPrefix;
295 /* If the RHS pattern is a bound parameter, make arrangements to
296 ** reprepare the statement when that parameter is rebound */
297 if( op==TK_VARIABLE ){
298 Vdbe *v = pParse->pVdbe;
299 sqlite3VdbeSetVarmask(v, pRight->iColumn);
300 assert( !ExprHasProperty(pRight, EP_IntValue) );
301 if( *pisComplete && pRight->u.zToken[1] ){
302 /* If the rhs of the LIKE expression is a variable, and the current
303 ** value of the variable means there is no need to invoke the LIKE
304 ** function, then no OP_Variable will be added to the program.
305 ** This causes problems for the sqlite3_bind_parameter_name()
306 ** API. To work around them, add a dummy OP_Variable here.
308 int r1 = sqlite3GetTempReg(pParse);
309 sqlite3ExprCodeTarget(pParse, pRight, r1);
310 sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0);
311 sqlite3ReleaseTempReg(pParse, r1);
314 }else{
315 z = 0;
319 rc = (z!=0);
320 sqlite3ValueFree(pVal);
321 return rc;
323 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
326 #ifndef SQLITE_OMIT_VIRTUALTABLE
328 ** Check to see if the pExpr expression is a form that needs to be passed
329 ** to the xBestIndex method of virtual tables. Forms of interest include:
331 ** Expression Virtual Table Operator
332 ** ----------------------- ---------------------------------
333 ** 1. column MATCH expr SQLITE_INDEX_CONSTRAINT_MATCH
334 ** 2. column GLOB expr SQLITE_INDEX_CONSTRAINT_GLOB
335 ** 3. column LIKE expr SQLITE_INDEX_CONSTRAINT_LIKE
336 ** 4. column REGEXP expr SQLITE_INDEX_CONSTRAINT_REGEXP
337 ** 5. column != expr SQLITE_INDEX_CONSTRAINT_NE
338 ** 6. expr != column SQLITE_INDEX_CONSTRAINT_NE
339 ** 7. column IS NOT expr SQLITE_INDEX_CONSTRAINT_ISNOT
340 ** 8. expr IS NOT column SQLITE_INDEX_CONSTRAINT_ISNOT
341 ** 9. column IS NOT NULL SQLITE_INDEX_CONSTRAINT_ISNOTNULL
343 ** In every case, "column" must be a column of a virtual table. If there
344 ** is a match, set *ppLeft to the "column" expression, set *ppRight to the
345 ** "expr" expression (even though in forms (6) and (8) the column is on the
346 ** right and the expression is on the left). Also set *peOp2 to the
347 ** appropriate virtual table operator. The return value is 1 or 2 if there
348 ** is a match. The usual return is 1, but if the RHS is also a column
349 ** of virtual table in forms (5) or (7) then return 2.
351 ** If the expression matches none of the patterns above, return 0.
353 static int isAuxiliaryVtabOperator(
354 sqlite3 *db, /* Parsing context */
355 Expr *pExpr, /* Test this expression */
356 unsigned char *peOp2, /* OUT: 0 for MATCH, or else an op2 value */
357 Expr **ppLeft, /* Column expression to left of MATCH/op2 */
358 Expr **ppRight /* Expression to left of MATCH/op2 */
360 if( pExpr->op==TK_FUNCTION ){
361 static const struct Op2 {
362 const char *zOp;
363 unsigned char eOp2;
364 } aOp[] = {
365 { "match", SQLITE_INDEX_CONSTRAINT_MATCH },
366 { "glob", SQLITE_INDEX_CONSTRAINT_GLOB },
367 { "like", SQLITE_INDEX_CONSTRAINT_LIKE },
368 { "regexp", SQLITE_INDEX_CONSTRAINT_REGEXP }
370 ExprList *pList;
371 Expr *pCol; /* Column reference */
372 int i;
374 assert( ExprUseXList(pExpr) );
375 pList = pExpr->x.pList;
376 if( pList==0 || pList->nExpr!=2 ){
377 return 0;
380 /* Built-in operators MATCH, GLOB, LIKE, and REGEXP attach to a
381 ** virtual table on their second argument, which is the same as
382 ** the left-hand side operand in their in-fix form.
384 ** vtab_column MATCH expression
385 ** MATCH(expression,vtab_column)
387 pCol = pList->a[1].pExpr;
388 assert( pCol->op!=TK_COLUMN || ExprUseYTab(pCol) );
389 testcase( pCol->op==TK_COLUMN && pCol->y.pTab==0 );
390 if( ExprIsVtab(pCol) ){
391 for(i=0; i<ArraySize(aOp); i++){
392 assert( !ExprHasProperty(pExpr, EP_IntValue) );
393 if( sqlite3StrICmp(pExpr->u.zToken, aOp[i].zOp)==0 ){
394 *peOp2 = aOp[i].eOp2;
395 *ppRight = pList->a[0].pExpr;
396 *ppLeft = pCol;
397 return 1;
402 /* We can also match against the first column of overloaded
403 ** functions where xFindFunction returns a value of at least
404 ** SQLITE_INDEX_CONSTRAINT_FUNCTION.
406 ** OVERLOADED(vtab_column,expression)
408 ** Historically, xFindFunction expected to see lower-case function
409 ** names. But for this use case, xFindFunction is expected to deal
410 ** with function names in an arbitrary case.
412 pCol = pList->a[0].pExpr;
413 assert( pCol->op!=TK_COLUMN || ExprUseYTab(pCol) );
414 testcase( pCol->op==TK_COLUMN && pCol->y.pTab==0 );
415 if( ExprIsVtab(pCol) ){
416 sqlite3_vtab *pVtab;
417 sqlite3_module *pMod;
418 void (*xNotUsed)(sqlite3_context*,int,sqlite3_value**);
419 void *pNotUsed;
420 pVtab = sqlite3GetVTable(db, pCol->y.pTab)->pVtab;
421 assert( pVtab!=0 );
422 assert( pVtab->pModule!=0 );
423 assert( !ExprHasProperty(pExpr, EP_IntValue) );
424 pMod = (sqlite3_module *)pVtab->pModule;
425 if( pMod->xFindFunction!=0 ){
426 i = pMod->xFindFunction(pVtab,2, pExpr->u.zToken, &xNotUsed, &pNotUsed);
427 if( i>=SQLITE_INDEX_CONSTRAINT_FUNCTION ){
428 *peOp2 = i;
429 *ppRight = pList->a[1].pExpr;
430 *ppLeft = pCol;
431 return 1;
435 }else if( pExpr->op==TK_NE || pExpr->op==TK_ISNOT || pExpr->op==TK_NOTNULL ){
436 int res = 0;
437 Expr *pLeft = pExpr->pLeft;
438 Expr *pRight = pExpr->pRight;
439 assert( pLeft->op!=TK_COLUMN || ExprUseYTab(pLeft) );
440 testcase( pLeft->op==TK_COLUMN && pLeft->y.pTab==0 );
441 if( ExprIsVtab(pLeft) ){
442 res++;
444 assert( pRight==0 || pRight->op!=TK_COLUMN || ExprUseYTab(pRight) );
445 testcase( pRight && pRight->op==TK_COLUMN && pRight->y.pTab==0 );
446 if( pRight && ExprIsVtab(pRight) ){
447 res++;
448 SWAP(Expr*, pLeft, pRight);
450 *ppLeft = pLeft;
451 *ppRight = pRight;
452 if( pExpr->op==TK_NE ) *peOp2 = SQLITE_INDEX_CONSTRAINT_NE;
453 if( pExpr->op==TK_ISNOT ) *peOp2 = SQLITE_INDEX_CONSTRAINT_ISNOT;
454 if( pExpr->op==TK_NOTNULL ) *peOp2 = SQLITE_INDEX_CONSTRAINT_ISNOTNULL;
455 return res;
457 return 0;
459 #endif /* SQLITE_OMIT_VIRTUALTABLE */
462 ** If the pBase expression originated in the ON or USING clause of
463 ** a join, then transfer the appropriate markings over to derived.
465 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
466 if( pDerived ){
467 pDerived->flags |= pBase->flags & EP_FromJoin;
468 pDerived->iRightJoinTable = pBase->iRightJoinTable;
473 ** Mark term iChild as being a child of term iParent
475 static void markTermAsChild(WhereClause *pWC, int iChild, int iParent){
476 pWC->a[iChild].iParent = iParent;
477 pWC->a[iChild].truthProb = pWC->a[iParent].truthProb;
478 pWC->a[iParent].nChild++;
482 ** Return the N-th AND-connected subterm of pTerm. Or if pTerm is not
483 ** a conjunction, then return just pTerm when N==0. If N is exceeds
484 ** the number of available subterms, return NULL.
486 static WhereTerm *whereNthSubterm(WhereTerm *pTerm, int N){
487 if( pTerm->eOperator!=WO_AND ){
488 return N==0 ? pTerm : 0;
490 if( N<pTerm->u.pAndInfo->wc.nTerm ){
491 return &pTerm->u.pAndInfo->wc.a[N];
493 return 0;
497 ** Subterms pOne and pTwo are contained within WHERE clause pWC. The
498 ** two subterms are in disjunction - they are OR-ed together.
500 ** If these two terms are both of the form: "A op B" with the same
501 ** A and B values but different operators and if the operators are
502 ** compatible (if one is = and the other is <, for example) then
503 ** add a new virtual AND term to pWC that is the combination of the
504 ** two.
506 ** Some examples:
508 ** x<y OR x=y --> x<=y
509 ** x=y OR x=y --> x=y
510 ** x<=y OR x<y --> x<=y
512 ** The following is NOT generated:
514 ** x<y OR x>y --> x!=y
516 static void whereCombineDisjuncts(
517 SrcList *pSrc, /* the FROM clause */
518 WhereClause *pWC, /* The complete WHERE clause */
519 WhereTerm *pOne, /* First disjunct */
520 WhereTerm *pTwo /* Second disjunct */
522 u16 eOp = pOne->eOperator | pTwo->eOperator;
523 sqlite3 *db; /* Database connection (for malloc) */
524 Expr *pNew; /* New virtual expression */
525 int op; /* Operator for the combined expression */
526 int idxNew; /* Index in pWC of the next virtual term */
528 if( (pOne->wtFlags | pTwo->wtFlags) & TERM_VNULL ) return;
529 if( (pOne->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return;
530 if( (pTwo->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return;
531 if( (eOp & (WO_EQ|WO_LT|WO_LE))!=eOp
532 && (eOp & (WO_EQ|WO_GT|WO_GE))!=eOp ) return;
533 assert( pOne->pExpr->pLeft!=0 && pOne->pExpr->pRight!=0 );
534 assert( pTwo->pExpr->pLeft!=0 && pTwo->pExpr->pRight!=0 );
535 if( sqlite3ExprCompare(0,pOne->pExpr->pLeft, pTwo->pExpr->pLeft, -1) ) return;
536 if( sqlite3ExprCompare(0,pOne->pExpr->pRight, pTwo->pExpr->pRight,-1) )return;
537 /* If we reach this point, it means the two subterms can be combined */
538 if( (eOp & (eOp-1))!=0 ){
539 if( eOp & (WO_LT|WO_LE) ){
540 eOp = WO_LE;
541 }else{
542 assert( eOp & (WO_GT|WO_GE) );
543 eOp = WO_GE;
546 db = pWC->pWInfo->pParse->db;
547 pNew = sqlite3ExprDup(db, pOne->pExpr, 0);
548 if( pNew==0 ) return;
549 for(op=TK_EQ; eOp!=(WO_EQ<<(op-TK_EQ)); op++){ assert( op<TK_GE ); }
550 pNew->op = op;
551 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
552 exprAnalyze(pSrc, pWC, idxNew);
555 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
557 ** Analyze a term that consists of two or more OR-connected
558 ** subterms. So in:
560 ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
561 ** ^^^^^^^^^^^^^^^^^^^^
563 ** This routine analyzes terms such as the middle term in the above example.
564 ** A WhereOrTerm object is computed and attached to the term under
565 ** analysis, regardless of the outcome of the analysis. Hence:
567 ** WhereTerm.wtFlags |= TERM_ORINFO
568 ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object
570 ** The term being analyzed must have two or more of OR-connected subterms.
571 ** A single subterm might be a set of AND-connected sub-subterms.
572 ** Examples of terms under analysis:
574 ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
575 ** (B) x=expr1 OR expr2=x OR x=expr3
576 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
577 ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
578 ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
579 ** (F) x>A OR (x=A AND y>=B)
581 ** CASE 1:
583 ** If all subterms are of the form T.C=expr for some single column of C and
584 ** a single table T (as shown in example B above) then create a new virtual
585 ** term that is an equivalent IN expression. In other words, if the term
586 ** being analyzed is:
588 ** x = expr1 OR expr2 = x OR x = expr3
590 ** then create a new virtual term like this:
592 ** x IN (expr1,expr2,expr3)
594 ** CASE 2:
596 ** If there are exactly two disjuncts and one side has x>A and the other side
597 ** has x=A (for the same x and A) then add a new virtual conjunct term to the
598 ** WHERE clause of the form "x>=A". Example:
600 ** x>A OR (x=A AND y>B) adds: x>=A
602 ** The added conjunct can sometimes be helpful in query planning.
604 ** CASE 3:
606 ** If all subterms are indexable by a single table T, then set
608 ** WhereTerm.eOperator = WO_OR
609 ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T
611 ** A subterm is "indexable" if it is of the form
612 ** "T.C <op> <expr>" where C is any column of table T and
613 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN".
614 ** A subterm is also indexable if it is an AND of two or more
615 ** subsubterms at least one of which is indexable. Indexable AND
616 ** subterms have their eOperator set to WO_AND and they have
617 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
619 ** From another point of view, "indexable" means that the subterm could
620 ** potentially be used with an index if an appropriate index exists.
621 ** This analysis does not consider whether or not the index exists; that
622 ** is decided elsewhere. This analysis only looks at whether subterms
623 ** appropriate for indexing exist.
625 ** All examples A through E above satisfy case 3. But if a term
626 ** also satisfies case 1 (such as B) we know that the optimizer will
627 ** always prefer case 1, so in that case we pretend that case 3 is not
628 ** satisfied.
630 ** It might be the case that multiple tables are indexable. For example,
631 ** (E) above is indexable on tables P, Q, and R.
633 ** Terms that satisfy case 3 are candidates for lookup by using
634 ** separate indices to find rowids for each subterm and composing
635 ** the union of all rowids using a RowSet object. This is similar
636 ** to "bitmap indices" in other database engines.
638 ** OTHERWISE:
640 ** If none of cases 1, 2, or 3 apply, then leave the eOperator set to
641 ** zero. This term is not useful for search.
643 static void exprAnalyzeOrTerm(
644 SrcList *pSrc, /* the FROM clause */
645 WhereClause *pWC, /* the complete WHERE clause */
646 int idxTerm /* Index of the OR-term to be analyzed */
648 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */
649 Parse *pParse = pWInfo->pParse; /* Parser context */
650 sqlite3 *db = pParse->db; /* Database connection */
651 WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */
652 Expr *pExpr = pTerm->pExpr; /* The expression of the term */
653 int i; /* Loop counters */
654 WhereClause *pOrWc; /* Breakup of pTerm into subterms */
655 WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */
656 WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */
657 Bitmask chngToIN; /* Tables that might satisfy case 1 */
658 Bitmask indexable; /* Tables that are indexable, satisfying case 2 */
661 ** Break the OR clause into its separate subterms. The subterms are
662 ** stored in a WhereClause structure containing within the WhereOrInfo
663 ** object that is attached to the original OR clause term.
665 assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 );
666 assert( pExpr->op==TK_OR );
667 pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo));
668 if( pOrInfo==0 ) return;
669 pTerm->wtFlags |= TERM_ORINFO;
670 pOrWc = &pOrInfo->wc;
671 memset(pOrWc->aStatic, 0, sizeof(pOrWc->aStatic));
672 sqlite3WhereClauseInit(pOrWc, pWInfo);
673 sqlite3WhereSplit(pOrWc, pExpr, TK_OR);
674 sqlite3WhereExprAnalyze(pSrc, pOrWc);
675 if( db->mallocFailed ) return;
676 assert( pOrWc->nTerm>=2 );
679 ** Compute the set of tables that might satisfy cases 1 or 3.
681 indexable = ~(Bitmask)0;
682 chngToIN = ~(Bitmask)0;
683 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
684 if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
685 WhereAndInfo *pAndInfo;
686 assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
687 chngToIN = 0;
688 pAndInfo = sqlite3DbMallocRawNN(db, sizeof(*pAndInfo));
689 if( pAndInfo ){
690 WhereClause *pAndWC;
691 WhereTerm *pAndTerm;
692 int j;
693 Bitmask b = 0;
694 pOrTerm->u.pAndInfo = pAndInfo;
695 pOrTerm->wtFlags |= TERM_ANDINFO;
696 pOrTerm->eOperator = WO_AND;
697 pOrTerm->leftCursor = -1;
698 pAndWC = &pAndInfo->wc;
699 memset(pAndWC->aStatic, 0, sizeof(pAndWC->aStatic));
700 sqlite3WhereClauseInit(pAndWC, pWC->pWInfo);
701 sqlite3WhereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
702 sqlite3WhereExprAnalyze(pSrc, pAndWC);
703 pAndWC->pOuter = pWC;
704 if( !db->mallocFailed ){
705 for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
706 assert( pAndTerm->pExpr );
707 if( allowedOp(pAndTerm->pExpr->op)
708 || pAndTerm->eOperator==WO_AUX
710 b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pAndTerm->leftCursor);
714 indexable &= b;
716 }else if( pOrTerm->wtFlags & TERM_COPIED ){
717 /* Skip this term for now. We revisit it when we process the
718 ** corresponding TERM_VIRTUAL term */
719 }else{
720 Bitmask b;
721 b = sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor);
722 if( pOrTerm->wtFlags & TERM_VIRTUAL ){
723 WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
724 b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pOther->leftCursor);
726 indexable &= b;
727 if( (pOrTerm->eOperator & WO_EQ)==0 ){
728 chngToIN = 0;
729 }else{
730 chngToIN &= b;
736 ** Record the set of tables that satisfy case 3. The set might be
737 ** empty.
739 pOrInfo->indexable = indexable;
740 pTerm->eOperator = WO_OR;
741 pTerm->leftCursor = -1;
742 if( indexable ){
743 pWC->hasOr = 1;
746 /* For a two-way OR, attempt to implementation case 2.
748 if( indexable && pOrWc->nTerm==2 ){
749 int iOne = 0;
750 WhereTerm *pOne;
751 while( (pOne = whereNthSubterm(&pOrWc->a[0],iOne++))!=0 ){
752 int iTwo = 0;
753 WhereTerm *pTwo;
754 while( (pTwo = whereNthSubterm(&pOrWc->a[1],iTwo++))!=0 ){
755 whereCombineDisjuncts(pSrc, pWC, pOne, pTwo);
761 ** chngToIN holds a set of tables that *might* satisfy case 1. But
762 ** we have to do some additional checking to see if case 1 really
763 ** is satisfied.
765 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means
766 ** that there is no possibility of transforming the OR clause into an
767 ** IN operator because one or more terms in the OR clause contain
768 ** something other than == on a column in the single table. The 1-bit
769 ** case means that every term of the OR clause is of the form
770 ** "table.column=expr" for some single table. The one bit that is set
771 ** will correspond to the common table. We still need to check to make
772 ** sure the same column is used on all terms. The 2-bit case is when
773 ** the all terms are of the form "table1.column=table2.column". It
774 ** might be possible to form an IN operator with either table1.column
775 ** or table2.column as the LHS if either is common to every term of
776 ** the OR clause.
778 ** Note that terms of the form "table.column1=table.column2" (the
779 ** same table on both sizes of the ==) cannot be optimized.
781 if( chngToIN ){
782 int okToChngToIN = 0; /* True if the conversion to IN is valid */
783 int iColumn = -1; /* Column index on lhs of IN operator */
784 int iCursor = -1; /* Table cursor common to all terms */
785 int j = 0; /* Loop counter */
787 /* Search for a table and column that appears on one side or the
788 ** other of the == operator in every subterm. That table and column
789 ** will be recorded in iCursor and iColumn. There might not be any
790 ** such table and column. Set okToChngToIN if an appropriate table
791 ** and column is found but leave okToChngToIN false if not found.
793 for(j=0; j<2 && !okToChngToIN; j++){
794 Expr *pLeft = 0;
795 pOrTerm = pOrWc->a;
796 for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){
797 assert( pOrTerm->eOperator & WO_EQ );
798 pOrTerm->wtFlags &= ~TERM_OR_OK;
799 if( pOrTerm->leftCursor==iCursor ){
800 /* This is the 2-bit case and we are on the second iteration and
801 ** current term is from the first iteration. So skip this term. */
802 assert( j==1 );
803 continue;
805 if( (chngToIN & sqlite3WhereGetMask(&pWInfo->sMaskSet,
806 pOrTerm->leftCursor))==0 ){
807 /* This term must be of the form t1.a==t2.b where t2 is in the
808 ** chngToIN set but t1 is not. This term will be either preceded
809 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term
810 ** and use its inversion. */
811 testcase( pOrTerm->wtFlags & TERM_COPIED );
812 testcase( pOrTerm->wtFlags & TERM_VIRTUAL );
813 assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) );
814 continue;
816 assert( (pOrTerm->eOperator & (WO_OR|WO_AND))==0 );
817 iColumn = pOrTerm->u.x.leftColumn;
818 iCursor = pOrTerm->leftCursor;
819 pLeft = pOrTerm->pExpr->pLeft;
820 break;
822 if( i<0 ){
823 /* No candidate table+column was found. This can only occur
824 ** on the second iteration */
825 assert( j==1 );
826 assert( IsPowerOfTwo(chngToIN) );
827 assert( chngToIN==sqlite3WhereGetMask(&pWInfo->sMaskSet, iCursor) );
828 break;
830 testcase( j==1 );
832 /* We have found a candidate table and column. Check to see if that
833 ** table and column is common to every term in the OR clause */
834 okToChngToIN = 1;
835 for(; i>=0 && okToChngToIN; i--, pOrTerm++){
836 assert( pOrTerm->eOperator & WO_EQ );
837 assert( (pOrTerm->eOperator & (WO_OR|WO_AND))==0 );
838 if( pOrTerm->leftCursor!=iCursor ){
839 pOrTerm->wtFlags &= ~TERM_OR_OK;
840 }else if( pOrTerm->u.x.leftColumn!=iColumn || (iColumn==XN_EXPR
841 && sqlite3ExprCompare(pParse, pOrTerm->pExpr->pLeft, pLeft, -1)
843 okToChngToIN = 0;
844 }else{
845 int affLeft, affRight;
846 /* If the right-hand side is also a column, then the affinities
847 ** of both right and left sides must be such that no type
848 ** conversions are required on the right. (Ticket #2249)
850 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
851 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
852 if( affRight!=0 && affRight!=affLeft ){
853 okToChngToIN = 0;
854 }else{
855 pOrTerm->wtFlags |= TERM_OR_OK;
861 /* At this point, okToChngToIN is true if original pTerm satisfies
862 ** case 1. In that case, construct a new virtual term that is
863 ** pTerm converted into an IN operator.
865 if( okToChngToIN ){
866 Expr *pDup; /* A transient duplicate expression */
867 ExprList *pList = 0; /* The RHS of the IN operator */
868 Expr *pLeft = 0; /* The LHS of the IN operator */
869 Expr *pNew; /* The complete IN operator */
871 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
872 if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue;
873 assert( pOrTerm->eOperator & WO_EQ );
874 assert( (pOrTerm->eOperator & (WO_OR|WO_AND))==0 );
875 assert( pOrTerm->leftCursor==iCursor );
876 assert( pOrTerm->u.x.leftColumn==iColumn );
877 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
878 pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup);
879 pLeft = pOrTerm->pExpr->pLeft;
881 assert( pLeft!=0 );
882 pDup = sqlite3ExprDup(db, pLeft, 0);
883 pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0);
884 if( pNew ){
885 int idxNew;
886 transferJoinMarkings(pNew, pExpr);
887 assert( ExprUseXList(pNew) );
888 pNew->x.pList = pList;
889 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
890 testcase( idxNew==0 );
891 exprAnalyze(pSrc, pWC, idxNew);
892 /* pTerm = &pWC->a[idxTerm]; // would be needed if pTerm where reused */
893 markTermAsChild(pWC, idxNew, idxTerm);
894 }else{
895 sqlite3ExprListDelete(db, pList);
900 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
903 ** We already know that pExpr is a binary operator where both operands are
904 ** column references. This routine checks to see if pExpr is an equivalence
905 ** relation:
906 ** 1. The SQLITE_Transitive optimization must be enabled
907 ** 2. Must be either an == or an IS operator
908 ** 3. Not originating in the ON clause of an OUTER JOIN
909 ** 4. The affinities of A and B must be compatible
910 ** 5a. Both operands use the same collating sequence OR
911 ** 5b. The overall collating sequence is BINARY
912 ** If this routine returns TRUE, that means that the RHS can be substituted
913 ** for the LHS anyplace else in the WHERE clause where the LHS column occurs.
914 ** This is an optimization. No harm comes from returning 0. But if 1 is
915 ** returned when it should not be, then incorrect answers might result.
917 static int termIsEquivalence(Parse *pParse, Expr *pExpr){
918 char aff1, aff2;
919 CollSeq *pColl;
920 if( !OptimizationEnabled(pParse->db, SQLITE_Transitive) ) return 0;
921 if( pExpr->op!=TK_EQ && pExpr->op!=TK_IS ) return 0;
922 if( ExprHasProperty(pExpr, EP_FromJoin) ) return 0;
923 aff1 = sqlite3ExprAffinity(pExpr->pLeft);
924 aff2 = sqlite3ExprAffinity(pExpr->pRight);
925 if( aff1!=aff2
926 && (!sqlite3IsNumericAffinity(aff1) || !sqlite3IsNumericAffinity(aff2))
928 return 0;
930 pColl = sqlite3ExprCompareCollSeq(pParse, pExpr);
931 if( sqlite3IsBinary(pColl) ) return 1;
932 return sqlite3ExprCollSeqMatch(pParse, pExpr->pLeft, pExpr->pRight);
936 ** Recursively walk the expressions of a SELECT statement and generate
937 ** a bitmask indicating which tables are used in that expression
938 ** tree.
940 static Bitmask exprSelectUsage(WhereMaskSet *pMaskSet, Select *pS){
941 Bitmask mask = 0;
942 while( pS ){
943 SrcList *pSrc = pS->pSrc;
944 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pEList);
945 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pGroupBy);
946 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pOrderBy);
947 mask |= sqlite3WhereExprUsage(pMaskSet, pS->pWhere);
948 mask |= sqlite3WhereExprUsage(pMaskSet, pS->pHaving);
949 if( ALWAYS(pSrc!=0) ){
950 int i;
951 for(i=0; i<pSrc->nSrc; i++){
952 mask |= exprSelectUsage(pMaskSet, pSrc->a[i].pSelect);
953 mask |= sqlite3WhereExprUsage(pMaskSet, pSrc->a[i].pOn);
954 if( pSrc->a[i].fg.isTabFunc ){
955 mask |= sqlite3WhereExprListUsage(pMaskSet, pSrc->a[i].u1.pFuncArg);
959 pS = pS->pPrior;
961 return mask;
965 ** Expression pExpr is one operand of a comparison operator that might
966 ** be useful for indexing. This routine checks to see if pExpr appears
967 ** in any index. Return TRUE (1) if pExpr is an indexed term and return
968 ** FALSE (0) if not. If TRUE is returned, also set aiCurCol[0] to the cursor
969 ** number of the table that is indexed and aiCurCol[1] to the column number
970 ** of the column that is indexed, or XN_EXPR (-2) if an expression is being
971 ** indexed.
973 ** If pExpr is a TK_COLUMN column reference, then this routine always returns
974 ** true even if that particular column is not indexed, because the column
975 ** might be added to an automatic index later.
977 static SQLITE_NOINLINE int exprMightBeIndexed2(
978 SrcList *pFrom, /* The FROM clause */
979 Bitmask mPrereq, /* Bitmask of FROM clause terms referenced by pExpr */
980 int *aiCurCol, /* Write the referenced table cursor and column here */
981 Expr *pExpr /* An operand of a comparison operator */
983 Index *pIdx;
984 int i;
985 int iCur;
986 for(i=0; mPrereq>1; i++, mPrereq>>=1){}
987 iCur = pFrom->a[i].iCursor;
988 for(pIdx=pFrom->a[i].pTab->pIndex; pIdx; pIdx=pIdx->pNext){
989 if( pIdx->aColExpr==0 ) continue;
990 for(i=0; i<pIdx->nKeyCol; i++){
991 if( pIdx->aiColumn[i]!=XN_EXPR ) continue;
992 if( sqlite3ExprCompareSkip(pExpr, pIdx->aColExpr->a[i].pExpr, iCur)==0 ){
993 aiCurCol[0] = iCur;
994 aiCurCol[1] = XN_EXPR;
995 return 1;
999 return 0;
1001 static int exprMightBeIndexed(
1002 SrcList *pFrom, /* The FROM clause */
1003 Bitmask mPrereq, /* Bitmask of FROM clause terms referenced by pExpr */
1004 int *aiCurCol, /* Write the referenced table cursor & column here */
1005 Expr *pExpr, /* An operand of a comparison operator */
1006 int op /* The specific comparison operator */
1008 /* If this expression is a vector to the left or right of a
1009 ** inequality constraint (>, <, >= or <=), perform the processing
1010 ** on the first element of the vector. */
1011 assert( TK_GT+1==TK_LE && TK_GT+2==TK_LT && TK_GT+3==TK_GE );
1012 assert( TK_IS<TK_GE && TK_ISNULL<TK_GE && TK_IN<TK_GE );
1013 assert( op<=TK_GE );
1014 if( pExpr->op==TK_VECTOR && (op>=TK_GT && ALWAYS(op<=TK_GE)) ){
1015 assert( ExprUseXList(pExpr) );
1016 pExpr = pExpr->x.pList->a[0].pExpr;
1020 if( pExpr->op==TK_COLUMN ){
1021 aiCurCol[0] = pExpr->iTable;
1022 aiCurCol[1] = pExpr->iColumn;
1023 return 1;
1025 if( mPrereq==0 ) return 0; /* No table references */
1026 if( (mPrereq&(mPrereq-1))!=0 ) return 0; /* Refs more than one table */
1027 return exprMightBeIndexed2(pFrom,mPrereq,aiCurCol,pExpr);
1032 ** The input to this routine is an WhereTerm structure with only the
1033 ** "pExpr" field filled in. The job of this routine is to analyze the
1034 ** subexpression and populate all the other fields of the WhereTerm
1035 ** structure.
1037 ** If the expression is of the form "<expr> <op> X" it gets commuted
1038 ** to the standard form of "X <op> <expr>".
1040 ** If the expression is of the form "X <op> Y" where both X and Y are
1041 ** columns, then the original expression is unchanged and a new virtual
1042 ** term of the form "Y <op> X" is added to the WHERE clause and
1043 ** analyzed separately. The original term is marked with TERM_COPIED
1044 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr
1045 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
1046 ** is a commuted copy of a prior term.) The original term has nChild=1
1047 ** and the copy has idxParent set to the index of the original term.
1049 static void exprAnalyze(
1050 SrcList *pSrc, /* the FROM clause */
1051 WhereClause *pWC, /* the WHERE clause */
1052 int idxTerm /* Index of the term to be analyzed */
1054 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */
1055 WhereTerm *pTerm; /* The term to be analyzed */
1056 WhereMaskSet *pMaskSet; /* Set of table index masks */
1057 Expr *pExpr; /* The expression to be analyzed */
1058 Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */
1059 Bitmask prereqAll; /* Prerequesites of pExpr */
1060 Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */
1061 Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */
1062 int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */
1063 int noCase = 0; /* uppercase equivalent to lowercase */
1064 int op; /* Top-level operator. pExpr->op */
1065 Parse *pParse = pWInfo->pParse; /* Parsing context */
1066 sqlite3 *db = pParse->db; /* Database connection */
1067 unsigned char eOp2 = 0; /* op2 value for LIKE/REGEXP/GLOB */
1068 int nLeft; /* Number of elements on left side vector */
1070 if( db->mallocFailed ){
1071 return;
1073 pTerm = &pWC->a[idxTerm];
1074 pMaskSet = &pWInfo->sMaskSet;
1075 pExpr = pTerm->pExpr;
1076 assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE );
1077 prereqLeft = sqlite3WhereExprUsage(pMaskSet, pExpr->pLeft);
1078 op = pExpr->op;
1079 if( op==TK_IN ){
1080 assert( pExpr->pRight==0 );
1081 if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
1082 if( ExprUseXSelect(pExpr) ){
1083 pTerm->prereqRight = exprSelectUsage(pMaskSet, pExpr->x.pSelect);
1084 }else{
1085 pTerm->prereqRight = sqlite3WhereExprListUsage(pMaskSet, pExpr->x.pList);
1087 }else if( op==TK_ISNULL ){
1088 pTerm->prereqRight = 0;
1089 }else{
1090 pTerm->prereqRight = sqlite3WhereExprUsage(pMaskSet, pExpr->pRight);
1092 pMaskSet->bVarSelect = 0;
1093 prereqAll = sqlite3WhereExprUsageNN(pMaskSet, pExpr);
1094 if( pMaskSet->bVarSelect ) pTerm->wtFlags |= TERM_VARSELECT;
1095 if( ExprHasProperty(pExpr, EP_FromJoin) ){
1096 Bitmask x = sqlite3WhereGetMask(pMaskSet, pExpr->iRightJoinTable);
1097 prereqAll |= x;
1098 extraRight = x-1; /* ON clause terms may not be used with an index
1099 ** on left table of a LEFT JOIN. Ticket #3015 */
1100 if( (prereqAll>>1)>=x ){
1101 sqlite3ErrorMsg(pParse, "ON clause references tables to its right");
1102 return;
1105 pTerm->prereqAll = prereqAll;
1106 pTerm->leftCursor = -1;
1107 pTerm->iParent = -1;
1108 pTerm->eOperator = 0;
1109 if( allowedOp(op) ){
1110 int aiCurCol[2];
1111 Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft);
1112 Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight);
1113 u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV;
1115 if( pTerm->u.x.iField>0 ){
1116 assert( op==TK_IN );
1117 assert( pLeft->op==TK_VECTOR );
1118 assert( ExprUseXList(pLeft) );
1119 pLeft = pLeft->x.pList->a[pTerm->u.x.iField-1].pExpr;
1122 if( exprMightBeIndexed(pSrc, prereqLeft, aiCurCol, pLeft, op) ){
1123 pTerm->leftCursor = aiCurCol[0];
1124 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
1125 pTerm->u.x.leftColumn = aiCurCol[1];
1126 pTerm->eOperator = operatorMask(op) & opMask;
1128 if( op==TK_IS ) pTerm->wtFlags |= TERM_IS;
1129 if( pRight
1130 && exprMightBeIndexed(pSrc, pTerm->prereqRight, aiCurCol, pRight, op)
1131 && !ExprHasProperty(pRight, EP_FixedCol)
1133 WhereTerm *pNew;
1134 Expr *pDup;
1135 u16 eExtraOp = 0; /* Extra bits for pNew->eOperator */
1136 assert( pTerm->u.x.iField==0 );
1137 if( pTerm->leftCursor>=0 ){
1138 int idxNew;
1139 pDup = sqlite3ExprDup(db, pExpr, 0);
1140 if( db->mallocFailed ){
1141 sqlite3ExprDelete(db, pDup);
1142 return;
1144 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
1145 if( idxNew==0 ) return;
1146 pNew = &pWC->a[idxNew];
1147 markTermAsChild(pWC, idxNew, idxTerm);
1148 if( op==TK_IS ) pNew->wtFlags |= TERM_IS;
1149 pTerm = &pWC->a[idxTerm];
1150 pTerm->wtFlags |= TERM_COPIED;
1152 if( termIsEquivalence(pParse, pDup) ){
1153 pTerm->eOperator |= WO_EQUIV;
1154 eExtraOp = WO_EQUIV;
1156 }else{
1157 pDup = pExpr;
1158 pNew = pTerm;
1160 pNew->wtFlags |= exprCommute(pParse, pDup);
1161 pNew->leftCursor = aiCurCol[0];
1162 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
1163 pNew->u.x.leftColumn = aiCurCol[1];
1164 testcase( (prereqLeft | extraRight) != prereqLeft );
1165 pNew->prereqRight = prereqLeft | extraRight;
1166 pNew->prereqAll = prereqAll;
1167 pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask;
1168 }else
1169 if( op==TK_ISNULL
1170 && !ExprHasProperty(pExpr,EP_FromJoin)
1171 && 0==sqlite3ExprCanBeNull(pLeft)
1173 assert( !ExprHasProperty(pExpr, EP_IntValue) );
1174 pExpr->op = TK_TRUEFALSE;
1175 pExpr->u.zToken = "false";
1176 ExprSetProperty(pExpr, EP_IsFalse);
1177 pTerm->prereqAll = 0;
1178 pTerm->eOperator = 0;
1182 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
1183 /* If a term is the BETWEEN operator, create two new virtual terms
1184 ** that define the range that the BETWEEN implements. For example:
1186 ** a BETWEEN b AND c
1188 ** is converted into:
1190 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
1192 ** The two new terms are added onto the end of the WhereClause object.
1193 ** The new terms are "dynamic" and are children of the original BETWEEN
1194 ** term. That means that if the BETWEEN term is coded, the children are
1195 ** skipped. Or, if the children are satisfied by an index, the original
1196 ** BETWEEN term is skipped.
1198 else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){
1199 ExprList *pList;
1200 int i;
1201 static const u8 ops[] = {TK_GE, TK_LE};
1202 assert( ExprUseXList(pExpr) );
1203 pList = pExpr->x.pList;
1204 assert( pList!=0 );
1205 assert( pList->nExpr==2 );
1206 for(i=0; i<2; i++){
1207 Expr *pNewExpr;
1208 int idxNew;
1209 pNewExpr = sqlite3PExpr(pParse, ops[i],
1210 sqlite3ExprDup(db, pExpr->pLeft, 0),
1211 sqlite3ExprDup(db, pList->a[i].pExpr, 0));
1212 transferJoinMarkings(pNewExpr, pExpr);
1213 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
1214 testcase( idxNew==0 );
1215 exprAnalyze(pSrc, pWC, idxNew);
1216 pTerm = &pWC->a[idxTerm];
1217 markTermAsChild(pWC, idxNew, idxTerm);
1220 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
1222 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
1223 /* Analyze a term that is composed of two or more subterms connected by
1224 ** an OR operator.
1226 else if( pExpr->op==TK_OR ){
1227 assert( pWC->op==TK_AND );
1228 exprAnalyzeOrTerm(pSrc, pWC, idxTerm);
1229 pTerm = &pWC->a[idxTerm];
1231 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1232 /* The form "x IS NOT NULL" can sometimes be evaluated more efficiently
1233 ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a
1234 ** virtual term of that form.
1236 ** The virtual term must be tagged with TERM_VNULL.
1238 else if( pExpr->op==TK_NOTNULL ){
1239 if( pExpr->pLeft->op==TK_COLUMN
1240 && pExpr->pLeft->iColumn>=0
1241 && !ExprHasProperty(pExpr, EP_FromJoin)
1243 Expr *pNewExpr;
1244 Expr *pLeft = pExpr->pLeft;
1245 int idxNew;
1246 WhereTerm *pNewTerm;
1248 pNewExpr = sqlite3PExpr(pParse, TK_GT,
1249 sqlite3ExprDup(db, pLeft, 0),
1250 sqlite3ExprAlloc(db, TK_NULL, 0, 0));
1252 idxNew = whereClauseInsert(pWC, pNewExpr,
1253 TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL);
1254 if( idxNew ){
1255 pNewTerm = &pWC->a[idxNew];
1256 pNewTerm->prereqRight = 0;
1257 pNewTerm->leftCursor = pLeft->iTable;
1258 pNewTerm->u.x.leftColumn = pLeft->iColumn;
1259 pNewTerm->eOperator = WO_GT;
1260 markTermAsChild(pWC, idxNew, idxTerm);
1261 pTerm = &pWC->a[idxTerm];
1262 pTerm->wtFlags |= TERM_COPIED;
1263 pNewTerm->prereqAll = pTerm->prereqAll;
1269 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
1270 /* Add constraints to reduce the search space on a LIKE or GLOB
1271 ** operator.
1273 ** A like pattern of the form "x LIKE 'aBc%'" is changed into constraints
1275 ** x>='ABC' AND x<'abd' AND x LIKE 'aBc%'
1277 ** The last character of the prefix "abc" is incremented to form the
1278 ** termination condition "abd". If case is not significant (the default
1279 ** for LIKE) then the lower-bound is made all uppercase and the upper-
1280 ** bound is made all lowercase so that the bounds also work when comparing
1281 ** BLOBs.
1283 else if( pExpr->op==TK_FUNCTION
1284 && pWC->op==TK_AND
1285 && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase)
1287 Expr *pLeft; /* LHS of LIKE/GLOB operator */
1288 Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */
1289 Expr *pNewExpr1;
1290 Expr *pNewExpr2;
1291 int idxNew1;
1292 int idxNew2;
1293 const char *zCollSeqName; /* Name of collating sequence */
1294 const u16 wtFlags = TERM_LIKEOPT | TERM_VIRTUAL | TERM_DYNAMIC;
1296 assert( ExprUseXList(pExpr) );
1297 pLeft = pExpr->x.pList->a[1].pExpr;
1298 pStr2 = sqlite3ExprDup(db, pStr1, 0);
1299 assert( pStr1==0 || !ExprHasProperty(pStr1, EP_IntValue) );
1300 assert( pStr2==0 || !ExprHasProperty(pStr2, EP_IntValue) );
1303 /* Convert the lower bound to upper-case and the upper bound to
1304 ** lower-case (upper-case is less than lower-case in ASCII) so that
1305 ** the range constraints also work for BLOBs
1307 if( noCase && !pParse->db->mallocFailed ){
1308 int i;
1309 char c;
1310 pTerm->wtFlags |= TERM_LIKE;
1311 for(i=0; (c = pStr1->u.zToken[i])!=0; i++){
1312 pStr1->u.zToken[i] = sqlite3Toupper(c);
1313 pStr2->u.zToken[i] = sqlite3Tolower(c);
1317 if( !db->mallocFailed ){
1318 u8 c, *pC; /* Last character before the first wildcard */
1319 pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1];
1320 c = *pC;
1321 if( noCase ){
1322 /* The point is to increment the last character before the first
1323 ** wildcard. But if we increment '@', that will push it into the
1324 ** alphabetic range where case conversions will mess up the
1325 ** inequality. To avoid this, make sure to also run the full
1326 ** LIKE on all candidate expressions by clearing the isComplete flag
1328 if( c=='A'-1 ) isComplete = 0;
1329 c = sqlite3UpperToLower[c];
1331 *pC = c + 1;
1333 zCollSeqName = noCase ? "NOCASE" : sqlite3StrBINARY;
1334 pNewExpr1 = sqlite3ExprDup(db, pLeft, 0);
1335 pNewExpr1 = sqlite3PExpr(pParse, TK_GE,
1336 sqlite3ExprAddCollateString(pParse,pNewExpr1,zCollSeqName),
1337 pStr1);
1338 transferJoinMarkings(pNewExpr1, pExpr);
1339 idxNew1 = whereClauseInsert(pWC, pNewExpr1, wtFlags);
1340 testcase( idxNew1==0 );
1341 exprAnalyze(pSrc, pWC, idxNew1);
1342 pNewExpr2 = sqlite3ExprDup(db, pLeft, 0);
1343 pNewExpr2 = sqlite3PExpr(pParse, TK_LT,
1344 sqlite3ExprAddCollateString(pParse,pNewExpr2,zCollSeqName),
1345 pStr2);
1346 transferJoinMarkings(pNewExpr2, pExpr);
1347 idxNew2 = whereClauseInsert(pWC, pNewExpr2, wtFlags);
1348 testcase( idxNew2==0 );
1349 exprAnalyze(pSrc, pWC, idxNew2);
1350 pTerm = &pWC->a[idxTerm];
1351 if( isComplete ){
1352 markTermAsChild(pWC, idxNew1, idxTerm);
1353 markTermAsChild(pWC, idxNew2, idxTerm);
1356 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
1358 /* If there is a vector == or IS term - e.g. "(a, b) == (?, ?)" - create
1359 ** new terms for each component comparison - "a = ?" and "b = ?". The
1360 ** new terms completely replace the original vector comparison, which is
1361 ** no longer used.
1363 ** This is only required if at least one side of the comparison operation
1364 ** is not a sub-select. */
1365 if( (pExpr->op==TK_EQ || pExpr->op==TK_IS)
1366 && (nLeft = sqlite3ExprVectorSize(pExpr->pLeft))>1
1367 && sqlite3ExprVectorSize(pExpr->pRight)==nLeft
1368 && ( (pExpr->pLeft->flags & EP_xIsSelect)==0
1369 || (pExpr->pRight->flags & EP_xIsSelect)==0)
1370 && pWC->op==TK_AND
1372 int i;
1373 for(i=0; i<nLeft; i++){
1374 int idxNew;
1375 Expr *pNew;
1376 Expr *pLeft = sqlite3ExprForVectorField(pParse, pExpr->pLeft, i, nLeft);
1377 Expr *pRight = sqlite3ExprForVectorField(pParse, pExpr->pRight, i, nLeft);
1379 pNew = sqlite3PExpr(pParse, pExpr->op, pLeft, pRight);
1380 transferJoinMarkings(pNew, pExpr);
1381 idxNew = whereClauseInsert(pWC, pNew, TERM_DYNAMIC);
1382 exprAnalyze(pSrc, pWC, idxNew);
1384 pTerm = &pWC->a[idxTerm];
1385 pTerm->wtFlags |= TERM_CODED|TERM_VIRTUAL; /* Disable the original */
1386 pTerm->eOperator = 0;
1389 /* If there is a vector IN term - e.g. "(a, b) IN (SELECT ...)" - create
1390 ** a virtual term for each vector component. The expression object
1391 ** used by each such virtual term is pExpr (the full vector IN(...)
1392 ** expression). The WhereTerm.u.x.iField variable identifies the index within
1393 ** the vector on the LHS that the virtual term represents.
1395 ** This only works if the RHS is a simple SELECT (not a compound) that does
1396 ** not use window functions.
1398 else if( pExpr->op==TK_IN
1399 && pTerm->u.x.iField==0
1400 && pExpr->pLeft->op==TK_VECTOR
1401 && ALWAYS( ExprUseXSelect(pExpr) )
1402 && pExpr->x.pSelect->pPrior==0
1403 #ifndef SQLITE_OMIT_WINDOWFUNC
1404 && pExpr->x.pSelect->pWin==0
1405 #endif
1406 && pWC->op==TK_AND
1408 int i;
1409 for(i=0; i<sqlite3ExprVectorSize(pExpr->pLeft); i++){
1410 int idxNew;
1411 idxNew = whereClauseInsert(pWC, pExpr, TERM_VIRTUAL);
1412 pWC->a[idxNew].u.x.iField = i+1;
1413 exprAnalyze(pSrc, pWC, idxNew);
1414 markTermAsChild(pWC, idxNew, idxTerm);
1418 #ifndef SQLITE_OMIT_VIRTUALTABLE
1419 /* Add a WO_AUX auxiliary term to the constraint set if the
1420 ** current expression is of the form "column OP expr" where OP
1421 ** is an operator that gets passed into virtual tables but which is
1422 ** not normally optimized for ordinary tables. In other words, OP
1423 ** is one of MATCH, LIKE, GLOB, REGEXP, !=, IS, IS NOT, or NOT NULL.
1424 ** This information is used by the xBestIndex methods of
1425 ** virtual tables. The native query optimizer does not attempt
1426 ** to do anything with MATCH functions.
1428 else if( pWC->op==TK_AND ){
1429 Expr *pRight = 0, *pLeft = 0;
1430 int res = isAuxiliaryVtabOperator(db, pExpr, &eOp2, &pLeft, &pRight);
1431 while( res-- > 0 ){
1432 int idxNew;
1433 WhereTerm *pNewTerm;
1434 Bitmask prereqColumn, prereqExpr;
1436 prereqExpr = sqlite3WhereExprUsage(pMaskSet, pRight);
1437 prereqColumn = sqlite3WhereExprUsage(pMaskSet, pLeft);
1438 if( (prereqExpr & prereqColumn)==0 ){
1439 Expr *pNewExpr;
1440 pNewExpr = sqlite3PExpr(pParse, TK_MATCH,
1441 0, sqlite3ExprDup(db, pRight, 0));
1442 if( ExprHasProperty(pExpr, EP_FromJoin) && pNewExpr ){
1443 ExprSetProperty(pNewExpr, EP_FromJoin);
1444 pNewExpr->iRightJoinTable = pExpr->iRightJoinTable;
1446 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
1447 testcase( idxNew==0 );
1448 pNewTerm = &pWC->a[idxNew];
1449 pNewTerm->prereqRight = prereqExpr;
1450 pNewTerm->leftCursor = pLeft->iTable;
1451 pNewTerm->u.x.leftColumn = pLeft->iColumn;
1452 pNewTerm->eOperator = WO_AUX;
1453 pNewTerm->eMatchOp = eOp2;
1454 markTermAsChild(pWC, idxNew, idxTerm);
1455 pTerm = &pWC->a[idxTerm];
1456 pTerm->wtFlags |= TERM_COPIED;
1457 pNewTerm->prereqAll = pTerm->prereqAll;
1459 SWAP(Expr*, pLeft, pRight);
1462 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1464 /* Prevent ON clause terms of a LEFT JOIN from being used to drive
1465 ** an index for tables to the left of the join.
1467 testcase( pTerm!=&pWC->a[idxTerm] );
1468 pTerm = &pWC->a[idxTerm];
1469 pTerm->prereqRight |= extraRight;
1472 /***************************************************************************
1473 ** Routines with file scope above. Interface to the rest of the where.c
1474 ** subsystem follows.
1475 ***************************************************************************/
1478 ** This routine identifies subexpressions in the WHERE clause where
1479 ** each subexpression is separated by the AND operator or some other
1480 ** operator specified in the op parameter. The WhereClause structure
1481 ** is filled with pointers to subexpressions. For example:
1483 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
1484 ** \________/ \_______________/ \________________/
1485 ** slot[0] slot[1] slot[2]
1487 ** The original WHERE clause in pExpr is unaltered. All this routine
1488 ** does is make slot[] entries point to substructure within pExpr.
1490 ** In the previous sentence and in the diagram, "slot[]" refers to
1491 ** the WhereClause.a[] array. The slot[] array grows as needed to contain
1492 ** all terms of the WHERE clause.
1494 void sqlite3WhereSplit(WhereClause *pWC, Expr *pExpr, u8 op){
1495 Expr *pE2 = sqlite3ExprSkipCollateAndLikely(pExpr);
1496 pWC->op = op;
1497 assert( pE2!=0 || pExpr==0 );
1498 if( pE2==0 ) return;
1499 if( pE2->op!=op ){
1500 whereClauseInsert(pWC, pExpr, 0);
1501 }else{
1502 sqlite3WhereSplit(pWC, pE2->pLeft, op);
1503 sqlite3WhereSplit(pWC, pE2->pRight, op);
1508 ** Initialize a preallocated WhereClause structure.
1510 void sqlite3WhereClauseInit(
1511 WhereClause *pWC, /* The WhereClause to be initialized */
1512 WhereInfo *pWInfo /* The WHERE processing context */
1514 pWC->pWInfo = pWInfo;
1515 pWC->hasOr = 0;
1516 pWC->pOuter = 0;
1517 pWC->nTerm = 0;
1518 pWC->nSlot = ArraySize(pWC->aStatic);
1519 pWC->a = pWC->aStatic;
1523 ** Deallocate a WhereClause structure. The WhereClause structure
1524 ** itself is not freed. This routine is the inverse of
1525 ** sqlite3WhereClauseInit().
1527 void sqlite3WhereClauseClear(WhereClause *pWC){
1528 int i;
1529 WhereTerm *a;
1530 sqlite3 *db = pWC->pWInfo->pParse->db;
1531 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
1532 if( a->wtFlags & TERM_DYNAMIC ){
1533 sqlite3ExprDelete(db, a->pExpr);
1535 if( a->wtFlags & TERM_ORINFO ){
1536 whereOrInfoDelete(db, a->u.pOrInfo);
1537 }else if( a->wtFlags & TERM_ANDINFO ){
1538 whereAndInfoDelete(db, a->u.pAndInfo);
1541 if( pWC->a!=pWC->aStatic ){
1542 sqlite3DbFree(db, pWC->a);
1548 ** These routines walk (recursively) an expression tree and generate
1549 ** a bitmask indicating which tables are used in that expression
1550 ** tree.
1552 Bitmask sqlite3WhereExprUsageNN(WhereMaskSet *pMaskSet, Expr *p){
1553 Bitmask mask;
1554 if( p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){
1555 return sqlite3WhereGetMask(pMaskSet, p->iTable);
1556 }else if( ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1557 assert( p->op!=TK_IF_NULL_ROW );
1558 return 0;
1560 mask = (p->op==TK_IF_NULL_ROW) ? sqlite3WhereGetMask(pMaskSet, p->iTable) : 0;
1561 if( p->pLeft ) mask |= sqlite3WhereExprUsageNN(pMaskSet, p->pLeft);
1562 if( p->pRight ){
1563 mask |= sqlite3WhereExprUsageNN(pMaskSet, p->pRight);
1564 assert( p->x.pList==0 );
1565 }else if( ExprUseXSelect(p) ){
1566 if( ExprHasProperty(p, EP_VarSelect) ) pMaskSet->bVarSelect = 1;
1567 mask |= exprSelectUsage(pMaskSet, p->x.pSelect);
1568 }else if( p->x.pList ){
1569 mask |= sqlite3WhereExprListUsage(pMaskSet, p->x.pList);
1571 #ifndef SQLITE_OMIT_WINDOWFUNC
1572 if( (p->op==TK_FUNCTION || p->op==TK_AGG_FUNCTION) && ExprUseYWin(p) ){
1573 assert( p->y.pWin!=0 );
1574 mask |= sqlite3WhereExprListUsage(pMaskSet, p->y.pWin->pPartition);
1575 mask |= sqlite3WhereExprListUsage(pMaskSet, p->y.pWin->pOrderBy);
1576 mask |= sqlite3WhereExprUsage(pMaskSet, p->y.pWin->pFilter);
1578 #endif
1579 return mask;
1581 Bitmask sqlite3WhereExprUsage(WhereMaskSet *pMaskSet, Expr *p){
1582 return p ? sqlite3WhereExprUsageNN(pMaskSet,p) : 0;
1584 Bitmask sqlite3WhereExprListUsage(WhereMaskSet *pMaskSet, ExprList *pList){
1585 int i;
1586 Bitmask mask = 0;
1587 if( pList ){
1588 for(i=0; i<pList->nExpr; i++){
1589 mask |= sqlite3WhereExprUsage(pMaskSet, pList->a[i].pExpr);
1592 return mask;
1597 ** Call exprAnalyze on all terms in a WHERE clause.
1599 ** Note that exprAnalyze() might add new virtual terms onto the
1600 ** end of the WHERE clause. We do not want to analyze these new
1601 ** virtual terms, so start analyzing at the end and work forward
1602 ** so that the added virtual terms are never processed.
1604 void sqlite3WhereExprAnalyze(
1605 SrcList *pTabList, /* the FROM clause */
1606 WhereClause *pWC /* the WHERE clause to be analyzed */
1608 int i;
1609 for(i=pWC->nTerm-1; i>=0; i--){
1610 exprAnalyze(pTabList, pWC, i);
1615 ** For table-valued-functions, transform the function arguments into
1616 ** new WHERE clause terms.
1618 ** Each function argument translates into an equality constraint against
1619 ** a HIDDEN column in the table.
1621 void sqlite3WhereTabFuncArgs(
1622 Parse *pParse, /* Parsing context */
1623 SrcItem *pItem, /* The FROM clause term to process */
1624 WhereClause *pWC /* Xfer function arguments to here */
1626 Table *pTab;
1627 int j, k;
1628 ExprList *pArgs;
1629 Expr *pColRef;
1630 Expr *pTerm;
1631 if( pItem->fg.isTabFunc==0 ) return;
1632 pTab = pItem->pTab;
1633 assert( pTab!=0 );
1634 pArgs = pItem->u1.pFuncArg;
1635 if( pArgs==0 ) return;
1636 for(j=k=0; j<pArgs->nExpr; j++){
1637 Expr *pRhs;
1638 while( k<pTab->nCol && (pTab->aCol[k].colFlags & COLFLAG_HIDDEN)==0 ){k++;}
1639 if( k>=pTab->nCol ){
1640 sqlite3ErrorMsg(pParse, "too many arguments on %s() - max %d",
1641 pTab->zName, j);
1642 return;
1644 pColRef = sqlite3ExprAlloc(pParse->db, TK_COLUMN, 0, 0);
1645 if( pColRef==0 ) return;
1646 pColRef->iTable = pItem->iCursor;
1647 pColRef->iColumn = k++;
1648 assert( ExprUseYTab(pColRef) );
1649 pColRef->y.pTab = pTab;
1650 pRhs = sqlite3PExpr(pParse, TK_UPLUS,
1651 sqlite3ExprDup(pParse->db, pArgs->a[j].pExpr, 0), 0);
1652 pTerm = sqlite3PExpr(pParse, TK_EQ, pColRef, pRhs);
1653 if( pItem->fg.jointype & JT_LEFT ){
1654 sqlite3SetJoinExpr(pTerm, pItem->iCursor);
1656 whereClauseInsert(pWC, pTerm, TERM_DYNAMIC);