Snapshot of upstream SQLite 3.37.2
[sqlcipher.git] / src / where.c
blob7a8342675d7f6a104b9ae5f9367ebe971eea4a53
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements. This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows. Indices are selected and used to speed the search when doing
16 ** so is applicable. Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
19 #include "sqliteInt.h"
20 #include "whereInt.h"
23 ** Extra information appended to the end of sqlite3_index_info but not
24 ** visible to the xBestIndex function, at least not directly. The
25 ** sqlite3_vtab_collation() interface knows how to reach it, however.
27 ** This object is not an API and can be changed from one release to the
28 ** next. As long as allocateIndexInfo() and sqlite3_vtab_collation()
29 ** agree on the structure, all will be well.
31 typedef struct HiddenIndexInfo HiddenIndexInfo;
32 struct HiddenIndexInfo {
33 WhereClause *pWC; /* The Where clause being analyzed */
34 Parse *pParse; /* The parsing context */
37 /* Forward declaration of methods */
38 static int whereLoopResize(sqlite3*, WhereLoop*, int);
41 ** Return the estimated number of output rows from a WHERE clause
43 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
44 return pWInfo->nRowOut;
48 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
49 ** WHERE clause returns outputs for DISTINCT processing.
51 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
52 return pWInfo->eDistinct;
56 ** Return the number of ORDER BY terms that are satisfied by the
57 ** WHERE clause. A return of 0 means that the output must be
58 ** completely sorted. A return equal to the number of ORDER BY
59 ** terms means that no sorting is needed at all. A return that
60 ** is positive but less than the number of ORDER BY terms means that
61 ** block sorting is required.
63 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
64 return pWInfo->nOBSat;
68 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known
69 ** to emit rows in increasing order, and if the last row emitted by the
70 ** inner-most loop did not fit within the sorter, then we can skip all
71 ** subsequent rows for the current iteration of the inner loop (because they
72 ** will not fit in the sorter either) and continue with the second inner
73 ** loop - the loop immediately outside the inner-most.
75 ** When a row does not fit in the sorter (because the sorter already
76 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the
77 ** label returned by this function.
79 ** If the ORDER BY LIMIT optimization applies, the jump destination should
80 ** be the continuation for the second-inner-most loop. If the ORDER BY
81 ** LIMIT optimization does not apply, then the jump destination should
82 ** be the continuation for the inner-most loop.
84 ** It is always safe for this routine to return the continuation of the
85 ** inner-most loop, in the sense that a correct answer will result.
86 ** Returning the continuation the second inner loop is an optimization
87 ** that might make the code run a little faster, but should not change
88 ** the final answer.
90 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){
91 WhereLevel *pInner;
92 if( !pWInfo->bOrderedInnerLoop ){
93 /* The ORDER BY LIMIT optimization does not apply. Jump to the
94 ** continuation of the inner-most loop. */
95 return pWInfo->iContinue;
97 pInner = &pWInfo->a[pWInfo->nLevel-1];
98 assert( pInner->addrNxt!=0 );
99 return pInner->addrNxt;
103 ** While generating code for the min/max optimization, after handling
104 ** the aggregate-step call to min() or max(), check to see if any
105 ** additional looping is required. If the output order is such that
106 ** we are certain that the correct answer has already been found, then
107 ** code an OP_Goto to by pass subsequent processing.
109 ** Any extra OP_Goto that is coded here is an optimization. The
110 ** correct answer should be obtained regardless. This OP_Goto just
111 ** makes the answer appear faster.
113 void sqlite3WhereMinMaxOptEarlyOut(Vdbe *v, WhereInfo *pWInfo){
114 WhereLevel *pInner;
115 int i;
116 if( !pWInfo->bOrderedInnerLoop ) return;
117 if( pWInfo->nOBSat==0 ) return;
118 for(i=pWInfo->nLevel-1; i>=0; i--){
119 pInner = &pWInfo->a[i];
120 if( (pInner->pWLoop->wsFlags & WHERE_COLUMN_IN)!=0 ){
121 sqlite3VdbeGoto(v, pInner->addrNxt);
122 return;
125 sqlite3VdbeGoto(v, pWInfo->iBreak);
129 ** Return the VDBE address or label to jump to in order to continue
130 ** immediately with the next row of a WHERE clause.
132 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
133 assert( pWInfo->iContinue!=0 );
134 return pWInfo->iContinue;
138 ** Return the VDBE address or label to jump to in order to break
139 ** out of a WHERE loop.
141 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
142 return pWInfo->iBreak;
146 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
147 ** operate directly on the rowids returned by a WHERE clause. Return
148 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
149 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass
150 ** optimization can be used on multiple
152 ** If the ONEPASS optimization is used (if this routine returns true)
153 ** then also write the indices of open cursors used by ONEPASS
154 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data
155 ** table and iaCur[1] gets the cursor used by an auxiliary index.
156 ** Either value may be -1, indicating that cursor is not used.
157 ** Any cursors returned will have been opened for writing.
159 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
160 ** unable to use the ONEPASS optimization.
162 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
163 memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
164 #ifdef WHERETRACE_ENABLED
165 if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
166 sqlite3DebugPrintf("%s cursors: %d %d\n",
167 pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
168 aiCur[0], aiCur[1]);
170 #endif
171 return pWInfo->eOnePass;
175 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move
176 ** the data cursor to the row selected by the index cursor.
178 int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){
179 return pWInfo->bDeferredSeek;
183 ** Move the content of pSrc into pDest
185 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
186 pDest->n = pSrc->n;
187 memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
191 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
193 ** The new entry might overwrite an existing entry, or it might be
194 ** appended, or it might be discarded. Do whatever is the right thing
195 ** so that pSet keeps the N_OR_COST best entries seen so far.
197 static int whereOrInsert(
198 WhereOrSet *pSet, /* The WhereOrSet to be updated */
199 Bitmask prereq, /* Prerequisites of the new entry */
200 LogEst rRun, /* Run-cost of the new entry */
201 LogEst nOut /* Number of outputs for the new entry */
203 u16 i;
204 WhereOrCost *p;
205 for(i=pSet->n, p=pSet->a; i>0; i--, p++){
206 if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
207 goto whereOrInsert_done;
209 if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
210 return 0;
213 if( pSet->n<N_OR_COST ){
214 p = &pSet->a[pSet->n++];
215 p->nOut = nOut;
216 }else{
217 p = pSet->a;
218 for(i=1; i<pSet->n; i++){
219 if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
221 if( p->rRun<=rRun ) return 0;
223 whereOrInsert_done:
224 p->prereq = prereq;
225 p->rRun = rRun;
226 if( p->nOut>nOut ) p->nOut = nOut;
227 return 1;
231 ** Return the bitmask for the given cursor number. Return 0 if
232 ** iCursor is not in the set.
234 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
235 int i;
236 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
237 for(i=0; i<pMaskSet->n; i++){
238 if( pMaskSet->ix[i]==iCursor ){
239 return MASKBIT(i);
242 return 0;
246 ** Create a new mask for cursor iCursor.
248 ** There is one cursor per table in the FROM clause. The number of
249 ** tables in the FROM clause is limited by a test early in the
250 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
251 ** array will never overflow.
253 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
254 assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
255 pMaskSet->ix[pMaskSet->n++] = iCursor;
259 ** If the right-hand branch of the expression is a TK_COLUMN, then return
260 ** a pointer to the right-hand branch. Otherwise, return NULL.
262 static Expr *whereRightSubexprIsColumn(Expr *p){
263 p = sqlite3ExprSkipCollateAndLikely(p->pRight);
264 if( ALWAYS(p!=0) && p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){
265 return p;
267 return 0;
271 ** Advance to the next WhereTerm that matches according to the criteria
272 ** established when the pScan object was initialized by whereScanInit().
273 ** Return NULL if there are no more matching WhereTerms.
275 static WhereTerm *whereScanNext(WhereScan *pScan){
276 int iCur; /* The cursor on the LHS of the term */
277 i16 iColumn; /* The column on the LHS of the term. -1 for IPK */
278 Expr *pX; /* An expression being tested */
279 WhereClause *pWC; /* Shorthand for pScan->pWC */
280 WhereTerm *pTerm; /* The term being tested */
281 int k = pScan->k; /* Where to start scanning */
283 assert( pScan->iEquiv<=pScan->nEquiv );
284 pWC = pScan->pWC;
285 while(1){
286 iColumn = pScan->aiColumn[pScan->iEquiv-1];
287 iCur = pScan->aiCur[pScan->iEquiv-1];
288 assert( pWC!=0 );
289 assert( iCur>=0 );
291 for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
292 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 || pTerm->leftCursor<0 );
293 if( pTerm->leftCursor==iCur
294 && pTerm->u.x.leftColumn==iColumn
295 && (iColumn!=XN_EXPR
296 || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft,
297 pScan->pIdxExpr,iCur)==0)
298 && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin))
300 if( (pTerm->eOperator & WO_EQUIV)!=0
301 && pScan->nEquiv<ArraySize(pScan->aiCur)
302 && (pX = whereRightSubexprIsColumn(pTerm->pExpr))!=0
304 int j;
305 for(j=0; j<pScan->nEquiv; j++){
306 if( pScan->aiCur[j]==pX->iTable
307 && pScan->aiColumn[j]==pX->iColumn ){
308 break;
311 if( j==pScan->nEquiv ){
312 pScan->aiCur[j] = pX->iTable;
313 pScan->aiColumn[j] = pX->iColumn;
314 pScan->nEquiv++;
317 if( (pTerm->eOperator & pScan->opMask)!=0 ){
318 /* Verify the affinity and collating sequence match */
319 if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
320 CollSeq *pColl;
321 Parse *pParse = pWC->pWInfo->pParse;
322 pX = pTerm->pExpr;
323 if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
324 continue;
326 assert(pX->pLeft);
327 pColl = sqlite3ExprCompareCollSeq(pParse, pX);
328 if( pColl==0 ) pColl = pParse->db->pDfltColl;
329 if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
330 continue;
333 if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
334 && (pX = pTerm->pExpr->pRight, ALWAYS(pX!=0))
335 && pX->op==TK_COLUMN
336 && pX->iTable==pScan->aiCur[0]
337 && pX->iColumn==pScan->aiColumn[0]
339 testcase( pTerm->eOperator & WO_IS );
340 continue;
342 pScan->pWC = pWC;
343 pScan->k = k+1;
344 #ifdef WHERETRACE_ENABLED
345 if( sqlite3WhereTrace & 0x20000 ){
346 int ii;
347 sqlite3DebugPrintf("SCAN-TERM %p: nEquiv=%d",
348 pTerm, pScan->nEquiv);
349 for(ii=0; ii<pScan->nEquiv; ii++){
350 sqlite3DebugPrintf(" {%d:%d}",
351 pScan->aiCur[ii], pScan->aiColumn[ii]);
353 sqlite3DebugPrintf("\n");
355 #endif
356 return pTerm;
360 pWC = pWC->pOuter;
361 k = 0;
362 }while( pWC!=0 );
363 if( pScan->iEquiv>=pScan->nEquiv ) break;
364 pWC = pScan->pOrigWC;
365 k = 0;
366 pScan->iEquiv++;
368 return 0;
372 ** This is whereScanInit() for the case of an index on an expression.
373 ** It is factored out into a separate tail-recursion subroutine so that
374 ** the normal whereScanInit() routine, which is a high-runner, does not
375 ** need to push registers onto the stack as part of its prologue.
377 static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){
378 pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr);
379 return whereScanNext(pScan);
383 ** Initialize a WHERE clause scanner object. Return a pointer to the
384 ** first match. Return NULL if there are no matches.
386 ** The scanner will be searching the WHERE clause pWC. It will look
387 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
388 ** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx
389 ** must be one of the indexes of table iCur.
391 ** The <op> must be one of the operators described by opMask.
393 ** If the search is for X and the WHERE clause contains terms of the
394 ** form X=Y then this routine might also return terms of the form
395 ** "Y <op> <expr>". The number of levels of transitivity is limited,
396 ** but is enough to handle most commonly occurring SQL statements.
398 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
399 ** index pIdx.
401 static WhereTerm *whereScanInit(
402 WhereScan *pScan, /* The WhereScan object being initialized */
403 WhereClause *pWC, /* The WHERE clause to be scanned */
404 int iCur, /* Cursor to scan for */
405 int iColumn, /* Column to scan for */
406 u32 opMask, /* Operator(s) to scan for */
407 Index *pIdx /* Must be compatible with this index */
409 pScan->pOrigWC = pWC;
410 pScan->pWC = pWC;
411 pScan->pIdxExpr = 0;
412 pScan->idxaff = 0;
413 pScan->zCollName = 0;
414 pScan->opMask = opMask;
415 pScan->k = 0;
416 pScan->aiCur[0] = iCur;
417 pScan->nEquiv = 1;
418 pScan->iEquiv = 1;
419 if( pIdx ){
420 int j = iColumn;
421 iColumn = pIdx->aiColumn[j];
422 if( iColumn==XN_EXPR ){
423 pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
424 pScan->zCollName = pIdx->azColl[j];
425 pScan->aiColumn[0] = XN_EXPR;
426 return whereScanInitIndexExpr(pScan);
427 }else if( iColumn==pIdx->pTable->iPKey ){
428 iColumn = XN_ROWID;
429 }else if( iColumn>=0 ){
430 pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
431 pScan->zCollName = pIdx->azColl[j];
433 }else if( iColumn==XN_EXPR ){
434 return 0;
436 pScan->aiColumn[0] = iColumn;
437 return whereScanNext(pScan);
441 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
442 ** where X is a reference to the iColumn of table iCur or of index pIdx
443 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
444 ** the op parameter. Return a pointer to the term. Return 0 if not found.
446 ** If pIdx!=0 then it must be one of the indexes of table iCur.
447 ** Search for terms matching the iColumn-th column of pIdx
448 ** rather than the iColumn-th column of table iCur.
450 ** The term returned might by Y=<expr> if there is another constraint in
451 ** the WHERE clause that specifies that X=Y. Any such constraints will be
452 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The
453 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
454 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
455 ** other equivalent values. Hence a search for X will return <expr> if X=A1
456 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
458 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
459 ** then try for the one with no dependencies on <expr> - in other words where
460 ** <expr> is a constant expression of some kind. Only return entries of
461 ** the form "X <op> Y" where Y is a column in another table if no terms of
462 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS
463 ** exist, try to return a term that does not use WO_EQUIV.
465 WhereTerm *sqlite3WhereFindTerm(
466 WhereClause *pWC, /* The WHERE clause to be searched */
467 int iCur, /* Cursor number of LHS */
468 int iColumn, /* Column number of LHS */
469 Bitmask notReady, /* RHS must not overlap with this mask */
470 u32 op, /* Mask of WO_xx values describing operator */
471 Index *pIdx /* Must be compatible with this index, if not NULL */
473 WhereTerm *pResult = 0;
474 WhereTerm *p;
475 WhereScan scan;
477 p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
478 op &= WO_EQ|WO_IS;
479 while( p ){
480 if( (p->prereqRight & notReady)==0 ){
481 if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
482 testcase( p->eOperator & WO_IS );
483 return p;
485 if( pResult==0 ) pResult = p;
487 p = whereScanNext(&scan);
489 return pResult;
493 ** This function searches pList for an entry that matches the iCol-th column
494 ** of index pIdx.
496 ** If such an expression is found, its index in pList->a[] is returned. If
497 ** no expression is found, -1 is returned.
499 static int findIndexCol(
500 Parse *pParse, /* Parse context */
501 ExprList *pList, /* Expression list to search */
502 int iBase, /* Cursor for table associated with pIdx */
503 Index *pIdx, /* Index to match column of */
504 int iCol /* Column of index to match */
506 int i;
507 const char *zColl = pIdx->azColl[iCol];
509 for(i=0; i<pList->nExpr; i++){
510 Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr);
511 if( ALWAYS(p!=0)
512 && (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN)
513 && p->iColumn==pIdx->aiColumn[iCol]
514 && p->iTable==iBase
516 CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr);
517 if( 0==sqlite3StrICmp(pColl->zName, zColl) ){
518 return i;
523 return -1;
527 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
529 static int indexColumnNotNull(Index *pIdx, int iCol){
530 int j;
531 assert( pIdx!=0 );
532 assert( iCol>=0 && iCol<pIdx->nColumn );
533 j = pIdx->aiColumn[iCol];
534 if( j>=0 ){
535 return pIdx->pTable->aCol[j].notNull;
536 }else if( j==(-1) ){
537 return 1;
538 }else{
539 assert( j==(-2) );
540 return 0; /* Assume an indexed expression can always yield a NULL */
546 ** Return true if the DISTINCT expression-list passed as the third argument
547 ** is redundant.
549 ** A DISTINCT list is redundant if any subset of the columns in the
550 ** DISTINCT list are collectively unique and individually non-null.
552 static int isDistinctRedundant(
553 Parse *pParse, /* Parsing context */
554 SrcList *pTabList, /* The FROM clause */
555 WhereClause *pWC, /* The WHERE clause */
556 ExprList *pDistinct /* The result set that needs to be DISTINCT */
558 Table *pTab;
559 Index *pIdx;
560 int i;
561 int iBase;
563 /* If there is more than one table or sub-select in the FROM clause of
564 ** this query, then it will not be possible to show that the DISTINCT
565 ** clause is redundant. */
566 if( pTabList->nSrc!=1 ) return 0;
567 iBase = pTabList->a[0].iCursor;
568 pTab = pTabList->a[0].pTab;
570 /* If any of the expressions is an IPK column on table iBase, then return
571 ** true. Note: The (p->iTable==iBase) part of this test may be false if the
572 ** current SELECT is a correlated sub-query.
574 for(i=0; i<pDistinct->nExpr; i++){
575 Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr);
576 if( NEVER(p==0) ) continue;
577 if( p->op!=TK_COLUMN && p->op!=TK_AGG_COLUMN ) continue;
578 if( p->iTable==iBase && p->iColumn<0 ) return 1;
581 /* Loop through all indices on the table, checking each to see if it makes
582 ** the DISTINCT qualifier redundant. It does so if:
584 ** 1. The index is itself UNIQUE, and
586 ** 2. All of the columns in the index are either part of the pDistinct
587 ** list, or else the WHERE clause contains a term of the form "col=X",
588 ** where X is a constant value. The collation sequences of the
589 ** comparison and select-list expressions must match those of the index.
591 ** 3. All of those index columns for which the WHERE clause does not
592 ** contain a "col=X" term are subject to a NOT NULL constraint.
594 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
595 if( !IsUniqueIndex(pIdx) ) continue;
596 if( pIdx->pPartIdxWhere ) continue;
597 for(i=0; i<pIdx->nKeyCol; i++){
598 if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
599 if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
600 if( indexColumnNotNull(pIdx, i)==0 ) break;
603 if( i==pIdx->nKeyCol ){
604 /* This index implies that the DISTINCT qualifier is redundant. */
605 return 1;
609 return 0;
614 ** Estimate the logarithm of the input value to base 2.
616 static LogEst estLog(LogEst N){
617 return N<=10 ? 0 : sqlite3LogEst(N) - 33;
621 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
623 ** This routine runs over generated VDBE code and translates OP_Column
624 ** opcodes into OP_Copy when the table is being accessed via co-routine
625 ** instead of via table lookup.
627 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on
628 ** cursor iTabCur are transformed into OP_Sequence opcode for the
629 ** iAutoidxCur cursor, in order to generate unique rowids for the
630 ** automatic index being generated.
632 static void translateColumnToCopy(
633 Parse *pParse, /* Parsing context */
634 int iStart, /* Translate from this opcode to the end */
635 int iTabCur, /* OP_Column/OP_Rowid references to this table */
636 int iRegister, /* The first column is in this register */
637 int iAutoidxCur /* If non-zero, cursor of autoindex being generated */
639 Vdbe *v = pParse->pVdbe;
640 VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
641 int iEnd = sqlite3VdbeCurrentAddr(v);
642 if( pParse->db->mallocFailed ) return;
643 for(; iStart<iEnd; iStart++, pOp++){
644 if( pOp->p1!=iTabCur ) continue;
645 if( pOp->opcode==OP_Column ){
646 pOp->opcode = OP_Copy;
647 pOp->p1 = pOp->p2 + iRegister;
648 pOp->p2 = pOp->p3;
649 pOp->p3 = 0;
650 }else if( pOp->opcode==OP_Rowid ){
651 pOp->opcode = OP_Sequence;
652 pOp->p1 = iAutoidxCur;
653 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
654 if( iAutoidxCur==0 ){
655 pOp->opcode = OP_Null;
656 pOp->p3 = 0;
658 #endif
664 ** Two routines for printing the content of an sqlite3_index_info
665 ** structure. Used for testing and debugging only. If neither
666 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
667 ** are no-ops.
669 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
670 static void whereTraceIndexInfoInputs(sqlite3_index_info *p){
671 int i;
672 if( !sqlite3WhereTrace ) return;
673 for(i=0; i<p->nConstraint; i++){
674 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
676 p->aConstraint[i].iColumn,
677 p->aConstraint[i].iTermOffset,
678 p->aConstraint[i].op,
679 p->aConstraint[i].usable);
681 for(i=0; i<p->nOrderBy; i++){
682 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
684 p->aOrderBy[i].iColumn,
685 p->aOrderBy[i].desc);
688 static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){
689 int i;
690 if( !sqlite3WhereTrace ) return;
691 for(i=0; i<p->nConstraint; i++){
692 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
694 p->aConstraintUsage[i].argvIndex,
695 p->aConstraintUsage[i].omit);
697 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum);
698 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr);
699 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed);
700 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost);
701 sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows);
703 #else
704 #define whereTraceIndexInfoInputs(A)
705 #define whereTraceIndexInfoOutputs(A)
706 #endif
708 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
710 ** Return TRUE if the WHERE clause term pTerm is of a form where it
711 ** could be used with an index to access pSrc, assuming an appropriate
712 ** index existed.
714 static int termCanDriveIndex(
715 WhereTerm *pTerm, /* WHERE clause term to check */
716 SrcItem *pSrc, /* Table we are trying to access */
717 Bitmask notReady /* Tables in outer loops of the join */
719 char aff;
720 if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
721 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
722 if( (pSrc->fg.jointype & JT_LEFT)
723 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
724 && (pTerm->eOperator & WO_IS)
726 /* Cannot use an IS term from the WHERE clause as an index driver for
727 ** the RHS of a LEFT JOIN. Such a term can only be used if it is from
728 ** the ON clause. */
729 return 0;
731 if( (pTerm->prereqRight & notReady)!=0 ) return 0;
732 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
733 if( pTerm->u.x.leftColumn<0 ) return 0;
734 aff = pSrc->pTab->aCol[pTerm->u.x.leftColumn].affinity;
735 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
736 testcase( pTerm->pExpr->op==TK_IS );
737 return 1;
739 #endif
742 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
744 ** Generate code to construct the Index object for an automatic index
745 ** and to set up the WhereLevel object pLevel so that the code generator
746 ** makes use of the automatic index.
748 static void constructAutomaticIndex(
749 Parse *pParse, /* The parsing context */
750 WhereClause *pWC, /* The WHERE clause */
751 SrcItem *pSrc, /* The FROM clause term to get the next index */
752 Bitmask notReady, /* Mask of cursors that are not available */
753 WhereLevel *pLevel /* Write new index here */
755 int nKeyCol; /* Number of columns in the constructed index */
756 WhereTerm *pTerm; /* A single term of the WHERE clause */
757 WhereTerm *pWCEnd; /* End of pWC->a[] */
758 Index *pIdx; /* Object describing the transient index */
759 Vdbe *v; /* Prepared statement under construction */
760 int addrInit; /* Address of the initialization bypass jump */
761 Table *pTable; /* The table being indexed */
762 int addrTop; /* Top of the index fill loop */
763 int regRecord; /* Register holding an index record */
764 int n; /* Column counter */
765 int i; /* Loop counter */
766 int mxBitCol; /* Maximum column in pSrc->colUsed */
767 CollSeq *pColl; /* Collating sequence to on a column */
768 WhereLoop *pLoop; /* The Loop object */
769 char *zNotUsed; /* Extra space on the end of pIdx */
770 Bitmask idxCols; /* Bitmap of columns used for indexing */
771 Bitmask extraCols; /* Bitmap of additional columns */
772 u8 sentWarning = 0; /* True if a warnning has been issued */
773 Expr *pPartial = 0; /* Partial Index Expression */
774 int iContinue = 0; /* Jump here to skip excluded rows */
775 SrcItem *pTabItem; /* FROM clause term being indexed */
776 int addrCounter = 0; /* Address where integer counter is initialized */
777 int regBase; /* Array of registers where record is assembled */
779 /* Generate code to skip over the creation and initialization of the
780 ** transient index on 2nd and subsequent iterations of the loop. */
781 v = pParse->pVdbe;
782 assert( v!=0 );
783 addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
785 /* Count the number of columns that will be added to the index
786 ** and used to match WHERE clause constraints */
787 nKeyCol = 0;
788 pTable = pSrc->pTab;
789 pWCEnd = &pWC->a[pWC->nTerm];
790 pLoop = pLevel->pWLoop;
791 idxCols = 0;
792 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
793 Expr *pExpr = pTerm->pExpr;
794 assert( !ExprHasProperty(pExpr, EP_FromJoin) /* prereq always non-zero */
795 || pExpr->iRightJoinTable!=pSrc->iCursor /* for the right-hand */
796 || pLoop->prereq!=0 ); /* table of a LEFT JOIN */
797 if( pLoop->prereq==0
798 && (pTerm->wtFlags & TERM_VIRTUAL)==0
799 && !ExprHasProperty(pExpr, EP_FromJoin)
800 && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){
801 pPartial = sqlite3ExprAnd(pParse, pPartial,
802 sqlite3ExprDup(pParse->db, pExpr, 0));
804 if( termCanDriveIndex(pTerm, pSrc, notReady) ){
805 int iCol;
806 Bitmask cMask;
807 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
808 iCol = pTerm->u.x.leftColumn;
809 cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
810 testcase( iCol==BMS );
811 testcase( iCol==BMS-1 );
812 if( !sentWarning ){
813 sqlite3_log(SQLITE_WARNING_AUTOINDEX,
814 "automatic index on %s(%s)", pTable->zName,
815 pTable->aCol[iCol].zCnName);
816 sentWarning = 1;
818 if( (idxCols & cMask)==0 ){
819 if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
820 goto end_auto_index_create;
822 pLoop->aLTerm[nKeyCol++] = pTerm;
823 idxCols |= cMask;
827 assert( nKeyCol>0 || pParse->db->mallocFailed );
828 pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
829 pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
830 | WHERE_AUTO_INDEX;
832 /* Count the number of additional columns needed to create a
833 ** covering index. A "covering index" is an index that contains all
834 ** columns that are needed by the query. With a covering index, the
835 ** original table never needs to be accessed. Automatic indices must
836 ** be a covering index because the index will not be updated if the
837 ** original table changes and the index and table cannot both be used
838 ** if they go out of sync.
840 extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
841 mxBitCol = MIN(BMS-1,pTable->nCol);
842 testcase( pTable->nCol==BMS-1 );
843 testcase( pTable->nCol==BMS-2 );
844 for(i=0; i<mxBitCol; i++){
845 if( extraCols & MASKBIT(i) ) nKeyCol++;
847 if( pSrc->colUsed & MASKBIT(BMS-1) ){
848 nKeyCol += pTable->nCol - BMS + 1;
851 /* Construct the Index object to describe this index */
852 pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
853 if( pIdx==0 ) goto end_auto_index_create;
854 pLoop->u.btree.pIndex = pIdx;
855 pIdx->zName = "auto-index";
856 pIdx->pTable = pTable;
857 n = 0;
858 idxCols = 0;
859 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
860 if( termCanDriveIndex(pTerm, pSrc, notReady) ){
861 int iCol;
862 Bitmask cMask;
863 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
864 iCol = pTerm->u.x.leftColumn;
865 cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
866 testcase( iCol==BMS-1 );
867 testcase( iCol==BMS );
868 if( (idxCols & cMask)==0 ){
869 Expr *pX = pTerm->pExpr;
870 idxCols |= cMask;
871 pIdx->aiColumn[n] = pTerm->u.x.leftColumn;
872 pColl = sqlite3ExprCompareCollSeq(pParse, pX);
873 assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */
874 pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
875 n++;
879 assert( (u32)n==pLoop->u.btree.nEq );
881 /* Add additional columns needed to make the automatic index into
882 ** a covering index */
883 for(i=0; i<mxBitCol; i++){
884 if( extraCols & MASKBIT(i) ){
885 pIdx->aiColumn[n] = i;
886 pIdx->azColl[n] = sqlite3StrBINARY;
887 n++;
890 if( pSrc->colUsed & MASKBIT(BMS-1) ){
891 for(i=BMS-1; i<pTable->nCol; i++){
892 pIdx->aiColumn[n] = i;
893 pIdx->azColl[n] = sqlite3StrBINARY;
894 n++;
897 assert( n==nKeyCol );
898 pIdx->aiColumn[n] = XN_ROWID;
899 pIdx->azColl[n] = sqlite3StrBINARY;
901 /* Create the automatic index */
902 assert( pLevel->iIdxCur>=0 );
903 pLevel->iIdxCur = pParse->nTab++;
904 sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
905 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
906 VdbeComment((v, "for %s", pTable->zName));
908 /* Fill the automatic index with content */
909 pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
910 if( pTabItem->fg.viaCoroutine ){
911 int regYield = pTabItem->regReturn;
912 addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
913 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
914 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield);
915 VdbeCoverage(v);
916 VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
917 }else{
918 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
920 if( pPartial ){
921 iContinue = sqlite3VdbeMakeLabel(pParse);
922 sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
923 pLoop->wsFlags |= WHERE_PARTIALIDX;
925 regRecord = sqlite3GetTempReg(pParse);
926 regBase = sqlite3GenerateIndexKey(
927 pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
929 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
930 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
931 if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
932 if( pTabItem->fg.viaCoroutine ){
933 sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
934 testcase( pParse->db->mallocFailed );
935 assert( pLevel->iIdxCur>0 );
936 translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
937 pTabItem->regResult, pLevel->iIdxCur);
938 sqlite3VdbeGoto(v, addrTop);
939 pTabItem->fg.viaCoroutine = 0;
940 }else{
941 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
942 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
944 sqlite3VdbeJumpHere(v, addrTop);
945 sqlite3ReleaseTempReg(pParse, regRecord);
947 /* Jump here when skipping the initialization */
948 sqlite3VdbeJumpHere(v, addrInit);
950 end_auto_index_create:
951 sqlite3ExprDelete(pParse->db, pPartial);
953 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
955 #ifndef SQLITE_OMIT_VIRTUALTABLE
957 ** Allocate and populate an sqlite3_index_info structure. It is the
958 ** responsibility of the caller to eventually release the structure
959 ** by passing the pointer returned by this function to sqlite3_free().
961 static sqlite3_index_info *allocateIndexInfo(
962 Parse *pParse, /* The parsing context */
963 WhereClause *pWC, /* The WHERE clause being analyzed */
964 Bitmask mUnusable, /* Ignore terms with these prereqs */
965 SrcItem *pSrc, /* The FROM clause term that is the vtab */
966 ExprList *pOrderBy, /* The ORDER BY clause */
967 u16 *pmNoOmit /* Mask of terms not to omit */
969 int i, j;
970 int nTerm;
971 struct sqlite3_index_constraint *pIdxCons;
972 struct sqlite3_index_orderby *pIdxOrderBy;
973 struct sqlite3_index_constraint_usage *pUsage;
974 struct HiddenIndexInfo *pHidden;
975 WhereTerm *pTerm;
976 int nOrderBy;
977 sqlite3_index_info *pIdxInfo;
978 u16 mNoOmit = 0;
980 /* Count the number of possible WHERE clause constraints referring
981 ** to this virtual table */
982 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
983 if( pTerm->leftCursor != pSrc->iCursor ) continue;
984 if( pTerm->prereqRight & mUnusable ) continue;
985 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
986 testcase( pTerm->eOperator & WO_IN );
987 testcase( pTerm->eOperator & WO_ISNULL );
988 testcase( pTerm->eOperator & WO_IS );
989 testcase( pTerm->eOperator & WO_ALL );
990 if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
991 if( pTerm->wtFlags & TERM_VNULL ) continue;
992 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
993 assert( pTerm->u.x.leftColumn>=(-1) );
994 nTerm++;
997 /* If the ORDER BY clause contains only columns in the current
998 ** virtual table then allocate space for the aOrderBy part of
999 ** the sqlite3_index_info structure.
1001 nOrderBy = 0;
1002 if( pOrderBy ){
1003 int n = pOrderBy->nExpr;
1004 for(i=0; i<n; i++){
1005 Expr *pExpr = pOrderBy->a[i].pExpr;
1006 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
1007 if( pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL ) break;
1009 if( i==n){
1010 nOrderBy = n;
1014 /* Allocate the sqlite3_index_info structure
1016 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
1017 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
1018 + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden) );
1019 if( pIdxInfo==0 ){
1020 sqlite3ErrorMsg(pParse, "out of memory");
1021 return 0;
1023 pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1];
1024 pIdxCons = (struct sqlite3_index_constraint*)&pHidden[1];
1025 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
1026 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
1027 pIdxInfo->nOrderBy = nOrderBy;
1028 pIdxInfo->aConstraint = pIdxCons;
1029 pIdxInfo->aOrderBy = pIdxOrderBy;
1030 pIdxInfo->aConstraintUsage = pUsage;
1031 pHidden->pWC = pWC;
1032 pHidden->pParse = pParse;
1033 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1034 u16 op;
1035 if( pTerm->leftCursor != pSrc->iCursor ) continue;
1036 if( pTerm->prereqRight & mUnusable ) continue;
1037 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
1038 testcase( pTerm->eOperator & WO_IN );
1039 testcase( pTerm->eOperator & WO_IS );
1040 testcase( pTerm->eOperator & WO_ISNULL );
1041 testcase( pTerm->eOperator & WO_ALL );
1042 if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
1043 if( pTerm->wtFlags & TERM_VNULL ) continue;
1045 /* tag-20191211-002: WHERE-clause constraints are not useful to the
1046 ** right-hand table of a LEFT JOIN. See tag-20191211-001 for the
1047 ** equivalent restriction for ordinary tables. */
1048 if( (pSrc->fg.jointype & JT_LEFT)!=0
1049 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
1051 continue;
1053 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
1054 assert( pTerm->u.x.leftColumn>=(-1) );
1055 pIdxCons[j].iColumn = pTerm->u.x.leftColumn;
1056 pIdxCons[j].iTermOffset = i;
1057 op = pTerm->eOperator & WO_ALL;
1058 if( op==WO_IN ) op = WO_EQ;
1059 if( op==WO_AUX ){
1060 pIdxCons[j].op = pTerm->eMatchOp;
1061 }else if( op & (WO_ISNULL|WO_IS) ){
1062 if( op==WO_ISNULL ){
1063 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL;
1064 }else{
1065 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS;
1067 }else{
1068 pIdxCons[j].op = (u8)op;
1069 /* The direct assignment in the previous line is possible only because
1070 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
1071 ** following asserts verify this fact. */
1072 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1073 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1074 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1075 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1076 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1077 assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) );
1079 if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
1080 && sqlite3ExprIsVector(pTerm->pExpr->pRight)
1082 testcase( j!=i );
1083 if( j<16 ) mNoOmit |= (1 << j);
1084 if( op==WO_LT ) pIdxCons[j].op = WO_LE;
1085 if( op==WO_GT ) pIdxCons[j].op = WO_GE;
1089 j++;
1091 pIdxInfo->nConstraint = j;
1092 for(i=0; i<nOrderBy; i++){
1093 Expr *pExpr = pOrderBy->a[i].pExpr;
1094 pIdxOrderBy[i].iColumn = pExpr->iColumn;
1095 pIdxOrderBy[i].desc = pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC;
1098 *pmNoOmit = mNoOmit;
1099 return pIdxInfo;
1103 ** The table object reference passed as the second argument to this function
1104 ** must represent a virtual table. This function invokes the xBestIndex()
1105 ** method of the virtual table with the sqlite3_index_info object that
1106 ** comes in as the 3rd argument to this function.
1108 ** If an error occurs, pParse is populated with an error message and an
1109 ** appropriate error code is returned. A return of SQLITE_CONSTRAINT from
1110 ** xBestIndex is not considered an error. SQLITE_CONSTRAINT indicates that
1111 ** the current configuration of "unusable" flags in sqlite3_index_info can
1112 ** not result in a valid plan.
1114 ** Whether or not an error is returned, it is the responsibility of the
1115 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1116 ** that this is required.
1118 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
1119 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
1120 int rc;
1122 whereTraceIndexInfoInputs(p);
1123 rc = pVtab->pModule->xBestIndex(pVtab, p);
1124 whereTraceIndexInfoOutputs(p);
1126 if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){
1127 if( rc==SQLITE_NOMEM ){
1128 sqlite3OomFault(pParse->db);
1129 }else if( !pVtab->zErrMsg ){
1130 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1131 }else{
1132 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
1135 sqlite3_free(pVtab->zErrMsg);
1136 pVtab->zErrMsg = 0;
1137 return rc;
1139 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1141 #ifdef SQLITE_ENABLE_STAT4
1143 ** Estimate the location of a particular key among all keys in an
1144 ** index. Store the results in aStat as follows:
1146 ** aStat[0] Est. number of rows less than pRec
1147 ** aStat[1] Est. number of rows equal to pRec
1149 ** Return the index of the sample that is the smallest sample that
1150 ** is greater than or equal to pRec. Note that this index is not an index
1151 ** into the aSample[] array - it is an index into a virtual set of samples
1152 ** based on the contents of aSample[] and the number of fields in record
1153 ** pRec.
1155 static int whereKeyStats(
1156 Parse *pParse, /* Database connection */
1157 Index *pIdx, /* Index to consider domain of */
1158 UnpackedRecord *pRec, /* Vector of values to consider */
1159 int roundUp, /* Round up if true. Round down if false */
1160 tRowcnt *aStat /* OUT: stats written here */
1162 IndexSample *aSample = pIdx->aSample;
1163 int iCol; /* Index of required stats in anEq[] etc. */
1164 int i; /* Index of first sample >= pRec */
1165 int iSample; /* Smallest sample larger than or equal to pRec */
1166 int iMin = 0; /* Smallest sample not yet tested */
1167 int iTest; /* Next sample to test */
1168 int res; /* Result of comparison operation */
1169 int nField; /* Number of fields in pRec */
1170 tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */
1172 #ifndef SQLITE_DEBUG
1173 UNUSED_PARAMETER( pParse );
1174 #endif
1175 assert( pRec!=0 );
1176 assert( pIdx->nSample>0 );
1177 assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol );
1179 /* Do a binary search to find the first sample greater than or equal
1180 ** to pRec. If pRec contains a single field, the set of samples to search
1181 ** is simply the aSample[] array. If the samples in aSample[] contain more
1182 ** than one fields, all fields following the first are ignored.
1184 ** If pRec contains N fields, where N is more than one, then as well as the
1185 ** samples in aSample[] (truncated to N fields), the search also has to
1186 ** consider prefixes of those samples. For example, if the set of samples
1187 ** in aSample is:
1189 ** aSample[0] = (a, 5)
1190 ** aSample[1] = (a, 10)
1191 ** aSample[2] = (b, 5)
1192 ** aSample[3] = (c, 100)
1193 ** aSample[4] = (c, 105)
1195 ** Then the search space should ideally be the samples above and the
1196 ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1197 ** the code actually searches this set:
1199 ** 0: (a)
1200 ** 1: (a, 5)
1201 ** 2: (a, 10)
1202 ** 3: (a, 10)
1203 ** 4: (b)
1204 ** 5: (b, 5)
1205 ** 6: (c)
1206 ** 7: (c, 100)
1207 ** 8: (c, 105)
1208 ** 9: (c, 105)
1210 ** For each sample in the aSample[] array, N samples are present in the
1211 ** effective sample array. In the above, samples 0 and 1 are based on
1212 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1214 ** Often, sample i of each block of N effective samples has (i+1) fields.
1215 ** Except, each sample may be extended to ensure that it is greater than or
1216 ** equal to the previous sample in the array. For example, in the above,
1217 ** sample 2 is the first sample of a block of N samples, so at first it
1218 ** appears that it should be 1 field in size. However, that would make it
1219 ** smaller than sample 1, so the binary search would not work. As a result,
1220 ** it is extended to two fields. The duplicates that this creates do not
1221 ** cause any problems.
1223 nField = pRec->nField;
1224 iCol = 0;
1225 iSample = pIdx->nSample * nField;
1227 int iSamp; /* Index in aSample[] of test sample */
1228 int n; /* Number of fields in test sample */
1230 iTest = (iMin+iSample)/2;
1231 iSamp = iTest / nField;
1232 if( iSamp>0 ){
1233 /* The proposed effective sample is a prefix of sample aSample[iSamp].
1234 ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1235 ** fields that is greater than the previous effective sample. */
1236 for(n=(iTest % nField) + 1; n<nField; n++){
1237 if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
1239 }else{
1240 n = iTest + 1;
1243 pRec->nField = n;
1244 res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
1245 if( res<0 ){
1246 iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
1247 iMin = iTest+1;
1248 }else if( res==0 && n<nField ){
1249 iLower = aSample[iSamp].anLt[n-1];
1250 iMin = iTest+1;
1251 res = -1;
1252 }else{
1253 iSample = iTest;
1254 iCol = n-1;
1256 }while( res && iMin<iSample );
1257 i = iSample / nField;
1259 #ifdef SQLITE_DEBUG
1260 /* The following assert statements check that the binary search code
1261 ** above found the right answer. This block serves no purpose other
1262 ** than to invoke the asserts. */
1263 if( pParse->db->mallocFailed==0 ){
1264 if( res==0 ){
1265 /* If (res==0) is true, then pRec must be equal to sample i. */
1266 assert( i<pIdx->nSample );
1267 assert( iCol==nField-1 );
1268 pRec->nField = nField;
1269 assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
1270 || pParse->db->mallocFailed
1272 }else{
1273 /* Unless i==pIdx->nSample, indicating that pRec is larger than
1274 ** all samples in the aSample[] array, pRec must be smaller than the
1275 ** (iCol+1) field prefix of sample i. */
1276 assert( i<=pIdx->nSample && i>=0 );
1277 pRec->nField = iCol+1;
1278 assert( i==pIdx->nSample
1279 || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
1280 || pParse->db->mallocFailed );
1282 /* if i==0 and iCol==0, then record pRec is smaller than all samples
1283 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1284 ** be greater than or equal to the (iCol) field prefix of sample i.
1285 ** If (i>0), then pRec must also be greater than sample (i-1). */
1286 if( iCol>0 ){
1287 pRec->nField = iCol;
1288 assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
1289 || pParse->db->mallocFailed );
1291 if( i>0 ){
1292 pRec->nField = nField;
1293 assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
1294 || pParse->db->mallocFailed );
1298 #endif /* ifdef SQLITE_DEBUG */
1300 if( res==0 ){
1301 /* Record pRec is equal to sample i */
1302 assert( iCol==nField-1 );
1303 aStat[0] = aSample[i].anLt[iCol];
1304 aStat[1] = aSample[i].anEq[iCol];
1305 }else{
1306 /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1307 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1308 ** is larger than all samples in the array. */
1309 tRowcnt iUpper, iGap;
1310 if( i>=pIdx->nSample ){
1311 iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
1312 }else{
1313 iUpper = aSample[i].anLt[iCol];
1316 if( iLower>=iUpper ){
1317 iGap = 0;
1318 }else{
1319 iGap = iUpper - iLower;
1321 if( roundUp ){
1322 iGap = (iGap*2)/3;
1323 }else{
1324 iGap = iGap/3;
1326 aStat[0] = iLower + iGap;
1327 aStat[1] = pIdx->aAvgEq[nField-1];
1330 /* Restore the pRec->nField value before returning. */
1331 pRec->nField = nField;
1332 return i;
1334 #endif /* SQLITE_ENABLE_STAT4 */
1337 ** If it is not NULL, pTerm is a term that provides an upper or lower
1338 ** bound on a range scan. Without considering pTerm, it is estimated
1339 ** that the scan will visit nNew rows. This function returns the number
1340 ** estimated to be visited after taking pTerm into account.
1342 ** If the user explicitly specified a likelihood() value for this term,
1343 ** then the return value is the likelihood multiplied by the number of
1344 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1345 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1347 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
1348 LogEst nRet = nNew;
1349 if( pTerm ){
1350 if( pTerm->truthProb<=0 ){
1351 nRet += pTerm->truthProb;
1352 }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
1353 nRet -= 20; assert( 20==sqlite3LogEst(4) );
1356 return nRet;
1360 #ifdef SQLITE_ENABLE_STAT4
1362 ** Return the affinity for a single column of an index.
1364 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
1365 assert( iCol>=0 && iCol<pIdx->nColumn );
1366 if( !pIdx->zColAff ){
1367 if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
1369 assert( pIdx->zColAff[iCol]!=0 );
1370 return pIdx->zColAff[iCol];
1372 #endif
1375 #ifdef SQLITE_ENABLE_STAT4
1377 ** This function is called to estimate the number of rows visited by a
1378 ** range-scan on a skip-scan index. For example:
1380 ** CREATE INDEX i1 ON t1(a, b, c);
1381 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1383 ** Value pLoop->nOut is currently set to the estimated number of rows
1384 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1385 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1386 ** on the stat4 data for the index. this scan will be peformed multiple
1387 ** times (once for each (a,b) combination that matches a=?) is dealt with
1388 ** by the caller.
1390 ** It does this by scanning through all stat4 samples, comparing values
1391 ** extracted from pLower and pUpper with the corresponding column in each
1392 ** sample. If L and U are the number of samples found to be less than or
1393 ** equal to the values extracted from pLower and pUpper respectively, and
1394 ** N is the total number of samples, the pLoop->nOut value is adjusted
1395 ** as follows:
1397 ** nOut = nOut * ( min(U - L, 1) / N )
1399 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1400 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1401 ** U is set to N.
1403 ** Normally, this function sets *pbDone to 1 before returning. However,
1404 ** if no value can be extracted from either pLower or pUpper (and so the
1405 ** estimate of the number of rows delivered remains unchanged), *pbDone
1406 ** is left as is.
1408 ** If an error occurs, an SQLite error code is returned. Otherwise,
1409 ** SQLITE_OK.
1411 static int whereRangeSkipScanEst(
1412 Parse *pParse, /* Parsing & code generating context */
1413 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */
1414 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */
1415 WhereLoop *pLoop, /* Update the .nOut value of this loop */
1416 int *pbDone /* Set to true if at least one expr. value extracted */
1418 Index *p = pLoop->u.btree.pIndex;
1419 int nEq = pLoop->u.btree.nEq;
1420 sqlite3 *db = pParse->db;
1421 int nLower = -1;
1422 int nUpper = p->nSample+1;
1423 int rc = SQLITE_OK;
1424 u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
1425 CollSeq *pColl;
1427 sqlite3_value *p1 = 0; /* Value extracted from pLower */
1428 sqlite3_value *p2 = 0; /* Value extracted from pUpper */
1429 sqlite3_value *pVal = 0; /* Value extracted from record */
1431 pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
1432 if( pLower ){
1433 rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
1434 nLower = 0;
1436 if( pUpper && rc==SQLITE_OK ){
1437 rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
1438 nUpper = p2 ? 0 : p->nSample;
1441 if( p1 || p2 ){
1442 int i;
1443 int nDiff;
1444 for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
1445 rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
1446 if( rc==SQLITE_OK && p1 ){
1447 int res = sqlite3MemCompare(p1, pVal, pColl);
1448 if( res>=0 ) nLower++;
1450 if( rc==SQLITE_OK && p2 ){
1451 int res = sqlite3MemCompare(p2, pVal, pColl);
1452 if( res>=0 ) nUpper++;
1455 nDiff = (nUpper - nLower);
1456 if( nDiff<=0 ) nDiff = 1;
1458 /* If there is both an upper and lower bound specified, and the
1459 ** comparisons indicate that they are close together, use the fallback
1460 ** method (assume that the scan visits 1/64 of the rows) for estimating
1461 ** the number of rows visited. Otherwise, estimate the number of rows
1462 ** using the method described in the header comment for this function. */
1463 if( nDiff!=1 || pUpper==0 || pLower==0 ){
1464 int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
1465 pLoop->nOut -= nAdjust;
1466 *pbDone = 1;
1467 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n",
1468 nLower, nUpper, nAdjust*-1, pLoop->nOut));
1471 }else{
1472 assert( *pbDone==0 );
1475 sqlite3ValueFree(p1);
1476 sqlite3ValueFree(p2);
1477 sqlite3ValueFree(pVal);
1479 return rc;
1481 #endif /* SQLITE_ENABLE_STAT4 */
1484 ** This function is used to estimate the number of rows that will be visited
1485 ** by scanning an index for a range of values. The range may have an upper
1486 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1487 ** and lower bounds are represented by pLower and pUpper respectively. For
1488 ** example, assuming that index p is on t1(a):
1490 ** ... FROM t1 WHERE a > ? AND a < ? ...
1491 ** |_____| |_____|
1492 ** | |
1493 ** pLower pUpper
1495 ** If either of the upper or lower bound is not present, then NULL is passed in
1496 ** place of the corresponding WhereTerm.
1498 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1499 ** column subject to the range constraint. Or, equivalently, the number of
1500 ** equality constraints optimized by the proposed index scan. For example,
1501 ** assuming index p is on t1(a, b), and the SQL query is:
1503 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1505 ** then nEq is set to 1 (as the range restricted column, b, is the second
1506 ** left-most column of the index). Or, if the query is:
1508 ** ... FROM t1 WHERE a > ? AND a < ? ...
1510 ** then nEq is set to 0.
1512 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1513 ** number of rows that the index scan is expected to visit without
1514 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1515 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1516 ** to account for the range constraints pLower and pUpper.
1518 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1519 ** used, a single range inequality reduces the search space by a factor of 4.
1520 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1521 ** rows visited by a factor of 64.
1523 static int whereRangeScanEst(
1524 Parse *pParse, /* Parsing & code generating context */
1525 WhereLoopBuilder *pBuilder,
1526 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */
1527 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */
1528 WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */
1530 int rc = SQLITE_OK;
1531 int nOut = pLoop->nOut;
1532 LogEst nNew;
1534 #ifdef SQLITE_ENABLE_STAT4
1535 Index *p = pLoop->u.btree.pIndex;
1536 int nEq = pLoop->u.btree.nEq;
1538 if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol)
1539 && OptimizationEnabled(pParse->db, SQLITE_Stat4)
1541 if( nEq==pBuilder->nRecValid ){
1542 UnpackedRecord *pRec = pBuilder->pRec;
1543 tRowcnt a[2];
1544 int nBtm = pLoop->u.btree.nBtm;
1545 int nTop = pLoop->u.btree.nTop;
1547 /* Variable iLower will be set to the estimate of the number of rows in
1548 ** the index that are less than the lower bound of the range query. The
1549 ** lower bound being the concatenation of $P and $L, where $P is the
1550 ** key-prefix formed by the nEq values matched against the nEq left-most
1551 ** columns of the index, and $L is the value in pLower.
1553 ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1554 ** is not a simple variable or literal value), the lower bound of the
1555 ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1556 ** if $L is available, whereKeyStats() is called for both ($P) and
1557 ** ($P:$L) and the larger of the two returned values is used.
1559 ** Similarly, iUpper is to be set to the estimate of the number of rows
1560 ** less than the upper bound of the range query. Where the upper bound
1561 ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1562 ** of iUpper are requested of whereKeyStats() and the smaller used.
1564 ** The number of rows between the two bounds is then just iUpper-iLower.
1566 tRowcnt iLower; /* Rows less than the lower bound */
1567 tRowcnt iUpper; /* Rows less than the upper bound */
1568 int iLwrIdx = -2; /* aSample[] for the lower bound */
1569 int iUprIdx = -1; /* aSample[] for the upper bound */
1571 if( pRec ){
1572 testcase( pRec->nField!=pBuilder->nRecValid );
1573 pRec->nField = pBuilder->nRecValid;
1575 /* Determine iLower and iUpper using ($P) only. */
1576 if( nEq==0 ){
1577 iLower = 0;
1578 iUpper = p->nRowEst0;
1579 }else{
1580 /* Note: this call could be optimized away - since the same values must
1581 ** have been requested when testing key $P in whereEqualScanEst(). */
1582 whereKeyStats(pParse, p, pRec, 0, a);
1583 iLower = a[0];
1584 iUpper = a[0] + a[1];
1587 assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
1588 assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
1589 assert( p->aSortOrder!=0 );
1590 if( p->aSortOrder[nEq] ){
1591 /* The roles of pLower and pUpper are swapped for a DESC index */
1592 SWAP(WhereTerm*, pLower, pUpper);
1593 SWAP(int, nBtm, nTop);
1596 /* If possible, improve on the iLower estimate using ($P:$L). */
1597 if( pLower ){
1598 int n; /* Values extracted from pExpr */
1599 Expr *pExpr = pLower->pExpr->pRight;
1600 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
1601 if( rc==SQLITE_OK && n ){
1602 tRowcnt iNew;
1603 u16 mask = WO_GT|WO_LE;
1604 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1605 iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
1606 iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
1607 if( iNew>iLower ) iLower = iNew;
1608 nOut--;
1609 pLower = 0;
1613 /* If possible, improve on the iUpper estimate using ($P:$U). */
1614 if( pUpper ){
1615 int n; /* Values extracted from pExpr */
1616 Expr *pExpr = pUpper->pExpr->pRight;
1617 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
1618 if( rc==SQLITE_OK && n ){
1619 tRowcnt iNew;
1620 u16 mask = WO_GT|WO_LE;
1621 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1622 iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
1623 iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
1624 if( iNew<iUpper ) iUpper = iNew;
1625 nOut--;
1626 pUpper = 0;
1630 pBuilder->pRec = pRec;
1631 if( rc==SQLITE_OK ){
1632 if( iUpper>iLower ){
1633 nNew = sqlite3LogEst(iUpper - iLower);
1634 /* TUNING: If both iUpper and iLower are derived from the same
1635 ** sample, then assume they are 4x more selective. This brings
1636 ** the estimated selectivity more in line with what it would be
1637 ** if estimated without the use of STAT4 tables. */
1638 if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) );
1639 }else{
1640 nNew = 10; assert( 10==sqlite3LogEst(2) );
1642 if( nNew<nOut ){
1643 nOut = nNew;
1645 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n",
1646 (u32)iLower, (u32)iUpper, nOut));
1648 }else{
1649 int bDone = 0;
1650 rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
1651 if( bDone ) return rc;
1654 #else
1655 UNUSED_PARAMETER(pParse);
1656 UNUSED_PARAMETER(pBuilder);
1657 assert( pLower || pUpper );
1658 #endif
1659 assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
1660 nNew = whereRangeAdjust(pLower, nOut);
1661 nNew = whereRangeAdjust(pUpper, nNew);
1663 /* TUNING: If there is both an upper and lower limit and neither limit
1664 ** has an application-defined likelihood(), assume the range is
1665 ** reduced by an additional 75%. This means that, by default, an open-ended
1666 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1667 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1668 ** match 1/64 of the index. */
1669 if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
1670 nNew -= 20;
1673 nOut -= (pLower!=0) + (pUpper!=0);
1674 if( nNew<10 ) nNew = 10;
1675 if( nNew<nOut ) nOut = nNew;
1676 #if defined(WHERETRACE_ENABLED)
1677 if( pLoop->nOut>nOut ){
1678 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1679 pLoop->nOut, nOut));
1681 #endif
1682 pLoop->nOut = (LogEst)nOut;
1683 return rc;
1686 #ifdef SQLITE_ENABLE_STAT4
1688 ** Estimate the number of rows that will be returned based on
1689 ** an equality constraint x=VALUE and where that VALUE occurs in
1690 ** the histogram data. This only works when x is the left-most
1691 ** column of an index and sqlite_stat4 histogram data is available
1692 ** for that index. When pExpr==NULL that means the constraint is
1693 ** "x IS NULL" instead of "x=VALUE".
1695 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1696 ** If unable to make an estimate, leave *pnRow unchanged and return
1697 ** non-zero.
1699 ** This routine can fail if it is unable to load a collating sequence
1700 ** required for string comparison, or if unable to allocate memory
1701 ** for a UTF conversion required for comparison. The error is stored
1702 ** in the pParse structure.
1704 static int whereEqualScanEst(
1705 Parse *pParse, /* Parsing & code generating context */
1706 WhereLoopBuilder *pBuilder,
1707 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */
1708 tRowcnt *pnRow /* Write the revised row estimate here */
1710 Index *p = pBuilder->pNew->u.btree.pIndex;
1711 int nEq = pBuilder->pNew->u.btree.nEq;
1712 UnpackedRecord *pRec = pBuilder->pRec;
1713 int rc; /* Subfunction return code */
1714 tRowcnt a[2]; /* Statistics */
1715 int bOk;
1717 assert( nEq>=1 );
1718 assert( nEq<=p->nColumn );
1719 assert( p->aSample!=0 );
1720 assert( p->nSample>0 );
1721 assert( pBuilder->nRecValid<nEq );
1723 /* If values are not available for all fields of the index to the left
1724 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
1725 if( pBuilder->nRecValid<(nEq-1) ){
1726 return SQLITE_NOTFOUND;
1729 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
1730 ** below would return the same value. */
1731 if( nEq>=p->nColumn ){
1732 *pnRow = 1;
1733 return SQLITE_OK;
1736 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
1737 pBuilder->pRec = pRec;
1738 if( rc!=SQLITE_OK ) return rc;
1739 if( bOk==0 ) return SQLITE_NOTFOUND;
1740 pBuilder->nRecValid = nEq;
1742 whereKeyStats(pParse, p, pRec, 0, a);
1743 WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
1744 p->zName, nEq-1, (int)a[1]));
1745 *pnRow = a[1];
1747 return rc;
1749 #endif /* SQLITE_ENABLE_STAT4 */
1751 #ifdef SQLITE_ENABLE_STAT4
1753 ** Estimate the number of rows that will be returned based on
1754 ** an IN constraint where the right-hand side of the IN operator
1755 ** is a list of values. Example:
1757 ** WHERE x IN (1,2,3,4)
1759 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1760 ** If unable to make an estimate, leave *pnRow unchanged and return
1761 ** non-zero.
1763 ** This routine can fail if it is unable to load a collating sequence
1764 ** required for string comparison, or if unable to allocate memory
1765 ** for a UTF conversion required for comparison. The error is stored
1766 ** in the pParse structure.
1768 static int whereInScanEst(
1769 Parse *pParse, /* Parsing & code generating context */
1770 WhereLoopBuilder *pBuilder,
1771 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
1772 tRowcnt *pnRow /* Write the revised row estimate here */
1774 Index *p = pBuilder->pNew->u.btree.pIndex;
1775 i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
1776 int nRecValid = pBuilder->nRecValid;
1777 int rc = SQLITE_OK; /* Subfunction return code */
1778 tRowcnt nEst; /* Number of rows for a single term */
1779 tRowcnt nRowEst = 0; /* New estimate of the number of rows */
1780 int i; /* Loop counter */
1782 assert( p->aSample!=0 );
1783 for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
1784 nEst = nRow0;
1785 rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
1786 nRowEst += nEst;
1787 pBuilder->nRecValid = nRecValid;
1790 if( rc==SQLITE_OK ){
1791 if( nRowEst > nRow0 ) nRowEst = nRow0;
1792 *pnRow = nRowEst;
1793 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
1795 assert( pBuilder->nRecValid==nRecValid );
1796 return rc;
1798 #endif /* SQLITE_ENABLE_STAT4 */
1801 #ifdef WHERETRACE_ENABLED
1803 ** Print the content of a WhereTerm object
1805 void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){
1806 if( pTerm==0 ){
1807 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
1808 }else{
1809 char zType[8];
1810 char zLeft[50];
1811 memcpy(zType, "....", 5);
1812 if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
1813 if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E';
1814 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L';
1815 if( pTerm->wtFlags & TERM_CODED ) zType[3] = 'C';
1816 if( pTerm->eOperator & WO_SINGLE ){
1817 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
1818 sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
1819 pTerm->leftCursor, pTerm->u.x.leftColumn);
1820 }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
1821 sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%llx",
1822 pTerm->u.pOrInfo->indexable);
1823 }else{
1824 sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
1826 sqlite3DebugPrintf(
1827 "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x",
1828 iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags);
1829 /* The 0x10000 .wheretrace flag causes extra information to be
1830 ** shown about each Term */
1831 if( sqlite3WhereTrace & 0x10000 ){
1832 sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx",
1833 pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight);
1835 if( (pTerm->eOperator & (WO_OR|WO_AND))==0 && pTerm->u.x.iField ){
1836 sqlite3DebugPrintf(" iField=%d", pTerm->u.x.iField);
1838 if( pTerm->iParent>=0 ){
1839 sqlite3DebugPrintf(" iParent=%d", pTerm->iParent);
1841 sqlite3DebugPrintf("\n");
1842 sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
1845 #endif
1847 #ifdef WHERETRACE_ENABLED
1849 ** Show the complete content of a WhereClause
1851 void sqlite3WhereClausePrint(WhereClause *pWC){
1852 int i;
1853 for(i=0; i<pWC->nTerm; i++){
1854 sqlite3WhereTermPrint(&pWC->a[i], i);
1857 #endif
1859 #ifdef WHERETRACE_ENABLED
1861 ** Print a WhereLoop object for debugging purposes
1863 void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC){
1864 WhereInfo *pWInfo = pWC->pWInfo;
1865 int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
1866 SrcItem *pItem = pWInfo->pTabList->a + p->iTab;
1867 Table *pTab = pItem->pTab;
1868 Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
1869 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
1870 p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
1871 sqlite3DebugPrintf(" %12s",
1872 pItem->zAlias ? pItem->zAlias : pTab->zName);
1873 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
1874 const char *zName;
1875 if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
1876 if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
1877 int i = sqlite3Strlen30(zName) - 1;
1878 while( zName[i]!='_' ) i--;
1879 zName += i;
1881 sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
1882 }else{
1883 sqlite3DebugPrintf("%20s","");
1885 }else{
1886 char *z;
1887 if( p->u.vtab.idxStr ){
1888 z = sqlite3_mprintf("(%d,\"%s\",%#x)",
1889 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
1890 }else{
1891 z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
1893 sqlite3DebugPrintf(" %-19s", z);
1894 sqlite3_free(z);
1896 if( p->wsFlags & WHERE_SKIPSCAN ){
1897 sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
1898 }else{
1899 sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm);
1901 sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
1902 if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
1903 int i;
1904 for(i=0; i<p->nLTerm; i++){
1905 sqlite3WhereTermPrint(p->aLTerm[i], i);
1909 #endif
1912 ** Convert bulk memory into a valid WhereLoop that can be passed
1913 ** to whereLoopClear harmlessly.
1915 static void whereLoopInit(WhereLoop *p){
1916 p->aLTerm = p->aLTermSpace;
1917 p->nLTerm = 0;
1918 p->nLSlot = ArraySize(p->aLTermSpace);
1919 p->wsFlags = 0;
1923 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact.
1925 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
1926 if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
1927 if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
1928 sqlite3_free(p->u.vtab.idxStr);
1929 p->u.vtab.needFree = 0;
1930 p->u.vtab.idxStr = 0;
1931 }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
1932 sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
1933 sqlite3DbFreeNN(db, p->u.btree.pIndex);
1934 p->u.btree.pIndex = 0;
1940 ** Deallocate internal memory used by a WhereLoop object
1942 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
1943 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1944 whereLoopClearUnion(db, p);
1945 whereLoopInit(p);
1949 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
1951 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
1952 WhereTerm **paNew;
1953 if( p->nLSlot>=n ) return SQLITE_OK;
1954 n = (n+7)&~7;
1955 paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
1956 if( paNew==0 ) return SQLITE_NOMEM_BKPT;
1957 memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
1958 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1959 p->aLTerm = paNew;
1960 p->nLSlot = n;
1961 return SQLITE_OK;
1965 ** Transfer content from the second pLoop into the first.
1967 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
1968 whereLoopClearUnion(db, pTo);
1969 if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
1970 memset(pTo, 0, WHERE_LOOP_XFER_SZ);
1971 return SQLITE_NOMEM_BKPT;
1973 memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
1974 memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
1975 if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
1976 pFrom->u.vtab.needFree = 0;
1977 }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
1978 pFrom->u.btree.pIndex = 0;
1980 return SQLITE_OK;
1984 ** Delete a WhereLoop object
1986 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
1987 whereLoopClear(db, p);
1988 sqlite3DbFreeNN(db, p);
1992 ** Free a WhereInfo structure
1994 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
1995 int i;
1996 assert( pWInfo!=0 );
1997 for(i=0; i<pWInfo->nLevel; i++){
1998 WhereLevel *pLevel = &pWInfo->a[i];
1999 if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE)!=0 ){
2000 assert( (pLevel->pWLoop->wsFlags & WHERE_MULTI_OR)==0 );
2001 sqlite3DbFree(db, pLevel->u.in.aInLoop);
2004 sqlite3WhereClauseClear(&pWInfo->sWC);
2005 while( pWInfo->pLoops ){
2006 WhereLoop *p = pWInfo->pLoops;
2007 pWInfo->pLoops = p->pNextLoop;
2008 whereLoopDelete(db, p);
2010 assert( pWInfo->pExprMods==0 );
2011 sqlite3DbFreeNN(db, pWInfo);
2014 /* Undo all Expr node modifications
2016 static void whereUndoExprMods(WhereInfo *pWInfo){
2017 while( pWInfo->pExprMods ){
2018 WhereExprMod *p = pWInfo->pExprMods;
2019 pWInfo->pExprMods = p->pNext;
2020 memcpy(p->pExpr, &p->orig, sizeof(p->orig));
2021 sqlite3DbFree(pWInfo->pParse->db, p);
2026 ** Return TRUE if all of the following are true:
2028 ** (1) X has the same or lower cost, or returns the same or fewer rows,
2029 ** than Y.
2030 ** (2) X uses fewer WHERE clause terms than Y
2031 ** (3) Every WHERE clause term used by X is also used by Y
2032 ** (4) X skips at least as many columns as Y
2033 ** (5) If X is a covering index, than Y is too
2035 ** Conditions (2) and (3) mean that X is a "proper subset" of Y.
2036 ** If X is a proper subset of Y then Y is a better choice and ought
2037 ** to have a lower cost. This routine returns TRUE when that cost
2038 ** relationship is inverted and needs to be adjusted. Constraint (4)
2039 ** was added because if X uses skip-scan less than Y it still might
2040 ** deserve a lower cost even if it is a proper subset of Y. Constraint (5)
2041 ** was added because a covering index probably deserves to have a lower cost
2042 ** than a non-covering index even if it is a proper subset.
2044 static int whereLoopCheaperProperSubset(
2045 const WhereLoop *pX, /* First WhereLoop to compare */
2046 const WhereLoop *pY /* Compare against this WhereLoop */
2048 int i, j;
2049 if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
2050 return 0; /* X is not a subset of Y */
2052 if( pX->rRun>pY->rRun && pX->nOut>pY->nOut ) return 0;
2053 if( pY->nSkip > pX->nSkip ) return 0;
2054 for(i=pX->nLTerm-1; i>=0; i--){
2055 if( pX->aLTerm[i]==0 ) continue;
2056 for(j=pY->nLTerm-1; j>=0; j--){
2057 if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
2059 if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */
2061 if( (pX->wsFlags&WHERE_IDX_ONLY)!=0
2062 && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){
2063 return 0; /* Constraint (5) */
2065 return 1; /* All conditions meet */
2069 ** Try to adjust the cost and number of output rows of WhereLoop pTemplate
2070 ** upwards or downwards so that:
2072 ** (1) pTemplate costs less than any other WhereLoops that are a proper
2073 ** subset of pTemplate
2075 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate
2076 ** is a proper subset.
2078 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
2079 ** WHERE clause terms than Y and that every WHERE clause term used by X is
2080 ** also used by Y.
2082 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
2083 if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
2084 for(; p; p=p->pNextLoop){
2085 if( p->iTab!=pTemplate->iTab ) continue;
2086 if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
2087 if( whereLoopCheaperProperSubset(p, pTemplate) ){
2088 /* Adjust pTemplate cost downward so that it is cheaper than its
2089 ** subset p. */
2090 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2091 pTemplate->rRun, pTemplate->nOut,
2092 MIN(p->rRun, pTemplate->rRun),
2093 MIN(p->nOut - 1, pTemplate->nOut)));
2094 pTemplate->rRun = MIN(p->rRun, pTemplate->rRun);
2095 pTemplate->nOut = MIN(p->nOut - 1, pTemplate->nOut);
2096 }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
2097 /* Adjust pTemplate cost upward so that it is costlier than p since
2098 ** pTemplate is a proper subset of p */
2099 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2100 pTemplate->rRun, pTemplate->nOut,
2101 MAX(p->rRun, pTemplate->rRun),
2102 MAX(p->nOut + 1, pTemplate->nOut)));
2103 pTemplate->rRun = MAX(p->rRun, pTemplate->rRun);
2104 pTemplate->nOut = MAX(p->nOut + 1, pTemplate->nOut);
2110 ** Search the list of WhereLoops in *ppPrev looking for one that can be
2111 ** replaced by pTemplate.
2113 ** Return NULL if pTemplate does not belong on the WhereLoop list.
2114 ** In other words if pTemplate ought to be dropped from further consideration.
2116 ** If pX is a WhereLoop that pTemplate can replace, then return the
2117 ** link that points to pX.
2119 ** If pTemplate cannot replace any existing element of the list but needs
2120 ** to be added to the list as a new entry, then return a pointer to the
2121 ** tail of the list.
2123 static WhereLoop **whereLoopFindLesser(
2124 WhereLoop **ppPrev,
2125 const WhereLoop *pTemplate
2127 WhereLoop *p;
2128 for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
2129 if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
2130 /* If either the iTab or iSortIdx values for two WhereLoop are different
2131 ** then those WhereLoops need to be considered separately. Neither is
2132 ** a candidate to replace the other. */
2133 continue;
2135 /* In the current implementation, the rSetup value is either zero
2136 ** or the cost of building an automatic index (NlogN) and the NlogN
2137 ** is the same for compatible WhereLoops. */
2138 assert( p->rSetup==0 || pTemplate->rSetup==0
2139 || p->rSetup==pTemplate->rSetup );
2141 /* whereLoopAddBtree() always generates and inserts the automatic index
2142 ** case first. Hence compatible candidate WhereLoops never have a larger
2143 ** rSetup. Call this SETUP-INVARIANT */
2144 assert( p->rSetup>=pTemplate->rSetup );
2146 /* Any loop using an appliation-defined index (or PRIMARY KEY or
2147 ** UNIQUE constraint) with one or more == constraints is better
2148 ** than an automatic index. Unless it is a skip-scan. */
2149 if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
2150 && (pTemplate->nSkip)==0
2151 && (pTemplate->wsFlags & WHERE_INDEXED)!=0
2152 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
2153 && (p->prereq & pTemplate->prereq)==pTemplate->prereq
2155 break;
2158 /* If existing WhereLoop p is better than pTemplate, pTemplate can be
2159 ** discarded. WhereLoop p is better if:
2160 ** (1) p has no more dependencies than pTemplate, and
2161 ** (2) p has an equal or lower cost than pTemplate
2163 if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */
2164 && p->rSetup<=pTemplate->rSetup /* (2a) */
2165 && p->rRun<=pTemplate->rRun /* (2b) */
2166 && p->nOut<=pTemplate->nOut /* (2c) */
2168 return 0; /* Discard pTemplate */
2171 /* If pTemplate is always better than p, then cause p to be overwritten
2172 ** with pTemplate. pTemplate is better than p if:
2173 ** (1) pTemplate has no more dependences than p, and
2174 ** (2) pTemplate has an equal or lower cost than p.
2176 if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */
2177 && p->rRun>=pTemplate->rRun /* (2a) */
2178 && p->nOut>=pTemplate->nOut /* (2b) */
2180 assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
2181 break; /* Cause p to be overwritten by pTemplate */
2184 return ppPrev;
2188 ** Insert or replace a WhereLoop entry using the template supplied.
2190 ** An existing WhereLoop entry might be overwritten if the new template
2191 ** is better and has fewer dependencies. Or the template will be ignored
2192 ** and no insert will occur if an existing WhereLoop is faster and has
2193 ** fewer dependencies than the template. Otherwise a new WhereLoop is
2194 ** added based on the template.
2196 ** If pBuilder->pOrSet is not NULL then we care about only the
2197 ** prerequisites and rRun and nOut costs of the N best loops. That
2198 ** information is gathered in the pBuilder->pOrSet object. This special
2199 ** processing mode is used only for OR clause processing.
2201 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2202 ** still might overwrite similar loops with the new template if the
2203 ** new template is better. Loops may be overwritten if the following
2204 ** conditions are met:
2206 ** (1) They have the same iTab.
2207 ** (2) They have the same iSortIdx.
2208 ** (3) The template has same or fewer dependencies than the current loop
2209 ** (4) The template has the same or lower cost than the current loop
2211 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
2212 WhereLoop **ppPrev, *p;
2213 WhereInfo *pWInfo = pBuilder->pWInfo;
2214 sqlite3 *db = pWInfo->pParse->db;
2215 int rc;
2217 /* Stop the search once we hit the query planner search limit */
2218 if( pBuilder->iPlanLimit==0 ){
2219 WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n"));
2220 if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0;
2221 return SQLITE_DONE;
2223 pBuilder->iPlanLimit--;
2225 whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
2227 /* If pBuilder->pOrSet is defined, then only keep track of the costs
2228 ** and prereqs.
2230 if( pBuilder->pOrSet!=0 ){
2231 if( pTemplate->nLTerm ){
2232 #if WHERETRACE_ENABLED
2233 u16 n = pBuilder->pOrSet->n;
2234 int x =
2235 #endif
2236 whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
2237 pTemplate->nOut);
2238 #if WHERETRACE_ENABLED /* 0x8 */
2239 if( sqlite3WhereTrace & 0x8 ){
2240 sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n);
2241 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2243 #endif
2245 return SQLITE_OK;
2248 /* Look for an existing WhereLoop to replace with pTemplate
2250 ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
2252 if( ppPrev==0 ){
2253 /* There already exists a WhereLoop on the list that is better
2254 ** than pTemplate, so just ignore pTemplate */
2255 #if WHERETRACE_ENABLED /* 0x8 */
2256 if( sqlite3WhereTrace & 0x8 ){
2257 sqlite3DebugPrintf(" skip: ");
2258 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2260 #endif
2261 return SQLITE_OK;
2262 }else{
2263 p = *ppPrev;
2266 /* If we reach this point it means that either p[] should be overwritten
2267 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2268 ** WhereLoop and insert it.
2270 #if WHERETRACE_ENABLED /* 0x8 */
2271 if( sqlite3WhereTrace & 0x8 ){
2272 if( p!=0 ){
2273 sqlite3DebugPrintf("replace: ");
2274 sqlite3WhereLoopPrint(p, pBuilder->pWC);
2275 sqlite3DebugPrintf(" with: ");
2276 }else{
2277 sqlite3DebugPrintf(" add: ");
2279 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2281 #endif
2282 if( p==0 ){
2283 /* Allocate a new WhereLoop to add to the end of the list */
2284 *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
2285 if( p==0 ) return SQLITE_NOMEM_BKPT;
2286 whereLoopInit(p);
2287 p->pNextLoop = 0;
2288 }else{
2289 /* We will be overwriting WhereLoop p[]. But before we do, first
2290 ** go through the rest of the list and delete any other entries besides
2291 ** p[] that are also supplated by pTemplate */
2292 WhereLoop **ppTail = &p->pNextLoop;
2293 WhereLoop *pToDel;
2294 while( *ppTail ){
2295 ppTail = whereLoopFindLesser(ppTail, pTemplate);
2296 if( ppTail==0 ) break;
2297 pToDel = *ppTail;
2298 if( pToDel==0 ) break;
2299 *ppTail = pToDel->pNextLoop;
2300 #if WHERETRACE_ENABLED /* 0x8 */
2301 if( sqlite3WhereTrace & 0x8 ){
2302 sqlite3DebugPrintf(" delete: ");
2303 sqlite3WhereLoopPrint(pToDel, pBuilder->pWC);
2305 #endif
2306 whereLoopDelete(db, pToDel);
2309 rc = whereLoopXfer(db, p, pTemplate);
2310 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2311 Index *pIndex = p->u.btree.pIndex;
2312 if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){
2313 p->u.btree.pIndex = 0;
2316 return rc;
2320 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2321 ** WHERE clause that reference the loop but which are not used by an
2322 ** index.
2324 ** For every WHERE clause term that is not used by the index
2325 ** and which has a truth probability assigned by one of the likelihood(),
2326 ** likely(), or unlikely() SQL functions, reduce the estimated number
2327 ** of output rows by the probability specified.
2329 ** TUNING: For every WHERE clause term that is not used by the index
2330 ** and which does not have an assigned truth probability, heuristics
2331 ** described below are used to try to estimate the truth probability.
2332 ** TODO --> Perhaps this is something that could be improved by better
2333 ** table statistics.
2335 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75%
2336 ** value corresponds to -1 in LogEst notation, so this means decrement
2337 ** the WhereLoop.nOut field for every such WHERE clause term.
2339 ** Heuristic 2: If there exists one or more WHERE clause terms of the
2340 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2341 ** final output row estimate is no greater than 1/4 of the total number
2342 ** of rows in the table. In other words, assume that x==EXPR will filter
2343 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the
2344 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2345 ** on the "x" column and so in that case only cap the output row estimate
2346 ** at 1/2 instead of 1/4.
2348 static void whereLoopOutputAdjust(
2349 WhereClause *pWC, /* The WHERE clause */
2350 WhereLoop *pLoop, /* The loop to adjust downward */
2351 LogEst nRow /* Number of rows in the entire table */
2353 WhereTerm *pTerm, *pX;
2354 Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
2355 int i, j;
2356 LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */
2358 assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2359 for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
2360 assert( pTerm!=0 );
2361 if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
2362 if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
2363 if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
2364 for(j=pLoop->nLTerm-1; j>=0; j--){
2365 pX = pLoop->aLTerm[j];
2366 if( pX==0 ) continue;
2367 if( pX==pTerm ) break;
2368 if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
2370 if( j<0 ){
2371 if( pTerm->truthProb<=0 ){
2372 /* If a truth probability is specified using the likelihood() hints,
2373 ** then use the probability provided by the application. */
2374 pLoop->nOut += pTerm->truthProb;
2375 }else{
2376 /* In the absence of explicit truth probabilities, use heuristics to
2377 ** guess a reasonable truth probability. */
2378 pLoop->nOut--;
2379 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0
2380 && (pTerm->wtFlags & TERM_HIGHTRUTH)==0 /* tag-20200224-1 */
2382 Expr *pRight = pTerm->pExpr->pRight;
2383 int k = 0;
2384 testcase( pTerm->pExpr->op==TK_IS );
2385 if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
2386 k = 10;
2387 }else{
2388 k = 20;
2390 if( iReduce<k ){
2391 pTerm->wtFlags |= TERM_HEURTRUTH;
2392 iReduce = k;
2398 if( pLoop->nOut > nRow-iReduce ) pLoop->nOut = nRow - iReduce;
2402 ** Term pTerm is a vector range comparison operation. The first comparison
2403 ** in the vector can be optimized using column nEq of the index. This
2404 ** function returns the total number of vector elements that can be used
2405 ** as part of the range comparison.
2407 ** For example, if the query is:
2409 ** WHERE a = ? AND (b, c, d) > (?, ?, ?)
2411 ** and the index:
2413 ** CREATE INDEX ... ON (a, b, c, d, e)
2415 ** then this function would be invoked with nEq=1. The value returned in
2416 ** this case is 3.
2418 static int whereRangeVectorLen(
2419 Parse *pParse, /* Parsing context */
2420 int iCur, /* Cursor open on pIdx */
2421 Index *pIdx, /* The index to be used for a inequality constraint */
2422 int nEq, /* Number of prior equality constraints on same index */
2423 WhereTerm *pTerm /* The vector inequality constraint */
2425 int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
2426 int i;
2428 nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
2429 for(i=1; i<nCmp; i++){
2430 /* Test if comparison i of pTerm is compatible with column (i+nEq)
2431 ** of the index. If not, exit the loop. */
2432 char aff; /* Comparison affinity */
2433 char idxaff = 0; /* Indexed columns affinity */
2434 CollSeq *pColl; /* Comparison collation sequence */
2435 Expr *pLhs, *pRhs;
2437 assert( ExprUseXList(pTerm->pExpr->pLeft) );
2438 pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
2439 pRhs = pTerm->pExpr->pRight;
2440 if( ExprUseXSelect(pRhs) ){
2441 pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
2442 }else{
2443 pRhs = pRhs->x.pList->a[i].pExpr;
2446 /* Check that the LHS of the comparison is a column reference to
2447 ** the right column of the right source table. And that the sort
2448 ** order of the index column is the same as the sort order of the
2449 ** leftmost index column. */
2450 if( pLhs->op!=TK_COLUMN
2451 || pLhs->iTable!=iCur
2452 || pLhs->iColumn!=pIdx->aiColumn[i+nEq]
2453 || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
2455 break;
2458 testcase( pLhs->iColumn==XN_ROWID );
2459 aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
2460 idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
2461 if( aff!=idxaff ) break;
2463 pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2464 if( pColl==0 ) break;
2465 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
2467 return i;
2471 ** Adjust the cost C by the costMult facter T. This only occurs if
2472 ** compiled with -DSQLITE_ENABLE_COSTMULT
2474 #ifdef SQLITE_ENABLE_COSTMULT
2475 # define ApplyCostMultiplier(C,T) C += T
2476 #else
2477 # define ApplyCostMultiplier(C,T)
2478 #endif
2481 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2482 ** index pIndex. Try to match one more.
2484 ** When this function is called, pBuilder->pNew->nOut contains the
2485 ** number of rows expected to be visited by filtering using the nEq
2486 ** terms only. If it is modified, this value is restored before this
2487 ** function returns.
2489 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is
2490 ** a fake index used for the INTEGER PRIMARY KEY.
2492 static int whereLoopAddBtreeIndex(
2493 WhereLoopBuilder *pBuilder, /* The WhereLoop factory */
2494 SrcItem *pSrc, /* FROM clause term being analyzed */
2495 Index *pProbe, /* An index on pSrc */
2496 LogEst nInMul /* log(Number of iterations due to IN) */
2498 WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */
2499 Parse *pParse = pWInfo->pParse; /* Parsing context */
2500 sqlite3 *db = pParse->db; /* Database connection malloc context */
2501 WhereLoop *pNew; /* Template WhereLoop under construction */
2502 WhereTerm *pTerm; /* A WhereTerm under consideration */
2503 int opMask; /* Valid operators for constraints */
2504 WhereScan scan; /* Iterator for WHERE terms */
2505 Bitmask saved_prereq; /* Original value of pNew->prereq */
2506 u16 saved_nLTerm; /* Original value of pNew->nLTerm */
2507 u16 saved_nEq; /* Original value of pNew->u.btree.nEq */
2508 u16 saved_nBtm; /* Original value of pNew->u.btree.nBtm */
2509 u16 saved_nTop; /* Original value of pNew->u.btree.nTop */
2510 u16 saved_nSkip; /* Original value of pNew->nSkip */
2511 u32 saved_wsFlags; /* Original value of pNew->wsFlags */
2512 LogEst saved_nOut; /* Original value of pNew->nOut */
2513 int rc = SQLITE_OK; /* Return code */
2514 LogEst rSize; /* Number of rows in the table */
2515 LogEst rLogSize; /* Logarithm of table size */
2516 WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
2518 pNew = pBuilder->pNew;
2519 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
2520 WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n",
2521 pProbe->pTable->zName,pProbe->zName,
2522 pNew->u.btree.nEq, pNew->nSkip, pNew->rRun));
2524 assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
2525 assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
2526 if( pNew->wsFlags & WHERE_BTM_LIMIT ){
2527 opMask = WO_LT|WO_LE;
2528 }else{
2529 assert( pNew->u.btree.nBtm==0 );
2530 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
2532 if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
2534 assert( pNew->u.btree.nEq<pProbe->nColumn );
2535 assert( pNew->u.btree.nEq<pProbe->nKeyCol
2536 || pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY );
2538 saved_nEq = pNew->u.btree.nEq;
2539 saved_nBtm = pNew->u.btree.nBtm;
2540 saved_nTop = pNew->u.btree.nTop;
2541 saved_nSkip = pNew->nSkip;
2542 saved_nLTerm = pNew->nLTerm;
2543 saved_wsFlags = pNew->wsFlags;
2544 saved_prereq = pNew->prereq;
2545 saved_nOut = pNew->nOut;
2546 pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
2547 opMask, pProbe);
2548 pNew->rSetup = 0;
2549 rSize = pProbe->aiRowLogEst[0];
2550 rLogSize = estLog(rSize);
2551 for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
2552 u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */
2553 LogEst rCostIdx;
2554 LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */
2555 int nIn = 0;
2556 #ifdef SQLITE_ENABLE_STAT4
2557 int nRecValid = pBuilder->nRecValid;
2558 #endif
2559 if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
2560 && indexColumnNotNull(pProbe, saved_nEq)
2562 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2564 if( pTerm->prereqRight & pNew->maskSelf ) continue;
2566 /* Do not allow the upper bound of a LIKE optimization range constraint
2567 ** to mix with a lower range bound from some other source */
2568 if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
2570 /* tag-20191211-001: Do not allow constraints from the WHERE clause to
2571 ** be used by the right table of a LEFT JOIN. Only constraints in the
2572 ** ON clause are allowed. See tag-20191211-002 for the vtab equivalent. */
2573 if( (pSrc->fg.jointype & JT_LEFT)!=0
2574 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
2576 continue;
2579 if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
2580 pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE;
2581 }else{
2582 pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED;
2584 pNew->wsFlags = saved_wsFlags;
2585 pNew->u.btree.nEq = saved_nEq;
2586 pNew->u.btree.nBtm = saved_nBtm;
2587 pNew->u.btree.nTop = saved_nTop;
2588 pNew->nLTerm = saved_nLTerm;
2589 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2590 pNew->aLTerm[pNew->nLTerm++] = pTerm;
2591 pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
2593 assert( nInMul==0
2594 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
2595 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
2596 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
2599 if( eOp & WO_IN ){
2600 Expr *pExpr = pTerm->pExpr;
2601 if( ExprUseXSelect(pExpr) ){
2602 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */
2603 int i;
2604 nIn = 46; assert( 46==sqlite3LogEst(25) );
2606 /* The expression may actually be of the form (x, y) IN (SELECT...).
2607 ** In this case there is a separate term for each of (x) and (y).
2608 ** However, the nIn multiplier should only be applied once, not once
2609 ** for each such term. The following loop checks that pTerm is the
2610 ** first such term in use, and sets nIn back to 0 if it is not. */
2611 for(i=0; i<pNew->nLTerm-1; i++){
2612 if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
2614 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2615 /* "x IN (value, value, ...)" */
2616 nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
2618 if( pProbe->hasStat1 && rLogSize>=10 ){
2619 LogEst M, logK, x;
2620 /* Let:
2621 ** N = the total number of rows in the table
2622 ** K = the number of entries on the RHS of the IN operator
2623 ** M = the number of rows in the table that match terms to the
2624 ** to the left in the same index. If the IN operator is on
2625 ** the left-most index column, M==N.
2627 ** Given the definitions above, it is better to omit the IN operator
2628 ** from the index lookup and instead do a scan of the M elements,
2629 ** testing each scanned row against the IN operator separately, if:
2631 ** M*log(K) < K*log(N)
2633 ** Our estimates for M, K, and N might be inaccurate, so we build in
2634 ** a safety margin of 2 (LogEst: 10) that favors using the IN operator
2635 ** with the index, as using an index has better worst-case behavior.
2636 ** If we do not have real sqlite_stat1 data, always prefer to use
2637 ** the index. Do not bother with this optimization on very small
2638 ** tables (less than 2 rows) as it is pointless in that case.
2640 M = pProbe->aiRowLogEst[saved_nEq];
2641 logK = estLog(nIn);
2642 /* TUNING v----- 10 to bias toward indexed IN */
2643 x = M + logK + 10 - (nIn + rLogSize);
2644 if( x>=0 ){
2645 WHERETRACE(0x40,
2646 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d) "
2647 "prefers indexed lookup\n",
2648 saved_nEq, M, logK, nIn, rLogSize, x));
2649 }else if( nInMul<2 && OptimizationEnabled(db, SQLITE_SeekScan) ){
2650 WHERETRACE(0x40,
2651 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
2652 " nInMul=%d) prefers skip-scan\n",
2653 saved_nEq, M, logK, nIn, rLogSize, x, nInMul));
2654 pNew->wsFlags |= WHERE_IN_SEEKSCAN;
2655 }else{
2656 WHERETRACE(0x40,
2657 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
2658 " nInMul=%d) prefers normal scan\n",
2659 saved_nEq, M, logK, nIn, rLogSize, x, nInMul));
2660 continue;
2663 pNew->wsFlags |= WHERE_COLUMN_IN;
2664 }else if( eOp & (WO_EQ|WO_IS) ){
2665 int iCol = pProbe->aiColumn[saved_nEq];
2666 pNew->wsFlags |= WHERE_COLUMN_EQ;
2667 assert( saved_nEq==pNew->u.btree.nEq );
2668 if( iCol==XN_ROWID
2669 || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
2671 if( iCol==XN_ROWID || pProbe->uniqNotNull
2672 || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ)
2674 pNew->wsFlags |= WHERE_ONEROW;
2675 }else{
2676 pNew->wsFlags |= WHERE_UNQ_WANTED;
2679 if( scan.iEquiv>1 ) pNew->wsFlags |= WHERE_TRANSCONS;
2680 }else if( eOp & WO_ISNULL ){
2681 pNew->wsFlags |= WHERE_COLUMN_NULL;
2682 }else if( eOp & (WO_GT|WO_GE) ){
2683 testcase( eOp & WO_GT );
2684 testcase( eOp & WO_GE );
2685 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
2686 pNew->u.btree.nBtm = whereRangeVectorLen(
2687 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2689 pBtm = pTerm;
2690 pTop = 0;
2691 if( pTerm->wtFlags & TERM_LIKEOPT ){
2692 /* Range constraints that come from the LIKE optimization are
2693 ** always used in pairs. */
2694 pTop = &pTerm[1];
2695 assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
2696 assert( pTop->wtFlags & TERM_LIKEOPT );
2697 assert( pTop->eOperator==WO_LT );
2698 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2699 pNew->aLTerm[pNew->nLTerm++] = pTop;
2700 pNew->wsFlags |= WHERE_TOP_LIMIT;
2701 pNew->u.btree.nTop = 1;
2703 }else{
2704 assert( eOp & (WO_LT|WO_LE) );
2705 testcase( eOp & WO_LT );
2706 testcase( eOp & WO_LE );
2707 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
2708 pNew->u.btree.nTop = whereRangeVectorLen(
2709 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2711 pTop = pTerm;
2712 pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
2713 pNew->aLTerm[pNew->nLTerm-2] : 0;
2716 /* At this point pNew->nOut is set to the number of rows expected to
2717 ** be visited by the index scan before considering term pTerm, or the
2718 ** values of nIn and nInMul. In other words, assuming that all
2719 ** "x IN(...)" terms are replaced with "x = ?". This block updates
2720 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */
2721 assert( pNew->nOut==saved_nOut );
2722 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2723 /* Adjust nOut using stat4 data. Or, if there is no stat4
2724 ** data, using some other estimate. */
2725 whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
2726 }else{
2727 int nEq = ++pNew->u.btree.nEq;
2728 assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
2730 assert( pNew->nOut==saved_nOut );
2731 if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
2732 assert( (eOp & WO_IN) || nIn==0 );
2733 testcase( eOp & WO_IN );
2734 pNew->nOut += pTerm->truthProb;
2735 pNew->nOut -= nIn;
2736 }else{
2737 #ifdef SQLITE_ENABLE_STAT4
2738 tRowcnt nOut = 0;
2739 if( nInMul==0
2740 && pProbe->nSample
2741 && ALWAYS(pNew->u.btree.nEq<=pProbe->nSampleCol)
2742 && ((eOp & WO_IN)==0 || ExprUseXList(pTerm->pExpr))
2743 && OptimizationEnabled(db, SQLITE_Stat4)
2745 Expr *pExpr = pTerm->pExpr;
2746 if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
2747 testcase( eOp & WO_EQ );
2748 testcase( eOp & WO_IS );
2749 testcase( eOp & WO_ISNULL );
2750 rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
2751 }else{
2752 rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
2754 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
2755 if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */
2756 if( nOut ){
2757 pNew->nOut = sqlite3LogEst(nOut);
2758 if( nEq==1
2759 /* TUNING: Mark terms as "low selectivity" if they seem likely
2760 ** to be true for half or more of the rows in the table.
2761 ** See tag-202002240-1 */
2762 && pNew->nOut+10 > pProbe->aiRowLogEst[0]
2764 #if WHERETRACE_ENABLED /* 0x01 */
2765 if( sqlite3WhereTrace & 0x01 ){
2766 sqlite3DebugPrintf(
2767 "STAT4 determines term has low selectivity:\n");
2768 sqlite3WhereTermPrint(pTerm, 999);
2770 #endif
2771 pTerm->wtFlags |= TERM_HIGHTRUTH;
2772 if( pTerm->wtFlags & TERM_HEURTRUTH ){
2773 /* If the term has previously been used with an assumption of
2774 ** higher selectivity, then set the flag to rerun the
2775 ** loop computations. */
2776 pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS;
2779 if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
2780 pNew->nOut -= nIn;
2783 if( nOut==0 )
2784 #endif
2786 pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
2787 if( eOp & WO_ISNULL ){
2788 /* TUNING: If there is no likelihood() value, assume that a
2789 ** "col IS NULL" expression matches twice as many rows
2790 ** as (col=?). */
2791 pNew->nOut += 10;
2797 /* Set rCostIdx to the cost of visiting selected rows in index. Add
2798 ** it to pNew->rRun, which is currently set to the cost of the index
2799 ** seek only. Then, if this is a non-covering index, add the cost of
2800 ** visiting the rows in the main table. */
2801 assert( pSrc->pTab->szTabRow>0 );
2802 rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
2803 pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
2804 if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
2805 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
2807 ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
2809 nOutUnadjusted = pNew->nOut;
2810 pNew->rRun += nInMul + nIn;
2811 pNew->nOut += nInMul + nIn;
2812 whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
2813 rc = whereLoopInsert(pBuilder, pNew);
2815 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2816 pNew->nOut = saved_nOut;
2817 }else{
2818 pNew->nOut = nOutUnadjusted;
2821 if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
2822 && pNew->u.btree.nEq<pProbe->nColumn
2823 && (pNew->u.btree.nEq<pProbe->nKeyCol ||
2824 pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY)
2826 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
2828 pNew->nOut = saved_nOut;
2829 #ifdef SQLITE_ENABLE_STAT4
2830 pBuilder->nRecValid = nRecValid;
2831 #endif
2833 pNew->prereq = saved_prereq;
2834 pNew->u.btree.nEq = saved_nEq;
2835 pNew->u.btree.nBtm = saved_nBtm;
2836 pNew->u.btree.nTop = saved_nTop;
2837 pNew->nSkip = saved_nSkip;
2838 pNew->wsFlags = saved_wsFlags;
2839 pNew->nOut = saved_nOut;
2840 pNew->nLTerm = saved_nLTerm;
2842 /* Consider using a skip-scan if there are no WHERE clause constraints
2843 ** available for the left-most terms of the index, and if the average
2844 ** number of repeats in the left-most terms is at least 18.
2846 ** The magic number 18 is selected on the basis that scanning 17 rows
2847 ** is almost always quicker than an index seek (even though if the index
2848 ** contains fewer than 2^17 rows we assume otherwise in other parts of
2849 ** the code). And, even if it is not, it should not be too much slower.
2850 ** On the other hand, the extra seeks could end up being significantly
2851 ** more expensive. */
2852 assert( 42==sqlite3LogEst(18) );
2853 if( saved_nEq==saved_nSkip
2854 && saved_nEq+1<pProbe->nKeyCol
2855 && saved_nEq==pNew->nLTerm
2856 && pProbe->noSkipScan==0
2857 && pProbe->hasStat1!=0
2858 && OptimizationEnabled(db, SQLITE_SkipScan)
2859 && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */
2860 && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
2862 LogEst nIter;
2863 pNew->u.btree.nEq++;
2864 pNew->nSkip++;
2865 pNew->aLTerm[pNew->nLTerm++] = 0;
2866 pNew->wsFlags |= WHERE_SKIPSCAN;
2867 nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
2868 pNew->nOut -= nIter;
2869 /* TUNING: Because uncertainties in the estimates for skip-scan queries,
2870 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
2871 nIter += 5;
2872 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
2873 pNew->nOut = saved_nOut;
2874 pNew->u.btree.nEq = saved_nEq;
2875 pNew->nSkip = saved_nSkip;
2876 pNew->wsFlags = saved_wsFlags;
2879 WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n",
2880 pProbe->pTable->zName, pProbe->zName, saved_nEq, rc));
2881 return rc;
2885 ** Return True if it is possible that pIndex might be useful in
2886 ** implementing the ORDER BY clause in pBuilder.
2888 ** Return False if pBuilder does not contain an ORDER BY clause or
2889 ** if there is no way for pIndex to be useful in implementing that
2890 ** ORDER BY clause.
2892 static int indexMightHelpWithOrderBy(
2893 WhereLoopBuilder *pBuilder,
2894 Index *pIndex,
2895 int iCursor
2897 ExprList *pOB;
2898 ExprList *aColExpr;
2899 int ii, jj;
2901 if( pIndex->bUnordered ) return 0;
2902 if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
2903 for(ii=0; ii<pOB->nExpr; ii++){
2904 Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr);
2905 if( NEVER(pExpr==0) ) continue;
2906 if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
2907 if( pExpr->iColumn<0 ) return 1;
2908 for(jj=0; jj<pIndex->nKeyCol; jj++){
2909 if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
2911 }else if( (aColExpr = pIndex->aColExpr)!=0 ){
2912 for(jj=0; jj<pIndex->nKeyCol; jj++){
2913 if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
2914 if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
2915 return 1;
2920 return 0;
2923 /* Check to see if a partial index with pPartIndexWhere can be used
2924 ** in the current query. Return true if it can be and false if not.
2926 static int whereUsablePartialIndex(
2927 int iTab, /* The table for which we want an index */
2928 int isLeft, /* True if iTab is the right table of a LEFT JOIN */
2929 WhereClause *pWC, /* The WHERE clause of the query */
2930 Expr *pWhere /* The WHERE clause from the partial index */
2932 int i;
2933 WhereTerm *pTerm;
2934 Parse *pParse = pWC->pWInfo->pParse;
2935 while( pWhere->op==TK_AND ){
2936 if( !whereUsablePartialIndex(iTab,isLeft,pWC,pWhere->pLeft) ) return 0;
2937 pWhere = pWhere->pRight;
2939 if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0;
2940 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
2941 Expr *pExpr;
2942 pExpr = pTerm->pExpr;
2943 if( (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab)
2944 && (isLeft==0 || ExprHasProperty(pExpr, EP_FromJoin))
2945 && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab)
2946 && (pTerm->wtFlags & TERM_VNULL)==0
2948 return 1;
2951 return 0;
2955 ** Add all WhereLoop objects for a single table of the join where the table
2956 ** is identified by pBuilder->pNew->iTab. That table is guaranteed to be
2957 ** a b-tree table, not a virtual table.
2959 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
2960 ** are calculated as follows:
2962 ** For a full scan, assuming the table (or index) contains nRow rows:
2964 ** cost = nRow * 3.0 // full-table scan
2965 ** cost = nRow * K // scan of covering index
2966 ** cost = nRow * (K+3.0) // scan of non-covering index
2968 ** where K is a value between 1.1 and 3.0 set based on the relative
2969 ** estimated average size of the index and table records.
2971 ** For an index scan, where nVisit is the number of index rows visited
2972 ** by the scan, and nSeek is the number of seek operations required on
2973 ** the index b-tree:
2975 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index
2976 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index
2978 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
2979 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
2980 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
2982 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
2983 ** of uncertainty. For this reason, scoring is designed to pick plans that
2984 ** "do the least harm" if the estimates are inaccurate. For example, a
2985 ** log(nRow) factor is omitted from a non-covering index scan in order to
2986 ** bias the scoring in favor of using an index, since the worst-case
2987 ** performance of using an index is far better than the worst-case performance
2988 ** of a full table scan.
2990 static int whereLoopAddBtree(
2991 WhereLoopBuilder *pBuilder, /* WHERE clause information */
2992 Bitmask mPrereq /* Extra prerequesites for using this table */
2994 WhereInfo *pWInfo; /* WHERE analysis context */
2995 Index *pProbe; /* An index we are evaluating */
2996 Index sPk; /* A fake index object for the primary key */
2997 LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */
2998 i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */
2999 SrcList *pTabList; /* The FROM clause */
3000 SrcItem *pSrc; /* The FROM clause btree term to add */
3001 WhereLoop *pNew; /* Template WhereLoop object */
3002 int rc = SQLITE_OK; /* Return code */
3003 int iSortIdx = 1; /* Index number */
3004 int b; /* A boolean value */
3005 LogEst rSize; /* number of rows in the table */
3006 WhereClause *pWC; /* The parsed WHERE clause */
3007 Table *pTab; /* Table being queried */
3009 pNew = pBuilder->pNew;
3010 pWInfo = pBuilder->pWInfo;
3011 pTabList = pWInfo->pTabList;
3012 pSrc = pTabList->a + pNew->iTab;
3013 pTab = pSrc->pTab;
3014 pWC = pBuilder->pWC;
3015 assert( !IsVirtual(pSrc->pTab) );
3017 if( pSrc->fg.isIndexedBy ){
3018 assert( pSrc->fg.isCte==0 );
3019 /* An INDEXED BY clause specifies a particular index to use */
3020 pProbe = pSrc->u2.pIBIndex;
3021 }else if( !HasRowid(pTab) ){
3022 pProbe = pTab->pIndex;
3023 }else{
3024 /* There is no INDEXED BY clause. Create a fake Index object in local
3025 ** variable sPk to represent the rowid primary key index. Make this
3026 ** fake index the first in a chain of Index objects with all of the real
3027 ** indices to follow */
3028 Index *pFirst; /* First of real indices on the table */
3029 memset(&sPk, 0, sizeof(Index));
3030 sPk.nKeyCol = 1;
3031 sPk.nColumn = 1;
3032 sPk.aiColumn = &aiColumnPk;
3033 sPk.aiRowLogEst = aiRowEstPk;
3034 sPk.onError = OE_Replace;
3035 sPk.pTable = pTab;
3036 sPk.szIdxRow = pTab->szTabRow;
3037 sPk.idxType = SQLITE_IDXTYPE_IPK;
3038 aiRowEstPk[0] = pTab->nRowLogEst;
3039 aiRowEstPk[1] = 0;
3040 pFirst = pSrc->pTab->pIndex;
3041 if( pSrc->fg.notIndexed==0 ){
3042 /* The real indices of the table are only considered if the
3043 ** NOT INDEXED qualifier is omitted from the FROM clause */
3044 sPk.pNext = pFirst;
3046 pProbe = &sPk;
3048 rSize = pTab->nRowLogEst;
3050 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
3051 /* Automatic indexes */
3052 if( !pBuilder->pOrSet /* Not part of an OR optimization */
3053 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
3054 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
3055 && !pSrc->fg.isIndexedBy /* Has no INDEXED BY clause */
3056 && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */
3057 && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */
3058 && !pSrc->fg.isCorrelated /* Not a correlated subquery */
3059 && !pSrc->fg.isRecursive /* Not a recursive common table expression. */
3061 /* Generate auto-index WhereLoops */
3062 LogEst rLogSize; /* Logarithm of the number of rows in the table */
3063 WhereTerm *pTerm;
3064 WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
3065 rLogSize = estLog(rSize);
3066 for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
3067 if( pTerm->prereqRight & pNew->maskSelf ) continue;
3068 if( termCanDriveIndex(pTerm, pSrc, 0) ){
3069 pNew->u.btree.nEq = 1;
3070 pNew->nSkip = 0;
3071 pNew->u.btree.pIndex = 0;
3072 pNew->nLTerm = 1;
3073 pNew->aLTerm[0] = pTerm;
3074 /* TUNING: One-time cost for computing the automatic index is
3075 ** estimated to be X*N*log2(N) where N is the number of rows in
3076 ** the table being indexed and where X is 7 (LogEst=28) for normal
3077 ** tables or 0.5 (LogEst=-10) for views and subqueries. The value
3078 ** of X is smaller for views and subqueries so that the query planner
3079 ** will be more aggressive about generating automatic indexes for
3080 ** those objects, since there is no opportunity to add schema
3081 ** indexes on subqueries and views. */
3082 pNew->rSetup = rLogSize + rSize;
3083 if( !IsView(pTab) && (pTab->tabFlags & TF_Ephemeral)==0 ){
3084 pNew->rSetup += 28;
3085 }else{
3086 pNew->rSetup -= 10;
3088 ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
3089 if( pNew->rSetup<0 ) pNew->rSetup = 0;
3090 /* TUNING: Each index lookup yields 20 rows in the table. This
3091 ** is more than the usual guess of 10 rows, since we have no way
3092 ** of knowing how selective the index will ultimately be. It would
3093 ** not be unreasonable to make this value much larger. */
3094 pNew->nOut = 43; assert( 43==sqlite3LogEst(20) );
3095 pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
3096 pNew->wsFlags = WHERE_AUTO_INDEX;
3097 pNew->prereq = mPrereq | pTerm->prereqRight;
3098 rc = whereLoopInsert(pBuilder, pNew);
3102 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
3104 /* Loop over all indices. If there was an INDEXED BY clause, then only
3105 ** consider index pProbe. */
3106 for(; rc==SQLITE_OK && pProbe;
3107 pProbe=(pSrc->fg.isIndexedBy ? 0 : pProbe->pNext), iSortIdx++
3109 int isLeft = (pSrc->fg.jointype & JT_OUTER)!=0;
3110 if( pProbe->pPartIdxWhere!=0
3111 && !whereUsablePartialIndex(pSrc->iCursor, isLeft, pWC,
3112 pProbe->pPartIdxWhere)
3114 testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */
3115 continue; /* Partial index inappropriate for this query */
3117 if( pProbe->bNoQuery ) continue;
3118 rSize = pProbe->aiRowLogEst[0];
3119 pNew->u.btree.nEq = 0;
3120 pNew->u.btree.nBtm = 0;
3121 pNew->u.btree.nTop = 0;
3122 pNew->nSkip = 0;
3123 pNew->nLTerm = 0;
3124 pNew->iSortIdx = 0;
3125 pNew->rSetup = 0;
3126 pNew->prereq = mPrereq;
3127 pNew->nOut = rSize;
3128 pNew->u.btree.pIndex = pProbe;
3129 b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
3131 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
3132 assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
3133 if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){
3134 /* Integer primary key index */
3135 pNew->wsFlags = WHERE_IPK;
3137 /* Full table scan */
3138 pNew->iSortIdx = b ? iSortIdx : 0;
3139 /* TUNING: Cost of full table scan is 3.0*N. The 3.0 factor is an
3140 ** extra cost designed to discourage the use of full table scans,
3141 ** since index lookups have better worst-case performance if our
3142 ** stat guesses are wrong. Reduce the 3.0 penalty slightly
3143 ** (to 2.75) if we have valid STAT4 information for the table.
3144 ** At 2.75, a full table scan is preferred over using an index on
3145 ** a column with just two distinct values where each value has about
3146 ** an equal number of appearances. Without STAT4 data, we still want
3147 ** to use an index in that case, since the constraint might be for
3148 ** the scarcer of the two values, and in that case an index lookup is
3149 ** better.
3151 #ifdef SQLITE_ENABLE_STAT4
3152 pNew->rRun = rSize + 16 - 2*((pTab->tabFlags & TF_HasStat4)!=0);
3153 #else
3154 pNew->rRun = rSize + 16;
3155 #endif
3156 ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3157 whereLoopOutputAdjust(pWC, pNew, rSize);
3158 rc = whereLoopInsert(pBuilder, pNew);
3159 pNew->nOut = rSize;
3160 if( rc ) break;
3161 }else{
3162 Bitmask m;
3163 if( pProbe->isCovering ){
3164 pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
3165 m = 0;
3166 }else{
3167 m = pSrc->colUsed & pProbe->colNotIdxed;
3168 pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
3171 /* Full scan via index */
3172 if( b
3173 || !HasRowid(pTab)
3174 || pProbe->pPartIdxWhere!=0
3175 || pSrc->fg.isIndexedBy
3176 || ( m==0
3177 && pProbe->bUnordered==0
3178 && (pProbe->szIdxRow<pTab->szTabRow)
3179 && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
3180 && sqlite3GlobalConfig.bUseCis
3181 && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
3184 pNew->iSortIdx = b ? iSortIdx : 0;
3186 /* The cost of visiting the index rows is N*K, where K is
3187 ** between 1.1 and 3.0, depending on the relative sizes of the
3188 ** index and table rows. */
3189 pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
3190 if( m!=0 ){
3191 /* If this is a non-covering index scan, add in the cost of
3192 ** doing table lookups. The cost will be 3x the number of
3193 ** lookups. Take into account WHERE clause terms that can be
3194 ** satisfied using just the index, and that do not require a
3195 ** table lookup. */
3196 LogEst nLookup = rSize + 16; /* Base cost: N*3 */
3197 int ii;
3198 int iCur = pSrc->iCursor;
3199 WhereClause *pWC2 = &pWInfo->sWC;
3200 for(ii=0; ii<pWC2->nTerm; ii++){
3201 WhereTerm *pTerm = &pWC2->a[ii];
3202 if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
3203 break;
3205 /* pTerm can be evaluated using just the index. So reduce
3206 ** the expected number of table lookups accordingly */
3207 if( pTerm->truthProb<=0 ){
3208 nLookup += pTerm->truthProb;
3209 }else{
3210 nLookup--;
3211 if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
3215 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
3217 ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3218 whereLoopOutputAdjust(pWC, pNew, rSize);
3219 rc = whereLoopInsert(pBuilder, pNew);
3220 pNew->nOut = rSize;
3221 if( rc ) break;
3225 pBuilder->bldFlags1 = 0;
3226 rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
3227 if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){
3228 /* If a non-unique index is used, or if a prefix of the key for
3229 ** unique index is used (making the index functionally non-unique)
3230 ** then the sqlite_stat1 data becomes important for scoring the
3231 ** plan */
3232 pTab->tabFlags |= TF_StatsUsed;
3234 #ifdef SQLITE_ENABLE_STAT4
3235 sqlite3Stat4ProbeFree(pBuilder->pRec);
3236 pBuilder->nRecValid = 0;
3237 pBuilder->pRec = 0;
3238 #endif
3240 return rc;
3243 #ifndef SQLITE_OMIT_VIRTUALTABLE
3246 ** Argument pIdxInfo is already populated with all constraints that may
3247 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
3248 ** function marks a subset of those constraints usable, invokes the
3249 ** xBestIndex method and adds the returned plan to pBuilder.
3251 ** A constraint is marked usable if:
3253 ** * Argument mUsable indicates that its prerequisites are available, and
3255 ** * It is not one of the operators specified in the mExclude mask passed
3256 ** as the fourth argument (which in practice is either WO_IN or 0).
3258 ** Argument mPrereq is a mask of tables that must be scanned before the
3259 ** virtual table in question. These are added to the plans prerequisites
3260 ** before it is added to pBuilder.
3262 ** Output parameter *pbIn is set to true if the plan added to pBuilder
3263 ** uses one or more WO_IN terms, or false otherwise.
3265 static int whereLoopAddVirtualOne(
3266 WhereLoopBuilder *pBuilder,
3267 Bitmask mPrereq, /* Mask of tables that must be used. */
3268 Bitmask mUsable, /* Mask of usable tables */
3269 u16 mExclude, /* Exclude terms using these operators */
3270 sqlite3_index_info *pIdxInfo, /* Populated object for xBestIndex */
3271 u16 mNoOmit, /* Do not omit these constraints */
3272 int *pbIn /* OUT: True if plan uses an IN(...) op */
3274 WhereClause *pWC = pBuilder->pWC;
3275 struct sqlite3_index_constraint *pIdxCons;
3276 struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
3277 int i;
3278 int mxTerm;
3279 int rc = SQLITE_OK;
3280 WhereLoop *pNew = pBuilder->pNew;
3281 Parse *pParse = pBuilder->pWInfo->pParse;
3282 SrcItem *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
3283 int nConstraint = pIdxInfo->nConstraint;
3285 assert( (mUsable & mPrereq)==mPrereq );
3286 *pbIn = 0;
3287 pNew->prereq = mPrereq;
3289 /* Set the usable flag on the subset of constraints identified by
3290 ** arguments mUsable and mExclude. */
3291 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3292 for(i=0; i<nConstraint; i++, pIdxCons++){
3293 WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset];
3294 pIdxCons->usable = 0;
3295 if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
3296 && (pTerm->eOperator & mExclude)==0
3298 pIdxCons->usable = 1;
3302 /* Initialize the output fields of the sqlite3_index_info structure */
3303 memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
3304 assert( pIdxInfo->needToFreeIdxStr==0 );
3305 pIdxInfo->idxStr = 0;
3306 pIdxInfo->idxNum = 0;
3307 pIdxInfo->orderByConsumed = 0;
3308 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
3309 pIdxInfo->estimatedRows = 25;
3310 pIdxInfo->idxFlags = 0;
3311 pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
3313 /* Invoke the virtual table xBestIndex() method */
3314 rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
3315 if( rc ){
3316 if( rc==SQLITE_CONSTRAINT ){
3317 /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means
3318 ** that the particular combination of parameters provided is unusable.
3319 ** Make no entries in the loop table.
3321 WHERETRACE(0xffff, (" ^^^^--- non-viable plan rejected!\n"));
3322 return SQLITE_OK;
3324 return rc;
3327 mxTerm = -1;
3328 assert( pNew->nLSlot>=nConstraint );
3329 for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0;
3330 pNew->u.vtab.omitMask = 0;
3331 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3332 for(i=0; i<nConstraint; i++, pIdxCons++){
3333 int iTerm;
3334 if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
3335 WhereTerm *pTerm;
3336 int j = pIdxCons->iTermOffset;
3337 if( iTerm>=nConstraint
3338 || j<0
3339 || j>=pWC->nTerm
3340 || pNew->aLTerm[iTerm]!=0
3341 || pIdxCons->usable==0
3343 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3344 testcase( pIdxInfo->needToFreeIdxStr );
3345 return SQLITE_ERROR;
3347 testcase( iTerm==nConstraint-1 );
3348 testcase( j==0 );
3349 testcase( j==pWC->nTerm-1 );
3350 pTerm = &pWC->a[j];
3351 pNew->prereq |= pTerm->prereqRight;
3352 assert( iTerm<pNew->nLSlot );
3353 pNew->aLTerm[iTerm] = pTerm;
3354 if( iTerm>mxTerm ) mxTerm = iTerm;
3355 testcase( iTerm==15 );
3356 testcase( iTerm==16 );
3357 if( pUsage[i].omit ){
3358 if( i<16 && ((1<<i)&mNoOmit)==0 ){
3359 testcase( i!=iTerm );
3360 pNew->u.vtab.omitMask |= 1<<iTerm;
3361 }else{
3362 testcase( i!=iTerm );
3365 if( (pTerm->eOperator & WO_IN)!=0 ){
3366 /* A virtual table that is constrained by an IN clause may not
3367 ** consume the ORDER BY clause because (1) the order of IN terms
3368 ** is not necessarily related to the order of output terms and
3369 ** (2) Multiple outputs from a single IN value will not merge
3370 ** together. */
3371 pIdxInfo->orderByConsumed = 0;
3372 pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
3373 *pbIn = 1; assert( (mExclude & WO_IN)==0 );
3378 pNew->nLTerm = mxTerm+1;
3379 for(i=0; i<=mxTerm; i++){
3380 if( pNew->aLTerm[i]==0 ){
3381 /* The non-zero argvIdx values must be contiguous. Raise an
3382 ** error if they are not */
3383 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3384 testcase( pIdxInfo->needToFreeIdxStr );
3385 return SQLITE_ERROR;
3388 assert( pNew->nLTerm<=pNew->nLSlot );
3389 pNew->u.vtab.idxNum = pIdxInfo->idxNum;
3390 pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
3391 pIdxInfo->needToFreeIdxStr = 0;
3392 pNew->u.vtab.idxStr = pIdxInfo->idxStr;
3393 pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
3394 pIdxInfo->nOrderBy : 0);
3395 pNew->rSetup = 0;
3396 pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
3397 pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
3399 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
3400 ** that the scan will visit at most one row. Clear it otherwise. */
3401 if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
3402 pNew->wsFlags |= WHERE_ONEROW;
3403 }else{
3404 pNew->wsFlags &= ~WHERE_ONEROW;
3406 rc = whereLoopInsert(pBuilder, pNew);
3407 if( pNew->u.vtab.needFree ){
3408 sqlite3_free(pNew->u.vtab.idxStr);
3409 pNew->u.vtab.needFree = 0;
3411 WHERETRACE(0xffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
3412 *pbIn, (sqlite3_uint64)mPrereq,
3413 (sqlite3_uint64)(pNew->prereq & ~mPrereq)));
3415 return rc;
3419 ** If this function is invoked from within an xBestIndex() callback, it
3420 ** returns a pointer to a buffer containing the name of the collation
3421 ** sequence associated with element iCons of the sqlite3_index_info.aConstraint
3422 ** array. Or, if iCons is out of range or there is no active xBestIndex
3423 ** call, return NULL.
3425 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){
3426 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3427 const char *zRet = 0;
3428 if( iCons>=0 && iCons<pIdxInfo->nConstraint ){
3429 CollSeq *pC = 0;
3430 int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset;
3431 Expr *pX = pHidden->pWC->a[iTerm].pExpr;
3432 if( pX->pLeft ){
3433 pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX);
3435 zRet = (pC ? pC->zName : sqlite3StrBINARY);
3437 return zRet;
3441 ** Add all WhereLoop objects for a table of the join identified by
3442 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table.
3444 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
3445 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
3446 ** entries that occur before the virtual table in the FROM clause and are
3447 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
3448 ** mUnusable mask contains all FROM clause entries that occur after the
3449 ** virtual table and are separated from it by at least one LEFT or
3450 ** CROSS JOIN.
3452 ** For example, if the query were:
3454 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
3456 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
3458 ** All the tables in mPrereq must be scanned before the current virtual
3459 ** table. So any terms for which all prerequisites are satisfied by
3460 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
3461 ** Conversely, all tables in mUnusable must be scanned after the current
3462 ** virtual table, so any terms for which the prerequisites overlap with
3463 ** mUnusable should always be configured as "not-usable" for xBestIndex.
3465 static int whereLoopAddVirtual(
3466 WhereLoopBuilder *pBuilder, /* WHERE clause information */
3467 Bitmask mPrereq, /* Tables that must be scanned before this one */
3468 Bitmask mUnusable /* Tables that must be scanned after this one */
3470 int rc = SQLITE_OK; /* Return code */
3471 WhereInfo *pWInfo; /* WHERE analysis context */
3472 Parse *pParse; /* The parsing context */
3473 WhereClause *pWC; /* The WHERE clause */
3474 SrcItem *pSrc; /* The FROM clause term to search */
3475 sqlite3_index_info *p; /* Object to pass to xBestIndex() */
3476 int nConstraint; /* Number of constraints in p */
3477 int bIn; /* True if plan uses IN(...) operator */
3478 WhereLoop *pNew;
3479 Bitmask mBest; /* Tables used by best possible plan */
3480 u16 mNoOmit;
3482 assert( (mPrereq & mUnusable)==0 );
3483 pWInfo = pBuilder->pWInfo;
3484 pParse = pWInfo->pParse;
3485 pWC = pBuilder->pWC;
3486 pNew = pBuilder->pNew;
3487 pSrc = &pWInfo->pTabList->a[pNew->iTab];
3488 assert( IsVirtual(pSrc->pTab) );
3489 p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy,
3490 &mNoOmit);
3491 if( p==0 ) return SQLITE_NOMEM_BKPT;
3492 pNew->rSetup = 0;
3493 pNew->wsFlags = WHERE_VIRTUALTABLE;
3494 pNew->nLTerm = 0;
3495 pNew->u.vtab.needFree = 0;
3496 nConstraint = p->nConstraint;
3497 if( whereLoopResize(pParse->db, pNew, nConstraint) ){
3498 sqlite3DbFree(pParse->db, p);
3499 return SQLITE_NOMEM_BKPT;
3502 /* First call xBestIndex() with all constraints usable. */
3503 WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName));
3504 WHERETRACE(0x40, (" VirtualOne: all usable\n"));
3505 rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn);
3507 /* If the call to xBestIndex() with all terms enabled produced a plan
3508 ** that does not require any source tables (IOW: a plan with mBest==0)
3509 ** and does not use an IN(...) operator, then there is no point in making
3510 ** any further calls to xBestIndex() since they will all return the same
3511 ** result (if the xBestIndex() implementation is sane). */
3512 if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){
3513 int seenZero = 0; /* True if a plan with no prereqs seen */
3514 int seenZeroNoIN = 0; /* Plan with no prereqs and no IN(...) seen */
3515 Bitmask mPrev = 0;
3516 Bitmask mBestNoIn = 0;
3518 /* If the plan produced by the earlier call uses an IN(...) term, call
3519 ** xBestIndex again, this time with IN(...) terms disabled. */
3520 if( bIn ){
3521 WHERETRACE(0x40, (" VirtualOne: all usable w/o IN\n"));
3522 rc = whereLoopAddVirtualOne(
3523 pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn);
3524 assert( bIn==0 );
3525 mBestNoIn = pNew->prereq & ~mPrereq;
3526 if( mBestNoIn==0 ){
3527 seenZero = 1;
3528 seenZeroNoIN = 1;
3532 /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
3533 ** in the set of terms that apply to the current virtual table. */
3534 while( rc==SQLITE_OK ){
3535 int i;
3536 Bitmask mNext = ALLBITS;
3537 assert( mNext>0 );
3538 for(i=0; i<nConstraint; i++){
3539 Bitmask mThis = (
3540 pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
3542 if( mThis>mPrev && mThis<mNext ) mNext = mThis;
3544 mPrev = mNext;
3545 if( mNext==ALLBITS ) break;
3546 if( mNext==mBest || mNext==mBestNoIn ) continue;
3547 WHERETRACE(0x40, (" VirtualOne: mPrev=%04llx mNext=%04llx\n",
3548 (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
3549 rc = whereLoopAddVirtualOne(
3550 pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn);
3551 if( pNew->prereq==mPrereq ){
3552 seenZero = 1;
3553 if( bIn==0 ) seenZeroNoIN = 1;
3557 /* If the calls to xBestIndex() in the above loop did not find a plan
3558 ** that requires no source tables at all (i.e. one guaranteed to be
3559 ** usable), make a call here with all source tables disabled */
3560 if( rc==SQLITE_OK && seenZero==0 ){
3561 WHERETRACE(0x40, (" VirtualOne: all disabled\n"));
3562 rc = whereLoopAddVirtualOne(
3563 pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn);
3564 if( bIn==0 ) seenZeroNoIN = 1;
3567 /* If the calls to xBestIndex() have so far failed to find a plan
3568 ** that requires no source tables at all and does not use an IN(...)
3569 ** operator, make a final call to obtain one here. */
3570 if( rc==SQLITE_OK && seenZeroNoIN==0 ){
3571 WHERETRACE(0x40, (" VirtualOne: all disabled and w/o IN\n"));
3572 rc = whereLoopAddVirtualOne(
3573 pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn);
3577 if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
3578 sqlite3DbFreeNN(pParse->db, p);
3579 WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc));
3580 return rc;
3582 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3585 ** Add WhereLoop entries to handle OR terms. This works for either
3586 ** btrees or virtual tables.
3588 static int whereLoopAddOr(
3589 WhereLoopBuilder *pBuilder,
3590 Bitmask mPrereq,
3591 Bitmask mUnusable
3593 WhereInfo *pWInfo = pBuilder->pWInfo;
3594 WhereClause *pWC;
3595 WhereLoop *pNew;
3596 WhereTerm *pTerm, *pWCEnd;
3597 int rc = SQLITE_OK;
3598 int iCur;
3599 WhereClause tempWC;
3600 WhereLoopBuilder sSubBuild;
3601 WhereOrSet sSum, sCur;
3602 SrcItem *pItem;
3604 pWC = pBuilder->pWC;
3605 pWCEnd = pWC->a + pWC->nTerm;
3606 pNew = pBuilder->pNew;
3607 memset(&sSum, 0, sizeof(sSum));
3608 pItem = pWInfo->pTabList->a + pNew->iTab;
3609 iCur = pItem->iCursor;
3611 for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
3612 if( (pTerm->eOperator & WO_OR)!=0
3613 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
3615 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
3616 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
3617 WhereTerm *pOrTerm;
3618 int once = 1;
3619 int i, j;
3621 sSubBuild = *pBuilder;
3622 sSubBuild.pOrderBy = 0;
3623 sSubBuild.pOrSet = &sCur;
3625 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
3626 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
3627 if( (pOrTerm->eOperator & WO_AND)!=0 ){
3628 sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
3629 }else if( pOrTerm->leftCursor==iCur ){
3630 tempWC.pWInfo = pWC->pWInfo;
3631 tempWC.pOuter = pWC;
3632 tempWC.op = TK_AND;
3633 tempWC.nTerm = 1;
3634 tempWC.a = pOrTerm;
3635 sSubBuild.pWC = &tempWC;
3636 }else{
3637 continue;
3639 sCur.n = 0;
3640 #ifdef WHERETRACE_ENABLED
3641 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
3642 (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
3643 if( sqlite3WhereTrace & 0x400 ){
3644 sqlite3WhereClausePrint(sSubBuild.pWC);
3646 #endif
3647 #ifndef SQLITE_OMIT_VIRTUALTABLE
3648 if( IsVirtual(pItem->pTab) ){
3649 rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
3650 }else
3651 #endif
3653 rc = whereLoopAddBtree(&sSubBuild, mPrereq);
3655 if( rc==SQLITE_OK ){
3656 rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
3658 assert( rc==SQLITE_OK || rc==SQLITE_DONE || sCur.n==0
3659 || rc==SQLITE_NOMEM );
3660 testcase( rc==SQLITE_NOMEM && sCur.n>0 );
3661 testcase( rc==SQLITE_DONE );
3662 if( sCur.n==0 ){
3663 sSum.n = 0;
3664 break;
3665 }else if( once ){
3666 whereOrMove(&sSum, &sCur);
3667 once = 0;
3668 }else{
3669 WhereOrSet sPrev;
3670 whereOrMove(&sPrev, &sSum);
3671 sSum.n = 0;
3672 for(i=0; i<sPrev.n; i++){
3673 for(j=0; j<sCur.n; j++){
3674 whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
3675 sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
3676 sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
3681 pNew->nLTerm = 1;
3682 pNew->aLTerm[0] = pTerm;
3683 pNew->wsFlags = WHERE_MULTI_OR;
3684 pNew->rSetup = 0;
3685 pNew->iSortIdx = 0;
3686 memset(&pNew->u, 0, sizeof(pNew->u));
3687 for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
3688 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
3689 ** of all sub-scans required by the OR-scan. However, due to rounding
3690 ** errors, it may be that the cost of the OR-scan is equal to its
3691 ** most expensive sub-scan. Add the smallest possible penalty
3692 ** (equivalent to multiplying the cost by 1.07) to ensure that
3693 ** this does not happen. Otherwise, for WHERE clauses such as the
3694 ** following where there is an index on "y":
3696 ** WHERE likelihood(x=?, 0.99) OR y=?
3698 ** the planner may elect to "OR" together a full-table scan and an
3699 ** index lookup. And other similarly odd results. */
3700 pNew->rRun = sSum.a[i].rRun + 1;
3701 pNew->nOut = sSum.a[i].nOut;
3702 pNew->prereq = sSum.a[i].prereq;
3703 rc = whereLoopInsert(pBuilder, pNew);
3705 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
3708 return rc;
3712 ** Add all WhereLoop objects for all tables
3714 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
3715 WhereInfo *pWInfo = pBuilder->pWInfo;
3716 Bitmask mPrereq = 0;
3717 Bitmask mPrior = 0;
3718 int iTab;
3719 SrcList *pTabList = pWInfo->pTabList;
3720 SrcItem *pItem;
3721 SrcItem *pEnd = &pTabList->a[pWInfo->nLevel];
3722 sqlite3 *db = pWInfo->pParse->db;
3723 int rc = SQLITE_OK;
3724 WhereLoop *pNew;
3726 /* Loop over the tables in the join, from left to right */
3727 pNew = pBuilder->pNew;
3728 whereLoopInit(pNew);
3729 pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT;
3730 for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
3731 Bitmask mUnusable = 0;
3732 pNew->iTab = iTab;
3733 pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR;
3734 pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
3735 if( (pItem->fg.jointype & (JT_LEFT|JT_CROSS))!=0 ){
3736 /* This condition is true when pItem is the FROM clause term on the
3737 ** right-hand-side of a LEFT or CROSS JOIN. */
3738 mPrereq = mPrior;
3739 }else{
3740 mPrereq = 0;
3742 #ifndef SQLITE_OMIT_VIRTUALTABLE
3743 if( IsVirtual(pItem->pTab) ){
3744 SrcItem *p;
3745 for(p=&pItem[1]; p<pEnd; p++){
3746 if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){
3747 mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
3750 rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
3751 }else
3752 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3754 rc = whereLoopAddBtree(pBuilder, mPrereq);
3756 if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){
3757 rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
3759 mPrior |= pNew->maskSelf;
3760 if( rc || db->mallocFailed ){
3761 if( rc==SQLITE_DONE ){
3762 /* We hit the query planner search limit set by iPlanLimit */
3763 sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search");
3764 rc = SQLITE_OK;
3765 }else{
3766 break;
3771 whereLoopClear(db, pNew);
3772 return rc;
3776 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
3777 ** parameters) to see if it outputs rows in the requested ORDER BY
3778 ** (or GROUP BY) without requiring a separate sort operation. Return N:
3780 ** N>0: N terms of the ORDER BY clause are satisfied
3781 ** N==0: No terms of the ORDER BY clause are satisfied
3782 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied.
3784 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
3785 ** strict. With GROUP BY and DISTINCT the only requirement is that
3786 ** equivalent rows appear immediately adjacent to one another. GROUP BY
3787 ** and DISTINCT do not require rows to appear in any particular order as long
3788 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT
3789 ** the pOrderBy terms can be matched in any order. With ORDER BY, the
3790 ** pOrderBy terms must be matched in strict left-to-right order.
3792 static i8 wherePathSatisfiesOrderBy(
3793 WhereInfo *pWInfo, /* The WHERE clause */
3794 ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */
3795 WherePath *pPath, /* The WherePath to check */
3796 u16 wctrlFlags, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
3797 u16 nLoop, /* Number of entries in pPath->aLoop[] */
3798 WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */
3799 Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */
3801 u8 revSet; /* True if rev is known */
3802 u8 rev; /* Composite sort order */
3803 u8 revIdx; /* Index sort order */
3804 u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */
3805 u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */
3806 u8 isMatch; /* iColumn matches a term of the ORDER BY clause */
3807 u16 eqOpMask; /* Allowed equality operators */
3808 u16 nKeyCol; /* Number of key columns in pIndex */
3809 u16 nColumn; /* Total number of ordered columns in the index */
3810 u16 nOrderBy; /* Number terms in the ORDER BY clause */
3811 int iLoop; /* Index of WhereLoop in pPath being processed */
3812 int i, j; /* Loop counters */
3813 int iCur; /* Cursor number for current WhereLoop */
3814 int iColumn; /* A column number within table iCur */
3815 WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
3816 WhereTerm *pTerm; /* A single term of the WHERE clause */
3817 Expr *pOBExpr; /* An expression from the ORDER BY clause */
3818 CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */
3819 Index *pIndex; /* The index associated with pLoop */
3820 sqlite3 *db = pWInfo->pParse->db; /* Database connection */
3821 Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */
3822 Bitmask obDone; /* Mask of all ORDER BY terms */
3823 Bitmask orderDistinctMask; /* Mask of all well-ordered loops */
3824 Bitmask ready; /* Mask of inner loops */
3827 ** We say the WhereLoop is "one-row" if it generates no more than one
3828 ** row of output. A WhereLoop is one-row if all of the following are true:
3829 ** (a) All index columns match with WHERE_COLUMN_EQ.
3830 ** (b) The index is unique
3831 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
3832 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
3834 ** We say the WhereLoop is "order-distinct" if the set of columns from
3835 ** that WhereLoop that are in the ORDER BY clause are different for every
3836 ** row of the WhereLoop. Every one-row WhereLoop is automatically
3837 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause
3838 ** is not order-distinct. To be order-distinct is not quite the same as being
3839 ** UNIQUE since a UNIQUE column or index can have multiple rows that
3840 ** are NULL and NULL values are equivalent for the purpose of order-distinct.
3841 ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
3843 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
3844 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
3845 ** automatically order-distinct.
3848 assert( pOrderBy!=0 );
3849 if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
3851 nOrderBy = pOrderBy->nExpr;
3852 testcase( nOrderBy==BMS-1 );
3853 if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */
3854 isOrderDistinct = 1;
3855 obDone = MASKBIT(nOrderBy)-1;
3856 orderDistinctMask = 0;
3857 ready = 0;
3858 eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
3859 if( wctrlFlags & (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MAX|WHERE_ORDERBY_MIN) ){
3860 eqOpMask |= WO_IN;
3862 for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
3863 if( iLoop>0 ) ready |= pLoop->maskSelf;
3864 if( iLoop<nLoop ){
3865 pLoop = pPath->aLoop[iLoop];
3866 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
3867 }else{
3868 pLoop = pLast;
3870 if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
3871 if( pLoop->u.vtab.isOrdered && (wctrlFlags & WHERE_DISTINCTBY)==0 ){
3872 obSat = obDone;
3874 break;
3875 }else if( wctrlFlags & WHERE_DISTINCTBY ){
3876 pLoop->u.btree.nDistinctCol = 0;
3878 iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
3880 /* Mark off any ORDER BY term X that is a column in the table of
3881 ** the current loop for which there is term in the WHERE
3882 ** clause of the form X IS NULL or X=? that reference only outer
3883 ** loops.
3885 for(i=0; i<nOrderBy; i++){
3886 if( MASKBIT(i) & obSat ) continue;
3887 pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
3888 if( NEVER(pOBExpr==0) ) continue;
3889 if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
3890 if( pOBExpr->iTable!=iCur ) continue;
3891 pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
3892 ~ready, eqOpMask, 0);
3893 if( pTerm==0 ) continue;
3894 if( pTerm->eOperator==WO_IN ){
3895 /* IN terms are only valid for sorting in the ORDER BY LIMIT
3896 ** optimization, and then only if they are actually used
3897 ** by the query plan */
3898 assert( wctrlFlags &
3899 (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) );
3900 for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
3901 if( j>=pLoop->nLTerm ) continue;
3903 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
3904 Parse *pParse = pWInfo->pParse;
3905 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr);
3906 CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr);
3907 assert( pColl1 );
3908 if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){
3909 continue;
3911 testcase( pTerm->pExpr->op==TK_IS );
3913 obSat |= MASKBIT(i);
3916 if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
3917 if( pLoop->wsFlags & WHERE_IPK ){
3918 pIndex = 0;
3919 nKeyCol = 0;
3920 nColumn = 1;
3921 }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
3922 return 0;
3923 }else{
3924 nKeyCol = pIndex->nKeyCol;
3925 nColumn = pIndex->nColumn;
3926 assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
3927 assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
3928 || !HasRowid(pIndex->pTable));
3929 /* All relevant terms of the index must also be non-NULL in order
3930 ** for isOrderDistinct to be true. So the isOrderDistint value
3931 ** computed here might be a false positive. Corrections will be
3932 ** made at tag-20210426-1 below */
3933 isOrderDistinct = IsUniqueIndex(pIndex)
3934 && (pLoop->wsFlags & WHERE_SKIPSCAN)==0;
3937 /* Loop through all columns of the index and deal with the ones
3938 ** that are not constrained by == or IN.
3940 rev = revSet = 0;
3941 distinctColumns = 0;
3942 for(j=0; j<nColumn; j++){
3943 u8 bOnce = 1; /* True to run the ORDER BY search loop */
3945 assert( j>=pLoop->u.btree.nEq
3946 || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
3948 if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
3949 u16 eOp = pLoop->aLTerm[j]->eOperator;
3951 /* Skip over == and IS and ISNULL terms. (Also skip IN terms when
3952 ** doing WHERE_ORDERBY_LIMIT processing). Except, IS and ISNULL
3953 ** terms imply that the index is not UNIQUE NOT NULL in which case
3954 ** the loop need to be marked as not order-distinct because it can
3955 ** have repeated NULL rows.
3957 ** If the current term is a column of an ((?,?) IN (SELECT...))
3958 ** expression for which the SELECT returns more than one column,
3959 ** check that it is the only column used by this loop. Otherwise,
3960 ** if it is one of two or more, none of the columns can be
3961 ** considered to match an ORDER BY term.
3963 if( (eOp & eqOpMask)!=0 ){
3964 if( eOp & (WO_ISNULL|WO_IS) ){
3965 testcase( eOp & WO_ISNULL );
3966 testcase( eOp & WO_IS );
3967 testcase( isOrderDistinct );
3968 isOrderDistinct = 0;
3970 continue;
3971 }else if( ALWAYS(eOp & WO_IN) ){
3972 /* ALWAYS() justification: eOp is an equality operator due to the
3973 ** j<pLoop->u.btree.nEq constraint above. Any equality other
3974 ** than WO_IN is captured by the previous "if". So this one
3975 ** always has to be WO_IN. */
3976 Expr *pX = pLoop->aLTerm[j]->pExpr;
3977 for(i=j+1; i<pLoop->u.btree.nEq; i++){
3978 if( pLoop->aLTerm[i]->pExpr==pX ){
3979 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
3980 bOnce = 0;
3981 break;
3987 /* Get the column number in the table (iColumn) and sort order
3988 ** (revIdx) for the j-th column of the index.
3990 if( pIndex ){
3991 iColumn = pIndex->aiColumn[j];
3992 revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC;
3993 if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID;
3994 }else{
3995 iColumn = XN_ROWID;
3996 revIdx = 0;
3999 /* An unconstrained column that might be NULL means that this
4000 ** WhereLoop is not well-ordered. tag-20210426-1
4002 if( isOrderDistinct ){
4003 if( iColumn>=0
4004 && j>=pLoop->u.btree.nEq
4005 && pIndex->pTable->aCol[iColumn].notNull==0
4007 isOrderDistinct = 0;
4009 if( iColumn==XN_EXPR ){
4010 isOrderDistinct = 0;
4014 /* Find the ORDER BY term that corresponds to the j-th column
4015 ** of the index and mark that ORDER BY term off
4017 isMatch = 0;
4018 for(i=0; bOnce && i<nOrderBy; i++){
4019 if( MASKBIT(i) & obSat ) continue;
4020 pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
4021 testcase( wctrlFlags & WHERE_GROUPBY );
4022 testcase( wctrlFlags & WHERE_DISTINCTBY );
4023 if( NEVER(pOBExpr==0) ) continue;
4024 if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
4025 if( iColumn>=XN_ROWID ){
4026 if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
4027 if( pOBExpr->iTable!=iCur ) continue;
4028 if( pOBExpr->iColumn!=iColumn ) continue;
4029 }else{
4030 Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr;
4031 if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){
4032 continue;
4035 if( iColumn!=XN_ROWID ){
4036 pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
4037 if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
4039 if( wctrlFlags & WHERE_DISTINCTBY ){
4040 pLoop->u.btree.nDistinctCol = j+1;
4042 isMatch = 1;
4043 break;
4045 if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
4046 /* Make sure the sort order is compatible in an ORDER BY clause.
4047 ** Sort order is irrelevant for a GROUP BY clause. */
4048 if( revSet ){
4049 if( (rev ^ revIdx)!=(pOrderBy->a[i].sortFlags&KEYINFO_ORDER_DESC) ){
4050 isMatch = 0;
4052 }else{
4053 rev = revIdx ^ (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC);
4054 if( rev ) *pRevMask |= MASKBIT(iLoop);
4055 revSet = 1;
4058 if( isMatch && (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL) ){
4059 if( j==pLoop->u.btree.nEq ){
4060 pLoop->wsFlags |= WHERE_BIGNULL_SORT;
4061 }else{
4062 isMatch = 0;
4065 if( isMatch ){
4066 if( iColumn==XN_ROWID ){
4067 testcase( distinctColumns==0 );
4068 distinctColumns = 1;
4070 obSat |= MASKBIT(i);
4071 }else{
4072 /* No match found */
4073 if( j==0 || j<nKeyCol ){
4074 testcase( isOrderDistinct!=0 );
4075 isOrderDistinct = 0;
4077 break;
4079 } /* end Loop over all index columns */
4080 if( distinctColumns ){
4081 testcase( isOrderDistinct==0 );
4082 isOrderDistinct = 1;
4084 } /* end-if not one-row */
4086 /* Mark off any other ORDER BY terms that reference pLoop */
4087 if( isOrderDistinct ){
4088 orderDistinctMask |= pLoop->maskSelf;
4089 for(i=0; i<nOrderBy; i++){
4090 Expr *p;
4091 Bitmask mTerm;
4092 if( MASKBIT(i) & obSat ) continue;
4093 p = pOrderBy->a[i].pExpr;
4094 mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
4095 if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
4096 if( (mTerm&~orderDistinctMask)==0 ){
4097 obSat |= MASKBIT(i);
4101 } /* End the loop over all WhereLoops from outer-most down to inner-most */
4102 if( obSat==obDone ) return (i8)nOrderBy;
4103 if( !isOrderDistinct ){
4104 for(i=nOrderBy-1; i>0; i--){
4105 Bitmask m = ALWAYS(i<BMS) ? MASKBIT(i) - 1 : 0;
4106 if( (obSat&m)==m ) return i;
4108 return 0;
4110 return -1;
4115 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
4116 ** the planner assumes that the specified pOrderBy list is actually a GROUP
4117 ** BY clause - and so any order that groups rows as required satisfies the
4118 ** request.
4120 ** Normally, in this case it is not possible for the caller to determine
4121 ** whether or not the rows are really being delivered in sorted order, or
4122 ** just in some other order that provides the required grouping. However,
4123 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
4124 ** this function may be called on the returned WhereInfo object. It returns
4125 ** true if the rows really will be sorted in the specified order, or false
4126 ** otherwise.
4128 ** For example, assuming:
4130 ** CREATE INDEX i1 ON t1(x, Y);
4132 ** then
4134 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1
4135 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0
4137 int sqlite3WhereIsSorted(WhereInfo *pWInfo){
4138 assert( pWInfo->wctrlFlags & WHERE_GROUPBY );
4139 assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
4140 return pWInfo->sorted;
4143 #ifdef WHERETRACE_ENABLED
4144 /* For debugging use only: */
4145 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
4146 static char zName[65];
4147 int i;
4148 for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
4149 if( pLast ) zName[i++] = pLast->cId;
4150 zName[i] = 0;
4151 return zName;
4153 #endif
4156 ** Return the cost of sorting nRow rows, assuming that the keys have
4157 ** nOrderby columns and that the first nSorted columns are already in
4158 ** order.
4160 static LogEst whereSortingCost(
4161 WhereInfo *pWInfo,
4162 LogEst nRow,
4163 int nOrderBy,
4164 int nSorted
4166 /* TUNING: Estimated cost of a full external sort, where N is
4167 ** the number of rows to sort is:
4169 ** cost = (3.0 * N * log(N)).
4171 ** Or, if the order-by clause has X terms but only the last Y
4172 ** terms are out of order, then block-sorting will reduce the
4173 ** sorting cost to:
4175 ** cost = (3.0 * N * log(N)) * (Y/X)
4177 ** The (Y/X) term is implemented using stack variable rScale
4178 ** below.
4180 LogEst rScale, rSortCost;
4181 assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
4182 rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
4183 rSortCost = nRow + rScale + 16;
4185 /* Multiple by log(M) where M is the number of output rows.
4186 ** Use the LIMIT for M if it is smaller. Or if this sort is for
4187 ** a DISTINCT operator, M will be the number of distinct output
4188 ** rows, so fudge it downwards a bit.
4190 if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){
4191 nRow = pWInfo->iLimit;
4192 }else if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT) ){
4193 /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT
4194 ** reduces the number of output rows by a factor of 2 */
4195 if( nRow>10 ){ nRow -= 10; assert( 10==sqlite3LogEst(2) ); }
4197 rSortCost += estLog(nRow);
4198 return rSortCost;
4202 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
4203 ** attempts to find the lowest cost path that visits each WhereLoop
4204 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields.
4206 ** Assume that the total number of output rows that will need to be sorted
4207 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting
4208 ** costs if nRowEst==0.
4210 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
4211 ** error occurs.
4213 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
4214 int mxChoice; /* Maximum number of simultaneous paths tracked */
4215 int nLoop; /* Number of terms in the join */
4216 Parse *pParse; /* Parsing context */
4217 sqlite3 *db; /* The database connection */
4218 int iLoop; /* Loop counter over the terms of the join */
4219 int ii, jj; /* Loop counters */
4220 int mxI = 0; /* Index of next entry to replace */
4221 int nOrderBy; /* Number of ORDER BY clause terms */
4222 LogEst mxCost = 0; /* Maximum cost of a set of paths */
4223 LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */
4224 int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */
4225 WherePath *aFrom; /* All nFrom paths at the previous level */
4226 WherePath *aTo; /* The nTo best paths at the current level */
4227 WherePath *pFrom; /* An element of aFrom[] that we are working on */
4228 WherePath *pTo; /* An element of aTo[] that we are working on */
4229 WhereLoop *pWLoop; /* One of the WhereLoop objects */
4230 WhereLoop **pX; /* Used to divy up the pSpace memory */
4231 LogEst *aSortCost = 0; /* Sorting and partial sorting costs */
4232 char *pSpace; /* Temporary memory used by this routine */
4233 int nSpace; /* Bytes of space allocated at pSpace */
4235 pParse = pWInfo->pParse;
4236 db = pParse->db;
4237 nLoop = pWInfo->nLevel;
4238 /* TUNING: For simple queries, only the best path is tracked.
4239 ** For 2-way joins, the 5 best paths are followed.
4240 ** For joins of 3 or more tables, track the 10 best paths */
4241 mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
4242 assert( nLoop<=pWInfo->pTabList->nSrc );
4243 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst));
4245 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
4246 ** case the purpose of this call is to estimate the number of rows returned
4247 ** by the overall query. Once this estimate has been obtained, the caller
4248 ** will invoke this function a second time, passing the estimate as the
4249 ** nRowEst parameter. */
4250 if( pWInfo->pOrderBy==0 || nRowEst==0 ){
4251 nOrderBy = 0;
4252 }else{
4253 nOrderBy = pWInfo->pOrderBy->nExpr;
4256 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
4257 nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
4258 nSpace += sizeof(LogEst) * nOrderBy;
4259 pSpace = sqlite3DbMallocRawNN(db, nSpace);
4260 if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
4261 aTo = (WherePath*)pSpace;
4262 aFrom = aTo+mxChoice;
4263 memset(aFrom, 0, sizeof(aFrom[0]));
4264 pX = (WhereLoop**)(aFrom+mxChoice);
4265 for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
4266 pFrom->aLoop = pX;
4268 if( nOrderBy ){
4269 /* If there is an ORDER BY clause and it is not being ignored, set up
4270 ** space for the aSortCost[] array. Each element of the aSortCost array
4271 ** is either zero - meaning it has not yet been initialized - or the
4272 ** cost of sorting nRowEst rows of data where the first X terms of
4273 ** the ORDER BY clause are already in order, where X is the array
4274 ** index. */
4275 aSortCost = (LogEst*)pX;
4276 memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
4278 assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
4279 assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
4281 /* Seed the search with a single WherePath containing zero WhereLoops.
4283 ** TUNING: Do not let the number of iterations go above 28. If the cost
4284 ** of computing an automatic index is not paid back within the first 28
4285 ** rows, then do not use the automatic index. */
4286 aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) );
4287 nFrom = 1;
4288 assert( aFrom[0].isOrdered==0 );
4289 if( nOrderBy ){
4290 /* If nLoop is zero, then there are no FROM terms in the query. Since
4291 ** in this case the query may return a maximum of one row, the results
4292 ** are already in the requested order. Set isOrdered to nOrderBy to
4293 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
4294 ** -1, indicating that the result set may or may not be ordered,
4295 ** depending on the loops added to the current plan. */
4296 aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
4299 /* Compute successively longer WherePaths using the previous generation
4300 ** of WherePaths as the basis for the next. Keep track of the mxChoice
4301 ** best paths at each generation */
4302 for(iLoop=0; iLoop<nLoop; iLoop++){
4303 nTo = 0;
4304 for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
4305 for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
4306 LogEst nOut; /* Rows visited by (pFrom+pWLoop) */
4307 LogEst rCost; /* Cost of path (pFrom+pWLoop) */
4308 LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */
4309 i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */
4310 Bitmask maskNew; /* Mask of src visited by (..) */
4311 Bitmask revMask = 0; /* Mask of rev-order loops for (..) */
4313 if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
4314 if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
4315 if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){
4316 /* Do not use an automatic index if the this loop is expected
4317 ** to run less than 1.25 times. It is tempting to also exclude
4318 ** automatic index usage on an outer loop, but sometimes an automatic
4319 ** index is useful in the outer loop of a correlated subquery. */
4320 assert( 10==sqlite3LogEst(2) );
4321 continue;
4324 /* At this point, pWLoop is a candidate to be the next loop.
4325 ** Compute its cost */
4326 rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
4327 rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
4328 nOut = pFrom->nRow + pWLoop->nOut;
4329 maskNew = pFrom->maskLoop | pWLoop->maskSelf;
4330 if( isOrdered<0 ){
4331 isOrdered = wherePathSatisfiesOrderBy(pWInfo,
4332 pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
4333 iLoop, pWLoop, &revMask);
4334 }else{
4335 revMask = pFrom->revLoop;
4337 if( isOrdered>=0 && isOrdered<nOrderBy ){
4338 if( aSortCost[isOrdered]==0 ){
4339 aSortCost[isOrdered] = whereSortingCost(
4340 pWInfo, nRowEst, nOrderBy, isOrdered
4343 /* TUNING: Add a small extra penalty (5) to sorting as an
4344 ** extra encouragment to the query planner to select a plan
4345 ** where the rows emerge in the correct order without any sorting
4346 ** required. */
4347 rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5;
4349 WHERETRACE(0x002,
4350 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
4351 aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
4352 rUnsorted, rCost));
4353 }else{
4354 rCost = rUnsorted;
4355 rUnsorted -= 2; /* TUNING: Slight bias in favor of no-sort plans */
4358 /* Check to see if pWLoop should be added to the set of
4359 ** mxChoice best-so-far paths.
4361 ** First look for an existing path among best-so-far paths
4362 ** that covers the same set of loops and has the same isOrdered
4363 ** setting as the current path candidate.
4365 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
4366 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
4367 ** of legal values for isOrdered, -1..64.
4369 for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
4370 if( pTo->maskLoop==maskNew
4371 && ((pTo->isOrdered^isOrdered)&0x80)==0
4373 testcase( jj==nTo-1 );
4374 break;
4377 if( jj>=nTo ){
4378 /* None of the existing best-so-far paths match the candidate. */
4379 if( nTo>=mxChoice
4380 && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
4382 /* The current candidate is no better than any of the mxChoice
4383 ** paths currently in the best-so-far buffer. So discard
4384 ** this candidate as not viable. */
4385 #ifdef WHERETRACE_ENABLED /* 0x4 */
4386 if( sqlite3WhereTrace&0x4 ){
4387 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d,%3d order=%c\n",
4388 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4389 isOrdered>=0 ? isOrdered+'0' : '?');
4391 #endif
4392 continue;
4394 /* If we reach this points it means that the new candidate path
4395 ** needs to be added to the set of best-so-far paths. */
4396 if( nTo<mxChoice ){
4397 /* Increase the size of the aTo set by one */
4398 jj = nTo++;
4399 }else{
4400 /* New path replaces the prior worst to keep count below mxChoice */
4401 jj = mxI;
4403 pTo = &aTo[jj];
4404 #ifdef WHERETRACE_ENABLED /* 0x4 */
4405 if( sqlite3WhereTrace&0x4 ){
4406 sqlite3DebugPrintf("New %s cost=%-3d,%3d,%3d order=%c\n",
4407 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4408 isOrdered>=0 ? isOrdered+'0' : '?');
4410 #endif
4411 }else{
4412 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
4413 ** same set of loops and has the same isOrdered setting as the
4414 ** candidate path. Check to see if the candidate should replace
4415 ** pTo or if the candidate should be skipped.
4417 ** The conditional is an expanded vector comparison equivalent to:
4418 ** (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
4420 if( pTo->rCost<rCost
4421 || (pTo->rCost==rCost
4422 && (pTo->nRow<nOut
4423 || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted)
4427 #ifdef WHERETRACE_ENABLED /* 0x4 */
4428 if( sqlite3WhereTrace&0x4 ){
4429 sqlite3DebugPrintf(
4430 "Skip %s cost=%-3d,%3d,%3d order=%c",
4431 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4432 isOrdered>=0 ? isOrdered+'0' : '?');
4433 sqlite3DebugPrintf(" vs %s cost=%-3d,%3d,%3d order=%c\n",
4434 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4435 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4437 #endif
4438 /* Discard the candidate path from further consideration */
4439 testcase( pTo->rCost==rCost );
4440 continue;
4442 testcase( pTo->rCost==rCost+1 );
4443 /* Control reaches here if the candidate path is better than the
4444 ** pTo path. Replace pTo with the candidate. */
4445 #ifdef WHERETRACE_ENABLED /* 0x4 */
4446 if( sqlite3WhereTrace&0x4 ){
4447 sqlite3DebugPrintf(
4448 "Update %s cost=%-3d,%3d,%3d order=%c",
4449 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4450 isOrdered>=0 ? isOrdered+'0' : '?');
4451 sqlite3DebugPrintf(" was %s cost=%-3d,%3d,%3d order=%c\n",
4452 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4453 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4455 #endif
4457 /* pWLoop is a winner. Add it to the set of best so far */
4458 pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
4459 pTo->revLoop = revMask;
4460 pTo->nRow = nOut;
4461 pTo->rCost = rCost;
4462 pTo->rUnsorted = rUnsorted;
4463 pTo->isOrdered = isOrdered;
4464 memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
4465 pTo->aLoop[iLoop] = pWLoop;
4466 if( nTo>=mxChoice ){
4467 mxI = 0;
4468 mxCost = aTo[0].rCost;
4469 mxUnsorted = aTo[0].nRow;
4470 for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
4471 if( pTo->rCost>mxCost
4472 || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
4474 mxCost = pTo->rCost;
4475 mxUnsorted = pTo->rUnsorted;
4476 mxI = jj;
4483 #ifdef WHERETRACE_ENABLED /* >=2 */
4484 if( sqlite3WhereTrace & 0x02 ){
4485 sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
4486 for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
4487 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
4488 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4489 pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
4490 if( pTo->isOrdered>0 ){
4491 sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
4492 }else{
4493 sqlite3DebugPrintf("\n");
4497 #endif
4499 /* Swap the roles of aFrom and aTo for the next generation */
4500 pFrom = aTo;
4501 aTo = aFrom;
4502 aFrom = pFrom;
4503 nFrom = nTo;
4506 if( nFrom==0 ){
4507 sqlite3ErrorMsg(pParse, "no query solution");
4508 sqlite3DbFreeNN(db, pSpace);
4509 return SQLITE_ERROR;
4512 /* Find the lowest cost path. pFrom will be left pointing to that path */
4513 pFrom = aFrom;
4514 for(ii=1; ii<nFrom; ii++){
4515 if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
4517 assert( pWInfo->nLevel==nLoop );
4518 /* Load the lowest cost path into pWInfo */
4519 for(iLoop=0; iLoop<nLoop; iLoop++){
4520 WhereLevel *pLevel = pWInfo->a + iLoop;
4521 pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
4522 pLevel->iFrom = pWLoop->iTab;
4523 pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
4525 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
4526 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
4527 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
4528 && nRowEst
4530 Bitmask notUsed;
4531 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
4532 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
4533 if( rc==pWInfo->pResultSet->nExpr ){
4534 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4537 pWInfo->bOrderedInnerLoop = 0;
4538 if( pWInfo->pOrderBy ){
4539 if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
4540 if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
4541 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4543 }else{
4544 pWInfo->nOBSat = pFrom->isOrdered;
4545 pWInfo->revMask = pFrom->revLoop;
4546 if( pWInfo->nOBSat<=0 ){
4547 pWInfo->nOBSat = 0;
4548 if( nLoop>0 ){
4549 u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
4550 if( (wsFlags & WHERE_ONEROW)==0
4551 && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
4553 Bitmask m = 0;
4554 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
4555 WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
4556 testcase( wsFlags & WHERE_IPK );
4557 testcase( wsFlags & WHERE_COLUMN_IN );
4558 if( rc==pWInfo->pOrderBy->nExpr ){
4559 pWInfo->bOrderedInnerLoop = 1;
4560 pWInfo->revMask = m;
4564 }else if( nLoop
4565 && pWInfo->nOBSat==1
4566 && (pWInfo->wctrlFlags & (WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX))!=0
4568 pWInfo->bOrderedInnerLoop = 1;
4571 if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
4572 && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
4574 Bitmask revMask = 0;
4575 int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
4576 pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
4578 assert( pWInfo->sorted==0 );
4579 if( nOrder==pWInfo->pOrderBy->nExpr ){
4580 pWInfo->sorted = 1;
4581 pWInfo->revMask = revMask;
4587 pWInfo->nRowOut = pFrom->nRow;
4589 /* Free temporary memory and return success */
4590 sqlite3DbFreeNN(db, pSpace);
4591 return SQLITE_OK;
4595 ** Most queries use only a single table (they are not joins) and have
4596 ** simple == constraints against indexed fields. This routine attempts
4597 ** to plan those simple cases using much less ceremony than the
4598 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
4599 ** times for the common case.
4601 ** Return non-zero on success, if this query can be handled by this
4602 ** no-frills query planner. Return zero if this query needs the
4603 ** general-purpose query planner.
4605 static int whereShortCut(WhereLoopBuilder *pBuilder){
4606 WhereInfo *pWInfo;
4607 SrcItem *pItem;
4608 WhereClause *pWC;
4609 WhereTerm *pTerm;
4610 WhereLoop *pLoop;
4611 int iCur;
4612 int j;
4613 Table *pTab;
4614 Index *pIdx;
4615 WhereScan scan;
4617 pWInfo = pBuilder->pWInfo;
4618 if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
4619 assert( pWInfo->pTabList->nSrc>=1 );
4620 pItem = pWInfo->pTabList->a;
4621 pTab = pItem->pTab;
4622 if( IsVirtual(pTab) ) return 0;
4623 if( pItem->fg.isIndexedBy ) return 0;
4624 iCur = pItem->iCursor;
4625 pWC = &pWInfo->sWC;
4626 pLoop = pBuilder->pNew;
4627 pLoop->wsFlags = 0;
4628 pLoop->nSkip = 0;
4629 pTerm = whereScanInit(&scan, pWC, iCur, -1, WO_EQ|WO_IS, 0);
4630 while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan);
4631 if( pTerm ){
4632 testcase( pTerm->eOperator & WO_IS );
4633 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
4634 pLoop->aLTerm[0] = pTerm;
4635 pLoop->nLTerm = 1;
4636 pLoop->u.btree.nEq = 1;
4637 /* TUNING: Cost of a rowid lookup is 10 */
4638 pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */
4639 }else{
4640 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4641 int opMask;
4642 assert( pLoop->aLTermSpace==pLoop->aLTerm );
4643 if( !IsUniqueIndex(pIdx)
4644 || pIdx->pPartIdxWhere!=0
4645 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
4646 ) continue;
4647 opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
4648 for(j=0; j<pIdx->nKeyCol; j++){
4649 pTerm = whereScanInit(&scan, pWC, iCur, j, opMask, pIdx);
4650 while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan);
4651 if( pTerm==0 ) break;
4652 testcase( pTerm->eOperator & WO_IS );
4653 pLoop->aLTerm[j] = pTerm;
4655 if( j!=pIdx->nKeyCol ) continue;
4656 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
4657 if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){
4658 pLoop->wsFlags |= WHERE_IDX_ONLY;
4660 pLoop->nLTerm = j;
4661 pLoop->u.btree.nEq = j;
4662 pLoop->u.btree.pIndex = pIdx;
4663 /* TUNING: Cost of a unique index lookup is 15 */
4664 pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */
4665 break;
4668 if( pLoop->wsFlags ){
4669 pLoop->nOut = (LogEst)1;
4670 pWInfo->a[0].pWLoop = pLoop;
4671 assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] );
4672 pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
4673 pWInfo->a[0].iTabCur = iCur;
4674 pWInfo->nRowOut = 1;
4675 if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr;
4676 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
4677 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4679 if( scan.iEquiv>1 ) pLoop->wsFlags |= WHERE_TRANSCONS;
4680 #ifdef SQLITE_DEBUG
4681 pLoop->cId = '0';
4682 #endif
4683 #ifdef WHERETRACE_ENABLED
4684 if( sqlite3WhereTrace ){
4685 sqlite3DebugPrintf("whereShortCut() used to compute solution\n");
4687 #endif
4688 return 1;
4690 return 0;
4694 ** Helper function for exprIsDeterministic().
4696 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){
4697 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){
4698 pWalker->eCode = 0;
4699 return WRC_Abort;
4701 return WRC_Continue;
4705 ** Return true if the expression contains no non-deterministic SQL
4706 ** functions. Do not consider non-deterministic SQL functions that are
4707 ** part of sub-select statements.
4709 static int exprIsDeterministic(Expr *p){
4710 Walker w;
4711 memset(&w, 0, sizeof(w));
4712 w.eCode = 1;
4713 w.xExprCallback = exprNodeIsDeterministic;
4714 w.xSelectCallback = sqlite3SelectWalkFail;
4715 sqlite3WalkExpr(&w, p);
4716 return w.eCode;
4720 #ifdef WHERETRACE_ENABLED
4722 ** Display all WhereLoops in pWInfo
4724 static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){
4725 if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */
4726 WhereLoop *p;
4727 int i;
4728 static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
4729 "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
4730 for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
4731 p->cId = zLabel[i%(sizeof(zLabel)-1)];
4732 sqlite3WhereLoopPrint(p, pWC);
4736 # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C)
4737 #else
4738 # define WHERETRACE_ALL_LOOPS(W,C)
4739 #endif
4742 ** Generate the beginning of the loop used for WHERE clause processing.
4743 ** The return value is a pointer to an opaque structure that contains
4744 ** information needed to terminate the loop. Later, the calling routine
4745 ** should invoke sqlite3WhereEnd() with the return value of this function
4746 ** in order to complete the WHERE clause processing.
4748 ** If an error occurs, this routine returns NULL.
4750 ** The basic idea is to do a nested loop, one loop for each table in
4751 ** the FROM clause of a select. (INSERT and UPDATE statements are the
4752 ** same as a SELECT with only a single table in the FROM clause.) For
4753 ** example, if the SQL is this:
4755 ** SELECT * FROM t1, t2, t3 WHERE ...;
4757 ** Then the code generated is conceptually like the following:
4759 ** foreach row1 in t1 do \ Code generated
4760 ** foreach row2 in t2 do |-- by sqlite3WhereBegin()
4761 ** foreach row3 in t3 do /
4762 ** ...
4763 ** end \ Code generated
4764 ** end |-- by sqlite3WhereEnd()
4765 ** end /
4767 ** Note that the loops might not be nested in the order in which they
4768 ** appear in the FROM clause if a different order is better able to make
4769 ** use of indices. Note also that when the IN operator appears in
4770 ** the WHERE clause, it might result in additional nested loops for
4771 ** scanning through all values on the right-hand side of the IN.
4773 ** There are Btree cursors associated with each table. t1 uses cursor
4774 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
4775 ** And so forth. This routine generates code to open those VDBE cursors
4776 ** and sqlite3WhereEnd() generates the code to close them.
4778 ** The code that sqlite3WhereBegin() generates leaves the cursors named
4779 ** in pTabList pointing at their appropriate entries. The [...] code
4780 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
4781 ** data from the various tables of the loop.
4783 ** If the WHERE clause is empty, the foreach loops must each scan their
4784 ** entire tables. Thus a three-way join is an O(N^3) operation. But if
4785 ** the tables have indices and there are terms in the WHERE clause that
4786 ** refer to those indices, a complete table scan can be avoided and the
4787 ** code will run much faster. Most of the work of this routine is checking
4788 ** to see if there are indices that can be used to speed up the loop.
4790 ** Terms of the WHERE clause are also used to limit which rows actually
4791 ** make it to the "..." in the middle of the loop. After each "foreach",
4792 ** terms of the WHERE clause that use only terms in that loop and outer
4793 ** loops are evaluated and if false a jump is made around all subsequent
4794 ** inner loops (or around the "..." if the test occurs within the inner-
4795 ** most loop)
4797 ** OUTER JOINS
4799 ** An outer join of tables t1 and t2 is conceptally coded as follows:
4801 ** foreach row1 in t1 do
4802 ** flag = 0
4803 ** foreach row2 in t2 do
4804 ** start:
4805 ** ...
4806 ** flag = 1
4807 ** end
4808 ** if flag==0 then
4809 ** move the row2 cursor to a null row
4810 ** goto start
4811 ** fi
4812 ** end
4814 ** ORDER BY CLAUSE PROCESSING
4816 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
4817 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
4818 ** if there is one. If there is no ORDER BY clause or if this routine
4819 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
4821 ** The iIdxCur parameter is the cursor number of an index. If
4822 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
4823 ** to use for OR clause processing. The WHERE clause should use this
4824 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
4825 ** the first cursor in an array of cursors for all indices. iIdxCur should
4826 ** be used to compute the appropriate cursor depending on which index is
4827 ** used.
4829 WhereInfo *sqlite3WhereBegin(
4830 Parse *pParse, /* The parser context */
4831 SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */
4832 Expr *pWhere, /* The WHERE clause */
4833 ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */
4834 ExprList *pResultSet, /* Query result set. Req'd for DISTINCT */
4835 u16 wctrlFlags, /* The WHERE_* flags defined in sqliteInt.h */
4836 int iAuxArg /* If WHERE_OR_SUBCLAUSE is set, index cursor number
4837 ** If WHERE_USE_LIMIT, then the limit amount */
4839 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */
4840 int nTabList; /* Number of elements in pTabList */
4841 WhereInfo *pWInfo; /* Will become the return value of this function */
4842 Vdbe *v = pParse->pVdbe; /* The virtual database engine */
4843 Bitmask notReady; /* Cursors that are not yet positioned */
4844 WhereLoopBuilder sWLB; /* The WhereLoop builder */
4845 WhereMaskSet *pMaskSet; /* The expression mask set */
4846 WhereLevel *pLevel; /* A single level in pWInfo->a[] */
4847 WhereLoop *pLoop; /* Pointer to a single WhereLoop object */
4848 int ii; /* Loop counter */
4849 sqlite3 *db; /* Database connection */
4850 int rc; /* Return code */
4851 u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */
4853 assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
4854 (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
4855 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4858 /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
4859 assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4860 || (wctrlFlags & WHERE_USE_LIMIT)==0 );
4862 /* Variable initialization */
4863 db = pParse->db;
4864 memset(&sWLB, 0, sizeof(sWLB));
4866 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
4867 testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
4868 if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
4869 sWLB.pOrderBy = pOrderBy;
4871 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
4872 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
4873 if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
4874 wctrlFlags &= ~WHERE_WANT_DISTINCT;
4877 /* The number of tables in the FROM clause is limited by the number of
4878 ** bits in a Bitmask
4880 testcase( pTabList->nSrc==BMS );
4881 if( pTabList->nSrc>BMS ){
4882 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
4883 return 0;
4886 /* This function normally generates a nested loop for all tables in
4887 ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should
4888 ** only generate code for the first table in pTabList and assume that
4889 ** any cursors associated with subsequent tables are uninitialized.
4891 nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
4893 /* Allocate and initialize the WhereInfo structure that will become the
4894 ** return value. A single allocation is used to store the WhereInfo
4895 ** struct, the contents of WhereInfo.a[], the WhereClause structure
4896 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
4897 ** field (type Bitmask) it must be aligned on an 8-byte boundary on
4898 ** some architectures. Hence the ROUND8() below.
4900 nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
4901 pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
4902 if( db->mallocFailed ){
4903 sqlite3DbFree(db, pWInfo);
4904 pWInfo = 0;
4905 goto whereBeginError;
4907 pWInfo->pParse = pParse;
4908 pWInfo->pTabList = pTabList;
4909 pWInfo->pOrderBy = pOrderBy;
4910 pWInfo->pWhere = pWhere;
4911 pWInfo->pResultSet = pResultSet;
4912 pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
4913 pWInfo->nLevel = nTabList;
4914 pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse);
4915 pWInfo->wctrlFlags = wctrlFlags;
4916 pWInfo->iLimit = iAuxArg;
4917 pWInfo->savedNQueryLoop = pParse->nQueryLoop;
4918 memset(&pWInfo->nOBSat, 0,
4919 offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
4920 memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
4921 assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */
4922 pMaskSet = &pWInfo->sMaskSet;
4923 sWLB.pWInfo = pWInfo;
4924 sWLB.pWC = &pWInfo->sWC;
4925 sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
4926 assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
4927 whereLoopInit(sWLB.pNew);
4928 #ifdef SQLITE_DEBUG
4929 sWLB.pNew->cId = '*';
4930 #endif
4932 /* Split the WHERE clause into separate subexpressions where each
4933 ** subexpression is separated by an AND operator.
4935 initMaskSet(pMaskSet);
4936 sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
4937 sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
4939 /* Special case: No FROM clause
4941 if( nTabList==0 ){
4942 if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
4943 if( wctrlFlags & WHERE_WANT_DISTINCT ){
4944 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4946 ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW"));
4947 }else{
4948 /* Assign a bit from the bitmask to every term in the FROM clause.
4950 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
4952 ** The rule of the previous sentence ensures thta if X is the bitmask for
4953 ** a table T, then X-1 is the bitmask for all other tables to the left of T.
4954 ** Knowing the bitmask for all tables to the left of a left join is
4955 ** important. Ticket #3015.
4957 ** Note that bitmasks are created for all pTabList->nSrc tables in
4958 ** pTabList, not just the first nTabList tables. nTabList is normally
4959 ** equal to pTabList->nSrc but might be shortened to 1 if the
4960 ** WHERE_OR_SUBCLAUSE flag is set.
4962 ii = 0;
4964 createMask(pMaskSet, pTabList->a[ii].iCursor);
4965 sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
4966 }while( (++ii)<pTabList->nSrc );
4967 #ifdef SQLITE_DEBUG
4969 Bitmask mx = 0;
4970 for(ii=0; ii<pTabList->nSrc; ii++){
4971 Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
4972 assert( m>=mx );
4973 mx = m;
4976 #endif
4979 /* Analyze all of the subexpressions. */
4980 sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
4981 if( db->mallocFailed ) goto whereBeginError;
4983 /* Special case: WHERE terms that do not refer to any tables in the join
4984 ** (constant expressions). Evaluate each such term, and jump over all the
4985 ** generated code if the result is not true.
4987 ** Do not do this if the expression contains non-deterministic functions
4988 ** that are not within a sub-select. This is not strictly required, but
4989 ** preserves SQLite's legacy behaviour in the following two cases:
4991 ** FROM ... WHERE random()>0; -- eval random() once per row
4992 ** FROM ... WHERE (SELECT random())>0; -- eval random() once overall
4994 for(ii=0; ii<sWLB.pWC->nTerm; ii++){
4995 WhereTerm *pT = &sWLB.pWC->a[ii];
4996 if( pT->wtFlags & TERM_VIRTUAL ) continue;
4997 if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){
4998 sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL);
4999 pT->wtFlags |= TERM_CODED;
5003 if( wctrlFlags & WHERE_WANT_DISTINCT ){
5004 if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
5005 /* The DISTINCT marking is pointless. Ignore it. */
5006 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
5007 }else if( pOrderBy==0 ){
5008 /* Try to ORDER BY the result set to make distinct processing easier */
5009 pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
5010 pWInfo->pOrderBy = pResultSet;
5014 /* Construct the WhereLoop objects */
5015 #if defined(WHERETRACE_ENABLED)
5016 if( sqlite3WhereTrace & 0xffff ){
5017 sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
5018 if( wctrlFlags & WHERE_USE_LIMIT ){
5019 sqlite3DebugPrintf(", limit: %d", iAuxArg);
5021 sqlite3DebugPrintf(")\n");
5022 if( sqlite3WhereTrace & 0x100 ){
5023 Select sSelect;
5024 memset(&sSelect, 0, sizeof(sSelect));
5025 sSelect.selFlags = SF_WhereBegin;
5026 sSelect.pSrc = pTabList;
5027 sSelect.pWhere = pWhere;
5028 sSelect.pOrderBy = pOrderBy;
5029 sSelect.pEList = pResultSet;
5030 sqlite3TreeViewSelect(0, &sSelect, 0);
5033 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
5034 sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n");
5035 sqlite3WhereClausePrint(sWLB.pWC);
5037 #endif
5039 if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
5040 rc = whereLoopAddAll(&sWLB);
5041 if( rc ) goto whereBeginError;
5043 #ifdef SQLITE_ENABLE_STAT4
5044 /* If one or more WhereTerm.truthProb values were used in estimating
5045 ** loop parameters, but then those truthProb values were subsequently
5046 ** changed based on STAT4 information while computing subsequent loops,
5047 ** then we need to rerun the whole loop building process so that all
5048 ** loops will be built using the revised truthProb values. */
5049 if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){
5050 WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
5051 WHERETRACE(0xffff,
5052 ("**** Redo all loop computations due to"
5053 " TERM_HIGHTRUTH changes ****\n"));
5054 while( pWInfo->pLoops ){
5055 WhereLoop *p = pWInfo->pLoops;
5056 pWInfo->pLoops = p->pNextLoop;
5057 whereLoopDelete(db, p);
5059 rc = whereLoopAddAll(&sWLB);
5060 if( rc ) goto whereBeginError;
5062 #endif
5063 WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
5065 wherePathSolver(pWInfo, 0);
5066 if( db->mallocFailed ) goto whereBeginError;
5067 if( pWInfo->pOrderBy ){
5068 wherePathSolver(pWInfo, pWInfo->nRowOut+1);
5069 if( db->mallocFailed ) goto whereBeginError;
5072 if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
5073 pWInfo->revMask = ALLBITS;
5075 if( pParse->nErr || db->mallocFailed ){
5076 goto whereBeginError;
5078 #ifdef WHERETRACE_ENABLED
5079 if( sqlite3WhereTrace ){
5080 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
5081 if( pWInfo->nOBSat>0 ){
5082 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
5084 switch( pWInfo->eDistinct ){
5085 case WHERE_DISTINCT_UNIQUE: {
5086 sqlite3DebugPrintf(" DISTINCT=unique");
5087 break;
5089 case WHERE_DISTINCT_ORDERED: {
5090 sqlite3DebugPrintf(" DISTINCT=ordered");
5091 break;
5093 case WHERE_DISTINCT_UNORDERED: {
5094 sqlite3DebugPrintf(" DISTINCT=unordered");
5095 break;
5098 sqlite3DebugPrintf("\n");
5099 for(ii=0; ii<pWInfo->nLevel; ii++){
5100 sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
5103 #endif
5105 /* Attempt to omit tables from the join that do not affect the result.
5106 ** For a table to not affect the result, the following must be true:
5108 ** 1) The query must not be an aggregate.
5109 ** 2) The table must be the RHS of a LEFT JOIN.
5110 ** 3) Either the query must be DISTINCT, or else the ON or USING clause
5111 ** must contain a constraint that limits the scan of the table to
5112 ** at most a single row.
5113 ** 4) The table must not be referenced by any part of the query apart
5114 ** from its own USING or ON clause.
5116 ** For example, given:
5118 ** CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
5119 ** CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
5120 ** CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
5122 ** then table t2 can be omitted from the following:
5124 ** SELECT v1, v3 FROM t1
5125 ** LEFT JOIN t2 ON (t1.ipk=t2.ipk)
5126 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5128 ** or from:
5130 ** SELECT DISTINCT v1, v3 FROM t1
5131 ** LEFT JOIN t2
5132 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5134 notReady = ~(Bitmask)0;
5135 if( pWInfo->nLevel>=2
5136 && pResultSet!=0 /* these two combine to guarantee */
5137 && 0==(wctrlFlags & WHERE_AGG_DISTINCT) /* condition (1) above */
5138 && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
5140 int i;
5141 Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet);
5142 if( sWLB.pOrderBy ){
5143 tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy);
5145 for(i=pWInfo->nLevel-1; i>=1; i--){
5146 WhereTerm *pTerm, *pEnd;
5147 SrcItem *pItem;
5148 pLoop = pWInfo->a[i].pWLoop;
5149 pItem = &pWInfo->pTabList->a[pLoop->iTab];
5150 if( (pItem->fg.jointype & JT_LEFT)==0 ) continue;
5151 if( (wctrlFlags & WHERE_WANT_DISTINCT)==0
5152 && (pLoop->wsFlags & WHERE_ONEROW)==0
5154 continue;
5156 if( (tabUsed & pLoop->maskSelf)!=0 ) continue;
5157 pEnd = sWLB.pWC->a + sWLB.pWC->nTerm;
5158 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
5159 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5160 if( !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
5161 || pTerm->pExpr->iRightJoinTable!=pItem->iCursor
5163 break;
5167 if( pTerm<pEnd ) continue;
5168 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
5169 notReady &= ~pLoop->maskSelf;
5170 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
5171 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5172 pTerm->wtFlags |= TERM_CODED;
5175 if( i!=pWInfo->nLevel-1 ){
5176 int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel);
5177 memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte);
5179 pWInfo->nLevel--;
5180 nTabList--;
5183 #if defined(WHERETRACE_ENABLED)
5184 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
5185 sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n");
5186 sqlite3WhereClausePrint(sWLB.pWC);
5188 WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
5189 #endif
5190 pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
5192 /* If the caller is an UPDATE or DELETE statement that is requesting
5193 ** to use a one-pass algorithm, determine if this is appropriate.
5195 ** A one-pass approach can be used if the caller has requested one
5196 ** and either (a) the scan visits at most one row or (b) each
5197 ** of the following are true:
5199 ** * the caller has indicated that a one-pass approach can be used
5200 ** with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and
5201 ** * the table is not a virtual table, and
5202 ** * either the scan does not use the OR optimization or the caller
5203 ** is a DELETE operation (WHERE_DUPLICATES_OK is only specified
5204 ** for DELETE).
5206 ** The last qualification is because an UPDATE statement uses
5207 ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can
5208 ** use a one-pass approach, and this is not set accurately for scans
5209 ** that use the OR optimization.
5211 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
5212 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
5213 int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
5214 int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
5215 assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) );
5216 if( bOnerow || (
5217 0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW)
5218 && !IsVirtual(pTabList->a[0].pTab)
5219 && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK))
5221 pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
5222 if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
5223 if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
5224 bFordelete = OPFLAG_FORDELETE;
5226 pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
5231 /* Open all tables in the pTabList and any indices selected for
5232 ** searching those tables.
5234 for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
5235 Table *pTab; /* Table to open */
5236 int iDb; /* Index of database containing table/index */
5237 SrcItem *pTabItem;
5239 pTabItem = &pTabList->a[pLevel->iFrom];
5240 pTab = pTabItem->pTab;
5241 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5242 pLoop = pLevel->pWLoop;
5243 if( (pTab->tabFlags & TF_Ephemeral)!=0 || IsView(pTab) ){
5244 /* Do nothing */
5245 }else
5246 #ifndef SQLITE_OMIT_VIRTUALTABLE
5247 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
5248 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
5249 int iCur = pTabItem->iCursor;
5250 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
5251 }else if( IsVirtual(pTab) ){
5252 /* noop */
5253 }else
5254 #endif
5255 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
5256 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
5257 int op = OP_OpenRead;
5258 if( pWInfo->eOnePass!=ONEPASS_OFF ){
5259 op = OP_OpenWrite;
5260 pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
5262 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
5263 assert( pTabItem->iCursor==pLevel->iTabCur );
5264 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
5265 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
5266 if( pWInfo->eOnePass==ONEPASS_OFF
5267 && pTab->nCol<BMS
5268 && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0
5270 /* If we know that only a prefix of the record will be used,
5271 ** it is advantageous to reduce the "column count" field in
5272 ** the P4 operand of the OP_OpenRead/Write opcode. */
5273 Bitmask b = pTabItem->colUsed;
5274 int n = 0;
5275 for(; b; b=b>>1, n++){}
5276 sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
5277 assert( n<=pTab->nCol );
5279 #ifdef SQLITE_ENABLE_CURSOR_HINTS
5280 if( pLoop->u.btree.pIndex!=0 ){
5281 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
5282 }else
5283 #endif
5285 sqlite3VdbeChangeP5(v, bFordelete);
5287 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5288 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
5289 (const u8*)&pTabItem->colUsed, P4_INT64);
5290 #endif
5291 }else{
5292 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5294 if( pLoop->wsFlags & WHERE_INDEXED ){
5295 Index *pIx = pLoop->u.btree.pIndex;
5296 int iIndexCur;
5297 int op = OP_OpenRead;
5298 /* iAuxArg is always set to a positive value if ONEPASS is possible */
5299 assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
5300 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
5301 && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
5303 /* This is one term of an OR-optimization using the PRIMARY KEY of a
5304 ** WITHOUT ROWID table. No need for a separate index */
5305 iIndexCur = pLevel->iTabCur;
5306 op = 0;
5307 }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
5308 Index *pJ = pTabItem->pTab->pIndex;
5309 iIndexCur = iAuxArg;
5310 assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
5311 while( ALWAYS(pJ) && pJ!=pIx ){
5312 iIndexCur++;
5313 pJ = pJ->pNext;
5315 op = OP_OpenWrite;
5316 pWInfo->aiCurOnePass[1] = iIndexCur;
5317 }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
5318 iIndexCur = iAuxArg;
5319 op = OP_ReopenIdx;
5320 }else{
5321 iIndexCur = pParse->nTab++;
5323 pLevel->iIdxCur = iIndexCur;
5324 assert( pIx->pSchema==pTab->pSchema );
5325 assert( iIndexCur>=0 );
5326 if( op ){
5327 sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
5328 sqlite3VdbeSetP4KeyInfo(pParse, pIx);
5329 if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
5330 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
5331 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0
5332 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
5333 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
5334 && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
5336 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ);
5338 VdbeComment((v, "%s", pIx->zName));
5339 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5341 u64 colUsed = 0;
5342 int ii, jj;
5343 for(ii=0; ii<pIx->nColumn; ii++){
5344 jj = pIx->aiColumn[ii];
5345 if( jj<0 ) continue;
5346 if( jj>63 ) jj = 63;
5347 if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
5348 colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
5350 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
5351 (u8*)&colUsed, P4_INT64);
5353 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
5356 if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
5358 pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
5359 if( db->mallocFailed ) goto whereBeginError;
5361 /* Generate the code to do the search. Each iteration of the for
5362 ** loop below generates code for a single nested loop of the VM
5363 ** program.
5365 for(ii=0; ii<nTabList; ii++){
5366 int addrExplain;
5367 int wsFlags;
5368 if( pParse->nErr ) goto whereBeginError;
5369 pLevel = &pWInfo->a[ii];
5370 wsFlags = pLevel->pWLoop->wsFlags;
5371 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
5372 if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
5373 constructAutomaticIndex(pParse, &pWInfo->sWC,
5374 &pTabList->a[pLevel->iFrom], notReady, pLevel);
5375 if( db->mallocFailed ) goto whereBeginError;
5377 #endif
5378 addrExplain = sqlite3WhereExplainOneScan(
5379 pParse, pTabList, pLevel, wctrlFlags
5381 pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
5382 notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady);
5383 pWInfo->iContinue = pLevel->addrCont;
5384 if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
5385 sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
5389 /* Done. */
5390 VdbeModuleComment((v, "Begin WHERE-core"));
5391 pWInfo->iEndWhere = sqlite3VdbeCurrentAddr(v);
5392 return pWInfo;
5394 /* Jump here if malloc fails */
5395 whereBeginError:
5396 if( pWInfo ){
5397 testcase( pWInfo->pExprMods!=0 );
5398 whereUndoExprMods(pWInfo);
5399 pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5400 whereInfoFree(db, pWInfo);
5402 return 0;
5406 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the
5407 ** index rather than the main table. In SQLITE_DEBUG mode, we want
5408 ** to trace those changes if PRAGMA vdbe_addoptrace=on. This routine
5409 ** does that.
5411 #ifndef SQLITE_DEBUG
5412 # define OpcodeRewriteTrace(D,K,P) /* no-op */
5413 #else
5414 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P)
5415 static void sqlite3WhereOpcodeRewriteTrace(
5416 sqlite3 *db,
5417 int pc,
5418 VdbeOp *pOp
5420 if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return;
5421 sqlite3VdbePrintOp(0, pc, pOp);
5423 #endif
5426 ** Generate the end of the WHERE loop. See comments on
5427 ** sqlite3WhereBegin() for additional information.
5429 void sqlite3WhereEnd(WhereInfo *pWInfo){
5430 Parse *pParse = pWInfo->pParse;
5431 Vdbe *v = pParse->pVdbe;
5432 int i;
5433 WhereLevel *pLevel;
5434 WhereLoop *pLoop;
5435 SrcList *pTabList = pWInfo->pTabList;
5436 sqlite3 *db = pParse->db;
5437 int iEnd = sqlite3VdbeCurrentAddr(v);
5439 /* Generate loop termination code.
5441 VdbeModuleComment((v, "End WHERE-core"));
5442 for(i=pWInfo->nLevel-1; i>=0; i--){
5443 int addr;
5444 pLevel = &pWInfo->a[i];
5445 pLoop = pLevel->pWLoop;
5446 if( pLevel->op!=OP_Noop ){
5447 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5448 int addrSeek = 0;
5449 Index *pIdx;
5450 int n;
5451 if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
5452 && i==pWInfo->nLevel-1 /* Ticket [ef9318757b152e3] 2017-10-21 */
5453 && (pLoop->wsFlags & WHERE_INDEXED)!=0
5454 && (pIdx = pLoop->u.btree.pIndex)->hasStat1
5455 && (n = pLoop->u.btree.nDistinctCol)>0
5456 && pIdx->aiRowLogEst[n]>=36
5458 int r1 = pParse->nMem+1;
5459 int j, op;
5460 for(j=0; j<n; j++){
5461 sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j);
5463 pParse->nMem += n+1;
5464 op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
5465 addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
5466 VdbeCoverageIf(v, op==OP_SeekLT);
5467 VdbeCoverageIf(v, op==OP_SeekGT);
5468 sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
5470 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
5471 /* The common case: Advance to the next row */
5472 sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5473 sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
5474 sqlite3VdbeChangeP5(v, pLevel->p5);
5475 VdbeCoverage(v);
5476 VdbeCoverageIf(v, pLevel->op==OP_Next);
5477 VdbeCoverageIf(v, pLevel->op==OP_Prev);
5478 VdbeCoverageIf(v, pLevel->op==OP_VNext);
5479 if( pLevel->regBignull ){
5480 sqlite3VdbeResolveLabel(v, pLevel->addrBignull);
5481 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1);
5482 VdbeCoverage(v);
5484 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5485 if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
5486 #endif
5487 }else{
5488 sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5490 if( (pLoop->wsFlags & WHERE_IN_ABLE)!=0 && pLevel->u.in.nIn>0 ){
5491 struct InLoop *pIn;
5492 int j;
5493 sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
5494 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
5495 assert( sqlite3VdbeGetOp(v, pIn->addrInTop+1)->opcode==OP_IsNull
5496 || pParse->db->mallocFailed );
5497 sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
5498 if( pIn->eEndLoopOp!=OP_Noop ){
5499 if( pIn->nPrefix ){
5500 int bEarlyOut =
5501 (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
5502 && (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0;
5503 if( pLevel->iLeftJoin ){
5504 /* For LEFT JOIN queries, cursor pIn->iCur may not have been
5505 ** opened yet. This occurs for WHERE clauses such as
5506 ** "a = ? AND b IN (...)", where the index is on (a, b). If
5507 ** the RHS of the (a=?) is NULL, then the "b IN (...)" may
5508 ** never have been coded, but the body of the loop run to
5509 ** return the null-row. So, if the cursor is not open yet,
5510 ** jump over the OP_Next or OP_Prev instruction about to
5511 ** be coded. */
5512 sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur,
5513 sqlite3VdbeCurrentAddr(v) + 2 + bEarlyOut);
5514 VdbeCoverage(v);
5516 if( bEarlyOut ){
5517 sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur,
5518 sqlite3VdbeCurrentAddr(v)+2,
5519 pIn->iBase, pIn->nPrefix);
5520 VdbeCoverage(v);
5521 /* Retarget the OP_IsNull against the left operand of IN so
5522 ** it jumps past the OP_IfNoHope. This is because the
5523 ** OP_IsNull also bypasses the OP_Affinity opcode that is
5524 ** required by OP_IfNoHope. */
5525 sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
5528 sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
5529 VdbeCoverage(v);
5530 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev);
5531 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next);
5533 sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
5536 sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
5537 if( pLevel->addrSkip ){
5538 sqlite3VdbeGoto(v, pLevel->addrSkip);
5539 VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
5540 sqlite3VdbeJumpHere(v, pLevel->addrSkip);
5541 sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
5543 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
5544 if( pLevel->addrLikeRep ){
5545 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
5546 pLevel->addrLikeRep);
5547 VdbeCoverage(v);
5549 #endif
5550 if( pLevel->iLeftJoin ){
5551 int ws = pLoop->wsFlags;
5552 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
5553 assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
5554 if( (ws & WHERE_IDX_ONLY)==0 ){
5555 assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor );
5556 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur);
5558 if( (ws & WHERE_INDEXED)
5559 || ((ws & WHERE_MULTI_OR) && pLevel->u.pCoveringIdx)
5561 if( ws & WHERE_MULTI_OR ){
5562 Index *pIx = pLevel->u.pCoveringIdx;
5563 int iDb = sqlite3SchemaToIndex(db, pIx->pSchema);
5564 sqlite3VdbeAddOp3(v, OP_ReopenIdx, pLevel->iIdxCur, pIx->tnum, iDb);
5565 sqlite3VdbeSetP4KeyInfo(pParse, pIx);
5567 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
5569 if( pLevel->op==OP_Return ){
5570 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
5571 }else{
5572 sqlite3VdbeGoto(v, pLevel->addrFirst);
5574 sqlite3VdbeJumpHere(v, addr);
5576 VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
5577 pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
5580 /* The "break" point is here, just past the end of the outer loop.
5581 ** Set it.
5583 sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
5585 assert( pWInfo->nLevel<=pTabList->nSrc );
5586 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
5587 int k, last;
5588 VdbeOp *pOp, *pLastOp;
5589 Index *pIdx = 0;
5590 SrcItem *pTabItem = &pTabList->a[pLevel->iFrom];
5591 Table *pTab = pTabItem->pTab;
5592 assert( pTab!=0 );
5593 pLoop = pLevel->pWLoop;
5595 /* For a co-routine, change all OP_Column references to the table of
5596 ** the co-routine into OP_Copy of result contained in a register.
5597 ** OP_Rowid becomes OP_Null.
5599 if( pTabItem->fg.viaCoroutine ){
5600 testcase( pParse->db->mallocFailed );
5601 translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur,
5602 pTabItem->regResult, 0);
5603 continue;
5606 #ifdef SQLITE_ENABLE_EARLY_CURSOR_CLOSE
5607 /* Close all of the cursors that were opened by sqlite3WhereBegin.
5608 ** Except, do not close cursors that will be reused by the OR optimization
5609 ** (WHERE_OR_SUBCLAUSE). And do not close the OP_OpenWrite cursors
5610 ** created for the ONEPASS optimization.
5612 if( (pTab->tabFlags & TF_Ephemeral)==0
5613 && !IsView(pTab)
5614 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
5616 int ws = pLoop->wsFlags;
5617 if( pWInfo->eOnePass==ONEPASS_OFF && (ws & WHERE_IDX_ONLY)==0 ){
5618 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
5620 if( (ws & WHERE_INDEXED)!=0
5621 && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0
5622 && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1]
5624 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
5627 #endif
5629 /* If this scan uses an index, make VDBE code substitutions to read data
5630 ** from the index instead of from the table where possible. In some cases
5631 ** this optimization prevents the table from ever being read, which can
5632 ** yield a significant performance boost.
5634 ** Calls to the code generator in between sqlite3WhereBegin and
5635 ** sqlite3WhereEnd will have created code that references the table
5636 ** directly. This loop scans all that code looking for opcodes
5637 ** that reference the table and converts them into opcodes that
5638 ** reference the index.
5640 if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
5641 pIdx = pLoop->u.btree.pIndex;
5642 }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
5643 pIdx = pLevel->u.pCoveringIdx;
5645 if( pIdx
5646 && !db->mallocFailed
5648 if( pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable) ){
5649 last = iEnd;
5650 }else{
5651 last = pWInfo->iEndWhere;
5653 k = pLevel->addrBody + 1;
5654 #ifdef SQLITE_DEBUG
5655 if( db->flags & SQLITE_VdbeAddopTrace ){
5656 printf("TRANSLATE opcodes in range %d..%d\n", k, last-1);
5658 /* Proof that the "+1" on the k value above is safe */
5659 pOp = sqlite3VdbeGetOp(v, k - 1);
5660 assert( pOp->opcode!=OP_Column || pOp->p1!=pLevel->iTabCur );
5661 assert( pOp->opcode!=OP_Rowid || pOp->p1!=pLevel->iTabCur );
5662 assert( pOp->opcode!=OP_IfNullRow || pOp->p1!=pLevel->iTabCur );
5663 #endif
5664 pOp = sqlite3VdbeGetOp(v, k);
5665 pLastOp = pOp + (last - k);
5666 assert( pOp<=pLastOp );
5668 if( pOp->p1!=pLevel->iTabCur ){
5669 /* no-op */
5670 }else if( pOp->opcode==OP_Column
5671 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
5672 || pOp->opcode==OP_Offset
5673 #endif
5675 int x = pOp->p2;
5676 assert( pIdx->pTable==pTab );
5677 if( !HasRowid(pTab) ){
5678 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
5679 x = pPk->aiColumn[x];
5680 assert( x>=0 );
5681 }else{
5682 testcase( x!=sqlite3StorageColumnToTable(pTab,x) );
5683 x = sqlite3StorageColumnToTable(pTab,x);
5685 x = sqlite3TableColumnToIndex(pIdx, x);
5686 if( x>=0 ){
5687 pOp->p2 = x;
5688 pOp->p1 = pLevel->iIdxCur;
5689 OpcodeRewriteTrace(db, k, pOp);
5691 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0
5692 || pWInfo->eOnePass );
5693 }else if( pOp->opcode==OP_Rowid ){
5694 pOp->p1 = pLevel->iIdxCur;
5695 pOp->opcode = OP_IdxRowid;
5696 OpcodeRewriteTrace(db, k, pOp);
5697 }else if( pOp->opcode==OP_IfNullRow ){
5698 pOp->p1 = pLevel->iIdxCur;
5699 OpcodeRewriteTrace(db, k, pOp);
5701 #ifdef SQLITE_DEBUG
5702 k++;
5703 #endif
5704 }while( (++pOp)<pLastOp );
5705 #ifdef SQLITE_DEBUG
5706 if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n");
5707 #endif
5711 /* Final cleanup
5713 if( pWInfo->pExprMods ) whereUndoExprMods(pWInfo);
5714 pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5715 whereInfoFree(db, pWInfo);
5716 return;