Snapshot of upstream SQLite 3.37.2
[sqlcipher.git] / src / vdbeaux.c
bloba11d41c471f5343d93b96f7d641639afb527b621
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
15 #include "sqliteInt.h"
16 #include "vdbeInt.h"
18 /* Forward references */
19 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef);
20 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
23 ** Create a new virtual database engine.
25 Vdbe *sqlite3VdbeCreate(Parse *pParse){
26 sqlite3 *db = pParse->db;
27 Vdbe *p;
28 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
29 if( p==0 ) return 0;
30 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
31 p->db = db;
32 if( db->pVdbe ){
33 db->pVdbe->pPrev = p;
35 p->pNext = db->pVdbe;
36 p->pPrev = 0;
37 db->pVdbe = p;
38 p->iVdbeMagic = VDBE_MAGIC_INIT;
39 p->pParse = pParse;
40 pParse->pVdbe = p;
41 assert( pParse->aLabel==0 );
42 assert( pParse->nLabel==0 );
43 assert( p->nOpAlloc==0 );
44 assert( pParse->szOpAlloc==0 );
45 sqlite3VdbeAddOp2(p, OP_Init, 0, 1);
46 return p;
50 ** Return the Parse object that owns a Vdbe object.
52 Parse *sqlite3VdbeParser(Vdbe *p){
53 return p->pParse;
57 ** Change the error string stored in Vdbe.zErrMsg
59 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
60 va_list ap;
61 sqlite3DbFree(p->db, p->zErrMsg);
62 va_start(ap, zFormat);
63 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
64 va_end(ap);
68 ** Remember the SQL string for a prepared statement.
70 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){
71 if( p==0 ) return;
72 p->prepFlags = prepFlags;
73 if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){
74 p->expmask = 0;
76 assert( p->zSql==0 );
77 p->zSql = sqlite3DbStrNDup(p->db, z, n);
80 #ifdef SQLITE_ENABLE_NORMALIZE
82 ** Add a new element to the Vdbe->pDblStr list.
84 void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){
85 if( p ){
86 int n = sqlite3Strlen30(z);
87 DblquoteStr *pStr = sqlite3DbMallocRawNN(db,
88 sizeof(*pStr)+n+1-sizeof(pStr->z));
89 if( pStr ){
90 pStr->pNextStr = p->pDblStr;
91 p->pDblStr = pStr;
92 memcpy(pStr->z, z, n+1);
96 #endif
98 #ifdef SQLITE_ENABLE_NORMALIZE
100 ** zId of length nId is a double-quoted identifier. Check to see if
101 ** that identifier is really used as a string literal.
103 int sqlite3VdbeUsesDoubleQuotedString(
104 Vdbe *pVdbe, /* The prepared statement */
105 const char *zId /* The double-quoted identifier, already dequoted */
107 DblquoteStr *pStr;
108 assert( zId!=0 );
109 if( pVdbe->pDblStr==0 ) return 0;
110 for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){
111 if( strcmp(zId, pStr->z)==0 ) return 1;
113 return 0;
115 #endif
118 ** Swap all content between two VDBE structures.
120 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
121 Vdbe tmp, *pTmp;
122 char *zTmp;
123 assert( pA->db==pB->db );
124 tmp = *pA;
125 *pA = *pB;
126 *pB = tmp;
127 pTmp = pA->pNext;
128 pA->pNext = pB->pNext;
129 pB->pNext = pTmp;
130 pTmp = pA->pPrev;
131 pA->pPrev = pB->pPrev;
132 pB->pPrev = pTmp;
133 zTmp = pA->zSql;
134 pA->zSql = pB->zSql;
135 pB->zSql = zTmp;
136 #ifdef SQLITE_ENABLE_NORMALIZE
137 zTmp = pA->zNormSql;
138 pA->zNormSql = pB->zNormSql;
139 pB->zNormSql = zTmp;
140 #endif
141 pB->expmask = pA->expmask;
142 pB->prepFlags = pA->prepFlags;
143 memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter));
144 pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++;
148 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
149 ** than its current size. nOp is guaranteed to be less than or equal
150 ** to 1024/sizeof(Op).
152 ** If an out-of-memory error occurs while resizing the array, return
153 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
154 ** unchanged (this is so that any opcodes already allocated can be
155 ** correctly deallocated along with the rest of the Vdbe).
157 static int growOpArray(Vdbe *v, int nOp){
158 VdbeOp *pNew;
159 Parse *p = v->pParse;
161 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
162 ** more frequent reallocs and hence provide more opportunities for
163 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
164 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
165 ** by the minimum* amount required until the size reaches 512. Normal
166 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
167 ** size of the op array or add 1KB of space, whichever is smaller. */
168 #ifdef SQLITE_TEST_REALLOC_STRESS
169 sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc
170 : (sqlite3_int64)v->nOpAlloc+nOp);
171 #else
172 sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc
173 : (sqlite3_int64)(1024/sizeof(Op)));
174 UNUSED_PARAMETER(nOp);
175 #endif
177 /* Ensure that the size of a VDBE does not grow too large */
178 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){
179 sqlite3OomFault(p->db);
180 return SQLITE_NOMEM;
183 assert( nOp<=(1024/sizeof(Op)) );
184 assert( nNew>=(v->nOpAlloc+nOp) );
185 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
186 if( pNew ){
187 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
188 v->nOpAlloc = p->szOpAlloc/sizeof(Op);
189 v->aOp = pNew;
191 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
194 #ifdef SQLITE_DEBUG
195 /* This routine is just a convenient place to set a breakpoint that will
196 ** fire after each opcode is inserted and displayed using
197 ** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and
198 ** pOp are available to make the breakpoint conditional.
200 ** Other useful labels for breakpoints include:
201 ** test_trace_breakpoint(pc,pOp)
202 ** sqlite3CorruptError(lineno)
203 ** sqlite3MisuseError(lineno)
204 ** sqlite3CantopenError(lineno)
206 static void test_addop_breakpoint(int pc, Op *pOp){
207 static int n = 0;
208 n++;
210 #endif
213 ** Add a new instruction to the list of instructions current in the
214 ** VDBE. Return the address of the new instruction.
216 ** Parameters:
218 ** p Pointer to the VDBE
220 ** op The opcode for this instruction
222 ** p1, p2, p3 Operands
224 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
225 ** the sqlite3VdbeChangeP4() function to change the value of the P4
226 ** operand.
228 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
229 assert( p->nOpAlloc<=p->nOp );
230 if( growOpArray(p, 1) ) return 1;
231 assert( p->nOpAlloc>p->nOp );
232 return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
234 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
235 int i;
236 VdbeOp *pOp;
238 i = p->nOp;
239 assert( p->iVdbeMagic==VDBE_MAGIC_INIT );
240 assert( op>=0 && op<0xff );
241 if( p->nOpAlloc<=i ){
242 return growOp3(p, op, p1, p2, p3);
244 assert( p->aOp!=0 );
245 p->nOp++;
246 pOp = &p->aOp[i];
247 assert( pOp!=0 );
248 pOp->opcode = (u8)op;
249 pOp->p5 = 0;
250 pOp->p1 = p1;
251 pOp->p2 = p2;
252 pOp->p3 = p3;
253 pOp->p4.p = 0;
254 pOp->p4type = P4_NOTUSED;
255 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
256 pOp->zComment = 0;
257 #endif
258 #ifdef SQLITE_DEBUG
259 if( p->db->flags & SQLITE_VdbeAddopTrace ){
260 sqlite3VdbePrintOp(0, i, &p->aOp[i]);
261 test_addop_breakpoint(i, &p->aOp[i]);
263 #endif
264 #ifdef VDBE_PROFILE
265 pOp->cycles = 0;
266 pOp->cnt = 0;
267 #endif
268 #ifdef SQLITE_VDBE_COVERAGE
269 pOp->iSrcLine = 0;
270 #endif
271 return i;
273 int sqlite3VdbeAddOp0(Vdbe *p, int op){
274 return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
276 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
277 return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
279 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
280 return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
283 /* Generate code for an unconditional jump to instruction iDest
285 int sqlite3VdbeGoto(Vdbe *p, int iDest){
286 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
289 /* Generate code to cause the string zStr to be loaded into
290 ** register iDest
292 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
293 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
297 ** Generate code that initializes multiple registers to string or integer
298 ** constants. The registers begin with iDest and increase consecutively.
299 ** One register is initialized for each characgter in zTypes[]. For each
300 ** "s" character in zTypes[], the register is a string if the argument is
301 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character
302 ** in zTypes[], the register is initialized to an integer.
304 ** If the input string does not end with "X" then an OP_ResultRow instruction
305 ** is generated for the values inserted.
307 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
308 va_list ap;
309 int i;
310 char c;
311 va_start(ap, zTypes);
312 for(i=0; (c = zTypes[i])!=0; i++){
313 if( c=='s' ){
314 const char *z = va_arg(ap, const char*);
315 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0);
316 }else if( c=='i' ){
317 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i);
318 }else{
319 goto skip_op_resultrow;
322 sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i);
323 skip_op_resultrow:
324 va_end(ap);
328 ** Add an opcode that includes the p4 value as a pointer.
330 int sqlite3VdbeAddOp4(
331 Vdbe *p, /* Add the opcode to this VM */
332 int op, /* The new opcode */
333 int p1, /* The P1 operand */
334 int p2, /* The P2 operand */
335 int p3, /* The P3 operand */
336 const char *zP4, /* The P4 operand */
337 int p4type /* P4 operand type */
339 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
340 sqlite3VdbeChangeP4(p, addr, zP4, p4type);
341 return addr;
345 ** Add an OP_Function or OP_PureFunc opcode.
347 ** The eCallCtx argument is information (typically taken from Expr.op2)
348 ** that describes the calling context of the function. 0 means a general
349 ** function call. NC_IsCheck means called by a check constraint,
350 ** NC_IdxExpr means called as part of an index expression. NC_PartIdx
351 ** means in the WHERE clause of a partial index. NC_GenCol means called
352 ** while computing a generated column value. 0 is the usual case.
354 int sqlite3VdbeAddFunctionCall(
355 Parse *pParse, /* Parsing context */
356 int p1, /* Constant argument mask */
357 int p2, /* First argument register */
358 int p3, /* Register into which results are written */
359 int nArg, /* Number of argument */
360 const FuncDef *pFunc, /* The function to be invoked */
361 int eCallCtx /* Calling context */
363 Vdbe *v = pParse->pVdbe;
364 int nByte;
365 int addr;
366 sqlite3_context *pCtx;
367 assert( v );
368 nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*);
369 pCtx = sqlite3DbMallocRawNN(pParse->db, nByte);
370 if( pCtx==0 ){
371 assert( pParse->db->mallocFailed );
372 freeEphemeralFunction(pParse->db, (FuncDef*)pFunc);
373 return 0;
375 pCtx->pOut = 0;
376 pCtx->pFunc = (FuncDef*)pFunc;
377 pCtx->pVdbe = 0;
378 pCtx->isError = 0;
379 pCtx->argc = nArg;
380 pCtx->iOp = sqlite3VdbeCurrentAddr(v);
381 addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function,
382 p1, p2, p3, (char*)pCtx, P4_FUNCCTX);
383 sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef);
384 return addr;
388 ** Add an opcode that includes the p4 value with a P4_INT64 or
389 ** P4_REAL type.
391 int sqlite3VdbeAddOp4Dup8(
392 Vdbe *p, /* Add the opcode to this VM */
393 int op, /* The new opcode */
394 int p1, /* The P1 operand */
395 int p2, /* The P2 operand */
396 int p3, /* The P3 operand */
397 const u8 *zP4, /* The P4 operand */
398 int p4type /* P4 operand type */
400 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
401 if( p4copy ) memcpy(p4copy, zP4, 8);
402 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
405 #ifndef SQLITE_OMIT_EXPLAIN
407 ** Return the address of the current EXPLAIN QUERY PLAN baseline.
408 ** 0 means "none".
410 int sqlite3VdbeExplainParent(Parse *pParse){
411 VdbeOp *pOp;
412 if( pParse->addrExplain==0 ) return 0;
413 pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain);
414 return pOp->p2;
418 ** Set a debugger breakpoint on the following routine in order to
419 ** monitor the EXPLAIN QUERY PLAN code generation.
421 #if defined(SQLITE_DEBUG)
422 void sqlite3ExplainBreakpoint(const char *z1, const char *z2){
423 (void)z1;
424 (void)z2;
426 #endif
429 ** Add a new OP_Explain opcode.
431 ** If the bPush flag is true, then make this opcode the parent for
432 ** subsequent Explains until sqlite3VdbeExplainPop() is called.
434 void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){
435 #ifndef SQLITE_DEBUG
436 /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined.
437 ** But omit them (for performance) during production builds */
438 if( pParse->explain==2 )
439 #endif
441 char *zMsg;
442 Vdbe *v;
443 va_list ap;
444 int iThis;
445 va_start(ap, zFmt);
446 zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap);
447 va_end(ap);
448 v = pParse->pVdbe;
449 iThis = v->nOp;
450 sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0,
451 zMsg, P4_DYNAMIC);
452 sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetOp(v,-1)->p4.z);
453 if( bPush){
454 pParse->addrExplain = iThis;
460 ** Pop the EXPLAIN QUERY PLAN stack one level.
462 void sqlite3VdbeExplainPop(Parse *pParse){
463 sqlite3ExplainBreakpoint("POP", 0);
464 pParse->addrExplain = sqlite3VdbeExplainParent(pParse);
466 #endif /* SQLITE_OMIT_EXPLAIN */
469 ** Add an OP_ParseSchema opcode. This routine is broken out from
470 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
471 ** as having been used.
473 ** The zWhere string must have been obtained from sqlite3_malloc().
474 ** This routine will take ownership of the allocated memory.
476 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere, u16 p5){
477 int j;
478 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
479 sqlite3VdbeChangeP5(p, p5);
480 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
481 sqlite3MayAbort(p->pParse);
485 ** Add an opcode that includes the p4 value as an integer.
487 int sqlite3VdbeAddOp4Int(
488 Vdbe *p, /* Add the opcode to this VM */
489 int op, /* The new opcode */
490 int p1, /* The P1 operand */
491 int p2, /* The P2 operand */
492 int p3, /* The P3 operand */
493 int p4 /* The P4 operand as an integer */
495 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
496 if( p->db->mallocFailed==0 ){
497 VdbeOp *pOp = &p->aOp[addr];
498 pOp->p4type = P4_INT32;
499 pOp->p4.i = p4;
501 return addr;
504 /* Insert the end of a co-routine
506 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
507 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
509 /* Clear the temporary register cache, thereby ensuring that each
510 ** co-routine has its own independent set of registers, because co-routines
511 ** might expect their registers to be preserved across an OP_Yield, and
512 ** that could cause problems if two or more co-routines are using the same
513 ** temporary register.
515 v->pParse->nTempReg = 0;
516 v->pParse->nRangeReg = 0;
520 ** Create a new symbolic label for an instruction that has yet to be
521 ** coded. The symbolic label is really just a negative number. The
522 ** label can be used as the P2 value of an operation. Later, when
523 ** the label is resolved to a specific address, the VDBE will scan
524 ** through its operation list and change all values of P2 which match
525 ** the label into the resolved address.
527 ** The VDBE knows that a P2 value is a label because labels are
528 ** always negative and P2 values are suppose to be non-negative.
529 ** Hence, a negative P2 value is a label that has yet to be resolved.
530 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP
531 ** property.
533 ** Variable usage notes:
535 ** Parse.aLabel[x] Stores the address that the x-th label resolves
536 ** into. For testing (SQLITE_DEBUG), unresolved
537 ** labels stores -1, but that is not required.
538 ** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[]
539 ** Parse.nLabel The *negative* of the number of labels that have
540 ** been issued. The negative is stored because
541 ** that gives a performance improvement over storing
542 ** the equivalent positive value.
544 int sqlite3VdbeMakeLabel(Parse *pParse){
545 return --pParse->nLabel;
549 ** Resolve label "x" to be the address of the next instruction to
550 ** be inserted. The parameter "x" must have been obtained from
551 ** a prior call to sqlite3VdbeMakeLabel().
553 static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){
554 int nNewSize = 10 - p->nLabel;
555 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
556 nNewSize*sizeof(p->aLabel[0]));
557 if( p->aLabel==0 ){
558 p->nLabelAlloc = 0;
559 }else{
560 #ifdef SQLITE_DEBUG
561 int i;
562 for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1;
563 #endif
564 p->nLabelAlloc = nNewSize;
565 p->aLabel[j] = v->nOp;
568 void sqlite3VdbeResolveLabel(Vdbe *v, int x){
569 Parse *p = v->pParse;
570 int j = ADDR(x);
571 assert( v->iVdbeMagic==VDBE_MAGIC_INIT );
572 assert( j<-p->nLabel );
573 assert( j>=0 );
574 #ifdef SQLITE_DEBUG
575 if( p->db->flags & SQLITE_VdbeAddopTrace ){
576 printf("RESOLVE LABEL %d to %d\n", x, v->nOp);
578 #endif
579 if( p->nLabelAlloc + p->nLabel < 0 ){
580 resizeResolveLabel(p,v,j);
581 }else{
582 assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */
583 p->aLabel[j] = v->nOp;
588 ** Mark the VDBE as one that can only be run one time.
590 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
591 p->runOnlyOnce = 1;
595 ** Mark the VDBE as one that can only be run multiple times.
597 void sqlite3VdbeReusable(Vdbe *p){
598 p->runOnlyOnce = 0;
601 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
604 ** The following type and function are used to iterate through all opcodes
605 ** in a Vdbe main program and each of the sub-programs (triggers) it may
606 ** invoke directly or indirectly. It should be used as follows:
608 ** Op *pOp;
609 ** VdbeOpIter sIter;
611 ** memset(&sIter, 0, sizeof(sIter));
612 ** sIter.v = v; // v is of type Vdbe*
613 ** while( (pOp = opIterNext(&sIter)) ){
614 ** // Do something with pOp
615 ** }
616 ** sqlite3DbFree(v->db, sIter.apSub);
619 typedef struct VdbeOpIter VdbeOpIter;
620 struct VdbeOpIter {
621 Vdbe *v; /* Vdbe to iterate through the opcodes of */
622 SubProgram **apSub; /* Array of subprograms */
623 int nSub; /* Number of entries in apSub */
624 int iAddr; /* Address of next instruction to return */
625 int iSub; /* 0 = main program, 1 = first sub-program etc. */
627 static Op *opIterNext(VdbeOpIter *p){
628 Vdbe *v = p->v;
629 Op *pRet = 0;
630 Op *aOp;
631 int nOp;
633 if( p->iSub<=p->nSub ){
635 if( p->iSub==0 ){
636 aOp = v->aOp;
637 nOp = v->nOp;
638 }else{
639 aOp = p->apSub[p->iSub-1]->aOp;
640 nOp = p->apSub[p->iSub-1]->nOp;
642 assert( p->iAddr<nOp );
644 pRet = &aOp[p->iAddr];
645 p->iAddr++;
646 if( p->iAddr==nOp ){
647 p->iSub++;
648 p->iAddr = 0;
651 if( pRet->p4type==P4_SUBPROGRAM ){
652 int nByte = (p->nSub+1)*sizeof(SubProgram*);
653 int j;
654 for(j=0; j<p->nSub; j++){
655 if( p->apSub[j]==pRet->p4.pProgram ) break;
657 if( j==p->nSub ){
658 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
659 if( !p->apSub ){
660 pRet = 0;
661 }else{
662 p->apSub[p->nSub++] = pRet->p4.pProgram;
668 return pRet;
672 ** Check if the program stored in the VM associated with pParse may
673 ** throw an ABORT exception (causing the statement, but not entire transaction
674 ** to be rolled back). This condition is true if the main program or any
675 ** sub-programs contains any of the following:
677 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
678 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
679 ** * OP_Destroy
680 ** * OP_VUpdate
681 ** * OP_VCreate
682 ** * OP_VRename
683 ** * OP_FkCounter with P2==0 (immediate foreign key constraint)
684 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine
685 ** (for CREATE TABLE AS SELECT ...)
687 ** Then check that the value of Parse.mayAbort is true if an
688 ** ABORT may be thrown, or false otherwise. Return true if it does
689 ** match, or false otherwise. This function is intended to be used as
690 ** part of an assert statement in the compiler. Similar to:
692 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
694 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
695 int hasAbort = 0;
696 int hasFkCounter = 0;
697 int hasCreateTable = 0;
698 int hasCreateIndex = 0;
699 int hasInitCoroutine = 0;
700 Op *pOp;
701 VdbeOpIter sIter;
702 memset(&sIter, 0, sizeof(sIter));
703 sIter.v = v;
705 while( (pOp = opIterNext(&sIter))!=0 ){
706 int opcode = pOp->opcode;
707 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
708 || opcode==OP_VDestroy
709 || opcode==OP_VCreate
710 || opcode==OP_ParseSchema
711 || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
712 && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort))
714 hasAbort = 1;
715 break;
717 if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1;
718 if( mayAbort ){
719 /* hasCreateIndex may also be set for some DELETE statements that use
720 ** OP_Clear. So this routine may end up returning true in the case
721 ** where a "DELETE FROM tbl" has a statement-journal but does not
722 ** require one. This is not so bad - it is an inefficiency, not a bug. */
723 if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1;
724 if( opcode==OP_Clear ) hasCreateIndex = 1;
726 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
727 #ifndef SQLITE_OMIT_FOREIGN_KEY
728 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
729 hasFkCounter = 1;
731 #endif
733 sqlite3DbFree(v->db, sIter.apSub);
735 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
736 ** If malloc failed, then the while() loop above may not have iterated
737 ** through all opcodes and hasAbort may be set incorrectly. Return
738 ** true for this case to prevent the assert() in the callers frame
739 ** from failing. */
740 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
741 || (hasCreateTable && hasInitCoroutine) || hasCreateIndex
744 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
746 #ifdef SQLITE_DEBUG
748 ** Increment the nWrite counter in the VDBE if the cursor is not an
749 ** ephemeral cursor, or if the cursor argument is NULL.
751 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){
752 if( pC==0
753 || (pC->eCurType!=CURTYPE_SORTER
754 && pC->eCurType!=CURTYPE_PSEUDO
755 && !pC->isEphemeral)
757 p->nWrite++;
760 #endif
762 #ifdef SQLITE_DEBUG
764 ** Assert if an Abort at this point in time might result in a corrupt
765 ** database.
767 void sqlite3VdbeAssertAbortable(Vdbe *p){
768 assert( p->nWrite==0 || p->usesStmtJournal );
770 #endif
773 ** This routine is called after all opcodes have been inserted. It loops
774 ** through all the opcodes and fixes up some details.
776 ** (1) For each jump instruction with a negative P2 value (a label)
777 ** resolve the P2 value to an actual address.
779 ** (2) Compute the maximum number of arguments used by any SQL function
780 ** and store that value in *pMaxFuncArgs.
782 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
783 ** indicate what the prepared statement actually does.
785 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it.
787 ** (5) Reclaim the memory allocated for storing labels.
789 ** This routine will only function correctly if the mkopcodeh.tcl generator
790 ** script numbers the opcodes correctly. Changes to this routine must be
791 ** coordinated with changes to mkopcodeh.tcl.
793 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
794 int nMaxArgs = *pMaxFuncArgs;
795 Op *pOp;
796 Parse *pParse = p->pParse;
797 int *aLabel = pParse->aLabel;
798 p->readOnly = 1;
799 p->bIsReader = 0;
800 pOp = &p->aOp[p->nOp-1];
801 while(1){
803 /* Only JUMP opcodes and the short list of special opcodes in the switch
804 ** below need to be considered. The mkopcodeh.tcl generator script groups
805 ** all these opcodes together near the front of the opcode list. Skip
806 ** any opcode that does not need processing by virtual of the fact that
807 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
809 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
810 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
811 ** cases from this switch! */
812 switch( pOp->opcode ){
813 case OP_Transaction: {
814 if( pOp->p2!=0 ) p->readOnly = 0;
815 /* no break */ deliberate_fall_through
817 case OP_AutoCommit:
818 case OP_Savepoint: {
819 p->bIsReader = 1;
820 break;
822 #ifndef SQLITE_OMIT_WAL
823 case OP_Checkpoint:
824 #endif
825 case OP_Vacuum:
826 case OP_JournalMode: {
827 p->readOnly = 0;
828 p->bIsReader = 1;
829 break;
831 case OP_Next:
832 case OP_SorterNext: {
833 pOp->p4.xAdvance = sqlite3BtreeNext;
834 pOp->p4type = P4_ADVANCE;
835 /* The code generator never codes any of these opcodes as a jump
836 ** to a label. They are always coded as a jump backwards to a
837 ** known address */
838 assert( pOp->p2>=0 );
839 break;
841 case OP_Prev: {
842 pOp->p4.xAdvance = sqlite3BtreePrevious;
843 pOp->p4type = P4_ADVANCE;
844 /* The code generator never codes any of these opcodes as a jump
845 ** to a label. They are always coded as a jump backwards to a
846 ** known address */
847 assert( pOp->p2>=0 );
848 break;
850 #ifndef SQLITE_OMIT_VIRTUALTABLE
851 case OP_VUpdate: {
852 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
853 break;
855 case OP_VFilter: {
856 int n;
857 assert( (pOp - p->aOp) >= 3 );
858 assert( pOp[-1].opcode==OP_Integer );
859 n = pOp[-1].p1;
860 if( n>nMaxArgs ) nMaxArgs = n;
861 /* Fall through into the default case */
862 /* no break */ deliberate_fall_through
864 #endif
865 default: {
866 if( pOp->p2<0 ){
867 /* The mkopcodeh.tcl script has so arranged things that the only
868 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
869 ** have non-negative values for P2. */
870 assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 );
871 assert( ADDR(pOp->p2)<-pParse->nLabel );
872 pOp->p2 = aLabel[ADDR(pOp->p2)];
874 break;
877 /* The mkopcodeh.tcl script has so arranged things that the only
878 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
879 ** have non-negative values for P2. */
880 assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0);
882 if( pOp==p->aOp ) break;
883 pOp--;
885 sqlite3DbFree(p->db, pParse->aLabel);
886 pParse->aLabel = 0;
887 pParse->nLabel = 0;
888 *pMaxFuncArgs = nMaxArgs;
889 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
893 ** Return the address of the next instruction to be inserted.
895 int sqlite3VdbeCurrentAddr(Vdbe *p){
896 assert( p->iVdbeMagic==VDBE_MAGIC_INIT );
897 return p->nOp;
901 ** Verify that at least N opcode slots are available in p without
902 ** having to malloc for more space (except when compiled using
903 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing
904 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
905 ** fail due to a OOM fault and hence that the return value from
906 ** sqlite3VdbeAddOpList() will always be non-NULL.
908 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
909 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
910 assert( p->nOp + N <= p->nOpAlloc );
912 #endif
915 ** Verify that the VM passed as the only argument does not contain
916 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used
917 ** by code in pragma.c to ensure that the implementation of certain
918 ** pragmas comports with the flags specified in the mkpragmatab.tcl
919 ** script.
921 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
922 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){
923 int i;
924 for(i=0; i<p->nOp; i++){
925 assert( p->aOp[i].opcode!=OP_ResultRow );
928 #endif
931 ** Generate code (a single OP_Abortable opcode) that will
932 ** verify that the VDBE program can safely call Abort in the current
933 ** context.
935 #if defined(SQLITE_DEBUG)
936 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){
937 if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable);
939 #endif
942 ** This function returns a pointer to the array of opcodes associated with
943 ** the Vdbe passed as the first argument. It is the callers responsibility
944 ** to arrange for the returned array to be eventually freed using the
945 ** vdbeFreeOpArray() function.
947 ** Before returning, *pnOp is set to the number of entries in the returned
948 ** array. Also, *pnMaxArg is set to the larger of its current value and
949 ** the number of entries in the Vdbe.apArg[] array required to execute the
950 ** returned program.
952 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
953 VdbeOp *aOp = p->aOp;
954 assert( aOp && !p->db->mallocFailed );
956 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
957 assert( DbMaskAllZero(p->btreeMask) );
959 resolveP2Values(p, pnMaxArg);
960 *pnOp = p->nOp;
961 p->aOp = 0;
962 return aOp;
966 ** Add a whole list of operations to the operation stack. Return a
967 ** pointer to the first operation inserted.
969 ** Non-zero P2 arguments to jump instructions are automatically adjusted
970 ** so that the jump target is relative to the first operation inserted.
972 VdbeOp *sqlite3VdbeAddOpList(
973 Vdbe *p, /* Add opcodes to the prepared statement */
974 int nOp, /* Number of opcodes to add */
975 VdbeOpList const *aOp, /* The opcodes to be added */
976 int iLineno /* Source-file line number of first opcode */
978 int i;
979 VdbeOp *pOut, *pFirst;
980 assert( nOp>0 );
981 assert( p->iVdbeMagic==VDBE_MAGIC_INIT );
982 if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){
983 return 0;
985 pFirst = pOut = &p->aOp[p->nOp];
986 for(i=0; i<nOp; i++, aOp++, pOut++){
987 pOut->opcode = aOp->opcode;
988 pOut->p1 = aOp->p1;
989 pOut->p2 = aOp->p2;
990 assert( aOp->p2>=0 );
991 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
992 pOut->p2 += p->nOp;
994 pOut->p3 = aOp->p3;
995 pOut->p4type = P4_NOTUSED;
996 pOut->p4.p = 0;
997 pOut->p5 = 0;
998 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
999 pOut->zComment = 0;
1000 #endif
1001 #ifdef SQLITE_VDBE_COVERAGE
1002 pOut->iSrcLine = iLineno+i;
1003 #else
1004 (void)iLineno;
1005 #endif
1006 #ifdef SQLITE_DEBUG
1007 if( p->db->flags & SQLITE_VdbeAddopTrace ){
1008 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
1010 #endif
1012 p->nOp += nOp;
1013 return pFirst;
1016 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
1018 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
1020 void sqlite3VdbeScanStatus(
1021 Vdbe *p, /* VM to add scanstatus() to */
1022 int addrExplain, /* Address of OP_Explain (or 0) */
1023 int addrLoop, /* Address of loop counter */
1024 int addrVisit, /* Address of rows visited counter */
1025 LogEst nEst, /* Estimated number of output rows */
1026 const char *zName /* Name of table or index being scanned */
1028 sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus);
1029 ScanStatus *aNew;
1030 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
1031 if( aNew ){
1032 ScanStatus *pNew = &aNew[p->nScan++];
1033 pNew->addrExplain = addrExplain;
1034 pNew->addrLoop = addrLoop;
1035 pNew->addrVisit = addrVisit;
1036 pNew->nEst = nEst;
1037 pNew->zName = sqlite3DbStrDup(p->db, zName);
1038 p->aScan = aNew;
1041 #endif
1045 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
1046 ** for a specific instruction.
1048 void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){
1049 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
1051 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
1052 sqlite3VdbeGetOp(p,addr)->p1 = val;
1054 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
1055 sqlite3VdbeGetOp(p,addr)->p2 = val;
1057 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
1058 sqlite3VdbeGetOp(p,addr)->p3 = val;
1060 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
1061 assert( p->nOp>0 || p->db->mallocFailed );
1062 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
1066 ** Change the P2 operand of instruction addr so that it points to
1067 ** the address of the next instruction to be coded.
1069 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
1070 sqlite3VdbeChangeP2(p, addr, p->nOp);
1074 ** Change the P2 operand of the jump instruction at addr so that
1075 ** the jump lands on the next opcode. Or if the jump instruction was
1076 ** the previous opcode (and is thus a no-op) then simply back up
1077 ** the next instruction counter by one slot so that the jump is
1078 ** overwritten by the next inserted opcode.
1080 ** This routine is an optimization of sqlite3VdbeJumpHere() that
1081 ** strives to omit useless byte-code like this:
1083 ** 7 Once 0 8 0
1084 ** 8 ...
1086 void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){
1087 if( addr==p->nOp-1 ){
1088 assert( p->aOp[addr].opcode==OP_Once
1089 || p->aOp[addr].opcode==OP_If
1090 || p->aOp[addr].opcode==OP_FkIfZero );
1091 assert( p->aOp[addr].p4type==0 );
1092 #ifdef SQLITE_VDBE_COVERAGE
1093 sqlite3VdbeGetOp(p,-1)->iSrcLine = 0; /* Erase VdbeCoverage() macros */
1094 #endif
1095 p->nOp--;
1096 }else{
1097 sqlite3VdbeChangeP2(p, addr, p->nOp);
1103 ** If the input FuncDef structure is ephemeral, then free it. If
1104 ** the FuncDef is not ephermal, then do nothing.
1106 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
1107 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
1108 sqlite3DbFreeNN(db, pDef);
1113 ** Delete a P4 value if necessary.
1115 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
1116 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1117 sqlite3DbFreeNN(db, p);
1119 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
1120 freeEphemeralFunction(db, p->pFunc);
1121 sqlite3DbFreeNN(db, p);
1123 static void freeP4(sqlite3 *db, int p4type, void *p4){
1124 assert( db );
1125 switch( p4type ){
1126 case P4_FUNCCTX: {
1127 freeP4FuncCtx(db, (sqlite3_context*)p4);
1128 break;
1130 case P4_REAL:
1131 case P4_INT64:
1132 case P4_DYNAMIC:
1133 case P4_DYNBLOB:
1134 case P4_INTARRAY: {
1135 sqlite3DbFree(db, p4);
1136 break;
1138 case P4_KEYINFO: {
1139 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
1140 break;
1142 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1143 case P4_EXPR: {
1144 sqlite3ExprDelete(db, (Expr*)p4);
1145 break;
1147 #endif
1148 case P4_FUNCDEF: {
1149 freeEphemeralFunction(db, (FuncDef*)p4);
1150 break;
1152 case P4_MEM: {
1153 if( db->pnBytesFreed==0 ){
1154 sqlite3ValueFree((sqlite3_value*)p4);
1155 }else{
1156 freeP4Mem(db, (Mem*)p4);
1158 break;
1160 case P4_VTAB : {
1161 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
1162 break;
1168 ** Free the space allocated for aOp and any p4 values allocated for the
1169 ** opcodes contained within. If aOp is not NULL it is assumed to contain
1170 ** nOp entries.
1172 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
1173 if( aOp ){
1174 Op *pOp;
1175 for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){
1176 if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p);
1177 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1178 sqlite3DbFree(db, pOp->zComment);
1179 #endif
1181 sqlite3DbFreeNN(db, aOp);
1186 ** Link the SubProgram object passed as the second argument into the linked
1187 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
1188 ** objects when the VM is no longer required.
1190 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
1191 p->pNext = pVdbe->pProgram;
1192 pVdbe->pProgram = p;
1196 ** Return true if the given Vdbe has any SubPrograms.
1198 int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){
1199 return pVdbe->pProgram!=0;
1203 ** Change the opcode at addr into OP_Noop
1205 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
1206 VdbeOp *pOp;
1207 if( p->db->mallocFailed ) return 0;
1208 assert( addr>=0 && addr<p->nOp );
1209 pOp = &p->aOp[addr];
1210 freeP4(p->db, pOp->p4type, pOp->p4.p);
1211 pOp->p4type = P4_NOTUSED;
1212 pOp->p4.z = 0;
1213 pOp->opcode = OP_Noop;
1214 return 1;
1218 ** If the last opcode is "op" and it is not a jump destination,
1219 ** then remove it. Return true if and only if an opcode was removed.
1221 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
1222 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){
1223 return sqlite3VdbeChangeToNoop(p, p->nOp-1);
1224 }else{
1225 return 0;
1229 #ifdef SQLITE_DEBUG
1231 ** Generate an OP_ReleaseReg opcode to indicate that a range of
1232 ** registers, except any identified by mask, are no longer in use.
1234 void sqlite3VdbeReleaseRegisters(
1235 Parse *pParse, /* Parsing context */
1236 int iFirst, /* Index of first register to be released */
1237 int N, /* Number of registers to release */
1238 u32 mask, /* Mask of registers to NOT release */
1239 int bUndefine /* If true, mark registers as undefined */
1241 if( N==0 ) return;
1242 assert( pParse->pVdbe );
1243 assert( iFirst>=1 );
1244 assert( iFirst+N-1<=pParse->nMem );
1245 if( N<=31 && mask!=0 ){
1246 while( N>0 && (mask&1)!=0 ){
1247 mask >>= 1;
1248 iFirst++;
1249 N--;
1251 while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){
1252 mask &= ~MASKBIT32(N-1);
1253 N--;
1256 if( N>0 ){
1257 sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask);
1258 if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1);
1261 #endif /* SQLITE_DEBUG */
1265 ** Change the value of the P4 operand for a specific instruction.
1266 ** This routine is useful when a large program is loaded from a
1267 ** static array using sqlite3VdbeAddOpList but we want to make a
1268 ** few minor changes to the program.
1270 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
1271 ** the string is made into memory obtained from sqlite3_malloc().
1272 ** A value of n==0 means copy bytes of zP4 up to and including the
1273 ** first null byte. If n>0 then copy n+1 bytes of zP4.
1275 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
1276 ** to a string or structure that is guaranteed to exist for the lifetime of
1277 ** the Vdbe. In these cases we can just copy the pointer.
1279 ** If addr<0 then change P4 on the most recently inserted instruction.
1281 static void SQLITE_NOINLINE vdbeChangeP4Full(
1282 Vdbe *p,
1283 Op *pOp,
1284 const char *zP4,
1285 int n
1287 if( pOp->p4type ){
1288 freeP4(p->db, pOp->p4type, pOp->p4.p);
1289 pOp->p4type = 0;
1290 pOp->p4.p = 0;
1292 if( n<0 ){
1293 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
1294 }else{
1295 if( n==0 ) n = sqlite3Strlen30(zP4);
1296 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
1297 pOp->p4type = P4_DYNAMIC;
1300 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
1301 Op *pOp;
1302 sqlite3 *db;
1303 assert( p!=0 );
1304 db = p->db;
1305 assert( p->iVdbeMagic==VDBE_MAGIC_INIT );
1306 assert( p->aOp!=0 || db->mallocFailed );
1307 if( db->mallocFailed ){
1308 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
1309 return;
1311 assert( p->nOp>0 );
1312 assert( addr<p->nOp );
1313 if( addr<0 ){
1314 addr = p->nOp - 1;
1316 pOp = &p->aOp[addr];
1317 if( n>=0 || pOp->p4type ){
1318 vdbeChangeP4Full(p, pOp, zP4, n);
1319 return;
1321 if( n==P4_INT32 ){
1322 /* Note: this cast is safe, because the origin data point was an int
1323 ** that was cast to a (const char *). */
1324 pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
1325 pOp->p4type = P4_INT32;
1326 }else if( zP4!=0 ){
1327 assert( n<0 );
1328 pOp->p4.p = (void*)zP4;
1329 pOp->p4type = (signed char)n;
1330 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
1335 ** Change the P4 operand of the most recently coded instruction
1336 ** to the value defined by the arguments. This is a high-speed
1337 ** version of sqlite3VdbeChangeP4().
1339 ** The P4 operand must not have been previously defined. And the new
1340 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of
1341 ** those cases.
1343 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){
1344 VdbeOp *pOp;
1345 assert( n!=P4_INT32 && n!=P4_VTAB );
1346 assert( n<=0 );
1347 if( p->db->mallocFailed ){
1348 freeP4(p->db, n, pP4);
1349 }else{
1350 assert( pP4!=0 );
1351 assert( p->nOp>0 );
1352 pOp = &p->aOp[p->nOp-1];
1353 assert( pOp->p4type==P4_NOTUSED );
1354 pOp->p4type = n;
1355 pOp->p4.p = pP4;
1360 ** Set the P4 on the most recently added opcode to the KeyInfo for the
1361 ** index given.
1363 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
1364 Vdbe *v = pParse->pVdbe;
1365 KeyInfo *pKeyInfo;
1366 assert( v!=0 );
1367 assert( pIdx!=0 );
1368 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx);
1369 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1372 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1374 ** Change the comment on the most recently coded instruction. Or
1375 ** insert a No-op and add the comment to that new instruction. This
1376 ** makes the code easier to read during debugging. None of this happens
1377 ** in a production build.
1379 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
1380 assert( p->nOp>0 || p->aOp==0 );
1381 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed
1382 || p->pParse->nErr>0 );
1383 if( p->nOp ){
1384 assert( p->aOp );
1385 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
1386 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
1389 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
1390 va_list ap;
1391 if( p ){
1392 va_start(ap, zFormat);
1393 vdbeVComment(p, zFormat, ap);
1394 va_end(ap);
1397 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
1398 va_list ap;
1399 if( p ){
1400 sqlite3VdbeAddOp0(p, OP_Noop);
1401 va_start(ap, zFormat);
1402 vdbeVComment(p, zFormat, ap);
1403 va_end(ap);
1406 #endif /* NDEBUG */
1408 #ifdef SQLITE_VDBE_COVERAGE
1410 ** Set the value if the iSrcLine field for the previously coded instruction.
1412 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
1413 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
1415 #endif /* SQLITE_VDBE_COVERAGE */
1418 ** Return the opcode for a given address. If the address is -1, then
1419 ** return the most recently inserted opcode.
1421 ** If a memory allocation error has occurred prior to the calling of this
1422 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
1423 ** is readable but not writable, though it is cast to a writable value.
1424 ** The return of a dummy opcode allows the call to continue functioning
1425 ** after an OOM fault without having to check to see if the return from
1426 ** this routine is a valid pointer. But because the dummy.opcode is 0,
1427 ** dummy will never be written to. This is verified by code inspection and
1428 ** by running with Valgrind.
1430 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
1431 /* C89 specifies that the constant "dummy" will be initialized to all
1432 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
1433 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
1434 assert( p->iVdbeMagic==VDBE_MAGIC_INIT );
1435 if( addr<0 ){
1436 addr = p->nOp - 1;
1438 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
1439 if( p->db->mallocFailed ){
1440 return (VdbeOp*)&dummy;
1441 }else{
1442 return &p->aOp[addr];
1446 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1448 ** Return an integer value for one of the parameters to the opcode pOp
1449 ** determined by character c.
1451 static int translateP(char c, const Op *pOp){
1452 if( c=='1' ) return pOp->p1;
1453 if( c=='2' ) return pOp->p2;
1454 if( c=='3' ) return pOp->p3;
1455 if( c=='4' ) return pOp->p4.i;
1456 return pOp->p5;
1460 ** Compute a string for the "comment" field of a VDBE opcode listing.
1462 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1463 ** to an extra string that is appended to the sqlite3OpcodeName(). In the
1464 ** absence of other comments, this synopsis becomes the comment on the opcode.
1465 ** Some translation occurs:
1467 ** "PX" -> "r[X]"
1468 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
1469 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
1470 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
1472 char *sqlite3VdbeDisplayComment(
1473 sqlite3 *db, /* Optional - Oom error reporting only */
1474 const Op *pOp, /* The opcode to be commented */
1475 const char *zP4 /* Previously obtained value for P4 */
1477 const char *zOpName;
1478 const char *zSynopsis;
1479 int nOpName;
1480 int ii;
1481 char zAlt[50];
1482 StrAccum x;
1484 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
1485 zOpName = sqlite3OpcodeName(pOp->opcode);
1486 nOpName = sqlite3Strlen30(zOpName);
1487 if( zOpName[nOpName+1] ){
1488 int seenCom = 0;
1489 char c;
1490 zSynopsis = zOpName + nOpName + 1;
1491 if( strncmp(zSynopsis,"IF ",3)==0 ){
1492 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
1493 zSynopsis = zAlt;
1495 for(ii=0; (c = zSynopsis[ii])!=0; ii++){
1496 if( c=='P' ){
1497 c = zSynopsis[++ii];
1498 if( c=='4' ){
1499 sqlite3_str_appendall(&x, zP4);
1500 }else if( c=='X' ){
1501 sqlite3_str_appendall(&x, pOp->zComment);
1502 seenCom = 1;
1503 }else{
1504 int v1 = translateP(c, pOp);
1505 int v2;
1506 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1507 ii += 3;
1508 v2 = translateP(zSynopsis[ii], pOp);
1509 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1510 ii += 2;
1511 v2++;
1513 if( v2<2 ){
1514 sqlite3_str_appendf(&x, "%d", v1);
1515 }else{
1516 sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1);
1518 }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){
1519 sqlite3_context *pCtx = pOp->p4.pCtx;
1520 if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){
1521 sqlite3_str_appendf(&x, "%d", v1);
1522 }else if( pCtx->argc>1 ){
1523 sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1);
1524 }else if( x.accError==0 ){
1525 assert( x.nChar>2 );
1526 x.nChar -= 2;
1527 ii++;
1529 ii += 3;
1530 }else{
1531 sqlite3_str_appendf(&x, "%d", v1);
1532 if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1533 ii += 4;
1537 }else{
1538 sqlite3_str_appendchar(&x, 1, c);
1541 if( !seenCom && pOp->zComment ){
1542 sqlite3_str_appendf(&x, "; %s", pOp->zComment);
1544 }else if( pOp->zComment ){
1545 sqlite3_str_appendall(&x, pOp->zComment);
1547 if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){
1548 sqlite3OomFault(db);
1550 return sqlite3StrAccumFinish(&x);
1552 #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */
1554 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1556 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1557 ** that can be displayed in the P4 column of EXPLAIN output.
1559 static void displayP4Expr(StrAccum *p, Expr *pExpr){
1560 const char *zOp = 0;
1561 switch( pExpr->op ){
1562 case TK_STRING:
1563 assert( !ExprHasProperty(pExpr, EP_IntValue) );
1564 sqlite3_str_appendf(p, "%Q", pExpr->u.zToken);
1565 break;
1566 case TK_INTEGER:
1567 sqlite3_str_appendf(p, "%d", pExpr->u.iValue);
1568 break;
1569 case TK_NULL:
1570 sqlite3_str_appendf(p, "NULL");
1571 break;
1572 case TK_REGISTER: {
1573 sqlite3_str_appendf(p, "r[%d]", pExpr->iTable);
1574 break;
1576 case TK_COLUMN: {
1577 if( pExpr->iColumn<0 ){
1578 sqlite3_str_appendf(p, "rowid");
1579 }else{
1580 sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn);
1582 break;
1584 case TK_LT: zOp = "LT"; break;
1585 case TK_LE: zOp = "LE"; break;
1586 case TK_GT: zOp = "GT"; break;
1587 case TK_GE: zOp = "GE"; break;
1588 case TK_NE: zOp = "NE"; break;
1589 case TK_EQ: zOp = "EQ"; break;
1590 case TK_IS: zOp = "IS"; break;
1591 case TK_ISNOT: zOp = "ISNOT"; break;
1592 case TK_AND: zOp = "AND"; break;
1593 case TK_OR: zOp = "OR"; break;
1594 case TK_PLUS: zOp = "ADD"; break;
1595 case TK_STAR: zOp = "MUL"; break;
1596 case TK_MINUS: zOp = "SUB"; break;
1597 case TK_REM: zOp = "REM"; break;
1598 case TK_BITAND: zOp = "BITAND"; break;
1599 case TK_BITOR: zOp = "BITOR"; break;
1600 case TK_SLASH: zOp = "DIV"; break;
1601 case TK_LSHIFT: zOp = "LSHIFT"; break;
1602 case TK_RSHIFT: zOp = "RSHIFT"; break;
1603 case TK_CONCAT: zOp = "CONCAT"; break;
1604 case TK_UMINUS: zOp = "MINUS"; break;
1605 case TK_UPLUS: zOp = "PLUS"; break;
1606 case TK_BITNOT: zOp = "BITNOT"; break;
1607 case TK_NOT: zOp = "NOT"; break;
1608 case TK_ISNULL: zOp = "ISNULL"; break;
1609 case TK_NOTNULL: zOp = "NOTNULL"; break;
1611 default:
1612 sqlite3_str_appendf(p, "%s", "expr");
1613 break;
1616 if( zOp ){
1617 sqlite3_str_appendf(p, "%s(", zOp);
1618 displayP4Expr(p, pExpr->pLeft);
1619 if( pExpr->pRight ){
1620 sqlite3_str_append(p, ",", 1);
1621 displayP4Expr(p, pExpr->pRight);
1623 sqlite3_str_append(p, ")", 1);
1626 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1629 #if VDBE_DISPLAY_P4
1631 ** Compute a string that describes the P4 parameter for an opcode.
1632 ** Use zTemp for any required temporary buffer space.
1634 char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){
1635 char *zP4 = 0;
1636 StrAccum x;
1638 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
1639 switch( pOp->p4type ){
1640 case P4_KEYINFO: {
1641 int j;
1642 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
1643 assert( pKeyInfo->aSortFlags!=0 );
1644 sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField);
1645 for(j=0; j<pKeyInfo->nKeyField; j++){
1646 CollSeq *pColl = pKeyInfo->aColl[j];
1647 const char *zColl = pColl ? pColl->zName : "";
1648 if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
1649 sqlite3_str_appendf(&x, ",%s%s%s",
1650 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "",
1651 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "",
1652 zColl);
1654 sqlite3_str_append(&x, ")", 1);
1655 break;
1657 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1658 case P4_EXPR: {
1659 displayP4Expr(&x, pOp->p4.pExpr);
1660 break;
1662 #endif
1663 case P4_COLLSEQ: {
1664 static const char *const encnames[] = {"?", "8", "16LE", "16BE"};
1665 CollSeq *pColl = pOp->p4.pColl;
1666 assert( pColl->enc<4 );
1667 sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName,
1668 encnames[pColl->enc]);
1669 break;
1671 case P4_FUNCDEF: {
1672 FuncDef *pDef = pOp->p4.pFunc;
1673 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1674 break;
1676 case P4_FUNCCTX: {
1677 FuncDef *pDef = pOp->p4.pCtx->pFunc;
1678 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1679 break;
1681 case P4_INT64: {
1682 sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64);
1683 break;
1685 case P4_INT32: {
1686 sqlite3_str_appendf(&x, "%d", pOp->p4.i);
1687 break;
1689 case P4_REAL: {
1690 sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal);
1691 break;
1693 case P4_MEM: {
1694 Mem *pMem = pOp->p4.pMem;
1695 if( pMem->flags & MEM_Str ){
1696 zP4 = pMem->z;
1697 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
1698 sqlite3_str_appendf(&x, "%lld", pMem->u.i);
1699 }else if( pMem->flags & MEM_Real ){
1700 sqlite3_str_appendf(&x, "%.16g", pMem->u.r);
1701 }else if( pMem->flags & MEM_Null ){
1702 zP4 = "NULL";
1703 }else{
1704 assert( pMem->flags & MEM_Blob );
1705 zP4 = "(blob)";
1707 break;
1709 #ifndef SQLITE_OMIT_VIRTUALTABLE
1710 case P4_VTAB: {
1711 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
1712 sqlite3_str_appendf(&x, "vtab:%p", pVtab);
1713 break;
1715 #endif
1716 case P4_INTARRAY: {
1717 u32 i;
1718 u32 *ai = pOp->p4.ai;
1719 u32 n = ai[0]; /* The first element of an INTARRAY is always the
1720 ** count of the number of elements to follow */
1721 for(i=1; i<=n; i++){
1722 sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]);
1724 sqlite3_str_append(&x, "]", 1);
1725 break;
1727 case P4_SUBPROGRAM: {
1728 zP4 = "program";
1729 break;
1731 case P4_DYNBLOB:
1732 case P4_ADVANCE: {
1733 break;
1735 case P4_TABLE: {
1736 zP4 = pOp->p4.pTab->zName;
1737 break;
1739 default: {
1740 zP4 = pOp->p4.z;
1743 if( zP4 ) sqlite3_str_appendall(&x, zP4);
1744 if( (x.accError & SQLITE_NOMEM)!=0 ){
1745 sqlite3OomFault(db);
1747 return sqlite3StrAccumFinish(&x);
1749 #endif /* VDBE_DISPLAY_P4 */
1752 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
1754 ** The prepared statements need to know in advance the complete set of
1755 ** attached databases that will be use. A mask of these databases
1756 ** is maintained in p->btreeMask. The p->lockMask value is the subset of
1757 ** p->btreeMask of databases that will require a lock.
1759 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
1760 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
1761 assert( i<(int)sizeof(p->btreeMask)*8 );
1762 DbMaskSet(p->btreeMask, i);
1763 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
1764 DbMaskSet(p->lockMask, i);
1768 #if !defined(SQLITE_OMIT_SHARED_CACHE)
1770 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1771 ** this routine obtains the mutex associated with each BtShared structure
1772 ** that may be accessed by the VM passed as an argument. In doing so it also
1773 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1774 ** that the correct busy-handler callback is invoked if required.
1776 ** If SQLite is not threadsafe but does support shared-cache mode, then
1777 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1778 ** of all of BtShared structures accessible via the database handle
1779 ** associated with the VM.
1781 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1782 ** function is a no-op.
1784 ** The p->btreeMask field is a bitmask of all btrees that the prepared
1785 ** statement p will ever use. Let N be the number of bits in p->btreeMask
1786 ** corresponding to btrees that use shared cache. Then the runtime of
1787 ** this routine is N*N. But as N is rarely more than 1, this should not
1788 ** be a problem.
1790 void sqlite3VdbeEnter(Vdbe *p){
1791 int i;
1792 sqlite3 *db;
1793 Db *aDb;
1794 int nDb;
1795 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1796 db = p->db;
1797 aDb = db->aDb;
1798 nDb = db->nDb;
1799 for(i=0; i<nDb; i++){
1800 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1801 sqlite3BtreeEnter(aDb[i].pBt);
1805 #endif
1807 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1809 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1811 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
1812 int i;
1813 sqlite3 *db;
1814 Db *aDb;
1815 int nDb;
1816 db = p->db;
1817 aDb = db->aDb;
1818 nDb = db->nDb;
1819 for(i=0; i<nDb; i++){
1820 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1821 sqlite3BtreeLeave(aDb[i].pBt);
1825 void sqlite3VdbeLeave(Vdbe *p){
1826 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1827 vdbeLeave(p);
1829 #endif
1831 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1833 ** Print a single opcode. This routine is used for debugging only.
1835 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){
1836 char *zP4;
1837 char *zCom;
1838 sqlite3 dummyDb;
1839 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
1840 if( pOut==0 ) pOut = stdout;
1841 sqlite3BeginBenignMalloc();
1842 dummyDb.mallocFailed = 1;
1843 zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp);
1844 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1845 zCom = sqlite3VdbeDisplayComment(0, pOp, zP4);
1846 #else
1847 zCom = 0;
1848 #endif
1849 /* NB: The sqlite3OpcodeName() function is implemented by code created
1850 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1851 ** information from the vdbe.c source text */
1852 fprintf(pOut, zFormat1, pc,
1853 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3,
1854 zP4 ? zP4 : "", pOp->p5,
1855 zCom ? zCom : ""
1857 fflush(pOut);
1858 sqlite3_free(zP4);
1859 sqlite3_free(zCom);
1860 sqlite3EndBenignMalloc();
1862 #endif
1865 ** Initialize an array of N Mem element.
1867 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){
1868 while( (N--)>0 ){
1869 p->db = db;
1870 p->flags = flags;
1871 p->szMalloc = 0;
1872 #ifdef SQLITE_DEBUG
1873 p->pScopyFrom = 0;
1874 #endif
1875 p++;
1880 ** Release an array of N Mem elements
1882 static void releaseMemArray(Mem *p, int N){
1883 if( p && N ){
1884 Mem *pEnd = &p[N];
1885 sqlite3 *db = p->db;
1886 if( db->pnBytesFreed ){
1888 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1889 }while( (++p)<pEnd );
1890 return;
1893 assert( (&p[1])==pEnd || p[0].db==p[1].db );
1894 assert( sqlite3VdbeCheckMemInvariants(p) );
1896 /* This block is really an inlined version of sqlite3VdbeMemRelease()
1897 ** that takes advantage of the fact that the memory cell value is
1898 ** being set to NULL after releasing any dynamic resources.
1900 ** The justification for duplicating code is that according to
1901 ** callgrind, this causes a certain test case to hit the CPU 4.7
1902 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1903 ** sqlite3MemRelease() were called from here. With -O2, this jumps
1904 ** to 6.6 percent. The test case is inserting 1000 rows into a table
1905 ** with no indexes using a single prepared INSERT statement, bind()
1906 ** and reset(). Inserts are grouped into a transaction.
1908 testcase( p->flags & MEM_Agg );
1909 testcase( p->flags & MEM_Dyn );
1910 if( p->flags&(MEM_Agg|MEM_Dyn) ){
1911 testcase( (p->flags & MEM_Dyn)!=0 && p->xDel==sqlite3VdbeFrameMemDel );
1912 sqlite3VdbeMemRelease(p);
1913 }else if( p->szMalloc ){
1914 sqlite3DbFreeNN(db, p->zMalloc);
1915 p->szMalloc = 0;
1918 p->flags = MEM_Undefined;
1919 }while( (++p)<pEnd );
1923 #ifdef SQLITE_DEBUG
1925 ** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is
1926 ** and false if something is wrong.
1928 ** This routine is intended for use inside of assert() statements only.
1930 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){
1931 if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0;
1932 return 1;
1934 #endif
1938 ** This is a destructor on a Mem object (which is really an sqlite3_value)
1939 ** that deletes the Frame object that is attached to it as a blob.
1941 ** This routine does not delete the Frame right away. It merely adds the
1942 ** frame to a list of frames to be deleted when the Vdbe halts.
1944 void sqlite3VdbeFrameMemDel(void *pArg){
1945 VdbeFrame *pFrame = (VdbeFrame*)pArg;
1946 assert( sqlite3VdbeFrameIsValid(pFrame) );
1947 pFrame->pParent = pFrame->v->pDelFrame;
1948 pFrame->v->pDelFrame = pFrame;
1951 #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN)
1953 ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN
1954 ** QUERY PLAN output.
1956 ** Return SQLITE_ROW on success. Return SQLITE_DONE if there are no
1957 ** more opcodes to be displayed.
1959 int sqlite3VdbeNextOpcode(
1960 Vdbe *p, /* The statement being explained */
1961 Mem *pSub, /* Storage for keeping track of subprogram nesting */
1962 int eMode, /* 0: normal. 1: EQP. 2: TablesUsed */
1963 int *piPc, /* IN/OUT: Current rowid. Overwritten with next rowid */
1964 int *piAddr, /* OUT: Write index into (*paOp)[] here */
1965 Op **paOp /* OUT: Write the opcode array here */
1967 int nRow; /* Stop when row count reaches this */
1968 int nSub = 0; /* Number of sub-vdbes seen so far */
1969 SubProgram **apSub = 0; /* Array of sub-vdbes */
1970 int i; /* Next instruction address */
1971 int rc = SQLITE_OK; /* Result code */
1972 Op *aOp = 0; /* Opcode array */
1973 int iPc; /* Rowid. Copy of value in *piPc */
1975 /* When the number of output rows reaches nRow, that means the
1976 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1977 ** nRow is the sum of the number of rows in the main program, plus
1978 ** the sum of the number of rows in all trigger subprograms encountered
1979 ** so far. The nRow value will increase as new trigger subprograms are
1980 ** encountered, but p->pc will eventually catch up to nRow.
1982 nRow = p->nOp;
1983 if( pSub!=0 ){
1984 if( pSub->flags&MEM_Blob ){
1985 /* pSub is initiallly NULL. It is initialized to a BLOB by
1986 ** the P4_SUBPROGRAM processing logic below */
1987 nSub = pSub->n/sizeof(Vdbe*);
1988 apSub = (SubProgram **)pSub->z;
1990 for(i=0; i<nSub; i++){
1991 nRow += apSub[i]->nOp;
1994 iPc = *piPc;
1995 while(1){ /* Loop exits via break */
1996 i = iPc++;
1997 if( i>=nRow ){
1998 p->rc = SQLITE_OK;
1999 rc = SQLITE_DONE;
2000 break;
2002 if( i<p->nOp ){
2003 /* The rowid is small enough that we are still in the
2004 ** main program. */
2005 aOp = p->aOp;
2006 }else{
2007 /* We are currently listing subprograms. Figure out which one and
2008 ** pick up the appropriate opcode. */
2009 int j;
2010 i -= p->nOp;
2011 assert( apSub!=0 );
2012 assert( nSub>0 );
2013 for(j=0; i>=apSub[j]->nOp; j++){
2014 i -= apSub[j]->nOp;
2015 assert( i<apSub[j]->nOp || j+1<nSub );
2017 aOp = apSub[j]->aOp;
2020 /* When an OP_Program opcode is encounter (the only opcode that has
2021 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
2022 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
2023 ** has not already been seen.
2025 if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){
2026 int nByte = (nSub+1)*sizeof(SubProgram*);
2027 int j;
2028 for(j=0; j<nSub; j++){
2029 if( apSub[j]==aOp[i].p4.pProgram ) break;
2031 if( j==nSub ){
2032 p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0);
2033 if( p->rc!=SQLITE_OK ){
2034 rc = SQLITE_ERROR;
2035 break;
2037 apSub = (SubProgram **)pSub->z;
2038 apSub[nSub++] = aOp[i].p4.pProgram;
2039 MemSetTypeFlag(pSub, MEM_Blob);
2040 pSub->n = nSub*sizeof(SubProgram*);
2041 nRow += aOp[i].p4.pProgram->nOp;
2044 if( eMode==0 ) break;
2045 #ifdef SQLITE_ENABLE_BYTECODE_VTAB
2046 if( eMode==2 ){
2047 Op *pOp = aOp + i;
2048 if( pOp->opcode==OP_OpenRead ) break;
2049 if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break;
2050 if( pOp->opcode==OP_ReopenIdx ) break;
2051 }else
2052 #endif
2054 assert( eMode==1 );
2055 if( aOp[i].opcode==OP_Explain ) break;
2056 if( aOp[i].opcode==OP_Init && iPc>1 ) break;
2059 *piPc = iPc;
2060 *piAddr = i;
2061 *paOp = aOp;
2062 return rc;
2064 #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */
2068 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
2069 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
2071 void sqlite3VdbeFrameDelete(VdbeFrame *p){
2072 int i;
2073 Mem *aMem = VdbeFrameMem(p);
2074 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
2075 assert( sqlite3VdbeFrameIsValid(p) );
2076 for(i=0; i<p->nChildCsr; i++){
2077 sqlite3VdbeFreeCursor(p->v, apCsr[i]);
2079 releaseMemArray(aMem, p->nChildMem);
2080 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
2081 sqlite3DbFree(p->v->db, p);
2084 #ifndef SQLITE_OMIT_EXPLAIN
2086 ** Give a listing of the program in the virtual machine.
2088 ** The interface is the same as sqlite3VdbeExec(). But instead of
2089 ** running the code, it invokes the callback once for each instruction.
2090 ** This feature is used to implement "EXPLAIN".
2092 ** When p->explain==1, each instruction is listed. When
2093 ** p->explain==2, only OP_Explain instructions are listed and these
2094 ** are shown in a different format. p->explain==2 is used to implement
2095 ** EXPLAIN QUERY PLAN.
2096 ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers
2097 ** are also shown, so that the boundaries between the main program and
2098 ** each trigger are clear.
2100 ** When p->explain==1, first the main program is listed, then each of
2101 ** the trigger subprograms are listed one by one.
2103 int sqlite3VdbeList(
2104 Vdbe *p /* The VDBE */
2106 Mem *pSub = 0; /* Memory cell hold array of subprogs */
2107 sqlite3 *db = p->db; /* The database connection */
2108 int i; /* Loop counter */
2109 int rc = SQLITE_OK; /* Return code */
2110 Mem *pMem = &p->aMem[1]; /* First Mem of result set */
2111 int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0);
2112 Op *aOp; /* Array of opcodes */
2113 Op *pOp; /* Current opcode */
2115 assert( p->explain );
2116 assert( p->iVdbeMagic==VDBE_MAGIC_RUN );
2117 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
2119 /* Even though this opcode does not use dynamic strings for
2120 ** the result, result columns may become dynamic if the user calls
2121 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
2123 releaseMemArray(pMem, 8);
2124 p->pResultSet = 0;
2126 if( p->rc==SQLITE_NOMEM ){
2127 /* This happens if a malloc() inside a call to sqlite3_column_text() or
2128 ** sqlite3_column_text16() failed. */
2129 sqlite3OomFault(db);
2130 return SQLITE_ERROR;
2133 if( bListSubprogs ){
2134 /* The first 8 memory cells are used for the result set. So we will
2135 ** commandeer the 9th cell to use as storage for an array of pointers
2136 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
2137 ** cells. */
2138 assert( p->nMem>9 );
2139 pSub = &p->aMem[9];
2140 }else{
2141 pSub = 0;
2144 /* Figure out which opcode is next to display */
2145 rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp);
2147 if( rc==SQLITE_OK ){
2148 pOp = aOp + i;
2149 if( AtomicLoad(&db->u1.isInterrupted) ){
2150 p->rc = SQLITE_INTERRUPT;
2151 rc = SQLITE_ERROR;
2152 sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
2153 }else{
2154 char *zP4 = sqlite3VdbeDisplayP4(db, pOp);
2155 if( p->explain==2 ){
2156 sqlite3VdbeMemSetInt64(pMem, pOp->p1);
2157 sqlite3VdbeMemSetInt64(pMem+1, pOp->p2);
2158 sqlite3VdbeMemSetInt64(pMem+2, pOp->p3);
2159 sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free);
2160 p->nResColumn = 4;
2161 }else{
2162 sqlite3VdbeMemSetInt64(pMem+0, i);
2163 sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode),
2164 -1, SQLITE_UTF8, SQLITE_STATIC);
2165 sqlite3VdbeMemSetInt64(pMem+2, pOp->p1);
2166 sqlite3VdbeMemSetInt64(pMem+3, pOp->p2);
2167 sqlite3VdbeMemSetInt64(pMem+4, pOp->p3);
2168 /* pMem+5 for p4 is done last */
2169 sqlite3VdbeMemSetInt64(pMem+6, pOp->p5);
2170 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2172 char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4);
2173 sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free);
2175 #else
2176 sqlite3VdbeMemSetNull(pMem+7);
2177 #endif
2178 sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free);
2179 p->nResColumn = 8;
2181 p->pResultSet = pMem;
2182 if( db->mallocFailed ){
2183 p->rc = SQLITE_NOMEM;
2184 rc = SQLITE_ERROR;
2185 }else{
2186 p->rc = SQLITE_OK;
2187 rc = SQLITE_ROW;
2191 return rc;
2193 #endif /* SQLITE_OMIT_EXPLAIN */
2195 #ifdef SQLITE_DEBUG
2197 ** Print the SQL that was used to generate a VDBE program.
2199 void sqlite3VdbePrintSql(Vdbe *p){
2200 const char *z = 0;
2201 if( p->zSql ){
2202 z = p->zSql;
2203 }else if( p->nOp>=1 ){
2204 const VdbeOp *pOp = &p->aOp[0];
2205 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2206 z = pOp->p4.z;
2207 while( sqlite3Isspace(*z) ) z++;
2210 if( z ) printf("SQL: [%s]\n", z);
2212 #endif
2214 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
2216 ** Print an IOTRACE message showing SQL content.
2218 void sqlite3VdbeIOTraceSql(Vdbe *p){
2219 int nOp = p->nOp;
2220 VdbeOp *pOp;
2221 if( sqlite3IoTrace==0 ) return;
2222 if( nOp<1 ) return;
2223 pOp = &p->aOp[0];
2224 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2225 int i, j;
2226 char z[1000];
2227 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
2228 for(i=0; sqlite3Isspace(z[i]); i++){}
2229 for(j=0; z[i]; i++){
2230 if( sqlite3Isspace(z[i]) ){
2231 if( z[i-1]!=' ' ){
2232 z[j++] = ' ';
2234 }else{
2235 z[j++] = z[i];
2238 z[j] = 0;
2239 sqlite3IoTrace("SQL %s\n", z);
2242 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
2244 /* An instance of this object describes bulk memory available for use
2245 ** by subcomponents of a prepared statement. Space is allocated out
2246 ** of a ReusableSpace object by the allocSpace() routine below.
2248 struct ReusableSpace {
2249 u8 *pSpace; /* Available memory */
2250 sqlite3_int64 nFree; /* Bytes of available memory */
2251 sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */
2254 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
2255 ** from the ReusableSpace object. Return a pointer to the allocated
2256 ** memory on success. If insufficient memory is available in the
2257 ** ReusableSpace object, increase the ReusableSpace.nNeeded
2258 ** value by the amount needed and return NULL.
2260 ** If pBuf is not initially NULL, that means that the memory has already
2261 ** been allocated by a prior call to this routine, so just return a copy
2262 ** of pBuf and leave ReusableSpace unchanged.
2264 ** This allocator is employed to repurpose unused slots at the end of the
2265 ** opcode array of prepared state for other memory needs of the prepared
2266 ** statement.
2268 static void *allocSpace(
2269 struct ReusableSpace *p, /* Bulk memory available for allocation */
2270 void *pBuf, /* Pointer to a prior allocation */
2271 sqlite3_int64 nByte /* Bytes of memory needed */
2273 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
2274 if( pBuf==0 ){
2275 nByte = ROUND8(nByte);
2276 if( nByte <= p->nFree ){
2277 p->nFree -= nByte;
2278 pBuf = &p->pSpace[p->nFree];
2279 }else{
2280 p->nNeeded += nByte;
2283 assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
2284 return pBuf;
2288 ** Rewind the VDBE back to the beginning in preparation for
2289 ** running it.
2291 void sqlite3VdbeRewind(Vdbe *p){
2292 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
2293 int i;
2294 #endif
2295 assert( p!=0 );
2296 assert( p->iVdbeMagic==VDBE_MAGIC_INIT || p->iVdbeMagic==VDBE_MAGIC_RESET );
2298 /* There should be at least one opcode.
2300 assert( p->nOp>0 );
2302 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
2303 p->iVdbeMagic = VDBE_MAGIC_RUN;
2305 #ifdef SQLITE_DEBUG
2306 for(i=0; i<p->nMem; i++){
2307 assert( p->aMem[i].db==p->db );
2309 #endif
2310 p->pc = -1;
2311 p->rc = SQLITE_OK;
2312 p->errorAction = OE_Abort;
2313 p->nChange = 0;
2314 p->cacheCtr = 1;
2315 p->minWriteFileFormat = 255;
2316 p->iStatement = 0;
2317 p->nFkConstraint = 0;
2318 #ifdef VDBE_PROFILE
2319 for(i=0; i<p->nOp; i++){
2320 p->aOp[i].cnt = 0;
2321 p->aOp[i].cycles = 0;
2323 #endif
2327 ** Prepare a virtual machine for execution for the first time after
2328 ** creating the virtual machine. This involves things such
2329 ** as allocating registers and initializing the program counter.
2330 ** After the VDBE has be prepped, it can be executed by one or more
2331 ** calls to sqlite3VdbeExec().
2333 ** This function may be called exactly once on each virtual machine.
2334 ** After this routine is called the VM has been "packaged" and is ready
2335 ** to run. After this routine is called, further calls to
2336 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
2337 ** the Vdbe from the Parse object that helped generate it so that the
2338 ** the Vdbe becomes an independent entity and the Parse object can be
2339 ** destroyed.
2341 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
2342 ** to its initial state after it has been run.
2344 void sqlite3VdbeMakeReady(
2345 Vdbe *p, /* The VDBE */
2346 Parse *pParse /* Parsing context */
2348 sqlite3 *db; /* The database connection */
2349 int nVar; /* Number of parameters */
2350 int nMem; /* Number of VM memory registers */
2351 int nCursor; /* Number of cursors required */
2352 int nArg; /* Number of arguments in subprograms */
2353 int n; /* Loop counter */
2354 struct ReusableSpace x; /* Reusable bulk memory */
2356 assert( p!=0 );
2357 assert( p->nOp>0 );
2358 assert( pParse!=0 );
2359 assert( p->iVdbeMagic==VDBE_MAGIC_INIT );
2360 assert( pParse==p->pParse );
2361 p->pVList = pParse->pVList;
2362 pParse->pVList = 0;
2363 db = p->db;
2364 assert( db->mallocFailed==0 );
2365 nVar = pParse->nVar;
2366 nMem = pParse->nMem;
2367 nCursor = pParse->nTab;
2368 nArg = pParse->nMaxArg;
2370 /* Each cursor uses a memory cell. The first cursor (cursor 0) can
2371 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate
2372 ** space at the end of aMem[] for cursors 1 and greater.
2373 ** See also: allocateCursor().
2375 nMem += nCursor;
2376 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */
2378 /* Figure out how much reusable memory is available at the end of the
2379 ** opcode array. This extra memory will be reallocated for other elements
2380 ** of the prepared statement.
2382 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */
2383 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */
2384 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
2385 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */
2386 assert( x.nFree>=0 );
2387 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
2389 resolveP2Values(p, &nArg);
2390 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
2391 if( pParse->explain ){
2392 static const char * const azColName[] = {
2393 "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment",
2394 "id", "parent", "notused", "detail"
2396 int iFirst, mx, i;
2397 if( nMem<10 ) nMem = 10;
2398 p->explain = pParse->explain;
2399 if( pParse->explain==2 ){
2400 sqlite3VdbeSetNumCols(p, 4);
2401 iFirst = 8;
2402 mx = 12;
2403 }else{
2404 sqlite3VdbeSetNumCols(p, 8);
2405 iFirst = 0;
2406 mx = 8;
2408 for(i=iFirst; i<mx; i++){
2409 sqlite3VdbeSetColName(p, i-iFirst, COLNAME_NAME,
2410 azColName[i], SQLITE_STATIC);
2413 p->expired = 0;
2415 /* Memory for registers, parameters, cursor, etc, is allocated in one or two
2416 ** passes. On the first pass, we try to reuse unused memory at the
2417 ** end of the opcode array. If we are unable to satisfy all memory
2418 ** requirements by reusing the opcode array tail, then the second
2419 ** pass will fill in the remainder using a fresh memory allocation.
2421 ** This two-pass approach that reuses as much memory as possible from
2422 ** the leftover memory at the end of the opcode array. This can significantly
2423 ** reduce the amount of memory held by a prepared statement.
2425 x.nNeeded = 0;
2426 p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem));
2427 p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem));
2428 p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*));
2429 p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*));
2430 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2431 p->anExec = allocSpace(&x, 0, p->nOp*sizeof(i64));
2432 #endif
2433 if( x.nNeeded ){
2434 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded);
2435 x.nFree = x.nNeeded;
2436 if( !db->mallocFailed ){
2437 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
2438 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
2439 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
2440 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
2441 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2442 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64));
2443 #endif
2447 if( db->mallocFailed ){
2448 p->nVar = 0;
2449 p->nCursor = 0;
2450 p->nMem = 0;
2451 }else{
2452 p->nCursor = nCursor;
2453 p->nVar = (ynVar)nVar;
2454 initMemArray(p->aVar, nVar, db, MEM_Null);
2455 p->nMem = nMem;
2456 initMemArray(p->aMem, nMem, db, MEM_Undefined);
2457 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*));
2458 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2459 memset(p->anExec, 0, p->nOp*sizeof(i64));
2460 #endif
2462 sqlite3VdbeRewind(p);
2466 ** Close a VDBE cursor and release all the resources that cursor
2467 ** happens to hold.
2469 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
2470 if( pCx==0 ){
2471 return;
2473 assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE );
2474 assert( pCx->pBtx==0 || pCx->isEphemeral );
2475 switch( pCx->eCurType ){
2476 case CURTYPE_SORTER: {
2477 sqlite3VdbeSorterClose(p->db, pCx);
2478 break;
2480 case CURTYPE_BTREE: {
2481 assert( pCx->uc.pCursor!=0 );
2482 sqlite3BtreeCloseCursor(pCx->uc.pCursor);
2483 break;
2485 #ifndef SQLITE_OMIT_VIRTUALTABLE
2486 case CURTYPE_VTAB: {
2487 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
2488 const sqlite3_module *pModule = pVCur->pVtab->pModule;
2489 assert( pVCur->pVtab->nRef>0 );
2490 pVCur->pVtab->nRef--;
2491 pModule->xClose(pVCur);
2492 break;
2494 #endif
2499 ** Close all cursors in the current frame.
2501 static void closeCursorsInFrame(Vdbe *p){
2502 if( p->apCsr ){
2503 int i;
2504 for(i=0; i<p->nCursor; i++){
2505 VdbeCursor *pC = p->apCsr[i];
2506 if( pC ){
2507 sqlite3VdbeFreeCursor(p, pC);
2508 p->apCsr[i] = 0;
2515 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2516 ** is used, for example, when a trigger sub-program is halted to restore
2517 ** control to the main program.
2519 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
2520 Vdbe *v = pFrame->v;
2521 closeCursorsInFrame(v);
2522 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2523 v->anExec = pFrame->anExec;
2524 #endif
2525 v->aOp = pFrame->aOp;
2526 v->nOp = pFrame->nOp;
2527 v->aMem = pFrame->aMem;
2528 v->nMem = pFrame->nMem;
2529 v->apCsr = pFrame->apCsr;
2530 v->nCursor = pFrame->nCursor;
2531 v->db->lastRowid = pFrame->lastRowid;
2532 v->nChange = pFrame->nChange;
2533 v->db->nChange = pFrame->nDbChange;
2534 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
2535 v->pAuxData = pFrame->pAuxData;
2536 pFrame->pAuxData = 0;
2537 return pFrame->pc;
2541 ** Close all cursors.
2543 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2544 ** cell array. This is necessary as the memory cell array may contain
2545 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2546 ** open cursors.
2548 static void closeAllCursors(Vdbe *p){
2549 if( p->pFrame ){
2550 VdbeFrame *pFrame;
2551 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2552 sqlite3VdbeFrameRestore(pFrame);
2553 p->pFrame = 0;
2554 p->nFrame = 0;
2556 assert( p->nFrame==0 );
2557 closeCursorsInFrame(p);
2558 if( p->aMem ){
2559 releaseMemArray(p->aMem, p->nMem);
2561 while( p->pDelFrame ){
2562 VdbeFrame *pDel = p->pDelFrame;
2563 p->pDelFrame = pDel->pParent;
2564 sqlite3VdbeFrameDelete(pDel);
2567 /* Delete any auxdata allocations made by the VM */
2568 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
2569 assert( p->pAuxData==0 );
2573 ** Set the number of result columns that will be returned by this SQL
2574 ** statement. This is now set at compile time, rather than during
2575 ** execution of the vdbe program so that sqlite3_column_count() can
2576 ** be called on an SQL statement before sqlite3_step().
2578 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
2579 int n;
2580 sqlite3 *db = p->db;
2582 if( p->nResColumn ){
2583 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2584 sqlite3DbFree(db, p->aColName);
2586 n = nResColumn*COLNAME_N;
2587 p->nResColumn = (u16)nResColumn;
2588 p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
2589 if( p->aColName==0 ) return;
2590 initMemArray(p->aColName, n, db, MEM_Null);
2594 ** Set the name of the idx'th column to be returned by the SQL statement.
2595 ** zName must be a pointer to a nul terminated string.
2597 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2599 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2600 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2601 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2603 int sqlite3VdbeSetColName(
2604 Vdbe *p, /* Vdbe being configured */
2605 int idx, /* Index of column zName applies to */
2606 int var, /* One of the COLNAME_* constants */
2607 const char *zName, /* Pointer to buffer containing name */
2608 void (*xDel)(void*) /* Memory management strategy for zName */
2610 int rc;
2611 Mem *pColName;
2612 assert( idx<p->nResColumn );
2613 assert( var<COLNAME_N );
2614 if( p->db->mallocFailed ){
2615 assert( !zName || xDel!=SQLITE_DYNAMIC );
2616 return SQLITE_NOMEM_BKPT;
2618 assert( p->aColName!=0 );
2619 pColName = &(p->aColName[idx+var*p->nResColumn]);
2620 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
2621 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
2622 return rc;
2626 ** A read or write transaction may or may not be active on database handle
2627 ** db. If a transaction is active, commit it. If there is a
2628 ** write-transaction spanning more than one database file, this routine
2629 ** takes care of the super-journal trickery.
2631 static int vdbeCommit(sqlite3 *db, Vdbe *p){
2632 int i;
2633 int nTrans = 0; /* Number of databases with an active write-transaction
2634 ** that are candidates for a two-phase commit using a
2635 ** super-journal */
2636 int rc = SQLITE_OK;
2637 int needXcommit = 0;
2639 #ifdef SQLITE_OMIT_VIRTUALTABLE
2640 /* With this option, sqlite3VtabSync() is defined to be simply
2641 ** SQLITE_OK so p is not used.
2643 UNUSED_PARAMETER(p);
2644 #endif
2646 /* Before doing anything else, call the xSync() callback for any
2647 ** virtual module tables written in this transaction. This has to
2648 ** be done before determining whether a super-journal file is
2649 ** required, as an xSync() callback may add an attached database
2650 ** to the transaction.
2652 rc = sqlite3VtabSync(db, p);
2654 /* This loop determines (a) if the commit hook should be invoked and
2655 ** (b) how many database files have open write transactions, not
2656 ** including the temp database. (b) is important because if more than
2657 ** one database file has an open write transaction, a super-journal
2658 ** file is required for an atomic commit.
2660 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2661 Btree *pBt = db->aDb[i].pBt;
2662 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
2663 /* Whether or not a database might need a super-journal depends upon
2664 ** its journal mode (among other things). This matrix determines which
2665 ** journal modes use a super-journal and which do not */
2666 static const u8 aMJNeeded[] = {
2667 /* DELETE */ 1,
2668 /* PERSIST */ 1,
2669 /* OFF */ 0,
2670 /* TRUNCATE */ 1,
2671 /* MEMORY */ 0,
2672 /* WAL */ 0
2674 Pager *pPager; /* Pager associated with pBt */
2675 needXcommit = 1;
2676 sqlite3BtreeEnter(pBt);
2677 pPager = sqlite3BtreePager(pBt);
2678 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
2679 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
2680 && sqlite3PagerIsMemdb(pPager)==0
2682 assert( i!=1 );
2683 nTrans++;
2685 rc = sqlite3PagerExclusiveLock(pPager);
2686 sqlite3BtreeLeave(pBt);
2689 if( rc!=SQLITE_OK ){
2690 return rc;
2693 /* If there are any write-transactions at all, invoke the commit hook */
2694 if( needXcommit && db->xCommitCallback ){
2695 rc = db->xCommitCallback(db->pCommitArg);
2696 if( rc ){
2697 return SQLITE_CONSTRAINT_COMMITHOOK;
2701 /* The simple case - no more than one database file (not counting the
2702 ** TEMP database) has a transaction active. There is no need for the
2703 ** super-journal.
2705 ** If the return value of sqlite3BtreeGetFilename() is a zero length
2706 ** string, it means the main database is :memory: or a temp file. In
2707 ** that case we do not support atomic multi-file commits, so use the
2708 ** simple case then too.
2710 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2711 || nTrans<=1
2713 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2714 Btree *pBt = db->aDb[i].pBt;
2715 if( pBt ){
2716 rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
2720 /* Do the commit only if all databases successfully complete phase 1.
2721 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2722 ** IO error while deleting or truncating a journal file. It is unlikely,
2723 ** but could happen. In this case abandon processing and return the error.
2725 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2726 Btree *pBt = db->aDb[i].pBt;
2727 if( pBt ){
2728 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
2731 if( rc==SQLITE_OK ){
2732 sqlite3VtabCommit(db);
2736 /* The complex case - There is a multi-file write-transaction active.
2737 ** This requires a super-journal file to ensure the transaction is
2738 ** committed atomically.
2740 #ifndef SQLITE_OMIT_DISKIO
2741 else{
2742 sqlite3_vfs *pVfs = db->pVfs;
2743 char *zSuper = 0; /* File-name for the super-journal */
2744 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
2745 sqlite3_file *pSuperJrnl = 0;
2746 i64 offset = 0;
2747 int res;
2748 int retryCount = 0;
2749 int nMainFile;
2751 /* Select a super-journal file name */
2752 nMainFile = sqlite3Strlen30(zMainFile);
2753 zSuper = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0);
2754 if( zSuper==0 ) return SQLITE_NOMEM_BKPT;
2755 zSuper += 4;
2756 do {
2757 u32 iRandom;
2758 if( retryCount ){
2759 if( retryCount>100 ){
2760 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zSuper);
2761 sqlite3OsDelete(pVfs, zSuper, 0);
2762 break;
2763 }else if( retryCount==1 ){
2764 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zSuper);
2767 retryCount++;
2768 sqlite3_randomness(sizeof(iRandom), &iRandom);
2769 sqlite3_snprintf(13, &zSuper[nMainFile], "-mj%06X9%02X",
2770 (iRandom>>8)&0xffffff, iRandom&0xff);
2771 /* The antipenultimate character of the super-journal name must
2772 ** be "9" to avoid name collisions when using 8+3 filenames. */
2773 assert( zSuper[sqlite3Strlen30(zSuper)-3]=='9' );
2774 sqlite3FileSuffix3(zMainFile, zSuper);
2775 rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res);
2776 }while( rc==SQLITE_OK && res );
2777 if( rc==SQLITE_OK ){
2778 /* Open the super-journal. */
2779 rc = sqlite3OsOpenMalloc(pVfs, zSuper, &pSuperJrnl,
2780 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2781 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_SUPER_JOURNAL, 0
2784 if( rc!=SQLITE_OK ){
2785 sqlite3DbFree(db, zSuper-4);
2786 return rc;
2789 /* Write the name of each database file in the transaction into the new
2790 ** super-journal file. If an error occurs at this point close
2791 ** and delete the super-journal file. All the individual journal files
2792 ** still have 'null' as the super-journal pointer, so they will roll
2793 ** back independently if a failure occurs.
2795 for(i=0; i<db->nDb; i++){
2796 Btree *pBt = db->aDb[i].pBt;
2797 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
2798 char const *zFile = sqlite3BtreeGetJournalname(pBt);
2799 if( zFile==0 ){
2800 continue; /* Ignore TEMP and :memory: databases */
2802 assert( zFile[0]!=0 );
2803 rc = sqlite3OsWrite(pSuperJrnl, zFile, sqlite3Strlen30(zFile)+1,offset);
2804 offset += sqlite3Strlen30(zFile)+1;
2805 if( rc!=SQLITE_OK ){
2806 sqlite3OsCloseFree(pSuperJrnl);
2807 sqlite3OsDelete(pVfs, zSuper, 0);
2808 sqlite3DbFree(db, zSuper-4);
2809 return rc;
2814 /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device
2815 ** flag is set this is not required.
2817 if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl)&SQLITE_IOCAP_SEQUENTIAL)
2818 && SQLITE_OK!=(rc = sqlite3OsSync(pSuperJrnl, SQLITE_SYNC_NORMAL))
2820 sqlite3OsCloseFree(pSuperJrnl);
2821 sqlite3OsDelete(pVfs, zSuper, 0);
2822 sqlite3DbFree(db, zSuper-4);
2823 return rc;
2826 /* Sync all the db files involved in the transaction. The same call
2827 ** sets the super-journal pointer in each individual journal. If
2828 ** an error occurs here, do not delete the super-journal file.
2830 ** If the error occurs during the first call to
2831 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2832 ** super-journal file will be orphaned. But we cannot delete it,
2833 ** in case the super-journal file name was written into the journal
2834 ** file before the failure occurred.
2836 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2837 Btree *pBt = db->aDb[i].pBt;
2838 if( pBt ){
2839 rc = sqlite3BtreeCommitPhaseOne(pBt, zSuper);
2842 sqlite3OsCloseFree(pSuperJrnl);
2843 assert( rc!=SQLITE_BUSY );
2844 if( rc!=SQLITE_OK ){
2845 sqlite3DbFree(db, zSuper-4);
2846 return rc;
2849 /* Delete the super-journal file. This commits the transaction. After
2850 ** doing this the directory is synced again before any individual
2851 ** transaction files are deleted.
2853 rc = sqlite3OsDelete(pVfs, zSuper, 1);
2854 sqlite3DbFree(db, zSuper-4);
2855 zSuper = 0;
2856 if( rc ){
2857 return rc;
2860 /* All files and directories have already been synced, so the following
2861 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2862 ** deleting or truncating journals. If something goes wrong while
2863 ** this is happening we don't really care. The integrity of the
2864 ** transaction is already guaranteed, but some stray 'cold' journals
2865 ** may be lying around. Returning an error code won't help matters.
2867 disable_simulated_io_errors();
2868 sqlite3BeginBenignMalloc();
2869 for(i=0; i<db->nDb; i++){
2870 Btree *pBt = db->aDb[i].pBt;
2871 if( pBt ){
2872 sqlite3BtreeCommitPhaseTwo(pBt, 1);
2875 sqlite3EndBenignMalloc();
2876 enable_simulated_io_errors();
2878 sqlite3VtabCommit(db);
2880 #endif
2882 return rc;
2886 ** This routine checks that the sqlite3.nVdbeActive count variable
2887 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
2888 ** currently active. An assertion fails if the two counts do not match.
2889 ** This is an internal self-check only - it is not an essential processing
2890 ** step.
2892 ** This is a no-op if NDEBUG is defined.
2894 #ifndef NDEBUG
2895 static void checkActiveVdbeCnt(sqlite3 *db){
2896 Vdbe *p;
2897 int cnt = 0;
2898 int nWrite = 0;
2899 int nRead = 0;
2900 p = db->pVdbe;
2901 while( p ){
2902 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
2903 cnt++;
2904 if( p->readOnly==0 ) nWrite++;
2905 if( p->bIsReader ) nRead++;
2907 p = p->pNext;
2909 assert( cnt==db->nVdbeActive );
2910 assert( nWrite==db->nVdbeWrite );
2911 assert( nRead==db->nVdbeRead );
2913 #else
2914 #define checkActiveVdbeCnt(x)
2915 #endif
2918 ** If the Vdbe passed as the first argument opened a statement-transaction,
2919 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2920 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2921 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
2922 ** statement transaction is committed.
2924 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2925 ** Otherwise SQLITE_OK.
2927 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){
2928 sqlite3 *const db = p->db;
2929 int rc = SQLITE_OK;
2930 int i;
2931 const int iSavepoint = p->iStatement-1;
2933 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2934 assert( db->nStatement>0 );
2935 assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2937 for(i=0; i<db->nDb; i++){
2938 int rc2 = SQLITE_OK;
2939 Btree *pBt = db->aDb[i].pBt;
2940 if( pBt ){
2941 if( eOp==SAVEPOINT_ROLLBACK ){
2942 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2944 if( rc2==SQLITE_OK ){
2945 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2947 if( rc==SQLITE_OK ){
2948 rc = rc2;
2952 db->nStatement--;
2953 p->iStatement = 0;
2955 if( rc==SQLITE_OK ){
2956 if( eOp==SAVEPOINT_ROLLBACK ){
2957 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2959 if( rc==SQLITE_OK ){
2960 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2964 /* If the statement transaction is being rolled back, also restore the
2965 ** database handles deferred constraint counter to the value it had when
2966 ** the statement transaction was opened. */
2967 if( eOp==SAVEPOINT_ROLLBACK ){
2968 db->nDeferredCons = p->nStmtDefCons;
2969 db->nDeferredImmCons = p->nStmtDefImmCons;
2971 return rc;
2973 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
2974 if( p->db->nStatement && p->iStatement ){
2975 return vdbeCloseStatement(p, eOp);
2977 return SQLITE_OK;
2982 ** This function is called when a transaction opened by the database
2983 ** handle associated with the VM passed as an argument is about to be
2984 ** committed. If there are outstanding deferred foreign key constraint
2985 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2987 ** If there are outstanding FK violations and this function returns
2988 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2989 ** and write an error message to it. Then return SQLITE_ERROR.
2991 #ifndef SQLITE_OMIT_FOREIGN_KEY
2992 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
2993 sqlite3 *db = p->db;
2994 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
2995 || (!deferred && p->nFkConstraint>0)
2997 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2998 p->errorAction = OE_Abort;
2999 sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
3000 return SQLITE_ERROR;
3002 return SQLITE_OK;
3004 #endif
3007 ** This routine is called the when a VDBE tries to halt. If the VDBE
3008 ** has made changes and is in autocommit mode, then commit those
3009 ** changes. If a rollback is needed, then do the rollback.
3011 ** This routine is the only way to move the sqlite3eOpenState of a VM from
3012 ** SQLITE_STATE_RUN to SQLITE_STATE_HALT. It is harmless to
3013 ** call this on a VM that is in the SQLITE_STATE_HALT state.
3015 ** Return an error code. If the commit could not complete because of
3016 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
3017 ** means the close did not happen and needs to be repeated.
3019 int sqlite3VdbeHalt(Vdbe *p){
3020 int rc; /* Used to store transient return codes */
3021 sqlite3 *db = p->db;
3023 /* This function contains the logic that determines if a statement or
3024 ** transaction will be committed or rolled back as a result of the
3025 ** execution of this virtual machine.
3027 ** If any of the following errors occur:
3029 ** SQLITE_NOMEM
3030 ** SQLITE_IOERR
3031 ** SQLITE_FULL
3032 ** SQLITE_INTERRUPT
3034 ** Then the internal cache might have been left in an inconsistent
3035 ** state. We need to rollback the statement transaction, if there is
3036 ** one, or the complete transaction if there is no statement transaction.
3039 if( p->iVdbeMagic!=VDBE_MAGIC_RUN ){
3040 return SQLITE_OK;
3042 if( db->mallocFailed ){
3043 p->rc = SQLITE_NOMEM_BKPT;
3045 closeAllCursors(p);
3046 checkActiveVdbeCnt(db);
3048 /* No commit or rollback needed if the program never started or if the
3049 ** SQL statement does not read or write a database file. */
3050 if( p->pc>=0 && p->bIsReader ){
3051 int mrc; /* Primary error code from p->rc */
3052 int eStatementOp = 0;
3053 int isSpecialError; /* Set to true if a 'special' error */
3055 /* Lock all btrees used by the statement */
3056 sqlite3VdbeEnter(p);
3058 /* Check for one of the special errors */
3059 if( p->rc ){
3060 mrc = p->rc & 0xff;
3061 isSpecialError = mrc==SQLITE_NOMEM
3062 || mrc==SQLITE_IOERR
3063 || mrc==SQLITE_INTERRUPT
3064 || mrc==SQLITE_FULL;
3065 }else{
3066 mrc = isSpecialError = 0;
3068 if( isSpecialError ){
3069 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
3070 ** no rollback is necessary. Otherwise, at least a savepoint
3071 ** transaction must be rolled back to restore the database to a
3072 ** consistent state.
3074 ** Even if the statement is read-only, it is important to perform
3075 ** a statement or transaction rollback operation. If the error
3076 ** occurred while writing to the journal, sub-journal or database
3077 ** file as part of an effort to free up cache space (see function
3078 ** pagerStress() in pager.c), the rollback is required to restore
3079 ** the pager to a consistent state.
3081 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
3082 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
3083 eStatementOp = SAVEPOINT_ROLLBACK;
3084 }else{
3085 /* We are forced to roll back the active transaction. Before doing
3086 ** so, abort any other statements this handle currently has active.
3088 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3089 sqlite3CloseSavepoints(db);
3090 db->autoCommit = 1;
3091 p->nChange = 0;
3096 /* Check for immediate foreign key violations. */
3097 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3098 sqlite3VdbeCheckFk(p, 0);
3101 /* If the auto-commit flag is set and this is the only active writer
3102 ** VM, then we do either a commit or rollback of the current transaction.
3104 ** Note: This block also runs if one of the special errors handled
3105 ** above has occurred.
3107 if( !sqlite3VtabInSync(db)
3108 && db->autoCommit
3109 && db->nVdbeWrite==(p->readOnly==0)
3111 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3112 rc = sqlite3VdbeCheckFk(p, 1);
3113 if( rc!=SQLITE_OK ){
3114 if( NEVER(p->readOnly) ){
3115 sqlite3VdbeLeave(p);
3116 return SQLITE_ERROR;
3118 rc = SQLITE_CONSTRAINT_FOREIGNKEY;
3119 }else if( db->flags & SQLITE_CorruptRdOnly ){
3120 rc = SQLITE_CORRUPT;
3121 db->flags &= ~SQLITE_CorruptRdOnly;
3122 }else{
3123 /* The auto-commit flag is true, the vdbe program was successful
3124 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
3125 ** key constraints to hold up the transaction. This means a commit
3126 ** is required. */
3127 rc = vdbeCommit(db, p);
3129 if( rc==SQLITE_BUSY && p->readOnly ){
3130 sqlite3VdbeLeave(p);
3131 return SQLITE_BUSY;
3132 }else if( rc!=SQLITE_OK ){
3133 p->rc = rc;
3134 sqlite3RollbackAll(db, SQLITE_OK);
3135 p->nChange = 0;
3136 }else{
3137 db->nDeferredCons = 0;
3138 db->nDeferredImmCons = 0;
3139 db->flags &= ~(u64)SQLITE_DeferFKs;
3140 sqlite3CommitInternalChanges(db);
3142 }else{
3143 sqlite3RollbackAll(db, SQLITE_OK);
3144 p->nChange = 0;
3146 db->nStatement = 0;
3147 }else if( eStatementOp==0 ){
3148 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
3149 eStatementOp = SAVEPOINT_RELEASE;
3150 }else if( p->errorAction==OE_Abort ){
3151 eStatementOp = SAVEPOINT_ROLLBACK;
3152 }else{
3153 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3154 sqlite3CloseSavepoints(db);
3155 db->autoCommit = 1;
3156 p->nChange = 0;
3160 /* If eStatementOp is non-zero, then a statement transaction needs to
3161 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
3162 ** do so. If this operation returns an error, and the current statement
3163 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
3164 ** current statement error code.
3166 if( eStatementOp ){
3167 rc = sqlite3VdbeCloseStatement(p, eStatementOp);
3168 if( rc ){
3169 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
3170 p->rc = rc;
3171 sqlite3DbFree(db, p->zErrMsg);
3172 p->zErrMsg = 0;
3174 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3175 sqlite3CloseSavepoints(db);
3176 db->autoCommit = 1;
3177 p->nChange = 0;
3181 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
3182 ** has been rolled back, update the database connection change-counter.
3184 if( p->changeCntOn ){
3185 if( eStatementOp!=SAVEPOINT_ROLLBACK ){
3186 sqlite3VdbeSetChanges(db, p->nChange);
3187 }else{
3188 sqlite3VdbeSetChanges(db, 0);
3190 p->nChange = 0;
3193 /* Release the locks */
3194 sqlite3VdbeLeave(p);
3197 /* We have successfully halted and closed the VM. Record this fact. */
3198 if( p->pc>=0 ){
3199 db->nVdbeActive--;
3200 if( !p->readOnly ) db->nVdbeWrite--;
3201 if( p->bIsReader ) db->nVdbeRead--;
3202 assert( db->nVdbeActive>=db->nVdbeRead );
3203 assert( db->nVdbeRead>=db->nVdbeWrite );
3204 assert( db->nVdbeWrite>=0 );
3206 p->iVdbeMagic = VDBE_MAGIC_HALT;
3207 checkActiveVdbeCnt(db);
3208 if( db->mallocFailed ){
3209 p->rc = SQLITE_NOMEM_BKPT;
3212 /* If the auto-commit flag is set to true, then any locks that were held
3213 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
3214 ** to invoke any required unlock-notify callbacks.
3216 if( db->autoCommit ){
3217 sqlite3ConnectionUnlocked(db);
3220 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
3221 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
3226 ** Each VDBE holds the result of the most recent sqlite3_step() call
3227 ** in p->rc. This routine sets that result back to SQLITE_OK.
3229 void sqlite3VdbeResetStepResult(Vdbe *p){
3230 p->rc = SQLITE_OK;
3234 ** Copy the error code and error message belonging to the VDBE passed
3235 ** as the first argument to its database handle (so that they will be
3236 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
3238 ** This function does not clear the VDBE error code or message, just
3239 ** copies them to the database handle.
3241 int sqlite3VdbeTransferError(Vdbe *p){
3242 sqlite3 *db = p->db;
3243 int rc = p->rc;
3244 if( p->zErrMsg ){
3245 db->bBenignMalloc++;
3246 sqlite3BeginBenignMalloc();
3247 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
3248 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
3249 sqlite3EndBenignMalloc();
3250 db->bBenignMalloc--;
3251 }else if( db->pErr ){
3252 sqlite3ValueSetNull(db->pErr);
3254 db->errCode = rc;
3255 return rc;
3258 #ifdef SQLITE_ENABLE_SQLLOG
3260 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
3261 ** invoke it.
3263 static void vdbeInvokeSqllog(Vdbe *v){
3264 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
3265 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
3266 assert( v->db->init.busy==0 );
3267 if( zExpanded ){
3268 sqlite3GlobalConfig.xSqllog(
3269 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
3271 sqlite3DbFree(v->db, zExpanded);
3275 #else
3276 # define vdbeInvokeSqllog(x)
3277 #endif
3280 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
3281 ** Write any error messages into *pzErrMsg. Return the result code.
3283 ** After this routine is run, the VDBE should be ready to be executed
3284 ** again.
3286 ** To look at it another way, this routine resets the state of the
3287 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
3288 ** VDBE_MAGIC_INIT.
3290 int sqlite3VdbeReset(Vdbe *p){
3291 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
3292 int i;
3293 #endif
3295 sqlite3 *db;
3296 db = p->db;
3298 /* If the VM did not run to completion or if it encountered an
3299 ** error, then it might not have been halted properly. So halt
3300 ** it now.
3302 sqlite3VdbeHalt(p);
3304 /* If the VDBE has been run even partially, then transfer the error code
3305 ** and error message from the VDBE into the main database structure. But
3306 ** if the VDBE has just been set to run but has not actually executed any
3307 ** instructions yet, leave the main database error information unchanged.
3309 if( p->pc>=0 ){
3310 vdbeInvokeSqllog(p);
3311 if( db->pErr || p->zErrMsg ){
3312 sqlite3VdbeTransferError(p);
3313 }else{
3314 db->errCode = p->rc;
3316 if( p->runOnlyOnce ) p->expired = 1;
3317 }else if( p->rc && p->expired ){
3318 /* The expired flag was set on the VDBE before the first call
3319 ** to sqlite3_step(). For consistency (since sqlite3_step() was
3320 ** called), set the database error in this case as well.
3322 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
3325 /* Reset register contents and reclaim error message memory.
3327 #ifdef SQLITE_DEBUG
3328 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
3329 ** Vdbe.aMem[] arrays have already been cleaned up. */
3330 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
3331 if( p->aMem ){
3332 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
3334 #endif
3335 if( p->zErrMsg ){
3336 sqlite3DbFree(db, p->zErrMsg);
3337 p->zErrMsg = 0;
3339 p->pResultSet = 0;
3340 #ifdef SQLITE_DEBUG
3341 p->nWrite = 0;
3342 #endif
3344 /* Save profiling information from this VDBE run.
3346 #ifdef VDBE_PROFILE
3348 FILE *out = fopen("vdbe_profile.out", "a");
3349 if( out ){
3350 fprintf(out, "---- ");
3351 for(i=0; i<p->nOp; i++){
3352 fprintf(out, "%02x", p->aOp[i].opcode);
3354 fprintf(out, "\n");
3355 if( p->zSql ){
3356 char c, pc = 0;
3357 fprintf(out, "-- ");
3358 for(i=0; (c = p->zSql[i])!=0; i++){
3359 if( pc=='\n' ) fprintf(out, "-- ");
3360 putc(c, out);
3361 pc = c;
3363 if( pc!='\n' ) fprintf(out, "\n");
3365 for(i=0; i<p->nOp; i++){
3366 char zHdr[100];
3367 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
3368 p->aOp[i].cnt,
3369 p->aOp[i].cycles,
3370 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
3372 fprintf(out, "%s", zHdr);
3373 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
3375 fclose(out);
3378 #endif
3379 p->iVdbeMagic = VDBE_MAGIC_RESET;
3380 return p->rc & db->errMask;
3384 ** Clean up and delete a VDBE after execution. Return an integer which is
3385 ** the result code. Write any error message text into *pzErrMsg.
3387 int sqlite3VdbeFinalize(Vdbe *p){
3388 int rc = SQLITE_OK;
3389 if( p->iVdbeMagic==VDBE_MAGIC_RUN || p->iVdbeMagic==VDBE_MAGIC_HALT ){
3390 rc = sqlite3VdbeReset(p);
3391 assert( (rc & p->db->errMask)==rc );
3393 sqlite3VdbeDelete(p);
3394 return rc;
3398 ** If parameter iOp is less than zero, then invoke the destructor for
3399 ** all auxiliary data pointers currently cached by the VM passed as
3400 ** the first argument.
3402 ** Or, if iOp is greater than or equal to zero, then the destructor is
3403 ** only invoked for those auxiliary data pointers created by the user
3404 ** function invoked by the OP_Function opcode at instruction iOp of
3405 ** VM pVdbe, and only then if:
3407 ** * the associated function parameter is the 32nd or later (counting
3408 ** from left to right), or
3410 ** * the corresponding bit in argument mask is clear (where the first
3411 ** function parameter corresponds to bit 0 etc.).
3413 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
3414 while( *pp ){
3415 AuxData *pAux = *pp;
3416 if( (iOp<0)
3417 || (pAux->iAuxOp==iOp
3418 && pAux->iAuxArg>=0
3419 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg))))
3421 testcase( pAux->iAuxArg==31 );
3422 if( pAux->xDeleteAux ){
3423 pAux->xDeleteAux(pAux->pAux);
3425 *pp = pAux->pNextAux;
3426 sqlite3DbFree(db, pAux);
3427 }else{
3428 pp= &pAux->pNextAux;
3434 ** Free all memory associated with the Vdbe passed as the second argument,
3435 ** except for object itself, which is preserved.
3437 ** The difference between this function and sqlite3VdbeDelete() is that
3438 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
3439 ** the database connection and frees the object itself.
3441 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
3442 SubProgram *pSub, *pNext;
3443 assert( p->db==0 || p->db==db );
3444 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
3445 for(pSub=p->pProgram; pSub; pSub=pNext){
3446 pNext = pSub->pNext;
3447 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
3448 sqlite3DbFree(db, pSub);
3450 if( p->iVdbeMagic!=VDBE_MAGIC_INIT ){
3451 releaseMemArray(p->aVar, p->nVar);
3452 sqlite3DbFree(db, p->pVList);
3453 sqlite3DbFree(db, p->pFree);
3455 vdbeFreeOpArray(db, p->aOp, p->nOp);
3456 sqlite3DbFree(db, p->aColName);
3457 sqlite3DbFree(db, p->zSql);
3458 #ifdef SQLITE_ENABLE_NORMALIZE
3459 sqlite3DbFree(db, p->zNormSql);
3461 DblquoteStr *pThis, *pNext;
3462 for(pThis=p->pDblStr; pThis; pThis=pNext){
3463 pNext = pThis->pNextStr;
3464 sqlite3DbFree(db, pThis);
3467 #endif
3468 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3470 int i;
3471 for(i=0; i<p->nScan; i++){
3472 sqlite3DbFree(db, p->aScan[i].zName);
3474 sqlite3DbFree(db, p->aScan);
3476 #endif
3480 ** Delete an entire VDBE.
3482 void sqlite3VdbeDelete(Vdbe *p){
3483 sqlite3 *db;
3485 assert( p!=0 );
3486 db = p->db;
3487 assert( sqlite3_mutex_held(db->mutex) );
3488 sqlite3VdbeClearObject(db, p);
3489 if( p->pPrev ){
3490 p->pPrev->pNext = p->pNext;
3491 }else{
3492 assert( db->pVdbe==p );
3493 db->pVdbe = p->pNext;
3495 if( p->pNext ){
3496 p->pNext->pPrev = p->pPrev;
3498 p->iVdbeMagic = VDBE_MAGIC_DEAD;
3499 p->db = 0;
3500 sqlite3DbFreeNN(db, p);
3504 ** The cursor "p" has a pending seek operation that has not yet been
3505 ** carried out. Seek the cursor now. If an error occurs, return
3506 ** the appropriate error code.
3508 int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){
3509 int res, rc;
3510 #ifdef SQLITE_TEST
3511 extern int sqlite3_search_count;
3512 #endif
3513 assert( p->deferredMoveto );
3514 assert( p->isTable );
3515 assert( p->eCurType==CURTYPE_BTREE );
3516 rc = sqlite3BtreeTableMoveto(p->uc.pCursor, p->movetoTarget, 0, &res);
3517 if( rc ) return rc;
3518 if( res!=0 ) return SQLITE_CORRUPT_BKPT;
3519 #ifdef SQLITE_TEST
3520 sqlite3_search_count++;
3521 #endif
3522 p->deferredMoveto = 0;
3523 p->cacheStatus = CACHE_STALE;
3524 return SQLITE_OK;
3528 ** Something has moved cursor "p" out of place. Maybe the row it was
3529 ** pointed to was deleted out from under it. Or maybe the btree was
3530 ** rebalanced. Whatever the cause, try to restore "p" to the place it
3531 ** is supposed to be pointing. If the row was deleted out from under the
3532 ** cursor, set the cursor to point to a NULL row.
3534 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
3535 int isDifferentRow, rc;
3536 assert( p->eCurType==CURTYPE_BTREE );
3537 assert( p->uc.pCursor!=0 );
3538 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
3539 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
3540 p->cacheStatus = CACHE_STALE;
3541 if( isDifferentRow ) p->nullRow = 1;
3542 return rc;
3546 ** Check to ensure that the cursor is valid. Restore the cursor
3547 ** if need be. Return any I/O error from the restore operation.
3549 int sqlite3VdbeCursorRestore(VdbeCursor *p){
3550 assert( p->eCurType==CURTYPE_BTREE );
3551 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3552 return handleMovedCursor(p);
3554 return SQLITE_OK;
3558 ** Make sure the cursor p is ready to read or write the row to which it
3559 ** was last positioned. Return an error code if an OOM fault or I/O error
3560 ** prevents us from positioning the cursor to its correct position.
3562 ** If a MoveTo operation is pending on the given cursor, then do that
3563 ** MoveTo now. If no move is pending, check to see if the row has been
3564 ** deleted out from under the cursor and if it has, mark the row as
3565 ** a NULL row.
3567 ** If the cursor is already pointing to the correct row and that row has
3568 ** not been deleted out from under the cursor, then this routine is a no-op.
3570 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, u32 *piCol){
3571 VdbeCursor *p = *pp;
3572 assert( p->eCurType==CURTYPE_BTREE || p->eCurType==CURTYPE_PSEUDO );
3573 if( p->deferredMoveto ){
3574 u32 iMap;
3575 assert( !p->isEphemeral );
3576 if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 && !p->nullRow ){
3577 *pp = p->pAltCursor;
3578 *piCol = iMap - 1;
3579 return SQLITE_OK;
3581 return sqlite3VdbeFinishMoveto(p);
3583 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3584 return handleMovedCursor(p);
3586 return SQLITE_OK;
3590 ** The following functions:
3592 ** sqlite3VdbeSerialType()
3593 ** sqlite3VdbeSerialTypeLen()
3594 ** sqlite3VdbeSerialLen()
3595 ** sqlite3VdbeSerialPut()
3596 ** sqlite3VdbeSerialGet()
3598 ** encapsulate the code that serializes values for storage in SQLite
3599 ** data and index records. Each serialized value consists of a
3600 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3601 ** integer, stored as a varint.
3603 ** In an SQLite index record, the serial type is stored directly before
3604 ** the blob of data that it corresponds to. In a table record, all serial
3605 ** types are stored at the start of the record, and the blobs of data at
3606 ** the end. Hence these functions allow the caller to handle the
3607 ** serial-type and data blob separately.
3609 ** The following table describes the various storage classes for data:
3611 ** serial type bytes of data type
3612 ** -------------- --------------- ---------------
3613 ** 0 0 NULL
3614 ** 1 1 signed integer
3615 ** 2 2 signed integer
3616 ** 3 3 signed integer
3617 ** 4 4 signed integer
3618 ** 5 6 signed integer
3619 ** 6 8 signed integer
3620 ** 7 8 IEEE float
3621 ** 8 0 Integer constant 0
3622 ** 9 0 Integer constant 1
3623 ** 10,11 reserved for expansion
3624 ** N>=12 and even (N-12)/2 BLOB
3625 ** N>=13 and odd (N-13)/2 text
3627 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
3628 ** of SQLite will not understand those serial types.
3631 #if 0 /* Inlined into the OP_MakeRecord opcode */
3633 ** Return the serial-type for the value stored in pMem.
3635 ** This routine might convert a large MEM_IntReal value into MEM_Real.
3637 ** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord
3638 ** opcode in the byte-code engine. But by moving this routine in-line, we
3639 ** can omit some redundant tests and make that opcode a lot faster. So
3640 ** this routine is now only used by the STAT3 logic and STAT3 support has
3641 ** ended. The code is kept here for historical reference only.
3643 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
3644 int flags = pMem->flags;
3645 u32 n;
3647 assert( pLen!=0 );
3648 if( flags&MEM_Null ){
3649 *pLen = 0;
3650 return 0;
3652 if( flags&(MEM_Int|MEM_IntReal) ){
3653 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3654 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3655 i64 i = pMem->u.i;
3656 u64 u;
3657 testcase( flags & MEM_Int );
3658 testcase( flags & MEM_IntReal );
3659 if( i<0 ){
3660 u = ~i;
3661 }else{
3662 u = i;
3664 if( u<=127 ){
3665 if( (i&1)==i && file_format>=4 ){
3666 *pLen = 0;
3667 return 8+(u32)u;
3668 }else{
3669 *pLen = 1;
3670 return 1;
3673 if( u<=32767 ){ *pLen = 2; return 2; }
3674 if( u<=8388607 ){ *pLen = 3; return 3; }
3675 if( u<=2147483647 ){ *pLen = 4; return 4; }
3676 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3677 *pLen = 8;
3678 if( flags&MEM_IntReal ){
3679 /* If the value is IntReal and is going to take up 8 bytes to store
3680 ** as an integer, then we might as well make it an 8-byte floating
3681 ** point value */
3682 pMem->u.r = (double)pMem->u.i;
3683 pMem->flags &= ~MEM_IntReal;
3684 pMem->flags |= MEM_Real;
3685 return 7;
3687 return 6;
3689 if( flags&MEM_Real ){
3690 *pLen = 8;
3691 return 7;
3693 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
3694 assert( pMem->n>=0 );
3695 n = (u32)pMem->n;
3696 if( flags & MEM_Zero ){
3697 n += pMem->u.nZero;
3699 *pLen = n;
3700 return ((n*2) + 12 + ((flags&MEM_Str)!=0));
3702 #endif /* inlined into OP_MakeRecord */
3705 ** The sizes for serial types less than 128
3707 static const u8 sqlite3SmallTypeSizes[] = {
3708 /* 0 1 2 3 4 5 6 7 8 9 */
3709 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0,
3710 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
3711 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
3712 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
3713 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3714 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3715 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3716 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3717 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3718 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3719 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3720 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3721 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57
3725 ** Return the length of the data corresponding to the supplied serial-type.
3727 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
3728 if( serial_type>=128 ){
3729 return (serial_type-12)/2;
3730 }else{
3731 assert( serial_type<12
3732 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
3733 return sqlite3SmallTypeSizes[serial_type];
3736 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3737 assert( serial_type<128 );
3738 return sqlite3SmallTypeSizes[serial_type];
3742 ** If we are on an architecture with mixed-endian floating
3743 ** points (ex: ARM7) then swap the lower 4 bytes with the
3744 ** upper 4 bytes. Return the result.
3746 ** For most architectures, this is a no-op.
3748 ** (later): It is reported to me that the mixed-endian problem
3749 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
3750 ** that early versions of GCC stored the two words of a 64-bit
3751 ** float in the wrong order. And that error has been propagated
3752 ** ever since. The blame is not necessarily with GCC, though.
3753 ** GCC might have just copying the problem from a prior compiler.
3754 ** I am also told that newer versions of GCC that follow a different
3755 ** ABI get the byte order right.
3757 ** Developers using SQLite on an ARM7 should compile and run their
3758 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
3759 ** enabled, some asserts below will ensure that the byte order of
3760 ** floating point values is correct.
3762 ** (2007-08-30) Frank van Vugt has studied this problem closely
3763 ** and has send his findings to the SQLite developers. Frank
3764 ** writes that some Linux kernels offer floating point hardware
3765 ** emulation that uses only 32-bit mantissas instead of a full
3766 ** 48-bits as required by the IEEE standard. (This is the
3767 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point
3768 ** byte swapping becomes very complicated. To avoid problems,
3769 ** the necessary byte swapping is carried out using a 64-bit integer
3770 ** rather than a 64-bit float. Frank assures us that the code here
3771 ** works for him. We, the developers, have no way to independently
3772 ** verify this, but Frank seems to know what he is talking about
3773 ** so we trust him.
3775 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
3776 static u64 floatSwap(u64 in){
3777 union {
3778 u64 r;
3779 u32 i[2];
3780 } u;
3781 u32 t;
3783 u.r = in;
3784 t = u.i[0];
3785 u.i[0] = u.i[1];
3786 u.i[1] = t;
3787 return u.r;
3789 # define swapMixedEndianFloat(X) X = floatSwap(X)
3790 #else
3791 # define swapMixedEndianFloat(X)
3792 #endif
3795 ** Write the serialized data blob for the value stored in pMem into
3796 ** buf. It is assumed that the caller has allocated sufficient space.
3797 ** Return the number of bytes written.
3799 ** nBuf is the amount of space left in buf[]. The caller is responsible
3800 ** for allocating enough space to buf[] to hold the entire field, exclusive
3801 ** of the pMem->u.nZero bytes for a MEM_Zero value.
3803 ** Return the number of bytes actually written into buf[]. The number
3804 ** of bytes in the zero-filled tail is included in the return value only
3805 ** if those bytes were zeroed in buf[].
3807 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
3808 u32 len;
3810 /* Integer and Real */
3811 if( serial_type<=7 && serial_type>0 ){
3812 u64 v;
3813 u32 i;
3814 if( serial_type==7 ){
3815 assert( sizeof(v)==sizeof(pMem->u.r) );
3816 memcpy(&v, &pMem->u.r, sizeof(v));
3817 swapMixedEndianFloat(v);
3818 }else{
3819 v = pMem->u.i;
3821 len = i = sqlite3SmallTypeSizes[serial_type];
3822 assert( i>0 );
3824 buf[--i] = (u8)(v&0xFF);
3825 v >>= 8;
3826 }while( i );
3827 return len;
3830 /* String or blob */
3831 if( serial_type>=12 ){
3832 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
3833 == (int)sqlite3VdbeSerialTypeLen(serial_type) );
3834 len = pMem->n;
3835 if( len>0 ) memcpy(buf, pMem->z, len);
3836 return len;
3839 /* NULL or constants 0 or 1 */
3840 return 0;
3843 /* Input "x" is a sequence of unsigned characters that represent a
3844 ** big-endian integer. Return the equivalent native integer
3846 #define ONE_BYTE_INT(x) ((i8)(x)[0])
3847 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
3848 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3849 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3850 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3853 ** Deserialize the data blob pointed to by buf as serial type serial_type
3854 ** and store the result in pMem. Return the number of bytes read.
3856 ** This function is implemented as two separate routines for performance.
3857 ** The few cases that require local variables are broken out into a separate
3858 ** routine so that in most cases the overhead of moving the stack pointer
3859 ** is avoided.
3861 static u32 serialGet(
3862 const unsigned char *buf, /* Buffer to deserialize from */
3863 u32 serial_type, /* Serial type to deserialize */
3864 Mem *pMem /* Memory cell to write value into */
3866 u64 x = FOUR_BYTE_UINT(buf);
3867 u32 y = FOUR_BYTE_UINT(buf+4);
3868 x = (x<<32) + y;
3869 if( serial_type==6 ){
3870 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3871 ** twos-complement integer. */
3872 pMem->u.i = *(i64*)&x;
3873 pMem->flags = MEM_Int;
3874 testcase( pMem->u.i<0 );
3875 }else{
3876 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3877 ** floating point number. */
3878 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3879 /* Verify that integers and floating point values use the same
3880 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3881 ** defined that 64-bit floating point values really are mixed
3882 ** endian.
3884 static const u64 t1 = ((u64)0x3ff00000)<<32;
3885 static const double r1 = 1.0;
3886 u64 t2 = t1;
3887 swapMixedEndianFloat(t2);
3888 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3889 #endif
3890 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
3891 swapMixedEndianFloat(x);
3892 memcpy(&pMem->u.r, &x, sizeof(x));
3893 pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real;
3895 return 8;
3897 u32 sqlite3VdbeSerialGet(
3898 const unsigned char *buf, /* Buffer to deserialize from */
3899 u32 serial_type, /* Serial type to deserialize */
3900 Mem *pMem /* Memory cell to write value into */
3902 switch( serial_type ){
3903 case 10: { /* Internal use only: NULL with virtual table
3904 ** UPDATE no-change flag set */
3905 pMem->flags = MEM_Null|MEM_Zero;
3906 pMem->n = 0;
3907 pMem->u.nZero = 0;
3908 break;
3910 case 11: /* Reserved for future use */
3911 case 0: { /* Null */
3912 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
3913 pMem->flags = MEM_Null;
3914 break;
3916 case 1: {
3917 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3918 ** integer. */
3919 pMem->u.i = ONE_BYTE_INT(buf);
3920 pMem->flags = MEM_Int;
3921 testcase( pMem->u.i<0 );
3922 return 1;
3924 case 2: { /* 2-byte signed integer */
3925 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3926 ** twos-complement integer. */
3927 pMem->u.i = TWO_BYTE_INT(buf);
3928 pMem->flags = MEM_Int;
3929 testcase( pMem->u.i<0 );
3930 return 2;
3932 case 3: { /* 3-byte signed integer */
3933 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3934 ** twos-complement integer. */
3935 pMem->u.i = THREE_BYTE_INT(buf);
3936 pMem->flags = MEM_Int;
3937 testcase( pMem->u.i<0 );
3938 return 3;
3940 case 4: { /* 4-byte signed integer */
3941 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3942 ** twos-complement integer. */
3943 pMem->u.i = FOUR_BYTE_INT(buf);
3944 #ifdef __HP_cc
3945 /* Work around a sign-extension bug in the HP compiler for HP/UX */
3946 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
3947 #endif
3948 pMem->flags = MEM_Int;
3949 testcase( pMem->u.i<0 );
3950 return 4;
3952 case 5: { /* 6-byte signed integer */
3953 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3954 ** twos-complement integer. */
3955 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
3956 pMem->flags = MEM_Int;
3957 testcase( pMem->u.i<0 );
3958 return 6;
3960 case 6: /* 8-byte signed integer */
3961 case 7: { /* IEEE floating point */
3962 /* These use local variables, so do them in a separate routine
3963 ** to avoid having to move the frame pointer in the common case */
3964 return serialGet(buf,serial_type,pMem);
3966 case 8: /* Integer 0 */
3967 case 9: { /* Integer 1 */
3968 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
3969 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
3970 pMem->u.i = serial_type-8;
3971 pMem->flags = MEM_Int;
3972 return 0;
3974 default: {
3975 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
3976 ** length.
3977 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
3978 ** (N-13)/2 bytes in length. */
3979 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
3980 pMem->z = (char *)buf;
3981 pMem->n = (serial_type-12)/2;
3982 pMem->flags = aFlag[serial_type&1];
3983 return pMem->n;
3986 return 0;
3989 ** This routine is used to allocate sufficient space for an UnpackedRecord
3990 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3991 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
3993 ** The space is either allocated using sqlite3DbMallocRaw() or from within
3994 ** the unaligned buffer passed via the second and third arguments (presumably
3995 ** stack space). If the former, then *ppFree is set to a pointer that should
3996 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3997 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3998 ** before returning.
4000 ** If an OOM error occurs, NULL is returned.
4002 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
4003 KeyInfo *pKeyInfo /* Description of the record */
4005 UnpackedRecord *p; /* Unpacked record to return */
4006 int nByte; /* Number of bytes required for *p */
4007 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1);
4008 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
4009 if( !p ) return 0;
4010 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
4011 assert( pKeyInfo->aSortFlags!=0 );
4012 p->pKeyInfo = pKeyInfo;
4013 p->nField = pKeyInfo->nKeyField + 1;
4014 return p;
4018 ** Given the nKey-byte encoding of a record in pKey[], populate the
4019 ** UnpackedRecord structure indicated by the fourth argument with the
4020 ** contents of the decoded record.
4022 void sqlite3VdbeRecordUnpack(
4023 KeyInfo *pKeyInfo, /* Information about the record format */
4024 int nKey, /* Size of the binary record */
4025 const void *pKey, /* The binary record */
4026 UnpackedRecord *p /* Populate this structure before returning. */
4028 const unsigned char *aKey = (const unsigned char *)pKey;
4029 u32 d;
4030 u32 idx; /* Offset in aKey[] to read from */
4031 u16 u; /* Unsigned loop counter */
4032 u32 szHdr;
4033 Mem *pMem = p->aMem;
4035 p->default_rc = 0;
4036 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
4037 idx = getVarint32(aKey, szHdr);
4038 d = szHdr;
4039 u = 0;
4040 while( idx<szHdr && d<=(u32)nKey ){
4041 u32 serial_type;
4043 idx += getVarint32(&aKey[idx], serial_type);
4044 pMem->enc = pKeyInfo->enc;
4045 pMem->db = pKeyInfo->db;
4046 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
4047 pMem->szMalloc = 0;
4048 pMem->z = 0;
4049 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
4050 pMem++;
4051 if( (++u)>=p->nField ) break;
4053 if( d>(u32)nKey && u ){
4054 assert( CORRUPT_DB );
4055 /* In a corrupt record entry, the last pMem might have been set up using
4056 ** uninitialized memory. Overwrite its value with NULL, to prevent
4057 ** warnings from MSAN. */
4058 sqlite3VdbeMemSetNull(pMem-1);
4060 assert( u<=pKeyInfo->nKeyField + 1 );
4061 p->nField = u;
4064 #ifdef SQLITE_DEBUG
4066 ** This function compares two index or table record keys in the same way
4067 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
4068 ** this function deserializes and compares values using the
4069 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
4070 ** in assert() statements to ensure that the optimized code in
4071 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
4073 ** Return true if the result of comparison is equivalent to desiredResult.
4074 ** Return false if there is a disagreement.
4076 static int vdbeRecordCompareDebug(
4077 int nKey1, const void *pKey1, /* Left key */
4078 const UnpackedRecord *pPKey2, /* Right key */
4079 int desiredResult /* Correct answer */
4081 u32 d1; /* Offset into aKey[] of next data element */
4082 u32 idx1; /* Offset into aKey[] of next header element */
4083 u32 szHdr1; /* Number of bytes in header */
4084 int i = 0;
4085 int rc = 0;
4086 const unsigned char *aKey1 = (const unsigned char *)pKey1;
4087 KeyInfo *pKeyInfo;
4088 Mem mem1;
4090 pKeyInfo = pPKey2->pKeyInfo;
4091 if( pKeyInfo->db==0 ) return 1;
4092 mem1.enc = pKeyInfo->enc;
4093 mem1.db = pKeyInfo->db;
4094 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
4095 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4097 /* Compilers may complain that mem1.u.i is potentially uninitialized.
4098 ** We could initialize it, as shown here, to silence those complaints.
4099 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
4100 ** the unnecessary initialization has a measurable negative performance
4101 ** impact, since this routine is a very high runner. And so, we choose
4102 ** to ignore the compiler warnings and leave this variable uninitialized.
4104 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
4106 idx1 = getVarint32(aKey1, szHdr1);
4107 if( szHdr1>98307 ) return SQLITE_CORRUPT;
4108 d1 = szHdr1;
4109 assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB );
4110 assert( pKeyInfo->aSortFlags!=0 );
4111 assert( pKeyInfo->nKeyField>0 );
4112 assert( idx1<=szHdr1 || CORRUPT_DB );
4114 u32 serial_type1;
4116 /* Read the serial types for the next element in each key. */
4117 idx1 += getVarint32( aKey1+idx1, serial_type1 );
4119 /* Verify that there is enough key space remaining to avoid
4120 ** a buffer overread. The "d1+serial_type1+2" subexpression will
4121 ** always be greater than or equal to the amount of required key space.
4122 ** Use that approximation to avoid the more expensive call to
4123 ** sqlite3VdbeSerialTypeLen() in the common case.
4125 if( d1+(u64)serial_type1+2>(u64)nKey1
4126 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1
4128 break;
4131 /* Extract the values to be compared.
4133 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
4135 /* Do the comparison
4137 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
4138 pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0);
4139 if( rc!=0 ){
4140 assert( mem1.szMalloc==0 ); /* See comment below */
4141 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
4142 && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null))
4144 rc = -rc;
4146 if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){
4147 rc = -rc; /* Invert the result for DESC sort order. */
4149 goto debugCompareEnd;
4151 i++;
4152 }while( idx1<szHdr1 && i<pPKey2->nField );
4154 /* No memory allocation is ever used on mem1. Prove this using
4155 ** the following assert(). If the assert() fails, it indicates a
4156 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
4158 assert( mem1.szMalloc==0 );
4160 /* rc==0 here means that one of the keys ran out of fields and
4161 ** all the fields up to that point were equal. Return the default_rc
4162 ** value. */
4163 rc = pPKey2->default_rc;
4165 debugCompareEnd:
4166 if( desiredResult==0 && rc==0 ) return 1;
4167 if( desiredResult<0 && rc<0 ) return 1;
4168 if( desiredResult>0 && rc>0 ) return 1;
4169 if( CORRUPT_DB ) return 1;
4170 if( pKeyInfo->db->mallocFailed ) return 1;
4171 return 0;
4173 #endif
4175 #ifdef SQLITE_DEBUG
4177 ** Count the number of fields (a.k.a. columns) in the record given by
4178 ** pKey,nKey. The verify that this count is less than or equal to the
4179 ** limit given by pKeyInfo->nAllField.
4181 ** If this constraint is not satisfied, it means that the high-speed
4182 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
4183 ** not work correctly. If this assert() ever fires, it probably means
4184 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
4185 ** incorrectly.
4187 static void vdbeAssertFieldCountWithinLimits(
4188 int nKey, const void *pKey, /* The record to verify */
4189 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */
4191 int nField = 0;
4192 u32 szHdr;
4193 u32 idx;
4194 u32 notUsed;
4195 const unsigned char *aKey = (const unsigned char*)pKey;
4197 if( CORRUPT_DB ) return;
4198 idx = getVarint32(aKey, szHdr);
4199 assert( nKey>=0 );
4200 assert( szHdr<=(u32)nKey );
4201 while( idx<szHdr ){
4202 idx += getVarint32(aKey+idx, notUsed);
4203 nField++;
4205 assert( nField <= pKeyInfo->nAllField );
4207 #else
4208 # define vdbeAssertFieldCountWithinLimits(A,B,C)
4209 #endif
4212 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
4213 ** using the collation sequence pColl. As usual, return a negative , zero
4214 ** or positive value if *pMem1 is less than, equal to or greater than
4215 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
4217 static int vdbeCompareMemString(
4218 const Mem *pMem1,
4219 const Mem *pMem2,
4220 const CollSeq *pColl,
4221 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */
4223 if( pMem1->enc==pColl->enc ){
4224 /* The strings are already in the correct encoding. Call the
4225 ** comparison function directly */
4226 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
4227 }else{
4228 int rc;
4229 const void *v1, *v2;
4230 Mem c1;
4231 Mem c2;
4232 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
4233 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
4234 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
4235 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
4236 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
4237 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
4238 if( (v1==0 || v2==0) ){
4239 if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
4240 rc = 0;
4241 }else{
4242 rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2);
4244 sqlite3VdbeMemRelease(&c1);
4245 sqlite3VdbeMemRelease(&c2);
4246 return rc;
4251 ** The input pBlob is guaranteed to be a Blob that is not marked
4252 ** with MEM_Zero. Return true if it could be a zero-blob.
4254 static int isAllZero(const char *z, int n){
4255 int i;
4256 for(i=0; i<n; i++){
4257 if( z[i] ) return 0;
4259 return 1;
4263 ** Compare two blobs. Return negative, zero, or positive if the first
4264 ** is less than, equal to, or greater than the second, respectively.
4265 ** If one blob is a prefix of the other, then the shorter is the lessor.
4267 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
4268 int c;
4269 int n1 = pB1->n;
4270 int n2 = pB2->n;
4272 /* It is possible to have a Blob value that has some non-zero content
4273 ** followed by zero content. But that only comes up for Blobs formed
4274 ** by the OP_MakeRecord opcode, and such Blobs never get passed into
4275 ** sqlite3MemCompare(). */
4276 assert( (pB1->flags & MEM_Zero)==0 || n1==0 );
4277 assert( (pB2->flags & MEM_Zero)==0 || n2==0 );
4279 if( (pB1->flags|pB2->flags) & MEM_Zero ){
4280 if( pB1->flags & pB2->flags & MEM_Zero ){
4281 return pB1->u.nZero - pB2->u.nZero;
4282 }else if( pB1->flags & MEM_Zero ){
4283 if( !isAllZero(pB2->z, pB2->n) ) return -1;
4284 return pB1->u.nZero - n2;
4285 }else{
4286 if( !isAllZero(pB1->z, pB1->n) ) return +1;
4287 return n1 - pB2->u.nZero;
4290 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1);
4291 if( c ) return c;
4292 return n1 - n2;
4296 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
4297 ** number. Return negative, zero, or positive if the first (i64) is less than,
4298 ** equal to, or greater than the second (double).
4300 int sqlite3IntFloatCompare(i64 i, double r){
4301 if( sizeof(LONGDOUBLE_TYPE)>8 ){
4302 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
4303 testcase( x<r );
4304 testcase( x>r );
4305 testcase( x==r );
4306 if( x<r ) return -1;
4307 if( x>r ) return +1; /*NO_TEST*/ /* work around bugs in gcov */
4308 return 0; /*NO_TEST*/ /* work around bugs in gcov */
4309 }else{
4310 i64 y;
4311 double s;
4312 if( r<-9223372036854775808.0 ) return +1;
4313 if( r>=9223372036854775808.0 ) return -1;
4314 y = (i64)r;
4315 if( i<y ) return -1;
4316 if( i>y ) return +1;
4317 s = (double)i;
4318 if( s<r ) return -1;
4319 if( s>r ) return +1;
4320 return 0;
4325 ** Compare the values contained by the two memory cells, returning
4326 ** negative, zero or positive if pMem1 is less than, equal to, or greater
4327 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
4328 ** and reals) sorted numerically, followed by text ordered by the collating
4329 ** sequence pColl and finally blob's ordered by memcmp().
4331 ** Two NULL values are considered equal by this function.
4333 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
4334 int f1, f2;
4335 int combined_flags;
4337 f1 = pMem1->flags;
4338 f2 = pMem2->flags;
4339 combined_flags = f1|f2;
4340 assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) );
4342 /* If one value is NULL, it is less than the other. If both values
4343 ** are NULL, return 0.
4345 if( combined_flags&MEM_Null ){
4346 return (f2&MEM_Null) - (f1&MEM_Null);
4349 /* At least one of the two values is a number
4351 if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){
4352 testcase( combined_flags & MEM_Int );
4353 testcase( combined_flags & MEM_Real );
4354 testcase( combined_flags & MEM_IntReal );
4355 if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){
4356 testcase( f1 & f2 & MEM_Int );
4357 testcase( f1 & f2 & MEM_IntReal );
4358 if( pMem1->u.i < pMem2->u.i ) return -1;
4359 if( pMem1->u.i > pMem2->u.i ) return +1;
4360 return 0;
4362 if( (f1 & f2 & MEM_Real)!=0 ){
4363 if( pMem1->u.r < pMem2->u.r ) return -1;
4364 if( pMem1->u.r > pMem2->u.r ) return +1;
4365 return 0;
4367 if( (f1&(MEM_Int|MEM_IntReal))!=0 ){
4368 testcase( f1 & MEM_Int );
4369 testcase( f1 & MEM_IntReal );
4370 if( (f2&MEM_Real)!=0 ){
4371 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
4372 }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4373 if( pMem1->u.i < pMem2->u.i ) return -1;
4374 if( pMem1->u.i > pMem2->u.i ) return +1;
4375 return 0;
4376 }else{
4377 return -1;
4380 if( (f1&MEM_Real)!=0 ){
4381 if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4382 testcase( f2 & MEM_Int );
4383 testcase( f2 & MEM_IntReal );
4384 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
4385 }else{
4386 return -1;
4389 return +1;
4392 /* If one value is a string and the other is a blob, the string is less.
4393 ** If both are strings, compare using the collating functions.
4395 if( combined_flags&MEM_Str ){
4396 if( (f1 & MEM_Str)==0 ){
4397 return 1;
4399 if( (f2 & MEM_Str)==0 ){
4400 return -1;
4403 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
4404 assert( pMem1->enc==SQLITE_UTF8 ||
4405 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
4407 /* The collation sequence must be defined at this point, even if
4408 ** the user deletes the collation sequence after the vdbe program is
4409 ** compiled (this was not always the case).
4411 assert( !pColl || pColl->xCmp );
4413 if( pColl ){
4414 return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
4416 /* If a NULL pointer was passed as the collate function, fall through
4417 ** to the blob case and use memcmp(). */
4420 /* Both values must be blobs. Compare using memcmp(). */
4421 return sqlite3BlobCompare(pMem1, pMem2);
4426 ** The first argument passed to this function is a serial-type that
4427 ** corresponds to an integer - all values between 1 and 9 inclusive
4428 ** except 7. The second points to a buffer containing an integer value
4429 ** serialized according to serial_type. This function deserializes
4430 ** and returns the value.
4432 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
4433 u32 y;
4434 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
4435 switch( serial_type ){
4436 case 0:
4437 case 1:
4438 testcase( aKey[0]&0x80 );
4439 return ONE_BYTE_INT(aKey);
4440 case 2:
4441 testcase( aKey[0]&0x80 );
4442 return TWO_BYTE_INT(aKey);
4443 case 3:
4444 testcase( aKey[0]&0x80 );
4445 return THREE_BYTE_INT(aKey);
4446 case 4: {
4447 testcase( aKey[0]&0x80 );
4448 y = FOUR_BYTE_UINT(aKey);
4449 return (i64)*(int*)&y;
4451 case 5: {
4452 testcase( aKey[0]&0x80 );
4453 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4455 case 6: {
4456 u64 x = FOUR_BYTE_UINT(aKey);
4457 testcase( aKey[0]&0x80 );
4458 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4459 return (i64)*(i64*)&x;
4463 return (serial_type - 8);
4467 ** This function compares the two table rows or index records
4468 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
4469 ** or positive integer if key1 is less than, equal to or
4470 ** greater than key2. The {nKey1, pKey1} key must be a blob
4471 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
4472 ** key must be a parsed key such as obtained from
4473 ** sqlite3VdbeParseRecord.
4475 ** If argument bSkip is non-zero, it is assumed that the caller has already
4476 ** determined that the first fields of the keys are equal.
4478 ** Key1 and Key2 do not have to contain the same number of fields. If all
4479 ** fields that appear in both keys are equal, then pPKey2->default_rc is
4480 ** returned.
4482 ** If database corruption is discovered, set pPKey2->errCode to
4483 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
4484 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
4485 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
4487 int sqlite3VdbeRecordCompareWithSkip(
4488 int nKey1, const void *pKey1, /* Left key */
4489 UnpackedRecord *pPKey2, /* Right key */
4490 int bSkip /* If true, skip the first field */
4492 u32 d1; /* Offset into aKey[] of next data element */
4493 int i; /* Index of next field to compare */
4494 u32 szHdr1; /* Size of record header in bytes */
4495 u32 idx1; /* Offset of first type in header */
4496 int rc = 0; /* Return value */
4497 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */
4498 KeyInfo *pKeyInfo;
4499 const unsigned char *aKey1 = (const unsigned char *)pKey1;
4500 Mem mem1;
4502 /* If bSkip is true, then the caller has already determined that the first
4503 ** two elements in the keys are equal. Fix the various stack variables so
4504 ** that this routine begins comparing at the second field. */
4505 if( bSkip ){
4506 u32 s1;
4507 idx1 = 1 + getVarint32(&aKey1[1], s1);
4508 szHdr1 = aKey1[0];
4509 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
4510 i = 1;
4511 pRhs++;
4512 }else{
4513 idx1 = getVarint32(aKey1, szHdr1);
4514 d1 = szHdr1;
4515 i = 0;
4517 if( d1>(unsigned)nKey1 ){
4518 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4519 return 0; /* Corruption */
4522 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4523 assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField
4524 || CORRUPT_DB );
4525 assert( pPKey2->pKeyInfo->aSortFlags!=0 );
4526 assert( pPKey2->pKeyInfo->nKeyField>0 );
4527 assert( idx1<=szHdr1 || CORRUPT_DB );
4529 u32 serial_type;
4531 /* RHS is an integer */
4532 if( pRhs->flags & (MEM_Int|MEM_IntReal) ){
4533 testcase( pRhs->flags & MEM_Int );
4534 testcase( pRhs->flags & MEM_IntReal );
4535 serial_type = aKey1[idx1];
4536 testcase( serial_type==12 );
4537 if( serial_type>=10 ){
4538 rc = +1;
4539 }else if( serial_type==0 ){
4540 rc = -1;
4541 }else if( serial_type==7 ){
4542 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4543 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
4544 }else{
4545 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
4546 i64 rhs = pRhs->u.i;
4547 if( lhs<rhs ){
4548 rc = -1;
4549 }else if( lhs>rhs ){
4550 rc = +1;
4555 /* RHS is real */
4556 else if( pRhs->flags & MEM_Real ){
4557 serial_type = aKey1[idx1];
4558 if( serial_type>=10 ){
4559 /* Serial types 12 or greater are strings and blobs (greater than
4560 ** numbers). Types 10 and 11 are currently "reserved for future
4561 ** use", so it doesn't really matter what the results of comparing
4562 ** them to numberic values are. */
4563 rc = +1;
4564 }else if( serial_type==0 ){
4565 rc = -1;
4566 }else{
4567 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4568 if( serial_type==7 ){
4569 if( mem1.u.r<pRhs->u.r ){
4570 rc = -1;
4571 }else if( mem1.u.r>pRhs->u.r ){
4572 rc = +1;
4574 }else{
4575 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
4580 /* RHS is a string */
4581 else if( pRhs->flags & MEM_Str ){
4582 getVarint32NR(&aKey1[idx1], serial_type);
4583 testcase( serial_type==12 );
4584 if( serial_type<12 ){
4585 rc = -1;
4586 }else if( !(serial_type & 0x01) ){
4587 rc = +1;
4588 }else{
4589 mem1.n = (serial_type - 12) / 2;
4590 testcase( (d1+mem1.n)==(unsigned)nKey1 );
4591 testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
4592 if( (d1+mem1.n) > (unsigned)nKey1
4593 || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i
4595 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4596 return 0; /* Corruption */
4597 }else if( pKeyInfo->aColl[i] ){
4598 mem1.enc = pKeyInfo->enc;
4599 mem1.db = pKeyInfo->db;
4600 mem1.flags = MEM_Str;
4601 mem1.z = (char*)&aKey1[d1];
4602 rc = vdbeCompareMemString(
4603 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
4605 }else{
4606 int nCmp = MIN(mem1.n, pRhs->n);
4607 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4608 if( rc==0 ) rc = mem1.n - pRhs->n;
4613 /* RHS is a blob */
4614 else if( pRhs->flags & MEM_Blob ){
4615 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 );
4616 getVarint32NR(&aKey1[idx1], serial_type);
4617 testcase( serial_type==12 );
4618 if( serial_type<12 || (serial_type & 0x01) ){
4619 rc = -1;
4620 }else{
4621 int nStr = (serial_type - 12) / 2;
4622 testcase( (d1+nStr)==(unsigned)nKey1 );
4623 testcase( (d1+nStr+1)==(unsigned)nKey1 );
4624 if( (d1+nStr) > (unsigned)nKey1 ){
4625 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4626 return 0; /* Corruption */
4627 }else if( pRhs->flags & MEM_Zero ){
4628 if( !isAllZero((const char*)&aKey1[d1],nStr) ){
4629 rc = 1;
4630 }else{
4631 rc = nStr - pRhs->u.nZero;
4633 }else{
4634 int nCmp = MIN(nStr, pRhs->n);
4635 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4636 if( rc==0 ) rc = nStr - pRhs->n;
4641 /* RHS is null */
4642 else{
4643 serial_type = aKey1[idx1];
4644 rc = (serial_type!=0);
4647 if( rc!=0 ){
4648 int sortFlags = pPKey2->pKeyInfo->aSortFlags[i];
4649 if( sortFlags ){
4650 if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0
4651 || ((sortFlags & KEYINFO_ORDER_DESC)
4652 !=(serial_type==0 || (pRhs->flags&MEM_Null)))
4654 rc = -rc;
4657 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
4658 assert( mem1.szMalloc==0 ); /* See comment below */
4659 return rc;
4662 i++;
4663 if( i==pPKey2->nField ) break;
4664 pRhs++;
4665 d1 += sqlite3VdbeSerialTypeLen(serial_type);
4666 idx1 += sqlite3VarintLen(serial_type);
4667 }while( idx1<(unsigned)szHdr1 && d1<=(unsigned)nKey1 );
4669 /* No memory allocation is ever used on mem1. Prove this using
4670 ** the following assert(). If the assert() fails, it indicates a
4671 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
4672 assert( mem1.szMalloc==0 );
4674 /* rc==0 here means that one or both of the keys ran out of fields and
4675 ** all the fields up to that point were equal. Return the default_rc
4676 ** value. */
4677 assert( CORRUPT_DB
4678 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
4679 || pPKey2->pKeyInfo->db->mallocFailed
4681 pPKey2->eqSeen = 1;
4682 return pPKey2->default_rc;
4684 int sqlite3VdbeRecordCompare(
4685 int nKey1, const void *pKey1, /* Left key */
4686 UnpackedRecord *pPKey2 /* Right key */
4688 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
4693 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4694 ** that (a) the first field of pPKey2 is an integer, and (b) the
4695 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4696 ** byte (i.e. is less than 128).
4698 ** To avoid concerns about buffer overreads, this routine is only used
4699 ** on schemas where the maximum valid header size is 63 bytes or less.
4701 static int vdbeRecordCompareInt(
4702 int nKey1, const void *pKey1, /* Left key */
4703 UnpackedRecord *pPKey2 /* Right key */
4705 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
4706 int serial_type = ((const u8*)pKey1)[1];
4707 int res;
4708 u32 y;
4709 u64 x;
4710 i64 v;
4711 i64 lhs;
4713 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4714 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
4715 switch( serial_type ){
4716 case 1: { /* 1-byte signed integer */
4717 lhs = ONE_BYTE_INT(aKey);
4718 testcase( lhs<0 );
4719 break;
4721 case 2: { /* 2-byte signed integer */
4722 lhs = TWO_BYTE_INT(aKey);
4723 testcase( lhs<0 );
4724 break;
4726 case 3: { /* 3-byte signed integer */
4727 lhs = THREE_BYTE_INT(aKey);
4728 testcase( lhs<0 );
4729 break;
4731 case 4: { /* 4-byte signed integer */
4732 y = FOUR_BYTE_UINT(aKey);
4733 lhs = (i64)*(int*)&y;
4734 testcase( lhs<0 );
4735 break;
4737 case 5: { /* 6-byte signed integer */
4738 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4739 testcase( lhs<0 );
4740 break;
4742 case 6: { /* 8-byte signed integer */
4743 x = FOUR_BYTE_UINT(aKey);
4744 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4745 lhs = *(i64*)&x;
4746 testcase( lhs<0 );
4747 break;
4749 case 8:
4750 lhs = 0;
4751 break;
4752 case 9:
4753 lhs = 1;
4754 break;
4756 /* This case could be removed without changing the results of running
4757 ** this code. Including it causes gcc to generate a faster switch
4758 ** statement (since the range of switch targets now starts at zero and
4759 ** is contiguous) but does not cause any duplicate code to be generated
4760 ** (as gcc is clever enough to combine the two like cases). Other
4761 ** compilers might be similar. */
4762 case 0: case 7:
4763 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4765 default:
4766 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4769 v = pPKey2->aMem[0].u.i;
4770 if( v>lhs ){
4771 res = pPKey2->r1;
4772 }else if( v<lhs ){
4773 res = pPKey2->r2;
4774 }else if( pPKey2->nField>1 ){
4775 /* The first fields of the two keys are equal. Compare the trailing
4776 ** fields. */
4777 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4778 }else{
4779 /* The first fields of the two keys are equal and there are no trailing
4780 ** fields. Return pPKey2->default_rc in this case. */
4781 res = pPKey2->default_rc;
4782 pPKey2->eqSeen = 1;
4785 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
4786 return res;
4790 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4791 ** that (a) the first field of pPKey2 is a string, that (b) the first field
4792 ** uses the collation sequence BINARY and (c) that the size-of-header varint
4793 ** at the start of (pKey1/nKey1) fits in a single byte.
4795 static int vdbeRecordCompareString(
4796 int nKey1, const void *pKey1, /* Left key */
4797 UnpackedRecord *pPKey2 /* Right key */
4799 const u8 *aKey1 = (const u8*)pKey1;
4800 int serial_type;
4801 int res;
4803 assert( pPKey2->aMem[0].flags & MEM_Str );
4804 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4805 serial_type = (u8)(aKey1[1]);
4806 if( serial_type >= 0x80 ){
4807 sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type);
4809 if( serial_type<12 ){
4810 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */
4811 }else if( !(serial_type & 0x01) ){
4812 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */
4813 }else{
4814 int nCmp;
4815 int nStr;
4816 int szHdr = aKey1[0];
4818 nStr = (serial_type-12) / 2;
4819 if( (szHdr + nStr) > nKey1 ){
4820 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4821 return 0; /* Corruption */
4823 nCmp = MIN( pPKey2->aMem[0].n, nStr );
4824 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
4826 if( res>0 ){
4827 res = pPKey2->r2;
4828 }else if( res<0 ){
4829 res = pPKey2->r1;
4830 }else{
4831 res = nStr - pPKey2->aMem[0].n;
4832 if( res==0 ){
4833 if( pPKey2->nField>1 ){
4834 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4835 }else{
4836 res = pPKey2->default_rc;
4837 pPKey2->eqSeen = 1;
4839 }else if( res>0 ){
4840 res = pPKey2->r2;
4841 }else{
4842 res = pPKey2->r1;
4847 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
4848 || CORRUPT_DB
4849 || pPKey2->pKeyInfo->db->mallocFailed
4851 return res;
4855 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4856 ** suitable for comparing serialized records to the unpacked record passed
4857 ** as the only argument.
4859 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
4860 /* varintRecordCompareInt() and varintRecordCompareString() both assume
4861 ** that the size-of-header varint that occurs at the start of each record
4862 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4863 ** also assumes that it is safe to overread a buffer by at least the
4864 ** maximum possible legal header size plus 8 bytes. Because there is
4865 ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4866 ** buffer passed to varintRecordCompareInt() this makes it convenient to
4867 ** limit the size of the header to 64 bytes in cases where the first field
4868 ** is an integer.
4870 ** The easiest way to enforce this limit is to consider only records with
4871 ** 13 fields or less. If the first field is an integer, the maximum legal
4872 ** header size is (12*5 + 1 + 1) bytes. */
4873 if( p->pKeyInfo->nAllField<=13 ){
4874 int flags = p->aMem[0].flags;
4875 if( p->pKeyInfo->aSortFlags[0] ){
4876 if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){
4877 return sqlite3VdbeRecordCompare;
4879 p->r1 = 1;
4880 p->r2 = -1;
4881 }else{
4882 p->r1 = -1;
4883 p->r2 = 1;
4885 if( (flags & MEM_Int) ){
4886 return vdbeRecordCompareInt;
4888 testcase( flags & MEM_Real );
4889 testcase( flags & MEM_Null );
4890 testcase( flags & MEM_Blob );
4891 if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0
4892 && p->pKeyInfo->aColl[0]==0
4894 assert( flags & MEM_Str );
4895 return vdbeRecordCompareString;
4899 return sqlite3VdbeRecordCompare;
4903 ** pCur points at an index entry created using the OP_MakeRecord opcode.
4904 ** Read the rowid (the last field in the record) and store it in *rowid.
4905 ** Return SQLITE_OK if everything works, or an error code otherwise.
4907 ** pCur might be pointing to text obtained from a corrupt database file.
4908 ** So the content cannot be trusted. Do appropriate checks on the content.
4910 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
4911 i64 nCellKey = 0;
4912 int rc;
4913 u32 szHdr; /* Size of the header */
4914 u32 typeRowid; /* Serial type of the rowid */
4915 u32 lenRowid; /* Size of the rowid */
4916 Mem m, v;
4918 /* Get the size of the index entry. Only indices entries of less
4919 ** than 2GiB are support - anything large must be database corruption.
4920 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
4921 ** this code can safely assume that nCellKey is 32-bits
4923 assert( sqlite3BtreeCursorIsValid(pCur) );
4924 nCellKey = sqlite3BtreePayloadSize(pCur);
4925 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
4927 /* Read in the complete content of the index entry */
4928 sqlite3VdbeMemInit(&m, db, 0);
4929 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
4930 if( rc ){
4931 return rc;
4934 /* The index entry must begin with a header size */
4935 getVarint32NR((u8*)m.z, szHdr);
4936 testcase( szHdr==3 );
4937 testcase( szHdr==(u32)m.n );
4938 testcase( szHdr>0x7fffffff );
4939 assert( m.n>=0 );
4940 if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){
4941 goto idx_rowid_corruption;
4944 /* The last field of the index should be an integer - the ROWID.
4945 ** Verify that the last entry really is an integer. */
4946 getVarint32NR((u8*)&m.z[szHdr-1], typeRowid);
4947 testcase( typeRowid==1 );
4948 testcase( typeRowid==2 );
4949 testcase( typeRowid==3 );
4950 testcase( typeRowid==4 );
4951 testcase( typeRowid==5 );
4952 testcase( typeRowid==6 );
4953 testcase( typeRowid==8 );
4954 testcase( typeRowid==9 );
4955 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
4956 goto idx_rowid_corruption;
4958 lenRowid = sqlite3SmallTypeSizes[typeRowid];
4959 testcase( (u32)m.n==szHdr+lenRowid );
4960 if( unlikely((u32)m.n<szHdr+lenRowid) ){
4961 goto idx_rowid_corruption;
4964 /* Fetch the integer off the end of the index record */
4965 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
4966 *rowid = v.u.i;
4967 sqlite3VdbeMemRelease(&m);
4968 return SQLITE_OK;
4970 /* Jump here if database corruption is detected after m has been
4971 ** allocated. Free the m object and return SQLITE_CORRUPT. */
4972 idx_rowid_corruption:
4973 testcase( m.szMalloc!=0 );
4974 sqlite3VdbeMemRelease(&m);
4975 return SQLITE_CORRUPT_BKPT;
4979 ** Compare the key of the index entry that cursor pC is pointing to against
4980 ** the key string in pUnpacked. Write into *pRes a number
4981 ** that is negative, zero, or positive if pC is less than, equal to,
4982 ** or greater than pUnpacked. Return SQLITE_OK on success.
4984 ** pUnpacked is either created without a rowid or is truncated so that it
4985 ** omits the rowid at the end. The rowid at the end of the index entry
4986 ** is ignored as well. Hence, this routine only compares the prefixes
4987 ** of the keys prior to the final rowid, not the entire key.
4989 int sqlite3VdbeIdxKeyCompare(
4990 sqlite3 *db, /* Database connection */
4991 VdbeCursor *pC, /* The cursor to compare against */
4992 UnpackedRecord *pUnpacked, /* Unpacked version of key */
4993 int *res /* Write the comparison result here */
4995 i64 nCellKey = 0;
4996 int rc;
4997 BtCursor *pCur;
4998 Mem m;
5000 assert( pC->eCurType==CURTYPE_BTREE );
5001 pCur = pC->uc.pCursor;
5002 assert( sqlite3BtreeCursorIsValid(pCur) );
5003 nCellKey = sqlite3BtreePayloadSize(pCur);
5004 /* nCellKey will always be between 0 and 0xffffffff because of the way
5005 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
5006 if( nCellKey<=0 || nCellKey>0x7fffffff ){
5007 *res = 0;
5008 return SQLITE_CORRUPT_BKPT;
5010 sqlite3VdbeMemInit(&m, db, 0);
5011 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
5012 if( rc ){
5013 return rc;
5015 *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0);
5016 sqlite3VdbeMemRelease(&m);
5017 return SQLITE_OK;
5021 ** This routine sets the value to be returned by subsequent calls to
5022 ** sqlite3_changes() on the database handle 'db'.
5024 void sqlite3VdbeSetChanges(sqlite3 *db, i64 nChange){
5025 assert( sqlite3_mutex_held(db->mutex) );
5026 db->nChange = nChange;
5027 db->nTotalChange += nChange;
5031 ** Set a flag in the vdbe to update the change counter when it is finalised
5032 ** or reset.
5034 void sqlite3VdbeCountChanges(Vdbe *v){
5035 v->changeCntOn = 1;
5039 ** Mark every prepared statement associated with a database connection
5040 ** as expired.
5042 ** An expired statement means that recompilation of the statement is
5043 ** recommend. Statements expire when things happen that make their
5044 ** programs obsolete. Removing user-defined functions or collating
5045 ** sequences, or changing an authorization function are the types of
5046 ** things that make prepared statements obsolete.
5048 ** If iCode is 1, then expiration is advisory. The statement should
5049 ** be reprepared before being restarted, but if it is already running
5050 ** it is allowed to run to completion.
5052 ** Internally, this function just sets the Vdbe.expired flag on all
5053 ** prepared statements. The flag is set to 1 for an immediate expiration
5054 ** and set to 2 for an advisory expiration.
5056 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){
5057 Vdbe *p;
5058 for(p = db->pVdbe; p; p=p->pNext){
5059 p->expired = iCode+1;
5064 ** Return the database associated with the Vdbe.
5066 sqlite3 *sqlite3VdbeDb(Vdbe *v){
5067 return v->db;
5071 ** Return the SQLITE_PREPARE flags for a Vdbe.
5073 u8 sqlite3VdbePrepareFlags(Vdbe *v){
5074 return v->prepFlags;
5078 ** Return a pointer to an sqlite3_value structure containing the value bound
5079 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
5080 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
5081 ** constants) to the value before returning it.
5083 ** The returned value must be freed by the caller using sqlite3ValueFree().
5085 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
5086 assert( iVar>0 );
5087 if( v ){
5088 Mem *pMem = &v->aVar[iVar-1];
5089 assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
5090 if( 0==(pMem->flags & MEM_Null) ){
5091 sqlite3_value *pRet = sqlite3ValueNew(v->db);
5092 if( pRet ){
5093 sqlite3VdbeMemCopy((Mem *)pRet, pMem);
5094 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
5096 return pRet;
5099 return 0;
5103 ** Configure SQL variable iVar so that binding a new value to it signals
5104 ** to sqlite3_reoptimize() that re-preparing the statement may result
5105 ** in a better query plan.
5107 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
5108 assert( iVar>0 );
5109 assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
5110 if( iVar>=32 ){
5111 v->expmask |= 0x80000000;
5112 }else{
5113 v->expmask |= ((u32)1 << (iVar-1));
5118 ** Cause a function to throw an error if it was call from OP_PureFunc
5119 ** rather than OP_Function.
5121 ** OP_PureFunc means that the function must be deterministic, and should
5122 ** throw an error if it is given inputs that would make it non-deterministic.
5123 ** This routine is invoked by date/time functions that use non-deterministic
5124 ** features such as 'now'.
5126 int sqlite3NotPureFunc(sqlite3_context *pCtx){
5127 const VdbeOp *pOp;
5128 #ifdef SQLITE_ENABLE_STAT4
5129 if( pCtx->pVdbe==0 ) return 1;
5130 #endif
5131 pOp = pCtx->pVdbe->aOp + pCtx->iOp;
5132 if( pOp->opcode==OP_PureFunc ){
5133 const char *zContext;
5134 char *zMsg;
5135 if( pOp->p5 & NC_IsCheck ){
5136 zContext = "a CHECK constraint";
5137 }else if( pOp->p5 & NC_GenCol ){
5138 zContext = "a generated column";
5139 }else{
5140 zContext = "an index";
5142 zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s",
5143 pCtx->pFunc->zName, zContext);
5144 sqlite3_result_error(pCtx, zMsg, -1);
5145 sqlite3_free(zMsg);
5146 return 0;
5148 return 1;
5151 #ifndef SQLITE_OMIT_VIRTUALTABLE
5153 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
5154 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
5155 ** in memory obtained from sqlite3DbMalloc).
5157 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
5158 if( pVtab->zErrMsg ){
5159 sqlite3 *db = p->db;
5160 sqlite3DbFree(db, p->zErrMsg);
5161 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
5162 sqlite3_free(pVtab->zErrMsg);
5163 pVtab->zErrMsg = 0;
5166 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5168 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5171 ** If the second argument is not NULL, release any allocations associated
5172 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
5173 ** structure itself, using sqlite3DbFree().
5175 ** This function is used to free UnpackedRecord structures allocated by
5176 ** the vdbeUnpackRecord() function found in vdbeapi.c.
5178 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
5179 if( p ){
5180 int i;
5181 for(i=0; i<nField; i++){
5182 Mem *pMem = &p->aMem[i];
5183 if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem);
5185 sqlite3DbFreeNN(db, p);
5188 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5190 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5192 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
5193 ** then cursor passed as the second argument should point to the row about
5194 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
5195 ** the required value will be read from the row the cursor points to.
5197 void sqlite3VdbePreUpdateHook(
5198 Vdbe *v, /* Vdbe pre-update hook is invoked by */
5199 VdbeCursor *pCsr, /* Cursor to grab old.* values from */
5200 int op, /* SQLITE_INSERT, UPDATE or DELETE */
5201 const char *zDb, /* Database name */
5202 Table *pTab, /* Modified table */
5203 i64 iKey1, /* Initial key value */
5204 int iReg, /* Register for new.* record */
5205 int iBlobWrite
5207 sqlite3 *db = v->db;
5208 i64 iKey2;
5209 PreUpdate preupdate;
5210 const char *zTbl = pTab->zName;
5211 static const u8 fakeSortOrder = 0;
5213 assert( db->pPreUpdate==0 );
5214 memset(&preupdate, 0, sizeof(PreUpdate));
5215 if( HasRowid(pTab)==0 ){
5216 iKey1 = iKey2 = 0;
5217 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab);
5218 }else{
5219 if( op==SQLITE_UPDATE ){
5220 iKey2 = v->aMem[iReg].u.i;
5221 }else{
5222 iKey2 = iKey1;
5226 assert( pCsr!=0 );
5227 assert( pCsr->eCurType==CURTYPE_BTREE );
5228 assert( pCsr->nField==pTab->nCol
5229 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1)
5232 preupdate.v = v;
5233 preupdate.pCsr = pCsr;
5234 preupdate.op = op;
5235 preupdate.iNewReg = iReg;
5236 preupdate.keyinfo.db = db;
5237 preupdate.keyinfo.enc = ENC(db);
5238 preupdate.keyinfo.nKeyField = pTab->nCol;
5239 preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder;
5240 preupdate.iKey1 = iKey1;
5241 preupdate.iKey2 = iKey2;
5242 preupdate.pTab = pTab;
5243 preupdate.iBlobWrite = iBlobWrite;
5245 db->pPreUpdate = &preupdate;
5246 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
5247 db->pPreUpdate = 0;
5248 sqlite3DbFree(db, preupdate.aRecord);
5249 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked);
5250 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked);
5251 if( preupdate.aNew ){
5252 int i;
5253 for(i=0; i<pCsr->nField; i++){
5254 sqlite3VdbeMemRelease(&preupdate.aNew[i]);
5256 sqlite3DbFreeNN(db, preupdate.aNew);
5259 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */