Snapshot of upstream SQLite 3.37.2
[sqlcipher.git] / src / build.c
blobd53ff3b6709541866e831f7566b0aa1497aab1ef
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced. The routines in this file handle the
14 ** following kinds of SQL syntax:
16 ** CREATE TABLE
17 ** DROP TABLE
18 ** CREATE INDEX
19 ** DROP INDEX
20 ** creating ID lists
21 ** BEGIN TRANSACTION
22 ** COMMIT
23 ** ROLLBACK
25 #include "sqliteInt.h"
27 #ifndef SQLITE_OMIT_SHARED_CACHE
29 ** The TableLock structure is only used by the sqlite3TableLock() and
30 ** codeTableLocks() functions.
32 struct TableLock {
33 int iDb; /* The database containing the table to be locked */
34 Pgno iTab; /* The root page of the table to be locked */
35 u8 isWriteLock; /* True for write lock. False for a read lock */
36 const char *zLockName; /* Name of the table */
40 ** Record the fact that we want to lock a table at run-time.
42 ** The table to be locked has root page iTab and is found in database iDb.
43 ** A read or a write lock can be taken depending on isWritelock.
45 ** This routine just records the fact that the lock is desired. The
46 ** code to make the lock occur is generated by a later call to
47 ** codeTableLocks() which occurs during sqlite3FinishCoding().
49 static SQLITE_NOINLINE void lockTable(
50 Parse *pParse, /* Parsing context */
51 int iDb, /* Index of the database containing the table to lock */
52 Pgno iTab, /* Root page number of the table to be locked */
53 u8 isWriteLock, /* True for a write lock */
54 const char *zName /* Name of the table to be locked */
56 Parse *pToplevel;
57 int i;
58 int nBytes;
59 TableLock *p;
60 assert( iDb>=0 );
62 pToplevel = sqlite3ParseToplevel(pParse);
63 for(i=0; i<pToplevel->nTableLock; i++){
64 p = &pToplevel->aTableLock[i];
65 if( p->iDb==iDb && p->iTab==iTab ){
66 p->isWriteLock = (p->isWriteLock || isWriteLock);
67 return;
71 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
72 pToplevel->aTableLock =
73 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
74 if( pToplevel->aTableLock ){
75 p = &pToplevel->aTableLock[pToplevel->nTableLock++];
76 p->iDb = iDb;
77 p->iTab = iTab;
78 p->isWriteLock = isWriteLock;
79 p->zLockName = zName;
80 }else{
81 pToplevel->nTableLock = 0;
82 sqlite3OomFault(pToplevel->db);
85 void sqlite3TableLock(
86 Parse *pParse, /* Parsing context */
87 int iDb, /* Index of the database containing the table to lock */
88 Pgno iTab, /* Root page number of the table to be locked */
89 u8 isWriteLock, /* True for a write lock */
90 const char *zName /* Name of the table to be locked */
92 if( iDb==1 ) return;
93 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return;
94 lockTable(pParse, iDb, iTab, isWriteLock, zName);
98 ** Code an OP_TableLock instruction for each table locked by the
99 ** statement (configured by calls to sqlite3TableLock()).
101 static void codeTableLocks(Parse *pParse){
102 int i;
103 Vdbe *pVdbe = pParse->pVdbe;
104 assert( pVdbe!=0 );
106 for(i=0; i<pParse->nTableLock; i++){
107 TableLock *p = &pParse->aTableLock[i];
108 int p1 = p->iDb;
109 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
110 p->zLockName, P4_STATIC);
113 #else
114 #define codeTableLocks(x)
115 #endif
118 ** Return TRUE if the given yDbMask object is empty - if it contains no
119 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero()
120 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
122 #if SQLITE_MAX_ATTACHED>30
123 int sqlite3DbMaskAllZero(yDbMask m){
124 int i;
125 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
126 return 1;
128 #endif
131 ** This routine is called after a single SQL statement has been
132 ** parsed and a VDBE program to execute that statement has been
133 ** prepared. This routine puts the finishing touches on the
134 ** VDBE program and resets the pParse structure for the next
135 ** parse.
137 ** Note that if an error occurred, it might be the case that
138 ** no VDBE code was generated.
140 void sqlite3FinishCoding(Parse *pParse){
141 sqlite3 *db;
142 Vdbe *v;
144 assert( pParse->pToplevel==0 );
145 db = pParse->db;
146 if( pParse->nested ) return;
147 if( db->mallocFailed || pParse->nErr ){
148 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR;
149 return;
152 /* Begin by generating some termination code at the end of the
153 ** vdbe program
155 v = pParse->pVdbe;
156 if( v==0 ){
157 if( db->init.busy ){
158 pParse->rc = SQLITE_DONE;
159 return;
161 v = sqlite3GetVdbe(pParse);
162 if( v==0 ) pParse->rc = SQLITE_ERROR;
164 assert( !pParse->isMultiWrite
165 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
166 if( v ){
167 if( pParse->bReturning ){
168 Returning *pReturning = pParse->u1.pReturning;
169 int addrRewind;
170 int i;
171 int reg;
173 if( pReturning->nRetCol==0 ){
174 assert( CORRUPT_DB );
175 }else{
176 addrRewind =
177 sqlite3VdbeAddOp1(v, OP_Rewind, pReturning->iRetCur);
178 VdbeCoverage(v);
179 reg = pReturning->iRetReg;
180 for(i=0; i<pReturning->nRetCol; i++){
181 sqlite3VdbeAddOp3(v, OP_Column, pReturning->iRetCur, i, reg+i);
183 sqlite3VdbeAddOp2(v, OP_ResultRow, reg, i);
184 sqlite3VdbeAddOp2(v, OP_Next, pReturning->iRetCur, addrRewind+1);
185 VdbeCoverage(v);
186 sqlite3VdbeJumpHere(v, addrRewind);
189 sqlite3VdbeAddOp0(v, OP_Halt);
191 #if SQLITE_USER_AUTHENTICATION
192 if( pParse->nTableLock>0 && db->init.busy==0 ){
193 sqlite3UserAuthInit(db);
194 if( db->auth.authLevel<UAUTH_User ){
195 sqlite3ErrorMsg(pParse, "user not authenticated");
196 pParse->rc = SQLITE_AUTH_USER;
197 return;
200 #endif
202 /* The cookie mask contains one bit for each database file open.
203 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
204 ** set for each database that is used. Generate code to start a
205 ** transaction on each used database and to verify the schema cookie
206 ** on each used database.
208 if( db->mallocFailed==0
209 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
211 int iDb, i;
212 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
213 sqlite3VdbeJumpHere(v, 0);
214 for(iDb=0; iDb<db->nDb; iDb++){
215 Schema *pSchema;
216 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
217 sqlite3VdbeUsesBtree(v, iDb);
218 pSchema = db->aDb[iDb].pSchema;
219 sqlite3VdbeAddOp4Int(v,
220 OP_Transaction, /* Opcode */
221 iDb, /* P1 */
222 DbMaskTest(pParse->writeMask,iDb), /* P2 */
223 pSchema->schema_cookie, /* P3 */
224 pSchema->iGeneration /* P4 */
226 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
227 VdbeComment((v,
228 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
230 #ifndef SQLITE_OMIT_VIRTUALTABLE
231 for(i=0; i<pParse->nVtabLock; i++){
232 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
233 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
235 pParse->nVtabLock = 0;
236 #endif
238 /* Once all the cookies have been verified and transactions opened,
239 ** obtain the required table-locks. This is a no-op unless the
240 ** shared-cache feature is enabled.
242 codeTableLocks(pParse);
244 /* Initialize any AUTOINCREMENT data structures required.
246 sqlite3AutoincrementBegin(pParse);
248 /* Code constant expressions that where factored out of inner loops.
250 ** The pConstExpr list might also contain expressions that we simply
251 ** want to keep around until the Parse object is deleted. Such
252 ** expressions have iConstExprReg==0. Do not generate code for
253 ** those expressions, of course.
255 if( pParse->pConstExpr ){
256 ExprList *pEL = pParse->pConstExpr;
257 pParse->okConstFactor = 0;
258 for(i=0; i<pEL->nExpr; i++){
259 int iReg = pEL->a[i].u.iConstExprReg;
260 if( iReg>0 ){
261 sqlite3ExprCode(pParse, pEL->a[i].pExpr, iReg);
266 if( pParse->bReturning ){
267 Returning *pRet = pParse->u1.pReturning;
268 if( pRet->nRetCol==0 ){
269 assert( CORRUPT_DB );
270 }else{
271 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRet->iRetCur, pRet->nRetCol);
275 /* Finally, jump back to the beginning of the executable code. */
276 sqlite3VdbeGoto(v, 1);
280 /* Get the VDBE program ready for execution
282 if( v && pParse->nErr==0 && !db->mallocFailed ){
283 /* A minimum of one cursor is required if autoincrement is used
284 * See ticket [a696379c1f08866] */
285 assert( pParse->pAinc==0 || pParse->nTab>0 );
286 sqlite3VdbeMakeReady(v, pParse);
287 pParse->rc = SQLITE_DONE;
288 }else{
289 pParse->rc = SQLITE_ERROR;
294 ** Run the parser and code generator recursively in order to generate
295 ** code for the SQL statement given onto the end of the pParse context
296 ** currently under construction. Notes:
298 ** * The final OP_Halt is not appended and other initialization
299 ** and finalization steps are omitted because those are handling by the
300 ** outermost parser.
302 ** * Built-in SQL functions always take precedence over application-defined
303 ** SQL functions. In other words, it is not possible to override a
304 ** built-in function.
306 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
307 va_list ap;
308 char *zSql;
309 char *zErrMsg = 0;
310 sqlite3 *db = pParse->db;
311 u32 savedDbFlags = db->mDbFlags;
312 char saveBuf[PARSE_TAIL_SZ];
314 if( pParse->nErr ) return;
315 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
316 va_start(ap, zFormat);
317 zSql = sqlite3VMPrintf(db, zFormat, ap);
318 va_end(ap);
319 if( zSql==0 ){
320 /* This can result either from an OOM or because the formatted string
321 ** exceeds SQLITE_LIMIT_LENGTH. In the latter case, we need to set
322 ** an error */
323 if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG;
324 pParse->nErr++;
325 return;
327 pParse->nested++;
328 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ);
329 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ);
330 db->mDbFlags |= DBFLAG_PreferBuiltin;
331 sqlite3RunParser(pParse, zSql, &zErrMsg);
332 db->mDbFlags = savedDbFlags;
333 sqlite3DbFree(db, zErrMsg);
334 sqlite3DbFree(db, zSql);
335 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ);
336 pParse->nested--;
339 #if SQLITE_USER_AUTHENTICATION
341 ** Return TRUE if zTable is the name of the system table that stores the
342 ** list of users and their access credentials.
344 int sqlite3UserAuthTable(const char *zTable){
345 return sqlite3_stricmp(zTable, "sqlite_user")==0;
347 #endif
350 ** Locate the in-memory structure that describes a particular database
351 ** table given the name of that table and (optionally) the name of the
352 ** database containing the table. Return NULL if not found.
354 ** If zDatabase is 0, all databases are searched for the table and the
355 ** first matching table is returned. (No checking for duplicate table
356 ** names is done.) The search order is TEMP first, then MAIN, then any
357 ** auxiliary databases added using the ATTACH command.
359 ** See also sqlite3LocateTable().
361 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
362 Table *p = 0;
363 int i;
365 /* All mutexes are required for schema access. Make sure we hold them. */
366 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
367 #if SQLITE_USER_AUTHENTICATION
368 /* Only the admin user is allowed to know that the sqlite_user table
369 ** exists */
370 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
371 return 0;
373 #endif
374 if( zDatabase ){
375 for(i=0; i<db->nDb; i++){
376 if( sqlite3StrICmp(zDatabase, db->aDb[i].zDbSName)==0 ) break;
378 if( i>=db->nDb ){
379 /* No match against the official names. But always match "main"
380 ** to schema 0 as a legacy fallback. */
381 if( sqlite3StrICmp(zDatabase,"main")==0 ){
382 i = 0;
383 }else{
384 return 0;
387 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName);
388 if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
389 if( i==1 ){
390 if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0
391 || sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0
392 || sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0
394 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash,
395 LEGACY_TEMP_SCHEMA_TABLE);
397 }else{
398 if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){
399 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash,
400 LEGACY_SCHEMA_TABLE);
404 }else{
405 /* Match against TEMP first */
406 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, zName);
407 if( p ) return p;
408 /* The main database is second */
409 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, zName);
410 if( p ) return p;
411 /* Attached databases are in order of attachment */
412 for(i=2; i<db->nDb; i++){
413 assert( sqlite3SchemaMutexHeld(db, i, 0) );
414 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName);
415 if( p ) break;
417 if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
418 if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){
419 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, LEGACY_SCHEMA_TABLE);
420 }else if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0 ){
421 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash,
422 LEGACY_TEMP_SCHEMA_TABLE);
426 return p;
430 ** Locate the in-memory structure that describes a particular database
431 ** table given the name of that table and (optionally) the name of the
432 ** database containing the table. Return NULL if not found. Also leave an
433 ** error message in pParse->zErrMsg.
435 ** The difference between this routine and sqlite3FindTable() is that this
436 ** routine leaves an error message in pParse->zErrMsg where
437 ** sqlite3FindTable() does not.
439 Table *sqlite3LocateTable(
440 Parse *pParse, /* context in which to report errors */
441 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */
442 const char *zName, /* Name of the table we are looking for */
443 const char *zDbase /* Name of the database. Might be NULL */
445 Table *p;
446 sqlite3 *db = pParse->db;
448 /* Read the database schema. If an error occurs, leave an error message
449 ** and code in pParse and return NULL. */
450 if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0
451 && SQLITE_OK!=sqlite3ReadSchema(pParse)
453 return 0;
456 p = sqlite3FindTable(db, zName, zDbase);
457 if( p==0 ){
458 #ifndef SQLITE_OMIT_VIRTUALTABLE
459 /* If zName is the not the name of a table in the schema created using
460 ** CREATE, then check to see if it is the name of an virtual table that
461 ** can be an eponymous virtual table. */
462 if( pParse->disableVtab==0 && db->init.busy==0 ){
463 Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName);
464 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){
465 pMod = sqlite3PragmaVtabRegister(db, zName);
467 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
468 testcase( pMod->pEpoTab==0 );
469 return pMod->pEpoTab;
472 #endif
473 if( flags & LOCATE_NOERR ) return 0;
474 pParse->checkSchema = 1;
475 }else if( IsVirtual(p) && pParse->disableVtab ){
476 p = 0;
479 if( p==0 ){
480 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table";
481 if( zDbase ){
482 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
483 }else{
484 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
486 }else{
487 assert( HasRowid(p) || p->iPKey<0 );
490 return p;
494 ** Locate the table identified by *p.
496 ** This is a wrapper around sqlite3LocateTable(). The difference between
497 ** sqlite3LocateTable() and this function is that this function restricts
498 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
499 ** non-NULL if it is part of a view or trigger program definition. See
500 ** sqlite3FixSrcList() for details.
502 Table *sqlite3LocateTableItem(
503 Parse *pParse,
504 u32 flags,
505 SrcItem *p
507 const char *zDb;
508 assert( p->pSchema==0 || p->zDatabase==0 );
509 if( p->pSchema ){
510 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
511 zDb = pParse->db->aDb[iDb].zDbSName;
512 }else{
513 zDb = p->zDatabase;
515 return sqlite3LocateTable(pParse, flags, p->zName, zDb);
519 ** Return the preferred table name for system tables. Translate legacy
520 ** names into the new preferred names, as appropriate.
522 const char *sqlite3PreferredTableName(const char *zName){
523 if( sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
524 if( sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0 ){
525 return PREFERRED_SCHEMA_TABLE;
527 if( sqlite3StrICmp(zName+7, &LEGACY_TEMP_SCHEMA_TABLE[7])==0 ){
528 return PREFERRED_TEMP_SCHEMA_TABLE;
531 return zName;
535 ** Locate the in-memory structure that describes
536 ** a particular index given the name of that index
537 ** and the name of the database that contains the index.
538 ** Return NULL if not found.
540 ** If zDatabase is 0, all databases are searched for the
541 ** table and the first matching index is returned. (No checking
542 ** for duplicate index names is done.) The search order is
543 ** TEMP first, then MAIN, then any auxiliary databases added
544 ** using the ATTACH command.
546 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
547 Index *p = 0;
548 int i;
549 /* All mutexes are required for schema access. Make sure we hold them. */
550 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
551 for(i=OMIT_TEMPDB; i<db->nDb; i++){
552 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
553 Schema *pSchema = db->aDb[j].pSchema;
554 assert( pSchema );
555 if( zDb && sqlite3DbIsNamed(db, j, zDb)==0 ) continue;
556 assert( sqlite3SchemaMutexHeld(db, j, 0) );
557 p = sqlite3HashFind(&pSchema->idxHash, zName);
558 if( p ) break;
560 return p;
564 ** Reclaim the memory used by an index
566 void sqlite3FreeIndex(sqlite3 *db, Index *p){
567 #ifndef SQLITE_OMIT_ANALYZE
568 sqlite3DeleteIndexSamples(db, p);
569 #endif
570 sqlite3ExprDelete(db, p->pPartIdxWhere);
571 sqlite3ExprListDelete(db, p->aColExpr);
572 sqlite3DbFree(db, p->zColAff);
573 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl);
574 #ifdef SQLITE_ENABLE_STAT4
575 sqlite3_free(p->aiRowEst);
576 #endif
577 sqlite3DbFree(db, p);
581 ** For the index called zIdxName which is found in the database iDb,
582 ** unlike that index from its Table then remove the index from
583 ** the index hash table and free all memory structures associated
584 ** with the index.
586 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
587 Index *pIndex;
588 Hash *pHash;
590 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
591 pHash = &db->aDb[iDb].pSchema->idxHash;
592 pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
593 if( ALWAYS(pIndex) ){
594 if( pIndex->pTable->pIndex==pIndex ){
595 pIndex->pTable->pIndex = pIndex->pNext;
596 }else{
597 Index *p;
598 /* Justification of ALWAYS(); The index must be on the list of
599 ** indices. */
600 p = pIndex->pTable->pIndex;
601 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
602 if( ALWAYS(p && p->pNext==pIndex) ){
603 p->pNext = pIndex->pNext;
606 sqlite3FreeIndex(db, pIndex);
608 db->mDbFlags |= DBFLAG_SchemaChange;
612 ** Look through the list of open database files in db->aDb[] and if
613 ** any have been closed, remove them from the list. Reallocate the
614 ** db->aDb[] structure to a smaller size, if possible.
616 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
617 ** are never candidates for being collapsed.
619 void sqlite3CollapseDatabaseArray(sqlite3 *db){
620 int i, j;
621 for(i=j=2; i<db->nDb; i++){
622 struct Db *pDb = &db->aDb[i];
623 if( pDb->pBt==0 ){
624 sqlite3DbFree(db, pDb->zDbSName);
625 pDb->zDbSName = 0;
626 continue;
628 if( j<i ){
629 db->aDb[j] = db->aDb[i];
631 j++;
633 db->nDb = j;
634 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
635 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
636 sqlite3DbFree(db, db->aDb);
637 db->aDb = db->aDbStatic;
642 ** Reset the schema for the database at index iDb. Also reset the
643 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero.
644 ** Deferred resets may be run by calling with iDb<0.
646 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
647 int i;
648 assert( iDb<db->nDb );
650 if( iDb>=0 ){
651 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
652 DbSetProperty(db, iDb, DB_ResetWanted);
653 DbSetProperty(db, 1, DB_ResetWanted);
654 db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
657 if( db->nSchemaLock==0 ){
658 for(i=0; i<db->nDb; i++){
659 if( DbHasProperty(db, i, DB_ResetWanted) ){
660 sqlite3SchemaClear(db->aDb[i].pSchema);
667 ** Erase all schema information from all attached databases (including
668 ** "main" and "temp") for a single database connection.
670 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
671 int i;
672 sqlite3BtreeEnterAll(db);
673 for(i=0; i<db->nDb; i++){
674 Db *pDb = &db->aDb[i];
675 if( pDb->pSchema ){
676 if( db->nSchemaLock==0 ){
677 sqlite3SchemaClear(pDb->pSchema);
678 }else{
679 DbSetProperty(db, i, DB_ResetWanted);
683 db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk);
684 sqlite3VtabUnlockList(db);
685 sqlite3BtreeLeaveAll(db);
686 if( db->nSchemaLock==0 ){
687 sqlite3CollapseDatabaseArray(db);
692 ** This routine is called when a commit occurs.
694 void sqlite3CommitInternalChanges(sqlite3 *db){
695 db->mDbFlags &= ~DBFLAG_SchemaChange;
699 ** Set the expression associated with a column. This is usually
700 ** the DEFAULT value, but might also be the expression that computes
701 ** the value for a generated column.
703 void sqlite3ColumnSetExpr(
704 Parse *pParse, /* Parsing context */
705 Table *pTab, /* The table containing the column */
706 Column *pCol, /* The column to receive the new DEFAULT expression */
707 Expr *pExpr /* The new default expression */
709 ExprList *pList;
710 assert( IsOrdinaryTable(pTab) );
711 pList = pTab->u.tab.pDfltList;
712 if( pCol->iDflt==0
713 || NEVER(pList==0)
714 || NEVER(pList->nExpr<pCol->iDflt)
716 pCol->iDflt = pList==0 ? 1 : pList->nExpr+1;
717 pTab->u.tab.pDfltList = sqlite3ExprListAppend(pParse, pList, pExpr);
718 }else{
719 sqlite3ExprDelete(pParse->db, pList->a[pCol->iDflt-1].pExpr);
720 pList->a[pCol->iDflt-1].pExpr = pExpr;
725 ** Return the expression associated with a column. The expression might be
726 ** the DEFAULT clause or the AS clause of a generated column.
727 ** Return NULL if the column has no associated expression.
729 Expr *sqlite3ColumnExpr(Table *pTab, Column *pCol){
730 if( pCol->iDflt==0 ) return 0;
731 if( NEVER(!IsOrdinaryTable(pTab)) ) return 0;
732 if( NEVER(pTab->u.tab.pDfltList==0) ) return 0;
733 if( NEVER(pTab->u.tab.pDfltList->nExpr<pCol->iDflt) ) return 0;
734 return pTab->u.tab.pDfltList->a[pCol->iDflt-1].pExpr;
738 ** Set the collating sequence name for a column.
740 void sqlite3ColumnSetColl(
741 sqlite3 *db,
742 Column *pCol,
743 const char *zColl
745 i64 nColl;
746 i64 n;
747 char *zNew;
748 assert( zColl!=0 );
749 n = sqlite3Strlen30(pCol->zCnName) + 1;
750 if( pCol->colFlags & COLFLAG_HASTYPE ){
751 n += sqlite3Strlen30(pCol->zCnName+n) + 1;
753 nColl = sqlite3Strlen30(zColl) + 1;
754 zNew = sqlite3DbRealloc(db, pCol->zCnName, nColl+n);
755 if( zNew ){
756 pCol->zCnName = zNew;
757 memcpy(pCol->zCnName + n, zColl, nColl);
758 pCol->colFlags |= COLFLAG_HASCOLL;
763 ** Return the collating squence name for a column
765 const char *sqlite3ColumnColl(Column *pCol){
766 const char *z;
767 if( (pCol->colFlags & COLFLAG_HASCOLL)==0 ) return 0;
768 z = pCol->zCnName;
769 while( *z ){ z++; }
770 if( pCol->colFlags & COLFLAG_HASTYPE ){
771 do{ z++; }while( *z );
773 return z+1;
777 ** Delete memory allocated for the column names of a table or view (the
778 ** Table.aCol[] array).
780 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
781 int i;
782 Column *pCol;
783 assert( pTable!=0 );
784 if( (pCol = pTable->aCol)!=0 ){
785 for(i=0; i<pTable->nCol; i++, pCol++){
786 assert( pCol->zCnName==0 || pCol->hName==sqlite3StrIHash(pCol->zCnName) );
787 sqlite3DbFree(db, pCol->zCnName);
789 sqlite3DbFree(db, pTable->aCol);
790 if( IsOrdinaryTable(pTable) ){
791 sqlite3ExprListDelete(db, pTable->u.tab.pDfltList);
793 if( db==0 || db->pnBytesFreed==0 ){
794 pTable->aCol = 0;
795 pTable->nCol = 0;
796 if( IsOrdinaryTable(pTable) ){
797 pTable->u.tab.pDfltList = 0;
804 ** Remove the memory data structures associated with the given
805 ** Table. No changes are made to disk by this routine.
807 ** This routine just deletes the data structure. It does not unlink
808 ** the table data structure from the hash table. But it does destroy
809 ** memory structures of the indices and foreign keys associated with
810 ** the table.
812 ** The db parameter is optional. It is needed if the Table object
813 ** contains lookaside memory. (Table objects in the schema do not use
814 ** lookaside memory, but some ephemeral Table objects do.) Or the
815 ** db parameter can be used with db->pnBytesFreed to measure the memory
816 ** used by the Table object.
818 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){
819 Index *pIndex, *pNext;
821 #ifdef SQLITE_DEBUG
822 /* Record the number of outstanding lookaside allocations in schema Tables
823 ** prior to doing any free() operations. Since schema Tables do not use
824 ** lookaside, this number should not change.
826 ** If malloc has already failed, it may be that it failed while allocating
827 ** a Table object that was going to be marked ephemeral. So do not check
828 ** that no lookaside memory is used in this case either. */
829 int nLookaside = 0;
830 if( db && !db->mallocFailed && (pTable->tabFlags & TF_Ephemeral)==0 ){
831 nLookaside = sqlite3LookasideUsed(db, 0);
833 #endif
835 /* Delete all indices associated with this table. */
836 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
837 pNext = pIndex->pNext;
838 assert( pIndex->pSchema==pTable->pSchema
839 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) );
840 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){
841 char *zName = pIndex->zName;
842 TESTONLY ( Index *pOld = ) sqlite3HashInsert(
843 &pIndex->pSchema->idxHash, zName, 0
845 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
846 assert( pOld==pIndex || pOld==0 );
848 sqlite3FreeIndex(db, pIndex);
851 if( IsOrdinaryTable(pTable) ){
852 sqlite3FkDelete(db, pTable);
854 #ifndef SQLITE_OMIT_VIRTUAL_TABLE
855 else if( IsVirtual(pTable) ){
856 sqlite3VtabClear(db, pTable);
858 #endif
859 else{
860 assert( IsView(pTable) );
861 sqlite3SelectDelete(db, pTable->u.view.pSelect);
864 /* Delete the Table structure itself.
866 sqlite3DeleteColumnNames(db, pTable);
867 sqlite3DbFree(db, pTable->zName);
868 sqlite3DbFree(db, pTable->zColAff);
869 sqlite3ExprListDelete(db, pTable->pCheck);
870 sqlite3DbFree(db, pTable);
872 /* Verify that no lookaside memory was used by schema tables */
873 assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) );
875 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
876 /* Do not delete the table until the reference count reaches zero. */
877 if( !pTable ) return;
878 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return;
879 deleteTable(db, pTable);
884 ** Unlink the given table from the hash tables and the delete the
885 ** table structure with all its indices and foreign keys.
887 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
888 Table *p;
889 Db *pDb;
891 assert( db!=0 );
892 assert( iDb>=0 && iDb<db->nDb );
893 assert( zTabName );
894 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
895 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */
896 pDb = &db->aDb[iDb];
897 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
898 sqlite3DeleteTable(db, p);
899 db->mDbFlags |= DBFLAG_SchemaChange;
903 ** Given a token, return a string that consists of the text of that
904 ** token. Space to hold the returned string
905 ** is obtained from sqliteMalloc() and must be freed by the calling
906 ** function.
908 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that
909 ** surround the body of the token are removed.
911 ** Tokens are often just pointers into the original SQL text and so
912 ** are not \000 terminated and are not persistent. The returned string
913 ** is \000 terminated and is persistent.
915 char *sqlite3NameFromToken(sqlite3 *db, const Token *pName){
916 char *zName;
917 if( pName ){
918 zName = sqlite3DbStrNDup(db, (const char*)pName->z, pName->n);
919 sqlite3Dequote(zName);
920 }else{
921 zName = 0;
923 return zName;
927 ** Open the sqlite_schema table stored in database number iDb for
928 ** writing. The table is opened using cursor 0.
930 void sqlite3OpenSchemaTable(Parse *p, int iDb){
931 Vdbe *v = sqlite3GetVdbe(p);
932 sqlite3TableLock(p, iDb, SCHEMA_ROOT, 1, LEGACY_SCHEMA_TABLE);
933 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, SCHEMA_ROOT, iDb, 5);
934 if( p->nTab==0 ){
935 p->nTab = 1;
940 ** Parameter zName points to a nul-terminated buffer containing the name
941 ** of a database ("main", "temp" or the name of an attached db). This
942 ** function returns the index of the named database in db->aDb[], or
943 ** -1 if the named db cannot be found.
945 int sqlite3FindDbName(sqlite3 *db, const char *zName){
946 int i = -1; /* Database number */
947 if( zName ){
948 Db *pDb;
949 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
950 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break;
951 /* "main" is always an acceptable alias for the primary database
952 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */
953 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break;
956 return i;
960 ** The token *pName contains the name of a database (either "main" or
961 ** "temp" or the name of an attached db). This routine returns the
962 ** index of the named database in db->aDb[], or -1 if the named db
963 ** does not exist.
965 int sqlite3FindDb(sqlite3 *db, Token *pName){
966 int i; /* Database number */
967 char *zName; /* Name we are searching for */
968 zName = sqlite3NameFromToken(db, pName);
969 i = sqlite3FindDbName(db, zName);
970 sqlite3DbFree(db, zName);
971 return i;
974 /* The table or view or trigger name is passed to this routine via tokens
975 ** pName1 and pName2. If the table name was fully qualified, for example:
977 ** CREATE TABLE xxx.yyy (...);
979 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
980 ** the table name is not fully qualified, i.e.:
982 ** CREATE TABLE yyy(...);
984 ** Then pName1 is set to "yyy" and pName2 is "".
986 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
987 ** pName2) that stores the unqualified table name. The index of the
988 ** database "xxx" is returned.
990 int sqlite3TwoPartName(
991 Parse *pParse, /* Parsing and code generating context */
992 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
993 Token *pName2, /* The "yyy" in the name "xxx.yyy" */
994 Token **pUnqual /* Write the unqualified object name here */
996 int iDb; /* Database holding the object */
997 sqlite3 *db = pParse->db;
999 assert( pName2!=0 );
1000 if( pName2->n>0 ){
1001 if( db->init.busy ) {
1002 sqlite3ErrorMsg(pParse, "corrupt database");
1003 return -1;
1005 *pUnqual = pName2;
1006 iDb = sqlite3FindDb(db, pName1);
1007 if( iDb<0 ){
1008 sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
1009 return -1;
1011 }else{
1012 assert( db->init.iDb==0 || db->init.busy || IN_SPECIAL_PARSE
1013 || (db->mDbFlags & DBFLAG_Vacuum)!=0);
1014 iDb = db->init.iDb;
1015 *pUnqual = pName1;
1017 return iDb;
1021 ** True if PRAGMA writable_schema is ON
1023 int sqlite3WritableSchema(sqlite3 *db){
1024 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 );
1025 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
1026 SQLITE_WriteSchema );
1027 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
1028 SQLITE_Defensive );
1029 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
1030 (SQLITE_WriteSchema|SQLITE_Defensive) );
1031 return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema;
1035 ** This routine is used to check if the UTF-8 string zName is a legal
1036 ** unqualified name for a new schema object (table, index, view or
1037 ** trigger). All names are legal except those that begin with the string
1038 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
1039 ** is reserved for internal use.
1041 ** When parsing the sqlite_schema table, this routine also checks to
1042 ** make sure the "type", "name", and "tbl_name" columns are consistent
1043 ** with the SQL.
1045 int sqlite3CheckObjectName(
1046 Parse *pParse, /* Parsing context */
1047 const char *zName, /* Name of the object to check */
1048 const char *zType, /* Type of this object */
1049 const char *zTblName /* Parent table name for triggers and indexes */
1051 sqlite3 *db = pParse->db;
1052 if( sqlite3WritableSchema(db)
1053 || db->init.imposterTable
1054 || !sqlite3Config.bExtraSchemaChecks
1056 /* Skip these error checks for writable_schema=ON */
1057 return SQLITE_OK;
1059 if( db->init.busy ){
1060 if( sqlite3_stricmp(zType, db->init.azInit[0])
1061 || sqlite3_stricmp(zName, db->init.azInit[1])
1062 || sqlite3_stricmp(zTblName, db->init.azInit[2])
1064 sqlite3ErrorMsg(pParse, ""); /* corruptSchema() will supply the error */
1065 return SQLITE_ERROR;
1067 }else{
1068 if( (pParse->nested==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7))
1069 || (sqlite3ReadOnlyShadowTables(db) && sqlite3ShadowTableName(db, zName))
1071 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s",
1072 zName);
1073 return SQLITE_ERROR;
1077 return SQLITE_OK;
1081 ** Return the PRIMARY KEY index of a table
1083 Index *sqlite3PrimaryKeyIndex(Table *pTab){
1084 Index *p;
1085 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
1086 return p;
1090 ** Convert an table column number into a index column number. That is,
1091 ** for the column iCol in the table (as defined by the CREATE TABLE statement)
1092 ** find the (first) offset of that column in index pIdx. Or return -1
1093 ** if column iCol is not used in index pIdx.
1095 i16 sqlite3TableColumnToIndex(Index *pIdx, i16 iCol){
1096 int i;
1097 for(i=0; i<pIdx->nColumn; i++){
1098 if( iCol==pIdx->aiColumn[i] ) return i;
1100 return -1;
1103 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1104 /* Convert a storage column number into a table column number.
1106 ** The storage column number (0,1,2,....) is the index of the value
1107 ** as it appears in the record on disk. The true column number
1108 ** is the index (0,1,2,...) of the column in the CREATE TABLE statement.
1110 ** The storage column number is less than the table column number if
1111 ** and only there are VIRTUAL columns to the left.
1113 ** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro.
1115 i16 sqlite3StorageColumnToTable(Table *pTab, i16 iCol){
1116 if( pTab->tabFlags & TF_HasVirtual ){
1117 int i;
1118 for(i=0; i<=iCol; i++){
1119 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) iCol++;
1122 return iCol;
1124 #endif
1126 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1127 /* Convert a table column number into a storage column number.
1129 ** The storage column number (0,1,2,....) is the index of the value
1130 ** as it appears in the record on disk. Or, if the input column is
1131 ** the N-th virtual column (zero-based) then the storage number is
1132 ** the number of non-virtual columns in the table plus N.
1134 ** The true column number is the index (0,1,2,...) of the column in
1135 ** the CREATE TABLE statement.
1137 ** If the input column is a VIRTUAL column, then it should not appear
1138 ** in storage. But the value sometimes is cached in registers that
1139 ** follow the range of registers used to construct storage. This
1140 ** avoids computing the same VIRTUAL column multiple times, and provides
1141 ** values for use by OP_Param opcodes in triggers. Hence, if the
1142 ** input column is a VIRTUAL table, put it after all the other columns.
1144 ** In the following, N means "normal column", S means STORED, and
1145 ** V means VIRTUAL. Suppose the CREATE TABLE has columns like this:
1147 ** CREATE TABLE ex(N,S,V,N,S,V,N,S,V);
1148 ** -- 0 1 2 3 4 5 6 7 8
1150 ** Then the mapping from this function is as follows:
1152 ** INPUTS: 0 1 2 3 4 5 6 7 8
1153 ** OUTPUTS: 0 1 6 2 3 7 4 5 8
1155 ** So, in other words, this routine shifts all the virtual columns to
1156 ** the end.
1158 ** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and
1159 ** this routine is a no-op macro. If the pTab does not have any virtual
1160 ** columns, then this routine is no-op that always return iCol. If iCol
1161 ** is negative (indicating the ROWID column) then this routine return iCol.
1163 i16 sqlite3TableColumnToStorage(Table *pTab, i16 iCol){
1164 int i;
1165 i16 n;
1166 assert( iCol<pTab->nCol );
1167 if( (pTab->tabFlags & TF_HasVirtual)==0 || iCol<0 ) return iCol;
1168 for(i=0, n=0; i<iCol; i++){
1169 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) n++;
1171 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ){
1172 /* iCol is a virtual column itself */
1173 return pTab->nNVCol + i - n;
1174 }else{
1175 /* iCol is a normal or stored column */
1176 return n;
1179 #endif
1182 ** Insert a single OP_JournalMode query opcode in order to force the
1183 ** prepared statement to return false for sqlite3_stmt_readonly(). This
1184 ** is used by CREATE TABLE IF NOT EXISTS and similar if the table already
1185 ** exists, so that the prepared statement for CREATE TABLE IF NOT EXISTS
1186 ** will return false for sqlite3_stmt_readonly() even if that statement
1187 ** is a read-only no-op.
1189 static void sqlite3ForceNotReadOnly(Parse *pParse){
1190 int iReg = ++pParse->nMem;
1191 Vdbe *v = sqlite3GetVdbe(pParse);
1192 if( v ){
1193 sqlite3VdbeAddOp3(v, OP_JournalMode, 0, iReg, PAGER_JOURNALMODE_QUERY);
1194 sqlite3VdbeUsesBtree(v, 0);
1199 ** Begin constructing a new table representation in memory. This is
1200 ** the first of several action routines that get called in response
1201 ** to a CREATE TABLE statement. In particular, this routine is called
1202 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
1203 ** flag is true if the table should be stored in the auxiliary database
1204 ** file instead of in the main database file. This is normally the case
1205 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
1206 ** CREATE and TABLE.
1208 ** The new table record is initialized and put in pParse->pNewTable.
1209 ** As more of the CREATE TABLE statement is parsed, additional action
1210 ** routines will be called to add more information to this record.
1211 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
1212 ** is called to complete the construction of the new table record.
1214 void sqlite3StartTable(
1215 Parse *pParse, /* Parser context */
1216 Token *pName1, /* First part of the name of the table or view */
1217 Token *pName2, /* Second part of the name of the table or view */
1218 int isTemp, /* True if this is a TEMP table */
1219 int isView, /* True if this is a VIEW */
1220 int isVirtual, /* True if this is a VIRTUAL table */
1221 int noErr /* Do nothing if table already exists */
1223 Table *pTable;
1224 char *zName = 0; /* The name of the new table */
1225 sqlite3 *db = pParse->db;
1226 Vdbe *v;
1227 int iDb; /* Database number to create the table in */
1228 Token *pName; /* Unqualified name of the table to create */
1230 if( db->init.busy && db->init.newTnum==1 ){
1231 /* Special case: Parsing the sqlite_schema or sqlite_temp_schema schema */
1232 iDb = db->init.iDb;
1233 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb));
1234 pName = pName1;
1235 }else{
1236 /* The common case */
1237 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
1238 if( iDb<0 ) return;
1239 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
1240 /* If creating a temp table, the name may not be qualified. Unless
1241 ** the database name is "temp" anyway. */
1242 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
1243 return;
1245 if( !OMIT_TEMPDB && isTemp ) iDb = 1;
1246 zName = sqlite3NameFromToken(db, pName);
1247 if( IN_RENAME_OBJECT ){
1248 sqlite3RenameTokenMap(pParse, (void*)zName, pName);
1251 pParse->sNameToken = *pName;
1252 if( zName==0 ) return;
1253 if( sqlite3CheckObjectName(pParse, zName, isView?"view":"table", zName) ){
1254 goto begin_table_error;
1256 if( db->init.iDb==1 ) isTemp = 1;
1257 #ifndef SQLITE_OMIT_AUTHORIZATION
1258 assert( isTemp==0 || isTemp==1 );
1259 assert( isView==0 || isView==1 );
1261 static const u8 aCode[] = {
1262 SQLITE_CREATE_TABLE,
1263 SQLITE_CREATE_TEMP_TABLE,
1264 SQLITE_CREATE_VIEW,
1265 SQLITE_CREATE_TEMP_VIEW
1267 char *zDb = db->aDb[iDb].zDbSName;
1268 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
1269 goto begin_table_error;
1271 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView],
1272 zName, 0, zDb) ){
1273 goto begin_table_error;
1276 #endif
1278 /* Make sure the new table name does not collide with an existing
1279 ** index or table name in the same database. Issue an error message if
1280 ** it does. The exception is if the statement being parsed was passed
1281 ** to an sqlite3_declare_vtab() call. In that case only the column names
1282 ** and types will be used, so there is no need to test for namespace
1283 ** collisions.
1285 if( !IN_SPECIAL_PARSE ){
1286 char *zDb = db->aDb[iDb].zDbSName;
1287 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
1288 goto begin_table_error;
1290 pTable = sqlite3FindTable(db, zName, zDb);
1291 if( pTable ){
1292 if( !noErr ){
1293 sqlite3ErrorMsg(pParse, "table %T already exists", pName);
1294 }else{
1295 assert( !db->init.busy || CORRUPT_DB );
1296 sqlite3CodeVerifySchema(pParse, iDb);
1297 sqlite3ForceNotReadOnly(pParse);
1299 goto begin_table_error;
1301 if( sqlite3FindIndex(db, zName, zDb)!=0 ){
1302 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
1303 goto begin_table_error;
1307 pTable = sqlite3DbMallocZero(db, sizeof(Table));
1308 if( pTable==0 ){
1309 assert( db->mallocFailed );
1310 pParse->rc = SQLITE_NOMEM_BKPT;
1311 pParse->nErr++;
1312 goto begin_table_error;
1314 pTable->zName = zName;
1315 pTable->iPKey = -1;
1316 pTable->pSchema = db->aDb[iDb].pSchema;
1317 pTable->nTabRef = 1;
1318 #ifdef SQLITE_DEFAULT_ROWEST
1319 pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST);
1320 #else
1321 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1322 #endif
1323 assert( pParse->pNewTable==0 );
1324 pParse->pNewTable = pTable;
1326 /* Begin generating the code that will insert the table record into
1327 ** the schema table. Note in particular that we must go ahead
1328 ** and allocate the record number for the table entry now. Before any
1329 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
1330 ** indices to be created and the table record must come before the
1331 ** indices. Hence, the record number for the table must be allocated
1332 ** now.
1334 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
1335 int addr1;
1336 int fileFormat;
1337 int reg1, reg2, reg3;
1338 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
1339 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
1340 sqlite3BeginWriteOperation(pParse, 1, iDb);
1342 #ifndef SQLITE_OMIT_VIRTUALTABLE
1343 if( isVirtual ){
1344 sqlite3VdbeAddOp0(v, OP_VBegin);
1346 #endif
1348 /* If the file format and encoding in the database have not been set,
1349 ** set them now.
1351 reg1 = pParse->regRowid = ++pParse->nMem;
1352 reg2 = pParse->regRoot = ++pParse->nMem;
1353 reg3 = ++pParse->nMem;
1354 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
1355 sqlite3VdbeUsesBtree(v, iDb);
1356 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
1357 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
1358 1 : SQLITE_MAX_FILE_FORMAT;
1359 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat);
1360 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db));
1361 sqlite3VdbeJumpHere(v, addr1);
1363 /* This just creates a place-holder record in the sqlite_schema table.
1364 ** The record created does not contain anything yet. It will be replaced
1365 ** by the real entry in code generated at sqlite3EndTable().
1367 ** The rowid for the new entry is left in register pParse->regRowid.
1368 ** The root page number of the new table is left in reg pParse->regRoot.
1369 ** The rowid and root page number values are needed by the code that
1370 ** sqlite3EndTable will generate.
1372 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1373 if( isView || isVirtual ){
1374 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
1375 }else
1376 #endif
1378 assert( !pParse->bReturning );
1379 pParse->u1.addrCrTab =
1380 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY);
1382 sqlite3OpenSchemaTable(pParse, iDb);
1383 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
1384 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
1385 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
1386 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1387 sqlite3VdbeAddOp0(v, OP_Close);
1390 /* Normal (non-error) return. */
1391 return;
1393 /* If an error occurs, we jump here */
1394 begin_table_error:
1395 pParse->checkSchema = 1;
1396 sqlite3DbFree(db, zName);
1397 return;
1400 /* Set properties of a table column based on the (magical)
1401 ** name of the column.
1403 #if SQLITE_ENABLE_HIDDEN_COLUMNS
1404 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
1405 if( sqlite3_strnicmp(pCol->zCnName, "__hidden__", 10)==0 ){
1406 pCol->colFlags |= COLFLAG_HIDDEN;
1407 if( pTab ) pTab->tabFlags |= TF_HasHidden;
1408 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
1409 pTab->tabFlags |= TF_OOOHidden;
1412 #endif
1415 ** Name of the special TEMP trigger used to implement RETURNING. The
1416 ** name begins with "sqlite_" so that it is guaranteed not to collide
1417 ** with any application-generated triggers.
1419 #define RETURNING_TRIGGER_NAME "sqlite_returning"
1422 ** Clean up the data structures associated with the RETURNING clause.
1424 static void sqlite3DeleteReturning(sqlite3 *db, Returning *pRet){
1425 Hash *pHash;
1426 pHash = &(db->aDb[1].pSchema->trigHash);
1427 sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, 0);
1428 sqlite3ExprListDelete(db, pRet->pReturnEL);
1429 sqlite3DbFree(db, pRet);
1433 ** Add the RETURNING clause to the parse currently underway.
1435 ** This routine creates a special TEMP trigger that will fire for each row
1436 ** of the DML statement. That TEMP trigger contains a single SELECT
1437 ** statement with a result set that is the argument of the RETURNING clause.
1438 ** The trigger has the Trigger.bReturning flag and an opcode of
1439 ** TK_RETURNING instead of TK_SELECT, so that the trigger code generator
1440 ** knows to handle it specially. The TEMP trigger is automatically
1441 ** removed at the end of the parse.
1443 ** When this routine is called, we do not yet know if the RETURNING clause
1444 ** is attached to a DELETE, INSERT, or UPDATE, so construct it as a
1445 ** RETURNING trigger instead. It will then be converted into the appropriate
1446 ** type on the first call to sqlite3TriggersExist().
1448 void sqlite3AddReturning(Parse *pParse, ExprList *pList){
1449 Returning *pRet;
1450 Hash *pHash;
1451 sqlite3 *db = pParse->db;
1452 if( pParse->pNewTrigger ){
1453 sqlite3ErrorMsg(pParse, "cannot use RETURNING in a trigger");
1454 }else{
1455 assert( pParse->bReturning==0 );
1457 pParse->bReturning = 1;
1458 pRet = sqlite3DbMallocZero(db, sizeof(*pRet));
1459 if( pRet==0 ){
1460 sqlite3ExprListDelete(db, pList);
1461 return;
1463 pParse->u1.pReturning = pRet;
1464 pRet->pParse = pParse;
1465 pRet->pReturnEL = pList;
1466 sqlite3ParserAddCleanup(pParse,
1467 (void(*)(sqlite3*,void*))sqlite3DeleteReturning, pRet);
1468 testcase( pParse->earlyCleanup );
1469 if( db->mallocFailed ) return;
1470 pRet->retTrig.zName = RETURNING_TRIGGER_NAME;
1471 pRet->retTrig.op = TK_RETURNING;
1472 pRet->retTrig.tr_tm = TRIGGER_AFTER;
1473 pRet->retTrig.bReturning = 1;
1474 pRet->retTrig.pSchema = db->aDb[1].pSchema;
1475 pRet->retTrig.pTabSchema = db->aDb[1].pSchema;
1476 pRet->retTrig.step_list = &pRet->retTStep;
1477 pRet->retTStep.op = TK_RETURNING;
1478 pRet->retTStep.pTrig = &pRet->retTrig;
1479 pRet->retTStep.pExprList = pList;
1480 pHash = &(db->aDb[1].pSchema->trigHash);
1481 assert( sqlite3HashFind(pHash, RETURNING_TRIGGER_NAME)==0 || pParse->nErr );
1482 if( sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, &pRet->retTrig)
1483 ==&pRet->retTrig ){
1484 sqlite3OomFault(db);
1489 ** Add a new column to the table currently being constructed.
1491 ** The parser calls this routine once for each column declaration
1492 ** in a CREATE TABLE statement. sqlite3StartTable() gets called
1493 ** first to get things going. Then this routine is called for each
1494 ** column.
1496 void sqlite3AddColumn(Parse *pParse, Token sName, Token sType){
1497 Table *p;
1498 int i;
1499 char *z;
1500 char *zType;
1501 Column *pCol;
1502 sqlite3 *db = pParse->db;
1503 u8 hName;
1504 Column *aNew;
1505 u8 eType = COLTYPE_CUSTOM;
1506 u8 szEst = 1;
1507 char affinity = SQLITE_AFF_BLOB;
1509 if( (p = pParse->pNewTable)==0 ) return;
1510 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1511 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
1512 return;
1514 if( !IN_RENAME_OBJECT ) sqlite3DequoteToken(&sName);
1516 /* Because keywords GENERATE ALWAYS can be converted into indentifiers
1517 ** by the parser, we can sometimes end up with a typename that ends
1518 ** with "generated always". Check for this case and omit the surplus
1519 ** text. */
1520 if( sType.n>=16
1521 && sqlite3_strnicmp(sType.z+(sType.n-6),"always",6)==0
1523 sType.n -= 6;
1524 while( ALWAYS(sType.n>0) && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--;
1525 if( sType.n>=9
1526 && sqlite3_strnicmp(sType.z+(sType.n-9),"generated",9)==0
1528 sType.n -= 9;
1529 while( sType.n>0 && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--;
1533 /* Check for standard typenames. For standard typenames we will
1534 ** set the Column.eType field rather than storing the typename after
1535 ** the column name, in order to save space. */
1536 if( sType.n>=3 ){
1537 sqlite3DequoteToken(&sType);
1538 for(i=0; i<SQLITE_N_STDTYPE; i++){
1539 if( sType.n==sqlite3StdTypeLen[i]
1540 && sqlite3_strnicmp(sType.z, sqlite3StdType[i], sType.n)==0
1542 sType.n = 0;
1543 eType = i+1;
1544 affinity = sqlite3StdTypeAffinity[i];
1545 if( affinity<=SQLITE_AFF_TEXT ) szEst = 5;
1546 break;
1551 z = sqlite3DbMallocRaw(db, (i64)sName.n + 1 + (i64)sType.n + (sType.n>0) );
1552 if( z==0 ) return;
1553 if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, &sName);
1554 memcpy(z, sName.z, sName.n);
1555 z[sName.n] = 0;
1556 sqlite3Dequote(z);
1557 hName = sqlite3StrIHash(z);
1558 for(i=0; i<p->nCol; i++){
1559 if( p->aCol[i].hName==hName && sqlite3StrICmp(z, p->aCol[i].zCnName)==0 ){
1560 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
1561 sqlite3DbFree(db, z);
1562 return;
1565 aNew = sqlite3DbRealloc(db,p->aCol,((i64)p->nCol+1)*sizeof(p->aCol[0]));
1566 if( aNew==0 ){
1567 sqlite3DbFree(db, z);
1568 return;
1570 p->aCol = aNew;
1571 pCol = &p->aCol[p->nCol];
1572 memset(pCol, 0, sizeof(p->aCol[0]));
1573 pCol->zCnName = z;
1574 pCol->hName = hName;
1575 sqlite3ColumnPropertiesFromName(p, pCol);
1577 if( sType.n==0 ){
1578 /* If there is no type specified, columns have the default affinity
1579 ** 'BLOB' with a default size of 4 bytes. */
1580 pCol->affinity = affinity;
1581 pCol->eCType = eType;
1582 pCol->szEst = szEst;
1583 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1584 if( affinity==SQLITE_AFF_BLOB ){
1585 if( 4>=sqlite3GlobalConfig.szSorterRef ){
1586 pCol->colFlags |= COLFLAG_SORTERREF;
1589 #endif
1590 }else{
1591 zType = z + sqlite3Strlen30(z) + 1;
1592 memcpy(zType, sType.z, sType.n);
1593 zType[sType.n] = 0;
1594 sqlite3Dequote(zType);
1595 pCol->affinity = sqlite3AffinityType(zType, pCol);
1596 pCol->colFlags |= COLFLAG_HASTYPE;
1598 p->nCol++;
1599 p->nNVCol++;
1600 pParse->constraintName.n = 0;
1604 ** This routine is called by the parser while in the middle of
1605 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
1606 ** been seen on a column. This routine sets the notNull flag on
1607 ** the column currently under construction.
1609 void sqlite3AddNotNull(Parse *pParse, int onError){
1610 Table *p;
1611 Column *pCol;
1612 p = pParse->pNewTable;
1613 if( p==0 || NEVER(p->nCol<1) ) return;
1614 pCol = &p->aCol[p->nCol-1];
1615 pCol->notNull = (u8)onError;
1616 p->tabFlags |= TF_HasNotNull;
1618 /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created
1619 ** on this column. */
1620 if( pCol->colFlags & COLFLAG_UNIQUE ){
1621 Index *pIdx;
1622 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1623 assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None );
1624 if( pIdx->aiColumn[0]==p->nCol-1 ){
1625 pIdx->uniqNotNull = 1;
1632 ** Scan the column type name zType (length nType) and return the
1633 ** associated affinity type.
1635 ** This routine does a case-independent search of zType for the
1636 ** substrings in the following table. If one of the substrings is
1637 ** found, the corresponding affinity is returned. If zType contains
1638 ** more than one of the substrings, entries toward the top of
1639 ** the table take priority. For example, if zType is 'BLOBINT',
1640 ** SQLITE_AFF_INTEGER is returned.
1642 ** Substring | Affinity
1643 ** --------------------------------
1644 ** 'INT' | SQLITE_AFF_INTEGER
1645 ** 'CHAR' | SQLITE_AFF_TEXT
1646 ** 'CLOB' | SQLITE_AFF_TEXT
1647 ** 'TEXT' | SQLITE_AFF_TEXT
1648 ** 'BLOB' | SQLITE_AFF_BLOB
1649 ** 'REAL' | SQLITE_AFF_REAL
1650 ** 'FLOA' | SQLITE_AFF_REAL
1651 ** 'DOUB' | SQLITE_AFF_REAL
1653 ** If none of the substrings in the above table are found,
1654 ** SQLITE_AFF_NUMERIC is returned.
1656 char sqlite3AffinityType(const char *zIn, Column *pCol){
1657 u32 h = 0;
1658 char aff = SQLITE_AFF_NUMERIC;
1659 const char *zChar = 0;
1661 assert( zIn!=0 );
1662 while( zIn[0] ){
1663 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1664 zIn++;
1665 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
1666 aff = SQLITE_AFF_TEXT;
1667 zChar = zIn;
1668 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
1669 aff = SQLITE_AFF_TEXT;
1670 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
1671 aff = SQLITE_AFF_TEXT;
1672 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
1673 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1674 aff = SQLITE_AFF_BLOB;
1675 if( zIn[0]=='(' ) zChar = zIn;
1676 #ifndef SQLITE_OMIT_FLOATING_POINT
1677 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
1678 && aff==SQLITE_AFF_NUMERIC ){
1679 aff = SQLITE_AFF_REAL;
1680 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
1681 && aff==SQLITE_AFF_NUMERIC ){
1682 aff = SQLITE_AFF_REAL;
1683 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
1684 && aff==SQLITE_AFF_NUMERIC ){
1685 aff = SQLITE_AFF_REAL;
1686 #endif
1687 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
1688 aff = SQLITE_AFF_INTEGER;
1689 break;
1693 /* If pCol is not NULL, store an estimate of the field size. The
1694 ** estimate is scaled so that the size of an integer is 1. */
1695 if( pCol ){
1696 int v = 0; /* default size is approx 4 bytes */
1697 if( aff<SQLITE_AFF_NUMERIC ){
1698 if( zChar ){
1699 while( zChar[0] ){
1700 if( sqlite3Isdigit(zChar[0]) ){
1701 /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1702 sqlite3GetInt32(zChar, &v);
1703 break;
1705 zChar++;
1707 }else{
1708 v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/
1711 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1712 if( v>=sqlite3GlobalConfig.szSorterRef ){
1713 pCol->colFlags |= COLFLAG_SORTERREF;
1715 #endif
1716 v = v/4 + 1;
1717 if( v>255 ) v = 255;
1718 pCol->szEst = v;
1720 return aff;
1724 ** The expression is the default value for the most recently added column
1725 ** of the table currently under construction.
1727 ** Default value expressions must be constant. Raise an exception if this
1728 ** is not the case.
1730 ** This routine is called by the parser while in the middle of
1731 ** parsing a CREATE TABLE statement.
1733 void sqlite3AddDefaultValue(
1734 Parse *pParse, /* Parsing context */
1735 Expr *pExpr, /* The parsed expression of the default value */
1736 const char *zStart, /* Start of the default value text */
1737 const char *zEnd /* First character past end of defaut value text */
1739 Table *p;
1740 Column *pCol;
1741 sqlite3 *db = pParse->db;
1742 p = pParse->pNewTable;
1743 if( p!=0 ){
1744 int isInit = db->init.busy && db->init.iDb!=1;
1745 pCol = &(p->aCol[p->nCol-1]);
1746 if( !sqlite3ExprIsConstantOrFunction(pExpr, isInit) ){
1747 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1748 pCol->zCnName);
1749 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1750 }else if( pCol->colFlags & COLFLAG_GENERATED ){
1751 testcase( pCol->colFlags & COLFLAG_VIRTUAL );
1752 testcase( pCol->colFlags & COLFLAG_STORED );
1753 sqlite3ErrorMsg(pParse, "cannot use DEFAULT on a generated column");
1754 #endif
1755 }else{
1756 /* A copy of pExpr is used instead of the original, as pExpr contains
1757 ** tokens that point to volatile memory.
1759 Expr x, *pDfltExpr;
1760 memset(&x, 0, sizeof(x));
1761 x.op = TK_SPAN;
1762 x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd);
1763 x.pLeft = pExpr;
1764 x.flags = EP_Skip;
1765 pDfltExpr = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE);
1766 sqlite3DbFree(db, x.u.zToken);
1767 sqlite3ColumnSetExpr(pParse, p, pCol, pDfltExpr);
1770 if( IN_RENAME_OBJECT ){
1771 sqlite3RenameExprUnmap(pParse, pExpr);
1773 sqlite3ExprDelete(db, pExpr);
1777 ** Backwards Compatibility Hack:
1779 ** Historical versions of SQLite accepted strings as column names in
1780 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example:
1782 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1783 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1785 ** This is goofy. But to preserve backwards compatibility we continue to
1786 ** accept it. This routine does the necessary conversion. It converts
1787 ** the expression given in its argument from a TK_STRING into a TK_ID
1788 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1789 ** If the expression is anything other than TK_STRING, the expression is
1790 ** unchanged.
1792 static void sqlite3StringToId(Expr *p){
1793 if( p->op==TK_STRING ){
1794 p->op = TK_ID;
1795 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
1796 p->pLeft->op = TK_ID;
1801 ** Tag the given column as being part of the PRIMARY KEY
1803 static void makeColumnPartOfPrimaryKey(Parse *pParse, Column *pCol){
1804 pCol->colFlags |= COLFLAG_PRIMKEY;
1805 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1806 if( pCol->colFlags & COLFLAG_GENERATED ){
1807 testcase( pCol->colFlags & COLFLAG_VIRTUAL );
1808 testcase( pCol->colFlags & COLFLAG_STORED );
1809 sqlite3ErrorMsg(pParse,
1810 "generated columns cannot be part of the PRIMARY KEY");
1812 #endif
1816 ** Designate the PRIMARY KEY for the table. pList is a list of names
1817 ** of columns that form the primary key. If pList is NULL, then the
1818 ** most recently added column of the table is the primary key.
1820 ** A table can have at most one primary key. If the table already has
1821 ** a primary key (and this is the second primary key) then create an
1822 ** error.
1824 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1825 ** then we will try to use that column as the rowid. Set the Table.iPKey
1826 ** field of the table under construction to be the index of the
1827 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
1828 ** no INTEGER PRIMARY KEY.
1830 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1831 ** index for the key. No index is created for INTEGER PRIMARY KEYs.
1833 void sqlite3AddPrimaryKey(
1834 Parse *pParse, /* Parsing context */
1835 ExprList *pList, /* List of field names to be indexed */
1836 int onError, /* What to do with a uniqueness conflict */
1837 int autoInc, /* True if the AUTOINCREMENT keyword is present */
1838 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1840 Table *pTab = pParse->pNewTable;
1841 Column *pCol = 0;
1842 int iCol = -1, i;
1843 int nTerm;
1844 if( pTab==0 ) goto primary_key_exit;
1845 if( pTab->tabFlags & TF_HasPrimaryKey ){
1846 sqlite3ErrorMsg(pParse,
1847 "table \"%s\" has more than one primary key", pTab->zName);
1848 goto primary_key_exit;
1850 pTab->tabFlags |= TF_HasPrimaryKey;
1851 if( pList==0 ){
1852 iCol = pTab->nCol - 1;
1853 pCol = &pTab->aCol[iCol];
1854 makeColumnPartOfPrimaryKey(pParse, pCol);
1855 nTerm = 1;
1856 }else{
1857 nTerm = pList->nExpr;
1858 for(i=0; i<nTerm; i++){
1859 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
1860 assert( pCExpr!=0 );
1861 sqlite3StringToId(pCExpr);
1862 if( pCExpr->op==TK_ID ){
1863 const char *zCName;
1864 assert( !ExprHasProperty(pCExpr, EP_IntValue) );
1865 zCName = pCExpr->u.zToken;
1866 for(iCol=0; iCol<pTab->nCol; iCol++){
1867 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zCnName)==0 ){
1868 pCol = &pTab->aCol[iCol];
1869 makeColumnPartOfPrimaryKey(pParse, pCol);
1870 break;
1876 if( nTerm==1
1877 && pCol
1878 && pCol->eCType==COLTYPE_INTEGER
1879 && sortOrder!=SQLITE_SO_DESC
1881 if( IN_RENAME_OBJECT && pList ){
1882 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[0].pExpr);
1883 sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pCExpr);
1885 pTab->iPKey = iCol;
1886 pTab->keyConf = (u8)onError;
1887 assert( autoInc==0 || autoInc==1 );
1888 pTab->tabFlags |= autoInc*TF_Autoincrement;
1889 if( pList ) pParse->iPkSortOrder = pList->a[0].sortFlags;
1890 (void)sqlite3HasExplicitNulls(pParse, pList);
1891 }else if( autoInc ){
1892 #ifndef SQLITE_OMIT_AUTOINCREMENT
1893 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1894 "INTEGER PRIMARY KEY");
1895 #endif
1896 }else{
1897 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
1898 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY);
1899 pList = 0;
1902 primary_key_exit:
1903 sqlite3ExprListDelete(pParse->db, pList);
1904 return;
1908 ** Add a new CHECK constraint to the table currently under construction.
1910 void sqlite3AddCheckConstraint(
1911 Parse *pParse, /* Parsing context */
1912 Expr *pCheckExpr, /* The check expression */
1913 const char *zStart, /* Opening "(" */
1914 const char *zEnd /* Closing ")" */
1916 #ifndef SQLITE_OMIT_CHECK
1917 Table *pTab = pParse->pNewTable;
1918 sqlite3 *db = pParse->db;
1919 if( pTab && !IN_DECLARE_VTAB
1920 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
1922 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1923 if( pParse->constraintName.n ){
1924 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1925 }else{
1926 Token t;
1927 for(zStart++; sqlite3Isspace(zStart[0]); zStart++){}
1928 while( sqlite3Isspace(zEnd[-1]) ){ zEnd--; }
1929 t.z = zStart;
1930 t.n = (int)(zEnd - t.z);
1931 sqlite3ExprListSetName(pParse, pTab->pCheck, &t, 1);
1933 }else
1934 #endif
1936 sqlite3ExprDelete(pParse->db, pCheckExpr);
1941 ** Set the collation function of the most recently parsed table column
1942 ** to the CollSeq given.
1944 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1945 Table *p;
1946 int i;
1947 char *zColl; /* Dequoted name of collation sequence */
1948 sqlite3 *db;
1950 if( (p = pParse->pNewTable)==0 || IN_RENAME_OBJECT ) return;
1951 i = p->nCol-1;
1952 db = pParse->db;
1953 zColl = sqlite3NameFromToken(db, pToken);
1954 if( !zColl ) return;
1956 if( sqlite3LocateCollSeq(pParse, zColl) ){
1957 Index *pIdx;
1958 sqlite3ColumnSetColl(db, &p->aCol[i], zColl);
1960 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1961 ** then an index may have been created on this column before the
1962 ** collation type was added. Correct this if it is the case.
1964 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1965 assert( pIdx->nKeyCol==1 );
1966 if( pIdx->aiColumn[0]==i ){
1967 pIdx->azColl[0] = sqlite3ColumnColl(&p->aCol[i]);
1971 sqlite3DbFree(db, zColl);
1974 /* Change the most recently parsed column to be a GENERATED ALWAYS AS
1975 ** column.
1977 void sqlite3AddGenerated(Parse *pParse, Expr *pExpr, Token *pType){
1978 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1979 u8 eType = COLFLAG_VIRTUAL;
1980 Table *pTab = pParse->pNewTable;
1981 Column *pCol;
1982 if( pTab==0 ){
1983 /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */
1984 goto generated_done;
1986 pCol = &(pTab->aCol[pTab->nCol-1]);
1987 if( IN_DECLARE_VTAB ){
1988 sqlite3ErrorMsg(pParse, "virtual tables cannot use computed columns");
1989 goto generated_done;
1991 if( pCol->iDflt>0 ) goto generated_error;
1992 if( pType ){
1993 if( pType->n==7 && sqlite3StrNICmp("virtual",pType->z,7)==0 ){
1994 /* no-op */
1995 }else if( pType->n==6 && sqlite3StrNICmp("stored",pType->z,6)==0 ){
1996 eType = COLFLAG_STORED;
1997 }else{
1998 goto generated_error;
2001 if( eType==COLFLAG_VIRTUAL ) pTab->nNVCol--;
2002 pCol->colFlags |= eType;
2003 assert( TF_HasVirtual==COLFLAG_VIRTUAL );
2004 assert( TF_HasStored==COLFLAG_STORED );
2005 pTab->tabFlags |= eType;
2006 if( pCol->colFlags & COLFLAG_PRIMKEY ){
2007 makeColumnPartOfPrimaryKey(pParse, pCol); /* For the error message */
2009 sqlite3ColumnSetExpr(pParse, pTab, pCol, pExpr);
2010 pExpr = 0;
2011 goto generated_done;
2013 generated_error:
2014 sqlite3ErrorMsg(pParse, "error in generated column \"%s\"",
2015 pCol->zCnName);
2016 generated_done:
2017 sqlite3ExprDelete(pParse->db, pExpr);
2018 #else
2019 /* Throw and error for the GENERATED ALWAYS AS clause if the
2020 ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */
2021 sqlite3ErrorMsg(pParse, "generated columns not supported");
2022 sqlite3ExprDelete(pParse->db, pExpr);
2023 #endif
2027 ** Generate code that will increment the schema cookie.
2029 ** The schema cookie is used to determine when the schema for the
2030 ** database changes. After each schema change, the cookie value
2031 ** changes. When a process first reads the schema it records the
2032 ** cookie. Thereafter, whenever it goes to access the database,
2033 ** it checks the cookie to make sure the schema has not changed
2034 ** since it was last read.
2036 ** This plan is not completely bullet-proof. It is possible for
2037 ** the schema to change multiple times and for the cookie to be
2038 ** set back to prior value. But schema changes are infrequent
2039 ** and the probability of hitting the same cookie value is only
2040 ** 1 chance in 2^32. So we're safe enough.
2042 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments
2043 ** the schema-version whenever the schema changes.
2045 void sqlite3ChangeCookie(Parse *pParse, int iDb){
2046 sqlite3 *db = pParse->db;
2047 Vdbe *v = pParse->pVdbe;
2048 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2049 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION,
2050 (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie));
2054 ** Measure the number of characters needed to output the given
2055 ** identifier. The number returned includes any quotes used
2056 ** but does not include the null terminator.
2058 ** The estimate is conservative. It might be larger that what is
2059 ** really needed.
2061 static int identLength(const char *z){
2062 int n;
2063 for(n=0; *z; n++, z++){
2064 if( *z=='"' ){ n++; }
2066 return n + 2;
2070 ** The first parameter is a pointer to an output buffer. The second
2071 ** parameter is a pointer to an integer that contains the offset at
2072 ** which to write into the output buffer. This function copies the
2073 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
2074 ** to the specified offset in the buffer and updates *pIdx to refer
2075 ** to the first byte after the last byte written before returning.
2077 ** If the string zSignedIdent consists entirely of alpha-numeric
2078 ** characters, does not begin with a digit and is not an SQL keyword,
2079 ** then it is copied to the output buffer exactly as it is. Otherwise,
2080 ** it is quoted using double-quotes.
2082 static void identPut(char *z, int *pIdx, char *zSignedIdent){
2083 unsigned char *zIdent = (unsigned char*)zSignedIdent;
2084 int i, j, needQuote;
2085 i = *pIdx;
2087 for(j=0; zIdent[j]; j++){
2088 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
2090 needQuote = sqlite3Isdigit(zIdent[0])
2091 || sqlite3KeywordCode(zIdent, j)!=TK_ID
2092 || zIdent[j]!=0
2093 || j==0;
2095 if( needQuote ) z[i++] = '"';
2096 for(j=0; zIdent[j]; j++){
2097 z[i++] = zIdent[j];
2098 if( zIdent[j]=='"' ) z[i++] = '"';
2100 if( needQuote ) z[i++] = '"';
2101 z[i] = 0;
2102 *pIdx = i;
2106 ** Generate a CREATE TABLE statement appropriate for the given
2107 ** table. Memory to hold the text of the statement is obtained
2108 ** from sqliteMalloc() and must be freed by the calling function.
2110 static char *createTableStmt(sqlite3 *db, Table *p){
2111 int i, k, n;
2112 char *zStmt;
2113 char *zSep, *zSep2, *zEnd;
2114 Column *pCol;
2115 n = 0;
2116 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
2117 n += identLength(pCol->zCnName) + 5;
2119 n += identLength(p->zName);
2120 if( n<50 ){
2121 zSep = "";
2122 zSep2 = ",";
2123 zEnd = ")";
2124 }else{
2125 zSep = "\n ";
2126 zSep2 = ",\n ";
2127 zEnd = "\n)";
2129 n += 35 + 6*p->nCol;
2130 zStmt = sqlite3DbMallocRaw(0, n);
2131 if( zStmt==0 ){
2132 sqlite3OomFault(db);
2133 return 0;
2135 sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
2136 k = sqlite3Strlen30(zStmt);
2137 identPut(zStmt, &k, p->zName);
2138 zStmt[k++] = '(';
2139 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
2140 static const char * const azType[] = {
2141 /* SQLITE_AFF_BLOB */ "",
2142 /* SQLITE_AFF_TEXT */ " TEXT",
2143 /* SQLITE_AFF_NUMERIC */ " NUM",
2144 /* SQLITE_AFF_INTEGER */ " INT",
2145 /* SQLITE_AFF_REAL */ " REAL"
2147 int len;
2148 const char *zType;
2150 sqlite3_snprintf(n-k, &zStmt[k], zSep);
2151 k += sqlite3Strlen30(&zStmt[k]);
2152 zSep = zSep2;
2153 identPut(zStmt, &k, pCol->zCnName);
2154 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
2155 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
2156 testcase( pCol->affinity==SQLITE_AFF_BLOB );
2157 testcase( pCol->affinity==SQLITE_AFF_TEXT );
2158 testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
2159 testcase( pCol->affinity==SQLITE_AFF_INTEGER );
2160 testcase( pCol->affinity==SQLITE_AFF_REAL );
2162 zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
2163 len = sqlite3Strlen30(zType);
2164 assert( pCol->affinity==SQLITE_AFF_BLOB
2165 || pCol->affinity==sqlite3AffinityType(zType, 0) );
2166 memcpy(&zStmt[k], zType, len);
2167 k += len;
2168 assert( k<=n );
2170 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
2171 return zStmt;
2175 ** Resize an Index object to hold N columns total. Return SQLITE_OK
2176 ** on success and SQLITE_NOMEM on an OOM error.
2178 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
2179 char *zExtra;
2180 int nByte;
2181 if( pIdx->nColumn>=N ) return SQLITE_OK;
2182 assert( pIdx->isResized==0 );
2183 nByte = (sizeof(char*) + sizeof(LogEst) + sizeof(i16) + 1)*N;
2184 zExtra = sqlite3DbMallocZero(db, nByte);
2185 if( zExtra==0 ) return SQLITE_NOMEM_BKPT;
2186 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
2187 pIdx->azColl = (const char**)zExtra;
2188 zExtra += sizeof(char*)*N;
2189 memcpy(zExtra, pIdx->aiRowLogEst, sizeof(LogEst)*(pIdx->nKeyCol+1));
2190 pIdx->aiRowLogEst = (LogEst*)zExtra;
2191 zExtra += sizeof(LogEst)*N;
2192 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
2193 pIdx->aiColumn = (i16*)zExtra;
2194 zExtra += sizeof(i16)*N;
2195 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
2196 pIdx->aSortOrder = (u8*)zExtra;
2197 pIdx->nColumn = N;
2198 pIdx->isResized = 1;
2199 return SQLITE_OK;
2203 ** Estimate the total row width for a table.
2205 static void estimateTableWidth(Table *pTab){
2206 unsigned wTable = 0;
2207 const Column *pTabCol;
2208 int i;
2209 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
2210 wTable += pTabCol->szEst;
2212 if( pTab->iPKey<0 ) wTable++;
2213 pTab->szTabRow = sqlite3LogEst(wTable*4);
2217 ** Estimate the average size of a row for an index.
2219 static void estimateIndexWidth(Index *pIdx){
2220 unsigned wIndex = 0;
2221 int i;
2222 const Column *aCol = pIdx->pTable->aCol;
2223 for(i=0; i<pIdx->nColumn; i++){
2224 i16 x = pIdx->aiColumn[i];
2225 assert( x<pIdx->pTable->nCol );
2226 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
2228 pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
2231 /* Return true if column number x is any of the first nCol entries of aiCol[].
2232 ** This is used to determine if the column number x appears in any of the
2233 ** first nCol entries of an index.
2235 static int hasColumn(const i16 *aiCol, int nCol, int x){
2236 while( nCol-- > 0 ){
2237 if( x==*(aiCol++) ){
2238 return 1;
2241 return 0;
2245 ** Return true if any of the first nKey entries of index pIdx exactly
2246 ** match the iCol-th entry of pPk. pPk is always a WITHOUT ROWID
2247 ** PRIMARY KEY index. pIdx is an index on the same table. pIdx may
2248 ** or may not be the same index as pPk.
2250 ** The first nKey entries of pIdx are guaranteed to be ordinary columns,
2251 ** not a rowid or expression.
2253 ** This routine differs from hasColumn() in that both the column and the
2254 ** collating sequence must match for this routine, but for hasColumn() only
2255 ** the column name must match.
2257 static int isDupColumn(Index *pIdx, int nKey, Index *pPk, int iCol){
2258 int i, j;
2259 assert( nKey<=pIdx->nColumn );
2260 assert( iCol<MAX(pPk->nColumn,pPk->nKeyCol) );
2261 assert( pPk->idxType==SQLITE_IDXTYPE_PRIMARYKEY );
2262 assert( pPk->pTable->tabFlags & TF_WithoutRowid );
2263 assert( pPk->pTable==pIdx->pTable );
2264 testcase( pPk==pIdx );
2265 j = pPk->aiColumn[iCol];
2266 assert( j!=XN_ROWID && j!=XN_EXPR );
2267 for(i=0; i<nKey; i++){
2268 assert( pIdx->aiColumn[i]>=0 || j>=0 );
2269 if( pIdx->aiColumn[i]==j
2270 && sqlite3StrICmp(pIdx->azColl[i], pPk->azColl[iCol])==0
2272 return 1;
2275 return 0;
2278 /* Recompute the colNotIdxed field of the Index.
2280 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed
2281 ** columns that are within the first 63 columns of the table. The
2282 ** high-order bit of colNotIdxed is always 1. All unindexed columns
2283 ** of the table have a 1.
2285 ** 2019-10-24: For the purpose of this computation, virtual columns are
2286 ** not considered to be covered by the index, even if they are in the
2287 ** index, because we do not trust the logic in whereIndexExprTrans() to be
2288 ** able to find all instances of a reference to the indexed table column
2289 ** and convert them into references to the index. Hence we always want
2290 ** the actual table at hand in order to recompute the virtual column, if
2291 ** necessary.
2293 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask
2294 ** to determine if the index is covering index.
2296 static void recomputeColumnsNotIndexed(Index *pIdx){
2297 Bitmask m = 0;
2298 int j;
2299 Table *pTab = pIdx->pTable;
2300 for(j=pIdx->nColumn-1; j>=0; j--){
2301 int x = pIdx->aiColumn[j];
2302 if( x>=0 && (pTab->aCol[x].colFlags & COLFLAG_VIRTUAL)==0 ){
2303 testcase( x==BMS-1 );
2304 testcase( x==BMS-2 );
2305 if( x<BMS-1 ) m |= MASKBIT(x);
2308 pIdx->colNotIdxed = ~m;
2309 assert( (pIdx->colNotIdxed>>63)==1 );
2313 ** This routine runs at the end of parsing a CREATE TABLE statement that
2314 ** has a WITHOUT ROWID clause. The job of this routine is to convert both
2315 ** internal schema data structures and the generated VDBE code so that they
2316 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
2317 ** Changes include:
2319 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL.
2320 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY
2321 ** into BTREE_BLOBKEY.
2322 ** (3) Bypass the creation of the sqlite_schema table entry
2323 ** for the PRIMARY KEY as the primary key index is now
2324 ** identified by the sqlite_schema table entry of the table itself.
2325 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the
2326 ** schema to the rootpage from the main table.
2327 ** (5) Add all table columns to the PRIMARY KEY Index object
2328 ** so that the PRIMARY KEY is a covering index. The surplus
2329 ** columns are part of KeyInfo.nAllField and are not used for
2330 ** sorting or lookup or uniqueness checks.
2331 ** (6) Replace the rowid tail on all automatically generated UNIQUE
2332 ** indices with the PRIMARY KEY columns.
2334 ** For virtual tables, only (1) is performed.
2336 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
2337 Index *pIdx;
2338 Index *pPk;
2339 int nPk;
2340 int nExtra;
2341 int i, j;
2342 sqlite3 *db = pParse->db;
2343 Vdbe *v = pParse->pVdbe;
2345 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables)
2347 if( !db->init.imposterTable ){
2348 for(i=0; i<pTab->nCol; i++){
2349 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0
2350 && (pTab->aCol[i].notNull==OE_None)
2352 pTab->aCol[i].notNull = OE_Abort;
2355 pTab->tabFlags |= TF_HasNotNull;
2358 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY
2359 ** into BTREE_BLOBKEY.
2361 assert( !pParse->bReturning );
2362 if( pParse->u1.addrCrTab ){
2363 assert( v );
2364 sqlite3VdbeChangeP3(v, pParse->u1.addrCrTab, BTREE_BLOBKEY);
2367 /* Locate the PRIMARY KEY index. Or, if this table was originally
2368 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
2370 if( pTab->iPKey>=0 ){
2371 ExprList *pList;
2372 Token ipkToken;
2373 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zCnName);
2374 pList = sqlite3ExprListAppend(pParse, 0,
2375 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
2376 if( pList==0 ){
2377 pTab->tabFlags &= ~TF_WithoutRowid;
2378 return;
2380 if( IN_RENAME_OBJECT ){
2381 sqlite3RenameTokenRemap(pParse, pList->a[0].pExpr, &pTab->iPKey);
2383 pList->a[0].sortFlags = pParse->iPkSortOrder;
2384 assert( pParse->pNewTable==pTab );
2385 pTab->iPKey = -1;
2386 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0,
2387 SQLITE_IDXTYPE_PRIMARYKEY);
2388 if( db->mallocFailed || pParse->nErr ){
2389 pTab->tabFlags &= ~TF_WithoutRowid;
2390 return;
2392 pPk = sqlite3PrimaryKeyIndex(pTab);
2393 assert( pPk->nKeyCol==1 );
2394 }else{
2395 pPk = sqlite3PrimaryKeyIndex(pTab);
2396 assert( pPk!=0 );
2399 ** Remove all redundant columns from the PRIMARY KEY. For example, change
2400 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later
2401 ** code assumes the PRIMARY KEY contains no repeated columns.
2403 for(i=j=1; i<pPk->nKeyCol; i++){
2404 if( isDupColumn(pPk, j, pPk, i) ){
2405 pPk->nColumn--;
2406 }else{
2407 testcase( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) );
2408 pPk->azColl[j] = pPk->azColl[i];
2409 pPk->aSortOrder[j] = pPk->aSortOrder[i];
2410 pPk->aiColumn[j++] = pPk->aiColumn[i];
2413 pPk->nKeyCol = j;
2415 assert( pPk!=0 );
2416 pPk->isCovering = 1;
2417 if( !db->init.imposterTable ) pPk->uniqNotNull = 1;
2418 nPk = pPk->nColumn = pPk->nKeyCol;
2420 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_schema
2421 ** table entry. This is only required if currently generating VDBE
2422 ** code for a CREATE TABLE (not when parsing one as part of reading
2423 ** a database schema). */
2424 if( v && pPk->tnum>0 ){
2425 assert( db->init.busy==0 );
2426 sqlite3VdbeChangeOpcode(v, (int)pPk->tnum, OP_Goto);
2429 /* The root page of the PRIMARY KEY is the table root page */
2430 pPk->tnum = pTab->tnum;
2432 /* Update the in-memory representation of all UNIQUE indices by converting
2433 ** the final rowid column into one or more columns of the PRIMARY KEY.
2435 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2436 int n;
2437 if( IsPrimaryKeyIndex(pIdx) ) continue;
2438 for(i=n=0; i<nPk; i++){
2439 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){
2440 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) );
2441 n++;
2444 if( n==0 ){
2445 /* This index is a superset of the primary key */
2446 pIdx->nColumn = pIdx->nKeyCol;
2447 continue;
2449 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
2450 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
2451 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){
2452 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) );
2453 pIdx->aiColumn[j] = pPk->aiColumn[i];
2454 pIdx->azColl[j] = pPk->azColl[i];
2455 if( pPk->aSortOrder[i] ){
2456 /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */
2457 pIdx->bAscKeyBug = 1;
2459 j++;
2462 assert( pIdx->nColumn>=pIdx->nKeyCol+n );
2463 assert( pIdx->nColumn>=j );
2466 /* Add all table columns to the PRIMARY KEY index
2468 nExtra = 0;
2469 for(i=0; i<pTab->nCol; i++){
2470 if( !hasColumn(pPk->aiColumn, nPk, i)
2471 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) nExtra++;
2473 if( resizeIndexObject(db, pPk, nPk+nExtra) ) return;
2474 for(i=0, j=nPk; i<pTab->nCol; i++){
2475 if( !hasColumn(pPk->aiColumn, j, i)
2476 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0
2478 assert( j<pPk->nColumn );
2479 pPk->aiColumn[j] = i;
2480 pPk->azColl[j] = sqlite3StrBINARY;
2481 j++;
2484 assert( pPk->nColumn==j );
2485 assert( pTab->nNVCol<=j );
2486 recomputeColumnsNotIndexed(pPk);
2490 #ifndef SQLITE_OMIT_VIRTUALTABLE
2492 ** Return true if pTab is a virtual table and zName is a shadow table name
2493 ** for that virtual table.
2495 int sqlite3IsShadowTableOf(sqlite3 *db, Table *pTab, const char *zName){
2496 int nName; /* Length of zName */
2497 Module *pMod; /* Module for the virtual table */
2499 if( !IsVirtual(pTab) ) return 0;
2500 nName = sqlite3Strlen30(pTab->zName);
2501 if( sqlite3_strnicmp(zName, pTab->zName, nName)!=0 ) return 0;
2502 if( zName[nName]!='_' ) return 0;
2503 pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]);
2504 if( pMod==0 ) return 0;
2505 if( pMod->pModule->iVersion<3 ) return 0;
2506 if( pMod->pModule->xShadowName==0 ) return 0;
2507 return pMod->pModule->xShadowName(zName+nName+1);
2509 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2511 #ifndef SQLITE_OMIT_VIRTUALTABLE
2513 ** Table pTab is a virtual table. If it the virtual table implementation
2514 ** exists and has an xShadowName method, then loop over all other ordinary
2515 ** tables within the same schema looking for shadow tables of pTab, and mark
2516 ** any shadow tables seen using the TF_Shadow flag.
2518 void sqlite3MarkAllShadowTablesOf(sqlite3 *db, Table *pTab){
2519 int nName; /* Length of pTab->zName */
2520 Module *pMod; /* Module for the virtual table */
2521 HashElem *k; /* For looping through the symbol table */
2523 assert( IsVirtual(pTab) );
2524 pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]);
2525 if( pMod==0 ) return;
2526 if( NEVER(pMod->pModule==0) ) return;
2527 if( pMod->pModule->iVersion<3 ) return;
2528 if( pMod->pModule->xShadowName==0 ) return;
2529 assert( pTab->zName!=0 );
2530 nName = sqlite3Strlen30(pTab->zName);
2531 for(k=sqliteHashFirst(&pTab->pSchema->tblHash); k; k=sqliteHashNext(k)){
2532 Table *pOther = sqliteHashData(k);
2533 assert( pOther->zName!=0 );
2534 if( !IsOrdinaryTable(pOther) ) continue;
2535 if( pOther->tabFlags & TF_Shadow ) continue;
2536 if( sqlite3StrNICmp(pOther->zName, pTab->zName, nName)==0
2537 && pOther->zName[nName]=='_'
2538 && pMod->pModule->xShadowName(pOther->zName+nName+1)
2540 pOther->tabFlags |= TF_Shadow;
2544 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2546 #ifndef SQLITE_OMIT_VIRTUALTABLE
2548 ** Return true if zName is a shadow table name in the current database
2549 ** connection.
2551 ** zName is temporarily modified while this routine is running, but is
2552 ** restored to its original value prior to this routine returning.
2554 int sqlite3ShadowTableName(sqlite3 *db, const char *zName){
2555 char *zTail; /* Pointer to the last "_" in zName */
2556 Table *pTab; /* Table that zName is a shadow of */
2557 zTail = strrchr(zName, '_');
2558 if( zTail==0 ) return 0;
2559 *zTail = 0;
2560 pTab = sqlite3FindTable(db, zName, 0);
2561 *zTail = '_';
2562 if( pTab==0 ) return 0;
2563 if( !IsVirtual(pTab) ) return 0;
2564 return sqlite3IsShadowTableOf(db, pTab, zName);
2566 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2569 #ifdef SQLITE_DEBUG
2571 ** Mark all nodes of an expression as EP_Immutable, indicating that
2572 ** they should not be changed. Expressions attached to a table or
2573 ** index definition are tagged this way to help ensure that we do
2574 ** not pass them into code generator routines by mistake.
2576 static int markImmutableExprStep(Walker *pWalker, Expr *pExpr){
2577 ExprSetVVAProperty(pExpr, EP_Immutable);
2578 return WRC_Continue;
2580 static void markExprListImmutable(ExprList *pList){
2581 if( pList ){
2582 Walker w;
2583 memset(&w, 0, sizeof(w));
2584 w.xExprCallback = markImmutableExprStep;
2585 w.xSelectCallback = sqlite3SelectWalkNoop;
2586 w.xSelectCallback2 = 0;
2587 sqlite3WalkExprList(&w, pList);
2590 #else
2591 #define markExprListImmutable(X) /* no-op */
2592 #endif /* SQLITE_DEBUG */
2596 ** This routine is called to report the final ")" that terminates
2597 ** a CREATE TABLE statement.
2599 ** The table structure that other action routines have been building
2600 ** is added to the internal hash tables, assuming no errors have
2601 ** occurred.
2603 ** An entry for the table is made in the schema table on disk, unless
2604 ** this is a temporary table or db->init.busy==1. When db->init.busy==1
2605 ** it means we are reading the sqlite_schema table because we just
2606 ** connected to the database or because the sqlite_schema table has
2607 ** recently changed, so the entry for this table already exists in
2608 ** the sqlite_schema table. We do not want to create it again.
2610 ** If the pSelect argument is not NULL, it means that this routine
2611 ** was called to create a table generated from a
2612 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of
2613 ** the new table will match the result set of the SELECT.
2615 void sqlite3EndTable(
2616 Parse *pParse, /* Parse context */
2617 Token *pCons, /* The ',' token after the last column defn. */
2618 Token *pEnd, /* The ')' before options in the CREATE TABLE */
2619 u32 tabOpts, /* Extra table options. Usually 0. */
2620 Select *pSelect /* Select from a "CREATE ... AS SELECT" */
2622 Table *p; /* The new table */
2623 sqlite3 *db = pParse->db; /* The database connection */
2624 int iDb; /* Database in which the table lives */
2625 Index *pIdx; /* An implied index of the table */
2627 if( pEnd==0 && pSelect==0 ){
2628 return;
2630 p = pParse->pNewTable;
2631 if( p==0 ) return;
2633 if( pSelect==0 && sqlite3ShadowTableName(db, p->zName) ){
2634 p->tabFlags |= TF_Shadow;
2637 /* If the db->init.busy is 1 it means we are reading the SQL off the
2638 ** "sqlite_schema" or "sqlite_temp_schema" table on the disk.
2639 ** So do not write to the disk again. Extract the root page number
2640 ** for the table from the db->init.newTnum field. (The page number
2641 ** should have been put there by the sqliteOpenCb routine.)
2643 ** If the root page number is 1, that means this is the sqlite_schema
2644 ** table itself. So mark it read-only.
2646 if( db->init.busy ){
2647 if( pSelect || (!IsOrdinaryTable(p) && db->init.newTnum) ){
2648 sqlite3ErrorMsg(pParse, "");
2649 return;
2651 p->tnum = db->init.newTnum;
2652 if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
2655 /* Special processing for tables that include the STRICT keyword:
2657 ** * Do not allow custom column datatypes. Every column must have
2658 ** a datatype that is one of INT, INTEGER, REAL, TEXT, or BLOB.
2660 ** * If a PRIMARY KEY is defined, other than the INTEGER PRIMARY KEY,
2661 ** then all columns of the PRIMARY KEY must have a NOT NULL
2662 ** constraint.
2664 if( tabOpts & TF_Strict ){
2665 int ii;
2666 p->tabFlags |= TF_Strict;
2667 for(ii=0; ii<p->nCol; ii++){
2668 Column *pCol = &p->aCol[ii];
2669 if( pCol->eCType==COLTYPE_CUSTOM ){
2670 if( pCol->colFlags & COLFLAG_HASTYPE ){
2671 sqlite3ErrorMsg(pParse,
2672 "unknown datatype for %s.%s: \"%s\"",
2673 p->zName, pCol->zCnName, sqlite3ColumnType(pCol, "")
2675 }else{
2676 sqlite3ErrorMsg(pParse, "missing datatype for %s.%s",
2677 p->zName, pCol->zCnName);
2679 return;
2680 }else if( pCol->eCType==COLTYPE_ANY ){
2681 pCol->affinity = SQLITE_AFF_BLOB;
2683 if( (pCol->colFlags & COLFLAG_PRIMKEY)!=0
2684 && p->iPKey!=ii
2685 && pCol->notNull == OE_None
2687 pCol->notNull = OE_Abort;
2688 p->tabFlags |= TF_HasNotNull;
2693 assert( (p->tabFlags & TF_HasPrimaryKey)==0
2694 || p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 );
2695 assert( (p->tabFlags & TF_HasPrimaryKey)!=0
2696 || (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) );
2698 /* Special processing for WITHOUT ROWID Tables */
2699 if( tabOpts & TF_WithoutRowid ){
2700 if( (p->tabFlags & TF_Autoincrement) ){
2701 sqlite3ErrorMsg(pParse,
2702 "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
2703 return;
2705 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
2706 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
2707 return;
2709 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
2710 convertToWithoutRowidTable(pParse, p);
2712 iDb = sqlite3SchemaToIndex(db, p->pSchema);
2714 #ifndef SQLITE_OMIT_CHECK
2715 /* Resolve names in all CHECK constraint expressions.
2717 if( p->pCheck ){
2718 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
2719 if( pParse->nErr ){
2720 /* If errors are seen, delete the CHECK constraints now, else they might
2721 ** actually be used if PRAGMA writable_schema=ON is set. */
2722 sqlite3ExprListDelete(db, p->pCheck);
2723 p->pCheck = 0;
2724 }else{
2725 markExprListImmutable(p->pCheck);
2728 #endif /* !defined(SQLITE_OMIT_CHECK) */
2729 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
2730 if( p->tabFlags & TF_HasGenerated ){
2731 int ii, nNG = 0;
2732 testcase( p->tabFlags & TF_HasVirtual );
2733 testcase( p->tabFlags & TF_HasStored );
2734 for(ii=0; ii<p->nCol; ii++){
2735 u32 colFlags = p->aCol[ii].colFlags;
2736 if( (colFlags & COLFLAG_GENERATED)!=0 ){
2737 Expr *pX = sqlite3ColumnExpr(p, &p->aCol[ii]);
2738 testcase( colFlags & COLFLAG_VIRTUAL );
2739 testcase( colFlags & COLFLAG_STORED );
2740 if( sqlite3ResolveSelfReference(pParse, p, NC_GenCol, pX, 0) ){
2741 /* If there are errors in resolving the expression, change the
2742 ** expression to a NULL. This prevents code generators that operate
2743 ** on the expression from inserting extra parts into the expression
2744 ** tree that have been allocated from lookaside memory, which is
2745 ** illegal in a schema and will lead to errors or heap corruption
2746 ** when the database connection closes. */
2747 sqlite3ColumnSetExpr(pParse, p, &p->aCol[ii],
2748 sqlite3ExprAlloc(db, TK_NULL, 0, 0));
2750 }else{
2751 nNG++;
2754 if( nNG==0 ){
2755 sqlite3ErrorMsg(pParse, "must have at least one non-generated column");
2756 return;
2759 #endif
2761 /* Estimate the average row size for the table and for all implied indices */
2762 estimateTableWidth(p);
2763 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
2764 estimateIndexWidth(pIdx);
2767 /* If not initializing, then create a record for the new table
2768 ** in the schema table of the database.
2770 ** If this is a TEMPORARY table, write the entry into the auxiliary
2771 ** file instead of into the main database file.
2773 if( !db->init.busy ){
2774 int n;
2775 Vdbe *v;
2776 char *zType; /* "view" or "table" */
2777 char *zType2; /* "VIEW" or "TABLE" */
2778 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */
2780 v = sqlite3GetVdbe(pParse);
2781 if( NEVER(v==0) ) return;
2783 sqlite3VdbeAddOp1(v, OP_Close, 0);
2786 ** Initialize zType for the new view or table.
2788 if( IsOrdinaryTable(p) ){
2789 /* A regular table */
2790 zType = "table";
2791 zType2 = "TABLE";
2792 #ifndef SQLITE_OMIT_VIEW
2793 }else{
2794 /* A view */
2795 zType = "view";
2796 zType2 = "VIEW";
2797 #endif
2800 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
2801 ** statement to populate the new table. The root-page number for the
2802 ** new table is in register pParse->regRoot.
2804 ** Once the SELECT has been coded by sqlite3Select(), it is in a
2805 ** suitable state to query for the column names and types to be used
2806 ** by the new table.
2808 ** A shared-cache write-lock is not required to write to the new table,
2809 ** as a schema-lock must have already been obtained to create it. Since
2810 ** a schema-lock excludes all other database users, the write-lock would
2811 ** be redundant.
2813 if( pSelect ){
2814 SelectDest dest; /* Where the SELECT should store results */
2815 int regYield; /* Register holding co-routine entry-point */
2816 int addrTop; /* Top of the co-routine */
2817 int regRec; /* A record to be insert into the new table */
2818 int regRowid; /* Rowid of the next row to insert */
2819 int addrInsLoop; /* Top of the loop for inserting rows */
2820 Table *pSelTab; /* A table that describes the SELECT results */
2822 regYield = ++pParse->nMem;
2823 regRec = ++pParse->nMem;
2824 regRowid = ++pParse->nMem;
2825 assert(pParse->nTab==1);
2826 sqlite3MayAbort(pParse);
2827 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
2828 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
2829 pParse->nTab = 2;
2830 addrTop = sqlite3VdbeCurrentAddr(v) + 1;
2831 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
2832 if( pParse->nErr ) return;
2833 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect, SQLITE_AFF_BLOB);
2834 if( pSelTab==0 ) return;
2835 assert( p->aCol==0 );
2836 p->nCol = p->nNVCol = pSelTab->nCol;
2837 p->aCol = pSelTab->aCol;
2838 pSelTab->nCol = 0;
2839 pSelTab->aCol = 0;
2840 sqlite3DeleteTable(db, pSelTab);
2841 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
2842 sqlite3Select(pParse, pSelect, &dest);
2843 if( pParse->nErr ) return;
2844 sqlite3VdbeEndCoroutine(v, regYield);
2845 sqlite3VdbeJumpHere(v, addrTop - 1);
2846 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
2847 VdbeCoverage(v);
2848 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
2849 sqlite3TableAffinity(v, p, 0);
2850 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
2851 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
2852 sqlite3VdbeGoto(v, addrInsLoop);
2853 sqlite3VdbeJumpHere(v, addrInsLoop);
2854 sqlite3VdbeAddOp1(v, OP_Close, 1);
2857 /* Compute the complete text of the CREATE statement */
2858 if( pSelect ){
2859 zStmt = createTableStmt(db, p);
2860 }else{
2861 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
2862 n = (int)(pEnd2->z - pParse->sNameToken.z);
2863 if( pEnd2->z[0]!=';' ) n += pEnd2->n;
2864 zStmt = sqlite3MPrintf(db,
2865 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
2869 /* A slot for the record has already been allocated in the
2870 ** schema table. We just need to update that slot with all
2871 ** the information we've collected.
2873 sqlite3NestedParse(pParse,
2874 "UPDATE %Q." LEGACY_SCHEMA_TABLE
2875 " SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q"
2876 " WHERE rowid=#%d",
2877 db->aDb[iDb].zDbSName,
2878 zType,
2879 p->zName,
2880 p->zName,
2881 pParse->regRoot,
2882 zStmt,
2883 pParse->regRowid
2885 sqlite3DbFree(db, zStmt);
2886 sqlite3ChangeCookie(pParse, iDb);
2888 #ifndef SQLITE_OMIT_AUTOINCREMENT
2889 /* Check to see if we need to create an sqlite_sequence table for
2890 ** keeping track of autoincrement keys.
2892 if( (p->tabFlags & TF_Autoincrement)!=0 && !IN_SPECIAL_PARSE ){
2893 Db *pDb = &db->aDb[iDb];
2894 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2895 if( pDb->pSchema->pSeqTab==0 ){
2896 sqlite3NestedParse(pParse,
2897 "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2898 pDb->zDbSName
2902 #endif
2904 /* Reparse everything to update our internal data structures */
2905 sqlite3VdbeAddParseSchemaOp(v, iDb,
2906 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName),0);
2909 /* Add the table to the in-memory representation of the database.
2911 if( db->init.busy ){
2912 Table *pOld;
2913 Schema *pSchema = p->pSchema;
2914 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2915 assert( HasRowid(p) || p->iPKey<0 );
2916 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
2917 if( pOld ){
2918 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
2919 sqlite3OomFault(db);
2920 return;
2922 pParse->pNewTable = 0;
2923 db->mDbFlags |= DBFLAG_SchemaChange;
2925 /* If this is the magic sqlite_sequence table used by autoincrement,
2926 ** then record a pointer to this table in the main database structure
2927 ** so that INSERT can find the table easily. */
2928 assert( !pParse->nested );
2929 #ifndef SQLITE_OMIT_AUTOINCREMENT
2930 if( strcmp(p->zName, "sqlite_sequence")==0 ){
2931 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2932 p->pSchema->pSeqTab = p;
2934 #endif
2937 #ifndef SQLITE_OMIT_ALTERTABLE
2938 if( !pSelect && IsOrdinaryTable(p) ){
2939 assert( pCons && pEnd );
2940 if( pCons->z==0 ){
2941 pCons = pEnd;
2943 p->u.tab.addColOffset = 13 + (int)(pCons->z - pParse->sNameToken.z);
2945 #endif
2948 #ifndef SQLITE_OMIT_VIEW
2950 ** The parser calls this routine in order to create a new VIEW
2952 void sqlite3CreateView(
2953 Parse *pParse, /* The parsing context */
2954 Token *pBegin, /* The CREATE token that begins the statement */
2955 Token *pName1, /* The token that holds the name of the view */
2956 Token *pName2, /* The token that holds the name of the view */
2957 ExprList *pCNames, /* Optional list of view column names */
2958 Select *pSelect, /* A SELECT statement that will become the new view */
2959 int isTemp, /* TRUE for a TEMPORARY view */
2960 int noErr /* Suppress error messages if VIEW already exists */
2962 Table *p;
2963 int n;
2964 const char *z;
2965 Token sEnd;
2966 DbFixer sFix;
2967 Token *pName = 0;
2968 int iDb;
2969 sqlite3 *db = pParse->db;
2971 if( pParse->nVar>0 ){
2972 sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
2973 goto create_view_fail;
2975 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
2976 p = pParse->pNewTable;
2977 if( p==0 || pParse->nErr ) goto create_view_fail;
2979 /* Legacy versions of SQLite allowed the use of the magic "rowid" column
2980 ** on a view, even though views do not have rowids. The following flag
2981 ** setting fixes this problem. But the fix can be disabled by compiling
2982 ** with -DSQLITE_ALLOW_ROWID_IN_VIEW in case there are legacy apps that
2983 ** depend upon the old buggy behavior. */
2984 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
2985 p->tabFlags |= TF_NoVisibleRowid;
2986 #endif
2988 sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2989 iDb = sqlite3SchemaToIndex(db, p->pSchema);
2990 sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
2991 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
2993 /* Make a copy of the entire SELECT statement that defines the view.
2994 ** This will force all the Expr.token.z values to be dynamically
2995 ** allocated rather than point to the input string - which means that
2996 ** they will persist after the current sqlite3_exec() call returns.
2998 pSelect->selFlags |= SF_View;
2999 if( IN_RENAME_OBJECT ){
3000 p->u.view.pSelect = pSelect;
3001 pSelect = 0;
3002 }else{
3003 p->u.view.pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
3005 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
3006 p->eTabType = TABTYP_VIEW;
3007 if( db->mallocFailed ) goto create_view_fail;
3009 /* Locate the end of the CREATE VIEW statement. Make sEnd point to
3010 ** the end.
3012 sEnd = pParse->sLastToken;
3013 assert( sEnd.z[0]!=0 || sEnd.n==0 );
3014 if( sEnd.z[0]!=';' ){
3015 sEnd.z += sEnd.n;
3017 sEnd.n = 0;
3018 n = (int)(sEnd.z - pBegin->z);
3019 assert( n>0 );
3020 z = pBegin->z;
3021 while( sqlite3Isspace(z[n-1]) ){ n--; }
3022 sEnd.z = &z[n-1];
3023 sEnd.n = 1;
3025 /* Use sqlite3EndTable() to add the view to the schema table */
3026 sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
3028 create_view_fail:
3029 sqlite3SelectDelete(db, pSelect);
3030 if( IN_RENAME_OBJECT ){
3031 sqlite3RenameExprlistUnmap(pParse, pCNames);
3033 sqlite3ExprListDelete(db, pCNames);
3034 return;
3036 #endif /* SQLITE_OMIT_VIEW */
3038 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
3040 ** The Table structure pTable is really a VIEW. Fill in the names of
3041 ** the columns of the view in the pTable structure. Return the number
3042 ** of errors. If an error is seen leave an error message in pParse->zErrMsg.
3044 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
3045 Table *pSelTab; /* A fake table from which we get the result set */
3046 Select *pSel; /* Copy of the SELECT that implements the view */
3047 int nErr = 0; /* Number of errors encountered */
3048 int n; /* Temporarily holds the number of cursors assigned */
3049 sqlite3 *db = pParse->db; /* Database connection for malloc errors */
3050 #ifndef SQLITE_OMIT_VIRTUALTABLE
3051 int rc;
3052 #endif
3053 #ifndef SQLITE_OMIT_AUTHORIZATION
3054 sqlite3_xauth xAuth; /* Saved xAuth pointer */
3055 #endif
3057 assert( pTable );
3059 #ifndef SQLITE_OMIT_VIRTUALTABLE
3060 if( IsVirtual(pTable) ){
3061 db->nSchemaLock++;
3062 rc = sqlite3VtabCallConnect(pParse, pTable);
3063 db->nSchemaLock--;
3064 return rc;
3066 #endif
3068 #ifndef SQLITE_OMIT_VIEW
3069 /* A positive nCol means the columns names for this view are
3070 ** already known.
3072 if( pTable->nCol>0 ) return 0;
3074 /* A negative nCol is a special marker meaning that we are currently
3075 ** trying to compute the column names. If we enter this routine with
3076 ** a negative nCol, it means two or more views form a loop, like this:
3078 ** CREATE VIEW one AS SELECT * FROM two;
3079 ** CREATE VIEW two AS SELECT * FROM one;
3081 ** Actually, the error above is now caught prior to reaching this point.
3082 ** But the following test is still important as it does come up
3083 ** in the following:
3085 ** CREATE TABLE main.ex1(a);
3086 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
3087 ** SELECT * FROM temp.ex1;
3089 if( pTable->nCol<0 ){
3090 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
3091 return 1;
3093 assert( pTable->nCol>=0 );
3095 /* If we get this far, it means we need to compute the table names.
3096 ** Note that the call to sqlite3ResultSetOfSelect() will expand any
3097 ** "*" elements in the results set of the view and will assign cursors
3098 ** to the elements of the FROM clause. But we do not want these changes
3099 ** to be permanent. So the computation is done on a copy of the SELECT
3100 ** statement that defines the view.
3102 assert( IsView(pTable) );
3103 pSel = sqlite3SelectDup(db, pTable->u.view.pSelect, 0);
3104 if( pSel ){
3105 u8 eParseMode = pParse->eParseMode;
3106 pParse->eParseMode = PARSE_MODE_NORMAL;
3107 n = pParse->nTab;
3108 sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
3109 pTable->nCol = -1;
3110 DisableLookaside;
3111 #ifndef SQLITE_OMIT_AUTHORIZATION
3112 xAuth = db->xAuth;
3113 db->xAuth = 0;
3114 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE);
3115 db->xAuth = xAuth;
3116 #else
3117 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE);
3118 #endif
3119 pParse->nTab = n;
3120 if( pSelTab==0 ){
3121 pTable->nCol = 0;
3122 nErr++;
3123 }else if( pTable->pCheck ){
3124 /* CREATE VIEW name(arglist) AS ...
3125 ** The names of the columns in the table are taken from
3126 ** arglist which is stored in pTable->pCheck. The pCheck field
3127 ** normally holds CHECK constraints on an ordinary table, but for
3128 ** a VIEW it holds the list of column names.
3130 sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
3131 &pTable->nCol, &pTable->aCol);
3132 if( db->mallocFailed==0
3133 && pParse->nErr==0
3134 && pTable->nCol==pSel->pEList->nExpr
3136 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel,
3137 SQLITE_AFF_NONE);
3139 }else{
3140 /* CREATE VIEW name AS... without an argument list. Construct
3141 ** the column names from the SELECT statement that defines the view.
3143 assert( pTable->aCol==0 );
3144 pTable->nCol = pSelTab->nCol;
3145 pTable->aCol = pSelTab->aCol;
3146 pTable->tabFlags |= (pSelTab->tabFlags & COLFLAG_NOINSERT);
3147 pSelTab->nCol = 0;
3148 pSelTab->aCol = 0;
3149 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
3151 pTable->nNVCol = pTable->nCol;
3152 sqlite3DeleteTable(db, pSelTab);
3153 sqlite3SelectDelete(db, pSel);
3154 EnableLookaside;
3155 pParse->eParseMode = eParseMode;
3156 } else {
3157 nErr++;
3159 pTable->pSchema->schemaFlags |= DB_UnresetViews;
3160 if( db->mallocFailed ){
3161 sqlite3DeleteColumnNames(db, pTable);
3163 #endif /* SQLITE_OMIT_VIEW */
3164 return nErr;
3166 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
3168 #ifndef SQLITE_OMIT_VIEW
3170 ** Clear the column names from every VIEW in database idx.
3172 static void sqliteViewResetAll(sqlite3 *db, int idx){
3173 HashElem *i;
3174 assert( sqlite3SchemaMutexHeld(db, idx, 0) );
3175 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
3176 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
3177 Table *pTab = sqliteHashData(i);
3178 if( IsView(pTab) ){
3179 sqlite3DeleteColumnNames(db, pTab);
3182 DbClearProperty(db, idx, DB_UnresetViews);
3184 #else
3185 # define sqliteViewResetAll(A,B)
3186 #endif /* SQLITE_OMIT_VIEW */
3189 ** This function is called by the VDBE to adjust the internal schema
3190 ** used by SQLite when the btree layer moves a table root page. The
3191 ** root-page of a table or index in database iDb has changed from iFrom
3192 ** to iTo.
3194 ** Ticket #1728: The symbol table might still contain information
3195 ** on tables and/or indices that are the process of being deleted.
3196 ** If you are unlucky, one of those deleted indices or tables might
3197 ** have the same rootpage number as the real table or index that is
3198 ** being moved. So we cannot stop searching after the first match
3199 ** because the first match might be for one of the deleted indices
3200 ** or tables and not the table/index that is actually being moved.
3201 ** We must continue looping until all tables and indices with
3202 ** rootpage==iFrom have been converted to have a rootpage of iTo
3203 ** in order to be certain that we got the right one.
3205 #ifndef SQLITE_OMIT_AUTOVACUUM
3206 void sqlite3RootPageMoved(sqlite3 *db, int iDb, Pgno iFrom, Pgno iTo){
3207 HashElem *pElem;
3208 Hash *pHash;
3209 Db *pDb;
3211 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3212 pDb = &db->aDb[iDb];
3213 pHash = &pDb->pSchema->tblHash;
3214 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
3215 Table *pTab = sqliteHashData(pElem);
3216 if( pTab->tnum==iFrom ){
3217 pTab->tnum = iTo;
3220 pHash = &pDb->pSchema->idxHash;
3221 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
3222 Index *pIdx = sqliteHashData(pElem);
3223 if( pIdx->tnum==iFrom ){
3224 pIdx->tnum = iTo;
3228 #endif
3231 ** Write code to erase the table with root-page iTable from database iDb.
3232 ** Also write code to modify the sqlite_schema table and internal schema
3233 ** if a root-page of another table is moved by the btree-layer whilst
3234 ** erasing iTable (this can happen with an auto-vacuum database).
3236 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
3237 Vdbe *v = sqlite3GetVdbe(pParse);
3238 int r1 = sqlite3GetTempReg(pParse);
3239 if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema");
3240 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
3241 sqlite3MayAbort(pParse);
3242 #ifndef SQLITE_OMIT_AUTOVACUUM
3243 /* OP_Destroy stores an in integer r1. If this integer
3244 ** is non-zero, then it is the root page number of a table moved to
3245 ** location iTable. The following code modifies the sqlite_schema table to
3246 ** reflect this.
3248 ** The "#NNN" in the SQL is a special constant that means whatever value
3249 ** is in register NNN. See grammar rules associated with the TK_REGISTER
3250 ** token for additional information.
3252 sqlite3NestedParse(pParse,
3253 "UPDATE %Q." LEGACY_SCHEMA_TABLE
3254 " SET rootpage=%d WHERE #%d AND rootpage=#%d",
3255 pParse->db->aDb[iDb].zDbSName, iTable, r1, r1);
3256 #endif
3257 sqlite3ReleaseTempReg(pParse, r1);
3261 ** Write VDBE code to erase table pTab and all associated indices on disk.
3262 ** Code to update the sqlite_schema tables and internal schema definitions
3263 ** in case a root-page belonging to another table is moved by the btree layer
3264 ** is also added (this can happen with an auto-vacuum database).
3266 static void destroyTable(Parse *pParse, Table *pTab){
3267 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
3268 ** is not defined), then it is important to call OP_Destroy on the
3269 ** table and index root-pages in order, starting with the numerically
3270 ** largest root-page number. This guarantees that none of the root-pages
3271 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
3272 ** following were coded:
3274 ** OP_Destroy 4 0
3275 ** ...
3276 ** OP_Destroy 5 0
3278 ** and root page 5 happened to be the largest root-page number in the
3279 ** database, then root page 5 would be moved to page 4 by the
3280 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
3281 ** a free-list page.
3283 Pgno iTab = pTab->tnum;
3284 Pgno iDestroyed = 0;
3286 while( 1 ){
3287 Index *pIdx;
3288 Pgno iLargest = 0;
3290 if( iDestroyed==0 || iTab<iDestroyed ){
3291 iLargest = iTab;
3293 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3294 Pgno iIdx = pIdx->tnum;
3295 assert( pIdx->pSchema==pTab->pSchema );
3296 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
3297 iLargest = iIdx;
3300 if( iLargest==0 ){
3301 return;
3302 }else{
3303 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
3304 assert( iDb>=0 && iDb<pParse->db->nDb );
3305 destroyRootPage(pParse, iLargest, iDb);
3306 iDestroyed = iLargest;
3312 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
3313 ** after a DROP INDEX or DROP TABLE command.
3315 static void sqlite3ClearStatTables(
3316 Parse *pParse, /* The parsing context */
3317 int iDb, /* The database number */
3318 const char *zType, /* "idx" or "tbl" */
3319 const char *zName /* Name of index or table */
3321 int i;
3322 const char *zDbName = pParse->db->aDb[iDb].zDbSName;
3323 for(i=1; i<=4; i++){
3324 char zTab[24];
3325 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
3326 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
3327 sqlite3NestedParse(pParse,
3328 "DELETE FROM %Q.%s WHERE %s=%Q",
3329 zDbName, zTab, zType, zName
3336 ** Generate code to drop a table.
3338 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
3339 Vdbe *v;
3340 sqlite3 *db = pParse->db;
3341 Trigger *pTrigger;
3342 Db *pDb = &db->aDb[iDb];
3344 v = sqlite3GetVdbe(pParse);
3345 assert( v!=0 );
3346 sqlite3BeginWriteOperation(pParse, 1, iDb);
3348 #ifndef SQLITE_OMIT_VIRTUALTABLE
3349 if( IsVirtual(pTab) ){
3350 sqlite3VdbeAddOp0(v, OP_VBegin);
3352 #endif
3354 /* Drop all triggers associated with the table being dropped. Code
3355 ** is generated to remove entries from sqlite_schema and/or
3356 ** sqlite_temp_schema if required.
3358 pTrigger = sqlite3TriggerList(pParse, pTab);
3359 while( pTrigger ){
3360 assert( pTrigger->pSchema==pTab->pSchema ||
3361 pTrigger->pSchema==db->aDb[1].pSchema );
3362 sqlite3DropTriggerPtr(pParse, pTrigger);
3363 pTrigger = pTrigger->pNext;
3366 #ifndef SQLITE_OMIT_AUTOINCREMENT
3367 /* Remove any entries of the sqlite_sequence table associated with
3368 ** the table being dropped. This is done before the table is dropped
3369 ** at the btree level, in case the sqlite_sequence table needs to
3370 ** move as a result of the drop (can happen in auto-vacuum mode).
3372 if( pTab->tabFlags & TF_Autoincrement ){
3373 sqlite3NestedParse(pParse,
3374 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
3375 pDb->zDbSName, pTab->zName
3378 #endif
3380 /* Drop all entries in the schema table that refer to the
3381 ** table. The program name loops through the schema table and deletes
3382 ** every row that refers to a table of the same name as the one being
3383 ** dropped. Triggers are handled separately because a trigger can be
3384 ** created in the temp database that refers to a table in another
3385 ** database.
3387 sqlite3NestedParse(pParse,
3388 "DELETE FROM %Q." LEGACY_SCHEMA_TABLE
3389 " WHERE tbl_name=%Q and type!='trigger'",
3390 pDb->zDbSName, pTab->zName);
3391 if( !isView && !IsVirtual(pTab) ){
3392 destroyTable(pParse, pTab);
3395 /* Remove the table entry from SQLite's internal schema and modify
3396 ** the schema cookie.
3398 if( IsVirtual(pTab) ){
3399 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
3400 sqlite3MayAbort(pParse);
3402 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
3403 sqlite3ChangeCookie(pParse, iDb);
3404 sqliteViewResetAll(db, iDb);
3408 ** Return TRUE if shadow tables should be read-only in the current
3409 ** context.
3411 int sqlite3ReadOnlyShadowTables(sqlite3 *db){
3412 #ifndef SQLITE_OMIT_VIRTUALTABLE
3413 if( (db->flags & SQLITE_Defensive)!=0
3414 && db->pVtabCtx==0
3415 && db->nVdbeExec==0
3416 && !sqlite3VtabInSync(db)
3418 return 1;
3420 #endif
3421 return 0;
3425 ** Return true if it is not allowed to drop the given table
3427 static int tableMayNotBeDropped(sqlite3 *db, Table *pTab){
3428 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
3429 if( sqlite3StrNICmp(pTab->zName+7, "stat", 4)==0 ) return 0;
3430 if( sqlite3StrNICmp(pTab->zName+7, "parameters", 10)==0 ) return 0;
3431 return 1;
3433 if( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(db) ){
3434 return 1;
3436 if( pTab->tabFlags & TF_Eponymous ){
3437 return 1;
3439 return 0;
3443 ** This routine is called to do the work of a DROP TABLE statement.
3444 ** pName is the name of the table to be dropped.
3446 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
3447 Table *pTab;
3448 Vdbe *v;
3449 sqlite3 *db = pParse->db;
3450 int iDb;
3452 if( db->mallocFailed ){
3453 goto exit_drop_table;
3455 assert( pParse->nErr==0 );
3456 assert( pName->nSrc==1 );
3457 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
3458 if( noErr ) db->suppressErr++;
3459 assert( isView==0 || isView==LOCATE_VIEW );
3460 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
3461 if( noErr ) db->suppressErr--;
3463 if( pTab==0 ){
3464 if( noErr ){
3465 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3466 sqlite3ForceNotReadOnly(pParse);
3468 goto exit_drop_table;
3470 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
3471 assert( iDb>=0 && iDb<db->nDb );
3473 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
3474 ** it is initialized.
3476 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
3477 goto exit_drop_table;
3479 #ifndef SQLITE_OMIT_AUTHORIZATION
3481 int code;
3482 const char *zTab = SCHEMA_TABLE(iDb);
3483 const char *zDb = db->aDb[iDb].zDbSName;
3484 const char *zArg2 = 0;
3485 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
3486 goto exit_drop_table;
3488 if( isView ){
3489 if( !OMIT_TEMPDB && iDb==1 ){
3490 code = SQLITE_DROP_TEMP_VIEW;
3491 }else{
3492 code = SQLITE_DROP_VIEW;
3494 #ifndef SQLITE_OMIT_VIRTUALTABLE
3495 }else if( IsVirtual(pTab) ){
3496 code = SQLITE_DROP_VTABLE;
3497 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
3498 #endif
3499 }else{
3500 if( !OMIT_TEMPDB && iDb==1 ){
3501 code = SQLITE_DROP_TEMP_TABLE;
3502 }else{
3503 code = SQLITE_DROP_TABLE;
3506 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
3507 goto exit_drop_table;
3509 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
3510 goto exit_drop_table;
3513 #endif
3514 if( tableMayNotBeDropped(db, pTab) ){
3515 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
3516 goto exit_drop_table;
3519 #ifndef SQLITE_OMIT_VIEW
3520 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
3521 ** on a table.
3523 if( isView && !IsView(pTab) ){
3524 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
3525 goto exit_drop_table;
3527 if( !isView && IsView(pTab) ){
3528 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
3529 goto exit_drop_table;
3531 #endif
3533 /* Generate code to remove the table from the schema table
3534 ** on disk.
3536 v = sqlite3GetVdbe(pParse);
3537 if( v ){
3538 sqlite3BeginWriteOperation(pParse, 1, iDb);
3539 if( !isView ){
3540 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
3541 sqlite3FkDropTable(pParse, pName, pTab);
3543 sqlite3CodeDropTable(pParse, pTab, iDb, isView);
3546 exit_drop_table:
3547 sqlite3SrcListDelete(db, pName);
3551 ** This routine is called to create a new foreign key on the table
3552 ** currently under construction. pFromCol determines which columns
3553 ** in the current table point to the foreign key. If pFromCol==0 then
3554 ** connect the key to the last column inserted. pTo is the name of
3555 ** the table referred to (a.k.a the "parent" table). pToCol is a list
3556 ** of tables in the parent pTo table. flags contains all
3557 ** information about the conflict resolution algorithms specified
3558 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
3560 ** An FKey structure is created and added to the table currently
3561 ** under construction in the pParse->pNewTable field.
3563 ** The foreign key is set for IMMEDIATE processing. A subsequent call
3564 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
3566 void sqlite3CreateForeignKey(
3567 Parse *pParse, /* Parsing context */
3568 ExprList *pFromCol, /* Columns in this table that point to other table */
3569 Token *pTo, /* Name of the other table */
3570 ExprList *pToCol, /* Columns in the other table */
3571 int flags /* Conflict resolution algorithms. */
3573 sqlite3 *db = pParse->db;
3574 #ifndef SQLITE_OMIT_FOREIGN_KEY
3575 FKey *pFKey = 0;
3576 FKey *pNextTo;
3577 Table *p = pParse->pNewTable;
3578 i64 nByte;
3579 int i;
3580 int nCol;
3581 char *z;
3583 assert( pTo!=0 );
3584 if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
3585 if( pFromCol==0 ){
3586 int iCol = p->nCol-1;
3587 if( NEVER(iCol<0) ) goto fk_end;
3588 if( pToCol && pToCol->nExpr!=1 ){
3589 sqlite3ErrorMsg(pParse, "foreign key on %s"
3590 " should reference only one column of table %T",
3591 p->aCol[iCol].zCnName, pTo);
3592 goto fk_end;
3594 nCol = 1;
3595 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
3596 sqlite3ErrorMsg(pParse,
3597 "number of columns in foreign key does not match the number of "
3598 "columns in the referenced table");
3599 goto fk_end;
3600 }else{
3601 nCol = pFromCol->nExpr;
3603 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
3604 if( pToCol ){
3605 for(i=0; i<pToCol->nExpr; i++){
3606 nByte += sqlite3Strlen30(pToCol->a[i].zEName) + 1;
3609 pFKey = sqlite3DbMallocZero(db, nByte );
3610 if( pFKey==0 ){
3611 goto fk_end;
3613 pFKey->pFrom = p;
3614 assert( IsOrdinaryTable(p) );
3615 pFKey->pNextFrom = p->u.tab.pFKey;
3616 z = (char*)&pFKey->aCol[nCol];
3617 pFKey->zTo = z;
3618 if( IN_RENAME_OBJECT ){
3619 sqlite3RenameTokenMap(pParse, (void*)z, pTo);
3621 memcpy(z, pTo->z, pTo->n);
3622 z[pTo->n] = 0;
3623 sqlite3Dequote(z);
3624 z += pTo->n+1;
3625 pFKey->nCol = nCol;
3626 if( pFromCol==0 ){
3627 pFKey->aCol[0].iFrom = p->nCol-1;
3628 }else{
3629 for(i=0; i<nCol; i++){
3630 int j;
3631 for(j=0; j<p->nCol; j++){
3632 if( sqlite3StrICmp(p->aCol[j].zCnName, pFromCol->a[i].zEName)==0 ){
3633 pFKey->aCol[i].iFrom = j;
3634 break;
3637 if( j>=p->nCol ){
3638 sqlite3ErrorMsg(pParse,
3639 "unknown column \"%s\" in foreign key definition",
3640 pFromCol->a[i].zEName);
3641 goto fk_end;
3643 if( IN_RENAME_OBJECT ){
3644 sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zEName);
3648 if( pToCol ){
3649 for(i=0; i<nCol; i++){
3650 int n = sqlite3Strlen30(pToCol->a[i].zEName);
3651 pFKey->aCol[i].zCol = z;
3652 if( IN_RENAME_OBJECT ){
3653 sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zEName);
3655 memcpy(z, pToCol->a[i].zEName, n);
3656 z[n] = 0;
3657 z += n+1;
3660 pFKey->isDeferred = 0;
3661 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */
3662 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */
3664 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
3665 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
3666 pFKey->zTo, (void *)pFKey
3668 if( pNextTo==pFKey ){
3669 sqlite3OomFault(db);
3670 goto fk_end;
3672 if( pNextTo ){
3673 assert( pNextTo->pPrevTo==0 );
3674 pFKey->pNextTo = pNextTo;
3675 pNextTo->pPrevTo = pFKey;
3678 /* Link the foreign key to the table as the last step.
3680 assert( IsOrdinaryTable(p) );
3681 p->u.tab.pFKey = pFKey;
3682 pFKey = 0;
3684 fk_end:
3685 sqlite3DbFree(db, pFKey);
3686 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
3687 sqlite3ExprListDelete(db, pFromCol);
3688 sqlite3ExprListDelete(db, pToCol);
3692 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
3693 ** clause is seen as part of a foreign key definition. The isDeferred
3694 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
3695 ** The behavior of the most recently created foreign key is adjusted
3696 ** accordingly.
3698 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
3699 #ifndef SQLITE_OMIT_FOREIGN_KEY
3700 Table *pTab;
3701 FKey *pFKey;
3702 if( (pTab = pParse->pNewTable)==0 ) return;
3703 if( NEVER(!IsOrdinaryTable(pTab)) ) return;
3704 if( (pFKey = pTab->u.tab.pFKey)==0 ) return;
3705 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
3706 pFKey->isDeferred = (u8)isDeferred;
3707 #endif
3711 ** Generate code that will erase and refill index *pIdx. This is
3712 ** used to initialize a newly created index or to recompute the
3713 ** content of an index in response to a REINDEX command.
3715 ** if memRootPage is not negative, it means that the index is newly
3716 ** created. The register specified by memRootPage contains the
3717 ** root page number of the index. If memRootPage is negative, then
3718 ** the index already exists and must be cleared before being refilled and
3719 ** the root page number of the index is taken from pIndex->tnum.
3721 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
3722 Table *pTab = pIndex->pTable; /* The table that is indexed */
3723 int iTab = pParse->nTab++; /* Btree cursor used for pTab */
3724 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */
3725 int iSorter; /* Cursor opened by OpenSorter (if in use) */
3726 int addr1; /* Address of top of loop */
3727 int addr2; /* Address to jump to for next iteration */
3728 Pgno tnum; /* Root page of index */
3729 int iPartIdxLabel; /* Jump to this label to skip a row */
3730 Vdbe *v; /* Generate code into this virtual machine */
3731 KeyInfo *pKey; /* KeyInfo for index */
3732 int regRecord; /* Register holding assembled index record */
3733 sqlite3 *db = pParse->db; /* The database connection */
3734 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3736 #ifndef SQLITE_OMIT_AUTHORIZATION
3737 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
3738 db->aDb[iDb].zDbSName ) ){
3739 return;
3741 #endif
3743 /* Require a write-lock on the table to perform this operation */
3744 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
3746 v = sqlite3GetVdbe(pParse);
3747 if( v==0 ) return;
3748 if( memRootPage>=0 ){
3749 tnum = (Pgno)memRootPage;
3750 }else{
3751 tnum = pIndex->tnum;
3753 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
3754 assert( pKey!=0 || db->mallocFailed || pParse->nErr );
3756 /* Open the sorter cursor if we are to use one. */
3757 iSorter = pParse->nTab++;
3758 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
3759 sqlite3KeyInfoRef(pKey), P4_KEYINFO);
3761 /* Open the table. Loop through all rows of the table, inserting index
3762 ** records into the sorter. */
3763 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
3764 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
3765 regRecord = sqlite3GetTempReg(pParse);
3766 sqlite3MultiWrite(pParse);
3768 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
3769 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
3770 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
3771 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
3772 sqlite3VdbeJumpHere(v, addr1);
3773 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
3774 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, (int)tnum, iDb,
3775 (char *)pKey, P4_KEYINFO);
3776 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
3778 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
3779 if( IsUniqueIndex(pIndex) ){
3780 int j2 = sqlite3VdbeGoto(v, 1);
3781 addr2 = sqlite3VdbeCurrentAddr(v);
3782 sqlite3VdbeVerifyAbortable(v, OE_Abort);
3783 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
3784 pIndex->nKeyCol); VdbeCoverage(v);
3785 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
3786 sqlite3VdbeJumpHere(v, j2);
3787 }else{
3788 /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not
3789 ** abort. The exception is if one of the indexed expressions contains a
3790 ** user function that throws an exception when it is evaluated. But the
3791 ** overhead of adding a statement journal to a CREATE INDEX statement is
3792 ** very small (since most of the pages written do not contain content that
3793 ** needs to be restored if the statement aborts), so we call
3794 ** sqlite3MayAbort() for all CREATE INDEX statements. */
3795 sqlite3MayAbort(pParse);
3796 addr2 = sqlite3VdbeCurrentAddr(v);
3798 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
3799 if( !pIndex->bAscKeyBug ){
3800 /* This OP_SeekEnd opcode makes index insert for a REINDEX go much
3801 ** faster by avoiding unnecessary seeks. But the optimization does
3802 ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables
3803 ** with DESC primary keys, since those indexes have there keys in
3804 ** a different order from the main table.
3805 ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf
3807 sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx);
3809 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
3810 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
3811 sqlite3ReleaseTempReg(pParse, regRecord);
3812 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
3813 sqlite3VdbeJumpHere(v, addr1);
3815 sqlite3VdbeAddOp1(v, OP_Close, iTab);
3816 sqlite3VdbeAddOp1(v, OP_Close, iIdx);
3817 sqlite3VdbeAddOp1(v, OP_Close, iSorter);
3821 ** Allocate heap space to hold an Index object with nCol columns.
3823 ** Increase the allocation size to provide an extra nExtra bytes
3824 ** of 8-byte aligned space after the Index object and return a
3825 ** pointer to this extra space in *ppExtra.
3827 Index *sqlite3AllocateIndexObject(
3828 sqlite3 *db, /* Database connection */
3829 i16 nCol, /* Total number of columns in the index */
3830 int nExtra, /* Number of bytes of extra space to alloc */
3831 char **ppExtra /* Pointer to the "extra" space */
3833 Index *p; /* Allocated index object */
3834 int nByte; /* Bytes of space for Index object + arrays */
3836 nByte = ROUND8(sizeof(Index)) + /* Index structure */
3837 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */
3838 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */
3839 sizeof(i16)*nCol + /* Index.aiColumn */
3840 sizeof(u8)*nCol); /* Index.aSortOrder */
3841 p = sqlite3DbMallocZero(db, nByte + nExtra);
3842 if( p ){
3843 char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
3844 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
3845 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
3846 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol;
3847 p->aSortOrder = (u8*)pExtra;
3848 p->nColumn = nCol;
3849 p->nKeyCol = nCol - 1;
3850 *ppExtra = ((char*)p) + nByte;
3852 return p;
3856 ** If expression list pList contains an expression that was parsed with
3857 ** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in
3858 ** pParse and return non-zero. Otherwise, return zero.
3860 int sqlite3HasExplicitNulls(Parse *pParse, ExprList *pList){
3861 if( pList ){
3862 int i;
3863 for(i=0; i<pList->nExpr; i++){
3864 if( pList->a[i].bNulls ){
3865 u8 sf = pList->a[i].sortFlags;
3866 sqlite3ErrorMsg(pParse, "unsupported use of NULLS %s",
3867 (sf==0 || sf==3) ? "FIRST" : "LAST"
3869 return 1;
3873 return 0;
3877 ** Create a new index for an SQL table. pName1.pName2 is the name of the index
3878 ** and pTblList is the name of the table that is to be indexed. Both will
3879 ** be NULL for a primary key or an index that is created to satisfy a
3880 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
3881 ** as the table to be indexed. pParse->pNewTable is a table that is
3882 ** currently being constructed by a CREATE TABLE statement.
3884 ** pList is a list of columns to be indexed. pList will be NULL if this
3885 ** is a primary key or unique-constraint on the most recent column added
3886 ** to the table currently under construction.
3888 void sqlite3CreateIndex(
3889 Parse *pParse, /* All information about this parse */
3890 Token *pName1, /* First part of index name. May be NULL */
3891 Token *pName2, /* Second part of index name. May be NULL */
3892 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
3893 ExprList *pList, /* A list of columns to be indexed */
3894 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
3895 Token *pStart, /* The CREATE token that begins this statement */
3896 Expr *pPIWhere, /* WHERE clause for partial indices */
3897 int sortOrder, /* Sort order of primary key when pList==NULL */
3898 int ifNotExist, /* Omit error if index already exists */
3899 u8 idxType /* The index type */
3901 Table *pTab = 0; /* Table to be indexed */
3902 Index *pIndex = 0; /* The index to be created */
3903 char *zName = 0; /* Name of the index */
3904 int nName; /* Number of characters in zName */
3905 int i, j;
3906 DbFixer sFix; /* For assigning database names to pTable */
3907 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */
3908 sqlite3 *db = pParse->db;
3909 Db *pDb; /* The specific table containing the indexed database */
3910 int iDb; /* Index of the database that is being written */
3911 Token *pName = 0; /* Unqualified name of the index to create */
3912 struct ExprList_item *pListItem; /* For looping over pList */
3913 int nExtra = 0; /* Space allocated for zExtra[] */
3914 int nExtraCol; /* Number of extra columns needed */
3915 char *zExtra = 0; /* Extra space after the Index object */
3916 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */
3918 if( db->mallocFailed || pParse->nErr>0 ){
3919 goto exit_create_index;
3921 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){
3922 goto exit_create_index;
3924 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3925 goto exit_create_index;
3927 if( sqlite3HasExplicitNulls(pParse, pList) ){
3928 goto exit_create_index;
3932 ** Find the table that is to be indexed. Return early if not found.
3934 if( pTblName!=0 ){
3936 /* Use the two-part index name to determine the database
3937 ** to search for the table. 'Fix' the table name to this db
3938 ** before looking up the table.
3940 assert( pName1 && pName2 );
3941 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
3942 if( iDb<0 ) goto exit_create_index;
3943 assert( pName && pName->z );
3945 #ifndef SQLITE_OMIT_TEMPDB
3946 /* If the index name was unqualified, check if the table
3947 ** is a temp table. If so, set the database to 1. Do not do this
3948 ** if initialising a database schema.
3950 if( !db->init.busy ){
3951 pTab = sqlite3SrcListLookup(pParse, pTblName);
3952 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
3953 iDb = 1;
3956 #endif
3958 sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
3959 if( sqlite3FixSrcList(&sFix, pTblName) ){
3960 /* Because the parser constructs pTblName from a single identifier,
3961 ** sqlite3FixSrcList can never fail. */
3962 assert(0);
3964 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
3965 assert( db->mallocFailed==0 || pTab==0 );
3966 if( pTab==0 ) goto exit_create_index;
3967 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
3968 sqlite3ErrorMsg(pParse,
3969 "cannot create a TEMP index on non-TEMP table \"%s\"",
3970 pTab->zName);
3971 goto exit_create_index;
3973 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
3974 }else{
3975 assert( pName==0 );
3976 assert( pStart==0 );
3977 pTab = pParse->pNewTable;
3978 if( !pTab ) goto exit_create_index;
3979 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
3981 pDb = &db->aDb[iDb];
3983 assert( pTab!=0 );
3984 assert( pParse->nErr==0 );
3985 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
3986 && db->init.busy==0
3987 && pTblName!=0
3988 #if SQLITE_USER_AUTHENTICATION
3989 && sqlite3UserAuthTable(pTab->zName)==0
3990 #endif
3992 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
3993 goto exit_create_index;
3995 #ifndef SQLITE_OMIT_VIEW
3996 if( IsView(pTab) ){
3997 sqlite3ErrorMsg(pParse, "views may not be indexed");
3998 goto exit_create_index;
4000 #endif
4001 #ifndef SQLITE_OMIT_VIRTUALTABLE
4002 if( IsVirtual(pTab) ){
4003 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
4004 goto exit_create_index;
4006 #endif
4009 ** Find the name of the index. Make sure there is not already another
4010 ** index or table with the same name.
4012 ** Exception: If we are reading the names of permanent indices from the
4013 ** sqlite_schema table (because some other process changed the schema) and
4014 ** one of the index names collides with the name of a temporary table or
4015 ** index, then we will continue to process this index.
4017 ** If pName==0 it means that we are
4018 ** dealing with a primary key or UNIQUE constraint. We have to invent our
4019 ** own name.
4021 if( pName ){
4022 zName = sqlite3NameFromToken(db, pName);
4023 if( zName==0 ) goto exit_create_index;
4024 assert( pName->z!=0 );
4025 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName,"index",pTab->zName) ){
4026 goto exit_create_index;
4028 if( !IN_RENAME_OBJECT ){
4029 if( !db->init.busy ){
4030 if( sqlite3FindTable(db, zName, 0)!=0 ){
4031 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
4032 goto exit_create_index;
4035 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){
4036 if( !ifNotExist ){
4037 sqlite3ErrorMsg(pParse, "index %s already exists", zName);
4038 }else{
4039 assert( !db->init.busy );
4040 sqlite3CodeVerifySchema(pParse, iDb);
4041 sqlite3ForceNotReadOnly(pParse);
4043 goto exit_create_index;
4046 }else{
4047 int n;
4048 Index *pLoop;
4049 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
4050 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
4051 if( zName==0 ){
4052 goto exit_create_index;
4055 /* Automatic index names generated from within sqlite3_declare_vtab()
4056 ** must have names that are distinct from normal automatic index names.
4057 ** The following statement converts "sqlite3_autoindex..." into
4058 ** "sqlite3_butoindex..." in order to make the names distinct.
4059 ** The "vtab_err.test" test demonstrates the need of this statement. */
4060 if( IN_SPECIAL_PARSE ) zName[7]++;
4063 /* Check for authorization to create an index.
4065 #ifndef SQLITE_OMIT_AUTHORIZATION
4066 if( !IN_RENAME_OBJECT ){
4067 const char *zDb = pDb->zDbSName;
4068 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
4069 goto exit_create_index;
4071 i = SQLITE_CREATE_INDEX;
4072 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
4073 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
4074 goto exit_create_index;
4077 #endif
4079 /* If pList==0, it means this routine was called to make a primary
4080 ** key out of the last column added to the table under construction.
4081 ** So create a fake list to simulate this.
4083 if( pList==0 ){
4084 Token prevCol;
4085 Column *pCol = &pTab->aCol[pTab->nCol-1];
4086 pCol->colFlags |= COLFLAG_UNIQUE;
4087 sqlite3TokenInit(&prevCol, pCol->zCnName);
4088 pList = sqlite3ExprListAppend(pParse, 0,
4089 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
4090 if( pList==0 ) goto exit_create_index;
4091 assert( pList->nExpr==1 );
4092 sqlite3ExprListSetSortOrder(pList, sortOrder, SQLITE_SO_UNDEFINED);
4093 }else{
4094 sqlite3ExprListCheckLength(pParse, pList, "index");
4095 if( pParse->nErr ) goto exit_create_index;
4098 /* Figure out how many bytes of space are required to store explicitly
4099 ** specified collation sequence names.
4101 for(i=0; i<pList->nExpr; i++){
4102 Expr *pExpr = pList->a[i].pExpr;
4103 assert( pExpr!=0 );
4104 if( pExpr->op==TK_COLLATE ){
4105 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4106 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
4111 ** Allocate the index structure.
4113 nName = sqlite3Strlen30(zName);
4114 nExtraCol = pPk ? pPk->nKeyCol : 1;
4115 assert( pList->nExpr + nExtraCol <= 32767 /* Fits in i16 */ );
4116 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
4117 nName + nExtra + 1, &zExtra);
4118 if( db->mallocFailed ){
4119 goto exit_create_index;
4121 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
4122 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
4123 pIndex->zName = zExtra;
4124 zExtra += nName + 1;
4125 memcpy(pIndex->zName, zName, nName+1);
4126 pIndex->pTable = pTab;
4127 pIndex->onError = (u8)onError;
4128 pIndex->uniqNotNull = onError!=OE_None;
4129 pIndex->idxType = idxType;
4130 pIndex->pSchema = db->aDb[iDb].pSchema;
4131 pIndex->nKeyCol = pList->nExpr;
4132 if( pPIWhere ){
4133 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
4134 pIndex->pPartIdxWhere = pPIWhere;
4135 pPIWhere = 0;
4137 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
4139 /* Check to see if we should honor DESC requests on index columns
4141 if( pDb->pSchema->file_format>=4 ){
4142 sortOrderMask = -1; /* Honor DESC */
4143 }else{
4144 sortOrderMask = 0; /* Ignore DESC */
4147 /* Analyze the list of expressions that form the terms of the index and
4148 ** report any errors. In the common case where the expression is exactly
4149 ** a table column, store that column in aiColumn[]. For general expressions,
4150 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
4152 ** TODO: Issue a warning if two or more columns of the index are identical.
4153 ** TODO: Issue a warning if the table primary key is used as part of the
4154 ** index key.
4156 pListItem = pList->a;
4157 if( IN_RENAME_OBJECT ){
4158 pIndex->aColExpr = pList;
4159 pList = 0;
4161 for(i=0; i<pIndex->nKeyCol; i++, pListItem++){
4162 Expr *pCExpr; /* The i-th index expression */
4163 int requestedSortOrder; /* ASC or DESC on the i-th expression */
4164 const char *zColl; /* Collation sequence name */
4166 sqlite3StringToId(pListItem->pExpr);
4167 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
4168 if( pParse->nErr ) goto exit_create_index;
4169 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
4170 if( pCExpr->op!=TK_COLUMN ){
4171 if( pTab==pParse->pNewTable ){
4172 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
4173 "UNIQUE constraints");
4174 goto exit_create_index;
4176 if( pIndex->aColExpr==0 ){
4177 pIndex->aColExpr = pList;
4178 pList = 0;
4180 j = XN_EXPR;
4181 pIndex->aiColumn[i] = XN_EXPR;
4182 pIndex->uniqNotNull = 0;
4183 }else{
4184 j = pCExpr->iColumn;
4185 assert( j<=0x7fff );
4186 if( j<0 ){
4187 j = pTab->iPKey;
4188 }else{
4189 if( pTab->aCol[j].notNull==0 ){
4190 pIndex->uniqNotNull = 0;
4192 if( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL ){
4193 pIndex->bHasVCol = 1;
4196 pIndex->aiColumn[i] = (i16)j;
4198 zColl = 0;
4199 if( pListItem->pExpr->op==TK_COLLATE ){
4200 int nColl;
4201 assert( !ExprHasProperty(pListItem->pExpr, EP_IntValue) );
4202 zColl = pListItem->pExpr->u.zToken;
4203 nColl = sqlite3Strlen30(zColl) + 1;
4204 assert( nExtra>=nColl );
4205 memcpy(zExtra, zColl, nColl);
4206 zColl = zExtra;
4207 zExtra += nColl;
4208 nExtra -= nColl;
4209 }else if( j>=0 ){
4210 zColl = sqlite3ColumnColl(&pTab->aCol[j]);
4212 if( !zColl ) zColl = sqlite3StrBINARY;
4213 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
4214 goto exit_create_index;
4216 pIndex->azColl[i] = zColl;
4217 requestedSortOrder = pListItem->sortFlags & sortOrderMask;
4218 pIndex->aSortOrder[i] = (u8)requestedSortOrder;
4221 /* Append the table key to the end of the index. For WITHOUT ROWID
4222 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For
4223 ** normal tables (when pPk==0) this will be the rowid.
4225 if( pPk ){
4226 for(j=0; j<pPk->nKeyCol; j++){
4227 int x = pPk->aiColumn[j];
4228 assert( x>=0 );
4229 if( isDupColumn(pIndex, pIndex->nKeyCol, pPk, j) ){
4230 pIndex->nColumn--;
4231 }else{
4232 testcase( hasColumn(pIndex->aiColumn,pIndex->nKeyCol,x) );
4233 pIndex->aiColumn[i] = x;
4234 pIndex->azColl[i] = pPk->azColl[j];
4235 pIndex->aSortOrder[i] = pPk->aSortOrder[j];
4236 i++;
4239 assert( i==pIndex->nColumn );
4240 }else{
4241 pIndex->aiColumn[i] = XN_ROWID;
4242 pIndex->azColl[i] = sqlite3StrBINARY;
4244 sqlite3DefaultRowEst(pIndex);
4245 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
4247 /* If this index contains every column of its table, then mark
4248 ** it as a covering index */
4249 assert( HasRowid(pTab)
4250 || pTab->iPKey<0 || sqlite3TableColumnToIndex(pIndex, pTab->iPKey)>=0 );
4251 recomputeColumnsNotIndexed(pIndex);
4252 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){
4253 pIndex->isCovering = 1;
4254 for(j=0; j<pTab->nCol; j++){
4255 if( j==pTab->iPKey ) continue;
4256 if( sqlite3TableColumnToIndex(pIndex,j)>=0 ) continue;
4257 pIndex->isCovering = 0;
4258 break;
4262 if( pTab==pParse->pNewTable ){
4263 /* This routine has been called to create an automatic index as a
4264 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
4265 ** a PRIMARY KEY or UNIQUE clause following the column definitions.
4266 ** i.e. one of:
4268 ** CREATE TABLE t(x PRIMARY KEY, y);
4269 ** CREATE TABLE t(x, y, UNIQUE(x, y));
4271 ** Either way, check to see if the table already has such an index. If
4272 ** so, don't bother creating this one. This only applies to
4273 ** automatically created indices. Users can do as they wish with
4274 ** explicit indices.
4276 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
4277 ** (and thus suppressing the second one) even if they have different
4278 ** sort orders.
4280 ** If there are different collating sequences or if the columns of
4281 ** the constraint occur in different orders, then the constraints are
4282 ** considered distinct and both result in separate indices.
4284 Index *pIdx;
4285 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4286 int k;
4287 assert( IsUniqueIndex(pIdx) );
4288 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
4289 assert( IsUniqueIndex(pIndex) );
4291 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
4292 for(k=0; k<pIdx->nKeyCol; k++){
4293 const char *z1;
4294 const char *z2;
4295 assert( pIdx->aiColumn[k]>=0 );
4296 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
4297 z1 = pIdx->azColl[k];
4298 z2 = pIndex->azColl[k];
4299 if( sqlite3StrICmp(z1, z2) ) break;
4301 if( k==pIdx->nKeyCol ){
4302 if( pIdx->onError!=pIndex->onError ){
4303 /* This constraint creates the same index as a previous
4304 ** constraint specified somewhere in the CREATE TABLE statement.
4305 ** However the ON CONFLICT clauses are different. If both this
4306 ** constraint and the previous equivalent constraint have explicit
4307 ** ON CONFLICT clauses this is an error. Otherwise, use the
4308 ** explicitly specified behavior for the index.
4310 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
4311 sqlite3ErrorMsg(pParse,
4312 "conflicting ON CONFLICT clauses specified", 0);
4314 if( pIdx->onError==OE_Default ){
4315 pIdx->onError = pIndex->onError;
4318 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType;
4319 if( IN_RENAME_OBJECT ){
4320 pIndex->pNext = pParse->pNewIndex;
4321 pParse->pNewIndex = pIndex;
4322 pIndex = 0;
4324 goto exit_create_index;
4329 if( !IN_RENAME_OBJECT ){
4331 /* Link the new Index structure to its table and to the other
4332 ** in-memory database structures.
4334 assert( pParse->nErr==0 );
4335 if( db->init.busy ){
4336 Index *p;
4337 assert( !IN_SPECIAL_PARSE );
4338 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
4339 if( pTblName!=0 ){
4340 pIndex->tnum = db->init.newTnum;
4341 if( sqlite3IndexHasDuplicateRootPage(pIndex) ){
4342 sqlite3ErrorMsg(pParse, "invalid rootpage");
4343 pParse->rc = SQLITE_CORRUPT_BKPT;
4344 goto exit_create_index;
4347 p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
4348 pIndex->zName, pIndex);
4349 if( p ){
4350 assert( p==pIndex ); /* Malloc must have failed */
4351 sqlite3OomFault(db);
4352 goto exit_create_index;
4354 db->mDbFlags |= DBFLAG_SchemaChange;
4357 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
4358 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
4359 ** emit code to allocate the index rootpage on disk and make an entry for
4360 ** the index in the sqlite_schema table and populate the index with
4361 ** content. But, do not do this if we are simply reading the sqlite_schema
4362 ** table to parse the schema, or if this index is the PRIMARY KEY index
4363 ** of a WITHOUT ROWID table.
4365 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
4366 ** or UNIQUE index in a CREATE TABLE statement. Since the table
4367 ** has just been created, it contains no data and the index initialization
4368 ** step can be skipped.
4370 else if( HasRowid(pTab) || pTblName!=0 ){
4371 Vdbe *v;
4372 char *zStmt;
4373 int iMem = ++pParse->nMem;
4375 v = sqlite3GetVdbe(pParse);
4376 if( v==0 ) goto exit_create_index;
4378 sqlite3BeginWriteOperation(pParse, 1, iDb);
4380 /* Create the rootpage for the index using CreateIndex. But before
4381 ** doing so, code a Noop instruction and store its address in
4382 ** Index.tnum. This is required in case this index is actually a
4383 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
4384 ** that case the convertToWithoutRowidTable() routine will replace
4385 ** the Noop with a Goto to jump over the VDBE code generated below. */
4386 pIndex->tnum = (Pgno)sqlite3VdbeAddOp0(v, OP_Noop);
4387 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY);
4389 /* Gather the complete text of the CREATE INDEX statement into
4390 ** the zStmt variable
4392 assert( pName!=0 || pStart==0 );
4393 if( pStart ){
4394 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
4395 if( pName->z[n-1]==';' ) n--;
4396 /* A named index with an explicit CREATE INDEX statement */
4397 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
4398 onError==OE_None ? "" : " UNIQUE", n, pName->z);
4399 }else{
4400 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
4401 /* zStmt = sqlite3MPrintf(""); */
4402 zStmt = 0;
4405 /* Add an entry in sqlite_schema for this index
4407 sqlite3NestedParse(pParse,
4408 "INSERT INTO %Q." LEGACY_SCHEMA_TABLE " VALUES('index',%Q,%Q,#%d,%Q);",
4409 db->aDb[iDb].zDbSName,
4410 pIndex->zName,
4411 pTab->zName,
4412 iMem,
4413 zStmt
4415 sqlite3DbFree(db, zStmt);
4417 /* Fill the index with data and reparse the schema. Code an OP_Expire
4418 ** to invalidate all pre-compiled statements.
4420 if( pTblName ){
4421 sqlite3RefillIndex(pParse, pIndex, iMem);
4422 sqlite3ChangeCookie(pParse, iDb);
4423 sqlite3VdbeAddParseSchemaOp(v, iDb,
4424 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName), 0);
4425 sqlite3VdbeAddOp2(v, OP_Expire, 0, 1);
4428 sqlite3VdbeJumpHere(v, (int)pIndex->tnum);
4431 if( db->init.busy || pTblName==0 ){
4432 pIndex->pNext = pTab->pIndex;
4433 pTab->pIndex = pIndex;
4434 pIndex = 0;
4436 else if( IN_RENAME_OBJECT ){
4437 assert( pParse->pNewIndex==0 );
4438 pParse->pNewIndex = pIndex;
4439 pIndex = 0;
4442 /* Clean up before exiting */
4443 exit_create_index:
4444 if( pIndex ) sqlite3FreeIndex(db, pIndex);
4445 if( pTab ){
4446 /* Ensure all REPLACE indexes on pTab are at the end of the pIndex list.
4447 ** The list was already ordered when this routine was entered, so at this
4448 ** point at most a single index (the newly added index) will be out of
4449 ** order. So we have to reorder at most one index. */
4450 Index **ppFrom;
4451 Index *pThis;
4452 for(ppFrom=&pTab->pIndex; (pThis = *ppFrom)!=0; ppFrom=&pThis->pNext){
4453 Index *pNext;
4454 if( pThis->onError!=OE_Replace ) continue;
4455 while( (pNext = pThis->pNext)!=0 && pNext->onError!=OE_Replace ){
4456 *ppFrom = pNext;
4457 pThis->pNext = pNext->pNext;
4458 pNext->pNext = pThis;
4459 ppFrom = &pNext->pNext;
4461 break;
4463 #ifdef SQLITE_DEBUG
4464 /* Verify that all REPLACE indexes really are now at the end
4465 ** of the index list. In other words, no other index type ever
4466 ** comes after a REPLACE index on the list. */
4467 for(pThis = pTab->pIndex; pThis; pThis=pThis->pNext){
4468 assert( pThis->onError!=OE_Replace
4469 || pThis->pNext==0
4470 || pThis->pNext->onError==OE_Replace );
4472 #endif
4474 sqlite3ExprDelete(db, pPIWhere);
4475 sqlite3ExprListDelete(db, pList);
4476 sqlite3SrcListDelete(db, pTblName);
4477 sqlite3DbFree(db, zName);
4481 ** Fill the Index.aiRowEst[] array with default information - information
4482 ** to be used when we have not run the ANALYZE command.
4484 ** aiRowEst[0] is supposed to contain the number of elements in the index.
4485 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
4486 ** number of rows in the table that match any particular value of the
4487 ** first column of the index. aiRowEst[2] is an estimate of the number
4488 ** of rows that match any particular combination of the first 2 columns
4489 ** of the index. And so forth. It must always be the case that
4491 ** aiRowEst[N]<=aiRowEst[N-1]
4492 ** aiRowEst[N]>=1
4494 ** Apart from that, we have little to go on besides intuition as to
4495 ** how aiRowEst[] should be initialized. The numbers generated here
4496 ** are based on typical values found in actual indices.
4498 void sqlite3DefaultRowEst(Index *pIdx){
4499 /* 10, 9, 8, 7, 6 */
4500 static const LogEst aVal[] = { 33, 32, 30, 28, 26 };
4501 LogEst *a = pIdx->aiRowLogEst;
4502 LogEst x;
4503 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
4504 int i;
4506 /* Indexes with default row estimates should not have stat1 data */
4507 assert( !pIdx->hasStat1 );
4509 /* Set the first entry (number of rows in the index) to the estimated
4510 ** number of rows in the table, or half the number of rows in the table
4511 ** for a partial index.
4513 ** 2020-05-27: If some of the stat data is coming from the sqlite_stat1
4514 ** table but other parts we are having to guess at, then do not let the
4515 ** estimated number of rows in the table be less than 1000 (LogEst 99).
4516 ** Failure to do this can cause the indexes for which we do not have
4517 ** stat1 data to be ignored by the query planner.
4519 x = pIdx->pTable->nRowLogEst;
4520 assert( 99==sqlite3LogEst(1000) );
4521 if( x<99 ){
4522 pIdx->pTable->nRowLogEst = x = 99;
4524 if( pIdx->pPartIdxWhere!=0 ){ x -= 10; assert( 10==sqlite3LogEst(2) ); }
4525 a[0] = x;
4527 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
4528 ** 6 and each subsequent value (if any) is 5. */
4529 memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
4530 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
4531 a[i] = 23; assert( 23==sqlite3LogEst(5) );
4534 assert( 0==sqlite3LogEst(1) );
4535 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
4539 ** This routine will drop an existing named index. This routine
4540 ** implements the DROP INDEX statement.
4542 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
4543 Index *pIndex;
4544 Vdbe *v;
4545 sqlite3 *db = pParse->db;
4546 int iDb;
4548 assert( pParse->nErr==0 ); /* Never called with prior errors */
4549 if( db->mallocFailed ){
4550 goto exit_drop_index;
4552 assert( pName->nSrc==1 );
4553 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
4554 goto exit_drop_index;
4556 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
4557 if( pIndex==0 ){
4558 if( !ifExists ){
4559 sqlite3ErrorMsg(pParse, "no such index: %S", pName->a);
4560 }else{
4561 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
4562 sqlite3ForceNotReadOnly(pParse);
4564 pParse->checkSchema = 1;
4565 goto exit_drop_index;
4567 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
4568 sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
4569 "or PRIMARY KEY constraint cannot be dropped", 0);
4570 goto exit_drop_index;
4572 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
4573 #ifndef SQLITE_OMIT_AUTHORIZATION
4575 int code = SQLITE_DROP_INDEX;
4576 Table *pTab = pIndex->pTable;
4577 const char *zDb = db->aDb[iDb].zDbSName;
4578 const char *zTab = SCHEMA_TABLE(iDb);
4579 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
4580 goto exit_drop_index;
4582 if( !OMIT_TEMPDB && iDb==1 ) code = SQLITE_DROP_TEMP_INDEX;
4583 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
4584 goto exit_drop_index;
4587 #endif
4589 /* Generate code to remove the index and from the schema table */
4590 v = sqlite3GetVdbe(pParse);
4591 if( v ){
4592 sqlite3BeginWriteOperation(pParse, 1, iDb);
4593 sqlite3NestedParse(pParse,
4594 "DELETE FROM %Q." LEGACY_SCHEMA_TABLE " WHERE name=%Q AND type='index'",
4595 db->aDb[iDb].zDbSName, pIndex->zName
4597 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
4598 sqlite3ChangeCookie(pParse, iDb);
4599 destroyRootPage(pParse, pIndex->tnum, iDb);
4600 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
4603 exit_drop_index:
4604 sqlite3SrcListDelete(db, pName);
4608 ** pArray is a pointer to an array of objects. Each object in the
4609 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
4610 ** to extend the array so that there is space for a new object at the end.
4612 ** When this function is called, *pnEntry contains the current size of
4613 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
4614 ** in total).
4616 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
4617 ** space allocated for the new object is zeroed, *pnEntry updated to
4618 ** reflect the new size of the array and a pointer to the new allocation
4619 ** returned. *pIdx is set to the index of the new array entry in this case.
4621 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
4622 ** unchanged and a copy of pArray returned.
4624 void *sqlite3ArrayAllocate(
4625 sqlite3 *db, /* Connection to notify of malloc failures */
4626 void *pArray, /* Array of objects. Might be reallocated */
4627 int szEntry, /* Size of each object in the array */
4628 int *pnEntry, /* Number of objects currently in use */
4629 int *pIdx /* Write the index of a new slot here */
4631 char *z;
4632 sqlite3_int64 n = *pIdx = *pnEntry;
4633 if( (n & (n-1))==0 ){
4634 sqlite3_int64 sz = (n==0) ? 1 : 2*n;
4635 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
4636 if( pNew==0 ){
4637 *pIdx = -1;
4638 return pArray;
4640 pArray = pNew;
4642 z = (char*)pArray;
4643 memset(&z[n * szEntry], 0, szEntry);
4644 ++*pnEntry;
4645 return pArray;
4649 ** Append a new element to the given IdList. Create a new IdList if
4650 ** need be.
4652 ** A new IdList is returned, or NULL if malloc() fails.
4654 IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){
4655 sqlite3 *db = pParse->db;
4656 int i;
4657 if( pList==0 ){
4658 pList = sqlite3DbMallocZero(db, sizeof(IdList) );
4659 if( pList==0 ) return 0;
4661 pList->a = sqlite3ArrayAllocate(
4663 pList->a,
4664 sizeof(pList->a[0]),
4665 &pList->nId,
4668 if( i<0 ){
4669 sqlite3IdListDelete(db, pList);
4670 return 0;
4672 pList->a[i].zName = sqlite3NameFromToken(db, pToken);
4673 if( IN_RENAME_OBJECT && pList->a[i].zName ){
4674 sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken);
4676 return pList;
4680 ** Delete an IdList.
4682 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
4683 int i;
4684 if( pList==0 ) return;
4685 for(i=0; i<pList->nId; i++){
4686 sqlite3DbFree(db, pList->a[i].zName);
4688 sqlite3DbFree(db, pList->a);
4689 sqlite3DbFreeNN(db, pList);
4693 ** Return the index in pList of the identifier named zId. Return -1
4694 ** if not found.
4696 int sqlite3IdListIndex(IdList *pList, const char *zName){
4697 int i;
4698 if( pList==0 ) return -1;
4699 for(i=0; i<pList->nId; i++){
4700 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
4702 return -1;
4706 ** Maximum size of a SrcList object.
4707 ** The SrcList object is used to represent the FROM clause of a
4708 ** SELECT statement, and the query planner cannot deal with more
4709 ** than 64 tables in a join. So any value larger than 64 here
4710 ** is sufficient for most uses. Smaller values, like say 10, are
4711 ** appropriate for small and memory-limited applications.
4713 #ifndef SQLITE_MAX_SRCLIST
4714 # define SQLITE_MAX_SRCLIST 200
4715 #endif
4718 ** Expand the space allocated for the given SrcList object by
4719 ** creating nExtra new slots beginning at iStart. iStart is zero based.
4720 ** New slots are zeroed.
4722 ** For example, suppose a SrcList initially contains two entries: A,B.
4723 ** To append 3 new entries onto the end, do this:
4725 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
4727 ** After the call above it would contain: A, B, nil, nil, nil.
4728 ** If the iStart argument had been 1 instead of 2, then the result
4729 ** would have been: A, nil, nil, nil, B. To prepend the new slots,
4730 ** the iStart value would be 0. The result then would
4731 ** be: nil, nil, nil, A, B.
4733 ** If a memory allocation fails or the SrcList becomes too large, leave
4734 ** the original SrcList unchanged, return NULL, and leave an error message
4735 ** in pParse.
4737 SrcList *sqlite3SrcListEnlarge(
4738 Parse *pParse, /* Parsing context into which errors are reported */
4739 SrcList *pSrc, /* The SrcList to be enlarged */
4740 int nExtra, /* Number of new slots to add to pSrc->a[] */
4741 int iStart /* Index in pSrc->a[] of first new slot */
4743 int i;
4745 /* Sanity checking on calling parameters */
4746 assert( iStart>=0 );
4747 assert( nExtra>=1 );
4748 assert( pSrc!=0 );
4749 assert( iStart<=pSrc->nSrc );
4751 /* Allocate additional space if needed */
4752 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
4753 SrcList *pNew;
4754 sqlite3_int64 nAlloc = 2*(sqlite3_int64)pSrc->nSrc+nExtra;
4755 sqlite3 *db = pParse->db;
4757 if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){
4758 sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d",
4759 SQLITE_MAX_SRCLIST);
4760 return 0;
4762 if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST;
4763 pNew = sqlite3DbRealloc(db, pSrc,
4764 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
4765 if( pNew==0 ){
4766 assert( db->mallocFailed );
4767 return 0;
4769 pSrc = pNew;
4770 pSrc->nAlloc = nAlloc;
4773 /* Move existing slots that come after the newly inserted slots
4774 ** out of the way */
4775 for(i=pSrc->nSrc-1; i>=iStart; i--){
4776 pSrc->a[i+nExtra] = pSrc->a[i];
4778 pSrc->nSrc += nExtra;
4780 /* Zero the newly allocated slots */
4781 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
4782 for(i=iStart; i<iStart+nExtra; i++){
4783 pSrc->a[i].iCursor = -1;
4786 /* Return a pointer to the enlarged SrcList */
4787 return pSrc;
4792 ** Append a new table name to the given SrcList. Create a new SrcList if
4793 ** need be. A new entry is created in the SrcList even if pTable is NULL.
4795 ** A SrcList is returned, or NULL if there is an OOM error or if the
4796 ** SrcList grows to large. The returned
4797 ** SrcList might be the same as the SrcList that was input or it might be
4798 ** a new one. If an OOM error does occurs, then the prior value of pList
4799 ** that is input to this routine is automatically freed.
4801 ** If pDatabase is not null, it means that the table has an optional
4802 ** database name prefix. Like this: "database.table". The pDatabase
4803 ** points to the table name and the pTable points to the database name.
4804 ** The SrcList.a[].zName field is filled with the table name which might
4805 ** come from pTable (if pDatabase is NULL) or from pDatabase.
4806 ** SrcList.a[].zDatabase is filled with the database name from pTable,
4807 ** or with NULL if no database is specified.
4809 ** In other words, if call like this:
4811 ** sqlite3SrcListAppend(D,A,B,0);
4813 ** Then B is a table name and the database name is unspecified. If called
4814 ** like this:
4816 ** sqlite3SrcListAppend(D,A,B,C);
4818 ** Then C is the table name and B is the database name. If C is defined
4819 ** then so is B. In other words, we never have a case where:
4821 ** sqlite3SrcListAppend(D,A,0,C);
4823 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted
4824 ** before being added to the SrcList.
4826 SrcList *sqlite3SrcListAppend(
4827 Parse *pParse, /* Parsing context, in which errors are reported */
4828 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */
4829 Token *pTable, /* Table to append */
4830 Token *pDatabase /* Database of the table */
4832 SrcItem *pItem;
4833 sqlite3 *db;
4834 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */
4835 assert( pParse!=0 );
4836 assert( pParse->db!=0 );
4837 db = pParse->db;
4838 if( pList==0 ){
4839 pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) );
4840 if( pList==0 ) return 0;
4841 pList->nAlloc = 1;
4842 pList->nSrc = 1;
4843 memset(&pList->a[0], 0, sizeof(pList->a[0]));
4844 pList->a[0].iCursor = -1;
4845 }else{
4846 SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc);
4847 if( pNew==0 ){
4848 sqlite3SrcListDelete(db, pList);
4849 return 0;
4850 }else{
4851 pList = pNew;
4854 pItem = &pList->a[pList->nSrc-1];
4855 if( pDatabase && pDatabase->z==0 ){
4856 pDatabase = 0;
4858 if( pDatabase ){
4859 pItem->zName = sqlite3NameFromToken(db, pDatabase);
4860 pItem->zDatabase = sqlite3NameFromToken(db, pTable);
4861 }else{
4862 pItem->zName = sqlite3NameFromToken(db, pTable);
4863 pItem->zDatabase = 0;
4865 return pList;
4869 ** Assign VdbeCursor index numbers to all tables in a SrcList
4871 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
4872 int i;
4873 SrcItem *pItem;
4874 assert( pList || pParse->db->mallocFailed );
4875 if( ALWAYS(pList) ){
4876 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
4877 if( pItem->iCursor>=0 ) continue;
4878 pItem->iCursor = pParse->nTab++;
4879 if( pItem->pSelect ){
4880 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
4887 ** Delete an entire SrcList including all its substructure.
4889 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
4890 int i;
4891 SrcItem *pItem;
4892 if( pList==0 ) return;
4893 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
4894 if( pItem->zDatabase ) sqlite3DbFreeNN(db, pItem->zDatabase);
4895 sqlite3DbFree(db, pItem->zName);
4896 if( pItem->zAlias ) sqlite3DbFreeNN(db, pItem->zAlias);
4897 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
4898 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
4899 sqlite3DeleteTable(db, pItem->pTab);
4900 if( pItem->pSelect ) sqlite3SelectDelete(db, pItem->pSelect);
4901 if( pItem->pOn ) sqlite3ExprDelete(db, pItem->pOn);
4902 if( pItem->pUsing ) sqlite3IdListDelete(db, pItem->pUsing);
4904 sqlite3DbFreeNN(db, pList);
4908 ** This routine is called by the parser to add a new term to the
4909 ** end of a growing FROM clause. The "p" parameter is the part of
4910 ** the FROM clause that has already been constructed. "p" is NULL
4911 ** if this is the first term of the FROM clause. pTable and pDatabase
4912 ** are the name of the table and database named in the FROM clause term.
4913 ** pDatabase is NULL if the database name qualifier is missing - the
4914 ** usual case. If the term has an alias, then pAlias points to the
4915 ** alias token. If the term is a subquery, then pSubquery is the
4916 ** SELECT statement that the subquery encodes. The pTable and
4917 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing
4918 ** parameters are the content of the ON and USING clauses.
4920 ** Return a new SrcList which encodes is the FROM with the new
4921 ** term added.
4923 SrcList *sqlite3SrcListAppendFromTerm(
4924 Parse *pParse, /* Parsing context */
4925 SrcList *p, /* The left part of the FROM clause already seen */
4926 Token *pTable, /* Name of the table to add to the FROM clause */
4927 Token *pDatabase, /* Name of the database containing pTable */
4928 Token *pAlias, /* The right-hand side of the AS subexpression */
4929 Select *pSubquery, /* A subquery used in place of a table name */
4930 Expr *pOn, /* The ON clause of a join */
4931 IdList *pUsing /* The USING clause of a join */
4933 SrcItem *pItem;
4934 sqlite3 *db = pParse->db;
4935 if( !p && (pOn || pUsing) ){
4936 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
4937 (pOn ? "ON" : "USING")
4939 goto append_from_error;
4941 p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase);
4942 if( p==0 ){
4943 goto append_from_error;
4945 assert( p->nSrc>0 );
4946 pItem = &p->a[p->nSrc-1];
4947 assert( (pTable==0)==(pDatabase==0) );
4948 assert( pItem->zName==0 || pDatabase!=0 );
4949 if( IN_RENAME_OBJECT && pItem->zName ){
4950 Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable;
4951 sqlite3RenameTokenMap(pParse, pItem->zName, pToken);
4953 assert( pAlias!=0 );
4954 if( pAlias->n ){
4955 pItem->zAlias = sqlite3NameFromToken(db, pAlias);
4957 pItem->pSelect = pSubquery;
4958 pItem->pOn = pOn;
4959 pItem->pUsing = pUsing;
4960 return p;
4962 append_from_error:
4963 assert( p==0 );
4964 sqlite3ExprDelete(db, pOn);
4965 sqlite3IdListDelete(db, pUsing);
4966 sqlite3SelectDelete(db, pSubquery);
4967 return 0;
4971 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
4972 ** element of the source-list passed as the second argument.
4974 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
4975 assert( pIndexedBy!=0 );
4976 if( p && pIndexedBy->n>0 ){
4977 SrcItem *pItem;
4978 assert( p->nSrc>0 );
4979 pItem = &p->a[p->nSrc-1];
4980 assert( pItem->fg.notIndexed==0 );
4981 assert( pItem->fg.isIndexedBy==0 );
4982 assert( pItem->fg.isTabFunc==0 );
4983 if( pIndexedBy->n==1 && !pIndexedBy->z ){
4984 /* A "NOT INDEXED" clause was supplied. See parse.y
4985 ** construct "indexed_opt" for details. */
4986 pItem->fg.notIndexed = 1;
4987 }else{
4988 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
4989 pItem->fg.isIndexedBy = 1;
4990 assert( pItem->fg.isCte==0 ); /* No collision on union u2 */
4996 ** Append the contents of SrcList p2 to SrcList p1 and return the resulting
4997 ** SrcList. Or, if an error occurs, return NULL. In all cases, p1 and p2
4998 ** are deleted by this function.
5000 SrcList *sqlite3SrcListAppendList(Parse *pParse, SrcList *p1, SrcList *p2){
5001 assert( p1 && p1->nSrc==1 );
5002 if( p2 ){
5003 SrcList *pNew = sqlite3SrcListEnlarge(pParse, p1, p2->nSrc, 1);
5004 if( pNew==0 ){
5005 sqlite3SrcListDelete(pParse->db, p2);
5006 }else{
5007 p1 = pNew;
5008 memcpy(&p1->a[1], p2->a, p2->nSrc*sizeof(SrcItem));
5009 sqlite3DbFree(pParse->db, p2);
5012 return p1;
5016 ** Add the list of function arguments to the SrcList entry for a
5017 ** table-valued-function.
5019 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
5020 if( p ){
5021 SrcItem *pItem = &p->a[p->nSrc-1];
5022 assert( pItem->fg.notIndexed==0 );
5023 assert( pItem->fg.isIndexedBy==0 );
5024 assert( pItem->fg.isTabFunc==0 );
5025 pItem->u1.pFuncArg = pList;
5026 pItem->fg.isTabFunc = 1;
5027 }else{
5028 sqlite3ExprListDelete(pParse->db, pList);
5033 ** When building up a FROM clause in the parser, the join operator
5034 ** is initially attached to the left operand. But the code generator
5035 ** expects the join operator to be on the right operand. This routine
5036 ** Shifts all join operators from left to right for an entire FROM
5037 ** clause.
5039 ** Example: Suppose the join is like this:
5041 ** A natural cross join B
5043 ** The operator is "natural cross join". The A and B operands are stored
5044 ** in p->a[0] and p->a[1], respectively. The parser initially stores the
5045 ** operator with A. This routine shifts that operator over to B.
5047 void sqlite3SrcListShiftJoinType(SrcList *p){
5048 if( p ){
5049 int i;
5050 for(i=p->nSrc-1; i>0; i--){
5051 p->a[i].fg.jointype = p->a[i-1].fg.jointype;
5053 p->a[0].fg.jointype = 0;
5058 ** Generate VDBE code for a BEGIN statement.
5060 void sqlite3BeginTransaction(Parse *pParse, int type){
5061 sqlite3 *db;
5062 Vdbe *v;
5063 int i;
5065 assert( pParse!=0 );
5066 db = pParse->db;
5067 assert( db!=0 );
5068 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
5069 return;
5071 v = sqlite3GetVdbe(pParse);
5072 if( !v ) return;
5073 if( type!=TK_DEFERRED ){
5074 for(i=0; i<db->nDb; i++){
5075 int eTxnType;
5076 Btree *pBt = db->aDb[i].pBt;
5077 if( pBt && sqlite3BtreeIsReadonly(pBt) ){
5078 eTxnType = 0; /* Read txn */
5079 }else if( type==TK_EXCLUSIVE ){
5080 eTxnType = 2; /* Exclusive txn */
5081 }else{
5082 eTxnType = 1; /* Write txn */
5084 sqlite3VdbeAddOp2(v, OP_Transaction, i, eTxnType);
5085 sqlite3VdbeUsesBtree(v, i);
5088 sqlite3VdbeAddOp0(v, OP_AutoCommit);
5092 ** Generate VDBE code for a COMMIT or ROLLBACK statement.
5093 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise
5094 ** code is generated for a COMMIT.
5096 void sqlite3EndTransaction(Parse *pParse, int eType){
5097 Vdbe *v;
5098 int isRollback;
5100 assert( pParse!=0 );
5101 assert( pParse->db!=0 );
5102 assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK );
5103 isRollback = eType==TK_ROLLBACK;
5104 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION,
5105 isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){
5106 return;
5108 v = sqlite3GetVdbe(pParse);
5109 if( v ){
5110 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback);
5115 ** This function is called by the parser when it parses a command to create,
5116 ** release or rollback an SQL savepoint.
5118 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
5119 char *zName = sqlite3NameFromToken(pParse->db, pName);
5120 if( zName ){
5121 Vdbe *v = sqlite3GetVdbe(pParse);
5122 #ifndef SQLITE_OMIT_AUTHORIZATION
5123 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
5124 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
5125 #endif
5126 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
5127 sqlite3DbFree(pParse->db, zName);
5128 return;
5130 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
5135 ** Make sure the TEMP database is open and available for use. Return
5136 ** the number of errors. Leave any error messages in the pParse structure.
5138 int sqlite3OpenTempDatabase(Parse *pParse){
5139 sqlite3 *db = pParse->db;
5140 if( db->aDb[1].pBt==0 && !pParse->explain ){
5141 int rc;
5142 Btree *pBt;
5143 static const int flags =
5144 SQLITE_OPEN_READWRITE |
5145 SQLITE_OPEN_CREATE |
5146 SQLITE_OPEN_EXCLUSIVE |
5147 SQLITE_OPEN_DELETEONCLOSE |
5148 SQLITE_OPEN_TEMP_DB;
5150 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
5151 if( rc!=SQLITE_OK ){
5152 sqlite3ErrorMsg(pParse, "unable to open a temporary database "
5153 "file for storing temporary tables");
5154 pParse->rc = rc;
5155 return 1;
5157 db->aDb[1].pBt = pBt;
5158 assert( db->aDb[1].pSchema );
5159 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, 0, 0) ){
5160 sqlite3OomFault(db);
5161 return 1;
5164 return 0;
5168 ** Record the fact that the schema cookie will need to be verified
5169 ** for database iDb. The code to actually verify the schema cookie
5170 ** will occur at the end of the top-level VDBE and will be generated
5171 ** later, by sqlite3FinishCoding().
5173 static void sqlite3CodeVerifySchemaAtToplevel(Parse *pToplevel, int iDb){
5174 assert( iDb>=0 && iDb<pToplevel->db->nDb );
5175 assert( pToplevel->db->aDb[iDb].pBt!=0 || iDb==1 );
5176 assert( iDb<SQLITE_MAX_DB );
5177 assert( sqlite3SchemaMutexHeld(pToplevel->db, iDb, 0) );
5178 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
5179 DbMaskSet(pToplevel->cookieMask, iDb);
5180 if( !OMIT_TEMPDB && iDb==1 ){
5181 sqlite3OpenTempDatabase(pToplevel);
5185 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
5186 sqlite3CodeVerifySchemaAtToplevel(sqlite3ParseToplevel(pParse), iDb);
5191 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
5192 ** attached database. Otherwise, invoke it for the database named zDb only.
5194 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
5195 sqlite3 *db = pParse->db;
5196 int i;
5197 for(i=0; i<db->nDb; i++){
5198 Db *pDb = &db->aDb[i];
5199 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){
5200 sqlite3CodeVerifySchema(pParse, i);
5206 ** Generate VDBE code that prepares for doing an operation that
5207 ** might change the database.
5209 ** This routine starts a new transaction if we are not already within
5210 ** a transaction. If we are already within a transaction, then a checkpoint
5211 ** is set if the setStatement parameter is true. A checkpoint should
5212 ** be set for operations that might fail (due to a constraint) part of
5213 ** the way through and which will need to undo some writes without having to
5214 ** rollback the whole transaction. For operations where all constraints
5215 ** can be checked before any changes are made to the database, it is never
5216 ** necessary to undo a write and the checkpoint should not be set.
5218 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
5219 Parse *pToplevel = sqlite3ParseToplevel(pParse);
5220 sqlite3CodeVerifySchemaAtToplevel(pToplevel, iDb);
5221 DbMaskSet(pToplevel->writeMask, iDb);
5222 pToplevel->isMultiWrite |= setStatement;
5226 ** Indicate that the statement currently under construction might write
5227 ** more than one entry (example: deleting one row then inserting another,
5228 ** inserting multiple rows in a table, or inserting a row and index entries.)
5229 ** If an abort occurs after some of these writes have completed, then it will
5230 ** be necessary to undo the completed writes.
5232 void sqlite3MultiWrite(Parse *pParse){
5233 Parse *pToplevel = sqlite3ParseToplevel(pParse);
5234 pToplevel->isMultiWrite = 1;
5238 ** The code generator calls this routine if is discovers that it is
5239 ** possible to abort a statement prior to completion. In order to
5240 ** perform this abort without corrupting the database, we need to make
5241 ** sure that the statement is protected by a statement transaction.
5243 ** Technically, we only need to set the mayAbort flag if the
5244 ** isMultiWrite flag was previously set. There is a time dependency
5245 ** such that the abort must occur after the multiwrite. This makes
5246 ** some statements involving the REPLACE conflict resolution algorithm
5247 ** go a little faster. But taking advantage of this time dependency
5248 ** makes it more difficult to prove that the code is correct (in
5249 ** particular, it prevents us from writing an effective
5250 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
5251 ** to take the safe route and skip the optimization.
5253 void sqlite3MayAbort(Parse *pParse){
5254 Parse *pToplevel = sqlite3ParseToplevel(pParse);
5255 pToplevel->mayAbort = 1;
5259 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
5260 ** error. The onError parameter determines which (if any) of the statement
5261 ** and/or current transaction is rolled back.
5263 void sqlite3HaltConstraint(
5264 Parse *pParse, /* Parsing context */
5265 int errCode, /* extended error code */
5266 int onError, /* Constraint type */
5267 char *p4, /* Error message */
5268 i8 p4type, /* P4_STATIC or P4_TRANSIENT */
5269 u8 p5Errmsg /* P5_ErrMsg type */
5271 Vdbe *v;
5272 assert( pParse->pVdbe!=0 );
5273 v = sqlite3GetVdbe(pParse);
5274 assert( (errCode&0xff)==SQLITE_CONSTRAINT || pParse->nested );
5275 if( onError==OE_Abort ){
5276 sqlite3MayAbort(pParse);
5278 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
5279 sqlite3VdbeChangeP5(v, p5Errmsg);
5283 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
5285 void sqlite3UniqueConstraint(
5286 Parse *pParse, /* Parsing context */
5287 int onError, /* Constraint type */
5288 Index *pIdx /* The index that triggers the constraint */
5290 char *zErr;
5291 int j;
5292 StrAccum errMsg;
5293 Table *pTab = pIdx->pTable;
5295 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0,
5296 pParse->db->aLimit[SQLITE_LIMIT_LENGTH]);
5297 if( pIdx->aColExpr ){
5298 sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName);
5299 }else{
5300 for(j=0; j<pIdx->nKeyCol; j++){
5301 char *zCol;
5302 assert( pIdx->aiColumn[j]>=0 );
5303 zCol = pTab->aCol[pIdx->aiColumn[j]].zCnName;
5304 if( j ) sqlite3_str_append(&errMsg, ", ", 2);
5305 sqlite3_str_appendall(&errMsg, pTab->zName);
5306 sqlite3_str_append(&errMsg, ".", 1);
5307 sqlite3_str_appendall(&errMsg, zCol);
5310 zErr = sqlite3StrAccumFinish(&errMsg);
5311 sqlite3HaltConstraint(pParse,
5312 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
5313 : SQLITE_CONSTRAINT_UNIQUE,
5314 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
5319 ** Code an OP_Halt due to non-unique rowid.
5321 void sqlite3RowidConstraint(
5322 Parse *pParse, /* Parsing context */
5323 int onError, /* Conflict resolution algorithm */
5324 Table *pTab /* The table with the non-unique rowid */
5326 char *zMsg;
5327 int rc;
5328 if( pTab->iPKey>=0 ){
5329 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
5330 pTab->aCol[pTab->iPKey].zCnName);
5331 rc = SQLITE_CONSTRAINT_PRIMARYKEY;
5332 }else{
5333 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
5334 rc = SQLITE_CONSTRAINT_ROWID;
5336 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
5337 P5_ConstraintUnique);
5341 ** Check to see if pIndex uses the collating sequence pColl. Return
5342 ** true if it does and false if it does not.
5344 #ifndef SQLITE_OMIT_REINDEX
5345 static int collationMatch(const char *zColl, Index *pIndex){
5346 int i;
5347 assert( zColl!=0 );
5348 for(i=0; i<pIndex->nColumn; i++){
5349 const char *z = pIndex->azColl[i];
5350 assert( z!=0 || pIndex->aiColumn[i]<0 );
5351 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
5352 return 1;
5355 return 0;
5357 #endif
5360 ** Recompute all indices of pTab that use the collating sequence pColl.
5361 ** If pColl==0 then recompute all indices of pTab.
5363 #ifndef SQLITE_OMIT_REINDEX
5364 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
5365 if( !IsVirtual(pTab) ){
5366 Index *pIndex; /* An index associated with pTab */
5368 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
5369 if( zColl==0 || collationMatch(zColl, pIndex) ){
5370 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5371 sqlite3BeginWriteOperation(pParse, 0, iDb);
5372 sqlite3RefillIndex(pParse, pIndex, -1);
5377 #endif
5380 ** Recompute all indices of all tables in all databases where the
5381 ** indices use the collating sequence pColl. If pColl==0 then recompute
5382 ** all indices everywhere.
5384 #ifndef SQLITE_OMIT_REINDEX
5385 static void reindexDatabases(Parse *pParse, char const *zColl){
5386 Db *pDb; /* A single database */
5387 int iDb; /* The database index number */
5388 sqlite3 *db = pParse->db; /* The database connection */
5389 HashElem *k; /* For looping over tables in pDb */
5390 Table *pTab; /* A table in the database */
5392 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */
5393 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
5394 assert( pDb!=0 );
5395 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){
5396 pTab = (Table*)sqliteHashData(k);
5397 reindexTable(pParse, pTab, zColl);
5401 #endif
5404 ** Generate code for the REINDEX command.
5406 ** REINDEX -- 1
5407 ** REINDEX <collation> -- 2
5408 ** REINDEX ?<database>.?<tablename> -- 3
5409 ** REINDEX ?<database>.?<indexname> -- 4
5411 ** Form 1 causes all indices in all attached databases to be rebuilt.
5412 ** Form 2 rebuilds all indices in all databases that use the named
5413 ** collating function. Forms 3 and 4 rebuild the named index or all
5414 ** indices associated with the named table.
5416 #ifndef SQLITE_OMIT_REINDEX
5417 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
5418 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */
5419 char *z; /* Name of a table or index */
5420 const char *zDb; /* Name of the database */
5421 Table *pTab; /* A table in the database */
5422 Index *pIndex; /* An index associated with pTab */
5423 int iDb; /* The database index number */
5424 sqlite3 *db = pParse->db; /* The database connection */
5425 Token *pObjName; /* Name of the table or index to be reindexed */
5427 /* Read the database schema. If an error occurs, leave an error message
5428 ** and code in pParse and return NULL. */
5429 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
5430 return;
5433 if( pName1==0 ){
5434 reindexDatabases(pParse, 0);
5435 return;
5436 }else if( NEVER(pName2==0) || pName2->z==0 ){
5437 char *zColl;
5438 assert( pName1->z );
5439 zColl = sqlite3NameFromToken(pParse->db, pName1);
5440 if( !zColl ) return;
5441 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
5442 if( pColl ){
5443 reindexDatabases(pParse, zColl);
5444 sqlite3DbFree(db, zColl);
5445 return;
5447 sqlite3DbFree(db, zColl);
5449 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
5450 if( iDb<0 ) return;
5451 z = sqlite3NameFromToken(db, pObjName);
5452 if( z==0 ) return;
5453 zDb = db->aDb[iDb].zDbSName;
5454 pTab = sqlite3FindTable(db, z, zDb);
5455 if( pTab ){
5456 reindexTable(pParse, pTab, 0);
5457 sqlite3DbFree(db, z);
5458 return;
5460 pIndex = sqlite3FindIndex(db, z, zDb);
5461 sqlite3DbFree(db, z);
5462 if( pIndex ){
5463 sqlite3BeginWriteOperation(pParse, 0, iDb);
5464 sqlite3RefillIndex(pParse, pIndex, -1);
5465 return;
5467 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
5469 #endif
5472 ** Return a KeyInfo structure that is appropriate for the given Index.
5474 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
5475 ** when it has finished using it.
5477 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
5478 int i;
5479 int nCol = pIdx->nColumn;
5480 int nKey = pIdx->nKeyCol;
5481 KeyInfo *pKey;
5482 if( pParse->nErr ) return 0;
5483 if( pIdx->uniqNotNull ){
5484 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
5485 }else{
5486 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
5488 if( pKey ){
5489 assert( sqlite3KeyInfoIsWriteable(pKey) );
5490 for(i=0; i<nCol; i++){
5491 const char *zColl = pIdx->azColl[i];
5492 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 :
5493 sqlite3LocateCollSeq(pParse, zColl);
5494 pKey->aSortFlags[i] = pIdx->aSortOrder[i];
5495 assert( 0==(pKey->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) );
5497 if( pParse->nErr ){
5498 assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ );
5499 if( pIdx->bNoQuery==0 ){
5500 /* Deactivate the index because it contains an unknown collating
5501 ** sequence. The only way to reactive the index is to reload the
5502 ** schema. Adding the missing collating sequence later does not
5503 ** reactive the index. The application had the chance to register
5504 ** the missing index using the collation-needed callback. For
5505 ** simplicity, SQLite will not give the application a second chance.
5507 pIdx->bNoQuery = 1;
5508 pParse->rc = SQLITE_ERROR_RETRY;
5510 sqlite3KeyInfoUnref(pKey);
5511 pKey = 0;
5514 return pKey;
5517 #ifndef SQLITE_OMIT_CTE
5519 ** Create a new CTE object
5521 Cte *sqlite3CteNew(
5522 Parse *pParse, /* Parsing context */
5523 Token *pName, /* Name of the common-table */
5524 ExprList *pArglist, /* Optional column name list for the table */
5525 Select *pQuery, /* Query used to initialize the table */
5526 u8 eM10d /* The MATERIALIZED flag */
5528 Cte *pNew;
5529 sqlite3 *db = pParse->db;
5531 pNew = sqlite3DbMallocZero(db, sizeof(*pNew));
5532 assert( pNew!=0 || db->mallocFailed );
5534 if( db->mallocFailed ){
5535 sqlite3ExprListDelete(db, pArglist);
5536 sqlite3SelectDelete(db, pQuery);
5537 }else{
5538 pNew->pSelect = pQuery;
5539 pNew->pCols = pArglist;
5540 pNew->zName = sqlite3NameFromToken(pParse->db, pName);
5541 pNew->eM10d = eM10d;
5543 return pNew;
5547 ** Clear information from a Cte object, but do not deallocate storage
5548 ** for the object itself.
5550 static void cteClear(sqlite3 *db, Cte *pCte){
5551 assert( pCte!=0 );
5552 sqlite3ExprListDelete(db, pCte->pCols);
5553 sqlite3SelectDelete(db, pCte->pSelect);
5554 sqlite3DbFree(db, pCte->zName);
5558 ** Free the contents of the CTE object passed as the second argument.
5560 void sqlite3CteDelete(sqlite3 *db, Cte *pCte){
5561 assert( pCte!=0 );
5562 cteClear(db, pCte);
5563 sqlite3DbFree(db, pCte);
5567 ** This routine is invoked once per CTE by the parser while parsing a
5568 ** WITH clause. The CTE described by teh third argument is added to
5569 ** the WITH clause of the second argument. If the second argument is
5570 ** NULL, then a new WITH argument is created.
5572 With *sqlite3WithAdd(
5573 Parse *pParse, /* Parsing context */
5574 With *pWith, /* Existing WITH clause, or NULL */
5575 Cte *pCte /* CTE to add to the WITH clause */
5577 sqlite3 *db = pParse->db;
5578 With *pNew;
5579 char *zName;
5581 if( pCte==0 ){
5582 return pWith;
5585 /* Check that the CTE name is unique within this WITH clause. If
5586 ** not, store an error in the Parse structure. */
5587 zName = pCte->zName;
5588 if( zName && pWith ){
5589 int i;
5590 for(i=0; i<pWith->nCte; i++){
5591 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
5592 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
5597 if( pWith ){
5598 sqlite3_int64 nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
5599 pNew = sqlite3DbRealloc(db, pWith, nByte);
5600 }else{
5601 pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
5603 assert( (pNew!=0 && zName!=0) || db->mallocFailed );
5605 if( db->mallocFailed ){
5606 sqlite3CteDelete(db, pCte);
5607 pNew = pWith;
5608 }else{
5609 pNew->a[pNew->nCte++] = *pCte;
5610 sqlite3DbFree(db, pCte);
5613 return pNew;
5617 ** Free the contents of the With object passed as the second argument.
5619 void sqlite3WithDelete(sqlite3 *db, With *pWith){
5620 if( pWith ){
5621 int i;
5622 for(i=0; i<pWith->nCte; i++){
5623 cteClear(db, &pWith->a[i]);
5625 sqlite3DbFree(db, pWith);
5628 #endif /* !defined(SQLITE_OMIT_CTE) */