4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code for implementations of the r-tree and r*-tree
13 ** algorithms packaged as an SQLite virtual table module.
17 ** Database Format of R-Tree Tables
18 ** --------------------------------
20 ** The data structure for a single virtual r-tree table is stored in three
21 ** native SQLite tables declared as follows. In each case, the '%' character
22 ** in the table name is replaced with the user-supplied name of the r-tree
25 ** CREATE TABLE %_node(nodeno INTEGER PRIMARY KEY, data BLOB)
26 ** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER)
27 ** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER, ...)
29 ** The data for each node of the r-tree structure is stored in the %_node
30 ** table. For each node that is not the root node of the r-tree, there is
31 ** an entry in the %_parent table associating the node with its parent.
32 ** And for each row of data in the table, there is an entry in the %_rowid
33 ** table that maps from the entries rowid to the id of the node that it
34 ** is stored on. If the r-tree contains auxiliary columns, those are stored
35 ** on the end of the %_rowid table.
37 ** The root node of an r-tree always exists, even if the r-tree table is
38 ** empty. The nodeno of the root node is always 1. All other nodes in the
39 ** table must be the same size as the root node. The content of each node
40 ** is formatted as follows:
42 ** 1. If the node is the root node (node 1), then the first 2 bytes
43 ** of the node contain the tree depth as a big-endian integer.
44 ** For non-root nodes, the first 2 bytes are left unused.
46 ** 2. The next 2 bytes contain the number of entries currently
47 ** stored in the node.
49 ** 3. The remainder of the node contains the node entries. Each entry
50 ** consists of a single 8-byte integer followed by an even number
51 ** of 4-byte coordinates. For leaf nodes the integer is the rowid
52 ** of a record. For internal nodes it is the node number of a
56 #if !defined(SQLITE_CORE) \
57 || (defined(SQLITE_ENABLE_RTREE) && !defined(SQLITE_OMIT_VIRTUALTABLE))
60 #include "sqlite3ext.h"
61 SQLITE_EXTENSION_INIT1
65 int sqlite3GetToken(const unsigned char*,int*); /* In the SQLite core */
68 ** If building separately, we will need some setup that is normally
69 ** found in sqliteInt.h
71 #if !defined(SQLITE_AMALGAMATION)
72 #include "sqlite3rtree.h"
73 typedef sqlite3_int64 i64
;
74 typedef sqlite3_uint64 u64
;
75 typedef unsigned char u8
;
76 typedef unsigned short u16
;
77 typedef unsigned int u32
;
78 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
81 #if defined(NDEBUG) && defined(SQLITE_DEBUG)
84 #if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_MUTATION_TEST)
85 # define SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS 1
87 #if defined(SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS)
88 # define ALWAYS(X) (1)
90 #elif !defined(NDEBUG)
91 # define ALWAYS(X) ((X)?1:(assert(0),0))
92 # define NEVER(X) ((X)?(assert(0),1):0)
94 # define ALWAYS(X) (X)
97 #endif /* !defined(SQLITE_AMALGAMATION) */
104 /* The following macro is used to suppress compiler warnings.
106 #ifndef UNUSED_PARAMETER
107 # define UNUSED_PARAMETER(x) (void)(x)
110 typedef struct Rtree Rtree
;
111 typedef struct RtreeCursor RtreeCursor
;
112 typedef struct RtreeNode RtreeNode
;
113 typedef struct RtreeCell RtreeCell
;
114 typedef struct RtreeConstraint RtreeConstraint
;
115 typedef struct RtreeMatchArg RtreeMatchArg
;
116 typedef struct RtreeGeomCallback RtreeGeomCallback
;
117 typedef union RtreeCoord RtreeCoord
;
118 typedef struct RtreeSearchPoint RtreeSearchPoint
;
120 /* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */
121 #define RTREE_MAX_DIMENSIONS 5
123 /* Maximum number of auxiliary columns */
124 #define RTREE_MAX_AUX_COLUMN 100
126 /* Size of hash table Rtree.aHash. This hash table is not expected to
127 ** ever contain very many entries, so a fixed number of buckets is
132 /* The xBestIndex method of this virtual table requires an estimate of
133 ** the number of rows in the virtual table to calculate the costs of
134 ** various strategies. If possible, this estimate is loaded from the
135 ** sqlite_stat1 table (with RTREE_MIN_ROWEST as a hard-coded minimum).
136 ** Otherwise, if no sqlite_stat1 entry is available, use
137 ** RTREE_DEFAULT_ROWEST.
139 #define RTREE_DEFAULT_ROWEST 1048576
140 #define RTREE_MIN_ROWEST 100
143 ** An rtree virtual-table object.
146 sqlite3_vtab base
; /* Base class. Must be first */
147 sqlite3
*db
; /* Host database connection */
148 int iNodeSize
; /* Size in bytes of each node in the node table */
149 u8 nDim
; /* Number of dimensions */
150 u8 nDim2
; /* Twice the number of dimensions */
151 u8 eCoordType
; /* RTREE_COORD_REAL32 or RTREE_COORD_INT32 */
152 u8 nBytesPerCell
; /* Bytes consumed per cell */
153 u8 inWrTrans
; /* True if inside write transaction */
154 u8 nAux
; /* # of auxiliary columns in %_rowid */
155 #ifdef SQLITE_ENABLE_GEOPOLY
156 u8 nAuxNotNull
; /* Number of initial not-null aux columns */
159 u8 bCorrupt
; /* Shadow table corruption detected */
161 int iDepth
; /* Current depth of the r-tree structure */
162 char *zDb
; /* Name of database containing r-tree table */
163 char *zName
; /* Name of r-tree table */
164 u32 nBusy
; /* Current number of users of this structure */
165 i64 nRowEst
; /* Estimated number of rows in this table */
166 u32 nCursor
; /* Number of open cursors */
167 u32 nNodeRef
; /* Number RtreeNodes with positive nRef */
168 char *zReadAuxSql
; /* SQL for statement to read aux data */
170 /* List of nodes removed during a CondenseTree operation. List is
171 ** linked together via the pointer normally used for hash chains -
172 ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree
173 ** headed by the node (leaf nodes have RtreeNode.iNode==0).
176 int iReinsertHeight
; /* Height of sub-trees Reinsert() has run on */
178 /* Blob I/O on xxx_node */
179 sqlite3_blob
*pNodeBlob
;
181 /* Statements to read/write/delete a record from xxx_node */
182 sqlite3_stmt
*pWriteNode
;
183 sqlite3_stmt
*pDeleteNode
;
185 /* Statements to read/write/delete a record from xxx_rowid */
186 sqlite3_stmt
*pReadRowid
;
187 sqlite3_stmt
*pWriteRowid
;
188 sqlite3_stmt
*pDeleteRowid
;
190 /* Statements to read/write/delete a record from xxx_parent */
191 sqlite3_stmt
*pReadParent
;
192 sqlite3_stmt
*pWriteParent
;
193 sqlite3_stmt
*pDeleteParent
;
195 /* Statement for writing to the "aux:" fields, if there are any */
196 sqlite3_stmt
*pWriteAux
;
198 RtreeNode
*aHash
[HASHSIZE
]; /* Hash table of in-memory nodes. */
201 /* Possible values for Rtree.eCoordType: */
202 #define RTREE_COORD_REAL32 0
203 #define RTREE_COORD_INT32 1
206 ** If SQLITE_RTREE_INT_ONLY is defined, then this virtual table will
207 ** only deal with integer coordinates. No floating point operations
210 #ifdef SQLITE_RTREE_INT_ONLY
211 typedef sqlite3_int64 RtreeDValue
; /* High accuracy coordinate */
212 typedef int RtreeValue
; /* Low accuracy coordinate */
213 # define RTREE_ZERO 0
215 typedef double RtreeDValue
; /* High accuracy coordinate */
216 typedef float RtreeValue
; /* Low accuracy coordinate */
217 # define RTREE_ZERO 0.0
221 ** Set the Rtree.bCorrupt flag
224 # define RTREE_IS_CORRUPT(X) ((X)->bCorrupt = 1)
226 # define RTREE_IS_CORRUPT(X)
230 ** When doing a search of an r-tree, instances of the following structure
231 ** record intermediate results from the tree walk.
233 ** The id is always a node-id. For iLevel>=1 the id is the node-id of
234 ** the node that the RtreeSearchPoint represents. When iLevel==0, however,
235 ** the id is of the parent node and the cell that RtreeSearchPoint
236 ** represents is the iCell-th entry in the parent node.
238 struct RtreeSearchPoint
{
239 RtreeDValue rScore
; /* The score for this node. Smallest goes first. */
240 sqlite3_int64 id
; /* Node ID */
241 u8 iLevel
; /* 0=entries. 1=leaf node. 2+ for higher */
242 u8 eWithin
; /* PARTLY_WITHIN or FULLY_WITHIN */
243 u8 iCell
; /* Cell index within the node */
247 ** The minimum number of cells allowed for a node is a third of the
248 ** maximum. In Gutman's notation:
252 ** If an R*-tree "Reinsert" operation is required, the same number of
253 ** cells are removed from the overfull node and reinserted into the tree.
255 #define RTREE_MINCELLS(p) ((((p)->iNodeSize-4)/(p)->nBytesPerCell)/3)
256 #define RTREE_REINSERT(p) RTREE_MINCELLS(p)
257 #define RTREE_MAXCELLS 51
260 ** The smallest possible node-size is (512-64)==448 bytes. And the largest
261 ** supported cell size is 48 bytes (8 byte rowid + ten 4 byte coordinates).
262 ** Therefore all non-root nodes must contain at least 3 entries. Since
263 ** 3^40 is greater than 2^64, an r-tree structure always has a depth of
266 #define RTREE_MAX_DEPTH 40
270 ** Number of entries in the cursor RtreeNode cache. The first entry is
271 ** used to cache the RtreeNode for RtreeCursor.sPoint. The remaining
272 ** entries cache the RtreeNode for the first elements of the priority queue.
274 #define RTREE_CACHE_SZ 5
277 ** An rtree cursor object.
280 sqlite3_vtab_cursor base
; /* Base class. Must be first */
281 u8 atEOF
; /* True if at end of search */
282 u8 bPoint
; /* True if sPoint is valid */
283 u8 bAuxValid
; /* True if pReadAux is valid */
284 int iStrategy
; /* Copy of idxNum search parameter */
285 int nConstraint
; /* Number of entries in aConstraint */
286 RtreeConstraint
*aConstraint
; /* Search constraints. */
287 int nPointAlloc
; /* Number of slots allocated for aPoint[] */
288 int nPoint
; /* Number of slots used in aPoint[] */
289 int mxLevel
; /* iLevel value for root of the tree */
290 RtreeSearchPoint
*aPoint
; /* Priority queue for search points */
291 sqlite3_stmt
*pReadAux
; /* Statement to read aux-data */
292 RtreeSearchPoint sPoint
; /* Cached next search point */
293 RtreeNode
*aNode
[RTREE_CACHE_SZ
]; /* Rtree node cache */
294 u32 anQueue
[RTREE_MAX_DEPTH
+1]; /* Number of queued entries by iLevel */
297 /* Return the Rtree of a RtreeCursor */
298 #define RTREE_OF_CURSOR(X) ((Rtree*)((X)->base.pVtab))
301 ** A coordinate can be either a floating point number or a integer. All
302 ** coordinates within a single R-Tree are always of the same time.
305 RtreeValue f
; /* Floating point value */
306 int i
; /* Integer value */
307 u32 u
; /* Unsigned for byte-order conversions */
311 ** The argument is an RtreeCoord. Return the value stored within the RtreeCoord
312 ** formatted as a RtreeDValue (double or int64). This macro assumes that local
313 ** variable pRtree points to the Rtree structure associated with the
316 #ifdef SQLITE_RTREE_INT_ONLY
317 # define DCOORD(coord) ((RtreeDValue)coord.i)
319 # define DCOORD(coord) ( \
320 (pRtree->eCoordType==RTREE_COORD_REAL32) ? \
321 ((double)coord.f) : \
327 ** A search constraint.
329 struct RtreeConstraint
{
330 int iCoord
; /* Index of constrained coordinate */
331 int op
; /* Constraining operation */
333 RtreeDValue rValue
; /* Constraint value. */
334 int (*xGeom
)(sqlite3_rtree_geometry
*,int,RtreeDValue
*,int*);
335 int (*xQueryFunc
)(sqlite3_rtree_query_info
*);
337 sqlite3_rtree_query_info
*pInfo
; /* xGeom and xQueryFunc argument */
340 /* Possible values for RtreeConstraint.op */
341 #define RTREE_EQ 0x41 /* A */
342 #define RTREE_LE 0x42 /* B */
343 #define RTREE_LT 0x43 /* C */
344 #define RTREE_GE 0x44 /* D */
345 #define RTREE_GT 0x45 /* E */
346 #define RTREE_MATCH 0x46 /* F: Old-style sqlite3_rtree_geometry_callback() */
347 #define RTREE_QUERY 0x47 /* G: New-style sqlite3_rtree_query_callback() */
349 /* Special operators available only on cursors. Needs to be consecutive
350 ** with the normal values above, but must be less than RTREE_MATCH. These
351 ** are used in the cursor for contraints such as x=NULL (RTREE_FALSE) or
352 ** x<'xyz' (RTREE_TRUE) */
353 #define RTREE_TRUE 0x3f /* ? */
354 #define RTREE_FALSE 0x40 /* @ */
357 ** An rtree structure node.
360 RtreeNode
*pParent
; /* Parent node */
361 i64 iNode
; /* The node number */
362 int nRef
; /* Number of references to this node */
363 int isDirty
; /* True if the node needs to be written to disk */
364 u8
*zData
; /* Content of the node, as should be on disk */
365 RtreeNode
*pNext
; /* Next node in this hash collision chain */
368 /* Return the number of cells in a node */
369 #define NCELL(pNode) readInt16(&(pNode)->zData[2])
372 ** A single cell from a node, deserialized
375 i64 iRowid
; /* Node or entry ID */
376 RtreeCoord aCoord
[RTREE_MAX_DIMENSIONS
*2]; /* Bounding box coordinates */
381 ** This object becomes the sqlite3_user_data() for the SQL functions
382 ** that are created by sqlite3_rtree_geometry_callback() and
383 ** sqlite3_rtree_query_callback() and which appear on the right of MATCH
384 ** operators in order to constrain a search.
386 ** xGeom and xQueryFunc are the callback functions. Exactly one of
387 ** xGeom and xQueryFunc fields is non-NULL, depending on whether the
388 ** SQL function was created using sqlite3_rtree_geometry_callback() or
389 ** sqlite3_rtree_query_callback().
391 ** This object is deleted automatically by the destructor mechanism in
392 ** sqlite3_create_function_v2().
394 struct RtreeGeomCallback
{
395 int (*xGeom
)(sqlite3_rtree_geometry
*, int, RtreeDValue
*, int*);
396 int (*xQueryFunc
)(sqlite3_rtree_query_info
*);
397 void (*xDestructor
)(void*);
402 ** An instance of this structure (in the form of a BLOB) is returned by
403 ** the SQL functions that sqlite3_rtree_geometry_callback() and
404 ** sqlite3_rtree_query_callback() create, and is read as the right-hand
405 ** operand to the MATCH operator of an R-Tree.
407 struct RtreeMatchArg
{
408 u32 iSize
; /* Size of this object */
409 RtreeGeomCallback cb
; /* Info about the callback functions */
410 int nParam
; /* Number of parameters to the SQL function */
411 sqlite3_value
**apSqlParam
; /* Original SQL parameter values */
412 RtreeDValue aParam
[1]; /* Values for parameters to the SQL function */
416 # define MAX(x,y) ((x) < (y) ? (y) : (x))
419 # define MIN(x,y) ((x) > (y) ? (y) : (x))
422 /* What version of GCC is being used. 0 means GCC is not being used .
423 ** Note that the GCC_VERSION macro will also be set correctly when using
424 ** clang, since clang works hard to be gcc compatible. So the gcc
425 ** optimizations will also work when compiling with clang.
428 #if defined(__GNUC__) && !defined(SQLITE_DISABLE_INTRINSIC)
429 # define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__)
431 # define GCC_VERSION 0
435 /* The testcase() macro should already be defined in the amalgamation. If
436 ** it is not, make it a no-op.
438 #ifndef SQLITE_AMALGAMATION
439 # if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_DEBUG)
440 unsigned int sqlite3RtreeTestcase
= 0;
441 # define testcase(X) if( X ){ sqlite3RtreeTestcase += __LINE__; }
448 ** Make sure that the compiler intrinsics we desire are enabled when
449 ** compiling with an appropriate version of MSVC unless prevented by
450 ** the SQLITE_DISABLE_INTRINSIC define.
452 #if !defined(SQLITE_DISABLE_INTRINSIC)
453 # if defined(_MSC_VER) && _MSC_VER>=1400
454 # if !defined(_WIN32_WCE)
456 # pragma intrinsic(_byteswap_ulong)
457 # pragma intrinsic(_byteswap_uint64)
459 # include <cmnintrin.h>
465 ** Macros to determine whether the machine is big or little endian,
466 ** and whether or not that determination is run-time or compile-time.
468 ** For best performance, an attempt is made to guess at the byte-order
469 ** using C-preprocessor macros. If that is unsuccessful, or if
470 ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined
473 #ifndef SQLITE_BYTEORDER
474 #if defined(i386) || defined(__i386__) || defined(_M_IX86) || \
475 defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \
476 defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \
478 # define SQLITE_BYTEORDER 1234
479 #elif defined(sparc) || defined(__ppc__)
480 # define SQLITE_BYTEORDER 4321
482 # define SQLITE_BYTEORDER 0 /* 0 means "unknown at compile-time" */
487 /* What version of MSVC is being used. 0 means MSVC is not being used */
489 #if defined(_MSC_VER) && !defined(SQLITE_DISABLE_INTRINSIC)
490 # define MSVC_VERSION _MSC_VER
492 # define MSVC_VERSION 0
497 ** Functions to deserialize a 16 bit integer, 32 bit real number and
498 ** 64 bit integer. The deserialized value is returned.
500 static int readInt16(u8
*p
){
501 return (p
[0]<<8) + p
[1];
503 static void readCoord(u8
*p
, RtreeCoord
*pCoord
){
504 assert( ((((char*)p
) - (char*)0)&3)==0 ); /* p is always 4-byte aligned */
505 #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
506 pCoord
->u
= _byteswap_ulong(*(u32
*)p
);
507 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
508 pCoord
->u
= __builtin_bswap32(*(u32
*)p
);
509 #elif SQLITE_BYTEORDER==4321
510 pCoord
->u
= *(u32
*)p
;
513 (((u32
)p
[0]) << 24) +
514 (((u32
)p
[1]) << 16) +
520 static i64
readInt64(u8
*p
){
521 #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
524 return (i64
)_byteswap_uint64(x
);
525 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
528 return (i64
)__builtin_bswap64(x
);
529 #elif SQLITE_BYTEORDER==4321
535 (((u64
)p
[0]) << 56) +
536 (((u64
)p
[1]) << 48) +
537 (((u64
)p
[2]) << 40) +
538 (((u64
)p
[3]) << 32) +
539 (((u64
)p
[4]) << 24) +
540 (((u64
)p
[5]) << 16) +
548 ** Functions to serialize a 16 bit integer, 32 bit real number and
549 ** 64 bit integer. The value returned is the number of bytes written
550 ** to the argument buffer (always 2, 4 and 8 respectively).
552 static void writeInt16(u8
*p
, int i
){
556 static int writeCoord(u8
*p
, RtreeCoord
*pCoord
){
558 assert( ((((char*)p
) - (char*)0)&3)==0 ); /* p is always 4-byte aligned */
559 assert( sizeof(RtreeCoord
)==4 );
560 assert( sizeof(u32
)==4 );
561 #if SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
562 i
= __builtin_bswap32(pCoord
->u
);
564 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
565 i
= _byteswap_ulong(pCoord
->u
);
567 #elif SQLITE_BYTEORDER==4321
579 static int writeInt64(u8
*p
, i64 i
){
580 #if SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
581 i
= (i64
)__builtin_bswap64((u64
)i
);
583 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
584 i
= (i64
)_byteswap_uint64((u64
)i
);
586 #elif SQLITE_BYTEORDER==4321
602 ** Increment the reference count of node p.
604 static void nodeReference(RtreeNode
*p
){
612 ** Clear the content of node p (set all bytes to 0x00).
614 static void nodeZero(Rtree
*pRtree
, RtreeNode
*p
){
615 memset(&p
->zData
[2], 0, pRtree
->iNodeSize
-2);
620 ** Given a node number iNode, return the corresponding key to use
621 ** in the Rtree.aHash table.
623 static unsigned int nodeHash(i64 iNode
){
624 return ((unsigned)iNode
) % HASHSIZE
;
628 ** Search the node hash table for node iNode. If found, return a pointer
629 ** to it. Otherwise, return 0.
631 static RtreeNode
*nodeHashLookup(Rtree
*pRtree
, i64 iNode
){
633 for(p
=pRtree
->aHash
[nodeHash(iNode
)]; p
&& p
->iNode
!=iNode
; p
=p
->pNext
);
638 ** Add node pNode to the node hash table.
640 static void nodeHashInsert(Rtree
*pRtree
, RtreeNode
*pNode
){
642 assert( pNode
->pNext
==0 );
643 iHash
= nodeHash(pNode
->iNode
);
644 pNode
->pNext
= pRtree
->aHash
[iHash
];
645 pRtree
->aHash
[iHash
] = pNode
;
649 ** Remove node pNode from the node hash table.
651 static void nodeHashDelete(Rtree
*pRtree
, RtreeNode
*pNode
){
653 if( pNode
->iNode
!=0 ){
654 pp
= &pRtree
->aHash
[nodeHash(pNode
->iNode
)];
655 for( ; (*pp
)!=pNode
; pp
= &(*pp
)->pNext
){ assert(*pp
); }
662 ** Allocate and return new r-tree node. Initially, (RtreeNode.iNode==0),
663 ** indicating that node has not yet been assigned a node number. It is
664 ** assigned a node number when nodeWrite() is called to write the
665 ** node contents out to the database.
667 static RtreeNode
*nodeNew(Rtree
*pRtree
, RtreeNode
*pParent
){
669 pNode
= (RtreeNode
*)sqlite3_malloc64(sizeof(RtreeNode
) + pRtree
->iNodeSize
);
671 memset(pNode
, 0, sizeof(RtreeNode
) + pRtree
->iNodeSize
);
672 pNode
->zData
= (u8
*)&pNode
[1];
675 pNode
->pParent
= pParent
;
677 nodeReference(pParent
);
683 ** Clear the Rtree.pNodeBlob object
685 static void nodeBlobReset(Rtree
*pRtree
){
686 if( pRtree
->pNodeBlob
&& pRtree
->inWrTrans
==0 && pRtree
->nCursor
==0 ){
687 sqlite3_blob
*pBlob
= pRtree
->pNodeBlob
;
688 pRtree
->pNodeBlob
= 0;
689 sqlite3_blob_close(pBlob
);
694 ** Obtain a reference to an r-tree node.
696 static int nodeAcquire(
697 Rtree
*pRtree
, /* R-tree structure */
698 i64 iNode
, /* Node number to load */
699 RtreeNode
*pParent
, /* Either the parent node or NULL */
700 RtreeNode
**ppNode
/* OUT: Acquired node */
703 RtreeNode
*pNode
= 0;
705 /* Check if the requested node is already in the hash table. If so,
706 ** increase its reference count and return it.
708 if( (pNode
= nodeHashLookup(pRtree
, iNode
))!=0 ){
709 if( pParent
&& pParent
!=pNode
->pParent
){
710 RTREE_IS_CORRUPT(pRtree
);
711 return SQLITE_CORRUPT_VTAB
;
718 if( pRtree
->pNodeBlob
){
719 sqlite3_blob
*pBlob
= pRtree
->pNodeBlob
;
720 pRtree
->pNodeBlob
= 0;
721 rc
= sqlite3_blob_reopen(pBlob
, iNode
);
722 pRtree
->pNodeBlob
= pBlob
;
724 nodeBlobReset(pRtree
);
725 if( rc
==SQLITE_NOMEM
) return SQLITE_NOMEM
;
728 if( pRtree
->pNodeBlob
==0 ){
729 char *zTab
= sqlite3_mprintf("%s_node", pRtree
->zName
);
730 if( zTab
==0 ) return SQLITE_NOMEM
;
731 rc
= sqlite3_blob_open(pRtree
->db
, pRtree
->zDb
, zTab
, "data", iNode
, 0,
736 nodeBlobReset(pRtree
);
738 /* If unable to open an sqlite3_blob on the desired row, that can only
739 ** be because the shadow tables hold erroneous data. */
740 if( rc
==SQLITE_ERROR
){
741 rc
= SQLITE_CORRUPT_VTAB
;
742 RTREE_IS_CORRUPT(pRtree
);
744 }else if( pRtree
->iNodeSize
==sqlite3_blob_bytes(pRtree
->pNodeBlob
) ){
745 pNode
= (RtreeNode
*)sqlite3_malloc64(sizeof(RtreeNode
)+pRtree
->iNodeSize
);
749 pNode
->pParent
= pParent
;
750 pNode
->zData
= (u8
*)&pNode
[1];
753 pNode
->iNode
= iNode
;
756 rc
= sqlite3_blob_read(pRtree
->pNodeBlob
, pNode
->zData
,
757 pRtree
->iNodeSize
, 0);
761 /* If the root node was just loaded, set pRtree->iDepth to the height
762 ** of the r-tree structure. A height of zero means all data is stored on
763 ** the root node. A height of one means the children of the root node
764 ** are the leaves, and so on. If the depth as specified on the root node
765 ** is greater than RTREE_MAX_DEPTH, the r-tree structure must be corrupt.
767 if( rc
==SQLITE_OK
&& pNode
&& iNode
==1 ){
768 pRtree
->iDepth
= readInt16(pNode
->zData
);
769 if( pRtree
->iDepth
>RTREE_MAX_DEPTH
){
770 rc
= SQLITE_CORRUPT_VTAB
;
771 RTREE_IS_CORRUPT(pRtree
);
775 /* If no error has occurred so far, check if the "number of entries"
776 ** field on the node is too large. If so, set the return code to
777 ** SQLITE_CORRUPT_VTAB.
779 if( pNode
&& rc
==SQLITE_OK
){
780 if( NCELL(pNode
)>((pRtree
->iNodeSize
-4)/pRtree
->nBytesPerCell
) ){
781 rc
= SQLITE_CORRUPT_VTAB
;
782 RTREE_IS_CORRUPT(pRtree
);
788 nodeReference(pParent
);
789 nodeHashInsert(pRtree
, pNode
);
791 rc
= SQLITE_CORRUPT_VTAB
;
792 RTREE_IS_CORRUPT(pRtree
);
807 ** Overwrite cell iCell of node pNode with the contents of pCell.
809 static void nodeOverwriteCell(
810 Rtree
*pRtree
, /* The overall R-Tree */
811 RtreeNode
*pNode
, /* The node into which the cell is to be written */
812 RtreeCell
*pCell
, /* The cell to write */
813 int iCell
/* Index into pNode into which pCell is written */
816 u8
*p
= &pNode
->zData
[4 + pRtree
->nBytesPerCell
*iCell
];
817 p
+= writeInt64(p
, pCell
->iRowid
);
818 for(ii
=0; ii
<pRtree
->nDim2
; ii
++){
819 p
+= writeCoord(p
, &pCell
->aCoord
[ii
]);
825 ** Remove the cell with index iCell from node pNode.
827 static void nodeDeleteCell(Rtree
*pRtree
, RtreeNode
*pNode
, int iCell
){
828 u8
*pDst
= &pNode
->zData
[4 + pRtree
->nBytesPerCell
*iCell
];
829 u8
*pSrc
= &pDst
[pRtree
->nBytesPerCell
];
830 int nByte
= (NCELL(pNode
) - iCell
- 1) * pRtree
->nBytesPerCell
;
831 memmove(pDst
, pSrc
, nByte
);
832 writeInt16(&pNode
->zData
[2], NCELL(pNode
)-1);
837 ** Insert the contents of cell pCell into node pNode. If the insert
838 ** is successful, return SQLITE_OK.
840 ** If there is not enough free space in pNode, return SQLITE_FULL.
842 static int nodeInsertCell(
843 Rtree
*pRtree
, /* The overall R-Tree */
844 RtreeNode
*pNode
, /* Write new cell into this node */
845 RtreeCell
*pCell
/* The cell to be inserted */
847 int nCell
; /* Current number of cells in pNode */
848 int nMaxCell
; /* Maximum number of cells for pNode */
850 nMaxCell
= (pRtree
->iNodeSize
-4)/pRtree
->nBytesPerCell
;
851 nCell
= NCELL(pNode
);
853 assert( nCell
<=nMaxCell
);
854 if( nCell
<nMaxCell
){
855 nodeOverwriteCell(pRtree
, pNode
, pCell
, nCell
);
856 writeInt16(&pNode
->zData
[2], nCell
+1);
860 return (nCell
==nMaxCell
);
864 ** If the node is dirty, write it out to the database.
866 static int nodeWrite(Rtree
*pRtree
, RtreeNode
*pNode
){
868 if( pNode
->isDirty
){
869 sqlite3_stmt
*p
= pRtree
->pWriteNode
;
871 sqlite3_bind_int64(p
, 1, pNode
->iNode
);
873 sqlite3_bind_null(p
, 1);
875 sqlite3_bind_blob(p
, 2, pNode
->zData
, pRtree
->iNodeSize
, SQLITE_STATIC
);
878 rc
= sqlite3_reset(p
);
879 sqlite3_bind_null(p
, 2);
880 if( pNode
->iNode
==0 && rc
==SQLITE_OK
){
881 pNode
->iNode
= sqlite3_last_insert_rowid(pRtree
->db
);
882 nodeHashInsert(pRtree
, pNode
);
889 ** Release a reference to a node. If the node is dirty and the reference
890 ** count drops to zero, the node data is written to the database.
892 static int nodeRelease(Rtree
*pRtree
, RtreeNode
*pNode
){
895 assert( pNode
->nRef
>0 );
896 assert( pRtree
->nNodeRef
>0 );
898 if( pNode
->nRef
==0 ){
900 if( pNode
->iNode
==1 ){
903 if( pNode
->pParent
){
904 rc
= nodeRelease(pRtree
, pNode
->pParent
);
907 rc
= nodeWrite(pRtree
, pNode
);
909 nodeHashDelete(pRtree
, pNode
);
917 ** Return the 64-bit integer value associated with cell iCell of
918 ** node pNode. If pNode is a leaf node, this is a rowid. If it is
919 ** an internal node, then the 64-bit integer is a child page number.
921 static i64
nodeGetRowid(
922 Rtree
*pRtree
, /* The overall R-Tree */
923 RtreeNode
*pNode
, /* The node from which to extract the ID */
924 int iCell
/* The cell index from which to extract the ID */
926 assert( iCell
<NCELL(pNode
) );
927 return readInt64(&pNode
->zData
[4 + pRtree
->nBytesPerCell
*iCell
]);
931 ** Return coordinate iCoord from cell iCell in node pNode.
933 static void nodeGetCoord(
934 Rtree
*pRtree
, /* The overall R-Tree */
935 RtreeNode
*pNode
, /* The node from which to extract a coordinate */
936 int iCell
, /* The index of the cell within the node */
937 int iCoord
, /* Which coordinate to extract */
938 RtreeCoord
*pCoord
/* OUT: Space to write result to */
940 readCoord(&pNode
->zData
[12 + pRtree
->nBytesPerCell
*iCell
+ 4*iCoord
], pCoord
);
944 ** Deserialize cell iCell of node pNode. Populate the structure pointed
945 ** to by pCell with the results.
947 static void nodeGetCell(
948 Rtree
*pRtree
, /* The overall R-Tree */
949 RtreeNode
*pNode
, /* The node containing the cell to be read */
950 int iCell
, /* Index of the cell within the node */
951 RtreeCell
*pCell
/* OUT: Write the cell contents here */
956 pCell
->iRowid
= nodeGetRowid(pRtree
, pNode
, iCell
);
957 pData
= pNode
->zData
+ (12 + pRtree
->nBytesPerCell
*iCell
);
958 pCoord
= pCell
->aCoord
;
960 readCoord(pData
, &pCoord
[ii
]);
961 readCoord(pData
+4, &pCoord
[ii
+1]);
964 }while( ii
<pRtree
->nDim2
);
968 /* Forward declaration for the function that does the work of
969 ** the virtual table module xCreate() and xConnect() methods.
971 static int rtreeInit(
972 sqlite3
*, void *, int, const char *const*, sqlite3_vtab
**, char **, int
976 ** Rtree virtual table module xCreate method.
978 static int rtreeCreate(
981 int argc
, const char *const*argv
,
982 sqlite3_vtab
**ppVtab
,
985 return rtreeInit(db
, pAux
, argc
, argv
, ppVtab
, pzErr
, 1);
989 ** Rtree virtual table module xConnect method.
991 static int rtreeConnect(
994 int argc
, const char *const*argv
,
995 sqlite3_vtab
**ppVtab
,
998 return rtreeInit(db
, pAux
, argc
, argv
, ppVtab
, pzErr
, 0);
1002 ** Increment the r-tree reference count.
1004 static void rtreeReference(Rtree
*pRtree
){
1009 ** Decrement the r-tree reference count. When the reference count reaches
1010 ** zero the structure is deleted.
1012 static void rtreeRelease(Rtree
*pRtree
){
1014 if( pRtree
->nBusy
==0 ){
1015 pRtree
->inWrTrans
= 0;
1016 assert( pRtree
->nCursor
==0 );
1017 nodeBlobReset(pRtree
);
1018 assert( pRtree
->nNodeRef
==0 || pRtree
->bCorrupt
);
1019 sqlite3_finalize(pRtree
->pWriteNode
);
1020 sqlite3_finalize(pRtree
->pDeleteNode
);
1021 sqlite3_finalize(pRtree
->pReadRowid
);
1022 sqlite3_finalize(pRtree
->pWriteRowid
);
1023 sqlite3_finalize(pRtree
->pDeleteRowid
);
1024 sqlite3_finalize(pRtree
->pReadParent
);
1025 sqlite3_finalize(pRtree
->pWriteParent
);
1026 sqlite3_finalize(pRtree
->pDeleteParent
);
1027 sqlite3_finalize(pRtree
->pWriteAux
);
1028 sqlite3_free(pRtree
->zReadAuxSql
);
1029 sqlite3_free(pRtree
);
1034 ** Rtree virtual table module xDisconnect method.
1036 static int rtreeDisconnect(sqlite3_vtab
*pVtab
){
1037 rtreeRelease((Rtree
*)pVtab
);
1042 ** Rtree virtual table module xDestroy method.
1044 static int rtreeDestroy(sqlite3_vtab
*pVtab
){
1045 Rtree
*pRtree
= (Rtree
*)pVtab
;
1047 char *zCreate
= sqlite3_mprintf(
1048 "DROP TABLE '%q'.'%q_node';"
1049 "DROP TABLE '%q'.'%q_rowid';"
1050 "DROP TABLE '%q'.'%q_parent';",
1051 pRtree
->zDb
, pRtree
->zName
,
1052 pRtree
->zDb
, pRtree
->zName
,
1053 pRtree
->zDb
, pRtree
->zName
1058 nodeBlobReset(pRtree
);
1059 rc
= sqlite3_exec(pRtree
->db
, zCreate
, 0, 0, 0);
1060 sqlite3_free(zCreate
);
1062 if( rc
==SQLITE_OK
){
1063 rtreeRelease(pRtree
);
1070 ** Rtree virtual table module xOpen method.
1072 static int rtreeOpen(sqlite3_vtab
*pVTab
, sqlite3_vtab_cursor
**ppCursor
){
1073 int rc
= SQLITE_NOMEM
;
1074 Rtree
*pRtree
= (Rtree
*)pVTab
;
1077 pCsr
= (RtreeCursor
*)sqlite3_malloc64(sizeof(RtreeCursor
));
1079 memset(pCsr
, 0, sizeof(RtreeCursor
));
1080 pCsr
->base
.pVtab
= pVTab
;
1084 *ppCursor
= (sqlite3_vtab_cursor
*)pCsr
;
1091 ** Reset a cursor back to its initial state.
1093 static void resetCursor(RtreeCursor
*pCsr
){
1094 Rtree
*pRtree
= (Rtree
*)(pCsr
->base
.pVtab
);
1096 sqlite3_stmt
*pStmt
;
1097 if( pCsr
->aConstraint
){
1098 int i
; /* Used to iterate through constraint array */
1099 for(i
=0; i
<pCsr
->nConstraint
; i
++){
1100 sqlite3_rtree_query_info
*pInfo
= pCsr
->aConstraint
[i
].pInfo
;
1102 if( pInfo
->xDelUser
) pInfo
->xDelUser(pInfo
->pUser
);
1103 sqlite3_free(pInfo
);
1106 sqlite3_free(pCsr
->aConstraint
);
1107 pCsr
->aConstraint
= 0;
1109 for(ii
=0; ii
<RTREE_CACHE_SZ
; ii
++) nodeRelease(pRtree
, pCsr
->aNode
[ii
]);
1110 sqlite3_free(pCsr
->aPoint
);
1111 pStmt
= pCsr
->pReadAux
;
1112 memset(pCsr
, 0, sizeof(RtreeCursor
));
1113 pCsr
->base
.pVtab
= (sqlite3_vtab
*)pRtree
;
1114 pCsr
->pReadAux
= pStmt
;
1119 ** Rtree virtual table module xClose method.
1121 static int rtreeClose(sqlite3_vtab_cursor
*cur
){
1122 Rtree
*pRtree
= (Rtree
*)(cur
->pVtab
);
1123 RtreeCursor
*pCsr
= (RtreeCursor
*)cur
;
1124 assert( pRtree
->nCursor
>0 );
1126 sqlite3_finalize(pCsr
->pReadAux
);
1129 nodeBlobReset(pRtree
);
1134 ** Rtree virtual table module xEof method.
1136 ** Return non-zero if the cursor does not currently point to a valid
1137 ** record (i.e if the scan has finished), or zero otherwise.
1139 static int rtreeEof(sqlite3_vtab_cursor
*cur
){
1140 RtreeCursor
*pCsr
= (RtreeCursor
*)cur
;
1145 ** Convert raw bits from the on-disk RTree record into a coordinate value.
1146 ** The on-disk format is big-endian and needs to be converted for little-
1147 ** endian platforms. The on-disk record stores integer coordinates if
1148 ** eInt is true and it stores 32-bit floating point records if eInt is
1149 ** false. a[] is the four bytes of the on-disk record to be decoded.
1150 ** Store the results in "r".
1152 ** There are five versions of this macro. The last one is generic. The
1153 ** other four are various architectures-specific optimizations.
1155 #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1156 #define RTREE_DECODE_COORD(eInt, a, r) { \
1157 RtreeCoord c; /* Coordinate decoded */ \
1158 c.u = _byteswap_ulong(*(u32*)a); \
1159 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
1161 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1162 #define RTREE_DECODE_COORD(eInt, a, r) { \
1163 RtreeCoord c; /* Coordinate decoded */ \
1164 c.u = __builtin_bswap32(*(u32*)a); \
1165 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
1167 #elif SQLITE_BYTEORDER==1234
1168 #define RTREE_DECODE_COORD(eInt, a, r) { \
1169 RtreeCoord c; /* Coordinate decoded */ \
1171 c.u = ((c.u>>24)&0xff)|((c.u>>8)&0xff00)| \
1172 ((c.u&0xff)<<24)|((c.u&0xff00)<<8); \
1173 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
1175 #elif SQLITE_BYTEORDER==4321
1176 #define RTREE_DECODE_COORD(eInt, a, r) { \
1177 RtreeCoord c; /* Coordinate decoded */ \
1179 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
1182 #define RTREE_DECODE_COORD(eInt, a, r) { \
1183 RtreeCoord c; /* Coordinate decoded */ \
1184 c.u = ((u32)a[0]<<24) + ((u32)a[1]<<16) \
1185 +((u32)a[2]<<8) + a[3]; \
1186 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
1191 ** Check the RTree node or entry given by pCellData and p against the MATCH
1192 ** constraint pConstraint.
1194 static int rtreeCallbackConstraint(
1195 RtreeConstraint
*pConstraint
, /* The constraint to test */
1196 int eInt
, /* True if RTree holding integer coordinates */
1197 u8
*pCellData
, /* Raw cell content */
1198 RtreeSearchPoint
*pSearch
, /* Container of this cell */
1199 sqlite3_rtree_dbl
*prScore
, /* OUT: score for the cell */
1200 int *peWithin
/* OUT: visibility of the cell */
1202 sqlite3_rtree_query_info
*pInfo
= pConstraint
->pInfo
; /* Callback info */
1203 int nCoord
= pInfo
->nCoord
; /* No. of coordinates */
1204 int rc
; /* Callback return code */
1205 RtreeCoord c
; /* Translator union */
1206 sqlite3_rtree_dbl aCoord
[RTREE_MAX_DIMENSIONS
*2]; /* Decoded coordinates */
1208 assert( pConstraint
->op
==RTREE_MATCH
|| pConstraint
->op
==RTREE_QUERY
);
1209 assert( nCoord
==2 || nCoord
==4 || nCoord
==6 || nCoord
==8 || nCoord
==10 );
1211 if( pConstraint
->op
==RTREE_QUERY
&& pSearch
->iLevel
==1 ){
1212 pInfo
->iRowid
= readInt64(pCellData
);
1215 #ifndef SQLITE_RTREE_INT_ONLY
1218 case 10: readCoord(pCellData
+36, &c
); aCoord
[9] = c
.f
;
1219 readCoord(pCellData
+32, &c
); aCoord
[8] = c
.f
;
1220 case 8: readCoord(pCellData
+28, &c
); aCoord
[7] = c
.f
;
1221 readCoord(pCellData
+24, &c
); aCoord
[6] = c
.f
;
1222 case 6: readCoord(pCellData
+20, &c
); aCoord
[5] = c
.f
;
1223 readCoord(pCellData
+16, &c
); aCoord
[4] = c
.f
;
1224 case 4: readCoord(pCellData
+12, &c
); aCoord
[3] = c
.f
;
1225 readCoord(pCellData
+8, &c
); aCoord
[2] = c
.f
;
1226 default: readCoord(pCellData
+4, &c
); aCoord
[1] = c
.f
;
1227 readCoord(pCellData
, &c
); aCoord
[0] = c
.f
;
1233 case 10: readCoord(pCellData
+36, &c
); aCoord
[9] = c
.i
;
1234 readCoord(pCellData
+32, &c
); aCoord
[8] = c
.i
;
1235 case 8: readCoord(pCellData
+28, &c
); aCoord
[7] = c
.i
;
1236 readCoord(pCellData
+24, &c
); aCoord
[6] = c
.i
;
1237 case 6: readCoord(pCellData
+20, &c
); aCoord
[5] = c
.i
;
1238 readCoord(pCellData
+16, &c
); aCoord
[4] = c
.i
;
1239 case 4: readCoord(pCellData
+12, &c
); aCoord
[3] = c
.i
;
1240 readCoord(pCellData
+8, &c
); aCoord
[2] = c
.i
;
1241 default: readCoord(pCellData
+4, &c
); aCoord
[1] = c
.i
;
1242 readCoord(pCellData
, &c
); aCoord
[0] = c
.i
;
1245 if( pConstraint
->op
==RTREE_MATCH
){
1247 rc
= pConstraint
->u
.xGeom((sqlite3_rtree_geometry
*)pInfo
,
1248 nCoord
, aCoord
, &eWithin
);
1249 if( eWithin
==0 ) *peWithin
= NOT_WITHIN
;
1250 *prScore
= RTREE_ZERO
;
1252 pInfo
->aCoord
= aCoord
;
1253 pInfo
->iLevel
= pSearch
->iLevel
- 1;
1254 pInfo
->rScore
= pInfo
->rParentScore
= pSearch
->rScore
;
1255 pInfo
->eWithin
= pInfo
->eParentWithin
= pSearch
->eWithin
;
1256 rc
= pConstraint
->u
.xQueryFunc(pInfo
);
1257 if( pInfo
->eWithin
<*peWithin
) *peWithin
= pInfo
->eWithin
;
1258 if( pInfo
->rScore
<*prScore
|| *prScore
<RTREE_ZERO
){
1259 *prScore
= pInfo
->rScore
;
1266 ** Check the internal RTree node given by pCellData against constraint p.
1267 ** If this constraint cannot be satisfied by any child within the node,
1268 ** set *peWithin to NOT_WITHIN.
1270 static void rtreeNonleafConstraint(
1271 RtreeConstraint
*p
, /* The constraint to test */
1272 int eInt
, /* True if RTree holds integer coordinates */
1273 u8
*pCellData
, /* Raw cell content as appears on disk */
1274 int *peWithin
/* Adjust downward, as appropriate */
1276 sqlite3_rtree_dbl val
; /* Coordinate value convert to a double */
1278 /* p->iCoord might point to either a lower or upper bound coordinate
1279 ** in a coordinate pair. But make pCellData point to the lower bound.
1281 pCellData
+= 8 + 4*(p
->iCoord
&0xfe);
1283 assert(p
->op
==RTREE_LE
|| p
->op
==RTREE_LT
|| p
->op
==RTREE_GE
1284 || p
->op
==RTREE_GT
|| p
->op
==RTREE_EQ
|| p
->op
==RTREE_TRUE
1285 || p
->op
==RTREE_FALSE
);
1286 assert( ((((char*)pCellData
) - (char*)0)&3)==0 ); /* 4-byte aligned */
1288 case RTREE_TRUE
: return; /* Always satisfied */
1289 case RTREE_FALSE
: break; /* Never satisfied */
1291 RTREE_DECODE_COORD(eInt
, pCellData
, val
);
1292 /* val now holds the lower bound of the coordinate pair */
1293 if( p
->u
.rValue
>=val
){
1295 RTREE_DECODE_COORD(eInt
, pCellData
, val
);
1296 /* val now holds the upper bound of the coordinate pair */
1297 if( p
->u
.rValue
<=val
) return;
1302 RTREE_DECODE_COORD(eInt
, pCellData
, val
);
1303 /* val now holds the lower bound of the coordinate pair */
1304 if( p
->u
.rValue
>=val
) return;
1309 RTREE_DECODE_COORD(eInt
, pCellData
, val
);
1310 /* val now holds the upper bound of the coordinate pair */
1311 if( p
->u
.rValue
<=val
) return;
1314 *peWithin
= NOT_WITHIN
;
1318 ** Check the leaf RTree cell given by pCellData against constraint p.
1319 ** If this constraint is not satisfied, set *peWithin to NOT_WITHIN.
1320 ** If the constraint is satisfied, leave *peWithin unchanged.
1322 ** The constraint is of the form: xN op $val
1324 ** The op is given by p->op. The xN is p->iCoord-th coordinate in
1325 ** pCellData. $val is given by p->u.rValue.
1327 static void rtreeLeafConstraint(
1328 RtreeConstraint
*p
, /* The constraint to test */
1329 int eInt
, /* True if RTree holds integer coordinates */
1330 u8
*pCellData
, /* Raw cell content as appears on disk */
1331 int *peWithin
/* Adjust downward, as appropriate */
1333 RtreeDValue xN
; /* Coordinate value converted to a double */
1335 assert(p
->op
==RTREE_LE
|| p
->op
==RTREE_LT
|| p
->op
==RTREE_GE
1336 || p
->op
==RTREE_GT
|| p
->op
==RTREE_EQ
|| p
->op
==RTREE_TRUE
1337 || p
->op
==RTREE_FALSE
);
1338 pCellData
+= 8 + p
->iCoord
*4;
1339 assert( ((((char*)pCellData
) - (char*)0)&3)==0 ); /* 4-byte aligned */
1340 RTREE_DECODE_COORD(eInt
, pCellData
, xN
);
1342 case RTREE_TRUE
: return; /* Always satisfied */
1343 case RTREE_FALSE
: break; /* Never satisfied */
1344 case RTREE_LE
: if( xN
<= p
->u
.rValue
) return; break;
1345 case RTREE_LT
: if( xN
< p
->u
.rValue
) return; break;
1346 case RTREE_GE
: if( xN
>= p
->u
.rValue
) return; break;
1347 case RTREE_GT
: if( xN
> p
->u
.rValue
) return; break;
1348 default: if( xN
== p
->u
.rValue
) return; break;
1350 *peWithin
= NOT_WITHIN
;
1354 ** One of the cells in node pNode is guaranteed to have a 64-bit
1355 ** integer value equal to iRowid. Return the index of this cell.
1357 static int nodeRowidIndex(
1364 int nCell
= NCELL(pNode
);
1365 assert( nCell
<200 );
1366 for(ii
=0; ii
<nCell
; ii
++){
1367 if( nodeGetRowid(pRtree
, pNode
, ii
)==iRowid
){
1372 RTREE_IS_CORRUPT(pRtree
);
1373 return SQLITE_CORRUPT_VTAB
;
1377 ** Return the index of the cell containing a pointer to node pNode
1378 ** in its parent. If pNode is the root node, return -1.
1380 static int nodeParentIndex(Rtree
*pRtree
, RtreeNode
*pNode
, int *piIndex
){
1381 RtreeNode
*pParent
= pNode
->pParent
;
1382 if( ALWAYS(pParent
) ){
1383 return nodeRowidIndex(pRtree
, pParent
, pNode
->iNode
, piIndex
);
1391 ** Compare two search points. Return negative, zero, or positive if the first
1392 ** is less than, equal to, or greater than the second.
1394 ** The rScore is the primary key. Smaller rScore values come first.
1395 ** If the rScore is a tie, then use iLevel as the tie breaker with smaller
1396 ** iLevel values coming first. In this way, if rScore is the same for all
1397 ** SearchPoints, then iLevel becomes the deciding factor and the result
1398 ** is a depth-first search, which is the desired default behavior.
1400 static int rtreeSearchPointCompare(
1401 const RtreeSearchPoint
*pA
,
1402 const RtreeSearchPoint
*pB
1404 if( pA
->rScore
<pB
->rScore
) return -1;
1405 if( pA
->rScore
>pB
->rScore
) return +1;
1406 if( pA
->iLevel
<pB
->iLevel
) return -1;
1407 if( pA
->iLevel
>pB
->iLevel
) return +1;
1412 ** Interchange two search points in a cursor.
1414 static void rtreeSearchPointSwap(RtreeCursor
*p
, int i
, int j
){
1415 RtreeSearchPoint t
= p
->aPoint
[i
];
1417 p
->aPoint
[i
] = p
->aPoint
[j
];
1420 if( i
<RTREE_CACHE_SZ
){
1421 if( j
>=RTREE_CACHE_SZ
){
1422 nodeRelease(RTREE_OF_CURSOR(p
), p
->aNode
[i
]);
1425 RtreeNode
*pTemp
= p
->aNode
[i
];
1426 p
->aNode
[i
] = p
->aNode
[j
];
1427 p
->aNode
[j
] = pTemp
;
1433 ** Return the search point with the lowest current score.
1435 static RtreeSearchPoint
*rtreeSearchPointFirst(RtreeCursor
*pCur
){
1436 return pCur
->bPoint
? &pCur
->sPoint
: pCur
->nPoint
? pCur
->aPoint
: 0;
1440 ** Get the RtreeNode for the search point with the lowest score.
1442 static RtreeNode
*rtreeNodeOfFirstSearchPoint(RtreeCursor
*pCur
, int *pRC
){
1444 int ii
= 1 - pCur
->bPoint
;
1445 assert( ii
==0 || ii
==1 );
1446 assert( pCur
->bPoint
|| pCur
->nPoint
);
1447 if( pCur
->aNode
[ii
]==0 ){
1449 id
= ii
? pCur
->aPoint
[0].id
: pCur
->sPoint
.id
;
1450 *pRC
= nodeAcquire(RTREE_OF_CURSOR(pCur
), id
, 0, &pCur
->aNode
[ii
]);
1452 return pCur
->aNode
[ii
];
1456 ** Push a new element onto the priority queue
1458 static RtreeSearchPoint
*rtreeEnqueue(
1459 RtreeCursor
*pCur
, /* The cursor */
1460 RtreeDValue rScore
, /* Score for the new search point */
1461 u8 iLevel
/* Level for the new search point */
1464 RtreeSearchPoint
*pNew
;
1465 if( pCur
->nPoint
>=pCur
->nPointAlloc
){
1466 int nNew
= pCur
->nPointAlloc
*2 + 8;
1467 pNew
= sqlite3_realloc64(pCur
->aPoint
, nNew
*sizeof(pCur
->aPoint
[0]));
1468 if( pNew
==0 ) return 0;
1469 pCur
->aPoint
= pNew
;
1470 pCur
->nPointAlloc
= nNew
;
1473 pNew
= pCur
->aPoint
+ i
;
1474 pNew
->rScore
= rScore
;
1475 pNew
->iLevel
= iLevel
;
1476 assert( iLevel
<=RTREE_MAX_DEPTH
);
1478 RtreeSearchPoint
*pParent
;
1480 pParent
= pCur
->aPoint
+ j
;
1481 if( rtreeSearchPointCompare(pNew
, pParent
)>=0 ) break;
1482 rtreeSearchPointSwap(pCur
, j
, i
);
1490 ** Allocate a new RtreeSearchPoint and return a pointer to it. Return
1491 ** NULL if malloc fails.
1493 static RtreeSearchPoint
*rtreeSearchPointNew(
1494 RtreeCursor
*pCur
, /* The cursor */
1495 RtreeDValue rScore
, /* Score for the new search point */
1496 u8 iLevel
/* Level for the new search point */
1498 RtreeSearchPoint
*pNew
, *pFirst
;
1499 pFirst
= rtreeSearchPointFirst(pCur
);
1500 pCur
->anQueue
[iLevel
]++;
1502 || pFirst
->rScore
>rScore
1503 || (pFirst
->rScore
==rScore
&& pFirst
->iLevel
>iLevel
)
1507 pNew
= rtreeEnqueue(pCur
, rScore
, iLevel
);
1508 if( pNew
==0 ) return 0;
1509 ii
= (int)(pNew
- pCur
->aPoint
) + 1;
1511 if( ALWAYS(ii
<RTREE_CACHE_SZ
) ){
1512 assert( pCur
->aNode
[ii
]==0 );
1513 pCur
->aNode
[ii
] = pCur
->aNode
[0];
1515 nodeRelease(RTREE_OF_CURSOR(pCur
), pCur
->aNode
[0]);
1518 *pNew
= pCur
->sPoint
;
1520 pCur
->sPoint
.rScore
= rScore
;
1521 pCur
->sPoint
.iLevel
= iLevel
;
1523 return &pCur
->sPoint
;
1525 return rtreeEnqueue(pCur
, rScore
, iLevel
);
1530 /* Tracing routines for the RtreeSearchPoint queue */
1531 static void tracePoint(RtreeSearchPoint
*p
, int idx
, RtreeCursor
*pCur
){
1532 if( idx
<0 ){ printf(" s"); }else{ printf("%2d", idx
); }
1533 printf(" %d.%05lld.%02d %g %d",
1534 p
->iLevel
, p
->id
, p
->iCell
, p
->rScore
, p
->eWithin
1537 if( idx
<RTREE_CACHE_SZ
){
1538 printf(" %p\n", pCur
->aNode
[idx
]);
1543 static void traceQueue(RtreeCursor
*pCur
, const char *zPrefix
){
1545 printf("=== %9s ", zPrefix
);
1547 tracePoint(&pCur
->sPoint
, -1, pCur
);
1549 for(ii
=0; ii
<pCur
->nPoint
; ii
++){
1550 if( ii
>0 || pCur
->bPoint
) printf(" ");
1551 tracePoint(&pCur
->aPoint
[ii
], ii
, pCur
);
1554 # define RTREE_QUEUE_TRACE(A,B) traceQueue(A,B)
1556 # define RTREE_QUEUE_TRACE(A,B) /* no-op */
1559 /* Remove the search point with the lowest current score.
1561 static void rtreeSearchPointPop(RtreeCursor
*p
){
1564 assert( i
==0 || i
==1 );
1566 nodeRelease(RTREE_OF_CURSOR(p
), p
->aNode
[i
]);
1570 p
->anQueue
[p
->sPoint
.iLevel
]--;
1572 }else if( ALWAYS(p
->nPoint
) ){
1573 p
->anQueue
[p
->aPoint
[0].iLevel
]--;
1575 p
->aPoint
[0] = p
->aPoint
[n
];
1576 if( n
<RTREE_CACHE_SZ
-1 ){
1577 p
->aNode
[1] = p
->aNode
[n
+1];
1581 while( (j
= i
*2+1)<n
){
1583 if( k
<n
&& rtreeSearchPointCompare(&p
->aPoint
[k
], &p
->aPoint
[j
])<0 ){
1584 if( rtreeSearchPointCompare(&p
->aPoint
[k
], &p
->aPoint
[i
])<0 ){
1585 rtreeSearchPointSwap(p
, i
, k
);
1591 if( rtreeSearchPointCompare(&p
->aPoint
[j
], &p
->aPoint
[i
])<0 ){
1592 rtreeSearchPointSwap(p
, i
, j
);
1604 ** Continue the search on cursor pCur until the front of the queue
1605 ** contains an entry suitable for returning as a result-set row,
1606 ** or until the RtreeSearchPoint queue is empty, indicating that the
1607 ** query has completed.
1609 static int rtreeStepToLeaf(RtreeCursor
*pCur
){
1610 RtreeSearchPoint
*p
;
1611 Rtree
*pRtree
= RTREE_OF_CURSOR(pCur
);
1616 int nConstraint
= pCur
->nConstraint
;
1621 eInt
= pRtree
->eCoordType
==RTREE_COORD_INT32
;
1622 while( (p
= rtreeSearchPointFirst(pCur
))!=0 && p
->iLevel
>0 ){
1624 pNode
= rtreeNodeOfFirstSearchPoint(pCur
, &rc
);
1626 nCell
= NCELL(pNode
);
1627 assert( nCell
<200 );
1628 pCellData
= pNode
->zData
+ (4+pRtree
->nBytesPerCell
*p
->iCell
);
1629 while( p
->iCell
<nCell
){
1630 sqlite3_rtree_dbl rScore
= (sqlite3_rtree_dbl
)-1;
1631 eWithin
= FULLY_WITHIN
;
1632 for(ii
=0; ii
<nConstraint
; ii
++){
1633 RtreeConstraint
*pConstraint
= pCur
->aConstraint
+ ii
;
1634 if( pConstraint
->op
>=RTREE_MATCH
){
1635 rc
= rtreeCallbackConstraint(pConstraint
, eInt
, pCellData
, p
,
1638 }else if( p
->iLevel
==1 ){
1639 rtreeLeafConstraint(pConstraint
, eInt
, pCellData
, &eWithin
);
1641 rtreeNonleafConstraint(pConstraint
, eInt
, pCellData
, &eWithin
);
1643 if( eWithin
==NOT_WITHIN
){
1645 pCellData
+= pRtree
->nBytesPerCell
;
1649 if( eWithin
==NOT_WITHIN
) continue;
1651 x
.iLevel
= p
->iLevel
- 1;
1653 x
.id
= readInt64(pCellData
);
1654 for(ii
=0; ii
<pCur
->nPoint
; ii
++){
1655 if( pCur
->aPoint
[ii
].id
==x
.id
){
1656 RTREE_IS_CORRUPT(pRtree
);
1657 return SQLITE_CORRUPT_VTAB
;
1663 x
.iCell
= p
->iCell
- 1;
1665 if( p
->iCell
>=nCell
){
1666 RTREE_QUEUE_TRACE(pCur
, "POP-S:");
1667 rtreeSearchPointPop(pCur
);
1669 if( rScore
<RTREE_ZERO
) rScore
= RTREE_ZERO
;
1670 p
= rtreeSearchPointNew(pCur
, rScore
, x
.iLevel
);
1671 if( p
==0 ) return SQLITE_NOMEM
;
1672 p
->eWithin
= (u8
)eWithin
;
1675 RTREE_QUEUE_TRACE(pCur
, "PUSH-S:");
1678 if( p
->iCell
>=nCell
){
1679 RTREE_QUEUE_TRACE(pCur
, "POP-Se:");
1680 rtreeSearchPointPop(pCur
);
1688 ** Rtree virtual table module xNext method.
1690 static int rtreeNext(sqlite3_vtab_cursor
*pVtabCursor
){
1691 RtreeCursor
*pCsr
= (RtreeCursor
*)pVtabCursor
;
1694 /* Move to the next entry that matches the configured constraints. */
1695 RTREE_QUEUE_TRACE(pCsr
, "POP-Nx:");
1696 if( pCsr
->bAuxValid
){
1697 pCsr
->bAuxValid
= 0;
1698 sqlite3_reset(pCsr
->pReadAux
);
1700 rtreeSearchPointPop(pCsr
);
1701 rc
= rtreeStepToLeaf(pCsr
);
1706 ** Rtree virtual table module xRowid method.
1708 static int rtreeRowid(sqlite3_vtab_cursor
*pVtabCursor
, sqlite_int64
*pRowid
){
1709 RtreeCursor
*pCsr
= (RtreeCursor
*)pVtabCursor
;
1710 RtreeSearchPoint
*p
= rtreeSearchPointFirst(pCsr
);
1712 RtreeNode
*pNode
= rtreeNodeOfFirstSearchPoint(pCsr
, &rc
);
1713 if( rc
==SQLITE_OK
&& ALWAYS(p
) ){
1714 *pRowid
= nodeGetRowid(RTREE_OF_CURSOR(pCsr
), pNode
, p
->iCell
);
1720 ** Rtree virtual table module xColumn method.
1722 static int rtreeColumn(sqlite3_vtab_cursor
*cur
, sqlite3_context
*ctx
, int i
){
1723 Rtree
*pRtree
= (Rtree
*)cur
->pVtab
;
1724 RtreeCursor
*pCsr
= (RtreeCursor
*)cur
;
1725 RtreeSearchPoint
*p
= rtreeSearchPointFirst(pCsr
);
1728 RtreeNode
*pNode
= rtreeNodeOfFirstSearchPoint(pCsr
, &rc
);
1731 if( NEVER(p
==0) ) return SQLITE_OK
;
1733 sqlite3_result_int64(ctx
, nodeGetRowid(pRtree
, pNode
, p
->iCell
));
1734 }else if( i
<=pRtree
->nDim2
){
1735 nodeGetCoord(pRtree
, pNode
, p
->iCell
, i
-1, &c
);
1736 #ifndef SQLITE_RTREE_INT_ONLY
1737 if( pRtree
->eCoordType
==RTREE_COORD_REAL32
){
1738 sqlite3_result_double(ctx
, c
.f
);
1742 assert( pRtree
->eCoordType
==RTREE_COORD_INT32
);
1743 sqlite3_result_int(ctx
, c
.i
);
1746 if( !pCsr
->bAuxValid
){
1747 if( pCsr
->pReadAux
==0 ){
1748 rc
= sqlite3_prepare_v3(pRtree
->db
, pRtree
->zReadAuxSql
, -1, 0,
1749 &pCsr
->pReadAux
, 0);
1752 sqlite3_bind_int64(pCsr
->pReadAux
, 1,
1753 nodeGetRowid(pRtree
, pNode
, p
->iCell
));
1754 rc
= sqlite3_step(pCsr
->pReadAux
);
1755 if( rc
==SQLITE_ROW
){
1756 pCsr
->bAuxValid
= 1;
1758 sqlite3_reset(pCsr
->pReadAux
);
1759 if( rc
==SQLITE_DONE
) rc
= SQLITE_OK
;
1763 sqlite3_result_value(ctx
,
1764 sqlite3_column_value(pCsr
->pReadAux
, i
- pRtree
->nDim2
+ 1));
1770 ** Use nodeAcquire() to obtain the leaf node containing the record with
1771 ** rowid iRowid. If successful, set *ppLeaf to point to the node and
1772 ** return SQLITE_OK. If there is no such record in the table, set
1773 ** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf
1774 ** to zero and return an SQLite error code.
1776 static int findLeafNode(
1777 Rtree
*pRtree
, /* RTree to search */
1778 i64 iRowid
, /* The rowid searching for */
1779 RtreeNode
**ppLeaf
, /* Write the node here */
1780 sqlite3_int64
*piNode
/* Write the node-id here */
1784 sqlite3_bind_int64(pRtree
->pReadRowid
, 1, iRowid
);
1785 if( sqlite3_step(pRtree
->pReadRowid
)==SQLITE_ROW
){
1786 i64 iNode
= sqlite3_column_int64(pRtree
->pReadRowid
, 0);
1787 if( piNode
) *piNode
= iNode
;
1788 rc
= nodeAcquire(pRtree
, iNode
, 0, ppLeaf
);
1789 sqlite3_reset(pRtree
->pReadRowid
);
1791 rc
= sqlite3_reset(pRtree
->pReadRowid
);
1797 ** This function is called to configure the RtreeConstraint object passed
1798 ** as the second argument for a MATCH constraint. The value passed as the
1799 ** first argument to this function is the right-hand operand to the MATCH
1802 static int deserializeGeometry(sqlite3_value
*pValue
, RtreeConstraint
*pCons
){
1803 RtreeMatchArg
*pBlob
, *pSrc
; /* BLOB returned by geometry function */
1804 sqlite3_rtree_query_info
*pInfo
; /* Callback information */
1806 pSrc
= sqlite3_value_pointer(pValue
, "RtreeMatchArg");
1807 if( pSrc
==0 ) return SQLITE_ERROR
;
1808 pInfo
= (sqlite3_rtree_query_info
*)
1809 sqlite3_malloc64( sizeof(*pInfo
)+pSrc
->iSize
);
1810 if( !pInfo
) return SQLITE_NOMEM
;
1811 memset(pInfo
, 0, sizeof(*pInfo
));
1812 pBlob
= (RtreeMatchArg
*)&pInfo
[1];
1813 memcpy(pBlob
, pSrc
, pSrc
->iSize
);
1814 pInfo
->pContext
= pBlob
->cb
.pContext
;
1815 pInfo
->nParam
= pBlob
->nParam
;
1816 pInfo
->aParam
= pBlob
->aParam
;
1817 pInfo
->apSqlParam
= pBlob
->apSqlParam
;
1819 if( pBlob
->cb
.xGeom
){
1820 pCons
->u
.xGeom
= pBlob
->cb
.xGeom
;
1822 pCons
->op
= RTREE_QUERY
;
1823 pCons
->u
.xQueryFunc
= pBlob
->cb
.xQueryFunc
;
1825 pCons
->pInfo
= pInfo
;
1830 ** Rtree virtual table module xFilter method.
1832 static int rtreeFilter(
1833 sqlite3_vtab_cursor
*pVtabCursor
,
1834 int idxNum
, const char *idxStr
,
1835 int argc
, sqlite3_value
**argv
1837 Rtree
*pRtree
= (Rtree
*)pVtabCursor
->pVtab
;
1838 RtreeCursor
*pCsr
= (RtreeCursor
*)pVtabCursor
;
1839 RtreeNode
*pRoot
= 0;
1844 rtreeReference(pRtree
);
1846 /* Reset the cursor to the same state as rtreeOpen() leaves it in. */
1849 pCsr
->iStrategy
= idxNum
;
1851 /* Special case - lookup by rowid. */
1852 RtreeNode
*pLeaf
; /* Leaf on which the required cell resides */
1853 RtreeSearchPoint
*p
; /* Search point for the leaf */
1854 i64 iRowid
= sqlite3_value_int64(argv
[0]);
1856 int eType
= sqlite3_value_numeric_type(argv
[0]);
1857 if( eType
==SQLITE_INTEGER
1858 || (eType
==SQLITE_FLOAT
&& sqlite3_value_double(argv
[0])==iRowid
)
1860 rc
= findLeafNode(pRtree
, iRowid
, &pLeaf
, &iNode
);
1865 if( rc
==SQLITE_OK
&& pLeaf
!=0 ){
1866 p
= rtreeSearchPointNew(pCsr
, RTREE_ZERO
, 0);
1867 assert( p
!=0 ); /* Always returns pCsr->sPoint */
1868 pCsr
->aNode
[0] = pLeaf
;
1870 p
->eWithin
= PARTLY_WITHIN
;
1871 rc
= nodeRowidIndex(pRtree
, pLeaf
, iRowid
, &iCell
);
1872 p
->iCell
= (u8
)iCell
;
1873 RTREE_QUEUE_TRACE(pCsr
, "PUSH-F1:");
1878 /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array
1879 ** with the configured constraints.
1881 rc
= nodeAcquire(pRtree
, 1, 0, &pRoot
);
1882 if( rc
==SQLITE_OK
&& argc
>0 ){
1883 pCsr
->aConstraint
= sqlite3_malloc64(sizeof(RtreeConstraint
)*argc
);
1884 pCsr
->nConstraint
= argc
;
1885 if( !pCsr
->aConstraint
){
1888 memset(pCsr
->aConstraint
, 0, sizeof(RtreeConstraint
)*argc
);
1889 memset(pCsr
->anQueue
, 0, sizeof(u32
)*(pRtree
->iDepth
+ 1));
1890 assert( (idxStr
==0 && argc
==0)
1891 || (idxStr
&& (int)strlen(idxStr
)==argc
*2) );
1892 for(ii
=0; ii
<argc
; ii
++){
1893 RtreeConstraint
*p
= &pCsr
->aConstraint
[ii
];
1894 int eType
= sqlite3_value_numeric_type(argv
[ii
]);
1895 p
->op
= idxStr
[ii
*2];
1896 p
->iCoord
= idxStr
[ii
*2+1]-'0';
1897 if( p
->op
>=RTREE_MATCH
){
1898 /* A MATCH operator. The right-hand-side must be a blob that
1899 ** can be cast into an RtreeMatchArg object. One created using
1900 ** an sqlite3_rtree_geometry_callback() SQL user function.
1902 rc
= deserializeGeometry(argv
[ii
], p
);
1903 if( rc
!=SQLITE_OK
){
1906 p
->pInfo
->nCoord
= pRtree
->nDim2
;
1907 p
->pInfo
->anQueue
= pCsr
->anQueue
;
1908 p
->pInfo
->mxLevel
= pRtree
->iDepth
+ 1;
1909 }else if( eType
==SQLITE_INTEGER
|| eType
==SQLITE_FLOAT
){
1910 #ifdef SQLITE_RTREE_INT_ONLY
1911 p
->u
.rValue
= sqlite3_value_int64(argv
[ii
]);
1913 p
->u
.rValue
= sqlite3_value_double(argv
[ii
]);
1916 p
->u
.rValue
= RTREE_ZERO
;
1917 if( eType
==SQLITE_NULL
){
1918 p
->op
= RTREE_FALSE
;
1919 }else if( p
->op
==RTREE_LT
|| p
->op
==RTREE_LE
){
1922 p
->op
= RTREE_FALSE
;
1928 if( rc
==SQLITE_OK
){
1929 RtreeSearchPoint
*pNew
;
1930 assert( pCsr
->bPoint
==0 ); /* Due to the resetCursor() call above */
1931 pNew
= rtreeSearchPointNew(pCsr
, RTREE_ZERO
, (u8
)(pRtree
->iDepth
+1));
1932 if( NEVER(pNew
==0) ){ /* Because pCsr->bPoint was FALSE */
1933 return SQLITE_NOMEM
;
1937 pNew
->eWithin
= PARTLY_WITHIN
;
1938 assert( pCsr
->bPoint
==1 );
1939 pCsr
->aNode
[0] = pRoot
;
1941 RTREE_QUEUE_TRACE(pCsr
, "PUSH-Fm:");
1942 rc
= rtreeStepToLeaf(pCsr
);
1946 nodeRelease(pRtree
, pRoot
);
1947 rtreeRelease(pRtree
);
1952 ** Rtree virtual table module xBestIndex method. There are three
1953 ** table scan strategies to choose from (in order from most to
1954 ** least desirable):
1956 ** idxNum idxStr Strategy
1957 ** ------------------------------------------------
1958 ** 1 Unused Direct lookup by rowid.
1959 ** 2 See below R-tree query or full-table scan.
1960 ** ------------------------------------------------
1962 ** If strategy 1 is used, then idxStr is not meaningful. If strategy
1963 ** 2 is used, idxStr is formatted to contain 2 bytes for each
1964 ** constraint used. The first two bytes of idxStr correspond to
1965 ** the constraint in sqlite3_index_info.aConstraintUsage[] with
1966 ** (argvIndex==1) etc.
1968 ** The first of each pair of bytes in idxStr identifies the constraint
1969 ** operator as follows:
1971 ** Operator Byte Value
1972 ** ----------------------
1979 ** ----------------------
1981 ** The second of each pair of bytes identifies the coordinate column
1982 ** to which the constraint applies. The leftmost coordinate column
1983 ** is 'a', the second from the left 'b' etc.
1985 static int rtreeBestIndex(sqlite3_vtab
*tab
, sqlite3_index_info
*pIdxInfo
){
1986 Rtree
*pRtree
= (Rtree
*)tab
;
1989 int bMatch
= 0; /* True if there exists a MATCH constraint */
1990 i64 nRow
; /* Estimated rows returned by this scan */
1993 char zIdxStr
[RTREE_MAX_DIMENSIONS
*8+1];
1994 memset(zIdxStr
, 0, sizeof(zIdxStr
));
1996 /* Check if there exists a MATCH constraint - even an unusable one. If there
1997 ** is, do not consider the lookup-by-rowid plan as using such a plan would
1998 ** require the VDBE to evaluate the MATCH constraint, which is not currently
2000 for(ii
=0; ii
<pIdxInfo
->nConstraint
; ii
++){
2001 if( pIdxInfo
->aConstraint
[ii
].op
==SQLITE_INDEX_CONSTRAINT_MATCH
){
2006 assert( pIdxInfo
->idxStr
==0 );
2007 for(ii
=0; ii
<pIdxInfo
->nConstraint
&& iIdx
<(int)(sizeof(zIdxStr
)-1); ii
++){
2008 struct sqlite3_index_constraint
*p
= &pIdxInfo
->aConstraint
[ii
];
2010 if( bMatch
==0 && p
->usable
2011 && p
->iColumn
<=0 && p
->op
==SQLITE_INDEX_CONSTRAINT_EQ
2013 /* We have an equality constraint on the rowid. Use strategy 1. */
2015 for(jj
=0; jj
<ii
; jj
++){
2016 pIdxInfo
->aConstraintUsage
[jj
].argvIndex
= 0;
2017 pIdxInfo
->aConstraintUsage
[jj
].omit
= 0;
2019 pIdxInfo
->idxNum
= 1;
2020 pIdxInfo
->aConstraintUsage
[ii
].argvIndex
= 1;
2021 pIdxInfo
->aConstraintUsage
[jj
].omit
= 1;
2023 /* This strategy involves a two rowid lookups on an B-Tree structures
2024 ** and then a linear search of an R-Tree node. This should be
2025 ** considered almost as quick as a direct rowid lookup (for which
2026 ** sqlite uses an internal cost of 0.0). It is expected to return
2029 pIdxInfo
->estimatedCost
= 30.0;
2030 pIdxInfo
->estimatedRows
= 1;
2031 pIdxInfo
->idxFlags
= SQLITE_INDEX_SCAN_UNIQUE
;
2036 && ((p
->iColumn
>0 && p
->iColumn
<=pRtree
->nDim2
)
2037 || p
->op
==SQLITE_INDEX_CONSTRAINT_MATCH
)
2041 case SQLITE_INDEX_CONSTRAINT_EQ
: op
= RTREE_EQ
; break;
2042 case SQLITE_INDEX_CONSTRAINT_GT
: op
= RTREE_GT
; break;
2043 case SQLITE_INDEX_CONSTRAINT_LE
: op
= RTREE_LE
; break;
2044 case SQLITE_INDEX_CONSTRAINT_LT
: op
= RTREE_LT
; break;
2045 case SQLITE_INDEX_CONSTRAINT_GE
: op
= RTREE_GE
; break;
2046 case SQLITE_INDEX_CONSTRAINT_MATCH
: op
= RTREE_MATCH
; break;
2047 default: op
= 0; break;
2050 zIdxStr
[iIdx
++] = op
;
2051 zIdxStr
[iIdx
++] = (char)(p
->iColumn
- 1 + '0');
2052 pIdxInfo
->aConstraintUsage
[ii
].argvIndex
= (iIdx
/2);
2053 pIdxInfo
->aConstraintUsage
[ii
].omit
= 1;
2058 pIdxInfo
->idxNum
= 2;
2059 pIdxInfo
->needToFreeIdxStr
= 1;
2060 if( iIdx
>0 && 0==(pIdxInfo
->idxStr
= sqlite3_mprintf("%s", zIdxStr
)) ){
2061 return SQLITE_NOMEM
;
2064 nRow
= pRtree
->nRowEst
>> (iIdx
/2);
2065 pIdxInfo
->estimatedCost
= (double)6.0 * (double)nRow
;
2066 pIdxInfo
->estimatedRows
= nRow
;
2072 ** Return the N-dimensional volumn of the cell stored in *p.
2074 static RtreeDValue
cellArea(Rtree
*pRtree
, RtreeCell
*p
){
2075 RtreeDValue area
= (RtreeDValue
)1;
2076 assert( pRtree
->nDim
>=1 && pRtree
->nDim
<=5 );
2077 #ifndef SQLITE_RTREE_INT_ONLY
2078 if( pRtree
->eCoordType
==RTREE_COORD_REAL32
){
2079 switch( pRtree
->nDim
){
2080 case 5: area
= p
->aCoord
[9].f
- p
->aCoord
[8].f
;
2081 case 4: area
*= p
->aCoord
[7].f
- p
->aCoord
[6].f
;
2082 case 3: area
*= p
->aCoord
[5].f
- p
->aCoord
[4].f
;
2083 case 2: area
*= p
->aCoord
[3].f
- p
->aCoord
[2].f
;
2084 default: area
*= p
->aCoord
[1].f
- p
->aCoord
[0].f
;
2089 switch( pRtree
->nDim
){
2090 case 5: area
= (i64
)p
->aCoord
[9].i
- (i64
)p
->aCoord
[8].i
;
2091 case 4: area
*= (i64
)p
->aCoord
[7].i
- (i64
)p
->aCoord
[6].i
;
2092 case 3: area
*= (i64
)p
->aCoord
[5].i
- (i64
)p
->aCoord
[4].i
;
2093 case 2: area
*= (i64
)p
->aCoord
[3].i
- (i64
)p
->aCoord
[2].i
;
2094 default: area
*= (i64
)p
->aCoord
[1].i
- (i64
)p
->aCoord
[0].i
;
2101 ** Return the margin length of cell p. The margin length is the sum
2102 ** of the objects size in each dimension.
2104 static RtreeDValue
cellMargin(Rtree
*pRtree
, RtreeCell
*p
){
2105 RtreeDValue margin
= 0;
2106 int ii
= pRtree
->nDim2
- 2;
2108 margin
+= (DCOORD(p
->aCoord
[ii
+1]) - DCOORD(p
->aCoord
[ii
]));
2115 ** Store the union of cells p1 and p2 in p1.
2117 static void cellUnion(Rtree
*pRtree
, RtreeCell
*p1
, RtreeCell
*p2
){
2119 if( pRtree
->eCoordType
==RTREE_COORD_REAL32
){
2121 p1
->aCoord
[ii
].f
= MIN(p1
->aCoord
[ii
].f
, p2
->aCoord
[ii
].f
);
2122 p1
->aCoord
[ii
+1].f
= MAX(p1
->aCoord
[ii
+1].f
, p2
->aCoord
[ii
+1].f
);
2124 }while( ii
<pRtree
->nDim2
);
2127 p1
->aCoord
[ii
].i
= MIN(p1
->aCoord
[ii
].i
, p2
->aCoord
[ii
].i
);
2128 p1
->aCoord
[ii
+1].i
= MAX(p1
->aCoord
[ii
+1].i
, p2
->aCoord
[ii
+1].i
);
2130 }while( ii
<pRtree
->nDim2
);
2135 ** Return true if the area covered by p2 is a subset of the area covered
2136 ** by p1. False otherwise.
2138 static int cellContains(Rtree
*pRtree
, RtreeCell
*p1
, RtreeCell
*p2
){
2140 int isInt
= (pRtree
->eCoordType
==RTREE_COORD_INT32
);
2141 for(ii
=0; ii
<pRtree
->nDim2
; ii
+=2){
2142 RtreeCoord
*a1
= &p1
->aCoord
[ii
];
2143 RtreeCoord
*a2
= &p2
->aCoord
[ii
];
2144 if( (!isInt
&& (a2
[0].f
<a1
[0].f
|| a2
[1].f
>a1
[1].f
))
2145 || ( isInt
&& (a2
[0].i
<a1
[0].i
|| a2
[1].i
>a1
[1].i
))
2154 ** Return the amount cell p would grow by if it were unioned with pCell.
2156 static RtreeDValue
cellGrowth(Rtree
*pRtree
, RtreeCell
*p
, RtreeCell
*pCell
){
2159 memcpy(&cell
, p
, sizeof(RtreeCell
));
2160 area
= cellArea(pRtree
, &cell
);
2161 cellUnion(pRtree
, &cell
, pCell
);
2162 return (cellArea(pRtree
, &cell
)-area
);
2165 static RtreeDValue
cellOverlap(
2172 RtreeDValue overlap
= RTREE_ZERO
;
2173 for(ii
=0; ii
<nCell
; ii
++){
2175 RtreeDValue o
= (RtreeDValue
)1;
2176 for(jj
=0; jj
<pRtree
->nDim2
; jj
+=2){
2178 x1
= MAX(DCOORD(p
->aCoord
[jj
]), DCOORD(aCell
[ii
].aCoord
[jj
]));
2179 x2
= MIN(DCOORD(p
->aCoord
[jj
+1]), DCOORD(aCell
[ii
].aCoord
[jj
+1]));
2194 ** This function implements the ChooseLeaf algorithm from Gutman[84].
2195 ** ChooseSubTree in r*tree terminology.
2197 static int ChooseLeaf(
2198 Rtree
*pRtree
, /* Rtree table */
2199 RtreeCell
*pCell
, /* Cell to insert into rtree */
2200 int iHeight
, /* Height of sub-tree rooted at pCell */
2201 RtreeNode
**ppLeaf
/* OUT: Selected leaf page */
2205 RtreeNode
*pNode
= 0;
2206 rc
= nodeAcquire(pRtree
, 1, 0, &pNode
);
2208 for(ii
=0; rc
==SQLITE_OK
&& ii
<(pRtree
->iDepth
-iHeight
); ii
++){
2210 sqlite3_int64 iBest
= 0;
2212 RtreeDValue fMinGrowth
= RTREE_ZERO
;
2213 RtreeDValue fMinArea
= RTREE_ZERO
;
2215 int nCell
= NCELL(pNode
);
2217 RtreeNode
*pChild
= 0;
2219 RtreeCell
*aCell
= 0;
2221 /* Select the child node which will be enlarged the least if pCell
2222 ** is inserted into it. Resolve ties by choosing the entry with
2223 ** the smallest area.
2225 for(iCell
=0; iCell
<nCell
; iCell
++){
2229 nodeGetCell(pRtree
, pNode
, iCell
, &cell
);
2230 growth
= cellGrowth(pRtree
, &cell
, pCell
);
2231 area
= cellArea(pRtree
, &cell
);
2232 if( iCell
==0||growth
<fMinGrowth
||(growth
==fMinGrowth
&& area
<fMinArea
) ){
2236 fMinGrowth
= growth
;
2238 iBest
= cell
.iRowid
;
2242 sqlite3_free(aCell
);
2243 rc
= nodeAcquire(pRtree
, iBest
, pNode
, &pChild
);
2244 nodeRelease(pRtree
, pNode
);
2253 ** A cell with the same content as pCell has just been inserted into
2254 ** the node pNode. This function updates the bounding box cells in
2255 ** all ancestor elements.
2257 static int AdjustTree(
2258 Rtree
*pRtree
, /* Rtree table */
2259 RtreeNode
*pNode
, /* Adjust ancestry of this node. */
2260 RtreeCell
*pCell
/* This cell was just inserted */
2262 RtreeNode
*p
= pNode
;
2265 while( p
->pParent
){
2266 RtreeNode
*pParent
= p
->pParent
;
2271 if( NEVER(cnt
>100) ){
2272 RTREE_IS_CORRUPT(pRtree
);
2273 return SQLITE_CORRUPT_VTAB
;
2275 rc
= nodeParentIndex(pRtree
, p
, &iCell
);
2276 if( NEVER(rc
!=SQLITE_OK
) ){
2277 RTREE_IS_CORRUPT(pRtree
);
2278 return SQLITE_CORRUPT_VTAB
;
2281 nodeGetCell(pRtree
, pParent
, iCell
, &cell
);
2282 if( !cellContains(pRtree
, &cell
, pCell
) ){
2283 cellUnion(pRtree
, &cell
, pCell
);
2284 nodeOverwriteCell(pRtree
, pParent
, &cell
, iCell
);
2293 ** Write mapping (iRowid->iNode) to the <rtree>_rowid table.
2295 static int rowidWrite(Rtree
*pRtree
, sqlite3_int64 iRowid
, sqlite3_int64 iNode
){
2296 sqlite3_bind_int64(pRtree
->pWriteRowid
, 1, iRowid
);
2297 sqlite3_bind_int64(pRtree
->pWriteRowid
, 2, iNode
);
2298 sqlite3_step(pRtree
->pWriteRowid
);
2299 return sqlite3_reset(pRtree
->pWriteRowid
);
2303 ** Write mapping (iNode->iPar) to the <rtree>_parent table.
2305 static int parentWrite(Rtree
*pRtree
, sqlite3_int64 iNode
, sqlite3_int64 iPar
){
2306 sqlite3_bind_int64(pRtree
->pWriteParent
, 1, iNode
);
2307 sqlite3_bind_int64(pRtree
->pWriteParent
, 2, iPar
);
2308 sqlite3_step(pRtree
->pWriteParent
);
2309 return sqlite3_reset(pRtree
->pWriteParent
);
2312 static int rtreeInsertCell(Rtree
*, RtreeNode
*, RtreeCell
*, int);
2316 ** Arguments aIdx, aDistance and aSpare all point to arrays of size
2317 ** nIdx. The aIdx array contains the set of integers from 0 to
2318 ** (nIdx-1) in no particular order. This function sorts the values
2319 ** in aIdx according to the indexed values in aDistance. For
2320 ** example, assuming the inputs:
2322 ** aIdx = { 0, 1, 2, 3 }
2323 ** aDistance = { 5.0, 2.0, 7.0, 6.0 }
2325 ** this function sets the aIdx array to contain:
2327 ** aIdx = { 0, 1, 2, 3 }
2329 ** The aSpare array is used as temporary working space by the
2330 ** sorting algorithm.
2332 static void SortByDistance(
2335 RtreeDValue
*aDistance
,
2343 int nRight
= nIdx
-nLeft
;
2345 int *aRight
= &aIdx
[nLeft
];
2347 SortByDistance(aLeft
, nLeft
, aDistance
, aSpare
);
2348 SortByDistance(aRight
, nRight
, aDistance
, aSpare
);
2350 memcpy(aSpare
, aLeft
, sizeof(int)*nLeft
);
2353 while( iLeft
<nLeft
|| iRight
<nRight
){
2355 aIdx
[iLeft
+iRight
] = aRight
[iRight
];
2357 }else if( iRight
==nRight
){
2358 aIdx
[iLeft
+iRight
] = aLeft
[iLeft
];
2361 RtreeDValue fLeft
= aDistance
[aLeft
[iLeft
]];
2362 RtreeDValue fRight
= aDistance
[aRight
[iRight
]];
2364 aIdx
[iLeft
+iRight
] = aLeft
[iLeft
];
2367 aIdx
[iLeft
+iRight
] = aRight
[iRight
];
2374 /* Check that the sort worked */
2377 for(jj
=1; jj
<nIdx
; jj
++){
2378 RtreeDValue left
= aDistance
[aIdx
[jj
-1]];
2379 RtreeDValue right
= aDistance
[aIdx
[jj
]];
2380 assert( left
<=right
);
2388 ** Arguments aIdx, aCell and aSpare all point to arrays of size
2389 ** nIdx. The aIdx array contains the set of integers from 0 to
2390 ** (nIdx-1) in no particular order. This function sorts the values
2391 ** in aIdx according to dimension iDim of the cells in aCell. The
2392 ** minimum value of dimension iDim is considered first, the
2393 ** maximum used to break ties.
2395 ** The aSpare array is used as temporary working space by the
2396 ** sorting algorithm.
2398 static void SortByDimension(
2412 int nRight
= nIdx
-nLeft
;
2414 int *aRight
= &aIdx
[nLeft
];
2416 SortByDimension(pRtree
, aLeft
, nLeft
, iDim
, aCell
, aSpare
);
2417 SortByDimension(pRtree
, aRight
, nRight
, iDim
, aCell
, aSpare
);
2419 memcpy(aSpare
, aLeft
, sizeof(int)*nLeft
);
2421 while( iLeft
<nLeft
|| iRight
<nRight
){
2422 RtreeDValue xleft1
= DCOORD(aCell
[aLeft
[iLeft
]].aCoord
[iDim
*2]);
2423 RtreeDValue xleft2
= DCOORD(aCell
[aLeft
[iLeft
]].aCoord
[iDim
*2+1]);
2424 RtreeDValue xright1
= DCOORD(aCell
[aRight
[iRight
]].aCoord
[iDim
*2]);
2425 RtreeDValue xright2
= DCOORD(aCell
[aRight
[iRight
]].aCoord
[iDim
*2+1]);
2426 if( (iLeft
!=nLeft
) && ((iRight
==nRight
)
2428 || (xleft1
==xright1
&& xleft2
<xright2
)
2430 aIdx
[iLeft
+iRight
] = aLeft
[iLeft
];
2433 aIdx
[iLeft
+iRight
] = aRight
[iRight
];
2439 /* Check that the sort worked */
2442 for(jj
=1; jj
<nIdx
; jj
++){
2443 RtreeDValue xleft1
= aCell
[aIdx
[jj
-1]].aCoord
[iDim
*2];
2444 RtreeDValue xleft2
= aCell
[aIdx
[jj
-1]].aCoord
[iDim
*2+1];
2445 RtreeDValue xright1
= aCell
[aIdx
[jj
]].aCoord
[iDim
*2];
2446 RtreeDValue xright2
= aCell
[aIdx
[jj
]].aCoord
[iDim
*2+1];
2447 assert( xleft1
<=xright1
&& (xleft1
<xright1
|| xleft2
<=xright2
) );
2455 ** Implementation of the R*-tree variant of SplitNode from Beckman[1990].
2457 static int splitNodeStartree(
2463 RtreeCell
*pBboxLeft
,
2464 RtreeCell
*pBboxRight
2472 RtreeDValue fBestMargin
= RTREE_ZERO
;
2474 sqlite3_int64 nByte
= (pRtree
->nDim
+1)*(sizeof(int*)+nCell
*sizeof(int));
2476 aaSorted
= (int **)sqlite3_malloc64(nByte
);
2478 return SQLITE_NOMEM
;
2481 aSpare
= &((int *)&aaSorted
[pRtree
->nDim
])[pRtree
->nDim
*nCell
];
2482 memset(aaSorted
, 0, nByte
);
2483 for(ii
=0; ii
<pRtree
->nDim
; ii
++){
2485 aaSorted
[ii
] = &((int *)&aaSorted
[pRtree
->nDim
])[ii
*nCell
];
2486 for(jj
=0; jj
<nCell
; jj
++){
2487 aaSorted
[ii
][jj
] = jj
;
2489 SortByDimension(pRtree
, aaSorted
[ii
], nCell
, ii
, aCell
, aSpare
);
2492 for(ii
=0; ii
<pRtree
->nDim
; ii
++){
2493 RtreeDValue margin
= RTREE_ZERO
;
2494 RtreeDValue fBestOverlap
= RTREE_ZERO
;
2495 RtreeDValue fBestArea
= RTREE_ZERO
;
2500 nLeft
=RTREE_MINCELLS(pRtree
);
2501 nLeft
<=(nCell
-RTREE_MINCELLS(pRtree
));
2507 RtreeDValue overlap
;
2510 memcpy(&left
, &aCell
[aaSorted
[ii
][0]], sizeof(RtreeCell
));
2511 memcpy(&right
, &aCell
[aaSorted
[ii
][nCell
-1]], sizeof(RtreeCell
));
2512 for(kk
=1; kk
<(nCell
-1); kk
++){
2514 cellUnion(pRtree
, &left
, &aCell
[aaSorted
[ii
][kk
]]);
2516 cellUnion(pRtree
, &right
, &aCell
[aaSorted
[ii
][kk
]]);
2519 margin
+= cellMargin(pRtree
, &left
);
2520 margin
+= cellMargin(pRtree
, &right
);
2521 overlap
= cellOverlap(pRtree
, &left
, &right
, 1);
2522 area
= cellArea(pRtree
, &left
) + cellArea(pRtree
, &right
);
2523 if( (nLeft
==RTREE_MINCELLS(pRtree
))
2524 || (overlap
<fBestOverlap
)
2525 || (overlap
==fBestOverlap
&& area
<fBestArea
)
2528 fBestOverlap
= overlap
;
2533 if( ii
==0 || margin
<fBestMargin
){
2535 fBestMargin
= margin
;
2536 iBestSplit
= iBestLeft
;
2540 memcpy(pBboxLeft
, &aCell
[aaSorted
[iBestDim
][0]], sizeof(RtreeCell
));
2541 memcpy(pBboxRight
, &aCell
[aaSorted
[iBestDim
][iBestSplit
]], sizeof(RtreeCell
));
2542 for(ii
=0; ii
<nCell
; ii
++){
2543 RtreeNode
*pTarget
= (ii
<iBestSplit
)?pLeft
:pRight
;
2544 RtreeCell
*pBbox
= (ii
<iBestSplit
)?pBboxLeft
:pBboxRight
;
2545 RtreeCell
*pCell
= &aCell
[aaSorted
[iBestDim
][ii
]];
2546 nodeInsertCell(pRtree
, pTarget
, pCell
);
2547 cellUnion(pRtree
, pBbox
, pCell
);
2550 sqlite3_free(aaSorted
);
2555 static int updateMapping(
2561 int (*xSetMapping
)(Rtree
*, sqlite3_int64
, sqlite3_int64
);
2562 xSetMapping
= ((iHeight
==0)?rowidWrite
:parentWrite
);
2564 RtreeNode
*pChild
= nodeHashLookup(pRtree
, iRowid
);
2566 for(p
=pNode
; p
; p
=p
->pParent
){
2567 if( p
==pChild
) return SQLITE_CORRUPT_VTAB
;
2570 nodeRelease(pRtree
, pChild
->pParent
);
2571 nodeReference(pNode
);
2572 pChild
->pParent
= pNode
;
2575 if( NEVER(pNode
==0) ) return SQLITE_ERROR
;
2576 return xSetMapping(pRtree
, iRowid
, pNode
->iNode
);
2579 static int SplitNode(
2586 int newCellIsRight
= 0;
2589 int nCell
= NCELL(pNode
);
2593 RtreeNode
*pLeft
= 0;
2594 RtreeNode
*pRight
= 0;
2597 RtreeCell rightbbox
;
2599 /* Allocate an array and populate it with a copy of pCell and
2600 ** all cells from node pLeft. Then zero the original node.
2602 aCell
= sqlite3_malloc64((sizeof(RtreeCell
)+sizeof(int))*(nCell
+1));
2607 aiUsed
= (int *)&aCell
[nCell
+1];
2608 memset(aiUsed
, 0, sizeof(int)*(nCell
+1));
2609 for(i
=0; i
<nCell
; i
++){
2610 nodeGetCell(pRtree
, pNode
, i
, &aCell
[i
]);
2612 nodeZero(pRtree
, pNode
);
2613 memcpy(&aCell
[nCell
], pCell
, sizeof(RtreeCell
));
2616 if( pNode
->iNode
==1 ){
2617 pRight
= nodeNew(pRtree
, pNode
);
2618 pLeft
= nodeNew(pRtree
, pNode
);
2621 writeInt16(pNode
->zData
, pRtree
->iDepth
);
2624 pRight
= nodeNew(pRtree
, pLeft
->pParent
);
2628 if( !pLeft
|| !pRight
){
2633 memset(pLeft
->zData
, 0, pRtree
->iNodeSize
);
2634 memset(pRight
->zData
, 0, pRtree
->iNodeSize
);
2636 rc
= splitNodeStartree(pRtree
, aCell
, nCell
, pLeft
, pRight
,
2637 &leftbbox
, &rightbbox
);
2638 if( rc
!=SQLITE_OK
){
2642 /* Ensure both child nodes have node numbers assigned to them by calling
2643 ** nodeWrite(). Node pRight always needs a node number, as it was created
2644 ** by nodeNew() above. But node pLeft sometimes already has a node number.
2645 ** In this case avoid the all to nodeWrite().
2647 if( SQLITE_OK
!=(rc
= nodeWrite(pRtree
, pRight
))
2648 || (0==pLeft
->iNode
&& SQLITE_OK
!=(rc
= nodeWrite(pRtree
, pLeft
)))
2653 rightbbox
.iRowid
= pRight
->iNode
;
2654 leftbbox
.iRowid
= pLeft
->iNode
;
2656 if( pNode
->iNode
==1 ){
2657 rc
= rtreeInsertCell(pRtree
, pLeft
->pParent
, &leftbbox
, iHeight
+1);
2658 if( rc
!=SQLITE_OK
){
2662 RtreeNode
*pParent
= pLeft
->pParent
;
2664 rc
= nodeParentIndex(pRtree
, pLeft
, &iCell
);
2665 if( ALWAYS(rc
==SQLITE_OK
) ){
2666 nodeOverwriteCell(pRtree
, pParent
, &leftbbox
, iCell
);
2667 rc
= AdjustTree(pRtree
, pParent
, &leftbbox
);
2668 assert( rc
==SQLITE_OK
);
2670 if( NEVER(rc
!=SQLITE_OK
) ){
2674 if( (rc
= rtreeInsertCell(pRtree
, pRight
->pParent
, &rightbbox
, iHeight
+1)) ){
2678 for(i
=0; i
<NCELL(pRight
); i
++){
2679 i64 iRowid
= nodeGetRowid(pRtree
, pRight
, i
);
2680 rc
= updateMapping(pRtree
, iRowid
, pRight
, iHeight
);
2681 if( iRowid
==pCell
->iRowid
){
2684 if( rc
!=SQLITE_OK
){
2688 if( pNode
->iNode
==1 ){
2689 for(i
=0; i
<NCELL(pLeft
); i
++){
2690 i64 iRowid
= nodeGetRowid(pRtree
, pLeft
, i
);
2691 rc
= updateMapping(pRtree
, iRowid
, pLeft
, iHeight
);
2692 if( rc
!=SQLITE_OK
){
2696 }else if( newCellIsRight
==0 ){
2697 rc
= updateMapping(pRtree
, pCell
->iRowid
, pLeft
, iHeight
);
2700 if( rc
==SQLITE_OK
){
2701 rc
= nodeRelease(pRtree
, pRight
);
2704 if( rc
==SQLITE_OK
){
2705 rc
= nodeRelease(pRtree
, pLeft
);
2710 nodeRelease(pRtree
, pRight
);
2711 nodeRelease(pRtree
, pLeft
);
2712 sqlite3_free(aCell
);
2717 ** If node pLeaf is not the root of the r-tree and its pParent pointer is
2718 ** still NULL, load all ancestor nodes of pLeaf into memory and populate
2719 ** the pLeaf->pParent chain all the way up to the root node.
2721 ** This operation is required when a row is deleted (or updated - an update
2722 ** is implemented as a delete followed by an insert). SQLite provides the
2723 ** rowid of the row to delete, which can be used to find the leaf on which
2724 ** the entry resides (argument pLeaf). Once the leaf is located, this
2725 ** function is called to determine its ancestry.
2727 static int fixLeafParent(Rtree
*pRtree
, RtreeNode
*pLeaf
){
2729 RtreeNode
*pChild
= pLeaf
;
2730 while( rc
==SQLITE_OK
&& pChild
->iNode
!=1 && pChild
->pParent
==0 ){
2731 int rc2
= SQLITE_OK
; /* sqlite3_reset() return code */
2732 sqlite3_bind_int64(pRtree
->pReadParent
, 1, pChild
->iNode
);
2733 rc
= sqlite3_step(pRtree
->pReadParent
);
2734 if( rc
==SQLITE_ROW
){
2735 RtreeNode
*pTest
; /* Used to test for reference loops */
2736 i64 iNode
; /* Node number of parent node */
2738 /* Before setting pChild->pParent, test that we are not creating a
2739 ** loop of references (as we would if, say, pChild==pParent). We don't
2740 ** want to do this as it leads to a memory leak when trying to delete
2741 ** the referenced counted node structures.
2743 iNode
= sqlite3_column_int64(pRtree
->pReadParent
, 0);
2744 for(pTest
=pLeaf
; pTest
&& pTest
->iNode
!=iNode
; pTest
=pTest
->pParent
);
2746 rc2
= nodeAcquire(pRtree
, iNode
, 0, &pChild
->pParent
);
2749 rc
= sqlite3_reset(pRtree
->pReadParent
);
2750 if( rc
==SQLITE_OK
) rc
= rc2
;
2751 if( rc
==SQLITE_OK
&& !pChild
->pParent
){
2752 RTREE_IS_CORRUPT(pRtree
);
2753 rc
= SQLITE_CORRUPT_VTAB
;
2755 pChild
= pChild
->pParent
;
2760 static int deleteCell(Rtree
*, RtreeNode
*, int, int);
2762 static int removeNode(Rtree
*pRtree
, RtreeNode
*pNode
, int iHeight
){
2765 RtreeNode
*pParent
= 0;
2768 assert( pNode
->nRef
==1 );
2770 /* Remove the entry in the parent cell. */
2771 rc
= nodeParentIndex(pRtree
, pNode
, &iCell
);
2772 if( rc
==SQLITE_OK
){
2773 pParent
= pNode
->pParent
;
2775 rc
= deleteCell(pRtree
, pParent
, iCell
, iHeight
+1);
2776 testcase( rc
!=SQLITE_OK
);
2778 rc2
= nodeRelease(pRtree
, pParent
);
2779 if( rc
==SQLITE_OK
){
2782 if( rc
!=SQLITE_OK
){
2786 /* Remove the xxx_node entry. */
2787 sqlite3_bind_int64(pRtree
->pDeleteNode
, 1, pNode
->iNode
);
2788 sqlite3_step(pRtree
->pDeleteNode
);
2789 if( SQLITE_OK
!=(rc
= sqlite3_reset(pRtree
->pDeleteNode
)) ){
2793 /* Remove the xxx_parent entry. */
2794 sqlite3_bind_int64(pRtree
->pDeleteParent
, 1, pNode
->iNode
);
2795 sqlite3_step(pRtree
->pDeleteParent
);
2796 if( SQLITE_OK
!=(rc
= sqlite3_reset(pRtree
->pDeleteParent
)) ){
2800 /* Remove the node from the in-memory hash table and link it into
2801 ** the Rtree.pDeleted list. Its contents will be re-inserted later on.
2803 nodeHashDelete(pRtree
, pNode
);
2804 pNode
->iNode
= iHeight
;
2805 pNode
->pNext
= pRtree
->pDeleted
;
2807 pRtree
->pDeleted
= pNode
;
2812 static int fixBoundingBox(Rtree
*pRtree
, RtreeNode
*pNode
){
2813 RtreeNode
*pParent
= pNode
->pParent
;
2817 int nCell
= NCELL(pNode
);
2818 RtreeCell box
; /* Bounding box for pNode */
2819 nodeGetCell(pRtree
, pNode
, 0, &box
);
2820 for(ii
=1; ii
<nCell
; ii
++){
2822 nodeGetCell(pRtree
, pNode
, ii
, &cell
);
2823 cellUnion(pRtree
, &box
, &cell
);
2825 box
.iRowid
= pNode
->iNode
;
2826 rc
= nodeParentIndex(pRtree
, pNode
, &ii
);
2827 if( rc
==SQLITE_OK
){
2828 nodeOverwriteCell(pRtree
, pParent
, &box
, ii
);
2829 rc
= fixBoundingBox(pRtree
, pParent
);
2836 ** Delete the cell at index iCell of node pNode. After removing the
2837 ** cell, adjust the r-tree data structure if required.
2839 static int deleteCell(Rtree
*pRtree
, RtreeNode
*pNode
, int iCell
, int iHeight
){
2843 if( SQLITE_OK
!=(rc
= fixLeafParent(pRtree
, pNode
)) ){
2847 /* Remove the cell from the node. This call just moves bytes around
2848 ** the in-memory node image, so it cannot fail.
2850 nodeDeleteCell(pRtree
, pNode
, iCell
);
2852 /* If the node is not the tree root and now has less than the minimum
2853 ** number of cells, remove it from the tree. Otherwise, update the
2854 ** cell in the parent node so that it tightly contains the updated
2857 pParent
= pNode
->pParent
;
2858 assert( pParent
|| pNode
->iNode
==1 );
2860 if( NCELL(pNode
)<RTREE_MINCELLS(pRtree
) ){
2861 rc
= removeNode(pRtree
, pNode
, iHeight
);
2863 rc
= fixBoundingBox(pRtree
, pNode
);
2870 static int Reinsert(
2879 RtreeDValue
*aDistance
;
2881 RtreeDValue aCenterCoord
[RTREE_MAX_DIMENSIONS
];
2887 memset(aCenterCoord
, 0, sizeof(RtreeDValue
)*RTREE_MAX_DIMENSIONS
);
2889 nCell
= NCELL(pNode
)+1;
2892 /* Allocate the buffers used by this operation. The allocation is
2893 ** relinquished before this function returns.
2895 aCell
= (RtreeCell
*)sqlite3_malloc64(n
* (
2896 sizeof(RtreeCell
) + /* aCell array */
2897 sizeof(int) + /* aOrder array */
2898 sizeof(int) + /* aSpare array */
2899 sizeof(RtreeDValue
) /* aDistance array */
2902 return SQLITE_NOMEM
;
2904 aOrder
= (int *)&aCell
[n
];
2905 aSpare
= (int *)&aOrder
[n
];
2906 aDistance
= (RtreeDValue
*)&aSpare
[n
];
2908 for(ii
=0; ii
<nCell
; ii
++){
2909 if( ii
==(nCell
-1) ){
2910 memcpy(&aCell
[ii
], pCell
, sizeof(RtreeCell
));
2912 nodeGetCell(pRtree
, pNode
, ii
, &aCell
[ii
]);
2915 for(iDim
=0; iDim
<pRtree
->nDim
; iDim
++){
2916 aCenterCoord
[iDim
] += DCOORD(aCell
[ii
].aCoord
[iDim
*2]);
2917 aCenterCoord
[iDim
] += DCOORD(aCell
[ii
].aCoord
[iDim
*2+1]);
2920 for(iDim
=0; iDim
<pRtree
->nDim
; iDim
++){
2921 aCenterCoord
[iDim
] = (aCenterCoord
[iDim
]/(nCell
*(RtreeDValue
)2));
2924 for(ii
=0; ii
<nCell
; ii
++){
2925 aDistance
[ii
] = RTREE_ZERO
;
2926 for(iDim
=0; iDim
<pRtree
->nDim
; iDim
++){
2927 RtreeDValue coord
= (DCOORD(aCell
[ii
].aCoord
[iDim
*2+1]) -
2928 DCOORD(aCell
[ii
].aCoord
[iDim
*2]));
2929 aDistance
[ii
] += (coord
-aCenterCoord
[iDim
])*(coord
-aCenterCoord
[iDim
]);
2933 SortByDistance(aOrder
, nCell
, aDistance
, aSpare
);
2934 nodeZero(pRtree
, pNode
);
2936 for(ii
=0; rc
==SQLITE_OK
&& ii
<(nCell
-(RTREE_MINCELLS(pRtree
)+1)); ii
++){
2937 RtreeCell
*p
= &aCell
[aOrder
[ii
]];
2938 nodeInsertCell(pRtree
, pNode
, p
);
2939 if( p
->iRowid
==pCell
->iRowid
){
2941 rc
= rowidWrite(pRtree
, p
->iRowid
, pNode
->iNode
);
2943 rc
= parentWrite(pRtree
, p
->iRowid
, pNode
->iNode
);
2947 if( rc
==SQLITE_OK
){
2948 rc
= fixBoundingBox(pRtree
, pNode
);
2950 for(; rc
==SQLITE_OK
&& ii
<nCell
; ii
++){
2951 /* Find a node to store this cell in. pNode->iNode currently contains
2952 ** the height of the sub-tree headed by the cell.
2955 RtreeCell
*p
= &aCell
[aOrder
[ii
]];
2956 rc
= ChooseLeaf(pRtree
, p
, iHeight
, &pInsert
);
2957 if( rc
==SQLITE_OK
){
2959 rc
= rtreeInsertCell(pRtree
, pInsert
, p
, iHeight
);
2960 rc2
= nodeRelease(pRtree
, pInsert
);
2961 if( rc
==SQLITE_OK
){
2967 sqlite3_free(aCell
);
2972 ** Insert cell pCell into node pNode. Node pNode is the head of a
2973 ** subtree iHeight high (leaf nodes have iHeight==0).
2975 static int rtreeInsertCell(
2983 RtreeNode
*pChild
= nodeHashLookup(pRtree
, pCell
->iRowid
);
2985 nodeRelease(pRtree
, pChild
->pParent
);
2986 nodeReference(pNode
);
2987 pChild
->pParent
= pNode
;
2990 if( nodeInsertCell(pRtree
, pNode
, pCell
) ){
2991 if( iHeight
<=pRtree
->iReinsertHeight
|| pNode
->iNode
==1){
2992 rc
= SplitNode(pRtree
, pNode
, pCell
, iHeight
);
2994 pRtree
->iReinsertHeight
= iHeight
;
2995 rc
= Reinsert(pRtree
, pNode
, pCell
, iHeight
);
2998 rc
= AdjustTree(pRtree
, pNode
, pCell
);
2999 if( ALWAYS(rc
==SQLITE_OK
) ){
3001 rc
= rowidWrite(pRtree
, pCell
->iRowid
, pNode
->iNode
);
3003 rc
= parentWrite(pRtree
, pCell
->iRowid
, pNode
->iNode
);
3010 static int reinsertNodeContent(Rtree
*pRtree
, RtreeNode
*pNode
){
3013 int nCell
= NCELL(pNode
);
3015 for(ii
=0; rc
==SQLITE_OK
&& ii
<nCell
; ii
++){
3018 nodeGetCell(pRtree
, pNode
, ii
, &cell
);
3020 /* Find a node to store this cell in. pNode->iNode currently contains
3021 ** the height of the sub-tree headed by the cell.
3023 rc
= ChooseLeaf(pRtree
, &cell
, (int)pNode
->iNode
, &pInsert
);
3024 if( rc
==SQLITE_OK
){
3026 rc
= rtreeInsertCell(pRtree
, pInsert
, &cell
, (int)pNode
->iNode
);
3027 rc2
= nodeRelease(pRtree
, pInsert
);
3028 if( rc
==SQLITE_OK
){
3037 ** Select a currently unused rowid for a new r-tree record.
3039 static int rtreeNewRowid(Rtree
*pRtree
, i64
*piRowid
){
3041 sqlite3_bind_null(pRtree
->pWriteRowid
, 1);
3042 sqlite3_bind_null(pRtree
->pWriteRowid
, 2);
3043 sqlite3_step(pRtree
->pWriteRowid
);
3044 rc
= sqlite3_reset(pRtree
->pWriteRowid
);
3045 *piRowid
= sqlite3_last_insert_rowid(pRtree
->db
);
3050 ** Remove the entry with rowid=iDelete from the r-tree structure.
3052 static int rtreeDeleteRowid(Rtree
*pRtree
, sqlite3_int64 iDelete
){
3053 int rc
; /* Return code */
3054 RtreeNode
*pLeaf
= 0; /* Leaf node containing record iDelete */
3055 int iCell
; /* Index of iDelete cell in pLeaf */
3056 RtreeNode
*pRoot
= 0; /* Root node of rtree structure */
3059 /* Obtain a reference to the root node to initialize Rtree.iDepth */
3060 rc
= nodeAcquire(pRtree
, 1, 0, &pRoot
);
3062 /* Obtain a reference to the leaf node that contains the entry
3063 ** about to be deleted.
3065 if( rc
==SQLITE_OK
){
3066 rc
= findLeafNode(pRtree
, iDelete
, &pLeaf
, 0);
3070 assert( pLeaf
!=0 || rc
!=SQLITE_OK
|| CORRUPT_DB
);
3073 /* Delete the cell in question from the leaf node. */
3074 if( rc
==SQLITE_OK
&& pLeaf
){
3076 rc
= nodeRowidIndex(pRtree
, pLeaf
, iDelete
, &iCell
);
3077 if( rc
==SQLITE_OK
){
3078 rc
= deleteCell(pRtree
, pLeaf
, iCell
, 0);
3080 rc2
= nodeRelease(pRtree
, pLeaf
);
3081 if( rc
==SQLITE_OK
){
3086 /* Delete the corresponding entry in the <rtree>_rowid table. */
3087 if( rc
==SQLITE_OK
){
3088 sqlite3_bind_int64(pRtree
->pDeleteRowid
, 1, iDelete
);
3089 sqlite3_step(pRtree
->pDeleteRowid
);
3090 rc
= sqlite3_reset(pRtree
->pDeleteRowid
);
3093 /* Check if the root node now has exactly one child. If so, remove
3094 ** it, schedule the contents of the child for reinsertion and
3095 ** reduce the tree height by one.
3097 ** This is equivalent to copying the contents of the child into
3098 ** the root node (the operation that Gutman's paper says to perform
3099 ** in this scenario).
3101 if( rc
==SQLITE_OK
&& pRtree
->iDepth
>0 && NCELL(pRoot
)==1 ){
3103 RtreeNode
*pChild
= 0;
3104 i64 iChild
= nodeGetRowid(pRtree
, pRoot
, 0);
3105 rc
= nodeAcquire(pRtree
, iChild
, pRoot
, &pChild
); /* tag-20210916a */
3106 if( rc
==SQLITE_OK
){
3107 rc
= removeNode(pRtree
, pChild
, pRtree
->iDepth
-1);
3109 rc2
= nodeRelease(pRtree
, pChild
);
3110 if( rc
==SQLITE_OK
) rc
= rc2
;
3111 if( rc
==SQLITE_OK
){
3113 writeInt16(pRoot
->zData
, pRtree
->iDepth
);
3118 /* Re-insert the contents of any underfull nodes removed from the tree. */
3119 for(pLeaf
=pRtree
->pDeleted
; pLeaf
; pLeaf
=pRtree
->pDeleted
){
3120 if( rc
==SQLITE_OK
){
3121 rc
= reinsertNodeContent(pRtree
, pLeaf
);
3123 pRtree
->pDeleted
= pLeaf
->pNext
;
3125 sqlite3_free(pLeaf
);
3128 /* Release the reference to the root node. */
3129 if( rc
==SQLITE_OK
){
3130 rc
= nodeRelease(pRtree
, pRoot
);
3132 nodeRelease(pRtree
, pRoot
);
3139 ** Rounding constants for float->double conversion.
3141 #define RNDTOWARDS (1.0 - 1.0/8388608.0) /* Round towards zero */
3142 #define RNDAWAY (1.0 + 1.0/8388608.0) /* Round away from zero */
3144 #if !defined(SQLITE_RTREE_INT_ONLY)
3146 ** Convert an sqlite3_value into an RtreeValue (presumably a float)
3147 ** while taking care to round toward negative or positive, respectively.
3149 static RtreeValue
rtreeValueDown(sqlite3_value
*v
){
3150 double d
= sqlite3_value_double(v
);
3153 f
= (float)(d
*(d
<0 ? RNDAWAY
: RNDTOWARDS
));
3157 static RtreeValue
rtreeValueUp(sqlite3_value
*v
){
3158 double d
= sqlite3_value_double(v
);
3161 f
= (float)(d
*(d
<0 ? RNDTOWARDS
: RNDAWAY
));
3165 #endif /* !defined(SQLITE_RTREE_INT_ONLY) */
3168 ** A constraint has failed while inserting a row into an rtree table.
3169 ** Assuming no OOM error occurs, this function sets the error message
3170 ** (at pRtree->base.zErrMsg) to an appropriate value and returns
3171 ** SQLITE_CONSTRAINT.
3173 ** Parameter iCol is the index of the leftmost column involved in the
3174 ** constraint failure. If it is 0, then the constraint that failed is
3175 ** the unique constraint on the id column. Otherwise, it is the rtree
3176 ** (c1<=c2) constraint on columns iCol and iCol+1 that has failed.
3178 ** If an OOM occurs, SQLITE_NOMEM is returned instead of SQLITE_CONSTRAINT.
3180 static int rtreeConstraintError(Rtree
*pRtree
, int iCol
){
3181 sqlite3_stmt
*pStmt
= 0;
3185 assert( iCol
==0 || iCol
%2 );
3186 zSql
= sqlite3_mprintf("SELECT * FROM %Q.%Q", pRtree
->zDb
, pRtree
->zName
);
3188 rc
= sqlite3_prepare_v2(pRtree
->db
, zSql
, -1, &pStmt
, 0);
3194 if( rc
==SQLITE_OK
){
3196 const char *zCol
= sqlite3_column_name(pStmt
, 0);
3197 pRtree
->base
.zErrMsg
= sqlite3_mprintf(
3198 "UNIQUE constraint failed: %s.%s", pRtree
->zName
, zCol
3201 const char *zCol1
= sqlite3_column_name(pStmt
, iCol
);
3202 const char *zCol2
= sqlite3_column_name(pStmt
, iCol
+1);
3203 pRtree
->base
.zErrMsg
= sqlite3_mprintf(
3204 "rtree constraint failed: %s.(%s<=%s)", pRtree
->zName
, zCol1
, zCol2
3209 sqlite3_finalize(pStmt
);
3210 return (rc
==SQLITE_OK
? SQLITE_CONSTRAINT
: rc
);
3216 ** The xUpdate method for rtree module virtual tables.
3218 static int rtreeUpdate(
3219 sqlite3_vtab
*pVtab
,
3221 sqlite3_value
**aData
,
3222 sqlite_int64
*pRowid
3224 Rtree
*pRtree
= (Rtree
*)pVtab
;
3226 RtreeCell cell
; /* New cell to insert if nData>1 */
3227 int bHaveRowid
= 0; /* Set to 1 after new rowid is determined */
3229 if( pRtree
->nNodeRef
){
3230 /* Unable to write to the btree while another cursor is reading from it,
3231 ** since the write might do a rebalance which would disrupt the read
3233 return SQLITE_LOCKED_VTAB
;
3235 rtreeReference(pRtree
);
3238 cell
.iRowid
= 0; /* Used only to suppress a compiler warning */
3240 /* Constraint handling. A write operation on an r-tree table may return
3241 ** SQLITE_CONSTRAINT for two reasons:
3243 ** 1. A duplicate rowid value, or
3244 ** 2. The supplied data violates the "x2>=x1" constraint.
3246 ** In the first case, if the conflict-handling mode is REPLACE, then
3247 ** the conflicting row can be removed before proceeding. In the second
3248 ** case, SQLITE_CONSTRAINT must be returned regardless of the
3249 ** conflict-handling mode specified by the user.
3255 if( nn
> pRtree
->nDim2
) nn
= pRtree
->nDim2
;
3256 /* Populate the cell.aCoord[] array. The first coordinate is aData[3].
3258 ** NB: nData can only be less than nDim*2+3 if the rtree is mis-declared
3259 ** with "column" that are interpreted as table constraints.
3260 ** Example: CREATE VIRTUAL TABLE bad USING rtree(x,y,CHECK(y>5));
3261 ** This problem was discovered after years of use, so we silently ignore
3262 ** these kinds of misdeclared tables to avoid breaking any legacy.
3265 #ifndef SQLITE_RTREE_INT_ONLY
3266 if( pRtree
->eCoordType
==RTREE_COORD_REAL32
){
3267 for(ii
=0; ii
<nn
; ii
+=2){
3268 cell
.aCoord
[ii
].f
= rtreeValueDown(aData
[ii
+3]);
3269 cell
.aCoord
[ii
+1].f
= rtreeValueUp(aData
[ii
+4]);
3270 if( cell
.aCoord
[ii
].f
>cell
.aCoord
[ii
+1].f
){
3271 rc
= rtreeConstraintError(pRtree
, ii
+1);
3278 for(ii
=0; ii
<nn
; ii
+=2){
3279 cell
.aCoord
[ii
].i
= sqlite3_value_int(aData
[ii
+3]);
3280 cell
.aCoord
[ii
+1].i
= sqlite3_value_int(aData
[ii
+4]);
3281 if( cell
.aCoord
[ii
].i
>cell
.aCoord
[ii
+1].i
){
3282 rc
= rtreeConstraintError(pRtree
, ii
+1);
3288 /* If a rowid value was supplied, check if it is already present in
3289 ** the table. If so, the constraint has failed. */
3290 if( sqlite3_value_type(aData
[2])!=SQLITE_NULL
){
3291 cell
.iRowid
= sqlite3_value_int64(aData
[2]);
3292 if( sqlite3_value_type(aData
[0])==SQLITE_NULL
3293 || sqlite3_value_int64(aData
[0])!=cell
.iRowid
3296 sqlite3_bind_int64(pRtree
->pReadRowid
, 1, cell
.iRowid
);
3297 steprc
= sqlite3_step(pRtree
->pReadRowid
);
3298 rc
= sqlite3_reset(pRtree
->pReadRowid
);
3299 if( SQLITE_ROW
==steprc
){
3300 if( sqlite3_vtab_on_conflict(pRtree
->db
)==SQLITE_REPLACE
){
3301 rc
= rtreeDeleteRowid(pRtree
, cell
.iRowid
);
3303 rc
= rtreeConstraintError(pRtree
, 0);
3312 /* If aData[0] is not an SQL NULL value, it is the rowid of a
3313 ** record to delete from the r-tree table. The following block does
3316 if( sqlite3_value_type(aData
[0])!=SQLITE_NULL
){
3317 rc
= rtreeDeleteRowid(pRtree
, sqlite3_value_int64(aData
[0]));
3320 /* If the aData[] array contains more than one element, elements
3321 ** (aData[2]..aData[argc-1]) contain a new record to insert into
3322 ** the r-tree structure.
3324 if( rc
==SQLITE_OK
&& nData
>1 ){
3325 /* Insert the new record into the r-tree */
3326 RtreeNode
*pLeaf
= 0;
3328 /* Figure out the rowid of the new row. */
3329 if( bHaveRowid
==0 ){
3330 rc
= rtreeNewRowid(pRtree
, &cell
.iRowid
);
3332 *pRowid
= cell
.iRowid
;
3334 if( rc
==SQLITE_OK
){
3335 rc
= ChooseLeaf(pRtree
, &cell
, 0, &pLeaf
);
3337 if( rc
==SQLITE_OK
){
3339 pRtree
->iReinsertHeight
= -1;
3340 rc
= rtreeInsertCell(pRtree
, pLeaf
, &cell
, 0);
3341 rc2
= nodeRelease(pRtree
, pLeaf
);
3342 if( rc
==SQLITE_OK
){
3346 if( rc
==SQLITE_OK
&& pRtree
->nAux
){
3347 sqlite3_stmt
*pUp
= pRtree
->pWriteAux
;
3349 sqlite3_bind_int64(pUp
, 1, *pRowid
);
3350 for(jj
=0; jj
<pRtree
->nAux
; jj
++){
3351 sqlite3_bind_value(pUp
, jj
+2, aData
[pRtree
->nDim2
+3+jj
]);
3354 rc
= sqlite3_reset(pUp
);
3359 rtreeRelease(pRtree
);
3364 ** Called when a transaction starts.
3366 static int rtreeBeginTransaction(sqlite3_vtab
*pVtab
){
3367 Rtree
*pRtree
= (Rtree
*)pVtab
;
3368 assert( pRtree
->inWrTrans
==0 );
3369 pRtree
->inWrTrans
++;
3374 ** Called when a transaction completes (either by COMMIT or ROLLBACK).
3375 ** The sqlite3_blob object should be released at this point.
3377 static int rtreeEndTransaction(sqlite3_vtab
*pVtab
){
3378 Rtree
*pRtree
= (Rtree
*)pVtab
;
3379 pRtree
->inWrTrans
= 0;
3380 nodeBlobReset(pRtree
);
3385 ** The xRename method for rtree module virtual tables.
3387 static int rtreeRename(sqlite3_vtab
*pVtab
, const char *zNewName
){
3388 Rtree
*pRtree
= (Rtree
*)pVtab
;
3389 int rc
= SQLITE_NOMEM
;
3390 char *zSql
= sqlite3_mprintf(
3391 "ALTER TABLE %Q.'%q_node' RENAME TO \"%w_node\";"
3392 "ALTER TABLE %Q.'%q_parent' RENAME TO \"%w_parent\";"
3393 "ALTER TABLE %Q.'%q_rowid' RENAME TO \"%w_rowid\";"
3394 , pRtree
->zDb
, pRtree
->zName
, zNewName
3395 , pRtree
->zDb
, pRtree
->zName
, zNewName
3396 , pRtree
->zDb
, pRtree
->zName
, zNewName
3399 nodeBlobReset(pRtree
);
3400 rc
= sqlite3_exec(pRtree
->db
, zSql
, 0, 0, 0);
3407 ** The xSavepoint method.
3409 ** This module does not need to do anything to support savepoints. However,
3410 ** it uses this hook to close any open blob handle. This is done because a
3411 ** DROP TABLE command - which fortunately always opens a savepoint - cannot
3412 ** succeed if there are any open blob handles. i.e. if the blob handle were
3413 ** not closed here, the following would fail:
3416 ** INSERT INTO rtree...
3417 ** DROP TABLE <tablename>; -- Would fail with SQLITE_LOCKED
3420 static int rtreeSavepoint(sqlite3_vtab
*pVtab
, int iSavepoint
){
3421 Rtree
*pRtree
= (Rtree
*)pVtab
;
3422 u8 iwt
= pRtree
->inWrTrans
;
3423 UNUSED_PARAMETER(iSavepoint
);
3424 pRtree
->inWrTrans
= 0;
3425 nodeBlobReset(pRtree
);
3426 pRtree
->inWrTrans
= iwt
;
3431 ** This function populates the pRtree->nRowEst variable with an estimate
3432 ** of the number of rows in the virtual table. If possible, this is based
3433 ** on sqlite_stat1 data. Otherwise, use RTREE_DEFAULT_ROWEST.
3435 static int rtreeQueryStat1(sqlite3
*db
, Rtree
*pRtree
){
3436 const char *zFmt
= "SELECT stat FROM %Q.sqlite_stat1 WHERE tbl = '%q_rowid'";
3440 i64 nRow
= RTREE_MIN_ROWEST
;
3442 rc
= sqlite3_table_column_metadata(
3443 db
, pRtree
->zDb
, "sqlite_stat1",0,0,0,0,0,0
3445 if( rc
!=SQLITE_OK
){
3446 pRtree
->nRowEst
= RTREE_DEFAULT_ROWEST
;
3447 return rc
==SQLITE_ERROR
? SQLITE_OK
: rc
;
3449 zSql
= sqlite3_mprintf(zFmt
, pRtree
->zDb
, pRtree
->zName
);
3453 rc
= sqlite3_prepare_v2(db
, zSql
, -1, &p
, 0);
3454 if( rc
==SQLITE_OK
){
3455 if( sqlite3_step(p
)==SQLITE_ROW
) nRow
= sqlite3_column_int64(p
, 0);
3456 rc
= sqlite3_finalize(p
);
3460 pRtree
->nRowEst
= MAX(nRow
, RTREE_MIN_ROWEST
);
3466 ** Return true if zName is the extension on one of the shadow tables used
3469 static int rtreeShadowName(const char *zName
){
3470 static const char *azName
[] = {
3471 "node", "parent", "rowid"
3474 for(i
=0; i
<sizeof(azName
)/sizeof(azName
[0]); i
++){
3475 if( sqlite3_stricmp(zName
, azName
[i
])==0 ) return 1;
3480 static sqlite3_module rtreeModule
= {
3482 rtreeCreate
, /* xCreate - create a table */
3483 rtreeConnect
, /* xConnect - connect to an existing table */
3484 rtreeBestIndex
, /* xBestIndex - Determine search strategy */
3485 rtreeDisconnect
, /* xDisconnect - Disconnect from a table */
3486 rtreeDestroy
, /* xDestroy - Drop a table */
3487 rtreeOpen
, /* xOpen - open a cursor */
3488 rtreeClose
, /* xClose - close a cursor */
3489 rtreeFilter
, /* xFilter - configure scan constraints */
3490 rtreeNext
, /* xNext - advance a cursor */
3491 rtreeEof
, /* xEof */
3492 rtreeColumn
, /* xColumn - read data */
3493 rtreeRowid
, /* xRowid - read data */
3494 rtreeUpdate
, /* xUpdate - write data */
3495 rtreeBeginTransaction
, /* xBegin - begin transaction */
3496 rtreeEndTransaction
, /* xSync - sync transaction */
3497 rtreeEndTransaction
, /* xCommit - commit transaction */
3498 rtreeEndTransaction
, /* xRollback - rollback transaction */
3499 0, /* xFindFunction - function overloading */
3500 rtreeRename
, /* xRename - rename the table */
3501 rtreeSavepoint
, /* xSavepoint */
3503 0, /* xRollbackTo */
3504 rtreeShadowName
/* xShadowName */
3507 static int rtreeSqlInit(
3511 const char *zPrefix
,
3516 #define N_STATEMENT 8
3517 static const char *azSql
[N_STATEMENT
] = {
3518 /* Write the xxx_node table */
3519 "INSERT OR REPLACE INTO '%q'.'%q_node' VALUES(?1, ?2)",
3520 "DELETE FROM '%q'.'%q_node' WHERE nodeno = ?1",
3522 /* Read and write the xxx_rowid table */
3523 "SELECT nodeno FROM '%q'.'%q_rowid' WHERE rowid = ?1",
3524 "INSERT OR REPLACE INTO '%q'.'%q_rowid' VALUES(?1, ?2)",
3525 "DELETE FROM '%q'.'%q_rowid' WHERE rowid = ?1",
3527 /* Read and write the xxx_parent table */
3528 "SELECT parentnode FROM '%q'.'%q_parent' WHERE nodeno = ?1",
3529 "INSERT OR REPLACE INTO '%q'.'%q_parent' VALUES(?1, ?2)",
3530 "DELETE FROM '%q'.'%q_parent' WHERE nodeno = ?1"
3532 sqlite3_stmt
**appStmt
[N_STATEMENT
];
3534 const int f
= SQLITE_PREPARE_PERSISTENT
|SQLITE_PREPARE_NO_VTAB
;
3540 sqlite3_str
*p
= sqlite3_str_new(db
);
3542 sqlite3_str_appendf(p
,
3543 "CREATE TABLE \"%w\".\"%w_rowid\"(rowid INTEGER PRIMARY KEY,nodeno",
3545 for(ii
=0; ii
<pRtree
->nAux
; ii
++){
3546 sqlite3_str_appendf(p
,",a%d",ii
);
3548 sqlite3_str_appendf(p
,
3549 ");CREATE TABLE \"%w\".\"%w_node\"(nodeno INTEGER PRIMARY KEY,data);",
3551 sqlite3_str_appendf(p
,
3552 "CREATE TABLE \"%w\".\"%w_parent\"(nodeno INTEGER PRIMARY KEY,parentnode);",
3554 sqlite3_str_appendf(p
,
3555 "INSERT INTO \"%w\".\"%w_node\"VALUES(1,zeroblob(%d))",
3556 zDb
, zPrefix
, pRtree
->iNodeSize
);
3557 zCreate
= sqlite3_str_finish(p
);
3559 return SQLITE_NOMEM
;
3561 rc
= sqlite3_exec(db
, zCreate
, 0, 0, 0);
3562 sqlite3_free(zCreate
);
3563 if( rc
!=SQLITE_OK
){
3568 appStmt
[0] = &pRtree
->pWriteNode
;
3569 appStmt
[1] = &pRtree
->pDeleteNode
;
3570 appStmt
[2] = &pRtree
->pReadRowid
;
3571 appStmt
[3] = &pRtree
->pWriteRowid
;
3572 appStmt
[4] = &pRtree
->pDeleteRowid
;
3573 appStmt
[5] = &pRtree
->pReadParent
;
3574 appStmt
[6] = &pRtree
->pWriteParent
;
3575 appStmt
[7] = &pRtree
->pDeleteParent
;
3577 rc
= rtreeQueryStat1(db
, pRtree
);
3578 for(i
=0; i
<N_STATEMENT
&& rc
==SQLITE_OK
; i
++){
3580 const char *zFormat
;
3581 if( i
!=3 || pRtree
->nAux
==0 ){
3584 /* An UPSERT is very slightly slower than REPLACE, but it is needed
3585 ** if there are auxiliary columns */
3586 zFormat
= "INSERT INTO\"%w\".\"%w_rowid\"(rowid,nodeno)VALUES(?1,?2)"
3587 "ON CONFLICT(rowid)DO UPDATE SET nodeno=excluded.nodeno";
3589 zSql
= sqlite3_mprintf(zFormat
, zDb
, zPrefix
);
3591 rc
= sqlite3_prepare_v3(db
, zSql
, -1, f
, appStmt
[i
], 0);
3598 pRtree
->zReadAuxSql
= sqlite3_mprintf(
3599 "SELECT * FROM \"%w\".\"%w_rowid\" WHERE rowid=?1",
3601 if( pRtree
->zReadAuxSql
==0 ){
3604 sqlite3_str
*p
= sqlite3_str_new(db
);
3607 sqlite3_str_appendf(p
, "UPDATE \"%w\".\"%w_rowid\"SET ", zDb
, zPrefix
);
3608 for(ii
=0; ii
<pRtree
->nAux
; ii
++){
3609 if( ii
) sqlite3_str_append(p
, ",", 1);
3610 #ifdef SQLITE_ENABLE_GEOPOLY
3611 if( ii
<pRtree
->nAuxNotNull
){
3612 sqlite3_str_appendf(p
,"a%d=coalesce(?%d,a%d)",ii
,ii
+2,ii
);
3616 sqlite3_str_appendf(p
,"a%d=?%d",ii
,ii
+2);
3619 sqlite3_str_appendf(p
, " WHERE rowid=?1");
3620 zSql
= sqlite3_str_finish(p
);
3624 rc
= sqlite3_prepare_v3(db
, zSql
, -1, f
, &pRtree
->pWriteAux
, 0);
3634 ** The second argument to this function contains the text of an SQL statement
3635 ** that returns a single integer value. The statement is compiled and executed
3636 ** using database connection db. If successful, the integer value returned
3637 ** is written to *piVal and SQLITE_OK returned. Otherwise, an SQLite error
3638 ** code is returned and the value of *piVal after returning is not defined.
3640 static int getIntFromStmt(sqlite3
*db
, const char *zSql
, int *piVal
){
3641 int rc
= SQLITE_NOMEM
;
3643 sqlite3_stmt
*pStmt
= 0;
3644 rc
= sqlite3_prepare_v2(db
, zSql
, -1, &pStmt
, 0);
3645 if( rc
==SQLITE_OK
){
3646 if( SQLITE_ROW
==sqlite3_step(pStmt
) ){
3647 *piVal
= sqlite3_column_int(pStmt
, 0);
3649 rc
= sqlite3_finalize(pStmt
);
3656 ** This function is called from within the xConnect() or xCreate() method to
3657 ** determine the node-size used by the rtree table being created or connected
3658 ** to. If successful, pRtree->iNodeSize is populated and SQLITE_OK returned.
3659 ** Otherwise, an SQLite error code is returned.
3661 ** If this function is being called as part of an xConnect(), then the rtree
3662 ** table already exists. In this case the node-size is determined by inspecting
3663 ** the root node of the tree.
3665 ** Otherwise, for an xCreate(), use 64 bytes less than the database page-size.
3666 ** This ensures that each node is stored on a single database page. If the
3667 ** database page-size is so large that more than RTREE_MAXCELLS entries
3668 ** would fit in a single node, use a smaller node-size.
3670 static int getNodeSize(
3671 sqlite3
*db
, /* Database handle */
3672 Rtree
*pRtree
, /* Rtree handle */
3673 int isCreate
, /* True for xCreate, false for xConnect */
3674 char **pzErr
/* OUT: Error message, if any */
3680 zSql
= sqlite3_mprintf("PRAGMA %Q.page_size", pRtree
->zDb
);
3681 rc
= getIntFromStmt(db
, zSql
, &iPageSize
);
3682 if( rc
==SQLITE_OK
){
3683 pRtree
->iNodeSize
= iPageSize
-64;
3684 if( (4+pRtree
->nBytesPerCell
*RTREE_MAXCELLS
)<pRtree
->iNodeSize
){
3685 pRtree
->iNodeSize
= 4+pRtree
->nBytesPerCell
*RTREE_MAXCELLS
;
3688 *pzErr
= sqlite3_mprintf("%s", sqlite3_errmsg(db
));
3691 zSql
= sqlite3_mprintf(
3692 "SELECT length(data) FROM '%q'.'%q_node' WHERE nodeno = 1",
3693 pRtree
->zDb
, pRtree
->zName
3695 rc
= getIntFromStmt(db
, zSql
, &pRtree
->iNodeSize
);
3696 if( rc
!=SQLITE_OK
){
3697 *pzErr
= sqlite3_mprintf("%s", sqlite3_errmsg(db
));
3698 }else if( pRtree
->iNodeSize
<(512-64) ){
3699 rc
= SQLITE_CORRUPT_VTAB
;
3700 RTREE_IS_CORRUPT(pRtree
);
3701 *pzErr
= sqlite3_mprintf("undersize RTree blobs in \"%q_node\"",
3711 ** Return the length of a token
3713 static int rtreeTokenLength(const char *z
){
3715 return sqlite3GetToken((const unsigned char*)z
,&dummy
);
3719 ** This function is the implementation of both the xConnect and xCreate
3720 ** methods of the r-tree virtual table.
3722 ** argv[0] -> module name
3723 ** argv[1] -> database name
3724 ** argv[2] -> table name
3725 ** argv[...] -> column names...
3727 static int rtreeInit(
3728 sqlite3
*db
, /* Database connection */
3729 void *pAux
, /* One of the RTREE_COORD_* constants */
3730 int argc
, const char *const*argv
, /* Parameters to CREATE TABLE statement */
3731 sqlite3_vtab
**ppVtab
, /* OUT: New virtual table */
3732 char **pzErr
, /* OUT: Error message, if any */
3733 int isCreate
/* True for xCreate, false for xConnect */
3737 int nDb
; /* Length of string argv[1] */
3738 int nName
; /* Length of string argv[2] */
3739 int eCoordType
= (pAux
? RTREE_COORD_INT32
: RTREE_COORD_REAL32
);
3745 const char *aErrMsg
[] = {
3747 "Wrong number of columns for an rtree table", /* 1 */
3748 "Too few columns for an rtree table", /* 2 */
3749 "Too many columns for an rtree table", /* 3 */
3750 "Auxiliary rtree columns must be last" /* 4 */
3753 assert( RTREE_MAX_AUX_COLUMN
<256 ); /* Aux columns counted by a u8 */
3754 if( argc
<6 || argc
>RTREE_MAX_AUX_COLUMN
+3 ){
3755 *pzErr
= sqlite3_mprintf("%s", aErrMsg
[2 + (argc
>=6)]);
3756 return SQLITE_ERROR
;
3759 sqlite3_vtab_config(db
, SQLITE_VTAB_CONSTRAINT_SUPPORT
, 1);
3761 /* Allocate the sqlite3_vtab structure */
3762 nDb
= (int)strlen(argv
[1]);
3763 nName
= (int)strlen(argv
[2]);
3764 pRtree
= (Rtree
*)sqlite3_malloc64(sizeof(Rtree
)+nDb
+nName
+2);
3766 return SQLITE_NOMEM
;
3768 memset(pRtree
, 0, sizeof(Rtree
)+nDb
+nName
+2);
3770 pRtree
->base
.pModule
= &rtreeModule
;
3771 pRtree
->zDb
= (char *)&pRtree
[1];
3772 pRtree
->zName
= &pRtree
->zDb
[nDb
+1];
3773 pRtree
->eCoordType
= (u8
)eCoordType
;
3774 memcpy(pRtree
->zDb
, argv
[1], nDb
);
3775 memcpy(pRtree
->zName
, argv
[2], nName
);
3778 /* Create/Connect to the underlying relational database schema. If
3779 ** that is successful, call sqlite3_declare_vtab() to configure
3780 ** the r-tree table schema.
3782 pSql
= sqlite3_str_new(db
);
3783 sqlite3_str_appendf(pSql
, "CREATE TABLE x(%.*s INT",
3784 rtreeTokenLength(argv
[3]), argv
[3]);
3785 for(ii
=4; ii
<argc
; ii
++){
3786 const char *zArg
= argv
[ii
];
3789 sqlite3_str_appendf(pSql
, ",%.*s", rtreeTokenLength(zArg
+1), zArg
+1);
3790 }else if( pRtree
->nAux
>0 ){
3793 static const char *azFormat
[] = {",%.*s REAL", ",%.*s INT"};
3795 sqlite3_str_appendf(pSql
, azFormat
[eCoordType
],
3796 rtreeTokenLength(zArg
), zArg
);
3799 sqlite3_str_appendf(pSql
, ");");
3800 zSql
= sqlite3_str_finish(pSql
);
3803 }else if( ii
<argc
){
3804 *pzErr
= sqlite3_mprintf("%s", aErrMsg
[4]);
3806 }else if( SQLITE_OK
!=(rc
= sqlite3_declare_vtab(db
, zSql
)) ){
3807 *pzErr
= sqlite3_mprintf("%s", sqlite3_errmsg(db
));
3810 if( rc
) goto rtreeInit_fail
;
3811 pRtree
->nDim
= pRtree
->nDim2
/2;
3812 if( pRtree
->nDim
<1 ){
3814 }else if( pRtree
->nDim2
>RTREE_MAX_DIMENSIONS
*2 ){
3816 }else if( pRtree
->nDim2
% 2 ){
3822 *pzErr
= sqlite3_mprintf("%s", aErrMsg
[iErr
]);
3823 goto rtreeInit_fail
;
3825 pRtree
->nBytesPerCell
= 8 + pRtree
->nDim2
*4;
3827 /* Figure out the node size to use. */
3828 rc
= getNodeSize(db
, pRtree
, isCreate
, pzErr
);
3829 if( rc
) goto rtreeInit_fail
;
3830 rc
= rtreeSqlInit(pRtree
, db
, argv
[1], argv
[2], isCreate
);
3832 *pzErr
= sqlite3_mprintf("%s", sqlite3_errmsg(db
));
3833 goto rtreeInit_fail
;
3836 *ppVtab
= (sqlite3_vtab
*)pRtree
;
3840 if( rc
==SQLITE_OK
) rc
= SQLITE_ERROR
;
3841 assert( *ppVtab
==0 );
3842 assert( pRtree
->nBusy
==1 );
3843 rtreeRelease(pRtree
);
3849 ** Implementation of a scalar function that decodes r-tree nodes to
3850 ** human readable strings. This can be used for debugging and analysis.
3852 ** The scalar function takes two arguments: (1) the number of dimensions
3853 ** to the rtree (between 1 and 5, inclusive) and (2) a blob of data containing
3854 ** an r-tree node. For a two-dimensional r-tree structure called "rt", to
3855 ** deserialize all nodes, a statement like:
3857 ** SELECT rtreenode(2, data) FROM rt_node;
3859 ** The human readable string takes the form of a Tcl list with one
3860 ** entry for each cell in the r-tree node. Each entry is itself a
3861 ** list, containing the 8-byte rowid/pageno followed by the
3862 ** <num-dimension>*2 coordinates.
3864 static void rtreenode(sqlite3_context
*ctx
, int nArg
, sqlite3_value
**apArg
){
3872 UNUSED_PARAMETER(nArg
);
3873 memset(&node
, 0, sizeof(RtreeNode
));
3874 memset(&tree
, 0, sizeof(Rtree
));
3875 tree
.nDim
= (u8
)sqlite3_value_int(apArg
[0]);
3876 if( tree
.nDim
<1 || tree
.nDim
>5 ) return;
3877 tree
.nDim2
= tree
.nDim
*2;
3878 tree
.nBytesPerCell
= 8 + 8 * tree
.nDim
;
3879 node
.zData
= (u8
*)sqlite3_value_blob(apArg
[1]);
3880 if( node
.zData
==0 ) return;
3881 nData
= sqlite3_value_bytes(apArg
[1]);
3882 if( nData
<4 ) return;
3883 if( nData
<NCELL(&node
)*tree
.nBytesPerCell
) return;
3885 pOut
= sqlite3_str_new(0);
3886 for(ii
=0; ii
<NCELL(&node
); ii
++){
3890 nodeGetCell(&tree
, &node
, ii
, &cell
);
3891 if( ii
>0 ) sqlite3_str_append(pOut
, " ", 1);
3892 sqlite3_str_appendf(pOut
, "{%lld", cell
.iRowid
);
3893 for(jj
=0; jj
<tree
.nDim2
; jj
++){
3894 #ifndef SQLITE_RTREE_INT_ONLY
3895 sqlite3_str_appendf(pOut
, " %g", (double)cell
.aCoord
[jj
].f
);
3897 sqlite3_str_appendf(pOut
, " %d", cell
.aCoord
[jj
].i
);
3900 sqlite3_str_append(pOut
, "}", 1);
3902 errCode
= sqlite3_str_errcode(pOut
);
3903 sqlite3_result_text(ctx
, sqlite3_str_finish(pOut
), -1, sqlite3_free
);
3904 sqlite3_result_error_code(ctx
, errCode
);
3907 /* This routine implements an SQL function that returns the "depth" parameter
3908 ** from the front of a blob that is an r-tree node. For example:
3910 ** SELECT rtreedepth(data) FROM rt_node WHERE nodeno=1;
3912 ** The depth value is 0 for all nodes other than the root node, and the root
3913 ** node always has nodeno=1, so the example above is the primary use for this
3914 ** routine. This routine is intended for testing and analysis only.
3916 static void rtreedepth(sqlite3_context
*ctx
, int nArg
, sqlite3_value
**apArg
){
3917 UNUSED_PARAMETER(nArg
);
3918 if( sqlite3_value_type(apArg
[0])!=SQLITE_BLOB
3919 || sqlite3_value_bytes(apArg
[0])<2
3922 sqlite3_result_error(ctx
, "Invalid argument to rtreedepth()", -1);
3924 u8
*zBlob
= (u8
*)sqlite3_value_blob(apArg
[0]);
3926 sqlite3_result_int(ctx
, readInt16(zBlob
));
3928 sqlite3_result_error_nomem(ctx
);
3934 ** Context object passed between the various routines that make up the
3935 ** implementation of integrity-check function rtreecheck().
3937 typedef struct RtreeCheck RtreeCheck
;
3939 sqlite3
*db
; /* Database handle */
3940 const char *zDb
; /* Database containing rtree table */
3941 const char *zTab
; /* Name of rtree table */
3942 int bInt
; /* True for rtree_i32 table */
3943 int nDim
; /* Number of dimensions for this rtree tbl */
3944 sqlite3_stmt
*pGetNode
; /* Statement used to retrieve nodes */
3945 sqlite3_stmt
*aCheckMapping
[2]; /* Statements to query %_parent/%_rowid */
3946 int nLeaf
; /* Number of leaf cells in table */
3947 int nNonLeaf
; /* Number of non-leaf cells in table */
3948 int rc
; /* Return code */
3949 char *zReport
; /* Message to report */
3950 int nErr
; /* Number of lines in zReport */
3953 #define RTREE_CHECK_MAX_ERROR 100
3956 ** Reset SQL statement pStmt. If the sqlite3_reset() call returns an error,
3957 ** and RtreeCheck.rc==SQLITE_OK, set RtreeCheck.rc to the error code.
3959 static void rtreeCheckReset(RtreeCheck
*pCheck
, sqlite3_stmt
*pStmt
){
3960 int rc
= sqlite3_reset(pStmt
);
3961 if( pCheck
->rc
==SQLITE_OK
) pCheck
->rc
= rc
;
3965 ** The second and subsequent arguments to this function are a format string
3966 ** and printf style arguments. This function formats the string and attempts
3967 ** to compile it as an SQL statement.
3969 ** If successful, a pointer to the new SQL statement is returned. Otherwise,
3970 ** NULL is returned and an error code left in RtreeCheck.rc.
3972 static sqlite3_stmt
*rtreeCheckPrepare(
3973 RtreeCheck
*pCheck
, /* RtreeCheck object */
3974 const char *zFmt
, ... /* Format string and trailing args */
3978 sqlite3_stmt
*pRet
= 0;
3981 z
= sqlite3_vmprintf(zFmt
, ap
);
3983 if( pCheck
->rc
==SQLITE_OK
){
3985 pCheck
->rc
= SQLITE_NOMEM
;
3987 pCheck
->rc
= sqlite3_prepare_v2(pCheck
->db
, z
, -1, &pRet
, 0);
3997 ** The second and subsequent arguments to this function are a printf()
3998 ** style format string and arguments. This function formats the string and
3999 ** appends it to the report being accumuated in pCheck.
4001 static void rtreeCheckAppendMsg(RtreeCheck
*pCheck
, const char *zFmt
, ...){
4004 if( pCheck
->rc
==SQLITE_OK
&& pCheck
->nErr
<RTREE_CHECK_MAX_ERROR
){
4005 char *z
= sqlite3_vmprintf(zFmt
, ap
);
4007 pCheck
->rc
= SQLITE_NOMEM
;
4009 pCheck
->zReport
= sqlite3_mprintf("%z%s%z",
4010 pCheck
->zReport
, (pCheck
->zReport
? "\n" : ""), z
4012 if( pCheck
->zReport
==0 ){
4013 pCheck
->rc
= SQLITE_NOMEM
;
4022 ** This function is a no-op if there is already an error code stored
4023 ** in the RtreeCheck object indicated by the first argument. NULL is
4024 ** returned in this case.
4026 ** Otherwise, the contents of rtree table node iNode are loaded from
4027 ** the database and copied into a buffer obtained from sqlite3_malloc().
4028 ** If no error occurs, a pointer to the buffer is returned and (*pnNode)
4029 ** is set to the size of the buffer in bytes.
4031 ** Or, if an error does occur, NULL is returned and an error code left
4032 ** in the RtreeCheck object. The final value of *pnNode is undefined in
4035 static u8
*rtreeCheckGetNode(RtreeCheck
*pCheck
, i64 iNode
, int *pnNode
){
4036 u8
*pRet
= 0; /* Return value */
4038 if( pCheck
->rc
==SQLITE_OK
&& pCheck
->pGetNode
==0 ){
4039 pCheck
->pGetNode
= rtreeCheckPrepare(pCheck
,
4040 "SELECT data FROM %Q.'%q_node' WHERE nodeno=?",
4041 pCheck
->zDb
, pCheck
->zTab
4045 if( pCheck
->rc
==SQLITE_OK
){
4046 sqlite3_bind_int64(pCheck
->pGetNode
, 1, iNode
);
4047 if( sqlite3_step(pCheck
->pGetNode
)==SQLITE_ROW
){
4048 int nNode
= sqlite3_column_bytes(pCheck
->pGetNode
, 0);
4049 const u8
*pNode
= (const u8
*)sqlite3_column_blob(pCheck
->pGetNode
, 0);
4050 pRet
= sqlite3_malloc64(nNode
);
4052 pCheck
->rc
= SQLITE_NOMEM
;
4054 memcpy(pRet
, pNode
, nNode
);
4058 rtreeCheckReset(pCheck
, pCheck
->pGetNode
);
4059 if( pCheck
->rc
==SQLITE_OK
&& pRet
==0 ){
4060 rtreeCheckAppendMsg(pCheck
, "Node %lld missing from database", iNode
);
4068 ** This function is used to check that the %_parent (if bLeaf==0) or %_rowid
4069 ** (if bLeaf==1) table contains a specified entry. The schemas of the
4072 ** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER)
4073 ** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER, ...)
4075 ** In both cases, this function checks that there exists an entry with
4076 ** IPK value iKey and the second column set to iVal.
4079 static void rtreeCheckMapping(
4080 RtreeCheck
*pCheck
, /* RtreeCheck object */
4081 int bLeaf
, /* True for a leaf cell, false for interior */
4082 i64 iKey
, /* Key for mapping */
4083 i64 iVal
/* Expected value for mapping */
4086 sqlite3_stmt
*pStmt
;
4087 const char *azSql
[2] = {
4088 "SELECT parentnode FROM %Q.'%q_parent' WHERE nodeno=?1",
4089 "SELECT nodeno FROM %Q.'%q_rowid' WHERE rowid=?1"
4092 assert( bLeaf
==0 || bLeaf
==1 );
4093 if( pCheck
->aCheckMapping
[bLeaf
]==0 ){
4094 pCheck
->aCheckMapping
[bLeaf
] = rtreeCheckPrepare(pCheck
,
4095 azSql
[bLeaf
], pCheck
->zDb
, pCheck
->zTab
4098 if( pCheck
->rc
!=SQLITE_OK
) return;
4100 pStmt
= pCheck
->aCheckMapping
[bLeaf
];
4101 sqlite3_bind_int64(pStmt
, 1, iKey
);
4102 rc
= sqlite3_step(pStmt
);
4103 if( rc
==SQLITE_DONE
){
4104 rtreeCheckAppendMsg(pCheck
, "Mapping (%lld -> %lld) missing from %s table",
4105 iKey
, iVal
, (bLeaf
? "%_rowid" : "%_parent")
4107 }else if( rc
==SQLITE_ROW
){
4108 i64 ii
= sqlite3_column_int64(pStmt
, 0);
4110 rtreeCheckAppendMsg(pCheck
,
4111 "Found (%lld -> %lld) in %s table, expected (%lld -> %lld)",
4112 iKey
, ii
, (bLeaf
? "%_rowid" : "%_parent"), iKey
, iVal
4116 rtreeCheckReset(pCheck
, pStmt
);
4120 ** Argument pCell points to an array of coordinates stored on an rtree page.
4121 ** This function checks that the coordinates are internally consistent (no
4122 ** x1>x2 conditions) and adds an error message to the RtreeCheck object
4125 ** Additionally, if pParent is not NULL, then it is assumed to point to
4126 ** the array of coordinates on the parent page that bound the page
4127 ** containing pCell. In this case it is also verified that the two
4128 ** sets of coordinates are mutually consistent and an error message added
4129 ** to the RtreeCheck object if they are not.
4131 static void rtreeCheckCellCoord(
4133 i64 iNode
, /* Node id to use in error messages */
4134 int iCell
, /* Cell number to use in error messages */
4135 u8
*pCell
, /* Pointer to cell coordinates */
4136 u8
*pParent
/* Pointer to parent coordinates */
4142 for(i
=0; i
<pCheck
->nDim
; i
++){
4143 readCoord(&pCell
[4*2*i
], &c1
);
4144 readCoord(&pCell
[4*(2*i
+ 1)], &c2
);
4146 /* printf("%e, %e\n", c1.u.f, c2.u.f); */
4147 if( pCheck
->bInt
? c1
.i
>c2
.i
: c1
.f
>c2
.f
){
4148 rtreeCheckAppendMsg(pCheck
,
4149 "Dimension %d of cell %d on node %lld is corrupt", i
, iCell
, iNode
4154 readCoord(&pParent
[4*2*i
], &p1
);
4155 readCoord(&pParent
[4*(2*i
+ 1)], &p2
);
4157 if( (pCheck
->bInt
? c1
.i
<p1
.i
: c1
.f
<p1
.f
)
4158 || (pCheck
->bInt
? c2
.i
>p2
.i
: c2
.f
>p2
.f
)
4160 rtreeCheckAppendMsg(pCheck
,
4161 "Dimension %d of cell %d on node %lld is corrupt relative to parent"
4170 ** Run rtreecheck() checks on node iNode, which is at depth iDepth within
4171 ** the r-tree structure. Argument aParent points to the array of coordinates
4172 ** that bound node iNode on the parent node.
4174 ** If any problems are discovered, an error message is appended to the
4175 ** report accumulated in the RtreeCheck object.
4177 static void rtreeCheckNode(
4179 int iDepth
, /* Depth of iNode (0==leaf) */
4180 u8
*aParent
, /* Buffer containing parent coords */
4181 i64 iNode
/* Node to check */
4186 assert( iNode
==1 || aParent
!=0 );
4187 assert( pCheck
->nDim
>0 );
4189 aNode
= rtreeCheckGetNode(pCheck
, iNode
, &nNode
);
4192 rtreeCheckAppendMsg(pCheck
,
4193 "Node %lld is too small (%d bytes)", iNode
, nNode
4196 int nCell
; /* Number of cells on page */
4197 int i
; /* Used to iterate through cells */
4199 iDepth
= readInt16(aNode
);
4200 if( iDepth
>RTREE_MAX_DEPTH
){
4201 rtreeCheckAppendMsg(pCheck
, "Rtree depth out of range (%d)", iDepth
);
4202 sqlite3_free(aNode
);
4206 nCell
= readInt16(&aNode
[2]);
4207 if( (4 + nCell
*(8 + pCheck
->nDim
*2*4))>nNode
){
4208 rtreeCheckAppendMsg(pCheck
,
4209 "Node %lld is too small for cell count of %d (%d bytes)",
4213 for(i
=0; i
<nCell
; i
++){
4214 u8
*pCell
= &aNode
[4 + i
*(8 + pCheck
->nDim
*2*4)];
4215 i64 iVal
= readInt64(pCell
);
4216 rtreeCheckCellCoord(pCheck
, iNode
, i
, &pCell
[8], aParent
);
4219 rtreeCheckMapping(pCheck
, 0, iVal
, iNode
);
4220 rtreeCheckNode(pCheck
, iDepth
-1, &pCell
[8], iVal
);
4223 rtreeCheckMapping(pCheck
, 1, iVal
, iNode
);
4229 sqlite3_free(aNode
);
4234 ** The second argument to this function must be either "_rowid" or
4235 ** "_parent". This function checks that the number of entries in the
4236 ** %_rowid or %_parent table is exactly nExpect. If not, it adds
4237 ** an error message to the report in the RtreeCheck object indicated
4238 ** by the first argument.
4240 static void rtreeCheckCount(RtreeCheck
*pCheck
, const char *zTbl
, i64 nExpect
){
4241 if( pCheck
->rc
==SQLITE_OK
){
4242 sqlite3_stmt
*pCount
;
4243 pCount
= rtreeCheckPrepare(pCheck
, "SELECT count(*) FROM %Q.'%q%s'",
4244 pCheck
->zDb
, pCheck
->zTab
, zTbl
4247 if( sqlite3_step(pCount
)==SQLITE_ROW
){
4248 i64 nActual
= sqlite3_column_int64(pCount
, 0);
4249 if( nActual
!=nExpect
){
4250 rtreeCheckAppendMsg(pCheck
, "Wrong number of entries in %%%s table"
4251 " - expected %lld, actual %lld" , zTbl
, nExpect
, nActual
4255 pCheck
->rc
= sqlite3_finalize(pCount
);
4261 ** This function does the bulk of the work for the rtree integrity-check.
4262 ** It is called by rtreecheck(), which is the SQL function implementation.
4264 static int rtreeCheckTable(
4265 sqlite3
*db
, /* Database handle to access db through */
4266 const char *zDb
, /* Name of db ("main", "temp" etc.) */
4267 const char *zTab
, /* Name of rtree table to check */
4268 char **pzReport
/* OUT: sqlite3_malloc'd report text */
4270 RtreeCheck check
; /* Common context for various routines */
4271 sqlite3_stmt
*pStmt
= 0; /* Used to find column count of rtree table */
4272 int bEnd
= 0; /* True if transaction should be closed */
4273 int nAux
= 0; /* Number of extra columns. */
4275 /* Initialize the context object */
4276 memset(&check
, 0, sizeof(check
));
4281 /* If there is not already an open transaction, open one now. This is
4282 ** to ensure that the queries run as part of this integrity-check operate
4283 ** on a consistent snapshot. */
4284 if( sqlite3_get_autocommit(db
) ){
4285 check
.rc
= sqlite3_exec(db
, "BEGIN", 0, 0, 0);
4289 /* Find the number of auxiliary columns */
4290 if( check
.rc
==SQLITE_OK
){
4291 pStmt
= rtreeCheckPrepare(&check
, "SELECT * FROM %Q.'%q_rowid'", zDb
, zTab
);
4293 nAux
= sqlite3_column_count(pStmt
) - 2;
4294 sqlite3_finalize(pStmt
);
4296 if( check
.rc
!=SQLITE_NOMEM
){
4297 check
.rc
= SQLITE_OK
;
4301 /* Find number of dimensions in the rtree table. */
4302 pStmt
= rtreeCheckPrepare(&check
, "SELECT * FROM %Q.%Q", zDb
, zTab
);
4305 check
.nDim
= (sqlite3_column_count(pStmt
) - 1 - nAux
) / 2;
4307 rtreeCheckAppendMsg(&check
, "Schema corrupt or not an rtree");
4308 }else if( SQLITE_ROW
==sqlite3_step(pStmt
) ){
4309 check
.bInt
= (sqlite3_column_type(pStmt
, 1)==SQLITE_INTEGER
);
4311 rc
= sqlite3_finalize(pStmt
);
4312 if( rc
!=SQLITE_CORRUPT
) check
.rc
= rc
;
4315 /* Do the actual integrity-check */
4316 if( check
.nDim
>=1 ){
4317 if( check
.rc
==SQLITE_OK
){
4318 rtreeCheckNode(&check
, 0, 0, 1);
4320 rtreeCheckCount(&check
, "_rowid", check
.nLeaf
);
4321 rtreeCheckCount(&check
, "_parent", check
.nNonLeaf
);
4324 /* Finalize SQL statements used by the integrity-check */
4325 sqlite3_finalize(check
.pGetNode
);
4326 sqlite3_finalize(check
.aCheckMapping
[0]);
4327 sqlite3_finalize(check
.aCheckMapping
[1]);
4329 /* If one was opened, close the transaction */
4331 int rc
= sqlite3_exec(db
, "END", 0, 0, 0);
4332 if( check
.rc
==SQLITE_OK
) check
.rc
= rc
;
4334 *pzReport
= check
.zReport
;
4341 ** rtreecheck(<rtree-table>);
4342 ** rtreecheck(<database>, <rtree-table>);
4344 ** Invoking this SQL function runs an integrity-check on the named rtree
4345 ** table. The integrity-check verifies the following:
4347 ** 1. For each cell in the r-tree structure (%_node table), that:
4349 ** a) for each dimension, (coord1 <= coord2).
4351 ** b) unless the cell is on the root node, that the cell is bounded
4352 ** by the parent cell on the parent node.
4354 ** c) for leaf nodes, that there is an entry in the %_rowid
4355 ** table corresponding to the cell's rowid value that
4356 ** points to the correct node.
4358 ** d) for cells on non-leaf nodes, that there is an entry in the
4359 ** %_parent table mapping from the cell's child node to the
4360 ** node that it resides on.
4362 ** 2. That there are the same number of entries in the %_rowid table
4363 ** as there are leaf cells in the r-tree structure, and that there
4364 ** is a leaf cell that corresponds to each entry in the %_rowid table.
4366 ** 3. That there are the same number of entries in the %_parent table
4367 ** as there are non-leaf cells in the r-tree structure, and that
4368 ** there is a non-leaf cell that corresponds to each entry in the
4371 static void rtreecheck(
4372 sqlite3_context
*ctx
,
4374 sqlite3_value
**apArg
4376 if( nArg
!=1 && nArg
!=2 ){
4377 sqlite3_result_error(ctx
,
4378 "wrong number of arguments to function rtreecheck()", -1
4383 const char *zDb
= (const char*)sqlite3_value_text(apArg
[0]);
4389 zTab
= (const char*)sqlite3_value_text(apArg
[1]);
4391 rc
= rtreeCheckTable(sqlite3_context_db_handle(ctx
), zDb
, zTab
, &zReport
);
4392 if( rc
==SQLITE_OK
){
4393 sqlite3_result_text(ctx
, zReport
? zReport
: "ok", -1, SQLITE_TRANSIENT
);
4395 sqlite3_result_error_code(ctx
, rc
);
4397 sqlite3_free(zReport
);
4401 /* Conditionally include the geopoly code */
4402 #ifdef SQLITE_ENABLE_GEOPOLY
4403 # include "geopoly.c"
4407 ** Register the r-tree module with database handle db. This creates the
4408 ** virtual table module "rtree" and the debugging/analysis scalar
4409 ** function "rtreenode".
4411 int sqlite3RtreeInit(sqlite3
*db
){
4412 const int utf8
= SQLITE_UTF8
;
4415 rc
= sqlite3_create_function(db
, "rtreenode", 2, utf8
, 0, rtreenode
, 0, 0);
4416 if( rc
==SQLITE_OK
){
4417 rc
= sqlite3_create_function(db
, "rtreedepth", 1, utf8
, 0,rtreedepth
, 0, 0);
4419 if( rc
==SQLITE_OK
){
4420 rc
= sqlite3_create_function(db
, "rtreecheck", -1, utf8
, 0,rtreecheck
, 0,0);
4422 if( rc
==SQLITE_OK
){
4423 #ifdef SQLITE_RTREE_INT_ONLY
4424 void *c
= (void *)RTREE_COORD_INT32
;
4426 void *c
= (void *)RTREE_COORD_REAL32
;
4428 rc
= sqlite3_create_module_v2(db
, "rtree", &rtreeModule
, c
, 0);
4430 if( rc
==SQLITE_OK
){
4431 void *c
= (void *)RTREE_COORD_INT32
;
4432 rc
= sqlite3_create_module_v2(db
, "rtree_i32", &rtreeModule
, c
, 0);
4434 #ifdef SQLITE_ENABLE_GEOPOLY
4435 if( rc
==SQLITE_OK
){
4436 rc
= sqlite3_geopoly_init(db
);
4444 ** This routine deletes the RtreeGeomCallback object that was attached
4445 ** one of the SQL functions create by sqlite3_rtree_geometry_callback()
4446 ** or sqlite3_rtree_query_callback(). In other words, this routine is the
4447 ** destructor for an RtreeGeomCallback objecct. This routine is called when
4448 ** the corresponding SQL function is deleted.
4450 static void rtreeFreeCallback(void *p
){
4451 RtreeGeomCallback
*pInfo
= (RtreeGeomCallback
*)p
;
4452 if( pInfo
->xDestructor
) pInfo
->xDestructor(pInfo
->pContext
);
4457 ** This routine frees the BLOB that is returned by geomCallback().
4459 static void rtreeMatchArgFree(void *pArg
){
4461 RtreeMatchArg
*p
= (RtreeMatchArg
*)pArg
;
4462 for(i
=0; i
<p
->nParam
; i
++){
4463 sqlite3_value_free(p
->apSqlParam
[i
]);
4469 ** Each call to sqlite3_rtree_geometry_callback() or
4470 ** sqlite3_rtree_query_callback() creates an ordinary SQLite
4471 ** scalar function that is implemented by this routine.
4473 ** All this function does is construct an RtreeMatchArg object that
4474 ** contains the geometry-checking callback routines and a list of
4475 ** parameters to this function, then return that RtreeMatchArg object
4478 ** The R-Tree MATCH operator will read the returned BLOB, deserialize
4479 ** the RtreeMatchArg object, and use the RtreeMatchArg object to figure
4480 ** out which elements of the R-Tree should be returned by the query.
4482 static void geomCallback(sqlite3_context
*ctx
, int nArg
, sqlite3_value
**aArg
){
4483 RtreeGeomCallback
*pGeomCtx
= (RtreeGeomCallback
*)sqlite3_user_data(ctx
);
4484 RtreeMatchArg
*pBlob
;
4485 sqlite3_int64 nBlob
;
4488 nBlob
= sizeof(RtreeMatchArg
) + (nArg
-1)*sizeof(RtreeDValue
)
4489 + nArg
*sizeof(sqlite3_value
*);
4490 pBlob
= (RtreeMatchArg
*)sqlite3_malloc64(nBlob
);
4492 sqlite3_result_error_nomem(ctx
);
4495 pBlob
->iSize
= nBlob
;
4496 pBlob
->cb
= pGeomCtx
[0];
4497 pBlob
->apSqlParam
= (sqlite3_value
**)&pBlob
->aParam
[nArg
];
4498 pBlob
->nParam
= nArg
;
4499 for(i
=0; i
<nArg
; i
++){
4500 pBlob
->apSqlParam
[i
] = sqlite3_value_dup(aArg
[i
]);
4501 if( pBlob
->apSqlParam
[i
]==0 ) memErr
= 1;
4502 #ifdef SQLITE_RTREE_INT_ONLY
4503 pBlob
->aParam
[i
] = sqlite3_value_int64(aArg
[i
]);
4505 pBlob
->aParam
[i
] = sqlite3_value_double(aArg
[i
]);
4509 sqlite3_result_error_nomem(ctx
);
4510 rtreeMatchArgFree(pBlob
);
4512 sqlite3_result_pointer(ctx
, pBlob
, "RtreeMatchArg", rtreeMatchArgFree
);
4518 ** Register a new geometry function for use with the r-tree MATCH operator.
4520 int sqlite3_rtree_geometry_callback(
4521 sqlite3
*db
, /* Register SQL function on this connection */
4522 const char *zGeom
, /* Name of the new SQL function */
4523 int (*xGeom
)(sqlite3_rtree_geometry
*,int,RtreeDValue
*,int*), /* Callback */
4524 void *pContext
/* Extra data associated with the callback */
4526 RtreeGeomCallback
*pGeomCtx
; /* Context object for new user-function */
4528 /* Allocate and populate the context object. */
4529 pGeomCtx
= (RtreeGeomCallback
*)sqlite3_malloc(sizeof(RtreeGeomCallback
));
4530 if( !pGeomCtx
) return SQLITE_NOMEM
;
4531 pGeomCtx
->xGeom
= xGeom
;
4532 pGeomCtx
->xQueryFunc
= 0;
4533 pGeomCtx
->xDestructor
= 0;
4534 pGeomCtx
->pContext
= pContext
;
4535 return sqlite3_create_function_v2(db
, zGeom
, -1, SQLITE_ANY
,
4536 (void *)pGeomCtx
, geomCallback
, 0, 0, rtreeFreeCallback
4541 ** Register a new 2nd-generation geometry function for use with the
4542 ** r-tree MATCH operator.
4544 int sqlite3_rtree_query_callback(
4545 sqlite3
*db
, /* Register SQL function on this connection */
4546 const char *zQueryFunc
, /* Name of new SQL function */
4547 int (*xQueryFunc
)(sqlite3_rtree_query_info
*), /* Callback */
4548 void *pContext
, /* Extra data passed into the callback */
4549 void (*xDestructor
)(void*) /* Destructor for the extra data */
4551 RtreeGeomCallback
*pGeomCtx
; /* Context object for new user-function */
4553 /* Allocate and populate the context object. */
4554 pGeomCtx
= (RtreeGeomCallback
*)sqlite3_malloc(sizeof(RtreeGeomCallback
));
4556 if( xDestructor
) xDestructor(pContext
);
4557 return SQLITE_NOMEM
;
4559 pGeomCtx
->xGeom
= 0;
4560 pGeomCtx
->xQueryFunc
= xQueryFunc
;
4561 pGeomCtx
->xDestructor
= xDestructor
;
4562 pGeomCtx
->pContext
= pContext
;
4563 return sqlite3_create_function_v2(db
, zQueryFunc
, -1, SQLITE_ANY
,
4564 (void *)pGeomCtx
, geomCallback
, 0, 0, rtreeFreeCallback
4570 __declspec(dllexport
)
4572 int sqlite3_rtree_init(
4575 const sqlite3_api_routines
*pApi
4577 SQLITE_EXTENSION_INIT2(pApi
)
4578 return sqlite3RtreeInit(db
);