4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 ******************************************************************************
13 ** This file is part of the SQLite FTS3 extension module. Specifically,
14 ** this file contains code to insert, update and delete rows from FTS3
15 ** tables. It also contains code to merge FTS3 b-tree segments. Some
16 ** of the sub-routines used to merge segments are also used by the query
21 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
28 #define FTS_MAX_APPENDABLE_HEIGHT 16
31 ** When full-text index nodes are loaded from disk, the buffer that they
32 ** are loaded into has the following number of bytes of padding at the end
33 ** of it. i.e. if a full-text index node is 900 bytes in size, then a buffer
34 ** of 920 bytes is allocated for it.
36 ** This means that if we have a pointer into a buffer containing node data,
37 ** it is always safe to read up to two varints from it without risking an
38 ** overread, even if the node data is corrupted.
40 #define FTS3_NODE_PADDING (FTS3_VARINT_MAX*2)
43 ** Under certain circumstances, b-tree nodes (doclists) can be loaded into
44 ** memory incrementally instead of all at once. This can be a big performance
45 ** win (reduced IO and CPU) if SQLite stops calling the virtual table xNext()
46 ** method before retrieving all query results (as may happen, for example,
47 ** if a query has a LIMIT clause).
49 ** Incremental loading is used for b-tree nodes FTS3_NODE_CHUNK_THRESHOLD
50 ** bytes and larger. Nodes are loaded in chunks of FTS3_NODE_CHUNKSIZE bytes.
51 ** The code is written so that the hard lower-limit for each of these values
52 ** is 1. Clearly such small values would be inefficient, but can be useful
53 ** for testing purposes.
55 ** If this module is built with SQLITE_TEST defined, these constants may
56 ** be overridden at runtime for testing purposes. File fts3_test.c contains
57 ** a Tcl interface to read and write the values.
60 int test_fts3_node_chunksize
= (4*1024);
61 int test_fts3_node_chunk_threshold
= (4*1024)*4;
62 # define FTS3_NODE_CHUNKSIZE test_fts3_node_chunksize
63 # define FTS3_NODE_CHUNK_THRESHOLD test_fts3_node_chunk_threshold
65 # define FTS3_NODE_CHUNKSIZE (4*1024)
66 # define FTS3_NODE_CHUNK_THRESHOLD (FTS3_NODE_CHUNKSIZE*4)
70 ** The values that may be meaningfully bound to the :1 parameter in
71 ** statements SQL_REPLACE_STAT and SQL_SELECT_STAT.
73 #define FTS_STAT_DOCTOTAL 0
74 #define FTS_STAT_INCRMERGEHINT 1
75 #define FTS_STAT_AUTOINCRMERGE 2
78 ** If FTS_LOG_MERGES is defined, call sqlite3_log() to report each automatic
79 ** and incremental merge operation that takes place. This is used for
80 ** debugging FTS only, it should not usually be turned on in production
83 #ifdef FTS3_LOG_MERGES
84 static void fts3LogMerge(int nMerge
, sqlite3_int64 iAbsLevel
){
85 sqlite3_log(SQLITE_OK
, "%d-way merge from level %d", nMerge
, (int)iAbsLevel
);
88 #define fts3LogMerge(x, y)
92 typedef struct PendingList PendingList
;
93 typedef struct SegmentNode SegmentNode
;
94 typedef struct SegmentWriter SegmentWriter
;
97 ** An instance of the following data structure is used to build doclists
98 ** incrementally. See function fts3PendingListAppend() for details.
104 sqlite3_int64 iLastDocid
;
105 sqlite3_int64 iLastCol
;
106 sqlite3_int64 iLastPos
;
111 ** Each cursor has a (possibly empty) linked list of the following objects.
113 struct Fts3DeferredToken
{
114 Fts3PhraseToken
*pToken
; /* Pointer to corresponding expr token */
115 int iCol
; /* Column token must occur in */
116 Fts3DeferredToken
*pNext
; /* Next in list of deferred tokens */
117 PendingList
*pList
; /* Doclist is assembled here */
121 ** An instance of this structure is used to iterate through the terms on
122 ** a contiguous set of segment b-tree leaf nodes. Although the details of
123 ** this structure are only manipulated by code in this file, opaque handles
124 ** of type Fts3SegReader* are also used by code in fts3.c to iterate through
125 ** terms when querying the full-text index. See functions:
127 ** sqlite3Fts3SegReaderNew()
128 ** sqlite3Fts3SegReaderFree()
129 ** sqlite3Fts3SegReaderIterate()
131 ** Methods used to manipulate Fts3SegReader structures:
133 ** fts3SegReaderNext()
134 ** fts3SegReaderFirstDocid()
135 ** fts3SegReaderNextDocid()
137 struct Fts3SegReader
{
138 int iIdx
; /* Index within level, or 0x7FFFFFFF for PT */
139 u8 bLookup
; /* True for a lookup only */
140 u8 rootOnly
; /* True for a root-only reader */
142 sqlite3_int64 iStartBlock
; /* Rowid of first leaf block to traverse */
143 sqlite3_int64 iLeafEndBlock
; /* Rowid of final leaf block to traverse */
144 sqlite3_int64 iEndBlock
; /* Rowid of final block in segment (or 0) */
145 sqlite3_int64 iCurrentBlock
; /* Current leaf block (or 0) */
147 char *aNode
; /* Pointer to node data (or NULL) */
148 int nNode
; /* Size of buffer at aNode (or 0) */
149 int nPopulate
; /* If >0, bytes of buffer aNode[] loaded */
150 sqlite3_blob
*pBlob
; /* If not NULL, blob handle to read node */
152 Fts3HashElem
**ppNextElem
;
154 /* Variables set by fts3SegReaderNext(). These may be read directly
155 ** by the caller. They are valid from the time SegmentReaderNew() returns
156 ** until SegmentReaderNext() returns something other than SQLITE_OK
157 ** (i.e. SQLITE_DONE).
159 int nTerm
; /* Number of bytes in current term */
160 char *zTerm
; /* Pointer to current term */
161 int nTermAlloc
; /* Allocated size of zTerm buffer */
162 char *aDoclist
; /* Pointer to doclist of current entry */
163 int nDoclist
; /* Size of doclist in current entry */
165 /* The following variables are used by fts3SegReaderNextDocid() to iterate
166 ** through the current doclist (aDoclist/nDoclist).
169 int nOffsetList
; /* For descending pending seg-readers only */
170 sqlite3_int64 iDocid
;
173 #define fts3SegReaderIsPending(p) ((p)->ppNextElem!=0)
174 #define fts3SegReaderIsRootOnly(p) ((p)->rootOnly!=0)
177 ** An instance of this structure is used to create a segment b-tree in the
178 ** database. The internal details of this type are only accessed by the
179 ** following functions:
181 ** fts3SegWriterAdd()
182 ** fts3SegWriterFlush()
183 ** fts3SegWriterFree()
185 struct SegmentWriter
{
186 SegmentNode
*pTree
; /* Pointer to interior tree structure */
187 sqlite3_int64 iFirst
; /* First slot in %_segments written */
188 sqlite3_int64 iFree
; /* Next free slot in %_segments */
189 char *zTerm
; /* Pointer to previous term buffer */
190 int nTerm
; /* Number of bytes in zTerm */
191 int nMalloc
; /* Size of malloc'd buffer at zMalloc */
192 char *zMalloc
; /* Malloc'd space (possibly) used for zTerm */
193 int nSize
; /* Size of allocation at aData */
194 int nData
; /* Bytes of data in aData */
195 char *aData
; /* Pointer to block from malloc() */
196 i64 nLeafData
; /* Number of bytes of leaf data written */
200 ** Type SegmentNode is used by the following three functions to create
201 ** the interior part of the segment b+-tree structures (everything except
202 ** the leaf nodes). These functions and type are only ever used by code
203 ** within the fts3SegWriterXXX() family of functions described above.
209 ** When a b+tree is written to the database (either as a result of a merge
210 ** or the pending-terms table being flushed), leaves are written into the
211 ** database file as soon as they are completely populated. The interior of
212 ** the tree is assembled in memory and written out only once all leaves have
213 ** been populated and stored. This is Ok, as the b+-tree fanout is usually
214 ** very large, meaning that the interior of the tree consumes relatively
218 SegmentNode
*pParent
; /* Parent node (or NULL for root node) */
219 SegmentNode
*pRight
; /* Pointer to right-sibling */
220 SegmentNode
*pLeftmost
; /* Pointer to left-most node of this depth */
221 int nEntry
; /* Number of terms written to node so far */
222 char *zTerm
; /* Pointer to previous term buffer */
223 int nTerm
; /* Number of bytes in zTerm */
224 int nMalloc
; /* Size of malloc'd buffer at zMalloc */
225 char *zMalloc
; /* Malloc'd space (possibly) used for zTerm */
226 int nData
; /* Bytes of valid data so far */
227 char *aData
; /* Node data */
231 ** Valid values for the second argument to fts3SqlStmt().
233 #define SQL_DELETE_CONTENT 0
234 #define SQL_IS_EMPTY 1
235 #define SQL_DELETE_ALL_CONTENT 2
236 #define SQL_DELETE_ALL_SEGMENTS 3
237 #define SQL_DELETE_ALL_SEGDIR 4
238 #define SQL_DELETE_ALL_DOCSIZE 5
239 #define SQL_DELETE_ALL_STAT 6
240 #define SQL_SELECT_CONTENT_BY_ROWID 7
241 #define SQL_NEXT_SEGMENT_INDEX 8
242 #define SQL_INSERT_SEGMENTS 9
243 #define SQL_NEXT_SEGMENTS_ID 10
244 #define SQL_INSERT_SEGDIR 11
245 #define SQL_SELECT_LEVEL 12
246 #define SQL_SELECT_LEVEL_RANGE 13
247 #define SQL_SELECT_LEVEL_COUNT 14
248 #define SQL_SELECT_SEGDIR_MAX_LEVEL 15
249 #define SQL_DELETE_SEGDIR_LEVEL 16
250 #define SQL_DELETE_SEGMENTS_RANGE 17
251 #define SQL_CONTENT_INSERT 18
252 #define SQL_DELETE_DOCSIZE 19
253 #define SQL_REPLACE_DOCSIZE 20
254 #define SQL_SELECT_DOCSIZE 21
255 #define SQL_SELECT_STAT 22
256 #define SQL_REPLACE_STAT 23
258 #define SQL_SELECT_ALL_PREFIX_LEVEL 24
259 #define SQL_DELETE_ALL_TERMS_SEGDIR 25
260 #define SQL_DELETE_SEGDIR_RANGE 26
261 #define SQL_SELECT_ALL_LANGID 27
262 #define SQL_FIND_MERGE_LEVEL 28
263 #define SQL_MAX_LEAF_NODE_ESTIMATE 29
264 #define SQL_DELETE_SEGDIR_ENTRY 30
265 #define SQL_SHIFT_SEGDIR_ENTRY 31
266 #define SQL_SELECT_SEGDIR 32
267 #define SQL_CHOMP_SEGDIR 33
268 #define SQL_SEGMENT_IS_APPENDABLE 34
269 #define SQL_SELECT_INDEXES 35
270 #define SQL_SELECT_MXLEVEL 36
272 #define SQL_SELECT_LEVEL_RANGE2 37
273 #define SQL_UPDATE_LEVEL_IDX 38
274 #define SQL_UPDATE_LEVEL 39
277 ** This function is used to obtain an SQLite prepared statement handle
278 ** for the statement identified by the second argument. If successful,
279 ** *pp is set to the requested statement handle and SQLITE_OK returned.
280 ** Otherwise, an SQLite error code is returned and *pp is set to 0.
282 ** If argument apVal is not NULL, then it must point to an array with
283 ** at least as many entries as the requested statement has bound
284 ** parameters. The values are bound to the statements parameters before
287 static int fts3SqlStmt(
288 Fts3Table
*p
, /* Virtual table handle */
289 int eStmt
, /* One of the SQL_XXX constants above */
290 sqlite3_stmt
**pp
, /* OUT: Statement handle */
291 sqlite3_value
**apVal
/* Values to bind to statement */
293 const char *azSql
[] = {
294 /* 0 */ "DELETE FROM %Q.'%q_content' WHERE rowid = ?",
295 /* 1 */ "SELECT NOT EXISTS(SELECT docid FROM %Q.'%q_content' WHERE rowid!=?)",
296 /* 2 */ "DELETE FROM %Q.'%q_content'",
297 /* 3 */ "DELETE FROM %Q.'%q_segments'",
298 /* 4 */ "DELETE FROM %Q.'%q_segdir'",
299 /* 5 */ "DELETE FROM %Q.'%q_docsize'",
300 /* 6 */ "DELETE FROM %Q.'%q_stat'",
301 /* 7 */ "SELECT %s WHERE rowid=?",
302 /* 8 */ "SELECT (SELECT max(idx) FROM %Q.'%q_segdir' WHERE level = ?) + 1",
303 /* 9 */ "REPLACE INTO %Q.'%q_segments'(blockid, block) VALUES(?, ?)",
304 /* 10 */ "SELECT coalesce((SELECT max(blockid) FROM %Q.'%q_segments') + 1, 1)",
305 /* 11 */ "REPLACE INTO %Q.'%q_segdir' VALUES(?,?,?,?,?,?)",
307 /* Return segments in order from oldest to newest.*/
308 /* 12 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
309 "FROM %Q.'%q_segdir' WHERE level = ? ORDER BY idx ASC",
310 /* 13 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
311 "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?"
312 "ORDER BY level DESC, idx ASC",
314 /* 14 */ "SELECT count(*) FROM %Q.'%q_segdir' WHERE level = ?",
315 /* 15 */ "SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?",
317 /* 16 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ?",
318 /* 17 */ "DELETE FROM %Q.'%q_segments' WHERE blockid BETWEEN ? AND ?",
319 /* 18 */ "INSERT INTO %Q.'%q_content' VALUES(%s)",
320 /* 19 */ "DELETE FROM %Q.'%q_docsize' WHERE docid = ?",
321 /* 20 */ "REPLACE INTO %Q.'%q_docsize' VALUES(?,?)",
322 /* 21 */ "SELECT size FROM %Q.'%q_docsize' WHERE docid=?",
323 /* 22 */ "SELECT value FROM %Q.'%q_stat' WHERE id=?",
324 /* 23 */ "REPLACE INTO %Q.'%q_stat' VALUES(?,?)",
328 /* 26 */ "DELETE FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?",
329 /* 27 */ "SELECT ? UNION SELECT level / (1024 * ?) FROM %Q.'%q_segdir'",
331 /* This statement is used to determine which level to read the input from
332 ** when performing an incremental merge. It returns the absolute level number
333 ** of the oldest level in the db that contains at least ? segments. Or,
334 ** if no level in the FTS index contains more than ? segments, the statement
335 ** returns zero rows. */
336 /* 28 */ "SELECT level, count(*) AS cnt FROM %Q.'%q_segdir' "
337 " GROUP BY level HAVING cnt>=?"
338 " ORDER BY (level %% 1024) ASC, 2 DESC LIMIT 1",
340 /* Estimate the upper limit on the number of leaf nodes in a new segment
341 ** created by merging the oldest :2 segments from absolute level :1. See
342 ** function sqlite3Fts3Incrmerge() for details. */
343 /* 29 */ "SELECT 2 * total(1 + leaves_end_block - start_block) "
344 " FROM (SELECT * FROM %Q.'%q_segdir' "
345 " WHERE level = ? ORDER BY idx ASC LIMIT ?"
348 /* SQL_DELETE_SEGDIR_ENTRY
349 ** Delete the %_segdir entry on absolute level :1 with index :2. */
350 /* 30 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?",
352 /* SQL_SHIFT_SEGDIR_ENTRY
353 ** Modify the idx value for the segment with idx=:3 on absolute level :2
355 /* 31 */ "UPDATE %Q.'%q_segdir' SET idx = ? WHERE level=? AND idx=?",
358 ** Read a single entry from the %_segdir table. The entry from absolute
359 ** level :1 with index value :2. */
360 /* 32 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
361 "FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?",
364 ** Update the start_block (:1) and root (:2) fields of the %_segdir
365 ** entry located on absolute level :3 with index :4. */
366 /* 33 */ "UPDATE %Q.'%q_segdir' SET start_block = ?, root = ?"
367 "WHERE level = ? AND idx = ?",
369 /* SQL_SEGMENT_IS_APPENDABLE
370 ** Return a single row if the segment with end_block=? is appendable. Or
371 ** no rows otherwise. */
372 /* 34 */ "SELECT 1 FROM %Q.'%q_segments' WHERE blockid=? AND block IS NULL",
374 /* SQL_SELECT_INDEXES
375 ** Return the list of valid segment indexes for absolute level ? */
376 /* 35 */ "SELECT idx FROM %Q.'%q_segdir' WHERE level=? ORDER BY 1 ASC",
378 /* SQL_SELECT_MXLEVEL
379 ** Return the largest relative level in the FTS index or indexes. */
380 /* 36 */ "SELECT max( level %% 1024 ) FROM %Q.'%q_segdir'",
382 /* Return segments in order from oldest to newest.*/
383 /* 37 */ "SELECT level, idx, end_block "
384 "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ? "
385 "ORDER BY level DESC, idx ASC",
387 /* Update statements used while promoting segments */
388 /* 38 */ "UPDATE OR FAIL %Q.'%q_segdir' SET level=-1,idx=? "
389 "WHERE level=? AND idx=?",
390 /* 39 */ "UPDATE OR FAIL %Q.'%q_segdir' SET level=? WHERE level=-1"
396 assert( SizeofArray(azSql
)==SizeofArray(p
->aStmt
) );
397 assert( eStmt
<SizeofArray(azSql
) && eStmt
>=0 );
399 pStmt
= p
->aStmt
[eStmt
];
401 int f
= SQLITE_PREPARE_PERSISTENT
|SQLITE_PREPARE_NO_VTAB
;
403 if( eStmt
==SQL_CONTENT_INSERT
){
404 zSql
= sqlite3_mprintf(azSql
[eStmt
], p
->zDb
, p
->zName
, p
->zWriteExprlist
);
405 }else if( eStmt
==SQL_SELECT_CONTENT_BY_ROWID
){
406 f
&= ~SQLITE_PREPARE_NO_VTAB
;
407 zSql
= sqlite3_mprintf(azSql
[eStmt
], p
->zReadExprlist
);
409 zSql
= sqlite3_mprintf(azSql
[eStmt
], p
->zDb
, p
->zName
);
414 rc
= sqlite3_prepare_v3(p
->db
, zSql
, -1, f
, &pStmt
, NULL
);
416 assert( rc
==SQLITE_OK
|| pStmt
==0 );
417 p
->aStmt
[eStmt
] = pStmt
;
422 int nParam
= sqlite3_bind_parameter_count(pStmt
);
423 for(i
=0; rc
==SQLITE_OK
&& i
<nParam
; i
++){
424 rc
= sqlite3_bind_value(pStmt
, i
+1, apVal
[i
]);
432 static int fts3SelectDocsize(
433 Fts3Table
*pTab
, /* FTS3 table handle */
434 sqlite3_int64 iDocid
, /* Docid to bind for SQL_SELECT_DOCSIZE */
435 sqlite3_stmt
**ppStmt
/* OUT: Statement handle */
437 sqlite3_stmt
*pStmt
= 0; /* Statement requested from fts3SqlStmt() */
438 int rc
; /* Return code */
440 rc
= fts3SqlStmt(pTab
, SQL_SELECT_DOCSIZE
, &pStmt
, 0);
442 sqlite3_bind_int64(pStmt
, 1, iDocid
);
443 rc
= sqlite3_step(pStmt
);
444 if( rc
!=SQLITE_ROW
|| sqlite3_column_type(pStmt
, 0)!=SQLITE_BLOB
){
445 rc
= sqlite3_reset(pStmt
);
446 if( rc
==SQLITE_OK
) rc
= FTS_CORRUPT_VTAB
;
457 int sqlite3Fts3SelectDoctotal(
458 Fts3Table
*pTab
, /* Fts3 table handle */
459 sqlite3_stmt
**ppStmt
/* OUT: Statement handle */
461 sqlite3_stmt
*pStmt
= 0;
463 rc
= fts3SqlStmt(pTab
, SQL_SELECT_STAT
, &pStmt
, 0);
465 sqlite3_bind_int(pStmt
, 1, FTS_STAT_DOCTOTAL
);
466 if( sqlite3_step(pStmt
)!=SQLITE_ROW
467 || sqlite3_column_type(pStmt
, 0)!=SQLITE_BLOB
469 rc
= sqlite3_reset(pStmt
);
470 if( rc
==SQLITE_OK
) rc
= FTS_CORRUPT_VTAB
;
478 int sqlite3Fts3SelectDocsize(
479 Fts3Table
*pTab
, /* Fts3 table handle */
480 sqlite3_int64 iDocid
, /* Docid to read size data for */
481 sqlite3_stmt
**ppStmt
/* OUT: Statement handle */
483 return fts3SelectDocsize(pTab
, iDocid
, ppStmt
);
487 ** Similar to fts3SqlStmt(). Except, after binding the parameters in
488 ** array apVal[] to the SQL statement identified by eStmt, the statement
491 ** Returns SQLITE_OK if the statement is successfully executed, or an
492 ** SQLite error code otherwise.
494 static void fts3SqlExec(
495 int *pRC
, /* Result code */
496 Fts3Table
*p
, /* The FTS3 table */
497 int eStmt
, /* Index of statement to evaluate */
498 sqlite3_value
**apVal
/* Parameters to bind */
503 rc
= fts3SqlStmt(p
, eStmt
, &pStmt
, apVal
);
506 rc
= sqlite3_reset(pStmt
);
513 ** This function ensures that the caller has obtained an exclusive
514 ** shared-cache table-lock on the %_segdir table. This is required before
515 ** writing data to the fts3 table. If this lock is not acquired first, then
516 ** the caller may end up attempting to take this lock as part of committing
517 ** a transaction, causing SQLite to return SQLITE_LOCKED or
518 ** LOCKED_SHAREDCACHEto a COMMIT command.
520 ** It is best to avoid this because if FTS3 returns any error when
521 ** committing a transaction, the whole transaction will be rolled back.
522 ** And this is not what users expect when they get SQLITE_LOCKED_SHAREDCACHE.
523 ** It can still happen if the user locks the underlying tables directly
524 ** instead of accessing them via FTS.
526 static int fts3Writelock(Fts3Table
*p
){
529 if( p
->nPendingData
==0 ){
531 rc
= fts3SqlStmt(p
, SQL_DELETE_SEGDIR_LEVEL
, &pStmt
, 0);
533 sqlite3_bind_null(pStmt
, 1);
535 rc
= sqlite3_reset(pStmt
);
543 ** FTS maintains a separate indexes for each language-id (a 32-bit integer).
544 ** Within each language id, a separate index is maintained to store the
545 ** document terms, and each configured prefix size (configured the FTS
546 ** "prefix=" option). And each index consists of multiple levels ("relative
549 ** All three of these values (the language id, the specific index and the
550 ** level within the index) are encoded in 64-bit integer values stored
551 ** in the %_segdir table on disk. This function is used to convert three
552 ** separate component values into the single 64-bit integer value that
553 ** can be used to query the %_segdir table.
555 ** Specifically, each language-id/index combination is allocated 1024
556 ** 64-bit integer level values ("absolute levels"). The main terms index
557 ** for language-id 0 is allocate values 0-1023. The first prefix index
558 ** (if any) for language-id 0 is allocated values 1024-2047. And so on.
559 ** Language 1 indexes are allocated immediately following language 0.
561 ** So, for a system with nPrefix prefix indexes configured, the block of
562 ** absolute levels that corresponds to language-id iLangid and index
563 ** iIndex starts at absolute level ((iLangid * (nPrefix+1) + iIndex) * 1024).
565 static sqlite3_int64
getAbsoluteLevel(
566 Fts3Table
*p
, /* FTS3 table handle */
567 int iLangid
, /* Language id */
568 int iIndex
, /* Index in p->aIndex[] */
569 int iLevel
/* Level of segments */
571 sqlite3_int64 iBase
; /* First absolute level for iLangid/iIndex */
572 assert_fts3_nc( iLangid
>=0 );
573 assert( p
->nIndex
>0 );
574 assert( iIndex
>=0 && iIndex
<p
->nIndex
);
576 iBase
= ((sqlite3_int64
)iLangid
* p
->nIndex
+ iIndex
) * FTS3_SEGDIR_MAXLEVEL
;
577 return iBase
+ iLevel
;
581 ** Set *ppStmt to a statement handle that may be used to iterate through
582 ** all rows in the %_segdir table, from oldest to newest. If successful,
583 ** return SQLITE_OK. If an error occurs while preparing the statement,
584 ** return an SQLite error code.
586 ** There is only ever one instance of this SQL statement compiled for
589 ** The statement returns the following columns from the %_segdir table:
593 ** 2: leaves_end_block
597 int sqlite3Fts3AllSegdirs(
598 Fts3Table
*p
, /* FTS3 table */
599 int iLangid
, /* Language being queried */
600 int iIndex
, /* Index for p->aIndex[] */
601 int iLevel
, /* Level to select (relative level) */
602 sqlite3_stmt
**ppStmt
/* OUT: Compiled statement */
605 sqlite3_stmt
*pStmt
= 0;
607 assert( iLevel
==FTS3_SEGCURSOR_ALL
|| iLevel
>=0 );
608 assert( iLevel
<FTS3_SEGDIR_MAXLEVEL
);
609 assert( iIndex
>=0 && iIndex
<p
->nIndex
);
612 /* "SELECT * FROM %_segdir WHERE level BETWEEN ? AND ? ORDER BY ..." */
613 rc
= fts3SqlStmt(p
, SQL_SELECT_LEVEL_RANGE
, &pStmt
, 0);
615 sqlite3_bind_int64(pStmt
, 1, getAbsoluteLevel(p
, iLangid
, iIndex
, 0));
616 sqlite3_bind_int64(pStmt
, 2,
617 getAbsoluteLevel(p
, iLangid
, iIndex
, FTS3_SEGDIR_MAXLEVEL
-1)
621 /* "SELECT * FROM %_segdir WHERE level = ? ORDER BY ..." */
622 rc
= fts3SqlStmt(p
, SQL_SELECT_LEVEL
, &pStmt
, 0);
624 sqlite3_bind_int64(pStmt
, 1, getAbsoluteLevel(p
, iLangid
, iIndex
,iLevel
));
633 ** Append a single varint to a PendingList buffer. SQLITE_OK is returned
634 ** if successful, or an SQLite error code otherwise.
636 ** This function also serves to allocate the PendingList structure itself.
637 ** For example, to create a new PendingList structure containing two
640 ** PendingList *p = 0;
641 ** fts3PendingListAppendVarint(&p, 1);
642 ** fts3PendingListAppendVarint(&p, 2);
644 static int fts3PendingListAppendVarint(
645 PendingList
**pp
, /* IN/OUT: Pointer to PendingList struct */
646 sqlite3_int64 i
/* Value to append to data */
648 PendingList
*p
= *pp
;
650 /* Allocate or grow the PendingList as required. */
652 p
= sqlite3_malloc(sizeof(*p
) + 100);
657 p
->aData
= (char *)&p
[1];
660 else if( p
->nData
+FTS3_VARINT_MAX
+1>p
->nSpace
){
661 int nNew
= p
->nSpace
* 2;
662 p
= sqlite3_realloc(p
, sizeof(*p
) + nNew
);
669 p
->aData
= (char *)&p
[1];
672 /* Append the new serialized varint to the end of the list. */
673 p
->nData
+= sqlite3Fts3PutVarint(&p
->aData
[p
->nData
], i
);
674 p
->aData
[p
->nData
] = '\0';
680 ** Add a docid/column/position entry to a PendingList structure. Non-zero
681 ** is returned if the structure is sqlite3_realloced as part of adding
682 ** the entry. Otherwise, zero.
684 ** If an OOM error occurs, *pRc is set to SQLITE_NOMEM before returning.
685 ** Zero is always returned in this case. Otherwise, if no OOM error occurs,
686 ** it is set to SQLITE_OK.
688 static int fts3PendingListAppend(
689 PendingList
**pp
, /* IN/OUT: PendingList structure */
690 sqlite3_int64 iDocid
, /* Docid for entry to add */
691 sqlite3_int64 iCol
, /* Column for entry to add */
692 sqlite3_int64 iPos
, /* Position of term for entry to add */
693 int *pRc
/* OUT: Return code */
695 PendingList
*p
= *pp
;
698 assert( !p
|| p
->iLastDocid
<=iDocid
);
700 if( !p
|| p
->iLastDocid
!=iDocid
){
701 u64 iDelta
= (u64
)iDocid
- (u64
)(p
? p
->iLastDocid
: 0);
703 assert( p
->nData
<p
->nSpace
);
704 assert( p
->aData
[p
->nData
]==0 );
707 if( SQLITE_OK
!=(rc
= fts3PendingListAppendVarint(&p
, iDelta
)) ){
708 goto pendinglistappend_out
;
712 p
->iLastDocid
= iDocid
;
714 if( iCol
>0 && p
->iLastCol
!=iCol
){
715 if( SQLITE_OK
!=(rc
= fts3PendingListAppendVarint(&p
, 1))
716 || SQLITE_OK
!=(rc
= fts3PendingListAppendVarint(&p
, iCol
))
718 goto pendinglistappend_out
;
724 assert( iPos
>p
->iLastPos
|| (iPos
==0 && p
->iLastPos
==0) );
725 rc
= fts3PendingListAppendVarint(&p
, 2+iPos
-p
->iLastPos
);
731 pendinglistappend_out
:
741 ** Free a PendingList object allocated by fts3PendingListAppend().
743 static void fts3PendingListDelete(PendingList
*pList
){
748 ** Add an entry to one of the pending-terms hash tables.
750 static int fts3PendingTermsAddOne(
754 Fts3Hash
*pHash
, /* Pending terms hash table to add entry to */
761 pList
= (PendingList
*)fts3HashFind(pHash
, zToken
, nToken
);
763 p
->nPendingData
-= (pList
->nData
+ nToken
+ sizeof(Fts3HashElem
));
765 if( fts3PendingListAppend(&pList
, p
->iPrevDocid
, iCol
, iPos
, &rc
) ){
766 if( pList
==fts3HashInsert(pHash
, zToken
, nToken
, pList
) ){
767 /* Malloc failed while inserting the new entry. This can only
768 ** happen if there was no previous entry for this token.
770 assert( 0==fts3HashFind(pHash
, zToken
, nToken
) );
776 p
->nPendingData
+= (pList
->nData
+ nToken
+ sizeof(Fts3HashElem
));
782 ** Tokenize the nul-terminated string zText and add all tokens to the
783 ** pending-terms hash-table. The docid used is that currently stored in
784 ** p->iPrevDocid, and the column is specified by argument iCol.
786 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
788 static int fts3PendingTermsAdd(
789 Fts3Table
*p
, /* Table into which text will be inserted */
790 int iLangid
, /* Language id to use */
791 const char *zText
, /* Text of document to be inserted */
792 int iCol
, /* Column into which text is being inserted */
793 u32
*pnWord
/* IN/OUT: Incr. by number tokens inserted */
804 sqlite3_tokenizer
*pTokenizer
= p
->pTokenizer
;
805 sqlite3_tokenizer_module
const *pModule
= pTokenizer
->pModule
;
806 sqlite3_tokenizer_cursor
*pCsr
;
807 int (*xNext
)(sqlite3_tokenizer_cursor
*pCursor
,
808 const char**,int*,int*,int*,int*);
810 assert( pTokenizer
&& pModule
);
812 /* If the user has inserted a NULL value, this function may be called with
813 ** zText==0. In this case, add zero token entries to the hash table and
820 rc
= sqlite3Fts3OpenTokenizer(pTokenizer
, iLangid
, zText
, -1, &pCsr
);
825 xNext
= pModule
->xNext
;
827 && SQLITE_OK
==(rc
= xNext(pCsr
, &zToken
, &nToken
, &iStart
, &iEnd
, &iPos
))
830 if( iPos
>=nWord
) nWord
= iPos
+1;
832 /* Positions cannot be negative; we use -1 as a terminator internally.
833 ** Tokens must have a non-zero length.
835 if( iPos
<0 || !zToken
|| nToken
<=0 ){
840 /* Add the term to the terms index */
841 rc
= fts3PendingTermsAddOne(
842 p
, iCol
, iPos
, &p
->aIndex
[0].hPending
, zToken
, nToken
845 /* Add the term to each of the prefix indexes that it is not too
847 for(i
=1; rc
==SQLITE_OK
&& i
<p
->nIndex
; i
++){
848 struct Fts3Index
*pIndex
= &p
->aIndex
[i
];
849 if( nToken
<pIndex
->nPrefix
) continue;
850 rc
= fts3PendingTermsAddOne(
851 p
, iCol
, iPos
, &pIndex
->hPending
, zToken
, pIndex
->nPrefix
856 pModule
->xClose(pCsr
);
858 return (rc
==SQLITE_DONE
? SQLITE_OK
: rc
);
862 ** Calling this function indicates that subsequent calls to
863 ** fts3PendingTermsAdd() are to add term/position-list pairs for the
864 ** contents of the document with docid iDocid.
866 static int fts3PendingTermsDocid(
867 Fts3Table
*p
, /* Full-text table handle */
868 int bDelete
, /* True if this op is a delete */
869 int iLangid
, /* Language id of row being written */
870 sqlite_int64 iDocid
/* Docid of row being written */
872 assert( iLangid
>=0 );
873 assert( bDelete
==1 || bDelete
==0 );
875 /* TODO(shess) Explore whether partially flushing the buffer on
876 ** forced-flush would provide better performance. I suspect that if
877 ** we ordered the doclists by size and flushed the largest until the
878 ** buffer was half empty, that would let the less frequent terms
879 ** generate longer doclists.
881 if( iDocid
<p
->iPrevDocid
882 || (iDocid
==p
->iPrevDocid
&& p
->bPrevDelete
==0)
883 || p
->iPrevLangid
!=iLangid
884 || p
->nPendingData
>p
->nMaxPendingData
886 int rc
= sqlite3Fts3PendingTermsFlush(p
);
887 if( rc
!=SQLITE_OK
) return rc
;
889 p
->iPrevDocid
= iDocid
;
890 p
->iPrevLangid
= iLangid
;
891 p
->bPrevDelete
= bDelete
;
896 ** Discard the contents of the pending-terms hash tables.
898 void sqlite3Fts3PendingTermsClear(Fts3Table
*p
){
900 for(i
=0; i
<p
->nIndex
; i
++){
902 Fts3Hash
*pHash
= &p
->aIndex
[i
].hPending
;
903 for(pElem
=fts3HashFirst(pHash
); pElem
; pElem
=fts3HashNext(pElem
)){
904 PendingList
*pList
= (PendingList
*)fts3HashData(pElem
);
905 fts3PendingListDelete(pList
);
907 fts3HashClear(pHash
);
913 ** This function is called by the xUpdate() method as part of an INSERT
914 ** operation. It adds entries for each term in the new record to the
915 ** pendingTerms hash table.
917 ** Argument apVal is the same as the similarly named argument passed to
918 ** fts3InsertData(). Parameter iDocid is the docid of the new row.
920 static int fts3InsertTerms(
923 sqlite3_value
**apVal
,
926 int i
; /* Iterator variable */
927 for(i
=2; i
<p
->nColumn
+2; i
++){
929 if( p
->abNotindexed
[iCol
]==0 ){
930 const char *zText
= (const char *)sqlite3_value_text(apVal
[i
]);
931 int rc
= fts3PendingTermsAdd(p
, iLangid
, zText
, iCol
, &aSz
[iCol
]);
935 aSz
[p
->nColumn
] += sqlite3_value_bytes(apVal
[i
]);
942 ** This function is called by the xUpdate() method for an INSERT operation.
943 ** The apVal parameter is passed a copy of the apVal argument passed by
944 ** SQLite to the xUpdate() method. i.e:
946 ** apVal[0] Not used for INSERT.
948 ** apVal[2] Left-most user-defined column
950 ** apVal[p->nColumn+1] Right-most user-defined column
951 ** apVal[p->nColumn+2] Hidden column with same name as table
952 ** apVal[p->nColumn+3] Hidden "docid" column (alias for rowid)
953 ** apVal[p->nColumn+4] Hidden languageid column
955 static int fts3InsertData(
956 Fts3Table
*p
, /* Full-text table */
957 sqlite3_value
**apVal
, /* Array of values to insert */
958 sqlite3_int64
*piDocid
/* OUT: Docid for row just inserted */
960 int rc
; /* Return code */
961 sqlite3_stmt
*pContentInsert
; /* INSERT INTO %_content VALUES(...) */
963 if( p
->zContentTbl
){
964 sqlite3_value
*pRowid
= apVal
[p
->nColumn
+3];
965 if( sqlite3_value_type(pRowid
)==SQLITE_NULL
){
968 if( sqlite3_value_type(pRowid
)!=SQLITE_INTEGER
){
969 return SQLITE_CONSTRAINT
;
971 *piDocid
= sqlite3_value_int64(pRowid
);
975 /* Locate the statement handle used to insert data into the %_content
976 ** table. The SQL for this statement is:
978 ** INSERT INTO %_content VALUES(?, ?, ?, ...)
980 ** The statement features N '?' variables, where N is the number of user
981 ** defined columns in the FTS3 table, plus one for the docid field.
983 rc
= fts3SqlStmt(p
, SQL_CONTENT_INSERT
, &pContentInsert
, &apVal
[1]);
984 if( rc
==SQLITE_OK
&& p
->zLanguageid
){
985 rc
= sqlite3_bind_int(
986 pContentInsert
, p
->nColumn
+2,
987 sqlite3_value_int(apVal
[p
->nColumn
+4])
990 if( rc
!=SQLITE_OK
) return rc
;
992 /* There is a quirk here. The users INSERT statement may have specified
993 ** a value for the "rowid" field, for the "docid" field, or for both.
994 ** Which is a problem, since "rowid" and "docid" are aliases for the
995 ** same value. For example:
997 ** INSERT INTO fts3tbl(rowid, docid) VALUES(1, 2);
999 ** In FTS3, this is an error. It is an error to specify non-NULL values
1000 ** for both docid and some other rowid alias.
1002 if( SQLITE_NULL
!=sqlite3_value_type(apVal
[3+p
->nColumn
]) ){
1003 if( SQLITE_NULL
==sqlite3_value_type(apVal
[0])
1004 && SQLITE_NULL
!=sqlite3_value_type(apVal
[1])
1006 /* A rowid/docid conflict. */
1007 return SQLITE_ERROR
;
1009 rc
= sqlite3_bind_value(pContentInsert
, 1, apVal
[3+p
->nColumn
]);
1010 if( rc
!=SQLITE_OK
) return rc
;
1013 /* Execute the statement to insert the record. Set *piDocid to the
1016 sqlite3_step(pContentInsert
);
1017 rc
= sqlite3_reset(pContentInsert
);
1019 *piDocid
= sqlite3_last_insert_rowid(p
->db
);
1026 ** Remove all data from the FTS3 table. Clear the hash table containing
1029 static int fts3DeleteAll(Fts3Table
*p
, int bContent
){
1030 int rc
= SQLITE_OK
; /* Return code */
1032 /* Discard the contents of the pending-terms hash table. */
1033 sqlite3Fts3PendingTermsClear(p
);
1035 /* Delete everything from the shadow tables. Except, leave %_content as
1036 ** is if bContent is false. */
1037 assert( p
->zContentTbl
==0 || bContent
==0 );
1038 if( bContent
) fts3SqlExec(&rc
, p
, SQL_DELETE_ALL_CONTENT
, 0);
1039 fts3SqlExec(&rc
, p
, SQL_DELETE_ALL_SEGMENTS
, 0);
1040 fts3SqlExec(&rc
, p
, SQL_DELETE_ALL_SEGDIR
, 0);
1041 if( p
->bHasDocsize
){
1042 fts3SqlExec(&rc
, p
, SQL_DELETE_ALL_DOCSIZE
, 0);
1045 fts3SqlExec(&rc
, p
, SQL_DELETE_ALL_STAT
, 0);
1053 static int langidFromSelect(Fts3Table
*p
, sqlite3_stmt
*pSelect
){
1055 if( p
->zLanguageid
) iLangid
= sqlite3_column_int(pSelect
, p
->nColumn
+1);
1060 ** The first element in the apVal[] array is assumed to contain the docid
1061 ** (an integer) of a row about to be deleted. Remove all terms from the
1064 static void fts3DeleteTerms(
1065 int *pRC
, /* Result code */
1066 Fts3Table
*p
, /* The FTS table to delete from */
1067 sqlite3_value
*pRowid
, /* The docid to be deleted */
1068 u32
*aSz
, /* Sizes of deleted document written here */
1069 int *pbFound
/* OUT: Set to true if row really does exist */
1072 sqlite3_stmt
*pSelect
;
1074 assert( *pbFound
==0 );
1076 rc
= fts3SqlStmt(p
, SQL_SELECT_CONTENT_BY_ROWID
, &pSelect
, &pRowid
);
1077 if( rc
==SQLITE_OK
){
1078 if( SQLITE_ROW
==sqlite3_step(pSelect
) ){
1080 int iLangid
= langidFromSelect(p
, pSelect
);
1081 i64 iDocid
= sqlite3_column_int64(pSelect
, 0);
1082 rc
= fts3PendingTermsDocid(p
, 1, iLangid
, iDocid
);
1083 for(i
=1; rc
==SQLITE_OK
&& i
<=p
->nColumn
; i
++){
1085 if( p
->abNotindexed
[iCol
]==0 ){
1086 const char *zText
= (const char *)sqlite3_column_text(pSelect
, i
);
1087 rc
= fts3PendingTermsAdd(p
, iLangid
, zText
, -1, &aSz
[iCol
]);
1088 aSz
[p
->nColumn
] += sqlite3_column_bytes(pSelect
, i
);
1091 if( rc
!=SQLITE_OK
){
1092 sqlite3_reset(pSelect
);
1098 rc
= sqlite3_reset(pSelect
);
1100 sqlite3_reset(pSelect
);
1106 ** Forward declaration to account for the circular dependency between
1107 ** functions fts3SegmentMerge() and fts3AllocateSegdirIdx().
1109 static int fts3SegmentMerge(Fts3Table
*, int, int, int);
1112 ** This function allocates a new level iLevel index in the segdir table.
1113 ** Usually, indexes are allocated within a level sequentially starting
1114 ** with 0, so the allocated index is one greater than the value returned
1117 ** SELECT max(idx) FROM %_segdir WHERE level = :iLevel
1119 ** However, if there are already FTS3_MERGE_COUNT indexes at the requested
1120 ** level, they are merged into a single level (iLevel+1) segment and the
1121 ** allocated index is 0.
1123 ** If successful, *piIdx is set to the allocated index slot and SQLITE_OK
1124 ** returned. Otherwise, an SQLite error code is returned.
1126 static int fts3AllocateSegdirIdx(
1128 int iLangid
, /* Language id */
1129 int iIndex
, /* Index for p->aIndex */
1133 int rc
; /* Return Code */
1134 sqlite3_stmt
*pNextIdx
; /* Query for next idx at level iLevel */
1135 int iNext
= 0; /* Result of query pNextIdx */
1137 assert( iLangid
>=0 );
1138 assert( p
->nIndex
>=1 );
1140 /* Set variable iNext to the next available segdir index at level iLevel. */
1141 rc
= fts3SqlStmt(p
, SQL_NEXT_SEGMENT_INDEX
, &pNextIdx
, 0);
1142 if( rc
==SQLITE_OK
){
1144 pNextIdx
, 1, getAbsoluteLevel(p
, iLangid
, iIndex
, iLevel
)
1146 if( SQLITE_ROW
==sqlite3_step(pNextIdx
) ){
1147 iNext
= sqlite3_column_int(pNextIdx
, 0);
1149 rc
= sqlite3_reset(pNextIdx
);
1152 if( rc
==SQLITE_OK
){
1153 /* If iNext is FTS3_MERGE_COUNT, indicating that level iLevel is already
1154 ** full, merge all segments in level iLevel into a single iLevel+1
1155 ** segment and allocate (newly freed) index 0 at level iLevel. Otherwise,
1156 ** if iNext is less than FTS3_MERGE_COUNT, allocate index iNext.
1158 if( iNext
>=MergeCount(p
) ){
1159 fts3LogMerge(16, getAbsoluteLevel(p
, iLangid
, iIndex
, iLevel
));
1160 rc
= fts3SegmentMerge(p
, iLangid
, iIndex
, iLevel
);
1171 ** The %_segments table is declared as follows:
1173 ** CREATE TABLE %_segments(blockid INTEGER PRIMARY KEY, block BLOB)
1175 ** This function reads data from a single row of the %_segments table. The
1176 ** specific row is identified by the iBlockid parameter. If paBlob is not
1177 ** NULL, then a buffer is allocated using sqlite3_malloc() and populated
1178 ** with the contents of the blob stored in the "block" column of the
1179 ** identified table row is. Whether or not paBlob is NULL, *pnBlob is set
1180 ** to the size of the blob in bytes before returning.
1182 ** If an error occurs, or the table does not contain the specified row,
1183 ** an SQLite error code is returned. Otherwise, SQLITE_OK is returned. If
1184 ** paBlob is non-NULL, then it is the responsibility of the caller to
1185 ** eventually free the returned buffer.
1187 ** This function may leave an open sqlite3_blob* handle in the
1188 ** Fts3Table.pSegments variable. This handle is reused by subsequent calls
1189 ** to this function. The handle may be closed by calling the
1190 ** sqlite3Fts3SegmentsClose() function. Reusing a blob handle is a handy
1191 ** performance improvement, but the blob handle should always be closed
1192 ** before control is returned to the user (to prevent a lock being held
1193 ** on the database file for longer than necessary). Thus, any virtual table
1194 ** method (xFilter etc.) that may directly or indirectly call this function
1195 ** must call sqlite3Fts3SegmentsClose() before returning.
1197 int sqlite3Fts3ReadBlock(
1198 Fts3Table
*p
, /* FTS3 table handle */
1199 sqlite3_int64 iBlockid
, /* Access the row with blockid=$iBlockid */
1200 char **paBlob
, /* OUT: Blob data in malloc'd buffer */
1201 int *pnBlob
, /* OUT: Size of blob data */
1202 int *pnLoad
/* OUT: Bytes actually loaded */
1204 int rc
; /* Return code */
1206 /* pnBlob must be non-NULL. paBlob may be NULL or non-NULL. */
1210 rc
= sqlite3_blob_reopen(p
->pSegments
, iBlockid
);
1212 if( 0==p
->zSegmentsTbl
){
1213 p
->zSegmentsTbl
= sqlite3_mprintf("%s_segments", p
->zName
);
1214 if( 0==p
->zSegmentsTbl
) return SQLITE_NOMEM
;
1216 rc
= sqlite3_blob_open(
1217 p
->db
, p
->zDb
, p
->zSegmentsTbl
, "block", iBlockid
, 0, &p
->pSegments
1221 if( rc
==SQLITE_OK
){
1222 int nByte
= sqlite3_blob_bytes(p
->pSegments
);
1225 char *aByte
= sqlite3_malloc(nByte
+ FTS3_NODE_PADDING
);
1229 if( pnLoad
&& nByte
>(FTS3_NODE_CHUNK_THRESHOLD
) ){
1230 nByte
= FTS3_NODE_CHUNKSIZE
;
1233 rc
= sqlite3_blob_read(p
->pSegments
, aByte
, nByte
, 0);
1234 memset(&aByte
[nByte
], 0, FTS3_NODE_PADDING
);
1235 if( rc
!=SQLITE_OK
){
1236 sqlite3_free(aByte
);
1242 }else if( rc
==SQLITE_ERROR
){
1243 rc
= FTS_CORRUPT_VTAB
;
1250 ** Close the blob handle at p->pSegments, if it is open. See comments above
1251 ** the sqlite3Fts3ReadBlock() function for details.
1253 void sqlite3Fts3SegmentsClose(Fts3Table
*p
){
1254 sqlite3_blob_close(p
->pSegments
);
1258 static int fts3SegReaderIncrRead(Fts3SegReader
*pReader
){
1259 int nRead
; /* Number of bytes to read */
1260 int rc
; /* Return code */
1262 nRead
= MIN(pReader
->nNode
- pReader
->nPopulate
, FTS3_NODE_CHUNKSIZE
);
1263 rc
= sqlite3_blob_read(
1265 &pReader
->aNode
[pReader
->nPopulate
],
1270 if( rc
==SQLITE_OK
){
1271 pReader
->nPopulate
+= nRead
;
1272 memset(&pReader
->aNode
[pReader
->nPopulate
], 0, FTS3_NODE_PADDING
);
1273 if( pReader
->nPopulate
==pReader
->nNode
){
1274 sqlite3_blob_close(pReader
->pBlob
);
1276 pReader
->nPopulate
= 0;
1282 static int fts3SegReaderRequire(Fts3SegReader
*pReader
, char *pFrom
, int nByte
){
1284 assert( !pReader
->pBlob
1285 || (pFrom
>=pReader
->aNode
&& pFrom
<&pReader
->aNode
[pReader
->nNode
])
1287 while( pReader
->pBlob
&& rc
==SQLITE_OK
1288 && (pFrom
- pReader
->aNode
+ nByte
)>pReader
->nPopulate
1290 rc
= fts3SegReaderIncrRead(pReader
);
1296 ** Set an Fts3SegReader cursor to point at EOF.
1298 static void fts3SegReaderSetEof(Fts3SegReader
*pSeg
){
1299 if( !fts3SegReaderIsRootOnly(pSeg
) ){
1300 sqlite3_free(pSeg
->aNode
);
1301 sqlite3_blob_close(pSeg
->pBlob
);
1308 ** Move the iterator passed as the first argument to the next term in the
1309 ** segment. If successful, SQLITE_OK is returned. If there is no next term,
1310 ** SQLITE_DONE. Otherwise, an SQLite error code.
1312 static int fts3SegReaderNext(
1314 Fts3SegReader
*pReader
,
1317 int rc
; /* Return code of various sub-routines */
1318 char *pNext
; /* Cursor variable */
1319 int nPrefix
; /* Number of bytes in term prefix */
1320 int nSuffix
; /* Number of bytes in term suffix */
1322 if( !pReader
->aDoclist
){
1323 pNext
= pReader
->aNode
;
1325 pNext
= &pReader
->aDoclist
[pReader
->nDoclist
];
1328 if( !pNext
|| pNext
>=&pReader
->aNode
[pReader
->nNode
] ){
1330 if( fts3SegReaderIsPending(pReader
) ){
1331 Fts3HashElem
*pElem
= *(pReader
->ppNextElem
);
1332 sqlite3_free(pReader
->aNode
);
1336 PendingList
*pList
= (PendingList
*)fts3HashData(pElem
);
1337 int nCopy
= pList
->nData
+1;
1339 int nTerm
= fts3HashKeysize(pElem
);
1340 if( (nTerm
+1)>pReader
->nTermAlloc
){
1341 sqlite3_free(pReader
->zTerm
);
1342 pReader
->zTerm
= (char*)sqlite3_malloc((nTerm
+1)*2);
1343 if( !pReader
->zTerm
) return SQLITE_NOMEM
;
1344 pReader
->nTermAlloc
= (nTerm
+1)*2;
1346 memcpy(pReader
->zTerm
, fts3HashKey(pElem
), nTerm
);
1347 pReader
->zTerm
[nTerm
] = '\0';
1348 pReader
->nTerm
= nTerm
;
1350 aCopy
= (char*)sqlite3_malloc(nCopy
);
1351 if( !aCopy
) return SQLITE_NOMEM
;
1352 memcpy(aCopy
, pList
->aData
, nCopy
);
1353 pReader
->nNode
= pReader
->nDoclist
= nCopy
;
1354 pReader
->aNode
= pReader
->aDoclist
= aCopy
;
1355 pReader
->ppNextElem
++;
1356 assert( pReader
->aNode
);
1361 fts3SegReaderSetEof(pReader
);
1363 /* If iCurrentBlock>=iLeafEndBlock, this is an EOF condition. All leaf
1364 ** blocks have already been traversed. */
1366 assert( pReader
->iCurrentBlock
<=pReader
->iLeafEndBlock
|| CORRUPT_DB
);
1368 if( pReader
->iCurrentBlock
>=pReader
->iLeafEndBlock
){
1372 rc
= sqlite3Fts3ReadBlock(
1373 p
, ++pReader
->iCurrentBlock
, &pReader
->aNode
, &pReader
->nNode
,
1374 (bIncr
? &pReader
->nPopulate
: 0)
1376 if( rc
!=SQLITE_OK
) return rc
;
1377 assert( pReader
->pBlob
==0 );
1378 if( bIncr
&& pReader
->nPopulate
<pReader
->nNode
){
1379 pReader
->pBlob
= p
->pSegments
;
1382 pNext
= pReader
->aNode
;
1385 assert( !fts3SegReaderIsPending(pReader
) );
1387 rc
= fts3SegReaderRequire(pReader
, pNext
, FTS3_VARINT_MAX
*2);
1388 if( rc
!=SQLITE_OK
) return rc
;
1390 /* Because of the FTS3_NODE_PADDING bytes of padding, the following is
1391 ** safe (no risk of overread) even if the node data is corrupted. */
1392 pNext
+= fts3GetVarint32(pNext
, &nPrefix
);
1393 pNext
+= fts3GetVarint32(pNext
, &nSuffix
);
1395 || (&pReader
->aNode
[pReader
->nNode
] - pNext
)<nSuffix
1396 || nPrefix
>pReader
->nTerm
1398 return FTS_CORRUPT_VTAB
;
1401 /* Both nPrefix and nSuffix were read by fts3GetVarint32() and so are
1402 ** between 0 and 0x7FFFFFFF. But the sum of the two may cause integer
1403 ** overflow - hence the (i64) casts. */
1404 if( (i64
)nPrefix
+nSuffix
>(i64
)pReader
->nTermAlloc
){
1405 i64 nNew
= ((i64
)nPrefix
+nSuffix
)*2;
1406 char *zNew
= sqlite3_realloc64(pReader
->zTerm
, nNew
);
1408 return SQLITE_NOMEM
;
1410 pReader
->zTerm
= zNew
;
1411 pReader
->nTermAlloc
= nNew
;
1414 rc
= fts3SegReaderRequire(pReader
, pNext
, nSuffix
+FTS3_VARINT_MAX
);
1415 if( rc
!=SQLITE_OK
) return rc
;
1417 memcpy(&pReader
->zTerm
[nPrefix
], pNext
, nSuffix
);
1418 pReader
->nTerm
= nPrefix
+nSuffix
;
1420 pNext
+= fts3GetVarint32(pNext
, &pReader
->nDoclist
);
1421 pReader
->aDoclist
= pNext
;
1422 pReader
->pOffsetList
= 0;
1424 /* Check that the doclist does not appear to extend past the end of the
1425 ** b-tree node. And that the final byte of the doclist is 0x00. If either
1426 ** of these statements is untrue, then the data structure is corrupt.
1428 if( pReader
->nDoclist
> pReader
->nNode
-(pReader
->aDoclist
-pReader
->aNode
)
1429 || (pReader
->nPopulate
==0 && pReader
->aDoclist
[pReader
->nDoclist
-1])
1430 || pReader
->nDoclist
==0
1432 return FTS_CORRUPT_VTAB
;
1438 ** Set the SegReader to point to the first docid in the doclist associated
1439 ** with the current term.
1441 static int fts3SegReaderFirstDocid(Fts3Table
*pTab
, Fts3SegReader
*pReader
){
1443 assert( pReader
->aDoclist
);
1444 assert( !pReader
->pOffsetList
);
1445 if( pTab
->bDescIdx
&& fts3SegReaderIsPending(pReader
) ){
1447 pReader
->iDocid
= 0;
1448 pReader
->nOffsetList
= 0;
1449 sqlite3Fts3DoclistPrev(0,
1450 pReader
->aDoclist
, pReader
->nDoclist
, &pReader
->pOffsetList
,
1451 &pReader
->iDocid
, &pReader
->nOffsetList
, &bEof
1454 rc
= fts3SegReaderRequire(pReader
, pReader
->aDoclist
, FTS3_VARINT_MAX
);
1455 if( rc
==SQLITE_OK
){
1456 int n
= sqlite3Fts3GetVarint(pReader
->aDoclist
, &pReader
->iDocid
);
1457 pReader
->pOffsetList
= &pReader
->aDoclist
[n
];
1464 ** Advance the SegReader to point to the next docid in the doclist
1465 ** associated with the current term.
1467 ** If arguments ppOffsetList and pnOffsetList are not NULL, then
1468 ** *ppOffsetList is set to point to the first column-offset list
1469 ** in the doclist entry (i.e. immediately past the docid varint).
1470 ** *pnOffsetList is set to the length of the set of column-offset
1471 ** lists, not including the nul-terminator byte. For example:
1473 static int fts3SegReaderNextDocid(
1475 Fts3SegReader
*pReader
, /* Reader to advance to next docid */
1476 char **ppOffsetList
, /* OUT: Pointer to current position-list */
1477 int *pnOffsetList
/* OUT: Length of *ppOffsetList in bytes */
1480 char *p
= pReader
->pOffsetList
;
1485 if( pTab
->bDescIdx
&& fts3SegReaderIsPending(pReader
) ){
1486 /* A pending-terms seg-reader for an FTS4 table that uses order=desc.
1487 ** Pending-terms doclists are always built up in ascending order, so
1488 ** we have to iterate through them backwards here. */
1491 *ppOffsetList
= pReader
->pOffsetList
;
1492 *pnOffsetList
= pReader
->nOffsetList
- 1;
1494 sqlite3Fts3DoclistPrev(0,
1495 pReader
->aDoclist
, pReader
->nDoclist
, &p
, &pReader
->iDocid
,
1496 &pReader
->nOffsetList
, &bEof
1499 pReader
->pOffsetList
= 0;
1501 pReader
->pOffsetList
= p
;
1504 char *pEnd
= &pReader
->aDoclist
[pReader
->nDoclist
];
1506 /* Pointer p currently points at the first byte of an offset list. The
1507 ** following block advances it to point one byte past the end of
1508 ** the same offset list. */
1511 /* The following line of code (and the "p++" below the while() loop) is
1512 ** normally all that is required to move pointer p to the desired
1513 ** position. The exception is if this node is being loaded from disk
1514 ** incrementally and pointer "p" now points to the first byte past
1515 ** the populated part of pReader->aNode[].
1517 while( *p
| c
) c
= *p
++ & 0x80;
1520 if( pReader
->pBlob
==0 || p
<&pReader
->aNode
[pReader
->nPopulate
] ) break;
1521 rc
= fts3SegReaderIncrRead(pReader
);
1522 if( rc
!=SQLITE_OK
) return rc
;
1526 /* If required, populate the output variables with a pointer to and the
1527 ** size of the previous offset-list.
1530 *ppOffsetList
= pReader
->pOffsetList
;
1531 *pnOffsetList
= (int)(p
- pReader
->pOffsetList
- 1);
1534 /* List may have been edited in place by fts3EvalNearTrim() */
1535 while( p
<pEnd
&& *p
==0 ) p
++;
1537 /* If there are no more entries in the doclist, set pOffsetList to
1538 ** NULL. Otherwise, set Fts3SegReader.iDocid to the next docid and
1539 ** Fts3SegReader.pOffsetList to point to the next offset list before
1543 pReader
->pOffsetList
= 0;
1545 rc
= fts3SegReaderRequire(pReader
, p
, FTS3_VARINT_MAX
);
1546 if( rc
==SQLITE_OK
){
1548 pReader
->pOffsetList
= p
+ sqlite3Fts3GetVarintU(p
, &iDelta
);
1549 if( pTab
->bDescIdx
){
1550 pReader
->iDocid
= (i64
)((u64
)pReader
->iDocid
- iDelta
);
1552 pReader
->iDocid
= (i64
)((u64
)pReader
->iDocid
+ iDelta
);
1562 int sqlite3Fts3MsrOvfl(
1564 Fts3MultiSegReader
*pMsr
,
1567 Fts3Table
*p
= (Fts3Table
*)pCsr
->base
.pVtab
;
1571 int pgsz
= p
->nPgsz
;
1576 for(ii
=0; rc
==SQLITE_OK
&& ii
<pMsr
->nSegment
; ii
++){
1577 Fts3SegReader
*pReader
= pMsr
->apSegment
[ii
];
1578 if( !fts3SegReaderIsPending(pReader
)
1579 && !fts3SegReaderIsRootOnly(pReader
)
1582 for(jj
=pReader
->iStartBlock
; jj
<=pReader
->iLeafEndBlock
; jj
++){
1584 rc
= sqlite3Fts3ReadBlock(p
, jj
, 0, &nBlob
, 0);
1585 if( rc
!=SQLITE_OK
) break;
1586 if( (nBlob
+35)>pgsz
){
1587 nOvfl
+= (nBlob
+ 34)/pgsz
;
1597 ** Free all allocations associated with the iterator passed as the
1600 void sqlite3Fts3SegReaderFree(Fts3SegReader
*pReader
){
1602 sqlite3_free(pReader
->zTerm
);
1603 if( !fts3SegReaderIsRootOnly(pReader
) ){
1604 sqlite3_free(pReader
->aNode
);
1606 sqlite3_blob_close(pReader
->pBlob
);
1608 sqlite3_free(pReader
);
1612 ** Allocate a new SegReader object.
1614 int sqlite3Fts3SegReaderNew(
1615 int iAge
, /* Segment "age". */
1616 int bLookup
, /* True for a lookup only */
1617 sqlite3_int64 iStartLeaf
, /* First leaf to traverse */
1618 sqlite3_int64 iEndLeaf
, /* Final leaf to traverse */
1619 sqlite3_int64 iEndBlock
, /* Final block of segment */
1620 const char *zRoot
, /* Buffer containing root node */
1621 int nRoot
, /* Size of buffer containing root node */
1622 Fts3SegReader
**ppReader
/* OUT: Allocated Fts3SegReader */
1624 Fts3SegReader
*pReader
; /* Newly allocated SegReader object */
1625 int nExtra
= 0; /* Bytes to allocate segment root node */
1627 assert( zRoot
!=0 || nRoot
==0 );
1629 assert( zRoot
!=0 || CORRUPT_DB
);
1632 if( iStartLeaf
==0 ){
1633 if( iEndLeaf
!=0 ) return FTS_CORRUPT_VTAB
;
1634 nExtra
= nRoot
+ FTS3_NODE_PADDING
;
1637 pReader
= (Fts3SegReader
*)sqlite3_malloc(sizeof(Fts3SegReader
) + nExtra
);
1639 return SQLITE_NOMEM
;
1641 memset(pReader
, 0, sizeof(Fts3SegReader
));
1642 pReader
->iIdx
= iAge
;
1643 pReader
->bLookup
= bLookup
!=0;
1644 pReader
->iStartBlock
= iStartLeaf
;
1645 pReader
->iLeafEndBlock
= iEndLeaf
;
1646 pReader
->iEndBlock
= iEndBlock
;
1649 /* The entire segment is stored in the root node. */
1650 pReader
->aNode
= (char *)&pReader
[1];
1651 pReader
->rootOnly
= 1;
1652 pReader
->nNode
= nRoot
;
1653 if( nRoot
) memcpy(pReader
->aNode
, zRoot
, nRoot
);
1654 memset(&pReader
->aNode
[nRoot
], 0, FTS3_NODE_PADDING
);
1656 pReader
->iCurrentBlock
= iStartLeaf
-1;
1658 *ppReader
= pReader
;
1663 ** This is a comparison function used as a qsort() callback when sorting
1664 ** an array of pending terms by term. This occurs as part of flushing
1665 ** the contents of the pending-terms hash table to the database.
1667 static int SQLITE_CDECL
fts3CompareElemByTerm(
1671 char *z1
= fts3HashKey(*(Fts3HashElem
**)lhs
);
1672 char *z2
= fts3HashKey(*(Fts3HashElem
**)rhs
);
1673 int n1
= fts3HashKeysize(*(Fts3HashElem
**)lhs
);
1674 int n2
= fts3HashKeysize(*(Fts3HashElem
**)rhs
);
1676 int n
= (n1
<n2
? n1
: n2
);
1677 int c
= memcmp(z1
, z2
, n
);
1685 ** This function is used to allocate an Fts3SegReader that iterates through
1686 ** a subset of the terms stored in the Fts3Table.pendingTerms array.
1688 ** If the isPrefixIter parameter is zero, then the returned SegReader iterates
1689 ** through each term in the pending-terms table. Or, if isPrefixIter is
1690 ** non-zero, it iterates through each term and its prefixes. For example, if
1691 ** the pending terms hash table contains the terms "sqlite", "mysql" and
1692 ** "firebird", then the iterator visits the following 'terms' (in the order
1695 ** f fi fir fire fireb firebi firebir firebird
1696 ** m my mys mysq mysql
1697 ** s sq sql sqli sqlit sqlite
1699 ** Whereas if isPrefixIter is zero, the terms visited are:
1701 ** firebird mysql sqlite
1703 int sqlite3Fts3SegReaderPending(
1704 Fts3Table
*p
, /* Virtual table handle */
1705 int iIndex
, /* Index for p->aIndex */
1706 const char *zTerm
, /* Term to search for */
1707 int nTerm
, /* Size of buffer zTerm */
1708 int bPrefix
, /* True for a prefix iterator */
1709 Fts3SegReader
**ppReader
/* OUT: SegReader for pending-terms */
1711 Fts3SegReader
*pReader
= 0; /* Fts3SegReader object to return */
1712 Fts3HashElem
*pE
; /* Iterator variable */
1713 Fts3HashElem
**aElem
= 0; /* Array of term hash entries to scan */
1714 int nElem
= 0; /* Size of array at aElem */
1715 int rc
= SQLITE_OK
; /* Return Code */
1718 pHash
= &p
->aIndex
[iIndex
].hPending
;
1720 int nAlloc
= 0; /* Size of allocated array at aElem */
1722 for(pE
=fts3HashFirst(pHash
); pE
; pE
=fts3HashNext(pE
)){
1723 char *zKey
= (char *)fts3HashKey(pE
);
1724 int nKey
= fts3HashKeysize(pE
);
1725 if( nTerm
==0 || (nKey
>=nTerm
&& 0==memcmp(zKey
, zTerm
, nTerm
)) ){
1726 if( nElem
==nAlloc
){
1727 Fts3HashElem
**aElem2
;
1729 aElem2
= (Fts3HashElem
**)sqlite3_realloc(
1730 aElem
, nAlloc
*sizeof(Fts3HashElem
*)
1740 aElem
[nElem
++] = pE
;
1744 /* If more than one term matches the prefix, sort the Fts3HashElem
1745 ** objects in term order using qsort(). This uses the same comparison
1746 ** callback as is used when flushing terms to disk.
1749 qsort(aElem
, nElem
, sizeof(Fts3HashElem
*), fts3CompareElemByTerm
);
1753 /* The query is a simple term lookup that matches at most one term in
1754 ** the index. All that is required is a straight hash-lookup.
1756 ** Because the stack address of pE may be accessed via the aElem pointer
1757 ** below, the "Fts3HashElem *pE" must be declared so that it is valid
1758 ** within this entire function, not just this "else{...}" block.
1760 pE
= fts3HashFindElem(pHash
, zTerm
, nTerm
);
1768 sqlite3_int64 nByte
;
1769 nByte
= sizeof(Fts3SegReader
) + (nElem
+1)*sizeof(Fts3HashElem
*);
1770 pReader
= (Fts3SegReader
*)sqlite3_malloc64(nByte
);
1774 memset(pReader
, 0, nByte
);
1775 pReader
->iIdx
= 0x7FFFFFFF;
1776 pReader
->ppNextElem
= (Fts3HashElem
**)&pReader
[1];
1777 memcpy(pReader
->ppNextElem
, aElem
, nElem
*sizeof(Fts3HashElem
*));
1782 sqlite3_free(aElem
);
1784 *ppReader
= pReader
;
1789 ** Compare the entries pointed to by two Fts3SegReader structures.
1790 ** Comparison is as follows:
1792 ** 1) EOF is greater than not EOF.
1794 ** 2) The current terms (if any) are compared using memcmp(). If one
1795 ** term is a prefix of another, the longer term is considered the
1798 ** 3) By segment age. An older segment is considered larger.
1800 static int fts3SegReaderCmp(Fts3SegReader
*pLhs
, Fts3SegReader
*pRhs
){
1802 if( pLhs
->aNode
&& pRhs
->aNode
){
1803 int rc2
= pLhs
->nTerm
- pRhs
->nTerm
;
1805 rc
= memcmp(pLhs
->zTerm
, pRhs
->zTerm
, pLhs
->nTerm
);
1807 rc
= memcmp(pLhs
->zTerm
, pRhs
->zTerm
, pRhs
->nTerm
);
1813 rc
= (pLhs
->aNode
==0) - (pRhs
->aNode
==0);
1816 rc
= pRhs
->iIdx
- pLhs
->iIdx
;
1818 assert_fts3_nc( rc
!=0 );
1823 ** A different comparison function for SegReader structures. In this
1824 ** version, it is assumed that each SegReader points to an entry in
1825 ** a doclist for identical terms. Comparison is made as follows:
1827 ** 1) EOF (end of doclist in this case) is greater than not EOF.
1829 ** 2) By current docid.
1831 ** 3) By segment age. An older segment is considered larger.
1833 static int fts3SegReaderDoclistCmp(Fts3SegReader
*pLhs
, Fts3SegReader
*pRhs
){
1834 int rc
= (pLhs
->pOffsetList
==0)-(pRhs
->pOffsetList
==0);
1836 if( pLhs
->iDocid
==pRhs
->iDocid
){
1837 rc
= pRhs
->iIdx
- pLhs
->iIdx
;
1839 rc
= (pLhs
->iDocid
> pRhs
->iDocid
) ? 1 : -1;
1842 assert( pLhs
->aNode
&& pRhs
->aNode
);
1845 static int fts3SegReaderDoclistCmpRev(Fts3SegReader
*pLhs
, Fts3SegReader
*pRhs
){
1846 int rc
= (pLhs
->pOffsetList
==0)-(pRhs
->pOffsetList
==0);
1848 if( pLhs
->iDocid
==pRhs
->iDocid
){
1849 rc
= pRhs
->iIdx
- pLhs
->iIdx
;
1851 rc
= (pLhs
->iDocid
< pRhs
->iDocid
) ? 1 : -1;
1854 assert( pLhs
->aNode
&& pRhs
->aNode
);
1859 ** Compare the term that the Fts3SegReader object passed as the first argument
1860 ** points to with the term specified by arguments zTerm and nTerm.
1862 ** If the pSeg iterator is already at EOF, return 0. Otherwise, return
1863 ** -ve if the pSeg term is less than zTerm/nTerm, 0 if the two terms are
1864 ** equal, or +ve if the pSeg term is greater than zTerm/nTerm.
1866 static int fts3SegReaderTermCmp(
1867 Fts3SegReader
*pSeg
, /* Segment reader object */
1868 const char *zTerm
, /* Term to compare to */
1869 int nTerm
/* Size of term zTerm in bytes */
1873 if( pSeg
->nTerm
>nTerm
){
1874 res
= memcmp(pSeg
->zTerm
, zTerm
, nTerm
);
1876 res
= memcmp(pSeg
->zTerm
, zTerm
, pSeg
->nTerm
);
1879 res
= pSeg
->nTerm
-nTerm
;
1886 ** Argument apSegment is an array of nSegment elements. It is known that
1887 ** the final (nSegment-nSuspect) members are already in sorted order
1888 ** (according to the comparison function provided). This function shuffles
1889 ** the array around until all entries are in sorted order.
1891 static void fts3SegReaderSort(
1892 Fts3SegReader
**apSegment
, /* Array to sort entries of */
1893 int nSegment
, /* Size of apSegment array */
1894 int nSuspect
, /* Unsorted entry count */
1895 int (*xCmp
)(Fts3SegReader
*, Fts3SegReader
*) /* Comparison function */
1897 int i
; /* Iterator variable */
1899 assert( nSuspect
<=nSegment
);
1901 if( nSuspect
==nSegment
) nSuspect
--;
1902 for(i
=nSuspect
-1; i
>=0; i
--){
1904 for(j
=i
; j
<(nSegment
-1); j
++){
1905 Fts3SegReader
*pTmp
;
1906 if( xCmp(apSegment
[j
], apSegment
[j
+1])<0 ) break;
1907 pTmp
= apSegment
[j
+1];
1908 apSegment
[j
+1] = apSegment
[j
];
1909 apSegment
[j
] = pTmp
;
1914 /* Check that the list really is sorted now. */
1915 for(i
=0; i
<(nSuspect
-1); i
++){
1916 assert( xCmp(apSegment
[i
], apSegment
[i
+1])<0 );
1922 ** Insert a record into the %_segments table.
1924 static int fts3WriteSegment(
1925 Fts3Table
*p
, /* Virtual table handle */
1926 sqlite3_int64 iBlock
, /* Block id for new block */
1927 char *z
, /* Pointer to buffer containing block data */
1928 int n
/* Size of buffer z in bytes */
1930 sqlite3_stmt
*pStmt
;
1931 int rc
= fts3SqlStmt(p
, SQL_INSERT_SEGMENTS
, &pStmt
, 0);
1932 if( rc
==SQLITE_OK
){
1933 sqlite3_bind_int64(pStmt
, 1, iBlock
);
1934 sqlite3_bind_blob(pStmt
, 2, z
, n
, SQLITE_STATIC
);
1935 sqlite3_step(pStmt
);
1936 rc
= sqlite3_reset(pStmt
);
1937 sqlite3_bind_null(pStmt
, 2);
1943 ** Find the largest relative level number in the table. If successful, set
1944 ** *pnMax to this value and return SQLITE_OK. Otherwise, if an error occurs,
1945 ** set *pnMax to zero and return an SQLite error code.
1947 int sqlite3Fts3MaxLevel(Fts3Table
*p
, int *pnMax
){
1950 sqlite3_stmt
*pStmt
= 0;
1952 rc
= fts3SqlStmt(p
, SQL_SELECT_MXLEVEL
, &pStmt
, 0);
1953 if( rc
==SQLITE_OK
){
1954 if( SQLITE_ROW
==sqlite3_step(pStmt
) ){
1955 mxLevel
= sqlite3_column_int(pStmt
, 0);
1957 rc
= sqlite3_reset(pStmt
);
1964 ** Insert a record into the %_segdir table.
1966 static int fts3WriteSegdir(
1967 Fts3Table
*p
, /* Virtual table handle */
1968 sqlite3_int64 iLevel
, /* Value for "level" field (absolute level) */
1969 int iIdx
, /* Value for "idx" field */
1970 sqlite3_int64 iStartBlock
, /* Value for "start_block" field */
1971 sqlite3_int64 iLeafEndBlock
, /* Value for "leaves_end_block" field */
1972 sqlite3_int64 iEndBlock
, /* Value for "end_block" field */
1973 sqlite3_int64 nLeafData
, /* Bytes of leaf data in segment */
1974 char *zRoot
, /* Blob value for "root" field */
1975 int nRoot
/* Number of bytes in buffer zRoot */
1977 sqlite3_stmt
*pStmt
;
1978 int rc
= fts3SqlStmt(p
, SQL_INSERT_SEGDIR
, &pStmt
, 0);
1979 if( rc
==SQLITE_OK
){
1980 sqlite3_bind_int64(pStmt
, 1, iLevel
);
1981 sqlite3_bind_int(pStmt
, 2, iIdx
);
1982 sqlite3_bind_int64(pStmt
, 3, iStartBlock
);
1983 sqlite3_bind_int64(pStmt
, 4, iLeafEndBlock
);
1985 sqlite3_bind_int64(pStmt
, 5, iEndBlock
);
1987 char *zEnd
= sqlite3_mprintf("%lld %lld", iEndBlock
, nLeafData
);
1988 if( !zEnd
) return SQLITE_NOMEM
;
1989 sqlite3_bind_text(pStmt
, 5, zEnd
, -1, sqlite3_free
);
1991 sqlite3_bind_blob(pStmt
, 6, zRoot
, nRoot
, SQLITE_STATIC
);
1992 sqlite3_step(pStmt
);
1993 rc
= sqlite3_reset(pStmt
);
1994 sqlite3_bind_null(pStmt
, 6);
2000 ** Return the size of the common prefix (if any) shared by zPrev and
2001 ** zNext, in bytes. For example,
2003 ** fts3PrefixCompress("abc", 3, "abcdef", 6) // returns 3
2004 ** fts3PrefixCompress("abX", 3, "abcdef", 6) // returns 2
2005 ** fts3PrefixCompress("abX", 3, "Xbcdef", 6) // returns 0
2007 static int fts3PrefixCompress(
2008 const char *zPrev
, /* Buffer containing previous term */
2009 int nPrev
, /* Size of buffer zPrev in bytes */
2010 const char *zNext
, /* Buffer containing next term */
2011 int nNext
/* Size of buffer zNext in bytes */
2014 for(n
=0; n
<nPrev
&& n
<nNext
&& zPrev
[n
]==zNext
[n
]; n
++);
2015 assert_fts3_nc( n
<nNext
);
2020 ** Add term zTerm to the SegmentNode. It is guaranteed that zTerm is larger
2021 ** (according to memcmp) than the previous term.
2023 static int fts3NodeAddTerm(
2024 Fts3Table
*p
, /* Virtual table handle */
2025 SegmentNode
**ppTree
, /* IN/OUT: SegmentNode handle */
2026 int isCopyTerm
, /* True if zTerm/nTerm is transient */
2027 const char *zTerm
, /* Pointer to buffer containing term */
2028 int nTerm
/* Size of term in bytes */
2030 SegmentNode
*pTree
= *ppTree
;
2034 /* First try to append the term to the current node. Return early if
2035 ** this is possible.
2038 int nData
= pTree
->nData
; /* Current size of node in bytes */
2039 int nReq
= nData
; /* Required space after adding zTerm */
2040 int nPrefix
; /* Number of bytes of prefix compression */
2041 int nSuffix
; /* Suffix length */
2043 nPrefix
= fts3PrefixCompress(pTree
->zTerm
, pTree
->nTerm
, zTerm
, nTerm
);
2044 nSuffix
= nTerm
-nPrefix
;
2046 /* If nSuffix is zero or less, then zTerm/nTerm must be a prefix of
2047 ** pWriter->zTerm/pWriter->nTerm. i.e. must be equal to or less than when
2048 ** compared with BINARY collation. This indicates corruption. */
2049 if( nSuffix
<=0 ) return FTS_CORRUPT_VTAB
;
2051 nReq
+= sqlite3Fts3VarintLen(nPrefix
)+sqlite3Fts3VarintLen(nSuffix
)+nSuffix
;
2052 if( nReq
<=p
->nNodeSize
|| !pTree
->zTerm
){
2054 if( nReq
>p
->nNodeSize
){
2055 /* An unusual case: this is the first term to be added to the node
2056 ** and the static node buffer (p->nNodeSize bytes) is not large
2057 ** enough. Use a separately malloced buffer instead This wastes
2058 ** p->nNodeSize bytes, but since this scenario only comes about when
2059 ** the database contain two terms that share a prefix of almost 2KB,
2060 ** this is not expected to be a serious problem.
2062 assert( pTree
->aData
==(char *)&pTree
[1] );
2063 pTree
->aData
= (char *)sqlite3_malloc(nReq
);
2064 if( !pTree
->aData
){
2065 return SQLITE_NOMEM
;
2070 /* There is no prefix-length field for first term in a node */
2071 nData
+= sqlite3Fts3PutVarint(&pTree
->aData
[nData
], nPrefix
);
2074 nData
+= sqlite3Fts3PutVarint(&pTree
->aData
[nData
], nSuffix
);
2075 memcpy(&pTree
->aData
[nData
], &zTerm
[nPrefix
], nSuffix
);
2076 pTree
->nData
= nData
+ nSuffix
;
2080 if( pTree
->nMalloc
<nTerm
){
2081 char *zNew
= sqlite3_realloc(pTree
->zMalloc
, nTerm
*2);
2083 return SQLITE_NOMEM
;
2085 pTree
->nMalloc
= nTerm
*2;
2086 pTree
->zMalloc
= zNew
;
2088 pTree
->zTerm
= pTree
->zMalloc
;
2089 memcpy(pTree
->zTerm
, zTerm
, nTerm
);
2090 pTree
->nTerm
= nTerm
;
2092 pTree
->zTerm
= (char *)zTerm
;
2093 pTree
->nTerm
= nTerm
;
2099 /* If control flows to here, it was not possible to append zTerm to the
2100 ** current node. Create a new node (a right-sibling of the current node).
2101 ** If this is the first node in the tree, the term is added to it.
2103 ** Otherwise, the term is not added to the new node, it is left empty for
2104 ** now. Instead, the term is inserted into the parent of pTree. If pTree
2105 ** has no parent, one is created here.
2107 pNew
= (SegmentNode
*)sqlite3_malloc(sizeof(SegmentNode
) + p
->nNodeSize
);
2109 return SQLITE_NOMEM
;
2111 memset(pNew
, 0, sizeof(SegmentNode
));
2112 pNew
->nData
= 1 + FTS3_VARINT_MAX
;
2113 pNew
->aData
= (char *)&pNew
[1];
2116 SegmentNode
*pParent
= pTree
->pParent
;
2117 rc
= fts3NodeAddTerm(p
, &pParent
, isCopyTerm
, zTerm
, nTerm
);
2118 if( pTree
->pParent
==0 ){
2119 pTree
->pParent
= pParent
;
2121 pTree
->pRight
= pNew
;
2122 pNew
->pLeftmost
= pTree
->pLeftmost
;
2123 pNew
->pParent
= pParent
;
2124 pNew
->zMalloc
= pTree
->zMalloc
;
2125 pNew
->nMalloc
= pTree
->nMalloc
;
2128 pNew
->pLeftmost
= pNew
;
2129 rc
= fts3NodeAddTerm(p
, &pNew
, isCopyTerm
, zTerm
, nTerm
);
2137 ** Helper function for fts3NodeWrite().
2139 static int fts3TreeFinishNode(
2142 sqlite3_int64 iLeftChild
2145 assert( iHeight
>=1 && iHeight
<128 );
2146 nStart
= FTS3_VARINT_MAX
- sqlite3Fts3VarintLen(iLeftChild
);
2147 pTree
->aData
[nStart
] = (char)iHeight
;
2148 sqlite3Fts3PutVarint(&pTree
->aData
[nStart
+1], iLeftChild
);
2153 ** Write the buffer for the segment node pTree and all of its peers to the
2154 ** database. Then call this function recursively to write the parent of
2155 ** pTree and its peers to the database.
2157 ** Except, if pTree is a root node, do not write it to the database. Instead,
2158 ** set output variables *paRoot and *pnRoot to contain the root node.
2160 ** If successful, SQLITE_OK is returned and output variable *piLast is
2161 ** set to the largest blockid written to the database (or zero if no
2162 ** blocks were written to the db). Otherwise, an SQLite error code is
2165 static int fts3NodeWrite(
2166 Fts3Table
*p
, /* Virtual table handle */
2167 SegmentNode
*pTree
, /* SegmentNode handle */
2168 int iHeight
, /* Height of this node in tree */
2169 sqlite3_int64 iLeaf
, /* Block id of first leaf node */
2170 sqlite3_int64 iFree
, /* Block id of next free slot in %_segments */
2171 sqlite3_int64
*piLast
, /* OUT: Block id of last entry written */
2172 char **paRoot
, /* OUT: Data for root node */
2173 int *pnRoot
/* OUT: Size of root node in bytes */
2177 if( !pTree
->pParent
){
2178 /* Root node of the tree. */
2179 int nStart
= fts3TreeFinishNode(pTree
, iHeight
, iLeaf
);
2181 *pnRoot
= pTree
->nData
- nStart
;
2182 *paRoot
= &pTree
->aData
[nStart
];
2185 sqlite3_int64 iNextFree
= iFree
;
2186 sqlite3_int64 iNextLeaf
= iLeaf
;
2187 for(pIter
=pTree
->pLeftmost
; pIter
&& rc
==SQLITE_OK
; pIter
=pIter
->pRight
){
2188 int nStart
= fts3TreeFinishNode(pIter
, iHeight
, iNextLeaf
);
2189 int nWrite
= pIter
->nData
- nStart
;
2191 rc
= fts3WriteSegment(p
, iNextFree
, &pIter
->aData
[nStart
], nWrite
);
2193 iNextLeaf
+= (pIter
->nEntry
+1);
2195 if( rc
==SQLITE_OK
){
2196 assert( iNextLeaf
==iFree
);
2198 p
, pTree
->pParent
, iHeight
+1, iFree
, iNextFree
, piLast
, paRoot
, pnRoot
2207 ** Free all memory allocations associated with the tree pTree.
2209 static void fts3NodeFree(SegmentNode
*pTree
){
2211 SegmentNode
*p
= pTree
->pLeftmost
;
2212 fts3NodeFree(p
->pParent
);
2214 SegmentNode
*pRight
= p
->pRight
;
2215 if( p
->aData
!=(char *)&p
[1] ){
2216 sqlite3_free(p
->aData
);
2218 assert( pRight
==0 || p
->zMalloc
==0 );
2219 sqlite3_free(p
->zMalloc
);
2227 ** Add a term to the segment being constructed by the SegmentWriter object
2228 ** *ppWriter. When adding the first term to a segment, *ppWriter should
2229 ** be passed NULL. This function will allocate a new SegmentWriter object
2230 ** and return it via the input/output variable *ppWriter in this case.
2232 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
2234 static int fts3SegWriterAdd(
2235 Fts3Table
*p
, /* Virtual table handle */
2236 SegmentWriter
**ppWriter
, /* IN/OUT: SegmentWriter handle */
2237 int isCopyTerm
, /* True if buffer zTerm must be copied */
2238 const char *zTerm
, /* Pointer to buffer containing term */
2239 int nTerm
, /* Size of term in bytes */
2240 const char *aDoclist
, /* Pointer to buffer containing doclist */
2241 int nDoclist
/* Size of doclist in bytes */
2243 int nPrefix
; /* Size of term prefix in bytes */
2244 int nSuffix
; /* Size of term suffix in bytes */
2245 int nReq
; /* Number of bytes required on leaf page */
2247 SegmentWriter
*pWriter
= *ppWriter
;
2251 sqlite3_stmt
*pStmt
;
2253 /* Allocate the SegmentWriter structure */
2254 pWriter
= (SegmentWriter
*)sqlite3_malloc(sizeof(SegmentWriter
));
2255 if( !pWriter
) return SQLITE_NOMEM
;
2256 memset(pWriter
, 0, sizeof(SegmentWriter
));
2257 *ppWriter
= pWriter
;
2259 /* Allocate a buffer in which to accumulate data */
2260 pWriter
->aData
= (char *)sqlite3_malloc(p
->nNodeSize
);
2261 if( !pWriter
->aData
) return SQLITE_NOMEM
;
2262 pWriter
->nSize
= p
->nNodeSize
;
2264 /* Find the next free blockid in the %_segments table */
2265 rc
= fts3SqlStmt(p
, SQL_NEXT_SEGMENTS_ID
, &pStmt
, 0);
2266 if( rc
!=SQLITE_OK
) return rc
;
2267 if( SQLITE_ROW
==sqlite3_step(pStmt
) ){
2268 pWriter
->iFree
= sqlite3_column_int64(pStmt
, 0);
2269 pWriter
->iFirst
= pWriter
->iFree
;
2271 rc
= sqlite3_reset(pStmt
);
2272 if( rc
!=SQLITE_OK
) return rc
;
2274 nData
= pWriter
->nData
;
2276 nPrefix
= fts3PrefixCompress(pWriter
->zTerm
, pWriter
->nTerm
, zTerm
, nTerm
);
2277 nSuffix
= nTerm
-nPrefix
;
2279 /* If nSuffix is zero or less, then zTerm/nTerm must be a prefix of
2280 ** pWriter->zTerm/pWriter->nTerm. i.e. must be equal to or less than when
2281 ** compared with BINARY collation. This indicates corruption. */
2282 if( nSuffix
<=0 ) return FTS_CORRUPT_VTAB
;
2284 /* Figure out how many bytes are required by this new entry */
2285 nReq
= sqlite3Fts3VarintLen(nPrefix
) + /* varint containing prefix size */
2286 sqlite3Fts3VarintLen(nSuffix
) + /* varint containing suffix size */
2287 nSuffix
+ /* Term suffix */
2288 sqlite3Fts3VarintLen(nDoclist
) + /* Size of doclist */
2289 nDoclist
; /* Doclist data */
2291 if( nData
>0 && nData
+nReq
>p
->nNodeSize
){
2294 /* The current leaf node is full. Write it out to the database. */
2295 if( pWriter
->iFree
==LARGEST_INT64
) return FTS_CORRUPT_VTAB
;
2296 rc
= fts3WriteSegment(p
, pWriter
->iFree
++, pWriter
->aData
, nData
);
2297 if( rc
!=SQLITE_OK
) return rc
;
2300 /* Add the current term to the interior node tree. The term added to
2301 ** the interior tree must:
2303 ** a) be greater than the largest term on the leaf node just written
2304 ** to the database (still available in pWriter->zTerm), and
2306 ** b) be less than or equal to the term about to be added to the new
2307 ** leaf node (zTerm/nTerm).
2309 ** In other words, it must be the prefix of zTerm 1 byte longer than
2310 ** the common prefix (if any) of zTerm and pWriter->zTerm.
2312 assert( nPrefix
<nTerm
);
2313 rc
= fts3NodeAddTerm(p
, &pWriter
->pTree
, isCopyTerm
, zTerm
, nPrefix
+1);
2314 if( rc
!=SQLITE_OK
) return rc
;
2321 nReq
= 1 + /* varint containing prefix size */
2322 sqlite3Fts3VarintLen(nTerm
) + /* varint containing suffix size */
2323 nTerm
+ /* Term suffix */
2324 sqlite3Fts3VarintLen(nDoclist
) + /* Size of doclist */
2325 nDoclist
; /* Doclist data */
2328 /* Increase the total number of bytes written to account for the new entry. */
2329 pWriter
->nLeafData
+= nReq
;
2331 /* If the buffer currently allocated is too small for this entry, realloc
2332 ** the buffer to make it large enough.
2334 if( nReq
>pWriter
->nSize
){
2335 char *aNew
= sqlite3_realloc(pWriter
->aData
, nReq
);
2336 if( !aNew
) return SQLITE_NOMEM
;
2337 pWriter
->aData
= aNew
;
2338 pWriter
->nSize
= nReq
;
2340 assert( nData
+nReq
<=pWriter
->nSize
);
2342 /* Append the prefix-compressed term and doclist to the buffer. */
2343 nData
+= sqlite3Fts3PutVarint(&pWriter
->aData
[nData
], nPrefix
);
2344 nData
+= sqlite3Fts3PutVarint(&pWriter
->aData
[nData
], nSuffix
);
2345 assert( nSuffix
>0 );
2346 memcpy(&pWriter
->aData
[nData
], &zTerm
[nPrefix
], nSuffix
);
2348 nData
+= sqlite3Fts3PutVarint(&pWriter
->aData
[nData
], nDoclist
);
2349 assert( nDoclist
>0 );
2350 memcpy(&pWriter
->aData
[nData
], aDoclist
, nDoclist
);
2351 pWriter
->nData
= nData
+ nDoclist
;
2353 /* Save the current term so that it can be used to prefix-compress the next.
2354 ** If the isCopyTerm parameter is true, then the buffer pointed to by
2355 ** zTerm is transient, so take a copy of the term data. Otherwise, just
2356 ** store a copy of the pointer.
2359 if( nTerm
>pWriter
->nMalloc
){
2360 char *zNew
= sqlite3_realloc(pWriter
->zMalloc
, nTerm
*2);
2362 return SQLITE_NOMEM
;
2364 pWriter
->nMalloc
= nTerm
*2;
2365 pWriter
->zMalloc
= zNew
;
2366 pWriter
->zTerm
= zNew
;
2368 assert( pWriter
->zTerm
==pWriter
->zMalloc
);
2370 memcpy(pWriter
->zTerm
, zTerm
, nTerm
);
2372 pWriter
->zTerm
= (char *)zTerm
;
2374 pWriter
->nTerm
= nTerm
;
2380 ** Flush all data associated with the SegmentWriter object pWriter to the
2381 ** database. This function must be called after all terms have been added
2382 ** to the segment using fts3SegWriterAdd(). If successful, SQLITE_OK is
2383 ** returned. Otherwise, an SQLite error code.
2385 static int fts3SegWriterFlush(
2386 Fts3Table
*p
, /* Virtual table handle */
2387 SegmentWriter
*pWriter
, /* SegmentWriter to flush to the db */
2388 sqlite3_int64 iLevel
, /* Value for 'level' column of %_segdir */
2389 int iIdx
/* Value for 'idx' column of %_segdir */
2391 int rc
; /* Return code */
2392 if( pWriter
->pTree
){
2393 sqlite3_int64 iLast
= 0; /* Largest block id written to database */
2394 sqlite3_int64 iLastLeaf
; /* Largest leaf block id written to db */
2395 char *zRoot
= NULL
; /* Pointer to buffer containing root node */
2396 int nRoot
= 0; /* Size of buffer zRoot */
2398 iLastLeaf
= pWriter
->iFree
;
2399 rc
= fts3WriteSegment(p
, pWriter
->iFree
++, pWriter
->aData
, pWriter
->nData
);
2400 if( rc
==SQLITE_OK
){
2401 rc
= fts3NodeWrite(p
, pWriter
->pTree
, 1,
2402 pWriter
->iFirst
, pWriter
->iFree
, &iLast
, &zRoot
, &nRoot
);
2404 if( rc
==SQLITE_OK
){
2405 rc
= fts3WriteSegdir(p
, iLevel
, iIdx
,
2406 pWriter
->iFirst
, iLastLeaf
, iLast
, pWriter
->nLeafData
, zRoot
, nRoot
);
2409 /* The entire tree fits on the root node. Write it to the segdir table. */
2410 rc
= fts3WriteSegdir(p
, iLevel
, iIdx
,
2411 0, 0, 0, pWriter
->nLeafData
, pWriter
->aData
, pWriter
->nData
);
2418 ** Release all memory held by the SegmentWriter object passed as the
2421 static void fts3SegWriterFree(SegmentWriter
*pWriter
){
2423 sqlite3_free(pWriter
->aData
);
2424 sqlite3_free(pWriter
->zMalloc
);
2425 fts3NodeFree(pWriter
->pTree
);
2426 sqlite3_free(pWriter
);
2431 ** The first value in the apVal[] array is assumed to contain an integer.
2432 ** This function tests if there exist any documents with docid values that
2433 ** are different from that integer. i.e. if deleting the document with docid
2434 ** pRowid would mean the FTS3 table were empty.
2436 ** If successful, *pisEmpty is set to true if the table is empty except for
2437 ** document pRowid, or false otherwise, and SQLITE_OK is returned. If an
2438 ** error occurs, an SQLite error code is returned.
2440 static int fts3IsEmpty(Fts3Table
*p
, sqlite3_value
*pRowid
, int *pisEmpty
){
2441 sqlite3_stmt
*pStmt
;
2443 if( p
->zContentTbl
){
2444 /* If using the content=xxx option, assume the table is never empty */
2448 rc
= fts3SqlStmt(p
, SQL_IS_EMPTY
, &pStmt
, &pRowid
);
2449 if( rc
==SQLITE_OK
){
2450 if( SQLITE_ROW
==sqlite3_step(pStmt
) ){
2451 *pisEmpty
= sqlite3_column_int(pStmt
, 0);
2453 rc
= sqlite3_reset(pStmt
);
2460 ** Set *pnMax to the largest segment level in the database for the index
2463 ** Segment levels are stored in the 'level' column of the %_segdir table.
2465 ** Return SQLITE_OK if successful, or an SQLite error code if not.
2467 static int fts3SegmentMaxLevel(
2471 sqlite3_int64
*pnMax
2473 sqlite3_stmt
*pStmt
;
2475 assert( iIndex
>=0 && iIndex
<p
->nIndex
);
2477 /* Set pStmt to the compiled version of:
2479 ** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?
2481 ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR).
2483 rc
= fts3SqlStmt(p
, SQL_SELECT_SEGDIR_MAX_LEVEL
, &pStmt
, 0);
2484 if( rc
!=SQLITE_OK
) return rc
;
2485 sqlite3_bind_int64(pStmt
, 1, getAbsoluteLevel(p
, iLangid
, iIndex
, 0));
2486 sqlite3_bind_int64(pStmt
, 2,
2487 getAbsoluteLevel(p
, iLangid
, iIndex
, FTS3_SEGDIR_MAXLEVEL
-1)
2489 if( SQLITE_ROW
==sqlite3_step(pStmt
) ){
2490 *pnMax
= sqlite3_column_int64(pStmt
, 0);
2492 return sqlite3_reset(pStmt
);
2496 ** iAbsLevel is an absolute level that may be assumed to exist within
2497 ** the database. This function checks if it is the largest level number
2498 ** within its index. Assuming no error occurs, *pbMax is set to 1 if
2499 ** iAbsLevel is indeed the largest level, or 0 otherwise, and SQLITE_OK
2500 ** is returned. If an error occurs, an error code is returned and the
2501 ** final value of *pbMax is undefined.
2503 static int fts3SegmentIsMaxLevel(Fts3Table
*p
, i64 iAbsLevel
, int *pbMax
){
2505 /* Set pStmt to the compiled version of:
2507 ** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?
2509 ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR).
2511 sqlite3_stmt
*pStmt
;
2512 int rc
= fts3SqlStmt(p
, SQL_SELECT_SEGDIR_MAX_LEVEL
, &pStmt
, 0);
2513 if( rc
!=SQLITE_OK
) return rc
;
2514 sqlite3_bind_int64(pStmt
, 1, iAbsLevel
+1);
2515 sqlite3_bind_int64(pStmt
, 2,
2516 (((u64
)iAbsLevel
/FTS3_SEGDIR_MAXLEVEL
)+1) * FTS3_SEGDIR_MAXLEVEL
2520 if( SQLITE_ROW
==sqlite3_step(pStmt
) ){
2521 *pbMax
= sqlite3_column_type(pStmt
, 0)==SQLITE_NULL
;
2523 return sqlite3_reset(pStmt
);
2527 ** Delete all entries in the %_segments table associated with the segment
2528 ** opened with seg-reader pSeg. This function does not affect the contents
2529 ** of the %_segdir table.
2531 static int fts3DeleteSegment(
2532 Fts3Table
*p
, /* FTS table handle */
2533 Fts3SegReader
*pSeg
/* Segment to delete */
2535 int rc
= SQLITE_OK
; /* Return code */
2536 if( pSeg
->iStartBlock
){
2537 sqlite3_stmt
*pDelete
; /* SQL statement to delete rows */
2538 rc
= fts3SqlStmt(p
, SQL_DELETE_SEGMENTS_RANGE
, &pDelete
, 0);
2539 if( rc
==SQLITE_OK
){
2540 sqlite3_bind_int64(pDelete
, 1, pSeg
->iStartBlock
);
2541 sqlite3_bind_int64(pDelete
, 2, pSeg
->iEndBlock
);
2542 sqlite3_step(pDelete
);
2543 rc
= sqlite3_reset(pDelete
);
2550 ** This function is used after merging multiple segments into a single large
2551 ** segment to delete the old, now redundant, segment b-trees. Specifically,
2554 ** 1) Deletes all %_segments entries for the segments associated with
2555 ** each of the SegReader objects in the array passed as the third
2558 ** 2) deletes all %_segdir entries with level iLevel, or all %_segdir
2559 ** entries regardless of level if (iLevel<0).
2561 ** SQLITE_OK is returned if successful, otherwise an SQLite error code.
2563 static int fts3DeleteSegdir(
2564 Fts3Table
*p
, /* Virtual table handle */
2565 int iLangid
, /* Language id */
2566 int iIndex
, /* Index for p->aIndex */
2567 int iLevel
, /* Level of %_segdir entries to delete */
2568 Fts3SegReader
**apSegment
, /* Array of SegReader objects */
2569 int nReader
/* Size of array apSegment */
2571 int rc
= SQLITE_OK
; /* Return Code */
2572 int i
; /* Iterator variable */
2573 sqlite3_stmt
*pDelete
= 0; /* SQL statement to delete rows */
2575 for(i
=0; rc
==SQLITE_OK
&& i
<nReader
; i
++){
2576 rc
= fts3DeleteSegment(p
, apSegment
[i
]);
2578 if( rc
!=SQLITE_OK
){
2582 assert( iLevel
>=0 || iLevel
==FTS3_SEGCURSOR_ALL
);
2583 if( iLevel
==FTS3_SEGCURSOR_ALL
){
2584 rc
= fts3SqlStmt(p
, SQL_DELETE_SEGDIR_RANGE
, &pDelete
, 0);
2585 if( rc
==SQLITE_OK
){
2586 sqlite3_bind_int64(pDelete
, 1, getAbsoluteLevel(p
, iLangid
, iIndex
, 0));
2587 sqlite3_bind_int64(pDelete
, 2,
2588 getAbsoluteLevel(p
, iLangid
, iIndex
, FTS3_SEGDIR_MAXLEVEL
-1)
2592 rc
= fts3SqlStmt(p
, SQL_DELETE_SEGDIR_LEVEL
, &pDelete
, 0);
2593 if( rc
==SQLITE_OK
){
2595 pDelete
, 1, getAbsoluteLevel(p
, iLangid
, iIndex
, iLevel
)
2600 if( rc
==SQLITE_OK
){
2601 sqlite3_step(pDelete
);
2602 rc
= sqlite3_reset(pDelete
);
2609 ** When this function is called, buffer *ppList (size *pnList bytes) contains
2610 ** a position list that may (or may not) feature multiple columns. This
2611 ** function adjusts the pointer *ppList and the length *pnList so that they
2612 ** identify the subset of the position list that corresponds to column iCol.
2614 ** If there are no entries in the input position list for column iCol, then
2615 ** *pnList is set to zero before returning.
2617 ** If parameter bZero is non-zero, then any part of the input list following
2618 ** the end of the output list is zeroed before returning.
2620 static void fts3ColumnFilter(
2621 int iCol
, /* Column to filter on */
2622 int bZero
, /* Zero out anything following *ppList */
2623 char **ppList
, /* IN/OUT: Pointer to position list */
2624 int *pnList
/* IN/OUT: Size of buffer *ppList in bytes */
2626 char *pList
= *ppList
;
2627 int nList
= *pnList
;
2628 char *pEnd
= &pList
[nList
];
2635 while( p
<pEnd
&& (c
| *p
)&0xFE ) c
= *p
++ & 0x80;
2637 if( iCol
==iCurrent
){
2638 nList
= (int)(p
- pList
);
2642 nList
-= (int)(p
- pList
);
2648 p
+= fts3GetVarint32(p
, &iCurrent
);
2651 if( bZero
&& (pEnd
- &pList
[nList
])>0){
2652 memset(&pList
[nList
], 0, pEnd
- &pList
[nList
]);
2659 ** Cache data in the Fts3MultiSegReader.aBuffer[] buffer (overwriting any
2660 ** existing data). Grow the buffer if required.
2662 ** If successful, return SQLITE_OK. Otherwise, if an OOM error is encountered
2663 ** trying to resize the buffer, return SQLITE_NOMEM.
2665 static int fts3MsrBufferData(
2666 Fts3MultiSegReader
*pMsr
, /* Multi-segment-reader handle */
2670 if( nList
>pMsr
->nBuffer
){
2672 pMsr
->nBuffer
= nList
*2;
2673 pNew
= (char *)sqlite3_realloc(pMsr
->aBuffer
, pMsr
->nBuffer
);
2674 if( !pNew
) return SQLITE_NOMEM
;
2675 pMsr
->aBuffer
= pNew
;
2679 memcpy(pMsr
->aBuffer
, pList
, nList
);
2683 int sqlite3Fts3MsrIncrNext(
2684 Fts3Table
*p
, /* Virtual table handle */
2685 Fts3MultiSegReader
*pMsr
, /* Multi-segment-reader handle */
2686 sqlite3_int64
*piDocid
, /* OUT: Docid value */
2687 char **paPoslist
, /* OUT: Pointer to position list */
2688 int *pnPoslist
/* OUT: Size of position list in bytes */
2690 int nMerge
= pMsr
->nAdvance
;
2691 Fts3SegReader
**apSegment
= pMsr
->apSegment
;
2692 int (*xCmp
)(Fts3SegReader
*, Fts3SegReader
*) = (
2693 p
->bDescIdx
? fts3SegReaderDoclistCmpRev
: fts3SegReaderDoclistCmp
2702 Fts3SegReader
*pSeg
;
2703 pSeg
= pMsr
->apSegment
[0];
2705 if( pSeg
->pOffsetList
==0 ){
2713 sqlite3_int64 iDocid
= apSegment
[0]->iDocid
;
2715 rc
= fts3SegReaderNextDocid(p
, apSegment
[0], &pList
, &nList
);
2717 while( rc
==SQLITE_OK
2719 && apSegment
[j
]->pOffsetList
2720 && apSegment
[j
]->iDocid
==iDocid
2722 rc
= fts3SegReaderNextDocid(p
, apSegment
[j
], 0, 0);
2725 if( rc
!=SQLITE_OK
) return rc
;
2726 fts3SegReaderSort(pMsr
->apSegment
, nMerge
, j
, xCmp
);
2728 if( nList
>0 && fts3SegReaderIsPending(apSegment
[0]) ){
2729 rc
= fts3MsrBufferData(pMsr
, pList
, nList
+1);
2730 if( rc
!=SQLITE_OK
) return rc
;
2731 assert( (pMsr
->aBuffer
[nList
] & 0xFE)==0x00 );
2732 pList
= pMsr
->aBuffer
;
2735 if( pMsr
->iColFilter
>=0 ){
2736 fts3ColumnFilter(pMsr
->iColFilter
, 1, &pList
, &nList
);
2751 static int fts3SegReaderStart(
2752 Fts3Table
*p
, /* Virtual table handle */
2753 Fts3MultiSegReader
*pCsr
, /* Cursor object */
2754 const char *zTerm
, /* Term searched for (or NULL) */
2755 int nTerm
/* Length of zTerm in bytes */
2758 int nSeg
= pCsr
->nSegment
;
2760 /* If the Fts3SegFilter defines a specific term (or term prefix) to search
2761 ** for, then advance each segment iterator until it points to a term of
2762 ** equal or greater value than the specified term. This prevents many
2763 ** unnecessary merge/sort operations for the case where single segment
2764 ** b-tree leaf nodes contain more than one term.
2766 for(i
=0; pCsr
->bRestart
==0 && i
<pCsr
->nSegment
; i
++){
2768 Fts3SegReader
*pSeg
= pCsr
->apSegment
[i
];
2770 int rc
= fts3SegReaderNext(p
, pSeg
, 0);
2771 if( rc
!=SQLITE_OK
) return rc
;
2772 }while( zTerm
&& (res
= fts3SegReaderTermCmp(pSeg
, zTerm
, nTerm
))<0 );
2774 if( pSeg
->bLookup
&& res
!=0 ){
2775 fts3SegReaderSetEof(pSeg
);
2778 fts3SegReaderSort(pCsr
->apSegment
, nSeg
, nSeg
, fts3SegReaderCmp
);
2783 int sqlite3Fts3SegReaderStart(
2784 Fts3Table
*p
, /* Virtual table handle */
2785 Fts3MultiSegReader
*pCsr
, /* Cursor object */
2786 Fts3SegFilter
*pFilter
/* Restrictions on range of iteration */
2788 pCsr
->pFilter
= pFilter
;
2789 return fts3SegReaderStart(p
, pCsr
, pFilter
->zTerm
, pFilter
->nTerm
);
2792 int sqlite3Fts3MsrIncrStart(
2793 Fts3Table
*p
, /* Virtual table handle */
2794 Fts3MultiSegReader
*pCsr
, /* Cursor object */
2795 int iCol
, /* Column to match on. */
2796 const char *zTerm
, /* Term to iterate through a doclist for */
2797 int nTerm
/* Number of bytes in zTerm */
2801 int nSegment
= pCsr
->nSegment
;
2802 int (*xCmp
)(Fts3SegReader
*, Fts3SegReader
*) = (
2803 p
->bDescIdx
? fts3SegReaderDoclistCmpRev
: fts3SegReaderDoclistCmp
2806 assert( pCsr
->pFilter
==0 );
2807 assert( zTerm
&& nTerm
>0 );
2809 /* Advance each segment iterator until it points to the term zTerm/nTerm. */
2810 rc
= fts3SegReaderStart(p
, pCsr
, zTerm
, nTerm
);
2811 if( rc
!=SQLITE_OK
) return rc
;
2813 /* Determine how many of the segments actually point to zTerm/nTerm. */
2814 for(i
=0; i
<nSegment
; i
++){
2815 Fts3SegReader
*pSeg
= pCsr
->apSegment
[i
];
2816 if( !pSeg
->aNode
|| fts3SegReaderTermCmp(pSeg
, zTerm
, nTerm
) ){
2822 /* Advance each of the segments to point to the first docid. */
2823 for(i
=0; i
<pCsr
->nAdvance
; i
++){
2824 rc
= fts3SegReaderFirstDocid(p
, pCsr
->apSegment
[i
]);
2825 if( rc
!=SQLITE_OK
) return rc
;
2827 fts3SegReaderSort(pCsr
->apSegment
, i
, i
, xCmp
);
2829 assert( iCol
<0 || iCol
<p
->nColumn
);
2830 pCsr
->iColFilter
= iCol
;
2836 ** This function is called on a MultiSegReader that has been started using
2837 ** sqlite3Fts3MsrIncrStart(). One or more calls to MsrIncrNext() may also
2838 ** have been made. Calling this function puts the MultiSegReader in such
2839 ** a state that if the next two calls are:
2841 ** sqlite3Fts3SegReaderStart()
2842 ** sqlite3Fts3SegReaderStep()
2844 ** then the entire doclist for the term is available in
2845 ** MultiSegReader.aDoclist/nDoclist.
2847 int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader
*pCsr
){
2848 int i
; /* Used to iterate through segment-readers */
2850 assert( pCsr
->zTerm
==0 );
2851 assert( pCsr
->nTerm
==0 );
2852 assert( pCsr
->aDoclist
==0 );
2853 assert( pCsr
->nDoclist
==0 );
2857 for(i
=0; i
<pCsr
->nSegment
; i
++){
2858 pCsr
->apSegment
[i
]->pOffsetList
= 0;
2859 pCsr
->apSegment
[i
]->nOffsetList
= 0;
2860 pCsr
->apSegment
[i
]->iDocid
= 0;
2866 static int fts3GrowSegReaderBuffer(Fts3MultiSegReader
*pCsr
, int nReq
){
2867 if( nReq
>pCsr
->nBuffer
){
2869 pCsr
->nBuffer
= nReq
*2;
2870 aNew
= sqlite3_realloc(pCsr
->aBuffer
, pCsr
->nBuffer
);
2872 return SQLITE_NOMEM
;
2874 pCsr
->aBuffer
= aNew
;
2880 int sqlite3Fts3SegReaderStep(
2881 Fts3Table
*p
, /* Virtual table handle */
2882 Fts3MultiSegReader
*pCsr
/* Cursor object */
2886 int isIgnoreEmpty
= (pCsr
->pFilter
->flags
& FTS3_SEGMENT_IGNORE_EMPTY
);
2887 int isRequirePos
= (pCsr
->pFilter
->flags
& FTS3_SEGMENT_REQUIRE_POS
);
2888 int isColFilter
= (pCsr
->pFilter
->flags
& FTS3_SEGMENT_COLUMN_FILTER
);
2889 int isPrefix
= (pCsr
->pFilter
->flags
& FTS3_SEGMENT_PREFIX
);
2890 int isScan
= (pCsr
->pFilter
->flags
& FTS3_SEGMENT_SCAN
);
2891 int isFirst
= (pCsr
->pFilter
->flags
& FTS3_SEGMENT_FIRST
);
2893 Fts3SegReader
**apSegment
= pCsr
->apSegment
;
2894 int nSegment
= pCsr
->nSegment
;
2895 Fts3SegFilter
*pFilter
= pCsr
->pFilter
;
2896 int (*xCmp
)(Fts3SegReader
*, Fts3SegReader
*) = (
2897 p
->bDescIdx
? fts3SegReaderDoclistCmpRev
: fts3SegReaderDoclistCmp
2900 if( pCsr
->nSegment
==0 ) return SQLITE_OK
;
2906 /* Advance the first pCsr->nAdvance entries in the apSegment[] array
2907 ** forward. Then sort the list in order of current term again.
2909 for(i
=0; i
<pCsr
->nAdvance
; i
++){
2910 Fts3SegReader
*pSeg
= apSegment
[i
];
2911 if( pSeg
->bLookup
){
2912 fts3SegReaderSetEof(pSeg
);
2914 rc
= fts3SegReaderNext(p
, pSeg
, 0);
2916 if( rc
!=SQLITE_OK
) return rc
;
2918 fts3SegReaderSort(apSegment
, nSegment
, pCsr
->nAdvance
, fts3SegReaderCmp
);
2921 /* If all the seg-readers are at EOF, we're finished. return SQLITE_OK. */
2922 assert( rc
==SQLITE_OK
);
2923 if( apSegment
[0]->aNode
==0 ) break;
2925 pCsr
->nTerm
= apSegment
[0]->nTerm
;
2926 pCsr
->zTerm
= apSegment
[0]->zTerm
;
2928 /* If this is a prefix-search, and if the term that apSegment[0] points
2929 ** to does not share a suffix with pFilter->zTerm/nTerm, then all
2930 ** required callbacks have been made. In this case exit early.
2932 ** Similarly, if this is a search for an exact match, and the first term
2933 ** of segment apSegment[0] is not a match, exit early.
2935 if( pFilter
->zTerm
&& !isScan
){
2936 if( pCsr
->nTerm
<pFilter
->nTerm
2937 || (!isPrefix
&& pCsr
->nTerm
>pFilter
->nTerm
)
2938 || memcmp(pCsr
->zTerm
, pFilter
->zTerm
, pFilter
->nTerm
)
2945 while( nMerge
<nSegment
2946 && apSegment
[nMerge
]->aNode
2947 && apSegment
[nMerge
]->nTerm
==pCsr
->nTerm
2948 && 0==memcmp(pCsr
->zTerm
, apSegment
[nMerge
]->zTerm
, pCsr
->nTerm
)
2953 assert( isIgnoreEmpty
|| (isRequirePos
&& !isColFilter
) );
2957 && (p
->bDescIdx
==0 || fts3SegReaderIsPending(apSegment
[0])==0)
2959 pCsr
->nDoclist
= apSegment
[0]->nDoclist
;
2960 if( fts3SegReaderIsPending(apSegment
[0]) ){
2961 rc
= fts3MsrBufferData(pCsr
, apSegment
[0]->aDoclist
, pCsr
->nDoclist
);
2962 pCsr
->aDoclist
= pCsr
->aBuffer
;
2964 pCsr
->aDoclist
= apSegment
[0]->aDoclist
;
2966 if( rc
==SQLITE_OK
) rc
= SQLITE_ROW
;
2968 int nDoclist
= 0; /* Size of doclist */
2969 sqlite3_int64 iPrev
= 0; /* Previous docid stored in doclist */
2971 /* The current term of the first nMerge entries in the array
2972 ** of Fts3SegReader objects is the same. The doclists must be merged
2973 ** and a single term returned with the merged doclist.
2975 for(i
=0; i
<nMerge
; i
++){
2976 fts3SegReaderFirstDocid(p
, apSegment
[i
]);
2978 fts3SegReaderSort(apSegment
, nMerge
, nMerge
, xCmp
);
2979 while( apSegment
[0]->pOffsetList
){
2980 int j
; /* Number of segments that share a docid */
2984 sqlite3_int64 iDocid
= apSegment
[0]->iDocid
;
2985 fts3SegReaderNextDocid(p
, apSegment
[0], &pList
, &nList
);
2988 && apSegment
[j
]->pOffsetList
2989 && apSegment
[j
]->iDocid
==iDocid
2991 fts3SegReaderNextDocid(p
, apSegment
[j
], 0, 0);
2996 fts3ColumnFilter(pFilter
->iCol
, 0, &pList
, &nList
);
2999 if( !isIgnoreEmpty
|| nList
>0 ){
3001 /* Calculate the 'docid' delta value to write into the merged
3003 sqlite3_int64 iDelta
;
3004 if( p
->bDescIdx
&& nDoclist
>0 ){
3005 if( iPrev
<=iDocid
) return FTS_CORRUPT_VTAB
;
3006 iDelta
= (i64
)((u64
)iPrev
- (u64
)iDocid
);
3008 if( nDoclist
>0 && iPrev
>=iDocid
) return FTS_CORRUPT_VTAB
;
3009 iDelta
= (i64
)((u64
)iDocid
- (u64
)iPrev
);
3012 nByte
= sqlite3Fts3VarintLen(iDelta
) + (isRequirePos
?nList
+1:0);
3014 rc
= fts3GrowSegReaderBuffer(pCsr
, nByte
+nDoclist
+FTS3_NODE_PADDING
);
3018 char *a
= &pCsr
->aBuffer
[nDoclist
];
3021 nWrite
= sqlite3Fts3FirstFilter(iDelta
, pList
, nList
, a
);
3027 nDoclist
+= sqlite3Fts3PutVarint(&pCsr
->aBuffer
[nDoclist
], iDelta
);
3030 memcpy(&pCsr
->aBuffer
[nDoclist
], pList
, nList
);
3032 pCsr
->aBuffer
[nDoclist
++] = '\0';
3037 fts3SegReaderSort(apSegment
, nMerge
, j
, xCmp
);
3040 rc
= fts3GrowSegReaderBuffer(pCsr
, nDoclist
+FTS3_NODE_PADDING
);
3042 memset(&pCsr
->aBuffer
[nDoclist
], 0, FTS3_NODE_PADDING
);
3043 pCsr
->aDoclist
= pCsr
->aBuffer
;
3044 pCsr
->nDoclist
= nDoclist
;
3048 pCsr
->nAdvance
= nMerge
;
3049 }while( rc
==SQLITE_OK
);
3055 void sqlite3Fts3SegReaderFinish(
3056 Fts3MultiSegReader
*pCsr
/* Cursor object */
3060 for(i
=0; i
<pCsr
->nSegment
; i
++){
3061 sqlite3Fts3SegReaderFree(pCsr
->apSegment
[i
]);
3063 sqlite3_free(pCsr
->apSegment
);
3064 sqlite3_free(pCsr
->aBuffer
);
3067 pCsr
->apSegment
= 0;
3073 ** Decode the "end_block" field, selected by column iCol of the SELECT
3074 ** statement passed as the first argument.
3076 ** The "end_block" field may contain either an integer, or a text field
3077 ** containing the text representation of two non-negative integers separated
3078 ** by one or more space (0x20) characters. In the first case, set *piEndBlock
3079 ** to the integer value and *pnByte to zero before returning. In the second,
3080 ** set *piEndBlock to the first value and *pnByte to the second.
3082 static void fts3ReadEndBlockField(
3083 sqlite3_stmt
*pStmt
,
3088 const unsigned char *zText
= sqlite3_column_text(pStmt
, iCol
);
3093 for(i
=0; zText
[i
]>='0' && zText
[i
]<='9'; i
++){
3094 iVal
= iVal
*10 + (zText
[i
] - '0');
3096 *piEndBlock
= (i64
)iVal
;
3097 while( zText
[i
]==' ' ) i
++;
3099 if( zText
[i
]=='-' ){
3103 for(/* no-op */; zText
[i
]>='0' && zText
[i
]<='9'; i
++){
3104 iVal
= iVal
*10 + (zText
[i
] - '0');
3106 *pnByte
= ((i64
)iVal
* (i64
)iMul
);
3112 ** A segment of size nByte bytes has just been written to absolute level
3113 ** iAbsLevel. Promote any segments that should be promoted as a result.
3115 static int fts3PromoteSegments(
3116 Fts3Table
*p
, /* FTS table handle */
3117 sqlite3_int64 iAbsLevel
, /* Absolute level just updated */
3118 sqlite3_int64 nByte
/* Size of new segment at iAbsLevel */
3121 sqlite3_stmt
*pRange
;
3123 rc
= fts3SqlStmt(p
, SQL_SELECT_LEVEL_RANGE2
, &pRange
, 0);
3125 if( rc
==SQLITE_OK
){
3127 i64 iLast
= (iAbsLevel
/FTS3_SEGDIR_MAXLEVEL
+ 1) * FTS3_SEGDIR_MAXLEVEL
- 1;
3128 i64 nLimit
= (nByte
*3)/2;
3130 /* Loop through all entries in the %_segdir table corresponding to
3131 ** segments in this index on levels greater than iAbsLevel. If there is
3132 ** at least one such segment, and it is possible to determine that all
3133 ** such segments are smaller than nLimit bytes in size, they will be
3134 ** promoted to level iAbsLevel. */
3135 sqlite3_bind_int64(pRange
, 1, iAbsLevel
+1);
3136 sqlite3_bind_int64(pRange
, 2, iLast
);
3137 while( SQLITE_ROW
==sqlite3_step(pRange
) ){
3138 i64 nSize
= 0, dummy
;
3139 fts3ReadEndBlockField(pRange
, 2, &dummy
, &nSize
);
3140 if( nSize
<=0 || nSize
>nLimit
){
3141 /* If nSize==0, then the %_segdir.end_block field does not not
3142 ** contain a size value. This happens if it was written by an
3143 ** old version of FTS. In this case it is not possible to determine
3144 ** the size of the segment, and so segment promotion does not
3151 rc
= sqlite3_reset(pRange
);
3155 sqlite3_stmt
*pUpdate1
= 0;
3156 sqlite3_stmt
*pUpdate2
= 0;
3158 if( rc
==SQLITE_OK
){
3159 rc
= fts3SqlStmt(p
, SQL_UPDATE_LEVEL_IDX
, &pUpdate1
, 0);
3161 if( rc
==SQLITE_OK
){
3162 rc
= fts3SqlStmt(p
, SQL_UPDATE_LEVEL
, &pUpdate2
, 0);
3165 if( rc
==SQLITE_OK
){
3167 /* Loop through all %_segdir entries for segments in this index with
3168 ** levels equal to or greater than iAbsLevel. As each entry is visited,
3169 ** updated it to set (level = -1) and (idx = N), where N is 0 for the
3170 ** oldest segment in the range, 1 for the next oldest, and so on.
3172 ** In other words, move all segments being promoted to level -1,
3173 ** setting the "idx" fields as appropriate to keep them in the same
3174 ** order. The contents of level -1 (which is never used, except
3175 ** transiently here), will be moved back to level iAbsLevel below. */
3176 sqlite3_bind_int64(pRange
, 1, iAbsLevel
);
3177 while( SQLITE_ROW
==sqlite3_step(pRange
) ){
3178 sqlite3_bind_int(pUpdate1
, 1, iIdx
++);
3179 sqlite3_bind_int(pUpdate1
, 2, sqlite3_column_int(pRange
, 0));
3180 sqlite3_bind_int(pUpdate1
, 3, sqlite3_column_int(pRange
, 1));
3181 sqlite3_step(pUpdate1
);
3182 rc
= sqlite3_reset(pUpdate1
);
3183 if( rc
!=SQLITE_OK
){
3184 sqlite3_reset(pRange
);
3189 if( rc
==SQLITE_OK
){
3190 rc
= sqlite3_reset(pRange
);
3193 /* Move level -1 to level iAbsLevel */
3194 if( rc
==SQLITE_OK
){
3195 sqlite3_bind_int64(pUpdate2
, 1, iAbsLevel
);
3196 sqlite3_step(pUpdate2
);
3197 rc
= sqlite3_reset(pUpdate2
);
3207 ** Merge all level iLevel segments in the database into a single
3208 ** iLevel+1 segment. Or, if iLevel<0, merge all segments into a
3209 ** single segment with a level equal to the numerically largest level
3210 ** currently present in the database.
3212 ** If this function is called with iLevel<0, but there is only one
3213 ** segment in the database, SQLITE_DONE is returned immediately.
3214 ** Otherwise, if successful, SQLITE_OK is returned. If an error occurs,
3215 ** an SQLite error code is returned.
3217 static int fts3SegmentMerge(
3219 int iLangid
, /* Language id to merge */
3220 int iIndex
, /* Index in p->aIndex[] to merge */
3221 int iLevel
/* Level to merge */
3223 int rc
; /* Return code */
3224 int iIdx
= 0; /* Index of new segment */
3225 sqlite3_int64 iNewLevel
= 0; /* Level/index to create new segment at */
3226 SegmentWriter
*pWriter
= 0; /* Used to write the new, merged, segment */
3227 Fts3SegFilter filter
; /* Segment term filter condition */
3228 Fts3MultiSegReader csr
; /* Cursor to iterate through level(s) */
3229 int bIgnoreEmpty
= 0; /* True to ignore empty segments */
3230 i64 iMaxLevel
= 0; /* Max level number for this index/langid */
3232 assert( iLevel
==FTS3_SEGCURSOR_ALL
3233 || iLevel
==FTS3_SEGCURSOR_PENDING
3236 assert( iLevel
<FTS3_SEGDIR_MAXLEVEL
);
3237 assert( iIndex
>=0 && iIndex
<p
->nIndex
);
3239 rc
= sqlite3Fts3SegReaderCursor(p
, iLangid
, iIndex
, iLevel
, 0, 0, 1, 0, &csr
);
3240 if( rc
!=SQLITE_OK
|| csr
.nSegment
==0 ) goto finished
;
3242 if( iLevel
!=FTS3_SEGCURSOR_PENDING
){
3243 rc
= fts3SegmentMaxLevel(p
, iLangid
, iIndex
, &iMaxLevel
);
3244 if( rc
!=SQLITE_OK
) goto finished
;
3247 if( iLevel
==FTS3_SEGCURSOR_ALL
){
3248 /* This call is to merge all segments in the database to a single
3249 ** segment. The level of the new segment is equal to the numerically
3250 ** greatest segment level currently present in the database for this
3251 ** index. The idx of the new segment is always 0. */
3252 if( csr
.nSegment
==1 && 0==fts3SegReaderIsPending(csr
.apSegment
[0]) ){
3256 iNewLevel
= iMaxLevel
;
3260 /* This call is to merge all segments at level iLevel. find the next
3261 ** available segment index at level iLevel+1. The call to
3262 ** fts3AllocateSegdirIdx() will merge the segments at level iLevel+1 to
3263 ** a single iLevel+2 segment if necessary. */
3264 assert( FTS3_SEGCURSOR_PENDING
==-1 );
3265 iNewLevel
= getAbsoluteLevel(p
, iLangid
, iIndex
, iLevel
+1);
3266 rc
= fts3AllocateSegdirIdx(p
, iLangid
, iIndex
, iLevel
+1, &iIdx
);
3267 bIgnoreEmpty
= (iLevel
!=FTS3_SEGCURSOR_PENDING
) && (iNewLevel
>iMaxLevel
);
3269 if( rc
!=SQLITE_OK
) goto finished
;
3271 assert( csr
.nSegment
>0 );
3272 assert_fts3_nc( iNewLevel
>=getAbsoluteLevel(p
, iLangid
, iIndex
, 0) );
3274 iNewLevel
<getAbsoluteLevel(p
, iLangid
, iIndex
,FTS3_SEGDIR_MAXLEVEL
)
3277 memset(&filter
, 0, sizeof(Fts3SegFilter
));
3278 filter
.flags
= FTS3_SEGMENT_REQUIRE_POS
;
3279 filter
.flags
|= (bIgnoreEmpty
? FTS3_SEGMENT_IGNORE_EMPTY
: 0);
3281 rc
= sqlite3Fts3SegReaderStart(p
, &csr
, &filter
);
3282 while( SQLITE_OK
==rc
){
3283 rc
= sqlite3Fts3SegReaderStep(p
, &csr
);
3284 if( rc
!=SQLITE_ROW
) break;
3285 rc
= fts3SegWriterAdd(p
, &pWriter
, 1,
3286 csr
.zTerm
, csr
.nTerm
, csr
.aDoclist
, csr
.nDoclist
);
3288 if( rc
!=SQLITE_OK
) goto finished
;
3289 assert_fts3_nc( pWriter
|| bIgnoreEmpty
);
3291 if( iLevel
!=FTS3_SEGCURSOR_PENDING
){
3292 rc
= fts3DeleteSegdir(
3293 p
, iLangid
, iIndex
, iLevel
, csr
.apSegment
, csr
.nSegment
3295 if( rc
!=SQLITE_OK
) goto finished
;
3298 rc
= fts3SegWriterFlush(p
, pWriter
, iNewLevel
, iIdx
);
3299 if( rc
==SQLITE_OK
){
3300 if( iLevel
==FTS3_SEGCURSOR_PENDING
|| iNewLevel
<iMaxLevel
){
3301 rc
= fts3PromoteSegments(p
, iNewLevel
, pWriter
->nLeafData
);
3307 fts3SegWriterFree(pWriter
);
3308 sqlite3Fts3SegReaderFinish(&csr
);
3314 ** Flush the contents of pendingTerms to level 0 segments.
3316 int sqlite3Fts3PendingTermsFlush(Fts3Table
*p
){
3320 for(i
=0; rc
==SQLITE_OK
&& i
<p
->nIndex
; i
++){
3321 rc
= fts3SegmentMerge(p
, p
->iPrevLangid
, i
, FTS3_SEGCURSOR_PENDING
);
3322 if( rc
==SQLITE_DONE
) rc
= SQLITE_OK
;
3324 sqlite3Fts3PendingTermsClear(p
);
3326 /* Determine the auto-incr-merge setting if unknown. If enabled,
3327 ** estimate the number of leaf blocks of content to be written
3329 if( rc
==SQLITE_OK
&& p
->bHasStat
3330 && p
->nAutoincrmerge
==0xff && p
->nLeafAdd
>0
3332 sqlite3_stmt
*pStmt
= 0;
3333 rc
= fts3SqlStmt(p
, SQL_SELECT_STAT
, &pStmt
, 0);
3334 if( rc
==SQLITE_OK
){
3335 sqlite3_bind_int(pStmt
, 1, FTS_STAT_AUTOINCRMERGE
);
3336 rc
= sqlite3_step(pStmt
);
3337 if( rc
==SQLITE_ROW
){
3338 p
->nAutoincrmerge
= sqlite3_column_int(pStmt
, 0);
3339 if( p
->nAutoincrmerge
==1 ) p
->nAutoincrmerge
= 8;
3340 }else if( rc
==SQLITE_DONE
){
3341 p
->nAutoincrmerge
= 0;
3343 rc
= sqlite3_reset(pStmt
);
3350 ** Encode N integers as varints into a blob.
3352 static void fts3EncodeIntArray(
3353 int N
, /* The number of integers to encode */
3354 u32
*a
, /* The integer values */
3355 char *zBuf
, /* Write the BLOB here */
3356 int *pNBuf
/* Write number of bytes if zBuf[] used here */
3359 for(i
=j
=0; i
<N
; i
++){
3360 j
+= sqlite3Fts3PutVarint(&zBuf
[j
], (sqlite3_int64
)a
[i
]);
3366 ** Decode a blob of varints into N integers
3368 static void fts3DecodeIntArray(
3369 int N
, /* The number of integers to decode */
3370 u32
*a
, /* Write the integer values */
3371 const char *zBuf
, /* The BLOB containing the varints */
3372 int nBuf
/* size of the BLOB */
3375 if( nBuf
&& (zBuf
[nBuf
-1]&0x80)==0 ){
3377 for(i
=j
=0; i
<N
&& j
<nBuf
; i
++){
3379 j
+= sqlite3Fts3GetVarint(&zBuf
[j
], &x
);
3380 a
[i
] = (u32
)(x
& 0xffffffff);
3383 while( i
<N
) a
[i
++] = 0;
3387 ** Insert the sizes (in tokens) for each column of the document
3388 ** with docid equal to p->iPrevDocid. The sizes are encoded as
3389 ** a blob of varints.
3391 static void fts3InsertDocsize(
3392 int *pRC
, /* Result code */
3393 Fts3Table
*p
, /* Table into which to insert */
3394 u32
*aSz
/* Sizes of each column, in tokens */
3396 char *pBlob
; /* The BLOB encoding of the document size */
3397 int nBlob
; /* Number of bytes in the BLOB */
3398 sqlite3_stmt
*pStmt
; /* Statement used to insert the encoding */
3399 int rc
; /* Result code from subfunctions */
3402 pBlob
= sqlite3_malloc64( 10*(sqlite3_int64
)p
->nColumn
);
3404 *pRC
= SQLITE_NOMEM
;
3407 fts3EncodeIntArray(p
->nColumn
, aSz
, pBlob
, &nBlob
);
3408 rc
= fts3SqlStmt(p
, SQL_REPLACE_DOCSIZE
, &pStmt
, 0);
3410 sqlite3_free(pBlob
);
3414 sqlite3_bind_int64(pStmt
, 1, p
->iPrevDocid
);
3415 sqlite3_bind_blob(pStmt
, 2, pBlob
, nBlob
, sqlite3_free
);
3416 sqlite3_step(pStmt
);
3417 *pRC
= sqlite3_reset(pStmt
);
3421 ** Record 0 of the %_stat table contains a blob consisting of N varints,
3422 ** where N is the number of user defined columns in the fts3 table plus
3423 ** two. If nCol is the number of user defined columns, then values of the
3424 ** varints are set as follows:
3426 ** Varint 0: Total number of rows in the table.
3428 ** Varint 1..nCol: For each column, the total number of tokens stored in
3429 ** the column for all rows of the table.
3431 ** Varint 1+nCol: The total size, in bytes, of all text values in all
3432 ** columns of all rows of the table.
3435 static void fts3UpdateDocTotals(
3436 int *pRC
, /* The result code */
3437 Fts3Table
*p
, /* Table being updated */
3438 u32
*aSzIns
, /* Size increases */
3439 u32
*aSzDel
, /* Size decreases */
3440 int nChng
/* Change in the number of documents */
3442 char *pBlob
; /* Storage for BLOB written into %_stat */
3443 int nBlob
; /* Size of BLOB written into %_stat */
3444 u32
*a
; /* Array of integers that becomes the BLOB */
3445 sqlite3_stmt
*pStmt
; /* Statement for reading and writing */
3446 int i
; /* Loop counter */
3447 int rc
; /* Result code from subfunctions */
3449 const int nStat
= p
->nColumn
+2;
3452 a
= sqlite3_malloc64( (sizeof(u32
)+10)*(sqlite3_int64
)nStat
);
3454 *pRC
= SQLITE_NOMEM
;
3457 pBlob
= (char*)&a
[nStat
];
3458 rc
= fts3SqlStmt(p
, SQL_SELECT_STAT
, &pStmt
, 0);
3464 sqlite3_bind_int(pStmt
, 1, FTS_STAT_DOCTOTAL
);
3465 if( sqlite3_step(pStmt
)==SQLITE_ROW
){
3466 fts3DecodeIntArray(nStat
, a
,
3467 sqlite3_column_blob(pStmt
, 0),
3468 sqlite3_column_bytes(pStmt
, 0));
3470 memset(a
, 0, sizeof(u32
)*(nStat
) );
3472 rc
= sqlite3_reset(pStmt
);
3473 if( rc
!=SQLITE_OK
){
3478 if( nChng
<0 && a
[0]<(u32
)(-nChng
) ){
3483 for(i
=0; i
<p
->nColumn
+1; i
++){
3485 if( x
+aSzIns
[i
] < aSzDel
[i
] ){
3488 x
= x
+ aSzIns
[i
] - aSzDel
[i
];
3492 fts3EncodeIntArray(nStat
, a
, pBlob
, &nBlob
);
3493 rc
= fts3SqlStmt(p
, SQL_REPLACE_STAT
, &pStmt
, 0);
3499 sqlite3_bind_int(pStmt
, 1, FTS_STAT_DOCTOTAL
);
3500 sqlite3_bind_blob(pStmt
, 2, pBlob
, nBlob
, SQLITE_STATIC
);
3501 sqlite3_step(pStmt
);
3502 *pRC
= sqlite3_reset(pStmt
);
3503 sqlite3_bind_null(pStmt
, 2);
3508 ** Merge the entire database so that there is one segment for each
3509 ** iIndex/iLangid combination.
3511 static int fts3DoOptimize(Fts3Table
*p
, int bReturnDone
){
3514 sqlite3_stmt
*pAllLangid
= 0;
3516 rc
= sqlite3Fts3PendingTermsFlush(p
);
3517 if( rc
==SQLITE_OK
){
3518 rc
= fts3SqlStmt(p
, SQL_SELECT_ALL_LANGID
, &pAllLangid
, 0);
3520 if( rc
==SQLITE_OK
){
3522 sqlite3_bind_int(pAllLangid
, 1, p
->iPrevLangid
);
3523 sqlite3_bind_int(pAllLangid
, 2, p
->nIndex
);
3524 while( sqlite3_step(pAllLangid
)==SQLITE_ROW
){
3526 int iLangid
= sqlite3_column_int(pAllLangid
, 0);
3527 for(i
=0; rc
==SQLITE_OK
&& i
<p
->nIndex
; i
++){
3528 rc
= fts3SegmentMerge(p
, iLangid
, i
, FTS3_SEGCURSOR_ALL
);
3529 if( rc
==SQLITE_DONE
){
3535 rc2
= sqlite3_reset(pAllLangid
);
3536 if( rc
==SQLITE_OK
) rc
= rc2
;
3539 sqlite3Fts3SegmentsClose(p
);
3541 return (rc
==SQLITE_OK
&& bReturnDone
&& bSeenDone
) ? SQLITE_DONE
: rc
;
3545 ** This function is called when the user executes the following statement:
3547 ** INSERT INTO <tbl>(<tbl>) VALUES('rebuild');
3549 ** The entire FTS index is discarded and rebuilt. If the table is one
3550 ** created using the content=xxx option, then the new index is based on
3551 ** the current contents of the xxx table. Otherwise, it is rebuilt based
3552 ** on the contents of the %_content table.
3554 static int fts3DoRebuild(Fts3Table
*p
){
3555 int rc
; /* Return Code */
3557 rc
= fts3DeleteAll(p
, 0);
3558 if( rc
==SQLITE_OK
){
3562 sqlite3_stmt
*pStmt
= 0;
3565 /* Compose and prepare an SQL statement to loop through the content table */
3566 char *zSql
= sqlite3_mprintf("SELECT %s" , p
->zReadExprlist
);
3570 rc
= sqlite3_prepare_v2(p
->db
, zSql
, -1, &pStmt
, 0);
3574 if( rc
==SQLITE_OK
){
3575 sqlite3_int64 nByte
= sizeof(u32
) * ((sqlite3_int64
)p
->nColumn
+1)*3;
3576 aSz
= (u32
*)sqlite3_malloc64(nByte
);
3580 memset(aSz
, 0, nByte
);
3581 aSzIns
= &aSz
[p
->nColumn
+1];
3582 aSzDel
= &aSzIns
[p
->nColumn
+1];
3586 while( rc
==SQLITE_OK
&& SQLITE_ROW
==sqlite3_step(pStmt
) ){
3588 int iLangid
= langidFromSelect(p
, pStmt
);
3589 rc
= fts3PendingTermsDocid(p
, 0, iLangid
, sqlite3_column_int64(pStmt
, 0));
3590 memset(aSz
, 0, sizeof(aSz
[0]) * (p
->nColumn
+1));
3591 for(iCol
=0; rc
==SQLITE_OK
&& iCol
<p
->nColumn
; iCol
++){
3592 if( p
->abNotindexed
[iCol
]==0 ){
3593 const char *z
= (const char *) sqlite3_column_text(pStmt
, iCol
+1);
3594 rc
= fts3PendingTermsAdd(p
, iLangid
, z
, iCol
, &aSz
[iCol
]);
3595 aSz
[p
->nColumn
] += sqlite3_column_bytes(pStmt
, iCol
+1);
3598 if( p
->bHasDocsize
){
3599 fts3InsertDocsize(&rc
, p
, aSz
);
3601 if( rc
!=SQLITE_OK
){
3602 sqlite3_finalize(pStmt
);
3606 for(iCol
=0; iCol
<=p
->nColumn
; iCol
++){
3607 aSzIns
[iCol
] += aSz
[iCol
];
3612 fts3UpdateDocTotals(&rc
, p
, aSzIns
, aSzDel
, nEntry
);
3617 int rc2
= sqlite3_finalize(pStmt
);
3618 if( rc
==SQLITE_OK
){
3629 ** This function opens a cursor used to read the input data for an
3630 ** incremental merge operation. Specifically, it opens a cursor to scan
3631 ** the oldest nSeg segments (idx=0 through idx=(nSeg-1)) in absolute
3634 static int fts3IncrmergeCsr(
3635 Fts3Table
*p
, /* FTS3 table handle */
3636 sqlite3_int64 iAbsLevel
, /* Absolute level to open */
3637 int nSeg
, /* Number of segments to merge */
3638 Fts3MultiSegReader
*pCsr
/* Cursor object to populate */
3640 int rc
; /* Return Code */
3641 sqlite3_stmt
*pStmt
= 0; /* Statement used to read %_segdir entry */
3642 sqlite3_int64 nByte
; /* Bytes allocated at pCsr->apSegment[] */
3644 /* Allocate space for the Fts3MultiSegReader.aCsr[] array */
3645 memset(pCsr
, 0, sizeof(*pCsr
));
3646 nByte
= sizeof(Fts3SegReader
*) * nSeg
;
3647 pCsr
->apSegment
= (Fts3SegReader
**)sqlite3_malloc64(nByte
);
3649 if( pCsr
->apSegment
==0 ){
3652 memset(pCsr
->apSegment
, 0, nByte
);
3653 rc
= fts3SqlStmt(p
, SQL_SELECT_LEVEL
, &pStmt
, 0);
3655 if( rc
==SQLITE_OK
){
3658 sqlite3_bind_int64(pStmt
, 1, iAbsLevel
);
3659 assert( pCsr
->nSegment
==0 );
3660 for(i
=0; rc
==SQLITE_OK
&& sqlite3_step(pStmt
)==SQLITE_ROW
&& i
<nSeg
; i
++){
3661 rc
= sqlite3Fts3SegReaderNew(i
, 0,
3662 sqlite3_column_int64(pStmt
, 1), /* segdir.start_block */
3663 sqlite3_column_int64(pStmt
, 2), /* segdir.leaves_end_block */
3664 sqlite3_column_int64(pStmt
, 3), /* segdir.end_block */
3665 sqlite3_column_blob(pStmt
, 4), /* segdir.root */
3666 sqlite3_column_bytes(pStmt
, 4), /* segdir.root */
3671 rc2
= sqlite3_reset(pStmt
);
3672 if( rc
==SQLITE_OK
) rc
= rc2
;
3678 typedef struct IncrmergeWriter IncrmergeWriter
;
3679 typedef struct NodeWriter NodeWriter
;
3680 typedef struct Blob Blob
;
3681 typedef struct NodeReader NodeReader
;
3684 ** An instance of the following structure is used as a dynamic buffer
3685 ** to build up nodes or other blobs of data in.
3687 ** The function blobGrowBuffer() is used to extend the allocation.
3690 char *a
; /* Pointer to allocation */
3691 int n
; /* Number of valid bytes of data in a[] */
3692 int nAlloc
; /* Allocated size of a[] (nAlloc>=n) */
3696 ** This structure is used to build up buffers containing segment b-tree
3700 sqlite3_int64 iBlock
; /* Current block id */
3701 Blob key
; /* Last key written to the current block */
3702 Blob block
; /* Current block image */
3706 ** An object of this type contains the state required to create or append
3707 ** to an appendable b-tree segment.
3709 struct IncrmergeWriter
{
3710 int nLeafEst
; /* Space allocated for leaf blocks */
3711 int nWork
; /* Number of leaf pages flushed */
3712 sqlite3_int64 iAbsLevel
; /* Absolute level of input segments */
3713 int iIdx
; /* Index of *output* segment in iAbsLevel+1 */
3714 sqlite3_int64 iStart
; /* Block number of first allocated block */
3715 sqlite3_int64 iEnd
; /* Block number of last allocated block */
3716 sqlite3_int64 nLeafData
; /* Bytes of leaf page data so far */
3717 u8 bNoLeafData
; /* If true, store 0 for segment size */
3718 NodeWriter aNodeWriter
[FTS_MAX_APPENDABLE_HEIGHT
];
3722 ** An object of the following type is used to read data from a single
3723 ** FTS segment node. See the following functions:
3727 ** nodeReaderRelease()
3732 int iOff
; /* Current offset within aNode[] */
3734 /* Output variables. Containing the current node entry. */
3735 sqlite3_int64 iChild
; /* Pointer to child node */
3736 Blob term
; /* Current term */
3737 const char *aDoclist
; /* Pointer to doclist */
3738 int nDoclist
; /* Size of doclist in bytes */
3742 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
3743 ** Otherwise, if the allocation at pBlob->a is not already at least nMin
3744 ** bytes in size, extend (realloc) it to be so.
3746 ** If an OOM error occurs, set *pRc to SQLITE_NOMEM and leave pBlob->a
3747 ** unmodified. Otherwise, if the allocation succeeds, update pBlob->nAlloc
3748 ** to reflect the new size of the pBlob->a[] buffer.
3750 static void blobGrowBuffer(Blob
*pBlob
, int nMin
, int *pRc
){
3751 if( *pRc
==SQLITE_OK
&& nMin
>pBlob
->nAlloc
){
3753 char *a
= (char *)sqlite3_realloc(pBlob
->a
, nAlloc
);
3755 pBlob
->nAlloc
= nAlloc
;
3758 *pRc
= SQLITE_NOMEM
;
3764 ** Attempt to advance the node-reader object passed as the first argument to
3765 ** the next entry on the node.
3767 ** Return an error code if an error occurs (SQLITE_NOMEM is possible).
3768 ** Otherwise return SQLITE_OK. If there is no next entry on the node
3769 ** (e.g. because the current entry is the last) set NodeReader->aNode to
3770 ** NULL to indicate EOF. Otherwise, populate the NodeReader structure output
3771 ** variables for the new entry.
3773 static int nodeReaderNext(NodeReader
*p
){
3774 int bFirst
= (p
->term
.n
==0); /* True for first term on the node */
3775 int nPrefix
= 0; /* Bytes to copy from previous term */
3776 int nSuffix
= 0; /* Bytes to append to the prefix */
3777 int rc
= SQLITE_OK
; /* Return code */
3780 if( p
->iChild
&& bFirst
==0 ) p
->iChild
++;
3781 if( p
->iOff
>=p
->nNode
){
3786 p
->iOff
+= fts3GetVarint32(&p
->aNode
[p
->iOff
], &nPrefix
);
3788 p
->iOff
+= fts3GetVarint32(&p
->aNode
[p
->iOff
], &nSuffix
);
3790 if( nPrefix
>p
->term
.n
|| nSuffix
>p
->nNode
-p
->iOff
|| nSuffix
==0 ){
3791 return FTS_CORRUPT_VTAB
;
3793 blobGrowBuffer(&p
->term
, nPrefix
+nSuffix
, &rc
);
3794 if( rc
==SQLITE_OK
&& ALWAYS(p
->term
.a
!=0) ){
3795 memcpy(&p
->term
.a
[nPrefix
], &p
->aNode
[p
->iOff
], nSuffix
);
3796 p
->term
.n
= nPrefix
+nSuffix
;
3799 p
->iOff
+= fts3GetVarint32(&p
->aNode
[p
->iOff
], &p
->nDoclist
);
3800 if( (p
->nNode
-p
->iOff
)<p
->nDoclist
){
3801 return FTS_CORRUPT_VTAB
;
3803 p
->aDoclist
= &p
->aNode
[p
->iOff
];
3804 p
->iOff
+= p
->nDoclist
;
3809 assert_fts3_nc( p
->iOff
<=p
->nNode
);
3814 ** Release all dynamic resources held by node-reader object *p.
3816 static void nodeReaderRelease(NodeReader
*p
){
3817 sqlite3_free(p
->term
.a
);
3821 ** Initialize a node-reader object to read the node in buffer aNode/nNode.
3823 ** If successful, SQLITE_OK is returned and the NodeReader object set to
3824 ** point to the first entry on the node (if any). Otherwise, an SQLite
3825 ** error code is returned.
3827 static int nodeReaderInit(NodeReader
*p
, const char *aNode
, int nNode
){
3828 memset(p
, 0, sizeof(NodeReader
));
3832 /* Figure out if this is a leaf or an internal node. */
3833 if( aNode
&& aNode
[0] ){
3834 /* An internal node. */
3835 p
->iOff
= 1 + sqlite3Fts3GetVarint(&p
->aNode
[1], &p
->iChild
);
3840 return aNode
? nodeReaderNext(p
) : SQLITE_OK
;
3844 ** This function is called while writing an FTS segment each time a leaf o
3845 ** node is finished and written to disk. The key (zTerm/nTerm) is guaranteed
3846 ** to be greater than the largest key on the node just written, but smaller
3847 ** than or equal to the first key that will be written to the next leaf
3850 ** The block id of the leaf node just written to disk may be found in
3851 ** (pWriter->aNodeWriter[0].iBlock) when this function is called.
3853 static int fts3IncrmergePush(
3854 Fts3Table
*p
, /* Fts3 table handle */
3855 IncrmergeWriter
*pWriter
, /* Writer object */
3856 const char *zTerm
, /* Term to write to internal node */
3857 int nTerm
/* Bytes at zTerm */
3859 sqlite3_int64 iPtr
= pWriter
->aNodeWriter
[0].iBlock
;
3863 for(iLayer
=1; ALWAYS(iLayer
<FTS_MAX_APPENDABLE_HEIGHT
); iLayer
++){
3864 sqlite3_int64 iNextPtr
= 0;
3865 NodeWriter
*pNode
= &pWriter
->aNodeWriter
[iLayer
];
3871 /* Figure out how much space the key will consume if it is written to
3872 ** the current node of layer iLayer. Due to the prefix compression,
3873 ** the space required changes depending on which node the key is to
3875 nPrefix
= fts3PrefixCompress(pNode
->key
.a
, pNode
->key
.n
, zTerm
, nTerm
);
3876 nSuffix
= nTerm
- nPrefix
;
3877 if(nSuffix
<=0 ) return FTS_CORRUPT_VTAB
;
3878 nSpace
= sqlite3Fts3VarintLen(nPrefix
);
3879 nSpace
+= sqlite3Fts3VarintLen(nSuffix
) + nSuffix
;
3881 if( pNode
->key
.n
==0 || (pNode
->block
.n
+ nSpace
)<=p
->nNodeSize
){
3882 /* If the current node of layer iLayer contains zero keys, or if adding
3883 ** the key to it will not cause it to grow to larger than nNodeSize
3884 ** bytes in size, write the key here. */
3886 Blob
*pBlk
= &pNode
->block
;
3888 blobGrowBuffer(pBlk
, p
->nNodeSize
, &rc
);
3889 if( rc
==SQLITE_OK
){
3890 pBlk
->a
[0] = (char)iLayer
;
3891 pBlk
->n
= 1 + sqlite3Fts3PutVarint(&pBlk
->a
[1], iPtr
);
3894 blobGrowBuffer(pBlk
, pBlk
->n
+ nSpace
, &rc
);
3895 blobGrowBuffer(&pNode
->key
, nTerm
, &rc
);
3897 if( rc
==SQLITE_OK
){
3899 pBlk
->n
+= sqlite3Fts3PutVarint(&pBlk
->a
[pBlk
->n
], nPrefix
);
3901 pBlk
->n
+= sqlite3Fts3PutVarint(&pBlk
->a
[pBlk
->n
], nSuffix
);
3902 memcpy(&pBlk
->a
[pBlk
->n
], &zTerm
[nPrefix
], nSuffix
);
3905 memcpy(pNode
->key
.a
, zTerm
, nTerm
);
3906 pNode
->key
.n
= nTerm
;
3909 /* Otherwise, flush the current node of layer iLayer to disk.
3910 ** Then allocate a new, empty sibling node. The key will be written
3911 ** into the parent of this node. */
3912 rc
= fts3WriteSegment(p
, pNode
->iBlock
, pNode
->block
.a
, pNode
->block
.n
);
3914 assert( pNode
->block
.nAlloc
>=p
->nNodeSize
);
3915 pNode
->block
.a
[0] = (char)iLayer
;
3916 pNode
->block
.n
= 1 + sqlite3Fts3PutVarint(&pNode
->block
.a
[1], iPtr
+1);
3918 iNextPtr
= pNode
->iBlock
;
3923 if( rc
!=SQLITE_OK
|| iNextPtr
==0 ) return rc
;
3932 ** Append a term and (optionally) doclist to the FTS segment node currently
3933 ** stored in blob *pNode. The node need not contain any terms, but the
3934 ** header must be written before this function is called.
3936 ** A node header is a single 0x00 byte for a leaf node, or a height varint
3937 ** followed by the left-hand-child varint for an internal node.
3939 ** The term to be appended is passed via arguments zTerm/nTerm. For a
3940 ** leaf node, the doclist is passed as aDoclist/nDoclist. For an internal
3941 ** node, both aDoclist and nDoclist must be passed 0.
3943 ** If the size of the value in blob pPrev is zero, then this is the first
3944 ** term written to the node. Otherwise, pPrev contains a copy of the
3945 ** previous term. Before this function returns, it is updated to contain a
3946 ** copy of zTerm/nTerm.
3948 ** It is assumed that the buffer associated with pNode is already large
3949 ** enough to accommodate the new entry. The buffer associated with pPrev
3950 ** is extended by this function if requrired.
3952 ** If an error (i.e. OOM condition) occurs, an SQLite error code is
3953 ** returned. Otherwise, SQLITE_OK.
3955 static int fts3AppendToNode(
3956 Blob
*pNode
, /* Current node image to append to */
3957 Blob
*pPrev
, /* Buffer containing previous term written */
3958 const char *zTerm
, /* New term to write */
3959 int nTerm
, /* Size of zTerm in bytes */
3960 const char *aDoclist
, /* Doclist (or NULL) to write */
3961 int nDoclist
/* Size of aDoclist in bytes */
3963 int rc
= SQLITE_OK
; /* Return code */
3964 int bFirst
= (pPrev
->n
==0); /* True if this is the first term written */
3965 int nPrefix
; /* Size of term prefix in bytes */
3966 int nSuffix
; /* Size of term suffix in bytes */
3968 /* Node must have already been started. There must be a doclist for a
3969 ** leaf node, and there must not be a doclist for an internal node. */
3970 assert( pNode
->n
>0 );
3971 assert_fts3_nc( (pNode
->a
[0]=='\0')==(aDoclist
!=0) );
3973 blobGrowBuffer(pPrev
, nTerm
, &rc
);
3974 if( rc
!=SQLITE_OK
) return rc
;
3976 nPrefix
= fts3PrefixCompress(pPrev
->a
, pPrev
->n
, zTerm
, nTerm
);
3977 nSuffix
= nTerm
- nPrefix
;
3978 if( nSuffix
<=0 ) return FTS_CORRUPT_VTAB
;
3979 memcpy(pPrev
->a
, zTerm
, nTerm
);
3983 pNode
->n
+= sqlite3Fts3PutVarint(&pNode
->a
[pNode
->n
], nPrefix
);
3985 pNode
->n
+= sqlite3Fts3PutVarint(&pNode
->a
[pNode
->n
], nSuffix
);
3986 memcpy(&pNode
->a
[pNode
->n
], &zTerm
[nPrefix
], nSuffix
);
3987 pNode
->n
+= nSuffix
;
3990 pNode
->n
+= sqlite3Fts3PutVarint(&pNode
->a
[pNode
->n
], nDoclist
);
3991 memcpy(&pNode
->a
[pNode
->n
], aDoclist
, nDoclist
);
3992 pNode
->n
+= nDoclist
;
3995 assert( pNode
->n
<=pNode
->nAlloc
);
4001 ** Append the current term and doclist pointed to by cursor pCsr to the
4002 ** appendable b-tree segment opened for writing by pWriter.
4004 ** Return SQLITE_OK if successful, or an SQLite error code otherwise.
4006 static int fts3IncrmergeAppend(
4007 Fts3Table
*p
, /* Fts3 table handle */
4008 IncrmergeWriter
*pWriter
, /* Writer object */
4009 Fts3MultiSegReader
*pCsr
/* Cursor containing term and doclist */
4011 const char *zTerm
= pCsr
->zTerm
;
4012 int nTerm
= pCsr
->nTerm
;
4013 const char *aDoclist
= pCsr
->aDoclist
;
4014 int nDoclist
= pCsr
->nDoclist
;
4015 int rc
= SQLITE_OK
; /* Return code */
4016 int nSpace
; /* Total space in bytes required on leaf */
4017 int nPrefix
; /* Size of prefix shared with previous term */
4018 int nSuffix
; /* Size of suffix (nTerm - nPrefix) */
4019 NodeWriter
*pLeaf
; /* Object used to write leaf nodes */
4021 pLeaf
= &pWriter
->aNodeWriter
[0];
4022 nPrefix
= fts3PrefixCompress(pLeaf
->key
.a
, pLeaf
->key
.n
, zTerm
, nTerm
);
4023 nSuffix
= nTerm
- nPrefix
;
4025 nSpace
= sqlite3Fts3VarintLen(nPrefix
);
4026 nSpace
+= sqlite3Fts3VarintLen(nSuffix
) + nSuffix
;
4027 nSpace
+= sqlite3Fts3VarintLen(nDoclist
) + nDoclist
;
4029 /* If the current block is not empty, and if adding this term/doclist
4030 ** to the current block would make it larger than Fts3Table.nNodeSize
4031 ** bytes, write this block out to the database. */
4032 if( pLeaf
->block
.n
>0 && (pLeaf
->block
.n
+ nSpace
)>p
->nNodeSize
){
4033 rc
= fts3WriteSegment(p
, pLeaf
->iBlock
, pLeaf
->block
.a
, pLeaf
->block
.n
);
4036 /* Add the current term to the parent node. The term added to the
4039 ** a) be greater than the largest term on the leaf node just written
4040 ** to the database (still available in pLeaf->key), and
4042 ** b) be less than or equal to the term about to be added to the new
4043 ** leaf node (zTerm/nTerm).
4045 ** In other words, it must be the prefix of zTerm 1 byte longer than
4046 ** the common prefix (if any) of zTerm and pWriter->zTerm.
4048 if( rc
==SQLITE_OK
){
4049 rc
= fts3IncrmergePush(p
, pWriter
, zTerm
, nPrefix
+1);
4052 /* Advance to the next output block */
4059 nSpace
+= sqlite3Fts3VarintLen(nSuffix
) + nSuffix
;
4060 nSpace
+= sqlite3Fts3VarintLen(nDoclist
) + nDoclist
;
4063 pWriter
->nLeafData
+= nSpace
;
4064 blobGrowBuffer(&pLeaf
->block
, pLeaf
->block
.n
+ nSpace
, &rc
);
4065 if( rc
==SQLITE_OK
){
4066 if( pLeaf
->block
.n
==0 ){
4068 pLeaf
->block
.a
[0] = '\0';
4070 rc
= fts3AppendToNode(
4071 &pLeaf
->block
, &pLeaf
->key
, zTerm
, nTerm
, aDoclist
, nDoclist
4079 ** This function is called to release all dynamic resources held by the
4080 ** merge-writer object pWriter, and if no error has occurred, to flush
4081 ** all outstanding node buffers held by pWriter to disk.
4083 ** If *pRc is not SQLITE_OK when this function is called, then no attempt
4084 ** is made to write any data to disk. Instead, this function serves only
4085 ** to release outstanding resources.
4087 ** Otherwise, if *pRc is initially SQLITE_OK and an error occurs while
4088 ** flushing buffers to disk, *pRc is set to an SQLite error code before
4091 static void fts3IncrmergeRelease(
4092 Fts3Table
*p
, /* FTS3 table handle */
4093 IncrmergeWriter
*pWriter
, /* Merge-writer object */
4094 int *pRc
/* IN/OUT: Error code */
4096 int i
; /* Used to iterate through non-root layers */
4097 int iRoot
; /* Index of root in pWriter->aNodeWriter */
4098 NodeWriter
*pRoot
; /* NodeWriter for root node */
4099 int rc
= *pRc
; /* Error code */
4101 /* Set iRoot to the index in pWriter->aNodeWriter[] of the output segment
4102 ** root node. If the segment fits entirely on a single leaf node, iRoot
4103 ** will be set to 0. If the root node is the parent of the leaves, iRoot
4104 ** will be 1. And so on. */
4105 for(iRoot
=FTS_MAX_APPENDABLE_HEIGHT
-1; iRoot
>=0; iRoot
--){
4106 NodeWriter
*pNode
= &pWriter
->aNodeWriter
[iRoot
];
4107 if( pNode
->block
.n
>0 ) break;
4108 assert( *pRc
|| pNode
->block
.nAlloc
==0 );
4109 assert( *pRc
|| pNode
->key
.nAlloc
==0 );
4110 sqlite3_free(pNode
->block
.a
);
4111 sqlite3_free(pNode
->key
.a
);
4114 /* Empty output segment. This is a no-op. */
4115 if( iRoot
<0 ) return;
4117 /* The entire output segment fits on a single node. Normally, this means
4118 ** the node would be stored as a blob in the "root" column of the %_segdir
4119 ** table. However, this is not permitted in this case. The problem is that
4120 ** space has already been reserved in the %_segments table, and so the
4121 ** start_block and end_block fields of the %_segdir table must be populated.
4122 ** And, by design or by accident, released versions of FTS cannot handle
4123 ** segments that fit entirely on the root node with start_block!=0.
4125 ** Instead, create a synthetic root node that contains nothing but a
4126 ** pointer to the single content node. So that the segment consists of a
4127 ** single leaf and a single interior (root) node.
4129 ** Todo: Better might be to defer allocating space in the %_segments
4130 ** table until we are sure it is needed.
4133 Blob
*pBlock
= &pWriter
->aNodeWriter
[1].block
;
4134 blobGrowBuffer(pBlock
, 1 + FTS3_VARINT_MAX
, &rc
);
4135 if( rc
==SQLITE_OK
){
4136 pBlock
->a
[0] = 0x01;
4137 pBlock
->n
= 1 + sqlite3Fts3PutVarint(
4138 &pBlock
->a
[1], pWriter
->aNodeWriter
[0].iBlock
4143 pRoot
= &pWriter
->aNodeWriter
[iRoot
];
4145 /* Flush all currently outstanding nodes to disk. */
4146 for(i
=0; i
<iRoot
; i
++){
4147 NodeWriter
*pNode
= &pWriter
->aNodeWriter
[i
];
4148 if( pNode
->block
.n
>0 && rc
==SQLITE_OK
){
4149 rc
= fts3WriteSegment(p
, pNode
->iBlock
, pNode
->block
.a
, pNode
->block
.n
);
4151 sqlite3_free(pNode
->block
.a
);
4152 sqlite3_free(pNode
->key
.a
);
4155 /* Write the %_segdir record. */
4156 if( rc
==SQLITE_OK
){
4157 rc
= fts3WriteSegdir(p
,
4158 pWriter
->iAbsLevel
+1, /* level */
4159 pWriter
->iIdx
, /* idx */
4160 pWriter
->iStart
, /* start_block */
4161 pWriter
->aNodeWriter
[0].iBlock
, /* leaves_end_block */
4162 pWriter
->iEnd
, /* end_block */
4163 (pWriter
->bNoLeafData
==0 ? pWriter
->nLeafData
: 0), /* end_block */
4164 pRoot
->block
.a
, pRoot
->block
.n
/* root */
4167 sqlite3_free(pRoot
->block
.a
);
4168 sqlite3_free(pRoot
->key
.a
);
4174 ** Compare the term in buffer zLhs (size in bytes nLhs) with that in
4175 ** zRhs (size in bytes nRhs) using memcmp. If one term is a prefix of
4176 ** the other, it is considered to be smaller than the other.
4178 ** Return -ve if zLhs is smaller than zRhs, 0 if it is equal, or +ve
4179 ** if it is greater.
4181 static int fts3TermCmp(
4182 const char *zLhs
, int nLhs
, /* LHS of comparison */
4183 const char *zRhs
, int nRhs
/* RHS of comparison */
4185 int nCmp
= MIN(nLhs
, nRhs
);
4188 if( nCmp
&& ALWAYS(zLhs
) && ALWAYS(zRhs
) ){
4189 res
= memcmp(zLhs
, zRhs
, nCmp
);
4193 if( res
==0 ) res
= nLhs
- nRhs
;
4200 ** Query to see if the entry in the %_segments table with blockid iEnd is
4201 ** NULL. If no error occurs and the entry is NULL, set *pbRes 1 before
4202 ** returning. Otherwise, set *pbRes to 0.
4204 ** Or, if an error occurs while querying the database, return an SQLite
4205 ** error code. The final value of *pbRes is undefined in this case.
4207 ** This is used to test if a segment is an "appendable" segment. If it
4208 ** is, then a NULL entry has been inserted into the %_segments table
4209 ** with blockid %_segdir.end_block.
4211 static int fts3IsAppendable(Fts3Table
*p
, sqlite3_int64 iEnd
, int *pbRes
){
4212 int bRes
= 0; /* Result to set *pbRes to */
4213 sqlite3_stmt
*pCheck
= 0; /* Statement to query database with */
4214 int rc
; /* Return code */
4216 rc
= fts3SqlStmt(p
, SQL_SEGMENT_IS_APPENDABLE
, &pCheck
, 0);
4217 if( rc
==SQLITE_OK
){
4218 sqlite3_bind_int64(pCheck
, 1, iEnd
);
4219 if( SQLITE_ROW
==sqlite3_step(pCheck
) ) bRes
= 1;
4220 rc
= sqlite3_reset(pCheck
);
4228 ** This function is called when initializing an incremental-merge operation.
4229 ** It checks if the existing segment with index value iIdx at absolute level
4230 ** (iAbsLevel+1) can be appended to by the incremental merge. If it can, the
4231 ** merge-writer object *pWriter is initialized to write to it.
4233 ** An existing segment can be appended to by an incremental merge if:
4235 ** * It was initially created as an appendable segment (with all required
4236 ** space pre-allocated), and
4238 ** * The first key read from the input (arguments zKey and nKey) is
4239 ** greater than the largest key currently stored in the potential
4242 static int fts3IncrmergeLoad(
4243 Fts3Table
*p
, /* Fts3 table handle */
4244 sqlite3_int64 iAbsLevel
, /* Absolute level of input segments */
4245 int iIdx
, /* Index of candidate output segment */
4246 const char *zKey
, /* First key to write */
4247 int nKey
, /* Number of bytes in nKey */
4248 IncrmergeWriter
*pWriter
/* Populate this object */
4250 int rc
; /* Return code */
4251 sqlite3_stmt
*pSelect
= 0; /* SELECT to read %_segdir entry */
4253 rc
= fts3SqlStmt(p
, SQL_SELECT_SEGDIR
, &pSelect
, 0);
4254 if( rc
==SQLITE_OK
){
4255 sqlite3_int64 iStart
= 0; /* Value of %_segdir.start_block */
4256 sqlite3_int64 iLeafEnd
= 0; /* Value of %_segdir.leaves_end_block */
4257 sqlite3_int64 iEnd
= 0; /* Value of %_segdir.end_block */
4258 const char *aRoot
= 0; /* Pointer to %_segdir.root buffer */
4259 int nRoot
= 0; /* Size of aRoot[] in bytes */
4260 int rc2
; /* Return code from sqlite3_reset() */
4261 int bAppendable
= 0; /* Set to true if segment is appendable */
4263 /* Read the %_segdir entry for index iIdx absolute level (iAbsLevel+1) */
4264 sqlite3_bind_int64(pSelect
, 1, iAbsLevel
+1);
4265 sqlite3_bind_int(pSelect
, 2, iIdx
);
4266 if( sqlite3_step(pSelect
)==SQLITE_ROW
){
4267 iStart
= sqlite3_column_int64(pSelect
, 1);
4268 iLeafEnd
= sqlite3_column_int64(pSelect
, 2);
4269 fts3ReadEndBlockField(pSelect
, 3, &iEnd
, &pWriter
->nLeafData
);
4270 if( pWriter
->nLeafData
<0 ){
4271 pWriter
->nLeafData
= pWriter
->nLeafData
* -1;
4273 pWriter
->bNoLeafData
= (pWriter
->nLeafData
==0);
4274 nRoot
= sqlite3_column_bytes(pSelect
, 4);
4275 aRoot
= sqlite3_column_blob(pSelect
, 4);
4277 sqlite3_reset(pSelect
);
4278 return nRoot
? SQLITE_NOMEM
: FTS_CORRUPT_VTAB
;
4281 return sqlite3_reset(pSelect
);
4284 /* Check for the zero-length marker in the %_segments table */
4285 rc
= fts3IsAppendable(p
, iEnd
, &bAppendable
);
4287 /* Check that zKey/nKey is larger than the largest key the candidate */
4288 if( rc
==SQLITE_OK
&& bAppendable
){
4292 rc
= sqlite3Fts3ReadBlock(p
, iLeafEnd
, &aLeaf
, &nLeaf
, 0);
4293 if( rc
==SQLITE_OK
){
4295 for(rc
= nodeReaderInit(&reader
, aLeaf
, nLeaf
);
4296 rc
==SQLITE_OK
&& reader
.aNode
;
4297 rc
= nodeReaderNext(&reader
)
4299 assert( reader
.aNode
);
4301 if( fts3TermCmp(zKey
, nKey
, reader
.term
.a
, reader
.term
.n
)<=0 ){
4304 nodeReaderRelease(&reader
);
4306 sqlite3_free(aLeaf
);
4309 if( rc
==SQLITE_OK
&& bAppendable
){
4310 /* It is possible to append to this segment. Set up the IncrmergeWriter
4311 ** object to do so. */
4313 int nHeight
= (int)aRoot
[0];
4315 if( nHeight
<1 || nHeight
>=FTS_MAX_APPENDABLE_HEIGHT
){
4316 sqlite3_reset(pSelect
);
4317 return FTS_CORRUPT_VTAB
;
4320 pWriter
->nLeafEst
= (int)((iEnd
- iStart
) + 1)/FTS_MAX_APPENDABLE_HEIGHT
;
4321 pWriter
->iStart
= iStart
;
4322 pWriter
->iEnd
= iEnd
;
4323 pWriter
->iAbsLevel
= iAbsLevel
;
4324 pWriter
->iIdx
= iIdx
;
4326 for(i
=nHeight
+1; i
<FTS_MAX_APPENDABLE_HEIGHT
; i
++){
4327 pWriter
->aNodeWriter
[i
].iBlock
= pWriter
->iStart
+ i
*pWriter
->nLeafEst
;
4330 pNode
= &pWriter
->aNodeWriter
[nHeight
];
4331 pNode
->iBlock
= pWriter
->iStart
+ pWriter
->nLeafEst
*nHeight
;
4332 blobGrowBuffer(&pNode
->block
,
4333 MAX(nRoot
, p
->nNodeSize
)+FTS3_NODE_PADDING
, &rc
4335 if( rc
==SQLITE_OK
){
4336 memcpy(pNode
->block
.a
, aRoot
, nRoot
);
4337 pNode
->block
.n
= nRoot
;
4338 memset(&pNode
->block
.a
[nRoot
], 0, FTS3_NODE_PADDING
);
4341 for(i
=nHeight
; i
>=0 && rc
==SQLITE_OK
; i
--){
4343 pNode
= &pWriter
->aNodeWriter
[i
];
4345 if( pNode
->block
.a
){
4346 rc
= nodeReaderInit(&reader
, pNode
->block
.a
, pNode
->block
.n
);
4347 while( reader
.aNode
&& rc
==SQLITE_OK
) rc
= nodeReaderNext(&reader
);
4348 blobGrowBuffer(&pNode
->key
, reader
.term
.n
, &rc
);
4349 if( rc
==SQLITE_OK
){
4350 assert_fts3_nc( reader
.term
.n
>0 || reader
.aNode
==0 );
4351 if( reader
.term
.n
>0 ){
4352 memcpy(pNode
->key
.a
, reader
.term
.a
, reader
.term
.n
);
4354 pNode
->key
.n
= reader
.term
.n
;
4358 pNode
= &pWriter
->aNodeWriter
[i
-1];
4359 pNode
->iBlock
= reader
.iChild
;
4360 rc
= sqlite3Fts3ReadBlock(p
, reader
.iChild
, &aBlock
, &nBlock
,0);
4361 blobGrowBuffer(&pNode
->block
,
4362 MAX(nBlock
, p
->nNodeSize
)+FTS3_NODE_PADDING
, &rc
4364 if( rc
==SQLITE_OK
){
4365 memcpy(pNode
->block
.a
, aBlock
, nBlock
);
4366 pNode
->block
.n
= nBlock
;
4367 memset(&pNode
->block
.a
[nBlock
], 0, FTS3_NODE_PADDING
);
4369 sqlite3_free(aBlock
);
4373 nodeReaderRelease(&reader
);
4377 rc2
= sqlite3_reset(pSelect
);
4378 if( rc
==SQLITE_OK
) rc
= rc2
;
4385 ** Determine the largest segment index value that exists within absolute
4386 ** level iAbsLevel+1. If no error occurs, set *piIdx to this value plus
4387 ** one before returning SQLITE_OK. Or, if there are no segments at all
4388 ** within level iAbsLevel, set *piIdx to zero.
4390 ** If an error occurs, return an SQLite error code. The final value of
4391 ** *piIdx is undefined in this case.
4393 static int fts3IncrmergeOutputIdx(
4394 Fts3Table
*p
, /* FTS Table handle */
4395 sqlite3_int64 iAbsLevel
, /* Absolute index of input segments */
4396 int *piIdx
/* OUT: Next free index at iAbsLevel+1 */
4399 sqlite3_stmt
*pOutputIdx
= 0; /* SQL used to find output index */
4401 rc
= fts3SqlStmt(p
, SQL_NEXT_SEGMENT_INDEX
, &pOutputIdx
, 0);
4402 if( rc
==SQLITE_OK
){
4403 sqlite3_bind_int64(pOutputIdx
, 1, iAbsLevel
+1);
4404 sqlite3_step(pOutputIdx
);
4405 *piIdx
= sqlite3_column_int(pOutputIdx
, 0);
4406 rc
= sqlite3_reset(pOutputIdx
);
4413 ** Allocate an appendable output segment on absolute level iAbsLevel+1
4414 ** with idx value iIdx.
4416 ** In the %_segdir table, a segment is defined by the values in three
4423 ** When an appendable segment is allocated, it is estimated that the
4424 ** maximum number of leaf blocks that may be required is the sum of the
4425 ** number of leaf blocks consumed by the input segments, plus the number
4426 ** of input segments, multiplied by two. This value is stored in stack
4427 ** variable nLeafEst.
4429 ** A total of 16*nLeafEst blocks are allocated when an appendable segment
4430 ** is created ((1 + end_block - start_block)==16*nLeafEst). The contiguous
4431 ** array of leaf nodes starts at the first block allocated. The array
4432 ** of interior nodes that are parents of the leaf nodes start at block
4433 ** (start_block + (1 + end_block - start_block) / 16). And so on.
4435 ** In the actual code below, the value "16" is replaced with the
4436 ** pre-processor macro FTS_MAX_APPENDABLE_HEIGHT.
4438 static int fts3IncrmergeWriter(
4439 Fts3Table
*p
, /* Fts3 table handle */
4440 sqlite3_int64 iAbsLevel
, /* Absolute level of input segments */
4441 int iIdx
, /* Index of new output segment */
4442 Fts3MultiSegReader
*pCsr
, /* Cursor that data will be read from */
4443 IncrmergeWriter
*pWriter
/* Populate this object */
4445 int rc
; /* Return Code */
4446 int i
; /* Iterator variable */
4447 int nLeafEst
= 0; /* Blocks allocated for leaf nodes */
4448 sqlite3_stmt
*pLeafEst
= 0; /* SQL used to determine nLeafEst */
4449 sqlite3_stmt
*pFirstBlock
= 0; /* SQL used to determine first block */
4451 /* Calculate nLeafEst. */
4452 rc
= fts3SqlStmt(p
, SQL_MAX_LEAF_NODE_ESTIMATE
, &pLeafEst
, 0);
4453 if( rc
==SQLITE_OK
){
4454 sqlite3_bind_int64(pLeafEst
, 1, iAbsLevel
);
4455 sqlite3_bind_int64(pLeafEst
, 2, pCsr
->nSegment
);
4456 if( SQLITE_ROW
==sqlite3_step(pLeafEst
) ){
4457 nLeafEst
= sqlite3_column_int(pLeafEst
, 0);
4459 rc
= sqlite3_reset(pLeafEst
);
4461 if( rc
!=SQLITE_OK
) return rc
;
4463 /* Calculate the first block to use in the output segment */
4464 rc
= fts3SqlStmt(p
, SQL_NEXT_SEGMENTS_ID
, &pFirstBlock
, 0);
4465 if( rc
==SQLITE_OK
){
4466 if( SQLITE_ROW
==sqlite3_step(pFirstBlock
) ){
4467 pWriter
->iStart
= sqlite3_column_int64(pFirstBlock
, 0);
4468 pWriter
->iEnd
= pWriter
->iStart
- 1;
4469 pWriter
->iEnd
+= nLeafEst
* FTS_MAX_APPENDABLE_HEIGHT
;
4471 rc
= sqlite3_reset(pFirstBlock
);
4473 if( rc
!=SQLITE_OK
) return rc
;
4475 /* Insert the marker in the %_segments table to make sure nobody tries
4476 ** to steal the space just allocated. This is also used to identify
4477 ** appendable segments. */
4478 rc
= fts3WriteSegment(p
, pWriter
->iEnd
, 0, 0);
4479 if( rc
!=SQLITE_OK
) return rc
;
4481 pWriter
->iAbsLevel
= iAbsLevel
;
4482 pWriter
->nLeafEst
= nLeafEst
;
4483 pWriter
->iIdx
= iIdx
;
4485 /* Set up the array of NodeWriter objects */
4486 for(i
=0; i
<FTS_MAX_APPENDABLE_HEIGHT
; i
++){
4487 pWriter
->aNodeWriter
[i
].iBlock
= pWriter
->iStart
+ i
*pWriter
->nLeafEst
;
4493 ** Remove an entry from the %_segdir table. This involves running the
4494 ** following two statements:
4496 ** DELETE FROM %_segdir WHERE level = :iAbsLevel AND idx = :iIdx
4497 ** UPDATE %_segdir SET idx = idx - 1 WHERE level = :iAbsLevel AND idx > :iIdx
4499 ** The DELETE statement removes the specific %_segdir level. The UPDATE
4500 ** statement ensures that the remaining segments have contiguously allocated
4503 static int fts3RemoveSegdirEntry(
4504 Fts3Table
*p
, /* FTS3 table handle */
4505 sqlite3_int64 iAbsLevel
, /* Absolute level to delete from */
4506 int iIdx
/* Index of %_segdir entry to delete */
4508 int rc
; /* Return code */
4509 sqlite3_stmt
*pDelete
= 0; /* DELETE statement */
4511 rc
= fts3SqlStmt(p
, SQL_DELETE_SEGDIR_ENTRY
, &pDelete
, 0);
4512 if( rc
==SQLITE_OK
){
4513 sqlite3_bind_int64(pDelete
, 1, iAbsLevel
);
4514 sqlite3_bind_int(pDelete
, 2, iIdx
);
4515 sqlite3_step(pDelete
);
4516 rc
= sqlite3_reset(pDelete
);
4523 ** One or more segments have just been removed from absolute level iAbsLevel.
4524 ** Update the 'idx' values of the remaining segments in the level so that
4525 ** the idx values are a contiguous sequence starting from 0.
4527 static int fts3RepackSegdirLevel(
4528 Fts3Table
*p
, /* FTS3 table handle */
4529 sqlite3_int64 iAbsLevel
/* Absolute level to repack */
4531 int rc
; /* Return code */
4532 int *aIdx
= 0; /* Array of remaining idx values */
4533 int nIdx
= 0; /* Valid entries in aIdx[] */
4534 int nAlloc
= 0; /* Allocated size of aIdx[] */
4535 int i
; /* Iterator variable */
4536 sqlite3_stmt
*pSelect
= 0; /* Select statement to read idx values */
4537 sqlite3_stmt
*pUpdate
= 0; /* Update statement to modify idx values */
4539 rc
= fts3SqlStmt(p
, SQL_SELECT_INDEXES
, &pSelect
, 0);
4540 if( rc
==SQLITE_OK
){
4542 sqlite3_bind_int64(pSelect
, 1, iAbsLevel
);
4543 while( SQLITE_ROW
==sqlite3_step(pSelect
) ){
4547 aNew
= sqlite3_realloc(aIdx
, nAlloc
*sizeof(int));
4554 aIdx
[nIdx
++] = sqlite3_column_int(pSelect
, 0);
4556 rc2
= sqlite3_reset(pSelect
);
4557 if( rc
==SQLITE_OK
) rc
= rc2
;
4560 if( rc
==SQLITE_OK
){
4561 rc
= fts3SqlStmt(p
, SQL_SHIFT_SEGDIR_ENTRY
, &pUpdate
, 0);
4563 if( rc
==SQLITE_OK
){
4564 sqlite3_bind_int64(pUpdate
, 2, iAbsLevel
);
4567 assert( p
->bIgnoreSavepoint
==0 );
4568 p
->bIgnoreSavepoint
= 1;
4569 for(i
=0; rc
==SQLITE_OK
&& i
<nIdx
; i
++){
4571 sqlite3_bind_int(pUpdate
, 3, aIdx
[i
]);
4572 sqlite3_bind_int(pUpdate
, 1, i
);
4573 sqlite3_step(pUpdate
);
4574 rc
= sqlite3_reset(pUpdate
);
4577 p
->bIgnoreSavepoint
= 0;
4583 static void fts3StartNode(Blob
*pNode
, int iHeight
, sqlite3_int64 iChild
){
4584 pNode
->a
[0] = (char)iHeight
;
4586 assert( pNode
->nAlloc
>=1+sqlite3Fts3VarintLen(iChild
) );
4587 pNode
->n
= 1 + sqlite3Fts3PutVarint(&pNode
->a
[1], iChild
);
4589 assert( pNode
->nAlloc
>=1 );
4595 ** The first two arguments are a pointer to and the size of a segment b-tree
4596 ** node. The node may be a leaf or an internal node.
4598 ** This function creates a new node image in blob object *pNew by copying
4599 ** all terms that are greater than or equal to zTerm/nTerm (for leaf nodes)
4600 ** or greater than zTerm/nTerm (for internal nodes) from aNode/nNode.
4602 static int fts3TruncateNode(
4603 const char *aNode
, /* Current node image */
4604 int nNode
, /* Size of aNode in bytes */
4605 Blob
*pNew
, /* OUT: Write new node image here */
4606 const char *zTerm
, /* Omit all terms smaller than this */
4607 int nTerm
, /* Size of zTerm in bytes */
4608 sqlite3_int64
*piBlock
/* OUT: Block number in next layer down */
4610 NodeReader reader
; /* Reader object */
4611 Blob prev
= {0, 0, 0}; /* Previous term written to new node */
4612 int rc
= SQLITE_OK
; /* Return code */
4613 int bLeaf
; /* True for a leaf node */
4615 if( nNode
<1 ) return FTS_CORRUPT_VTAB
;
4616 bLeaf
= aNode
[0]=='\0';
4618 /* Allocate required output space */
4619 blobGrowBuffer(pNew
, nNode
, &rc
);
4620 if( rc
!=SQLITE_OK
) return rc
;
4623 /* Populate new node buffer */
4624 for(rc
= nodeReaderInit(&reader
, aNode
, nNode
);
4625 rc
==SQLITE_OK
&& reader
.aNode
;
4626 rc
= nodeReaderNext(&reader
)
4629 int res
= fts3TermCmp(reader
.term
.a
, reader
.term
.n
, zTerm
, nTerm
);
4630 if( res
<0 || (bLeaf
==0 && res
==0) ) continue;
4631 fts3StartNode(pNew
, (int)aNode
[0], reader
.iChild
);
4632 *piBlock
= reader
.iChild
;
4634 rc
= fts3AppendToNode(
4635 pNew
, &prev
, reader
.term
.a
, reader
.term
.n
,
4636 reader
.aDoclist
, reader
.nDoclist
4638 if( rc
!=SQLITE_OK
) break;
4641 fts3StartNode(pNew
, (int)aNode
[0], reader
.iChild
);
4642 *piBlock
= reader
.iChild
;
4644 assert( pNew
->n
<=pNew
->nAlloc
);
4646 nodeReaderRelease(&reader
);
4647 sqlite3_free(prev
.a
);
4652 ** Remove all terms smaller than zTerm/nTerm from segment iIdx in absolute
4653 ** level iAbsLevel. This may involve deleting entries from the %_segments
4654 ** table, and modifying existing entries in both the %_segments and %_segdir
4657 ** SQLITE_OK is returned if the segment is updated successfully. Or an
4658 ** SQLite error code otherwise.
4660 static int fts3TruncateSegment(
4661 Fts3Table
*p
, /* FTS3 table handle */
4662 sqlite3_int64 iAbsLevel
, /* Absolute level of segment to modify */
4663 int iIdx
, /* Index within level of segment to modify */
4664 const char *zTerm
, /* Remove terms smaller than this */
4665 int nTerm
/* Number of bytes in buffer zTerm */
4667 int rc
= SQLITE_OK
; /* Return code */
4668 Blob root
= {0,0,0}; /* New root page image */
4669 Blob block
= {0,0,0}; /* Buffer used for any other block */
4670 sqlite3_int64 iBlock
= 0; /* Block id */
4671 sqlite3_int64 iNewStart
= 0; /* New value for iStartBlock */
4672 sqlite3_int64 iOldStart
= 0; /* Old value for iStartBlock */
4673 sqlite3_stmt
*pFetch
= 0; /* Statement used to fetch segdir */
4675 rc
= fts3SqlStmt(p
, SQL_SELECT_SEGDIR
, &pFetch
, 0);
4676 if( rc
==SQLITE_OK
){
4677 int rc2
; /* sqlite3_reset() return code */
4678 sqlite3_bind_int64(pFetch
, 1, iAbsLevel
);
4679 sqlite3_bind_int(pFetch
, 2, iIdx
);
4680 if( SQLITE_ROW
==sqlite3_step(pFetch
) ){
4681 const char *aRoot
= sqlite3_column_blob(pFetch
, 4);
4682 int nRoot
= sqlite3_column_bytes(pFetch
, 4);
4683 iOldStart
= sqlite3_column_int64(pFetch
, 1);
4684 rc
= fts3TruncateNode(aRoot
, nRoot
, &root
, zTerm
, nTerm
, &iBlock
);
4686 rc2
= sqlite3_reset(pFetch
);
4687 if( rc
==SQLITE_OK
) rc
= rc2
;
4690 while( rc
==SQLITE_OK
&& iBlock
){
4695 rc
= sqlite3Fts3ReadBlock(p
, iBlock
, &aBlock
, &nBlock
, 0);
4696 if( rc
==SQLITE_OK
){
4697 rc
= fts3TruncateNode(aBlock
, nBlock
, &block
, zTerm
, nTerm
, &iBlock
);
4699 if( rc
==SQLITE_OK
){
4700 rc
= fts3WriteSegment(p
, iNewStart
, block
.a
, block
.n
);
4702 sqlite3_free(aBlock
);
4705 /* Variable iNewStart now contains the first valid leaf node. */
4706 if( rc
==SQLITE_OK
&& iNewStart
){
4707 sqlite3_stmt
*pDel
= 0;
4708 rc
= fts3SqlStmt(p
, SQL_DELETE_SEGMENTS_RANGE
, &pDel
, 0);
4709 if( rc
==SQLITE_OK
){
4710 sqlite3_bind_int64(pDel
, 1, iOldStart
);
4711 sqlite3_bind_int64(pDel
, 2, iNewStart
-1);
4713 rc
= sqlite3_reset(pDel
);
4717 if( rc
==SQLITE_OK
){
4718 sqlite3_stmt
*pChomp
= 0;
4719 rc
= fts3SqlStmt(p
, SQL_CHOMP_SEGDIR
, &pChomp
, 0);
4720 if( rc
==SQLITE_OK
){
4721 sqlite3_bind_int64(pChomp
, 1, iNewStart
);
4722 sqlite3_bind_blob(pChomp
, 2, root
.a
, root
.n
, SQLITE_STATIC
);
4723 sqlite3_bind_int64(pChomp
, 3, iAbsLevel
);
4724 sqlite3_bind_int(pChomp
, 4, iIdx
);
4725 sqlite3_step(pChomp
);
4726 rc
= sqlite3_reset(pChomp
);
4727 sqlite3_bind_null(pChomp
, 2);
4731 sqlite3_free(root
.a
);
4732 sqlite3_free(block
.a
);
4737 ** This function is called after an incrmental-merge operation has run to
4738 ** merge (or partially merge) two or more segments from absolute level
4741 ** Each input segment is either removed from the db completely (if all of
4742 ** its data was copied to the output segment by the incrmerge operation)
4743 ** or modified in place so that it no longer contains those entries that
4744 ** have been duplicated in the output segment.
4746 static int fts3IncrmergeChomp(
4747 Fts3Table
*p
, /* FTS table handle */
4748 sqlite3_int64 iAbsLevel
, /* Absolute level containing segments */
4749 Fts3MultiSegReader
*pCsr
, /* Chomp all segments opened by this cursor */
4750 int *pnRem
/* Number of segments not deleted */
4756 for(i
=pCsr
->nSegment
-1; i
>=0 && rc
==SQLITE_OK
; i
--){
4757 Fts3SegReader
*pSeg
= 0;
4760 /* Find the Fts3SegReader object with Fts3SegReader.iIdx==i. It is hiding
4761 ** somewhere in the pCsr->apSegment[] array. */
4762 for(j
=0; ALWAYS(j
<pCsr
->nSegment
); j
++){
4763 pSeg
= pCsr
->apSegment
[j
];
4764 if( pSeg
->iIdx
==i
) break;
4766 assert( j
<pCsr
->nSegment
&& pSeg
->iIdx
==i
);
4768 if( pSeg
->aNode
==0 ){
4769 /* Seg-reader is at EOF. Remove the entire input segment. */
4770 rc
= fts3DeleteSegment(p
, pSeg
);
4771 if( rc
==SQLITE_OK
){
4772 rc
= fts3RemoveSegdirEntry(p
, iAbsLevel
, pSeg
->iIdx
);
4776 /* The incremental merge did not copy all the data from this
4777 ** segment to the upper level. The segment is modified in place
4778 ** so that it contains no keys smaller than zTerm/nTerm. */
4779 const char *zTerm
= pSeg
->zTerm
;
4780 int nTerm
= pSeg
->nTerm
;
4781 rc
= fts3TruncateSegment(p
, iAbsLevel
, pSeg
->iIdx
, zTerm
, nTerm
);
4786 if( rc
==SQLITE_OK
&& nRem
!=pCsr
->nSegment
){
4787 rc
= fts3RepackSegdirLevel(p
, iAbsLevel
);
4795 ** Store an incr-merge hint in the database.
4797 static int fts3IncrmergeHintStore(Fts3Table
*p
, Blob
*pHint
){
4798 sqlite3_stmt
*pReplace
= 0;
4799 int rc
; /* Return code */
4801 rc
= fts3SqlStmt(p
, SQL_REPLACE_STAT
, &pReplace
, 0);
4802 if( rc
==SQLITE_OK
){
4803 sqlite3_bind_int(pReplace
, 1, FTS_STAT_INCRMERGEHINT
);
4804 sqlite3_bind_blob(pReplace
, 2, pHint
->a
, pHint
->n
, SQLITE_STATIC
);
4805 sqlite3_step(pReplace
);
4806 rc
= sqlite3_reset(pReplace
);
4807 sqlite3_bind_null(pReplace
, 2);
4814 ** Load an incr-merge hint from the database. The incr-merge hint, if one
4815 ** exists, is stored in the rowid==1 row of the %_stat table.
4817 ** If successful, populate blob *pHint with the value read from the %_stat
4818 ** table and return SQLITE_OK. Otherwise, if an error occurs, return an
4819 ** SQLite error code.
4821 static int fts3IncrmergeHintLoad(Fts3Table
*p
, Blob
*pHint
){
4822 sqlite3_stmt
*pSelect
= 0;
4826 rc
= fts3SqlStmt(p
, SQL_SELECT_STAT
, &pSelect
, 0);
4827 if( rc
==SQLITE_OK
){
4829 sqlite3_bind_int(pSelect
, 1, FTS_STAT_INCRMERGEHINT
);
4830 if( SQLITE_ROW
==sqlite3_step(pSelect
) ){
4831 const char *aHint
= sqlite3_column_blob(pSelect
, 0);
4832 int nHint
= sqlite3_column_bytes(pSelect
, 0);
4834 blobGrowBuffer(pHint
, nHint
, &rc
);
4835 if( rc
==SQLITE_OK
){
4836 if( ALWAYS(pHint
->a
!=0) ) memcpy(pHint
->a
, aHint
, nHint
);
4841 rc2
= sqlite3_reset(pSelect
);
4842 if( rc
==SQLITE_OK
) rc
= rc2
;
4849 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
4850 ** Otherwise, append an entry to the hint stored in blob *pHint. Each entry
4851 ** consists of two varints, the absolute level number of the input segments
4852 ** and the number of input segments.
4854 ** If successful, leave *pRc set to SQLITE_OK and return. If an error occurs,
4855 ** set *pRc to an SQLite error code before returning.
4857 static void fts3IncrmergeHintPush(
4858 Blob
*pHint
, /* Hint blob to append to */
4859 i64 iAbsLevel
, /* First varint to store in hint */
4860 int nInput
, /* Second varint to store in hint */
4861 int *pRc
/* IN/OUT: Error code */
4863 blobGrowBuffer(pHint
, pHint
->n
+ 2*FTS3_VARINT_MAX
, pRc
);
4864 if( *pRc
==SQLITE_OK
){
4865 pHint
->n
+= sqlite3Fts3PutVarint(&pHint
->a
[pHint
->n
], iAbsLevel
);
4866 pHint
->n
+= sqlite3Fts3PutVarint(&pHint
->a
[pHint
->n
], (i64
)nInput
);
4871 ** Read the last entry (most recently pushed) from the hint blob *pHint
4872 ** and then remove the entry. Write the two values read to *piAbsLevel and
4873 ** *pnInput before returning.
4875 ** If no error occurs, return SQLITE_OK. If the hint blob in *pHint does
4876 ** not contain at least two valid varints, return SQLITE_CORRUPT_VTAB.
4878 static int fts3IncrmergeHintPop(Blob
*pHint
, i64
*piAbsLevel
, int *pnInput
){
4879 const int nHint
= pHint
->n
;
4883 if( (pHint
->a
[i
] & 0x80) ) return FTS_CORRUPT_VTAB
;
4884 while( i
>0 && (pHint
->a
[i
-1] & 0x80) ) i
--;
4885 if( i
==0 ) return FTS_CORRUPT_VTAB
;
4887 while( i
>0 && (pHint
->a
[i
-1] & 0x80) ) i
--;
4890 i
+= sqlite3Fts3GetVarint(&pHint
->a
[i
], piAbsLevel
);
4891 i
+= fts3GetVarint32(&pHint
->a
[i
], pnInput
);
4893 if( i
!=nHint
) return FTS_CORRUPT_VTAB
;
4900 ** Attempt an incremental merge that writes nMerge leaf blocks.
4902 ** Incremental merges happen nMin segments at a time. The segments
4903 ** to be merged are the nMin oldest segments (the ones with the smallest
4904 ** values for the _segdir.idx field) in the highest level that contains
4905 ** at least nMin segments. Multiple merges might occur in an attempt to
4906 ** write the quota of nMerge leaf blocks.
4908 int sqlite3Fts3Incrmerge(Fts3Table
*p
, int nMerge
, int nMin
){
4909 int rc
; /* Return code */
4910 int nRem
= nMerge
; /* Number of leaf pages yet to be written */
4911 Fts3MultiSegReader
*pCsr
; /* Cursor used to read input data */
4912 Fts3SegFilter
*pFilter
; /* Filter used with cursor pCsr */
4913 IncrmergeWriter
*pWriter
; /* Writer object */
4914 int nSeg
= 0; /* Number of input segments */
4915 sqlite3_int64 iAbsLevel
= 0; /* Absolute level number to work on */
4916 Blob hint
= {0, 0, 0}; /* Hint read from %_stat table */
4917 int bDirtyHint
= 0; /* True if blob 'hint' has been modified */
4919 /* Allocate space for the cursor, filter and writer objects */
4920 const int nAlloc
= sizeof(*pCsr
) + sizeof(*pFilter
) + sizeof(*pWriter
);
4921 pWriter
= (IncrmergeWriter
*)sqlite3_malloc(nAlloc
);
4922 if( !pWriter
) return SQLITE_NOMEM
;
4923 pFilter
= (Fts3SegFilter
*)&pWriter
[1];
4924 pCsr
= (Fts3MultiSegReader
*)&pFilter
[1];
4926 rc
= fts3IncrmergeHintLoad(p
, &hint
);
4927 while( rc
==SQLITE_OK
&& nRem
>0 ){
4928 const i64 nMod
= FTS3_SEGDIR_MAXLEVEL
* p
->nIndex
;
4929 sqlite3_stmt
*pFindLevel
= 0; /* SQL used to determine iAbsLevel */
4930 int bUseHint
= 0; /* True if attempting to append */
4931 int iIdx
= 0; /* Largest idx in level (iAbsLevel+1) */
4933 /* Search the %_segdir table for the absolute level with the smallest
4934 ** relative level number that contains at least nMin segments, if any.
4935 ** If one is found, set iAbsLevel to the absolute level number and
4936 ** nSeg to nMin. If no level with at least nMin segments can be found,
4939 rc
= fts3SqlStmt(p
, SQL_FIND_MERGE_LEVEL
, &pFindLevel
, 0);
4940 sqlite3_bind_int(pFindLevel
, 1, MAX(2, nMin
));
4941 if( sqlite3_step(pFindLevel
)==SQLITE_ROW
){
4942 iAbsLevel
= sqlite3_column_int64(pFindLevel
, 0);
4943 nSeg
= sqlite3_column_int(pFindLevel
, 1);
4948 rc
= sqlite3_reset(pFindLevel
);
4950 /* If the hint read from the %_stat table is not empty, check if the
4951 ** last entry in it specifies a relative level smaller than or equal
4952 ** to the level identified by the block above (if any). If so, this
4953 ** iteration of the loop will work on merging at the hinted level.
4955 if( rc
==SQLITE_OK
&& hint
.n
){
4957 sqlite3_int64 iHintAbsLevel
= 0; /* Hint level */
4958 int nHintSeg
= 0; /* Hint number of segments */
4960 rc
= fts3IncrmergeHintPop(&hint
, &iHintAbsLevel
, &nHintSeg
);
4961 if( nSeg
<0 || (iAbsLevel
% nMod
) >= (iHintAbsLevel
% nMod
) ){
4962 /* Based on the scan in the block above, it is known that there
4963 ** are no levels with a relative level smaller than that of
4964 ** iAbsLevel with more than nSeg segments, or if nSeg is -1,
4965 ** no levels with more than nMin segments. Use this to limit the
4966 ** value of nHintSeg to avoid a large memory allocation in case the
4967 ** merge-hint is corrupt*/
4968 iAbsLevel
= iHintAbsLevel
;
4969 nSeg
= MIN(MAX(nMin
,nSeg
), nHintSeg
);
4973 /* This undoes the effect of the HintPop() above - so that no entry
4974 ** is removed from the hint blob. */
4979 /* If nSeg is less that zero, then there is no level with at least
4980 ** nMin segments and no hint in the %_stat table. No work to do.
4981 ** Exit early in this case. */
4982 if( nSeg
<=0 ) break;
4984 assert( nMod
<=0x7FFFFFFF );
4985 if( iAbsLevel
<0 || iAbsLevel
>(nMod
<<32) ){
4986 rc
= FTS_CORRUPT_VTAB
;
4990 /* Open a cursor to iterate through the contents of the oldest nSeg
4991 ** indexes of absolute level iAbsLevel. If this cursor is opened using
4992 ** the 'hint' parameters, it is possible that there are less than nSeg
4993 ** segments available in level iAbsLevel. In this case, no work is
4994 ** done on iAbsLevel - fall through to the next iteration of the loop
4995 ** to start work on some other level. */
4996 memset(pWriter
, 0, nAlloc
);
4997 pFilter
->flags
= FTS3_SEGMENT_REQUIRE_POS
;
4999 if( rc
==SQLITE_OK
){
5000 rc
= fts3IncrmergeOutputIdx(p
, iAbsLevel
, &iIdx
);
5001 assert( bUseHint
==1 || bUseHint
==0 );
5002 if( iIdx
==0 || (bUseHint
&& iIdx
==1) ){
5004 rc
= fts3SegmentIsMaxLevel(p
, iAbsLevel
+1, &bIgnore
);
5006 pFilter
->flags
|= FTS3_SEGMENT_IGNORE_EMPTY
;
5011 if( rc
==SQLITE_OK
){
5012 rc
= fts3IncrmergeCsr(p
, iAbsLevel
, nSeg
, pCsr
);
5014 if( SQLITE_OK
==rc
&& pCsr
->nSegment
==nSeg
5015 && SQLITE_OK
==(rc
= sqlite3Fts3SegReaderStart(p
, pCsr
, pFilter
))
5018 rc
= sqlite3Fts3SegReaderStep(p
, pCsr
);
5019 if( rc
==SQLITE_OK
){
5021 }else if( rc
!=SQLITE_ROW
){
5022 sqlite3Fts3SegReaderFinish(pCsr
);
5025 if( bUseHint
&& iIdx
>0 ){
5026 const char *zKey
= pCsr
->zTerm
;
5027 int nKey
= pCsr
->nTerm
;
5028 rc
= fts3IncrmergeLoad(p
, iAbsLevel
, iIdx
-1, zKey
, nKey
, pWriter
);
5030 rc
= fts3IncrmergeWriter(p
, iAbsLevel
, iIdx
, pCsr
, pWriter
);
5033 if( rc
==SQLITE_OK
&& pWriter
->nLeafEst
){
5034 fts3LogMerge(nSeg
, iAbsLevel
);
5037 rc
= fts3IncrmergeAppend(p
, pWriter
, pCsr
);
5038 if( rc
==SQLITE_OK
) rc
= sqlite3Fts3SegReaderStep(p
, pCsr
);
5039 if( pWriter
->nWork
>=nRem
&& rc
==SQLITE_ROW
) rc
= SQLITE_OK
;
5040 }while( rc
==SQLITE_ROW
);
5043 /* Update or delete the input segments */
5044 if( rc
==SQLITE_OK
){
5045 nRem
-= (1 + pWriter
->nWork
);
5046 rc
= fts3IncrmergeChomp(p
, iAbsLevel
, pCsr
, &nSeg
);
5049 fts3IncrmergeHintPush(&hint
, iAbsLevel
, nSeg
, &rc
);
5055 pWriter
->nLeafData
= pWriter
->nLeafData
* -1;
5057 fts3IncrmergeRelease(p
, pWriter
, &rc
);
5058 if( nSeg
==0 && pWriter
->bNoLeafData
==0 ){
5059 fts3PromoteSegments(p
, iAbsLevel
+1, pWriter
->nLeafData
);
5063 sqlite3Fts3SegReaderFinish(pCsr
);
5066 /* Write the hint values into the %_stat table for the next incr-merger */
5067 if( bDirtyHint
&& rc
==SQLITE_OK
){
5068 rc
= fts3IncrmergeHintStore(p
, &hint
);
5071 sqlite3_free(pWriter
);
5072 sqlite3_free(hint
.a
);
5077 ** Convert the text beginning at *pz into an integer and return
5078 ** its value. Advance *pz to point to the first character past
5081 ** This function used for parameters to merge= and incrmerge=
5084 static int fts3Getint(const char **pz
){
5085 const char *z
= *pz
;
5087 while( (*z
)>='0' && (*z
)<='9' && i
<214748363 ) i
= 10*i
+ *(z
++) - '0';
5093 ** Process statements of the form:
5095 ** INSERT INTO table(table) VALUES('merge=A,B');
5097 ** A and B are integers that decode to be the number of leaf pages
5098 ** written for the merge, and the minimum number of segments on a level
5099 ** before it will be selected for a merge, respectively.
5101 static int fts3DoIncrmerge(
5102 Fts3Table
*p
, /* FTS3 table handle */
5103 const char *zParam
/* Nul-terminated string containing "A,B" */
5106 int nMin
= (MergeCount(p
) / 2);
5108 const char *z
= zParam
;
5110 /* Read the first integer value */
5111 nMerge
= fts3Getint(&z
);
5113 /* If the first integer value is followed by a ',', read the second
5114 ** integer value. */
5115 if( z
[0]==',' && z
[1]!='\0' ){
5117 nMin
= fts3Getint(&z
);
5120 if( z
[0]!='\0' || nMin
<2 ){
5125 assert( p
->bFts4
==0 );
5126 sqlite3Fts3CreateStatTable(&rc
, p
);
5128 if( rc
==SQLITE_OK
){
5129 rc
= sqlite3Fts3Incrmerge(p
, nMerge
, nMin
);
5131 sqlite3Fts3SegmentsClose(p
);
5137 ** Process statements of the form:
5139 ** INSERT INTO table(table) VALUES('automerge=X');
5141 ** where X is an integer. X==0 means to turn automerge off. X!=0 means
5142 ** turn it on. The setting is persistent.
5144 static int fts3DoAutoincrmerge(
5145 Fts3Table
*p
, /* FTS3 table handle */
5146 const char *zParam
/* Nul-terminated string containing boolean */
5149 sqlite3_stmt
*pStmt
= 0;
5150 p
->nAutoincrmerge
= fts3Getint(&zParam
);
5151 if( p
->nAutoincrmerge
==1 || p
->nAutoincrmerge
>MergeCount(p
) ){
5152 p
->nAutoincrmerge
= 8;
5155 assert( p
->bFts4
==0 );
5156 sqlite3Fts3CreateStatTable(&rc
, p
);
5159 rc
= fts3SqlStmt(p
, SQL_REPLACE_STAT
, &pStmt
, 0);
5161 sqlite3_bind_int(pStmt
, 1, FTS_STAT_AUTOINCRMERGE
);
5162 sqlite3_bind_int(pStmt
, 2, p
->nAutoincrmerge
);
5163 sqlite3_step(pStmt
);
5164 rc
= sqlite3_reset(pStmt
);
5169 ** Return a 64-bit checksum for the FTS index entry specified by the
5170 ** arguments to this function.
5172 static u64
fts3ChecksumEntry(
5173 const char *zTerm
, /* Pointer to buffer containing term */
5174 int nTerm
, /* Size of zTerm in bytes */
5175 int iLangid
, /* Language id for current row */
5176 int iIndex
, /* Index (0..Fts3Table.nIndex-1) */
5177 i64 iDocid
, /* Docid for current row. */
5178 int iCol
, /* Column number */
5179 int iPos
/* Position */
5182 u64 ret
= (u64
)iDocid
;
5184 ret
+= (ret
<<3) + iLangid
;
5185 ret
+= (ret
<<3) + iIndex
;
5186 ret
+= (ret
<<3) + iCol
;
5187 ret
+= (ret
<<3) + iPos
;
5188 for(i
=0; i
<nTerm
; i
++) ret
+= (ret
<<3) + zTerm
[i
];
5194 ** Return a checksum of all entries in the FTS index that correspond to
5195 ** language id iLangid. The checksum is calculated by XORing the checksums
5196 ** of each individual entry (see fts3ChecksumEntry()) together.
5198 ** If successful, the checksum value is returned and *pRc set to SQLITE_OK.
5199 ** Otherwise, if an error occurs, *pRc is set to an SQLite error code. The
5200 ** return value is undefined in this case.
5202 static u64
fts3ChecksumIndex(
5203 Fts3Table
*p
, /* FTS3 table handle */
5204 int iLangid
, /* Language id to return cksum for */
5205 int iIndex
, /* Index to cksum (0..p->nIndex-1) */
5206 int *pRc
/* OUT: Return code */
5208 Fts3SegFilter filter
;
5209 Fts3MultiSegReader csr
;
5213 assert( *pRc
==SQLITE_OK
);
5215 memset(&filter
, 0, sizeof(filter
));
5216 memset(&csr
, 0, sizeof(csr
));
5217 filter
.flags
= FTS3_SEGMENT_REQUIRE_POS
|FTS3_SEGMENT_IGNORE_EMPTY
;
5218 filter
.flags
|= FTS3_SEGMENT_SCAN
;
5220 rc
= sqlite3Fts3SegReaderCursor(
5221 p
, iLangid
, iIndex
, FTS3_SEGCURSOR_ALL
, 0, 0, 0, 1,&csr
5223 if( rc
==SQLITE_OK
){
5224 rc
= sqlite3Fts3SegReaderStart(p
, &csr
, &filter
);
5227 if( rc
==SQLITE_OK
){
5228 while( SQLITE_ROW
==(rc
= sqlite3Fts3SegReaderStep(p
, &csr
)) ){
5229 char *pCsr
= csr
.aDoclist
;
5230 char *pEnd
= &pCsr
[csr
.nDoclist
];
5236 pCsr
+= sqlite3Fts3GetVarint(pCsr
, &iDocid
);
5239 pCsr
+= sqlite3Fts3GetVarintU(pCsr
, &iVal
);
5241 if( iVal
==0 || iVal
==1 ){
5245 pCsr
+= sqlite3Fts3GetVarint(pCsr
, &iCol
);
5247 pCsr
+= sqlite3Fts3GetVarintU(pCsr
, &iVal
);
5249 iDocid
= (i64
)((u64
)iDocid
- iVal
);
5251 iDocid
= (i64
)((u64
)iDocid
+ iVal
);
5256 cksum
= cksum
^ fts3ChecksumEntry(
5257 csr
.zTerm
, csr
.nTerm
, iLangid
, iIndex
, iDocid
,
5258 (int)iCol
, (int)iPos
5265 sqlite3Fts3SegReaderFinish(&csr
);
5272 ** Check if the contents of the FTS index match the current contents of the
5273 ** content table. If no error occurs and the contents do match, set *pbOk
5274 ** to true and return SQLITE_OK. Or if the contents do not match, set *pbOk
5275 ** to false before returning.
5277 ** If an error occurs (e.g. an OOM or IO error), return an SQLite error
5278 ** code. The final value of *pbOk is undefined in this case.
5280 static int fts3IntegrityCheck(Fts3Table
*p
, int *pbOk
){
5281 int rc
= SQLITE_OK
; /* Return code */
5282 u64 cksum1
= 0; /* Checksum based on FTS index contents */
5283 u64 cksum2
= 0; /* Checksum based on %_content contents */
5284 sqlite3_stmt
*pAllLangid
= 0; /* Statement to return all language-ids */
5286 /* This block calculates the checksum according to the FTS index. */
5287 rc
= fts3SqlStmt(p
, SQL_SELECT_ALL_LANGID
, &pAllLangid
, 0);
5288 if( rc
==SQLITE_OK
){
5290 sqlite3_bind_int(pAllLangid
, 1, p
->iPrevLangid
);
5291 sqlite3_bind_int(pAllLangid
, 2, p
->nIndex
);
5292 while( rc
==SQLITE_OK
&& sqlite3_step(pAllLangid
)==SQLITE_ROW
){
5293 int iLangid
= sqlite3_column_int(pAllLangid
, 0);
5295 for(i
=0; i
<p
->nIndex
; i
++){
5296 cksum1
= cksum1
^ fts3ChecksumIndex(p
, iLangid
, i
, &rc
);
5299 rc2
= sqlite3_reset(pAllLangid
);
5300 if( rc
==SQLITE_OK
) rc
= rc2
;
5303 /* This block calculates the checksum according to the %_content table */
5304 if( rc
==SQLITE_OK
){
5305 sqlite3_tokenizer_module
const *pModule
= p
->pTokenizer
->pModule
;
5306 sqlite3_stmt
*pStmt
= 0;
5309 zSql
= sqlite3_mprintf("SELECT %s" , p
->zReadExprlist
);
5313 rc
= sqlite3_prepare_v2(p
->db
, zSql
, -1, &pStmt
, 0);
5317 while( rc
==SQLITE_OK
&& SQLITE_ROW
==sqlite3_step(pStmt
) ){
5318 i64 iDocid
= sqlite3_column_int64(pStmt
, 0);
5319 int iLang
= langidFromSelect(p
, pStmt
);
5322 for(iCol
=0; rc
==SQLITE_OK
&& iCol
<p
->nColumn
; iCol
++){
5323 if( p
->abNotindexed
[iCol
]==0 ){
5324 const char *zText
= (const char *)sqlite3_column_text(pStmt
, iCol
+1);
5325 sqlite3_tokenizer_cursor
*pT
= 0;
5327 rc
= sqlite3Fts3OpenTokenizer(p
->pTokenizer
, iLang
, zText
, -1, &pT
);
5328 while( rc
==SQLITE_OK
){
5329 char const *zToken
; /* Buffer containing token */
5330 int nToken
= 0; /* Number of bytes in token */
5331 int iDum1
= 0, iDum2
= 0; /* Dummy variables */
5332 int iPos
= 0; /* Position of token in zText */
5334 rc
= pModule
->xNext(pT
, &zToken
, &nToken
, &iDum1
, &iDum2
, &iPos
);
5335 if( rc
==SQLITE_OK
){
5337 cksum2
= cksum2
^ fts3ChecksumEntry(
5338 zToken
, nToken
, iLang
, 0, iDocid
, iCol
, iPos
5340 for(i
=1; i
<p
->nIndex
; i
++){
5341 if( p
->aIndex
[i
].nPrefix
<=nToken
){
5342 cksum2
= cksum2
^ fts3ChecksumEntry(
5343 zToken
, p
->aIndex
[i
].nPrefix
, iLang
, i
, iDocid
, iCol
, iPos
5349 if( pT
) pModule
->xClose(pT
);
5350 if( rc
==SQLITE_DONE
) rc
= SQLITE_OK
;
5355 sqlite3_finalize(pStmt
);
5358 *pbOk
= (cksum1
==cksum2
);
5363 ** Run the integrity-check. If no error occurs and the current contents of
5364 ** the FTS index are correct, return SQLITE_OK. Or, if the contents of the
5365 ** FTS index are incorrect, return SQLITE_CORRUPT_VTAB.
5367 ** Or, if an error (e.g. an OOM or IO error) occurs, return an SQLite
5370 ** The integrity-check works as follows. For each token and indexed token
5371 ** prefix in the document set, a 64-bit checksum is calculated (by code
5372 ** in fts3ChecksumEntry()) based on the following:
5374 ** + The index number (0 for the main index, 1 for the first prefix
5376 ** + The token (or token prefix) text itself,
5377 ** + The language-id of the row it appears in,
5378 ** + The docid of the row it appears in,
5379 ** + The column it appears in, and
5380 ** + The tokens position within that column.
5382 ** The checksums for all entries in the index are XORed together to create
5383 ** a single checksum for the entire index.
5385 ** The integrity-check code calculates the same checksum in two ways:
5387 ** 1. By scanning the contents of the FTS index, and
5388 ** 2. By scanning and tokenizing the content table.
5390 ** If the two checksums are identical, the integrity-check is deemed to have
5393 static int fts3DoIntegrityCheck(
5394 Fts3Table
*p
/* FTS3 table handle */
5398 rc
= fts3IntegrityCheck(p
, &bOk
);
5399 if( rc
==SQLITE_OK
&& bOk
==0 ) rc
= FTS_CORRUPT_VTAB
;
5404 ** Handle a 'special' INSERT of the form:
5406 ** "INSERT INTO tbl(tbl) VALUES(<expr>)"
5408 ** Argument pVal contains the result of <expr>. Currently the only
5409 ** meaningful value to insert is the text 'optimize'.
5411 static int fts3SpecialInsert(Fts3Table
*p
, sqlite3_value
*pVal
){
5412 int rc
= SQLITE_ERROR
; /* Return Code */
5413 const char *zVal
= (const char *)sqlite3_value_text(pVal
);
5414 int nVal
= sqlite3_value_bytes(pVal
);
5417 return SQLITE_NOMEM
;
5418 }else if( nVal
==8 && 0==sqlite3_strnicmp(zVal
, "optimize", 8) ){
5419 rc
= fts3DoOptimize(p
, 0);
5420 }else if( nVal
==7 && 0==sqlite3_strnicmp(zVal
, "rebuild", 7) ){
5421 rc
= fts3DoRebuild(p
);
5422 }else if( nVal
==15 && 0==sqlite3_strnicmp(zVal
, "integrity-check", 15) ){
5423 rc
= fts3DoIntegrityCheck(p
);
5424 }else if( nVal
>6 && 0==sqlite3_strnicmp(zVal
, "merge=", 6) ){
5425 rc
= fts3DoIncrmerge(p
, &zVal
[6]);
5426 }else if( nVal
>10 && 0==sqlite3_strnicmp(zVal
, "automerge=", 10) ){
5427 rc
= fts3DoAutoincrmerge(p
, &zVal
[10]);
5428 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
5431 if( nVal
>9 && 0==sqlite3_strnicmp(zVal
, "nodesize=", 9) ){
5433 if( v
>=24 && v
<=p
->nPgsz
-35 ) p
->nNodeSize
= v
;
5435 }else if( nVal
>11 && 0==sqlite3_strnicmp(zVal
, "maxpending=", 9) ){
5436 v
= atoi(&zVal
[11]);
5437 if( v
>=64 && v
<=FTS3_MAX_PENDING_DATA
) p
->nMaxPendingData
= v
;
5439 }else if( nVal
>21 && 0==sqlite3_strnicmp(zVal
,"test-no-incr-doclist=",21) ){
5440 p
->bNoIncrDoclist
= atoi(&zVal
[21]);
5442 }else if( nVal
>11 && 0==sqlite3_strnicmp(zVal
,"mergecount=",11) ){
5443 v
= atoi(&zVal
[11]);
5444 if( v
>=4 && v
<=FTS3_MERGE_COUNT
&& (v
&1)==0 ) p
->nMergeCount
= v
;
5452 #ifndef SQLITE_DISABLE_FTS4_DEFERRED
5454 ** Delete all cached deferred doclists. Deferred doclists are cached
5455 ** (allocated) by the sqlite3Fts3CacheDeferredDoclists() function.
5457 void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor
*pCsr
){
5458 Fts3DeferredToken
*pDef
;
5459 for(pDef
=pCsr
->pDeferred
; pDef
; pDef
=pDef
->pNext
){
5460 fts3PendingListDelete(pDef
->pList
);
5466 ** Free all entries in the pCsr->pDeffered list. Entries are added to
5467 ** this list using sqlite3Fts3DeferToken().
5469 void sqlite3Fts3FreeDeferredTokens(Fts3Cursor
*pCsr
){
5470 Fts3DeferredToken
*pDef
;
5471 Fts3DeferredToken
*pNext
;
5472 for(pDef
=pCsr
->pDeferred
; pDef
; pDef
=pNext
){
5473 pNext
= pDef
->pNext
;
5474 fts3PendingListDelete(pDef
->pList
);
5477 pCsr
->pDeferred
= 0;
5481 ** Generate deferred-doclists for all tokens in the pCsr->pDeferred list
5482 ** based on the row that pCsr currently points to.
5484 ** A deferred-doclist is like any other doclist with position information
5485 ** included, except that it only contains entries for a single row of the
5486 ** table, not for all rows.
5488 int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor
*pCsr
){
5489 int rc
= SQLITE_OK
; /* Return code */
5490 if( pCsr
->pDeferred
){
5491 int i
; /* Used to iterate through table columns */
5492 sqlite3_int64 iDocid
; /* Docid of the row pCsr points to */
5493 Fts3DeferredToken
*pDef
; /* Used to iterate through deferred tokens */
5495 Fts3Table
*p
= (Fts3Table
*)pCsr
->base
.pVtab
;
5496 sqlite3_tokenizer
*pT
= p
->pTokenizer
;
5497 sqlite3_tokenizer_module
const *pModule
= pT
->pModule
;
5499 assert( pCsr
->isRequireSeek
==0 );
5500 iDocid
= sqlite3_column_int64(pCsr
->pStmt
, 0);
5502 for(i
=0; i
<p
->nColumn
&& rc
==SQLITE_OK
; i
++){
5503 if( p
->abNotindexed
[i
]==0 ){
5504 const char *zText
= (const char *)sqlite3_column_text(pCsr
->pStmt
, i
+1);
5505 sqlite3_tokenizer_cursor
*pTC
= 0;
5507 rc
= sqlite3Fts3OpenTokenizer(pT
, pCsr
->iLangid
, zText
, -1, &pTC
);
5508 while( rc
==SQLITE_OK
){
5509 char const *zToken
; /* Buffer containing token */
5510 int nToken
= 0; /* Number of bytes in token */
5511 int iDum1
= 0, iDum2
= 0; /* Dummy variables */
5512 int iPos
= 0; /* Position of token in zText */
5514 rc
= pModule
->xNext(pTC
, &zToken
, &nToken
, &iDum1
, &iDum2
, &iPos
);
5515 for(pDef
=pCsr
->pDeferred
; pDef
&& rc
==SQLITE_OK
; pDef
=pDef
->pNext
){
5516 Fts3PhraseToken
*pPT
= pDef
->pToken
;
5517 if( (pDef
->iCol
>=p
->nColumn
|| pDef
->iCol
==i
)
5518 && (pPT
->bFirst
==0 || iPos
==0)
5519 && (pPT
->n
==nToken
|| (pPT
->isPrefix
&& pPT
->n
<nToken
))
5520 && (0==memcmp(zToken
, pPT
->z
, pPT
->n
))
5522 fts3PendingListAppend(&pDef
->pList
, iDocid
, i
, iPos
, &rc
);
5526 if( pTC
) pModule
->xClose(pTC
);
5527 if( rc
==SQLITE_DONE
) rc
= SQLITE_OK
;
5531 for(pDef
=pCsr
->pDeferred
; pDef
&& rc
==SQLITE_OK
; pDef
=pDef
->pNext
){
5533 rc
= fts3PendingListAppendVarint(&pDef
->pList
, 0);
5541 int sqlite3Fts3DeferredTokenList(
5542 Fts3DeferredToken
*p
,
5548 sqlite3_int64 dummy
;
5557 pRet
= (char *)sqlite3_malloc(p
->pList
->nData
);
5558 if( !pRet
) return SQLITE_NOMEM
;
5560 nSkip
= sqlite3Fts3GetVarint(p
->pList
->aData
, &dummy
);
5561 *pnData
= p
->pList
->nData
- nSkip
;
5564 memcpy(pRet
, &p
->pList
->aData
[nSkip
], *pnData
);
5569 ** Add an entry for token pToken to the pCsr->pDeferred list.
5571 int sqlite3Fts3DeferToken(
5572 Fts3Cursor
*pCsr
, /* Fts3 table cursor */
5573 Fts3PhraseToken
*pToken
, /* Token to defer */
5574 int iCol
/* Column that token must appear in (or -1) */
5576 Fts3DeferredToken
*pDeferred
;
5577 pDeferred
= sqlite3_malloc(sizeof(*pDeferred
));
5579 return SQLITE_NOMEM
;
5581 memset(pDeferred
, 0, sizeof(*pDeferred
));
5582 pDeferred
->pToken
= pToken
;
5583 pDeferred
->pNext
= pCsr
->pDeferred
;
5584 pDeferred
->iCol
= iCol
;
5585 pCsr
->pDeferred
= pDeferred
;
5587 assert( pToken
->pDeferred
==0 );
5588 pToken
->pDeferred
= pDeferred
;
5595 ** SQLite value pRowid contains the rowid of a row that may or may not be
5596 ** present in the FTS3 table. If it is, delete it and adjust the contents
5597 ** of subsiduary data structures accordingly.
5599 static int fts3DeleteByRowid(
5601 sqlite3_value
*pRowid
,
5602 int *pnChng
, /* IN/OUT: Decrement if row is deleted */
5605 int rc
= SQLITE_OK
; /* Return code */
5606 int bFound
= 0; /* True if *pRowid really is in the table */
5608 fts3DeleteTerms(&rc
, p
, pRowid
, aSzDel
, &bFound
);
5609 if( bFound
&& rc
==SQLITE_OK
){
5610 int isEmpty
= 0; /* Deleting *pRowid leaves the table empty */
5611 rc
= fts3IsEmpty(p
, pRowid
, &isEmpty
);
5612 if( rc
==SQLITE_OK
){
5614 /* Deleting this row means the whole table is empty. In this case
5615 ** delete the contents of all three tables and throw away any
5616 ** data in the pendingTerms hash table. */
5617 rc
= fts3DeleteAll(p
, 1);
5619 memset(aSzDel
, 0, sizeof(u32
) * (p
->nColumn
+1) * 2);
5621 *pnChng
= *pnChng
- 1;
5622 if( p
->zContentTbl
==0 ){
5623 fts3SqlExec(&rc
, p
, SQL_DELETE_CONTENT
, &pRowid
);
5625 if( p
->bHasDocsize
){
5626 fts3SqlExec(&rc
, p
, SQL_DELETE_DOCSIZE
, &pRowid
);
5636 ** This function does the work for the xUpdate method of FTS3 virtual
5637 ** tables. The schema of the virtual table being:
5639 ** CREATE TABLE <table name>(
5641 ** <table name> HIDDEN,
5648 int sqlite3Fts3UpdateMethod(
5649 sqlite3_vtab
*pVtab
, /* FTS3 vtab object */
5650 int nArg
, /* Size of argument array */
5651 sqlite3_value
**apVal
, /* Array of arguments */
5652 sqlite_int64
*pRowid
/* OUT: The affected (or effected) rowid */
5654 Fts3Table
*p
= (Fts3Table
*)pVtab
;
5655 int rc
= SQLITE_OK
; /* Return Code */
5656 u32
*aSzIns
= 0; /* Sizes of inserted documents */
5657 u32
*aSzDel
= 0; /* Sizes of deleted documents */
5658 int nChng
= 0; /* Net change in number of documents */
5659 int bInsertDone
= 0;
5661 /* At this point it must be known if the %_stat table exists or not.
5662 ** So bHasStat may not be 2. */
5663 assert( p
->bHasStat
==0 || p
->bHasStat
==1 );
5665 assert( p
->pSegments
==0 );
5667 nArg
==1 /* DELETE operations */
5668 || nArg
==(2 + p
->nColumn
+ 3) /* INSERT or UPDATE operations */
5671 /* Check for a "special" INSERT operation. One of the form:
5673 ** INSERT INTO xyz(xyz) VALUES('command');
5676 && sqlite3_value_type(apVal
[0])==SQLITE_NULL
5677 && sqlite3_value_type(apVal
[p
->nColumn
+2])!=SQLITE_NULL
5679 rc
= fts3SpecialInsert(p
, apVal
[p
->nColumn
+2]);
5683 if( nArg
>1 && sqlite3_value_int(apVal
[2 + p
->nColumn
+ 2])<0 ){
5684 rc
= SQLITE_CONSTRAINT
;
5688 /* Allocate space to hold the change in document sizes */
5689 aSzDel
= sqlite3_malloc64(sizeof(aSzDel
[0])*((sqlite3_int64
)p
->nColumn
+1)*2);
5694 aSzIns
= &aSzDel
[p
->nColumn
+1];
5695 memset(aSzDel
, 0, sizeof(aSzDel
[0])*(p
->nColumn
+1)*2);
5697 rc
= fts3Writelock(p
);
5698 if( rc
!=SQLITE_OK
) goto update_out
;
5700 /* If this is an INSERT operation, or an UPDATE that modifies the rowid
5701 ** value, then this operation requires constraint handling.
5703 ** If the on-conflict mode is REPLACE, this means that the existing row
5704 ** should be deleted from the database before inserting the new row. Or,
5705 ** if the on-conflict mode is other than REPLACE, then this method must
5706 ** detect the conflict and return SQLITE_CONSTRAINT before beginning to
5707 ** modify the database file.
5709 if( nArg
>1 && p
->zContentTbl
==0 ){
5710 /* Find the value object that holds the new rowid value. */
5711 sqlite3_value
*pNewRowid
= apVal
[3+p
->nColumn
];
5712 if( sqlite3_value_type(pNewRowid
)==SQLITE_NULL
){
5713 pNewRowid
= apVal
[1];
5716 if( sqlite3_value_type(pNewRowid
)!=SQLITE_NULL
&& (
5717 sqlite3_value_type(apVal
[0])==SQLITE_NULL
5718 || sqlite3_value_int64(apVal
[0])!=sqlite3_value_int64(pNewRowid
)
5720 /* The new rowid is not NULL (in this case the rowid will be
5721 ** automatically assigned and there is no chance of a conflict), and
5722 ** the statement is either an INSERT or an UPDATE that modifies the
5723 ** rowid column. So if the conflict mode is REPLACE, then delete any
5724 ** existing row with rowid=pNewRowid.
5726 ** Or, if the conflict mode is not REPLACE, insert the new record into
5727 ** the %_content table. If we hit the duplicate rowid constraint (or any
5728 ** other error) while doing so, return immediately.
5730 ** This branch may also run if pNewRowid contains a value that cannot
5731 ** be losslessly converted to an integer. In this case, the eventual
5732 ** call to fts3InsertData() (either just below or further on in this
5733 ** function) will return SQLITE_MISMATCH. If fts3DeleteByRowid is
5734 ** invoked, it will delete zero rows (since no row will have
5735 ** docid=$pNewRowid if $pNewRowid is not an integer value).
5737 if( sqlite3_vtab_on_conflict(p
->db
)==SQLITE_REPLACE
){
5738 rc
= fts3DeleteByRowid(p
, pNewRowid
, &nChng
, aSzDel
);
5740 rc
= fts3InsertData(p
, apVal
, pRowid
);
5745 if( rc
!=SQLITE_OK
){
5749 /* If this is a DELETE or UPDATE operation, remove the old record. */
5750 if( sqlite3_value_type(apVal
[0])!=SQLITE_NULL
){
5751 assert( sqlite3_value_type(apVal
[0])==SQLITE_INTEGER
);
5752 rc
= fts3DeleteByRowid(p
, apVal
[0], &nChng
, aSzDel
);
5755 /* If this is an INSERT or UPDATE operation, insert the new record. */
5756 if( nArg
>1 && rc
==SQLITE_OK
){
5757 int iLangid
= sqlite3_value_int(apVal
[2 + p
->nColumn
+ 2]);
5758 if( bInsertDone
==0 ){
5759 rc
= fts3InsertData(p
, apVal
, pRowid
);
5760 if( rc
==SQLITE_CONSTRAINT
&& p
->zContentTbl
==0 ){
5761 rc
= FTS_CORRUPT_VTAB
;
5764 if( rc
==SQLITE_OK
){
5765 rc
= fts3PendingTermsDocid(p
, 0, iLangid
, *pRowid
);
5767 if( rc
==SQLITE_OK
){
5768 assert( p
->iPrevDocid
==*pRowid
);
5769 rc
= fts3InsertTerms(p
, iLangid
, apVal
, aSzIns
);
5771 if( p
->bHasDocsize
){
5772 fts3InsertDocsize(&rc
, p
, aSzIns
);
5778 fts3UpdateDocTotals(&rc
, p
, aSzIns
, aSzDel
, nChng
);
5782 sqlite3_free(aSzDel
);
5783 sqlite3Fts3SegmentsClose(p
);
5788 ** Flush any data in the pending-terms hash table to disk. If successful,
5789 ** merge all segments in the database (including the new segment, if
5790 ** there was any data to flush) into a single segment.
5792 int sqlite3Fts3Optimize(Fts3Table
*p
){
5794 rc
= sqlite3_exec(p
->db
, "SAVEPOINT fts3", 0, 0, 0);
5795 if( rc
==SQLITE_OK
){
5796 rc
= fts3DoOptimize(p
, 1);
5797 if( rc
==SQLITE_OK
|| rc
==SQLITE_DONE
){
5798 int rc2
= sqlite3_exec(p
->db
, "RELEASE fts3", 0, 0, 0);
5799 if( rc2
!=SQLITE_OK
) rc
= rc2
;
5801 sqlite3_exec(p
->db
, "ROLLBACK TO fts3", 0, 0, 0);
5802 sqlite3_exec(p
->db
, "RELEASE fts3", 0, 0, 0);
5805 sqlite3Fts3SegmentsClose(p
);