4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements. This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows. Indices are selected and used to speed the search when doing
16 ** so is applicable. Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
19 #include "sqliteInt.h"
23 ** Trace output macros
25 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
26 int sqlite3WhereTrace
= 0;
28 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
29 # define WHERETRACE(X) if(sqlite3WhereTrace) sqlite3DebugPrintf X
31 # define WHERETRACE(X)
36 typedef struct WhereClause WhereClause
;
37 typedef struct WhereMaskSet WhereMaskSet
;
38 typedef struct WhereOrInfo WhereOrInfo
;
39 typedef struct WhereAndInfo WhereAndInfo
;
40 typedef struct WhereCost WhereCost
;
43 ** The query generator uses an array of instances of this structure to
44 ** help it analyze the subexpressions of the WHERE clause. Each WHERE
45 ** clause subexpression is separated from the others by AND operators,
46 ** usually, or sometimes subexpressions separated by OR.
48 ** All WhereTerms are collected into a single WhereClause structure.
49 ** The following identity holds:
51 ** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
53 ** When a term is of the form:
57 ** where X is a column name and <op> is one of certain operators,
58 ** then WhereTerm.leftCursor and WhereTerm.u.leftColumn record the
59 ** cursor number and column number for X. WhereTerm.eOperator records
60 ** the <op> using a bitmask encoding defined by WO_xxx below. The
61 ** use of a bitmask encoding for the operator allows us to search
62 ** quickly for terms that match any of several different operators.
64 ** A WhereTerm might also be two or more subterms connected by OR:
66 ** (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR ....
68 ** In this second case, wtFlag as the TERM_ORINFO set and eOperator==WO_OR
69 ** and the WhereTerm.u.pOrInfo field points to auxiliary information that
70 ** is collected about the
72 ** If a term in the WHERE clause does not match either of the two previous
73 ** categories, then eOperator==0. The WhereTerm.pExpr field is still set
74 ** to the original subexpression content and wtFlags is set up appropriately
75 ** but no other fields in the WhereTerm object are meaningful.
77 ** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers,
78 ** but they do so indirectly. A single WhereMaskSet structure translates
79 ** cursor number into bits and the translated bit is stored in the prereq
80 ** fields. The translation is used in order to maximize the number of
81 ** bits that will fit in a Bitmask. The VDBE cursor numbers might be
82 ** spread out over the non-negative integers. For example, the cursor
83 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The WhereMaskSet
84 ** translates these sparse cursor numbers into consecutive integers
85 ** beginning with 0 in order to make the best possible use of the available
86 ** bits in the Bitmask. So, in the example above, the cursor numbers
87 ** would be mapped into integers 0 through 7.
89 ** The number of terms in a join is limited by the number of bits
90 ** in prereqRight and prereqAll. The default is 64 bits, hence SQLite
91 ** is only able to process joins with 64 or fewer tables.
93 typedef struct WhereTerm WhereTerm
;
95 Expr
*pExpr
; /* Pointer to the subexpression that is this term */
96 int iParent
; /* Disable pWC->a[iParent] when this term disabled */
97 int leftCursor
; /* Cursor number of X in "X <op> <expr>" */
99 int leftColumn
; /* Column number of X in "X <op> <expr>" */
100 WhereOrInfo
*pOrInfo
; /* Extra information if eOperator==WO_OR */
101 WhereAndInfo
*pAndInfo
; /* Extra information if eOperator==WO_AND */
103 u16 eOperator
; /* A WO_xx value describing <op> */
104 u8 wtFlags
; /* TERM_xxx bit flags. See below */
105 u8 nChild
; /* Number of children that must disable us */
106 WhereClause
*pWC
; /* The clause this term is part of */
107 Bitmask prereqRight
; /* Bitmask of tables used by pExpr->pRight */
108 Bitmask prereqAll
; /* Bitmask of tables referenced by pExpr */
112 ** Allowed values of WhereTerm.wtFlags
114 #define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(db, pExpr) */
115 #define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */
116 #define TERM_CODED 0x04 /* This term is already coded */
117 #define TERM_COPIED 0x08 /* Has a child */
118 #define TERM_ORINFO 0x10 /* Need to free the WhereTerm.u.pOrInfo object */
119 #define TERM_ANDINFO 0x20 /* Need to free the WhereTerm.u.pAndInfo obj */
120 #define TERM_OR_OK 0x40 /* Used during OR-clause processing */
121 #ifdef SQLITE_ENABLE_STAT3
122 # define TERM_VNULL 0x80 /* Manufactured x>NULL or x<=NULL term */
124 # define TERM_VNULL 0x00 /* Disabled if not using stat3 */
128 ** An instance of the following structure holds all information about a
129 ** WHERE clause. Mostly this is a container for one or more WhereTerms.
131 ** Explanation of pOuter: For a WHERE clause of the form
133 ** a AND ((b AND c) OR (d AND e)) AND f
135 ** There are separate WhereClause objects for the whole clause and for
136 ** the subclauses "(b AND c)" and "(d AND e)". The pOuter field of the
137 ** subclauses points to the WhereClause object for the whole clause.
140 Parse
*pParse
; /* The parser context */
141 WhereMaskSet
*pMaskSet
; /* Mapping of table cursor numbers to bitmasks */
142 Bitmask vmask
; /* Bitmask identifying virtual table cursors */
143 WhereClause
*pOuter
; /* Outer conjunction */
144 u8 op
; /* Split operator. TK_AND or TK_OR */
145 u16 wctrlFlags
; /* Might include WHERE_AND_ONLY */
146 int nTerm
; /* Number of terms */
147 int nSlot
; /* Number of entries in a[] */
148 WhereTerm
*a
; /* Each a[] describes a term of the WHERE cluase */
149 #if defined(SQLITE_SMALL_STACK)
150 WhereTerm aStatic
[1]; /* Initial static space for a[] */
152 WhereTerm aStatic
[8]; /* Initial static space for a[] */
157 ** A WhereTerm with eOperator==WO_OR has its u.pOrInfo pointer set to
158 ** a dynamically allocated instance of the following structure.
161 WhereClause wc
; /* Decomposition into subterms */
162 Bitmask indexable
; /* Bitmask of all indexable tables in the clause */
166 ** A WhereTerm with eOperator==WO_AND has its u.pAndInfo pointer set to
167 ** a dynamically allocated instance of the following structure.
169 struct WhereAndInfo
{
170 WhereClause wc
; /* The subexpression broken out */
174 ** An instance of the following structure keeps track of a mapping
175 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
177 ** The VDBE cursor numbers are small integers contained in
178 ** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE
179 ** clause, the cursor numbers might not begin with 0 and they might
180 ** contain gaps in the numbering sequence. But we want to make maximum
181 ** use of the bits in our bitmasks. This structure provides a mapping
182 ** from the sparse cursor numbers into consecutive integers beginning
185 ** If WhereMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
186 ** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A.
188 ** For example, if the WHERE clause expression used these VDBE
189 ** cursors: 4, 5, 8, 29, 57, 73. Then the WhereMaskSet structure
190 ** would map those cursor numbers into bits 0 through 5.
192 ** Note that the mapping is not necessarily ordered. In the example
193 ** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0,
194 ** 57->5, 73->4. Or one of 719 other combinations might be used. It
195 ** does not really matter. What is important is that sparse cursor
196 ** numbers all get mapped into bit numbers that begin with 0 and contain
199 struct WhereMaskSet
{
200 int n
; /* Number of assigned cursor values */
201 int ix
[BMS
]; /* Cursor assigned to each bit */
205 ** A WhereCost object records a lookup strategy and the estimated
206 ** cost of pursuing that strategy.
209 WherePlan plan
; /* The lookup strategy */
210 double rCost
; /* Overall cost of pursuing this search strategy */
211 Bitmask used
; /* Bitmask of cursors used by this plan */
215 ** Bitmasks for the operators that indices are able to exploit. An
216 ** OR-ed combination of these values can be used when searching for
217 ** terms in the where clause.
221 #define WO_LT (WO_EQ<<(TK_LT-TK_EQ))
222 #define WO_LE (WO_EQ<<(TK_LE-TK_EQ))
223 #define WO_GT (WO_EQ<<(TK_GT-TK_EQ))
224 #define WO_GE (WO_EQ<<(TK_GE-TK_EQ))
225 #define WO_MATCH 0x040
226 #define WO_ISNULL 0x080
227 #define WO_OR 0x100 /* Two or more OR-connected terms */
228 #define WO_AND 0x200 /* Two or more AND-connected terms */
229 #define WO_NOOP 0x800 /* This term does not restrict search space */
231 #define WO_ALL 0xfff /* Mask of all possible WO_* values */
232 #define WO_SINGLE 0x0ff /* Mask of all non-compound WO_* values */
235 ** Value for wsFlags returned by bestIndex() and stored in
236 ** WhereLevel.wsFlags. These flags determine which search
237 ** strategies are appropriate.
239 ** The least significant 12 bits is reserved as a mask for WO_ values above.
240 ** The WhereLevel.wsFlags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
241 ** But if the table is the right table of a left join, WhereLevel.wsFlags
242 ** is set to WO_IN|WO_EQ. The WhereLevel.wsFlags field can then be used as
243 ** the "op" parameter to findTerm when we are resolving equality constraints.
244 ** ISNULL constraints will then not be used on the right table of a left
245 ** join. Tickets #2177 and #2189.
247 #define WHERE_ROWID_EQ 0x00001000 /* rowid=EXPR or rowid IN (...) */
248 #define WHERE_ROWID_RANGE 0x00002000 /* rowid<EXPR and/or rowid>EXPR */
249 #define WHERE_COLUMN_EQ 0x00010000 /* x=EXPR or x IN (...) or x IS NULL */
250 #define WHERE_COLUMN_RANGE 0x00020000 /* x<EXPR and/or x>EXPR */
251 #define WHERE_COLUMN_IN 0x00040000 /* x IN (...) */
252 #define WHERE_COLUMN_NULL 0x00080000 /* x IS NULL */
253 #define WHERE_INDEXED 0x000f0000 /* Anything that uses an index */
254 #define WHERE_NOT_FULLSCAN 0x100f3000 /* Does not do a full table scan */
255 #define WHERE_IN_ABLE 0x000f1000 /* Able to support an IN operator */
256 #define WHERE_TOP_LIMIT 0x00100000 /* x<EXPR or x<=EXPR constraint */
257 #define WHERE_BTM_LIMIT 0x00200000 /* x>EXPR or x>=EXPR constraint */
258 #define WHERE_BOTH_LIMIT 0x00300000 /* Both x>EXPR and x<EXPR */
259 #define WHERE_IDX_ONLY 0x00800000 /* Use index only - omit table */
260 #define WHERE_ORDERBY 0x01000000 /* Output will appear in correct order */
261 #define WHERE_REVERSE 0x02000000 /* Scan in reverse order */
262 #define WHERE_UNIQUE 0x04000000 /* Selects no more than one row */
263 #define WHERE_VIRTUALTABLE 0x08000000 /* Use virtual-table processing */
264 #define WHERE_MULTI_OR 0x10000000 /* OR using multiple indices */
265 #define WHERE_TEMP_INDEX 0x20000000 /* Uses an ephemeral index */
266 #define WHERE_DISTINCT 0x40000000 /* Correct order for DISTINCT */
269 ** Initialize a preallocated WhereClause structure.
271 static void whereClauseInit(
272 WhereClause
*pWC
, /* The WhereClause to be initialized */
273 Parse
*pParse
, /* The parsing context */
274 WhereMaskSet
*pMaskSet
, /* Mapping from table cursor numbers to bitmasks */
275 u16 wctrlFlags
/* Might include WHERE_AND_ONLY */
277 pWC
->pParse
= pParse
;
278 pWC
->pMaskSet
= pMaskSet
;
281 pWC
->nSlot
= ArraySize(pWC
->aStatic
);
282 pWC
->a
= pWC
->aStatic
;
284 pWC
->wctrlFlags
= wctrlFlags
;
287 /* Forward reference */
288 static void whereClauseClear(WhereClause
*);
291 ** Deallocate all memory associated with a WhereOrInfo object.
293 static void whereOrInfoDelete(sqlite3
*db
, WhereOrInfo
*p
){
294 whereClauseClear(&p
->wc
);
295 sqlite3DbFree(db
, p
);
299 ** Deallocate all memory associated with a WhereAndInfo object.
301 static void whereAndInfoDelete(sqlite3
*db
, WhereAndInfo
*p
){
302 whereClauseClear(&p
->wc
);
303 sqlite3DbFree(db
, p
);
307 ** Deallocate a WhereClause structure. The WhereClause structure
308 ** itself is not freed. This routine is the inverse of whereClauseInit().
310 static void whereClauseClear(WhereClause
*pWC
){
313 sqlite3
*db
= pWC
->pParse
->db
;
314 for(i
=pWC
->nTerm
-1, a
=pWC
->a
; i
>=0; i
--, a
++){
315 if( a
->wtFlags
& TERM_DYNAMIC
){
316 sqlite3ExprDelete(db
, a
->pExpr
);
318 if( a
->wtFlags
& TERM_ORINFO
){
319 whereOrInfoDelete(db
, a
->u
.pOrInfo
);
320 }else if( a
->wtFlags
& TERM_ANDINFO
){
321 whereAndInfoDelete(db
, a
->u
.pAndInfo
);
324 if( pWC
->a
!=pWC
->aStatic
){
325 sqlite3DbFree(db
, pWC
->a
);
330 ** Add a single new WhereTerm entry to the WhereClause object pWC.
331 ** The new WhereTerm object is constructed from Expr p and with wtFlags.
332 ** The index in pWC->a[] of the new WhereTerm is returned on success.
333 ** 0 is returned if the new WhereTerm could not be added due to a memory
334 ** allocation error. The memory allocation failure will be recorded in
335 ** the db->mallocFailed flag so that higher-level functions can detect it.
337 ** This routine will increase the size of the pWC->a[] array as necessary.
339 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility
340 ** for freeing the expression p is assumed by the WhereClause object pWC.
341 ** This is true even if this routine fails to allocate a new WhereTerm.
343 ** WARNING: This routine might reallocate the space used to store
344 ** WhereTerms. All pointers to WhereTerms should be invalidated after
345 ** calling this routine. Such pointers may be reinitialized by referencing
346 ** the pWC->a[] array.
348 static int whereClauseInsert(WhereClause
*pWC
, Expr
*p
, u8 wtFlags
){
351 testcase( wtFlags
& TERM_VIRTUAL
); /* EV: R-00211-15100 */
352 if( pWC
->nTerm
>=pWC
->nSlot
){
353 WhereTerm
*pOld
= pWC
->a
;
354 sqlite3
*db
= pWC
->pParse
->db
;
355 pWC
->a
= sqlite3DbMallocRaw(db
, sizeof(pWC
->a
[0])*pWC
->nSlot
*2 );
357 if( wtFlags
& TERM_DYNAMIC
){
358 sqlite3ExprDelete(db
, p
);
363 memcpy(pWC
->a
, pOld
, sizeof(pWC
->a
[0])*pWC
->nTerm
);
364 if( pOld
!=pWC
->aStatic
){
365 sqlite3DbFree(db
, pOld
);
367 pWC
->nSlot
= sqlite3DbMallocSize(db
, pWC
->a
)/sizeof(pWC
->a
[0]);
369 pTerm
= &pWC
->a
[idx
= pWC
->nTerm
++];
371 pTerm
->wtFlags
= wtFlags
;
378 ** This routine identifies subexpressions in the WHERE clause where
379 ** each subexpression is separated by the AND operator or some other
380 ** operator specified in the op parameter. The WhereClause structure
381 ** is filled with pointers to subexpressions. For example:
383 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
384 ** \________/ \_______________/ \________________/
385 ** slot[0] slot[1] slot[2]
387 ** The original WHERE clause in pExpr is unaltered. All this routine
388 ** does is make slot[] entries point to substructure within pExpr.
390 ** In the previous sentence and in the diagram, "slot[]" refers to
391 ** the WhereClause.a[] array. The slot[] array grows as needed to contain
392 ** all terms of the WHERE clause.
394 static void whereSplit(WhereClause
*pWC
, Expr
*pExpr
, int op
){
396 if( pExpr
==0 ) return;
398 whereClauseInsert(pWC
, pExpr
, 0);
400 whereSplit(pWC
, pExpr
->pLeft
, op
);
401 whereSplit(pWC
, pExpr
->pRight
, op
);
406 ** Initialize an expression mask set (a WhereMaskSet object)
408 #define initMaskSet(P) memset(P, 0, sizeof(*P))
411 ** Return the bitmask for the given cursor number. Return 0 if
412 ** iCursor is not in the set.
414 static Bitmask
getMask(WhereMaskSet
*pMaskSet
, int iCursor
){
416 assert( pMaskSet
->n
<=(int)sizeof(Bitmask
)*8 );
417 for(i
=0; i
<pMaskSet
->n
; i
++){
418 if( pMaskSet
->ix
[i
]==iCursor
){
419 return ((Bitmask
)1)<<i
;
426 ** Create a new mask for cursor iCursor.
428 ** There is one cursor per table in the FROM clause. The number of
429 ** tables in the FROM clause is limited by a test early in the
430 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
431 ** array will never overflow.
433 static void createMask(WhereMaskSet
*pMaskSet
, int iCursor
){
434 assert( pMaskSet
->n
< ArraySize(pMaskSet
->ix
) );
435 pMaskSet
->ix
[pMaskSet
->n
++] = iCursor
;
439 ** This routine walks (recursively) an expression tree and generates
440 ** a bitmask indicating which tables are used in that expression
443 ** In order for this routine to work, the calling function must have
444 ** previously invoked sqlite3ResolveExprNames() on the expression. See
445 ** the header comment on that routine for additional information.
446 ** The sqlite3ResolveExprNames() routines looks for column names and
447 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
448 ** the VDBE cursor number of the table. This routine just has to
449 ** translate the cursor numbers into bitmask values and OR all
450 ** the bitmasks together.
452 static Bitmask
exprListTableUsage(WhereMaskSet
*, ExprList
*);
453 static Bitmask
exprSelectTableUsage(WhereMaskSet
*, Select
*);
454 static Bitmask
exprTableUsage(WhereMaskSet
*pMaskSet
, Expr
*p
){
457 if( p
->op
==TK_COLUMN
){
458 mask
= getMask(pMaskSet
, p
->iTable
);
461 mask
= exprTableUsage(pMaskSet
, p
->pRight
);
462 mask
|= exprTableUsage(pMaskSet
, p
->pLeft
);
463 if( ExprHasProperty(p
, EP_xIsSelect
) ){
464 mask
|= exprSelectTableUsage(pMaskSet
, p
->x
.pSelect
);
466 mask
|= exprListTableUsage(pMaskSet
, p
->x
.pList
);
470 static Bitmask
exprListTableUsage(WhereMaskSet
*pMaskSet
, ExprList
*pList
){
474 for(i
=0; i
<pList
->nExpr
; i
++){
475 mask
|= exprTableUsage(pMaskSet
, pList
->a
[i
].pExpr
);
480 static Bitmask
exprSelectTableUsage(WhereMaskSet
*pMaskSet
, Select
*pS
){
483 SrcList
*pSrc
= pS
->pSrc
;
484 mask
|= exprListTableUsage(pMaskSet
, pS
->pEList
);
485 mask
|= exprListTableUsage(pMaskSet
, pS
->pGroupBy
);
486 mask
|= exprListTableUsage(pMaskSet
, pS
->pOrderBy
);
487 mask
|= exprTableUsage(pMaskSet
, pS
->pWhere
);
488 mask
|= exprTableUsage(pMaskSet
, pS
->pHaving
);
489 if( ALWAYS(pSrc
!=0) ){
491 for(i
=0; i
<pSrc
->nSrc
; i
++){
492 mask
|= exprSelectTableUsage(pMaskSet
, pSrc
->a
[i
].pSelect
);
493 mask
|= exprTableUsage(pMaskSet
, pSrc
->a
[i
].pOn
);
502 ** Return TRUE if the given operator is one of the operators that is
503 ** allowed for an indexable WHERE clause term. The allowed operators are
504 ** "=", "<", ">", "<=", ">=", and "IN".
506 ** IMPLEMENTATION-OF: R-59926-26393 To be usable by an index a term must be
507 ** of one of the following forms: column = expression column > expression
508 ** column >= expression column < expression column <= expression
509 ** expression = column expression > column expression >= column
510 ** expression < column expression <= column column IN
511 ** (expression-list) column IN (subquery) column IS NULL
513 static int allowedOp(int op
){
514 assert( TK_GT
>TK_EQ
&& TK_GT
<TK_GE
);
515 assert( TK_LT
>TK_EQ
&& TK_LT
<TK_GE
);
516 assert( TK_LE
>TK_EQ
&& TK_LE
<TK_GE
);
517 assert( TK_GE
==TK_EQ
+4 );
518 return op
==TK_IN
|| (op
>=TK_EQ
&& op
<=TK_GE
) || op
==TK_ISNULL
;
522 ** Swap two objects of type TYPE.
524 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
527 ** Commute a comparison operator. Expressions of the form "X op Y"
528 ** are converted into "Y op X".
530 ** If a collation sequence is associated with either the left or right
531 ** side of the comparison, it remains associated with the same side after
532 ** the commutation. So "Y collate NOCASE op X" becomes
533 ** "X collate NOCASE op Y". This is because any collation sequence on
534 ** the left hand side of a comparison overrides any collation sequence
535 ** attached to the right. For the same reason the EP_ExpCollate flag
538 static void exprCommute(Parse
*pParse
, Expr
*pExpr
){
539 u16 expRight
= (pExpr
->pRight
->flags
& EP_ExpCollate
);
540 u16 expLeft
= (pExpr
->pLeft
->flags
& EP_ExpCollate
);
541 assert( allowedOp(pExpr
->op
) && pExpr
->op
!=TK_IN
);
542 pExpr
->pRight
->pColl
= sqlite3ExprCollSeq(pParse
, pExpr
->pRight
);
543 pExpr
->pLeft
->pColl
= sqlite3ExprCollSeq(pParse
, pExpr
->pLeft
);
544 SWAP(CollSeq
*,pExpr
->pRight
->pColl
,pExpr
->pLeft
->pColl
);
545 pExpr
->pRight
->flags
= (pExpr
->pRight
->flags
& ~EP_ExpCollate
) | expLeft
;
546 pExpr
->pLeft
->flags
= (pExpr
->pLeft
->flags
& ~EP_ExpCollate
) | expRight
;
547 SWAP(Expr
*,pExpr
->pRight
,pExpr
->pLeft
);
548 if( pExpr
->op
>=TK_GT
){
549 assert( TK_LT
==TK_GT
+2 );
550 assert( TK_GE
==TK_LE
+2 );
551 assert( TK_GT
>TK_EQ
);
552 assert( TK_GT
<TK_LE
);
553 assert( pExpr
->op
>=TK_GT
&& pExpr
->op
<=TK_GE
);
554 pExpr
->op
= ((pExpr
->op
-TK_GT
)^2)+TK_GT
;
559 ** Translate from TK_xx operator to WO_xx bitmask.
561 static u16
operatorMask(int op
){
563 assert( allowedOp(op
) );
566 }else if( op
==TK_ISNULL
){
569 assert( (WO_EQ
<<(op
-TK_EQ
)) < 0x7fff );
570 c
= (u16
)(WO_EQ
<<(op
-TK_EQ
));
572 assert( op
!=TK_ISNULL
|| c
==WO_ISNULL
);
573 assert( op
!=TK_IN
|| c
==WO_IN
);
574 assert( op
!=TK_EQ
|| c
==WO_EQ
);
575 assert( op
!=TK_LT
|| c
==WO_LT
);
576 assert( op
!=TK_LE
|| c
==WO_LE
);
577 assert( op
!=TK_GT
|| c
==WO_GT
);
578 assert( op
!=TK_GE
|| c
==WO_GE
);
583 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
584 ** where X is a reference to the iColumn of table iCur and <op> is one of
585 ** the WO_xx operator codes specified by the op parameter.
586 ** Return a pointer to the term. Return 0 if not found.
588 static WhereTerm
*findTerm(
589 WhereClause
*pWC
, /* The WHERE clause to be searched */
590 int iCur
, /* Cursor number of LHS */
591 int iColumn
, /* Column number of LHS */
592 Bitmask notReady
, /* RHS must not overlap with this mask */
593 u32 op
, /* Mask of WO_xx values describing operator */
594 Index
*pIdx
/* Must be compatible with this index, if not NULL */
600 for(; pWC
; pWC
=pWC
->pOuter
){
601 for(pTerm
=pWC
->a
, k
=pWC
->nTerm
; k
; k
--, pTerm
++){
602 if( pTerm
->leftCursor
==iCur
603 && (pTerm
->prereqRight
& notReady
)==0
604 && pTerm
->u
.leftColumn
==iColumn
605 && (pTerm
->eOperator
& op
)!=0
607 if( pIdx
&& pTerm
->eOperator
!=WO_ISNULL
){
608 Expr
*pX
= pTerm
->pExpr
;
612 Parse
*pParse
= pWC
->pParse
;
614 idxaff
= pIdx
->pTable
->aCol
[iColumn
].affinity
;
615 if( !sqlite3IndexAffinityOk(pX
, idxaff
) ) continue;
617 /* Figure out the collation sequence required from an index for
618 ** it to be useful for optimising expression pX. Store this
619 ** value in variable pColl.
622 pColl
= sqlite3BinaryCompareCollSeq(pParse
, pX
->pLeft
, pX
->pRight
);
623 assert(pColl
|| pParse
->nErr
);
625 for(j
=0; pIdx
->aiColumn
[j
]!=iColumn
; j
++){
626 if( NEVER(j
>=pIdx
->nColumn
) ) return 0;
628 if( pColl
&& sqlite3StrICmp(pColl
->zName
, pIdx
->azColl
[j
]) ) continue;
637 /* Forward reference */
638 static void exprAnalyze(SrcList
*, WhereClause
*, int);
641 ** Call exprAnalyze on all terms in a WHERE clause.
645 static void exprAnalyzeAll(
646 SrcList
*pTabList
, /* the FROM clause */
647 WhereClause
*pWC
/* the WHERE clause to be analyzed */
650 for(i
=pWC
->nTerm
-1; i
>=0; i
--){
651 exprAnalyze(pTabList
, pWC
, i
);
655 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
657 ** Check to see if the given expression is a LIKE or GLOB operator that
658 ** can be optimized using inequality constraints. Return TRUE if it is
659 ** so and false if not.
661 ** In order for the operator to be optimizible, the RHS must be a string
662 ** literal that does not begin with a wildcard.
664 static int isLikeOrGlob(
665 Parse
*pParse
, /* Parsing and code generating context */
666 Expr
*pExpr
, /* Test this expression */
667 Expr
**ppPrefix
, /* Pointer to TK_STRING expression with pattern prefix */
668 int *pisComplete
, /* True if the only wildcard is % in the last character */
669 int *pnoCase
/* True if uppercase is equivalent to lowercase */
671 const char *z
= 0; /* String on RHS of LIKE operator */
672 Expr
*pRight
, *pLeft
; /* Right and left size of LIKE operator */
673 ExprList
*pList
; /* List of operands to the LIKE operator */
674 int c
; /* One character in z[] */
675 int cnt
; /* Number of non-wildcard prefix characters */
676 char wc
[3]; /* Wildcard characters */
677 sqlite3
*db
= pParse
->db
; /* Database connection */
678 sqlite3_value
*pVal
= 0;
679 int op
; /* Opcode of pRight */
681 if( !sqlite3IsLikeFunction(db
, pExpr
, pnoCase
, wc
) ){
685 if( *pnoCase
) return 0;
687 pList
= pExpr
->x
.pList
;
688 pLeft
= pList
->a
[1].pExpr
;
689 if( pLeft
->op
!=TK_COLUMN
|| sqlite3ExprAffinity(pLeft
)!=SQLITE_AFF_TEXT
){
690 /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must
691 ** be the name of an indexed column with TEXT affinity. */
694 assert( pLeft
->iColumn
!=(-1) ); /* Because IPK never has AFF_TEXT */
696 pRight
= pList
->a
[0].pExpr
;
698 if( op
==TK_REGISTER
){
701 if( op
==TK_VARIABLE
){
702 Vdbe
*pReprepare
= pParse
->pReprepare
;
703 int iCol
= pRight
->iColumn
;
704 pVal
= sqlite3VdbeGetValue(pReprepare
, iCol
, SQLITE_AFF_NONE
);
705 if( pVal
&& sqlite3_value_type(pVal
)==SQLITE_TEXT
){
706 z
= (char *)sqlite3_value_text(pVal
);
708 sqlite3VdbeSetVarmask(pParse
->pVdbe
, iCol
);
709 assert( pRight
->op
==TK_VARIABLE
|| pRight
->op
==TK_REGISTER
);
710 }else if( op
==TK_STRING
){
711 z
= pRight
->u
.zToken
;
715 while( (c
=z
[cnt
])!=0 && c
!=wc
[0] && c
!=wc
[1] && c
!=wc
[2] ){
718 if( cnt
!=0 && 255!=(u8
)z
[cnt
-1] ){
720 *pisComplete
= c
==wc
[0] && z
[cnt
+1]==0;
721 pPrefix
= sqlite3Expr(db
, TK_STRING
, z
);
722 if( pPrefix
) pPrefix
->u
.zToken
[cnt
] = 0;
724 if( op
==TK_VARIABLE
){
725 Vdbe
*v
= pParse
->pVdbe
;
726 sqlite3VdbeSetVarmask(v
, pRight
->iColumn
);
727 if( *pisComplete
&& pRight
->u
.zToken
[1] ){
728 /* If the rhs of the LIKE expression is a variable, and the current
729 ** value of the variable means there is no need to invoke the LIKE
730 ** function, then no OP_Variable will be added to the program.
731 ** This causes problems for the sqlite3_bind_parameter_name()
732 ** API. To workaround them, add a dummy OP_Variable here.
734 int r1
= sqlite3GetTempReg(pParse
);
735 sqlite3ExprCodeTarget(pParse
, pRight
, r1
);
736 sqlite3VdbeChangeP3(v
, sqlite3VdbeCurrentAddr(v
)-1, 0);
737 sqlite3ReleaseTempReg(pParse
, r1
);
745 sqlite3ValueFree(pVal
);
748 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
751 #ifndef SQLITE_OMIT_VIRTUALTABLE
753 ** Check to see if the given expression is of the form
757 ** If it is then return TRUE. If not, return FALSE.
759 static int isMatchOfColumn(
760 Expr
*pExpr
/* Test this expression */
764 if( pExpr
->op
!=TK_FUNCTION
){
767 if( sqlite3StrICmp(pExpr
->u
.zToken
,"match")!=0 ){
770 pList
= pExpr
->x
.pList
;
771 if( pList
->nExpr
!=2 ){
774 if( pList
->a
[1].pExpr
->op
!= TK_COLUMN
){
779 #endif /* SQLITE_OMIT_VIRTUALTABLE */
782 ** If the pBase expression originated in the ON or USING clause of
783 ** a join, then transfer the appropriate markings over to derived.
785 static void transferJoinMarkings(Expr
*pDerived
, Expr
*pBase
){
786 pDerived
->flags
|= pBase
->flags
& EP_FromJoin
;
787 pDerived
->iRightJoinTable
= pBase
->iRightJoinTable
;
790 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
792 ** Analyze a term that consists of two or more OR-connected
795 ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
796 ** ^^^^^^^^^^^^^^^^^^^^
798 ** This routine analyzes terms such as the middle term in the above example.
799 ** A WhereOrTerm object is computed and attached to the term under
800 ** analysis, regardless of the outcome of the analysis. Hence:
802 ** WhereTerm.wtFlags |= TERM_ORINFO
803 ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object
805 ** The term being analyzed must have two or more of OR-connected subterms.
806 ** A single subterm might be a set of AND-connected sub-subterms.
807 ** Examples of terms under analysis:
809 ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
810 ** (B) x=expr1 OR expr2=x OR x=expr3
811 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
812 ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
813 ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
817 ** If all subterms are of the form T.C=expr for some single column of C
818 ** a single table T (as shown in example B above) then create a new virtual
819 ** term that is an equivalent IN expression. In other words, if the term
820 ** being analyzed is:
822 ** x = expr1 OR expr2 = x OR x = expr3
824 ** then create a new virtual term like this:
826 ** x IN (expr1,expr2,expr3)
830 ** If all subterms are indexable by a single table T, then set
832 ** WhereTerm.eOperator = WO_OR
833 ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T
835 ** A subterm is "indexable" if it is of the form
836 ** "T.C <op> <expr>" where C is any column of table T and
837 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN".
838 ** A subterm is also indexable if it is an AND of two or more
839 ** subsubterms at least one of which is indexable. Indexable AND
840 ** subterms have their eOperator set to WO_AND and they have
841 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
843 ** From another point of view, "indexable" means that the subterm could
844 ** potentially be used with an index if an appropriate index exists.
845 ** This analysis does not consider whether or not the index exists; that
846 ** is something the bestIndex() routine will determine. This analysis
847 ** only looks at whether subterms appropriate for indexing exist.
849 ** All examples A through E above all satisfy case 2. But if a term
850 ** also statisfies case 1 (such as B) we know that the optimizer will
851 ** always prefer case 1, so in that case we pretend that case 2 is not
854 ** It might be the case that multiple tables are indexable. For example,
855 ** (E) above is indexable on tables P, Q, and R.
857 ** Terms that satisfy case 2 are candidates for lookup by using
858 ** separate indices to find rowids for each subterm and composing
859 ** the union of all rowids using a RowSet object. This is similar
860 ** to "bitmap indices" in other database engines.
864 ** If neither case 1 nor case 2 apply, then leave the eOperator set to
865 ** zero. This term is not useful for search.
867 static void exprAnalyzeOrTerm(
868 SrcList
*pSrc
, /* the FROM clause */
869 WhereClause
*pWC
, /* the complete WHERE clause */
870 int idxTerm
/* Index of the OR-term to be analyzed */
872 Parse
*pParse
= pWC
->pParse
; /* Parser context */
873 sqlite3
*db
= pParse
->db
; /* Database connection */
874 WhereTerm
*pTerm
= &pWC
->a
[idxTerm
]; /* The term to be analyzed */
875 Expr
*pExpr
= pTerm
->pExpr
; /* The expression of the term */
876 WhereMaskSet
*pMaskSet
= pWC
->pMaskSet
; /* Table use masks */
877 int i
; /* Loop counters */
878 WhereClause
*pOrWc
; /* Breakup of pTerm into subterms */
879 WhereTerm
*pOrTerm
; /* A Sub-term within the pOrWc */
880 WhereOrInfo
*pOrInfo
; /* Additional information associated with pTerm */
881 Bitmask chngToIN
; /* Tables that might satisfy case 1 */
882 Bitmask indexable
; /* Tables that are indexable, satisfying case 2 */
885 ** Break the OR clause into its separate subterms. The subterms are
886 ** stored in a WhereClause structure containing within the WhereOrInfo
887 ** object that is attached to the original OR clause term.
889 assert( (pTerm
->wtFlags
& (TERM_DYNAMIC
|TERM_ORINFO
|TERM_ANDINFO
))==0 );
890 assert( pExpr
->op
==TK_OR
);
891 pTerm
->u
.pOrInfo
= pOrInfo
= sqlite3DbMallocZero(db
, sizeof(*pOrInfo
));
892 if( pOrInfo
==0 ) return;
893 pTerm
->wtFlags
|= TERM_ORINFO
;
894 pOrWc
= &pOrInfo
->wc
;
895 whereClauseInit(pOrWc
, pWC
->pParse
, pMaskSet
, pWC
->wctrlFlags
);
896 whereSplit(pOrWc
, pExpr
, TK_OR
);
897 exprAnalyzeAll(pSrc
, pOrWc
);
898 if( db
->mallocFailed
) return;
899 assert( pOrWc
->nTerm
>=2 );
902 ** Compute the set of tables that might satisfy cases 1 or 2.
904 indexable
= ~(Bitmask
)0;
905 chngToIN
= ~(pWC
->vmask
);
906 for(i
=pOrWc
->nTerm
-1, pOrTerm
=pOrWc
->a
; i
>=0 && indexable
; i
--, pOrTerm
++){
907 if( (pOrTerm
->eOperator
& WO_SINGLE
)==0 ){
908 WhereAndInfo
*pAndInfo
;
909 assert( pOrTerm
->eOperator
==0 );
910 assert( (pOrTerm
->wtFlags
& (TERM_ANDINFO
|TERM_ORINFO
))==0 );
912 pAndInfo
= sqlite3DbMallocRaw(db
, sizeof(*pAndInfo
));
918 pOrTerm
->u
.pAndInfo
= pAndInfo
;
919 pOrTerm
->wtFlags
|= TERM_ANDINFO
;
920 pOrTerm
->eOperator
= WO_AND
;
921 pAndWC
= &pAndInfo
->wc
;
922 whereClauseInit(pAndWC
, pWC
->pParse
, pMaskSet
, pWC
->wctrlFlags
);
923 whereSplit(pAndWC
, pOrTerm
->pExpr
, TK_AND
);
924 exprAnalyzeAll(pSrc
, pAndWC
);
925 pAndWC
->pOuter
= pWC
;
926 testcase( db
->mallocFailed
);
927 if( !db
->mallocFailed
){
928 for(j
=0, pAndTerm
=pAndWC
->a
; j
<pAndWC
->nTerm
; j
++, pAndTerm
++){
929 assert( pAndTerm
->pExpr
);
930 if( allowedOp(pAndTerm
->pExpr
->op
) ){
931 b
|= getMask(pMaskSet
, pAndTerm
->leftCursor
);
937 }else if( pOrTerm
->wtFlags
& TERM_COPIED
){
938 /* Skip this term for now. We revisit it when we process the
939 ** corresponding TERM_VIRTUAL term */
942 b
= getMask(pMaskSet
, pOrTerm
->leftCursor
);
943 if( pOrTerm
->wtFlags
& TERM_VIRTUAL
){
944 WhereTerm
*pOther
= &pOrWc
->a
[pOrTerm
->iParent
];
945 b
|= getMask(pMaskSet
, pOther
->leftCursor
);
948 if( pOrTerm
->eOperator
!=WO_EQ
){
957 ** Record the set of tables that satisfy case 2. The set might be
960 pOrInfo
->indexable
= indexable
;
961 pTerm
->eOperator
= indexable
==0 ? 0 : WO_OR
;
964 ** chngToIN holds a set of tables that *might* satisfy case 1. But
965 ** we have to do some additional checking to see if case 1 really
968 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means
969 ** that there is no possibility of transforming the OR clause into an
970 ** IN operator because one or more terms in the OR clause contain
971 ** something other than == on a column in the single table. The 1-bit
972 ** case means that every term of the OR clause is of the form
973 ** "table.column=expr" for some single table. The one bit that is set
974 ** will correspond to the common table. We still need to check to make
975 ** sure the same column is used on all terms. The 2-bit case is when
976 ** the all terms are of the form "table1.column=table2.column". It
977 ** might be possible to form an IN operator with either table1.column
978 ** or table2.column as the LHS if either is common to every term of
981 ** Note that terms of the form "table.column1=table.column2" (the
982 ** same table on both sizes of the ==) cannot be optimized.
985 int okToChngToIN
= 0; /* True if the conversion to IN is valid */
986 int iColumn
= -1; /* Column index on lhs of IN operator */
987 int iCursor
= -1; /* Table cursor common to all terms */
988 int j
= 0; /* Loop counter */
990 /* Search for a table and column that appears on one side or the
991 ** other of the == operator in every subterm. That table and column
992 ** will be recorded in iCursor and iColumn. There might not be any
993 ** such table and column. Set okToChngToIN if an appropriate table
994 ** and column is found but leave okToChngToIN false if not found.
996 for(j
=0; j
<2 && !okToChngToIN
; j
++){
998 for(i
=pOrWc
->nTerm
-1; i
>=0; i
--, pOrTerm
++){
999 assert( pOrTerm
->eOperator
==WO_EQ
);
1000 pOrTerm
->wtFlags
&= ~TERM_OR_OK
;
1001 if( pOrTerm
->leftCursor
==iCursor
){
1002 /* This is the 2-bit case and we are on the second iteration and
1003 ** current term is from the first iteration. So skip this term. */
1007 if( (chngToIN
& getMask(pMaskSet
, pOrTerm
->leftCursor
))==0 ){
1008 /* This term must be of the form t1.a==t2.b where t2 is in the
1009 ** chngToIN set but t1 is not. This term will be either preceeded
1010 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term
1011 ** and use its inversion. */
1012 testcase( pOrTerm
->wtFlags
& TERM_COPIED
);
1013 testcase( pOrTerm
->wtFlags
& TERM_VIRTUAL
);
1014 assert( pOrTerm
->wtFlags
& (TERM_COPIED
|TERM_VIRTUAL
) );
1017 iColumn
= pOrTerm
->u
.leftColumn
;
1018 iCursor
= pOrTerm
->leftCursor
;
1022 /* No candidate table+column was found. This can only occur
1023 ** on the second iteration */
1025 assert( (chngToIN
&(chngToIN
-1))==0 );
1026 assert( chngToIN
==getMask(pMaskSet
, iCursor
) );
1031 /* We have found a candidate table and column. Check to see if that
1032 ** table and column is common to every term in the OR clause */
1034 for(; i
>=0 && okToChngToIN
; i
--, pOrTerm
++){
1035 assert( pOrTerm
->eOperator
==WO_EQ
);
1036 if( pOrTerm
->leftCursor
!=iCursor
){
1037 pOrTerm
->wtFlags
&= ~TERM_OR_OK
;
1038 }else if( pOrTerm
->u
.leftColumn
!=iColumn
){
1041 int affLeft
, affRight
;
1042 /* If the right-hand side is also a column, then the affinities
1043 ** of both right and left sides must be such that no type
1044 ** conversions are required on the right. (Ticket #2249)
1046 affRight
= sqlite3ExprAffinity(pOrTerm
->pExpr
->pRight
);
1047 affLeft
= sqlite3ExprAffinity(pOrTerm
->pExpr
->pLeft
);
1048 if( affRight
!=0 && affRight
!=affLeft
){
1051 pOrTerm
->wtFlags
|= TERM_OR_OK
;
1057 /* At this point, okToChngToIN is true if original pTerm satisfies
1058 ** case 1. In that case, construct a new virtual term that is
1059 ** pTerm converted into an IN operator.
1061 ** EV: R-00211-15100
1064 Expr
*pDup
; /* A transient duplicate expression */
1065 ExprList
*pList
= 0; /* The RHS of the IN operator */
1066 Expr
*pLeft
= 0; /* The LHS of the IN operator */
1067 Expr
*pNew
; /* The complete IN operator */
1069 for(i
=pOrWc
->nTerm
-1, pOrTerm
=pOrWc
->a
; i
>=0; i
--, pOrTerm
++){
1070 if( (pOrTerm
->wtFlags
& TERM_OR_OK
)==0 ) continue;
1071 assert( pOrTerm
->eOperator
==WO_EQ
);
1072 assert( pOrTerm
->leftCursor
==iCursor
);
1073 assert( pOrTerm
->u
.leftColumn
==iColumn
);
1074 pDup
= sqlite3ExprDup(db
, pOrTerm
->pExpr
->pRight
, 0);
1075 pList
= sqlite3ExprListAppend(pWC
->pParse
, pList
, pDup
);
1076 pLeft
= pOrTerm
->pExpr
->pLeft
;
1079 pDup
= sqlite3ExprDup(db
, pLeft
, 0);
1080 pNew
= sqlite3PExpr(pParse
, TK_IN
, pDup
, 0, 0);
1083 transferJoinMarkings(pNew
, pExpr
);
1084 assert( !ExprHasProperty(pNew
, EP_xIsSelect
) );
1085 pNew
->x
.pList
= pList
;
1086 idxNew
= whereClauseInsert(pWC
, pNew
, TERM_VIRTUAL
|TERM_DYNAMIC
);
1087 testcase( idxNew
==0 );
1088 exprAnalyze(pSrc
, pWC
, idxNew
);
1089 pTerm
= &pWC
->a
[idxTerm
];
1090 pWC
->a
[idxNew
].iParent
= idxTerm
;
1093 sqlite3ExprListDelete(db
, pList
);
1095 pTerm
->eOperator
= WO_NOOP
; /* case 1 trumps case 2 */
1099 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
1103 ** The input to this routine is an WhereTerm structure with only the
1104 ** "pExpr" field filled in. The job of this routine is to analyze the
1105 ** subexpression and populate all the other fields of the WhereTerm
1108 ** If the expression is of the form "<expr> <op> X" it gets commuted
1109 ** to the standard form of "X <op> <expr>".
1111 ** If the expression is of the form "X <op> Y" where both X and Y are
1112 ** columns, then the original expression is unchanged and a new virtual
1113 ** term of the form "Y <op> X" is added to the WHERE clause and
1114 ** analyzed separately. The original term is marked with TERM_COPIED
1115 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr
1116 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
1117 ** is a commuted copy of a prior term.) The original term has nChild=1
1118 ** and the copy has idxParent set to the index of the original term.
1120 static void exprAnalyze(
1121 SrcList
*pSrc
, /* the FROM clause */
1122 WhereClause
*pWC
, /* the WHERE clause */
1123 int idxTerm
/* Index of the term to be analyzed */
1125 WhereTerm
*pTerm
; /* The term to be analyzed */
1126 WhereMaskSet
*pMaskSet
; /* Set of table index masks */
1127 Expr
*pExpr
; /* The expression to be analyzed */
1128 Bitmask prereqLeft
; /* Prerequesites of the pExpr->pLeft */
1129 Bitmask prereqAll
; /* Prerequesites of pExpr */
1130 Bitmask extraRight
= 0; /* Extra dependencies on LEFT JOIN */
1131 Expr
*pStr1
= 0; /* RHS of LIKE/GLOB operator */
1132 int isComplete
= 0; /* RHS of LIKE/GLOB ends with wildcard */
1133 int noCase
= 0; /* LIKE/GLOB distinguishes case */
1134 int op
; /* Top-level operator. pExpr->op */
1135 Parse
*pParse
= pWC
->pParse
; /* Parsing context */
1136 sqlite3
*db
= pParse
->db
; /* Database connection */
1138 if( db
->mallocFailed
){
1141 pTerm
= &pWC
->a
[idxTerm
];
1142 pMaskSet
= pWC
->pMaskSet
;
1143 pExpr
= pTerm
->pExpr
;
1144 prereqLeft
= exprTableUsage(pMaskSet
, pExpr
->pLeft
);
1147 assert( pExpr
->pRight
==0 );
1148 if( ExprHasProperty(pExpr
, EP_xIsSelect
) ){
1149 pTerm
->prereqRight
= exprSelectTableUsage(pMaskSet
, pExpr
->x
.pSelect
);
1151 pTerm
->prereqRight
= exprListTableUsage(pMaskSet
, pExpr
->x
.pList
);
1153 }else if( op
==TK_ISNULL
){
1154 pTerm
->prereqRight
= 0;
1156 pTerm
->prereqRight
= exprTableUsage(pMaskSet
, pExpr
->pRight
);
1158 prereqAll
= exprTableUsage(pMaskSet
, pExpr
);
1159 if( ExprHasProperty(pExpr
, EP_FromJoin
) ){
1160 Bitmask x
= getMask(pMaskSet
, pExpr
->iRightJoinTable
);
1162 extraRight
= x
-1; /* ON clause terms may not be used with an index
1163 ** on left table of a LEFT JOIN. Ticket #3015 */
1165 pTerm
->prereqAll
= prereqAll
;
1166 pTerm
->leftCursor
= -1;
1167 pTerm
->iParent
= -1;
1168 pTerm
->eOperator
= 0;
1169 if( allowedOp(op
) && (pTerm
->prereqRight
& prereqLeft
)==0 ){
1170 Expr
*pLeft
= pExpr
->pLeft
;
1171 Expr
*pRight
= pExpr
->pRight
;
1172 if( pLeft
->op
==TK_COLUMN
){
1173 pTerm
->leftCursor
= pLeft
->iTable
;
1174 pTerm
->u
.leftColumn
= pLeft
->iColumn
;
1175 pTerm
->eOperator
= operatorMask(op
);
1177 if( pRight
&& pRight
->op
==TK_COLUMN
){
1180 if( pTerm
->leftCursor
>=0 ){
1182 pDup
= sqlite3ExprDup(db
, pExpr
, 0);
1183 if( db
->mallocFailed
){
1184 sqlite3ExprDelete(db
, pDup
);
1187 idxNew
= whereClauseInsert(pWC
, pDup
, TERM_VIRTUAL
|TERM_DYNAMIC
);
1188 if( idxNew
==0 ) return;
1189 pNew
= &pWC
->a
[idxNew
];
1190 pNew
->iParent
= idxTerm
;
1191 pTerm
= &pWC
->a
[idxTerm
];
1193 pTerm
->wtFlags
|= TERM_COPIED
;
1198 exprCommute(pParse
, pDup
);
1199 pLeft
= pDup
->pLeft
;
1200 pNew
->leftCursor
= pLeft
->iTable
;
1201 pNew
->u
.leftColumn
= pLeft
->iColumn
;
1202 testcase( (prereqLeft
| extraRight
) != prereqLeft
);
1203 pNew
->prereqRight
= prereqLeft
| extraRight
;
1204 pNew
->prereqAll
= prereqAll
;
1205 pNew
->eOperator
= operatorMask(pDup
->op
);
1209 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
1210 /* If a term is the BETWEEN operator, create two new virtual terms
1211 ** that define the range that the BETWEEN implements. For example:
1213 ** a BETWEEN b AND c
1215 ** is converted into:
1217 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
1219 ** The two new terms are added onto the end of the WhereClause object.
1220 ** The new terms are "dynamic" and are children of the original BETWEEN
1221 ** term. That means that if the BETWEEN term is coded, the children are
1222 ** skipped. Or, if the children are satisfied by an index, the original
1223 ** BETWEEN term is skipped.
1225 else if( pExpr
->op
==TK_BETWEEN
&& pWC
->op
==TK_AND
){
1226 ExprList
*pList
= pExpr
->x
.pList
;
1228 static const u8 ops
[] = {TK_GE
, TK_LE
};
1230 assert( pList
->nExpr
==2 );
1234 pNewExpr
= sqlite3PExpr(pParse
, ops
[i
],
1235 sqlite3ExprDup(db
, pExpr
->pLeft
, 0),
1236 sqlite3ExprDup(db
, pList
->a
[i
].pExpr
, 0), 0);
1237 idxNew
= whereClauseInsert(pWC
, pNewExpr
, TERM_VIRTUAL
|TERM_DYNAMIC
);
1238 testcase( idxNew
==0 );
1239 exprAnalyze(pSrc
, pWC
, idxNew
);
1240 pTerm
= &pWC
->a
[idxTerm
];
1241 pWC
->a
[idxNew
].iParent
= idxTerm
;
1245 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
1247 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
1248 /* Analyze a term that is composed of two or more subterms connected by
1251 else if( pExpr
->op
==TK_OR
){
1252 assert( pWC
->op
==TK_AND
);
1253 exprAnalyzeOrTerm(pSrc
, pWC
, idxTerm
);
1254 pTerm
= &pWC
->a
[idxTerm
];
1256 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1258 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
1259 /* Add constraints to reduce the search space on a LIKE or GLOB
1262 ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints
1264 ** x>='abc' AND x<'abd' AND x LIKE 'abc%'
1266 ** The last character of the prefix "abc" is incremented to form the
1267 ** termination condition "abd".
1270 && isLikeOrGlob(pParse
, pExpr
, &pStr1
, &isComplete
, &noCase
)
1272 Expr
*pLeft
; /* LHS of LIKE/GLOB operator */
1273 Expr
*pStr2
; /* Copy of pStr1 - RHS of LIKE/GLOB operator */
1278 CollSeq
*pColl
; /* Collating sequence to use */
1280 pLeft
= pExpr
->x
.pList
->a
[1].pExpr
;
1281 pStr2
= sqlite3ExprDup(db
, pStr1
, 0);
1282 if( !db
->mallocFailed
){
1283 u8 c
, *pC
; /* Last character before the first wildcard */
1284 pC
= (u8
*)&pStr2
->u
.zToken
[sqlite3Strlen30(pStr2
->u
.zToken
)-1];
1287 /* The point is to increment the last character before the first
1288 ** wildcard. But if we increment '@', that will push it into the
1289 ** alphabetic range where case conversions will mess up the
1290 ** inequality. To avoid this, make sure to also run the full
1291 ** LIKE on all candidate expressions by clearing the isComplete flag
1293 if( c
=='A'-1 ) isComplete
= 0; /* EV: R-64339-08207 */
1296 c
= sqlite3UpperToLower
[c
];
1300 pColl
= sqlite3FindCollSeq(db
, SQLITE_UTF8
, noCase
? "NOCASE" : "BINARY",0);
1301 pNewExpr1
= sqlite3PExpr(pParse
, TK_GE
,
1302 sqlite3ExprSetColl(sqlite3ExprDup(db
,pLeft
,0), pColl
),
1304 idxNew1
= whereClauseInsert(pWC
, pNewExpr1
, TERM_VIRTUAL
|TERM_DYNAMIC
);
1305 testcase( idxNew1
==0 );
1306 exprAnalyze(pSrc
, pWC
, idxNew1
);
1307 pNewExpr2
= sqlite3PExpr(pParse
, TK_LT
,
1308 sqlite3ExprSetColl(sqlite3ExprDup(db
,pLeft
,0), pColl
),
1310 idxNew2
= whereClauseInsert(pWC
, pNewExpr2
, TERM_VIRTUAL
|TERM_DYNAMIC
);
1311 testcase( idxNew2
==0 );
1312 exprAnalyze(pSrc
, pWC
, idxNew2
);
1313 pTerm
= &pWC
->a
[idxTerm
];
1315 pWC
->a
[idxNew1
].iParent
= idxTerm
;
1316 pWC
->a
[idxNew2
].iParent
= idxTerm
;
1320 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
1322 #ifndef SQLITE_OMIT_VIRTUALTABLE
1323 /* Add a WO_MATCH auxiliary term to the constraint set if the
1324 ** current expression is of the form: column MATCH expr.
1325 ** This information is used by the xBestIndex methods of
1326 ** virtual tables. The native query optimizer does not attempt
1327 ** to do anything with MATCH functions.
1329 if( isMatchOfColumn(pExpr
) ){
1331 Expr
*pRight
, *pLeft
;
1332 WhereTerm
*pNewTerm
;
1333 Bitmask prereqColumn
, prereqExpr
;
1335 pRight
= pExpr
->x
.pList
->a
[0].pExpr
;
1336 pLeft
= pExpr
->x
.pList
->a
[1].pExpr
;
1337 prereqExpr
= exprTableUsage(pMaskSet
, pRight
);
1338 prereqColumn
= exprTableUsage(pMaskSet
, pLeft
);
1339 if( (prereqExpr
& prereqColumn
)==0 ){
1341 pNewExpr
= sqlite3PExpr(pParse
, TK_MATCH
,
1342 0, sqlite3ExprDup(db
, pRight
, 0), 0);
1343 idxNew
= whereClauseInsert(pWC
, pNewExpr
, TERM_VIRTUAL
|TERM_DYNAMIC
);
1344 testcase( idxNew
==0 );
1345 pNewTerm
= &pWC
->a
[idxNew
];
1346 pNewTerm
->prereqRight
= prereqExpr
;
1347 pNewTerm
->leftCursor
= pLeft
->iTable
;
1348 pNewTerm
->u
.leftColumn
= pLeft
->iColumn
;
1349 pNewTerm
->eOperator
= WO_MATCH
;
1350 pNewTerm
->iParent
= idxTerm
;
1351 pTerm
= &pWC
->a
[idxTerm
];
1353 pTerm
->wtFlags
|= TERM_COPIED
;
1354 pNewTerm
->prereqAll
= pTerm
->prereqAll
;
1357 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1359 #ifdef SQLITE_ENABLE_STAT3
1360 /* When sqlite_stat3 histogram data is available an operator of the
1361 ** form "x IS NOT NULL" can sometimes be evaluated more efficiently
1362 ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a
1363 ** virtual term of that form.
1365 ** Note that the virtual term must be tagged with TERM_VNULL. This
1366 ** TERM_VNULL tag will suppress the not-null check at the beginning
1367 ** of the loop. Without the TERM_VNULL flag, the not-null check at
1368 ** the start of the loop will prevent any results from being returned.
1370 if( pExpr
->op
==TK_NOTNULL
1371 && pExpr
->pLeft
->op
==TK_COLUMN
1372 && pExpr
->pLeft
->iColumn
>=0
1375 Expr
*pLeft
= pExpr
->pLeft
;
1377 WhereTerm
*pNewTerm
;
1379 pNewExpr
= sqlite3PExpr(pParse
, TK_GT
,
1380 sqlite3ExprDup(db
, pLeft
, 0),
1381 sqlite3PExpr(pParse
, TK_NULL
, 0, 0, 0), 0);
1383 idxNew
= whereClauseInsert(pWC
, pNewExpr
,
1384 TERM_VIRTUAL
|TERM_DYNAMIC
|TERM_VNULL
);
1386 pNewTerm
= &pWC
->a
[idxNew
];
1387 pNewTerm
->prereqRight
= 0;
1388 pNewTerm
->leftCursor
= pLeft
->iTable
;
1389 pNewTerm
->u
.leftColumn
= pLeft
->iColumn
;
1390 pNewTerm
->eOperator
= WO_GT
;
1391 pNewTerm
->iParent
= idxTerm
;
1392 pTerm
= &pWC
->a
[idxTerm
];
1394 pTerm
->wtFlags
|= TERM_COPIED
;
1395 pNewTerm
->prereqAll
= pTerm
->prereqAll
;
1398 #endif /* SQLITE_ENABLE_STAT */
1400 /* Prevent ON clause terms of a LEFT JOIN from being used to drive
1401 ** an index for tables to the left of the join.
1403 pTerm
->prereqRight
|= extraRight
;
1407 ** Return TRUE if any of the expressions in pList->a[iFirst...] contain
1408 ** a reference to any table other than the iBase table.
1410 static int referencesOtherTables(
1411 ExprList
*pList
, /* Search expressions in ths list */
1412 WhereMaskSet
*pMaskSet
, /* Mapping from tables to bitmaps */
1413 int iFirst
, /* Be searching with the iFirst-th expression */
1414 int iBase
/* Ignore references to this table */
1416 Bitmask allowed
= ~getMask(pMaskSet
, iBase
);
1417 while( iFirst
<pList
->nExpr
){
1418 if( (exprTableUsage(pMaskSet
, pList
->a
[iFirst
++].pExpr
)&allowed
)!=0 ){
1426 ** This function searches the expression list passed as the second argument
1427 ** for an expression of type TK_COLUMN that refers to the same column and
1428 ** uses the same collation sequence as the iCol'th column of index pIdx.
1429 ** Argument iBase is the cursor number used for the table that pIdx refers
1432 ** If such an expression is found, its index in pList->a[] is returned. If
1433 ** no expression is found, -1 is returned.
1435 static int findIndexCol(
1436 Parse
*pParse
, /* Parse context */
1437 ExprList
*pList
, /* Expression list to search */
1438 int iBase
, /* Cursor for table associated with pIdx */
1439 Index
*pIdx
, /* Index to match column of */
1440 int iCol
/* Column of index to match */
1443 const char *zColl
= pIdx
->azColl
[iCol
];
1445 for(i
=0; i
<pList
->nExpr
; i
++){
1446 Expr
*p
= pList
->a
[i
].pExpr
;
1447 if( p
->op
==TK_COLUMN
1448 && p
->iColumn
==pIdx
->aiColumn
[iCol
]
1451 CollSeq
*pColl
= sqlite3ExprCollSeq(pParse
, p
);
1452 if( ALWAYS(pColl
) && 0==sqlite3StrICmp(pColl
->zName
, zColl
) ){
1462 ** This routine determines if pIdx can be used to assist in processing a
1463 ** DISTINCT qualifier. In other words, it tests whether or not using this
1464 ** index for the outer loop guarantees that rows with equal values for
1465 ** all expressions in the pDistinct list are delivered grouped together.
1467 ** For example, the query
1469 ** SELECT DISTINCT a, b, c FROM tbl WHERE a = ?
1471 ** can benefit from any index on columns "b" and "c".
1473 static int isDistinctIndex(
1474 Parse
*pParse
, /* Parsing context */
1475 WhereClause
*pWC
, /* The WHERE clause */
1476 Index
*pIdx
, /* The index being considered */
1477 int base
, /* Cursor number for the table pIdx is on */
1478 ExprList
*pDistinct
, /* The DISTINCT expressions */
1479 int nEqCol
/* Number of index columns with == */
1481 Bitmask mask
= 0; /* Mask of unaccounted for pDistinct exprs */
1482 int i
; /* Iterator variable */
1484 if( pIdx
->zName
==0 || pDistinct
==0 || pDistinct
->nExpr
>=BMS
) return 0;
1485 testcase( pDistinct
->nExpr
==BMS
-1 );
1487 /* Loop through all the expressions in the distinct list. If any of them
1488 ** are not simple column references, return early. Otherwise, test if the
1489 ** WHERE clause contains a "col=X" clause. If it does, the expression
1490 ** can be ignored. If it does not, and the column does not belong to the
1491 ** same table as index pIdx, return early. Finally, if there is no
1492 ** matching "col=X" expression and the column is on the same table as pIdx,
1493 ** set the corresponding bit in variable mask.
1495 for(i
=0; i
<pDistinct
->nExpr
; i
++){
1497 Expr
*p
= pDistinct
->a
[i
].pExpr
;
1498 if( p
->op
!=TK_COLUMN
) return 0;
1499 pTerm
= findTerm(pWC
, p
->iTable
, p
->iColumn
, ~(Bitmask
)0, WO_EQ
, 0);
1501 Expr
*pX
= pTerm
->pExpr
;
1502 CollSeq
*p1
= sqlite3BinaryCompareCollSeq(pParse
, pX
->pLeft
, pX
->pRight
);
1503 CollSeq
*p2
= sqlite3ExprCollSeq(pParse
, p
);
1504 if( p1
==p2
) continue;
1506 if( p
->iTable
!=base
) return 0;
1507 mask
|= (((Bitmask
)1) << i
);
1510 for(i
=nEqCol
; mask
&& i
<pIdx
->nColumn
; i
++){
1511 int iExpr
= findIndexCol(pParse
, pDistinct
, base
, pIdx
, i
);
1512 if( iExpr
<0 ) break;
1513 mask
&= ~(((Bitmask
)1) << iExpr
);
1521 ** Return true if the DISTINCT expression-list passed as the third argument
1522 ** is redundant. A DISTINCT list is redundant if the database contains a
1523 ** UNIQUE index that guarantees that the result of the query will be distinct
1526 static int isDistinctRedundant(
1537 /* If there is more than one table or sub-select in the FROM clause of
1538 ** this query, then it will not be possible to show that the DISTINCT
1539 ** clause is redundant. */
1540 if( pTabList
->nSrc
!=1 ) return 0;
1541 iBase
= pTabList
->a
[0].iCursor
;
1542 pTab
= pTabList
->a
[0].pTab
;
1544 /* If any of the expressions is an IPK column on table iBase, then return
1545 ** true. Note: The (p->iTable==iBase) part of this test may be false if the
1546 ** current SELECT is a correlated sub-query.
1548 for(i
=0; i
<pDistinct
->nExpr
; i
++){
1549 Expr
*p
= pDistinct
->a
[i
].pExpr
;
1550 if( p
->op
==TK_COLUMN
&& p
->iTable
==iBase
&& p
->iColumn
<0 ) return 1;
1553 /* Loop through all indices on the table, checking each to see if it makes
1554 ** the DISTINCT qualifier redundant. It does so if:
1556 ** 1. The index is itself UNIQUE, and
1558 ** 2. All of the columns in the index are either part of the pDistinct
1559 ** list, or else the WHERE clause contains a term of the form "col=X",
1560 ** where X is a constant value. The collation sequences of the
1561 ** comparison and select-list expressions must match those of the index.
1563 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
1564 if( pIdx
->onError
==OE_None
) continue;
1565 for(i
=0; i
<pIdx
->nColumn
; i
++){
1566 int iCol
= pIdx
->aiColumn
[i
];
1567 if( 0==findTerm(pWC
, iBase
, iCol
, ~(Bitmask
)0, WO_EQ
, pIdx
)
1568 && 0>findIndexCol(pParse
, pDistinct
, iBase
, pIdx
, i
)
1573 if( i
==pIdx
->nColumn
){
1574 /* This index implies that the DISTINCT qualifier is redundant. */
1583 ** This routine decides if pIdx can be used to satisfy the ORDER BY
1584 ** clause. If it can, it returns 1. If pIdx cannot satisfy the
1585 ** ORDER BY clause, this routine returns 0.
1587 ** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the
1588 ** left-most table in the FROM clause of that same SELECT statement and
1589 ** the table has a cursor number of "base". pIdx is an index on pTab.
1591 ** nEqCol is the number of columns of pIdx that are used as equality
1592 ** constraints. Any of these columns may be missing from the ORDER BY
1593 ** clause and the match can still be a success.
1595 ** All terms of the ORDER BY that match against the index must be either
1596 ** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE
1597 ** index do not need to satisfy this constraint.) The *pbRev value is
1598 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
1599 ** the ORDER BY clause is all ASC.
1601 static int isSortingIndex(
1602 Parse
*pParse
, /* Parsing context */
1603 WhereMaskSet
*pMaskSet
, /* Mapping from table cursor numbers to bitmaps */
1604 Index
*pIdx
, /* The index we are testing */
1605 int base
, /* Cursor number for the table to be sorted */
1606 ExprList
*pOrderBy
, /* The ORDER BY clause */
1607 int nEqCol
, /* Number of index columns with == constraints */
1608 int wsFlags
, /* Index usages flags */
1609 int *pbRev
/* Set to 1 if ORDER BY is DESC */
1611 int i
, j
; /* Loop counters */
1612 int sortOrder
= 0; /* XOR of index and ORDER BY sort direction */
1613 int nTerm
; /* Number of ORDER BY terms */
1614 struct ExprList_item
*pTerm
; /* A term of the ORDER BY clause */
1615 sqlite3
*db
= pParse
->db
;
1617 if( !pOrderBy
) return 0;
1618 if( wsFlags
& WHERE_COLUMN_IN
) return 0;
1619 if( pIdx
->bUnordered
) return 0;
1621 nTerm
= pOrderBy
->nExpr
;
1624 /* Argument pIdx must either point to a 'real' named index structure,
1625 ** or an index structure allocated on the stack by bestBtreeIndex() to
1626 ** represent the rowid index that is part of every table. */
1627 assert( pIdx
->zName
|| (pIdx
->nColumn
==1 && pIdx
->aiColumn
[0]==-1) );
1629 /* Match terms of the ORDER BY clause against columns of
1632 ** Note that indices have pIdx->nColumn regular columns plus
1633 ** one additional column containing the rowid. The rowid column
1634 ** of the index is also allowed to match against the ORDER BY
1637 for(i
=j
=0, pTerm
=pOrderBy
->a
; j
<nTerm
&& i
<=pIdx
->nColumn
; i
++){
1638 Expr
*pExpr
; /* The expression of the ORDER BY pTerm */
1639 CollSeq
*pColl
; /* The collating sequence of pExpr */
1640 int termSortOrder
; /* Sort order for this term */
1641 int iColumn
; /* The i-th column of the index. -1 for rowid */
1642 int iSortOrder
; /* 1 for DESC, 0 for ASC on the i-th index term */
1643 const char *zColl
; /* Name of the collating sequence for i-th index term */
1645 pExpr
= pTerm
->pExpr
;
1646 if( pExpr
->op
!=TK_COLUMN
|| pExpr
->iTable
!=base
){
1647 /* Can not use an index sort on anything that is not a column in the
1648 ** left-most table of the FROM clause */
1651 pColl
= sqlite3ExprCollSeq(pParse
, pExpr
);
1653 pColl
= db
->pDfltColl
;
1655 if( pIdx
->zName
&& i
<pIdx
->nColumn
){
1656 iColumn
= pIdx
->aiColumn
[i
];
1657 if( iColumn
==pIdx
->pTable
->iPKey
){
1660 iSortOrder
= pIdx
->aSortOrder
[i
];
1661 zColl
= pIdx
->azColl
[i
];
1665 zColl
= pColl
->zName
;
1667 if( pExpr
->iColumn
!=iColumn
|| sqlite3StrICmp(pColl
->zName
, zColl
) ){
1668 /* Term j of the ORDER BY clause does not match column i of the index */
1670 /* If an index column that is constrained by == fails to match an
1671 ** ORDER BY term, that is OK. Just ignore that column of the index
1674 }else if( i
==pIdx
->nColumn
){
1675 /* Index column i is the rowid. All other terms match. */
1678 /* If an index column fails to match and is not constrained by ==
1679 ** then the index cannot satisfy the ORDER BY constraint.
1684 assert( pIdx
->aSortOrder
!=0 || iColumn
==-1 );
1685 assert( pTerm
->sortOrder
==0 || pTerm
->sortOrder
==1 );
1686 assert( iSortOrder
==0 || iSortOrder
==1 );
1687 termSortOrder
= iSortOrder
^ pTerm
->sortOrder
;
1689 if( termSortOrder
!=sortOrder
){
1690 /* Indices can only be used if all ORDER BY terms past the
1691 ** equality constraints are all either DESC or ASC. */
1695 sortOrder
= termSortOrder
;
1699 if( iColumn
<0 && !referencesOtherTables(pOrderBy
, pMaskSet
, j
, base
) ){
1700 /* If the indexed column is the primary key and everything matches
1701 ** so far and none of the ORDER BY terms to the right reference other
1702 ** tables in the join, then we are assured that the index can be used
1703 ** to sort because the primary key is unique and so none of the other
1704 ** columns will make any difference
1710 *pbRev
= sortOrder
!=0;
1712 /* All terms of the ORDER BY clause are covered by this index so
1713 ** this index can be used for sorting. */
1716 if( pIdx
->onError
!=OE_None
&& i
==pIdx
->nColumn
1717 && (wsFlags
& WHERE_COLUMN_NULL
)==0
1718 && !referencesOtherTables(pOrderBy
, pMaskSet
, j
, base
) ){
1719 /* All terms of this index match some prefix of the ORDER BY clause
1720 ** and the index is UNIQUE and no terms on the tail of the ORDER BY
1721 ** clause reference other tables in a join. If this is all true then
1722 ** the order by clause is superfluous. Not that if the matching
1723 ** condition is IS NULL then the result is not necessarily unique
1724 ** even on a UNIQUE index, so disallow those cases. */
1731 ** Prepare a crude estimate of the logarithm of the input value.
1732 ** The results need not be exact. This is only used for estimating
1733 ** the total cost of performing operations with O(logN) or O(NlogN)
1734 ** complexity. Because N is just a guess, it is no great tragedy if
1735 ** logN is a little off.
1737 static double estLog(double N
){
1748 ** Two routines for printing the content of an sqlite3_index_info
1749 ** structure. Used for testing and debugging only. If neither
1750 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
1753 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG)
1754 static void TRACE_IDX_INPUTS(sqlite3_index_info
*p
){
1756 if( !sqlite3WhereTrace
) return;
1757 for(i
=0; i
<p
->nConstraint
; i
++){
1758 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
1760 p
->aConstraint
[i
].iColumn
,
1761 p
->aConstraint
[i
].iTermOffset
,
1762 p
->aConstraint
[i
].op
,
1763 p
->aConstraint
[i
].usable
);
1765 for(i
=0; i
<p
->nOrderBy
; i
++){
1766 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
1768 p
->aOrderBy
[i
].iColumn
,
1769 p
->aOrderBy
[i
].desc
);
1772 static void TRACE_IDX_OUTPUTS(sqlite3_index_info
*p
){
1774 if( !sqlite3WhereTrace
) return;
1775 for(i
=0; i
<p
->nConstraint
; i
++){
1776 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
1778 p
->aConstraintUsage
[i
].argvIndex
,
1779 p
->aConstraintUsage
[i
].omit
);
1781 sqlite3DebugPrintf(" idxNum=%d\n", p
->idxNum
);
1782 sqlite3DebugPrintf(" idxStr=%s\n", p
->idxStr
);
1783 sqlite3DebugPrintf(" orderByConsumed=%d\n", p
->orderByConsumed
);
1784 sqlite3DebugPrintf(" estimatedCost=%g\n", p
->estimatedCost
);
1787 #define TRACE_IDX_INPUTS(A)
1788 #define TRACE_IDX_OUTPUTS(A)
1792 ** Required because bestIndex() is called by bestOrClauseIndex()
1794 static void bestIndex(
1795 Parse
*, WhereClause
*, struct SrcList_item
*,
1796 Bitmask
, Bitmask
, ExprList
*, WhereCost
*);
1799 ** This routine attempts to find an scanning strategy that can be used
1800 ** to optimize an 'OR' expression that is part of a WHERE clause.
1802 ** The table associated with FROM clause term pSrc may be either a
1803 ** regular B-Tree table or a virtual table.
1805 static void bestOrClauseIndex(
1806 Parse
*pParse
, /* The parsing context */
1807 WhereClause
*pWC
, /* The WHERE clause */
1808 struct SrcList_item
*pSrc
, /* The FROM clause term to search */
1809 Bitmask notReady
, /* Mask of cursors not available for indexing */
1810 Bitmask notValid
, /* Cursors not available for any purpose */
1811 ExprList
*pOrderBy
, /* The ORDER BY clause */
1812 WhereCost
*pCost
/* Lowest cost query plan */
1814 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
1815 const int iCur
= pSrc
->iCursor
; /* The cursor of the table to be accessed */
1816 const Bitmask maskSrc
= getMask(pWC
->pMaskSet
, iCur
); /* Bitmask for pSrc */
1817 WhereTerm
* const pWCEnd
= &pWC
->a
[pWC
->nTerm
]; /* End of pWC->a[] */
1818 WhereTerm
*pTerm
; /* A single term of the WHERE clause */
1820 /* The OR-clause optimization is disallowed if the INDEXED BY or
1821 ** NOT INDEXED clauses are used or if the WHERE_AND_ONLY bit is set. */
1822 if( pSrc
->notIndexed
|| pSrc
->pIndex
!=0 ){
1825 if( pWC
->wctrlFlags
& WHERE_AND_ONLY
){
1829 /* Search the WHERE clause terms for a usable WO_OR term. */
1830 for(pTerm
=pWC
->a
; pTerm
<pWCEnd
; pTerm
++){
1831 if( pTerm
->eOperator
==WO_OR
1832 && ((pTerm
->prereqAll
& ~maskSrc
) & notReady
)==0
1833 && (pTerm
->u
.pOrInfo
->indexable
& maskSrc
)!=0
1835 WhereClause
* const pOrWC
= &pTerm
->u
.pOrInfo
->wc
;
1836 WhereTerm
* const pOrWCEnd
= &pOrWC
->a
[pOrWC
->nTerm
];
1838 int flags
= WHERE_MULTI_OR
;
1843 for(pOrTerm
=pOrWC
->a
; pOrTerm
<pOrWCEnd
; pOrTerm
++){
1844 WhereCost sTermCost
;
1845 WHERETRACE(("... Multi-index OR testing for term %d of %d....\n",
1846 (pOrTerm
- pOrWC
->a
), (pTerm
- pWC
->a
)
1848 if( pOrTerm
->eOperator
==WO_AND
){
1849 WhereClause
*pAndWC
= &pOrTerm
->u
.pAndInfo
->wc
;
1850 bestIndex(pParse
, pAndWC
, pSrc
, notReady
, notValid
, 0, &sTermCost
);
1851 }else if( pOrTerm
->leftCursor
==iCur
){
1853 tempWC
.pParse
= pWC
->pParse
;
1854 tempWC
.pMaskSet
= pWC
->pMaskSet
;
1855 tempWC
.pOuter
= pWC
;
1858 tempWC
.wctrlFlags
= 0;
1860 bestIndex(pParse
, &tempWC
, pSrc
, notReady
, notValid
, 0, &sTermCost
);
1864 rTotal
+= sTermCost
.rCost
;
1865 nRow
+= sTermCost
.plan
.nRow
;
1866 used
|= sTermCost
.used
;
1867 if( rTotal
>=pCost
->rCost
) break;
1870 /* If there is an ORDER BY clause, increase the scan cost to account
1871 ** for the cost of the sort. */
1873 WHERETRACE(("... sorting increases OR cost %.9g to %.9g\n",
1874 rTotal
, rTotal
+nRow
*estLog(nRow
)));
1875 rTotal
+= nRow
*estLog(nRow
);
1878 /* If the cost of scanning using this OR term for optimization is
1879 ** less than the current cost stored in pCost, replace the contents
1881 WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal
, nRow
));
1882 if( rTotal
<pCost
->rCost
){
1883 pCost
->rCost
= rTotal
;
1885 pCost
->plan
.nRow
= nRow
;
1886 pCost
->plan
.wsFlags
= flags
;
1887 pCost
->plan
.u
.pTerm
= pTerm
;
1891 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1894 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
1896 ** Return TRUE if the WHERE clause term pTerm is of a form where it
1897 ** could be used with an index to access pSrc, assuming an appropriate
1900 static int termCanDriveIndex(
1901 WhereTerm
*pTerm
, /* WHERE clause term to check */
1902 struct SrcList_item
*pSrc
, /* Table we are trying to access */
1903 Bitmask notReady
/* Tables in outer loops of the join */
1906 if( pTerm
->leftCursor
!=pSrc
->iCursor
) return 0;
1907 if( pTerm
->eOperator
!=WO_EQ
) return 0;
1908 if( (pTerm
->prereqRight
& notReady
)!=0 ) return 0;
1909 aff
= pSrc
->pTab
->aCol
[pTerm
->u
.leftColumn
].affinity
;
1910 if( !sqlite3IndexAffinityOk(pTerm
->pExpr
, aff
) ) return 0;
1915 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
1917 ** If the query plan for pSrc specified in pCost is a full table scan
1918 ** and indexing is allows (if there is no NOT INDEXED clause) and it
1919 ** possible to construct a transient index that would perform better
1920 ** than a full table scan even when the cost of constructing the index
1921 ** is taken into account, then alter the query plan to use the
1924 static void bestAutomaticIndex(
1925 Parse
*pParse
, /* The parsing context */
1926 WhereClause
*pWC
, /* The WHERE clause */
1927 struct SrcList_item
*pSrc
, /* The FROM clause term to search */
1928 Bitmask notReady
, /* Mask of cursors that are not available */
1929 WhereCost
*pCost
/* Lowest cost query plan */
1931 double nTableRow
; /* Rows in the input table */
1932 double logN
; /* log(nTableRow) */
1933 double costTempIdx
; /* per-query cost of the transient index */
1934 WhereTerm
*pTerm
; /* A single term of the WHERE clause */
1935 WhereTerm
*pWCEnd
; /* End of pWC->a[] */
1936 Table
*pTable
; /* Table tht might be indexed */
1938 if( pParse
->nQueryLoop
<=(double)1 ){
1939 /* There is no point in building an automatic index for a single scan */
1942 if( (pParse
->db
->flags
& SQLITE_AutoIndex
)==0 ){
1943 /* Automatic indices are disabled at run-time */
1946 if( (pCost
->plan
.wsFlags
& WHERE_NOT_FULLSCAN
)!=0 ){
1947 /* We already have some kind of index in use for this query. */
1950 if( pSrc
->notIndexed
){
1951 /* The NOT INDEXED clause appears in the SQL. */
1954 if( pSrc
->isCorrelated
){
1955 /* The source is a correlated sub-query. No point in indexing it. */
1959 assert( pParse
->nQueryLoop
>= (double)1 );
1960 pTable
= pSrc
->pTab
;
1961 nTableRow
= pTable
->nRowEst
;
1962 logN
= estLog(nTableRow
);
1963 costTempIdx
= 2*logN
*(nTableRow
/pParse
->nQueryLoop
+ 1);
1964 if( costTempIdx
>=pCost
->rCost
){
1965 /* The cost of creating the transient table would be greater than
1966 ** doing the full table scan */
1970 /* Search for any equality comparison term */
1971 pWCEnd
= &pWC
->a
[pWC
->nTerm
];
1972 for(pTerm
=pWC
->a
; pTerm
<pWCEnd
; pTerm
++){
1973 if( termCanDriveIndex(pTerm
, pSrc
, notReady
) ){
1974 WHERETRACE(("auto-index reduces cost from %.1f to %.1f\n",
1975 pCost
->rCost
, costTempIdx
));
1976 pCost
->rCost
= costTempIdx
;
1977 pCost
->plan
.nRow
= logN
+ 1;
1978 pCost
->plan
.wsFlags
= WHERE_TEMP_INDEX
;
1979 pCost
->used
= pTerm
->prereqRight
;
1985 # define bestAutomaticIndex(A,B,C,D,E) /* no-op */
1986 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
1989 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
1991 ** Generate code to construct the Index object for an automatic index
1992 ** and to set up the WhereLevel object pLevel so that the code generator
1993 ** makes use of the automatic index.
1995 static void constructAutomaticIndex(
1996 Parse
*pParse
, /* The parsing context */
1997 WhereClause
*pWC
, /* The WHERE clause */
1998 struct SrcList_item
*pSrc
, /* The FROM clause term to get the next index */
1999 Bitmask notReady
, /* Mask of cursors that are not available */
2000 WhereLevel
*pLevel
/* Write new index here */
2002 int nColumn
; /* Number of columns in the constructed index */
2003 WhereTerm
*pTerm
; /* A single term of the WHERE clause */
2004 WhereTerm
*pWCEnd
; /* End of pWC->a[] */
2005 int nByte
; /* Byte of memory needed for pIdx */
2006 Index
*pIdx
; /* Object describing the transient index */
2007 Vdbe
*v
; /* Prepared statement under construction */
2008 int regIsInit
; /* Register set by initialization */
2009 int addrInit
; /* Address of the initialization bypass jump */
2010 Table
*pTable
; /* The table being indexed */
2011 KeyInfo
*pKeyinfo
; /* Key information for the index */
2012 int addrTop
; /* Top of the index fill loop */
2013 int regRecord
; /* Register holding an index record */
2014 int n
; /* Column counter */
2015 int i
; /* Loop counter */
2016 int mxBitCol
; /* Maximum column in pSrc->colUsed */
2017 CollSeq
*pColl
; /* Collating sequence to on a column */
2018 Bitmask idxCols
; /* Bitmap of columns used for indexing */
2019 Bitmask extraCols
; /* Bitmap of additional columns */
2021 /* Generate code to skip over the creation and initialization of the
2022 ** transient index on 2nd and subsequent iterations of the loop. */
2025 regIsInit
= ++pParse
->nMem
;
2026 addrInit
= sqlite3VdbeAddOp1(v
, OP_Once
, regIsInit
);
2028 /* Count the number of columns that will be added to the index
2029 ** and used to match WHERE clause constraints */
2031 pTable
= pSrc
->pTab
;
2032 pWCEnd
= &pWC
->a
[pWC
->nTerm
];
2034 for(pTerm
=pWC
->a
; pTerm
<pWCEnd
; pTerm
++){
2035 if( termCanDriveIndex(pTerm
, pSrc
, notReady
) ){
2036 int iCol
= pTerm
->u
.leftColumn
;
2037 Bitmask cMask
= iCol
>=BMS
? ((Bitmask
)1)<<(BMS
-1) : ((Bitmask
)1)<<iCol
;
2038 testcase( iCol
==BMS
);
2039 testcase( iCol
==BMS
-1 );
2040 if( (idxCols
& cMask
)==0 ){
2046 assert( nColumn
>0 );
2047 pLevel
->plan
.nEq
= nColumn
;
2049 /* Count the number of additional columns needed to create a
2050 ** covering index. A "covering index" is an index that contains all
2051 ** columns that are needed by the query. With a covering index, the
2052 ** original table never needs to be accessed. Automatic indices must
2053 ** be a covering index because the index will not be updated if the
2054 ** original table changes and the index and table cannot both be used
2055 ** if they go out of sync.
2057 extraCols
= pSrc
->colUsed
& (~idxCols
| (((Bitmask
)1)<<(BMS
-1)));
2058 mxBitCol
= (pTable
->nCol
>= BMS
-1) ? BMS
-1 : pTable
->nCol
;
2059 testcase( pTable
->nCol
==BMS
-1 );
2060 testcase( pTable
->nCol
==BMS
-2 );
2061 for(i
=0; i
<mxBitCol
; i
++){
2062 if( extraCols
& (((Bitmask
)1)<<i
) ) nColumn
++;
2064 if( pSrc
->colUsed
& (((Bitmask
)1)<<(BMS
-1)) ){
2065 nColumn
+= pTable
->nCol
- BMS
+ 1;
2067 pLevel
->plan
.wsFlags
|= WHERE_COLUMN_EQ
| WHERE_IDX_ONLY
| WO_EQ
;
2069 /* Construct the Index object to describe this index */
2070 nByte
= sizeof(Index
);
2071 nByte
+= nColumn
*sizeof(int); /* Index.aiColumn */
2072 nByte
+= nColumn
*sizeof(char*); /* Index.azColl */
2073 nByte
+= nColumn
; /* Index.aSortOrder */
2074 pIdx
= sqlite3DbMallocZero(pParse
->db
, nByte
);
2075 if( pIdx
==0 ) return;
2076 pLevel
->plan
.u
.pIdx
= pIdx
;
2077 pIdx
->azColl
= (char**)&pIdx
[1];
2078 pIdx
->aiColumn
= (int*)&pIdx
->azColl
[nColumn
];
2079 pIdx
->aSortOrder
= (u8
*)&pIdx
->aiColumn
[nColumn
];
2080 pIdx
->zName
= "auto-index";
2081 pIdx
->nColumn
= nColumn
;
2082 pIdx
->pTable
= pTable
;
2085 for(pTerm
=pWC
->a
; pTerm
<pWCEnd
; pTerm
++){
2086 if( termCanDriveIndex(pTerm
, pSrc
, notReady
) ){
2087 int iCol
= pTerm
->u
.leftColumn
;
2088 Bitmask cMask
= iCol
>=BMS
? ((Bitmask
)1)<<(BMS
-1) : ((Bitmask
)1)<<iCol
;
2089 if( (idxCols
& cMask
)==0 ){
2090 Expr
*pX
= pTerm
->pExpr
;
2092 pIdx
->aiColumn
[n
] = pTerm
->u
.leftColumn
;
2093 pColl
= sqlite3BinaryCompareCollSeq(pParse
, pX
->pLeft
, pX
->pRight
);
2094 pIdx
->azColl
[n
] = ALWAYS(pColl
) ? pColl
->zName
: "BINARY";
2099 assert( (u32
)n
==pLevel
->plan
.nEq
);
2101 /* Add additional columns needed to make the automatic index into
2102 ** a covering index */
2103 for(i
=0; i
<mxBitCol
; i
++){
2104 if( extraCols
& (((Bitmask
)1)<<i
) ){
2105 pIdx
->aiColumn
[n
] = i
;
2106 pIdx
->azColl
[n
] = "BINARY";
2110 if( pSrc
->colUsed
& (((Bitmask
)1)<<(BMS
-1)) ){
2111 for(i
=BMS
-1; i
<pTable
->nCol
; i
++){
2112 pIdx
->aiColumn
[n
] = i
;
2113 pIdx
->azColl
[n
] = "BINARY";
2117 assert( n
==nColumn
);
2119 /* Create the automatic index */
2120 pKeyinfo
= sqlite3IndexKeyinfo(pParse
, pIdx
);
2121 assert( pLevel
->iIdxCur
>=0 );
2122 sqlite3VdbeAddOp4(v
, OP_OpenAutoindex
, pLevel
->iIdxCur
, nColumn
+1, 0,
2123 (char*)pKeyinfo
, P4_KEYINFO_HANDOFF
);
2124 VdbeComment((v
, "for %s", pTable
->zName
));
2126 /* Fill the automatic index with content */
2127 addrTop
= sqlite3VdbeAddOp1(v
, OP_Rewind
, pLevel
->iTabCur
);
2128 regRecord
= sqlite3GetTempReg(pParse
);
2129 sqlite3GenerateIndexKey(pParse
, pIdx
, pLevel
->iTabCur
, regRecord
, 1);
2130 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, pLevel
->iIdxCur
, regRecord
);
2131 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
2132 sqlite3VdbeAddOp2(v
, OP_Next
, pLevel
->iTabCur
, addrTop
+1);
2133 sqlite3VdbeChangeP5(v
, SQLITE_STMTSTATUS_AUTOINDEX
);
2134 sqlite3VdbeJumpHere(v
, addrTop
);
2135 sqlite3ReleaseTempReg(pParse
, regRecord
);
2137 /* Jump here when skipping the initialization */
2138 sqlite3VdbeJumpHere(v
, addrInit
);
2140 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
2142 #ifndef SQLITE_OMIT_VIRTUALTABLE
2144 ** Allocate and populate an sqlite3_index_info structure. It is the
2145 ** responsibility of the caller to eventually release the structure
2146 ** by passing the pointer returned by this function to sqlite3_free().
2148 static sqlite3_index_info
*allocateIndexInfo(
2151 struct SrcList_item
*pSrc
,
2156 struct sqlite3_index_constraint
*pIdxCons
;
2157 struct sqlite3_index_orderby
*pIdxOrderBy
;
2158 struct sqlite3_index_constraint_usage
*pUsage
;
2161 sqlite3_index_info
*pIdxInfo
;
2163 WHERETRACE(("Recomputing index info for %s...\n", pSrc
->pTab
->zName
));
2165 /* Count the number of possible WHERE clause constraints referring
2166 ** to this virtual table */
2167 for(i
=nTerm
=0, pTerm
=pWC
->a
; i
<pWC
->nTerm
; i
++, pTerm
++){
2168 if( pTerm
->leftCursor
!= pSrc
->iCursor
) continue;
2169 assert( (pTerm
->eOperator
&(pTerm
->eOperator
-1))==0 );
2170 testcase( pTerm
->eOperator
==WO_IN
);
2171 testcase( pTerm
->eOperator
==WO_ISNULL
);
2172 if( pTerm
->eOperator
& (WO_IN
|WO_ISNULL
) ) continue;
2173 if( pTerm
->wtFlags
& TERM_VNULL
) continue;
2177 /* If the ORDER BY clause contains only columns in the current
2178 ** virtual table then allocate space for the aOrderBy part of
2179 ** the sqlite3_index_info structure.
2183 for(i
=0; i
<pOrderBy
->nExpr
; i
++){
2184 Expr
*pExpr
= pOrderBy
->a
[i
].pExpr
;
2185 if( pExpr
->op
!=TK_COLUMN
|| pExpr
->iTable
!=pSrc
->iCursor
) break;
2187 if( i
==pOrderBy
->nExpr
){
2188 nOrderBy
= pOrderBy
->nExpr
;
2192 /* Allocate the sqlite3_index_info structure
2194 pIdxInfo
= sqlite3DbMallocZero(pParse
->db
, sizeof(*pIdxInfo
)
2195 + (sizeof(*pIdxCons
) + sizeof(*pUsage
))*nTerm
2196 + sizeof(*pIdxOrderBy
)*nOrderBy
);
2198 sqlite3ErrorMsg(pParse
, "out of memory");
2199 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
2203 /* Initialize the structure. The sqlite3_index_info structure contains
2204 ** many fields that are declared "const" to prevent xBestIndex from
2205 ** changing them. We have to do some funky casting in order to
2206 ** initialize those fields.
2208 pIdxCons
= (struct sqlite3_index_constraint
*)&pIdxInfo
[1];
2209 pIdxOrderBy
= (struct sqlite3_index_orderby
*)&pIdxCons
[nTerm
];
2210 pUsage
= (struct sqlite3_index_constraint_usage
*)&pIdxOrderBy
[nOrderBy
];
2211 *(int*)&pIdxInfo
->nConstraint
= nTerm
;
2212 *(int*)&pIdxInfo
->nOrderBy
= nOrderBy
;
2213 *(struct sqlite3_index_constraint
**)&pIdxInfo
->aConstraint
= pIdxCons
;
2214 *(struct sqlite3_index_orderby
**)&pIdxInfo
->aOrderBy
= pIdxOrderBy
;
2215 *(struct sqlite3_index_constraint_usage
**)&pIdxInfo
->aConstraintUsage
=
2218 for(i
=j
=0, pTerm
=pWC
->a
; i
<pWC
->nTerm
; i
++, pTerm
++){
2219 if( pTerm
->leftCursor
!= pSrc
->iCursor
) continue;
2220 assert( (pTerm
->eOperator
&(pTerm
->eOperator
-1))==0 );
2221 testcase( pTerm
->eOperator
==WO_IN
);
2222 testcase( pTerm
->eOperator
==WO_ISNULL
);
2223 if( pTerm
->eOperator
& (WO_IN
|WO_ISNULL
) ) continue;
2224 if( pTerm
->wtFlags
& TERM_VNULL
) continue;
2225 pIdxCons
[j
].iColumn
= pTerm
->u
.leftColumn
;
2226 pIdxCons
[j
].iTermOffset
= i
;
2227 pIdxCons
[j
].op
= (u8
)pTerm
->eOperator
;
2228 /* The direct assignment in the previous line is possible only because
2229 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
2230 ** following asserts verify this fact. */
2231 assert( WO_EQ
==SQLITE_INDEX_CONSTRAINT_EQ
);
2232 assert( WO_LT
==SQLITE_INDEX_CONSTRAINT_LT
);
2233 assert( WO_LE
==SQLITE_INDEX_CONSTRAINT_LE
);
2234 assert( WO_GT
==SQLITE_INDEX_CONSTRAINT_GT
);
2235 assert( WO_GE
==SQLITE_INDEX_CONSTRAINT_GE
);
2236 assert( WO_MATCH
==SQLITE_INDEX_CONSTRAINT_MATCH
);
2237 assert( pTerm
->eOperator
& (WO_EQ
|WO_LT
|WO_LE
|WO_GT
|WO_GE
|WO_MATCH
) );
2240 for(i
=0; i
<nOrderBy
; i
++){
2241 Expr
*pExpr
= pOrderBy
->a
[i
].pExpr
;
2242 pIdxOrderBy
[i
].iColumn
= pExpr
->iColumn
;
2243 pIdxOrderBy
[i
].desc
= pOrderBy
->a
[i
].sortOrder
;
2250 ** The table object reference passed as the second argument to this function
2251 ** must represent a virtual table. This function invokes the xBestIndex()
2252 ** method of the virtual table with the sqlite3_index_info pointer passed
2255 ** If an error occurs, pParse is populated with an error message and a
2256 ** non-zero value is returned. Otherwise, 0 is returned and the output
2257 ** part of the sqlite3_index_info structure is left populated.
2259 ** Whether or not an error is returned, it is the responsibility of the
2260 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
2261 ** that this is required.
2263 static int vtabBestIndex(Parse
*pParse
, Table
*pTab
, sqlite3_index_info
*p
){
2264 sqlite3_vtab
*pVtab
= sqlite3GetVTable(pParse
->db
, pTab
)->pVtab
;
2268 WHERETRACE(("xBestIndex for %s\n", pTab
->zName
));
2269 TRACE_IDX_INPUTS(p
);
2270 rc
= pVtab
->pModule
->xBestIndex(pVtab
, p
);
2271 TRACE_IDX_OUTPUTS(p
);
2273 if( rc
!=SQLITE_OK
){
2274 if( rc
==SQLITE_NOMEM
){
2275 pParse
->db
->mallocFailed
= 1;
2276 }else if( !pVtab
->zErrMsg
){
2277 sqlite3ErrorMsg(pParse
, "%s", sqlite3ErrStr(rc
));
2279 sqlite3ErrorMsg(pParse
, "%s", pVtab
->zErrMsg
);
2282 sqlite3_free(pVtab
->zErrMsg
);
2285 for(i
=0; i
<p
->nConstraint
; i
++){
2286 if( !p
->aConstraint
[i
].usable
&& p
->aConstraintUsage
[i
].argvIndex
>0 ){
2287 sqlite3ErrorMsg(pParse
,
2288 "table %s: xBestIndex returned an invalid plan", pTab
->zName
);
2292 return pParse
->nErr
;
2297 ** Compute the best index for a virtual table.
2299 ** The best index is computed by the xBestIndex method of the virtual
2300 ** table module. This routine is really just a wrapper that sets up
2301 ** the sqlite3_index_info structure that is used to communicate with
2304 ** In a join, this routine might be called multiple times for the
2305 ** same virtual table. The sqlite3_index_info structure is created
2306 ** and initialized on the first invocation and reused on all subsequent
2307 ** invocations. The sqlite3_index_info structure is also used when
2308 ** code is generated to access the virtual table. The whereInfoDelete()
2309 ** routine takes care of freeing the sqlite3_index_info structure after
2310 ** everybody has finished with it.
2312 static void bestVirtualIndex(
2313 Parse
*pParse
, /* The parsing context */
2314 WhereClause
*pWC
, /* The WHERE clause */
2315 struct SrcList_item
*pSrc
, /* The FROM clause term to search */
2316 Bitmask notReady
, /* Mask of cursors not available for index */
2317 Bitmask notValid
, /* Cursors not valid for any purpose */
2318 ExprList
*pOrderBy
, /* The order by clause */
2319 WhereCost
*pCost
, /* Lowest cost query plan */
2320 sqlite3_index_info
**ppIdxInfo
/* Index information passed to xBestIndex */
2322 Table
*pTab
= pSrc
->pTab
;
2323 sqlite3_index_info
*pIdxInfo
;
2324 struct sqlite3_index_constraint
*pIdxCons
;
2325 struct sqlite3_index_constraint_usage
*pUsage
;
2331 /* Make sure wsFlags is initialized to some sane value. Otherwise, if the
2332 ** malloc in allocateIndexInfo() fails and this function returns leaving
2333 ** wsFlags in an uninitialized state, the caller may behave unpredictably.
2335 memset(pCost
, 0, sizeof(*pCost
));
2336 pCost
->plan
.wsFlags
= WHERE_VIRTUALTABLE
;
2338 /* If the sqlite3_index_info structure has not been previously
2339 ** allocated and initialized, then allocate and initialize it now.
2341 pIdxInfo
= *ppIdxInfo
;
2343 *ppIdxInfo
= pIdxInfo
= allocateIndexInfo(pParse
, pWC
, pSrc
, pOrderBy
);
2349 /* At this point, the sqlite3_index_info structure that pIdxInfo points
2350 ** to will have been initialized, either during the current invocation or
2351 ** during some prior invocation. Now we just have to customize the
2352 ** details of pIdxInfo for the current invocation and pass it to
2356 /* The module name must be defined. Also, by this point there must
2357 ** be a pointer to an sqlite3_vtab structure. Otherwise
2358 ** sqlite3ViewGetColumnNames() would have picked up the error.
2360 assert( pTab
->azModuleArg
&& pTab
->azModuleArg
[0] );
2361 assert( sqlite3GetVTable(pParse
->db
, pTab
) );
2363 /* Set the aConstraint[].usable fields and initialize all
2364 ** output variables to zero.
2366 ** aConstraint[].usable is true for constraints where the right-hand
2367 ** side contains only references to tables to the left of the current
2368 ** table. In other words, if the constraint is of the form:
2372 ** and we are evaluating a join, then the constraint on column is
2373 ** only valid if all tables referenced in expr occur to the left
2374 ** of the table containing column.
2376 ** The aConstraints[] array contains entries for all constraints
2377 ** on the current table. That way we only have to compute it once
2378 ** even though we might try to pick the best index multiple times.
2379 ** For each attempt at picking an index, the order of tables in the
2380 ** join might be different so we have to recompute the usable flag
2383 pIdxCons
= *(struct sqlite3_index_constraint
**)&pIdxInfo
->aConstraint
;
2384 pUsage
= pIdxInfo
->aConstraintUsage
;
2385 for(i
=0; i
<pIdxInfo
->nConstraint
; i
++, pIdxCons
++){
2386 j
= pIdxCons
->iTermOffset
;
2388 pIdxCons
->usable
= (pTerm
->prereqRight
¬Ready
) ? 0 : 1;
2390 memset(pUsage
, 0, sizeof(pUsage
[0])*pIdxInfo
->nConstraint
);
2391 if( pIdxInfo
->needToFreeIdxStr
){
2392 sqlite3_free(pIdxInfo
->idxStr
);
2394 pIdxInfo
->idxStr
= 0;
2395 pIdxInfo
->idxNum
= 0;
2396 pIdxInfo
->needToFreeIdxStr
= 0;
2397 pIdxInfo
->orderByConsumed
= 0;
2398 /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */
2399 pIdxInfo
->estimatedCost
= SQLITE_BIG_DBL
/ ((double)2);
2400 nOrderBy
= pIdxInfo
->nOrderBy
;
2402 pIdxInfo
->nOrderBy
= 0;
2405 if( vtabBestIndex(pParse
, pTab
, pIdxInfo
) ){
2409 pIdxCons
= *(struct sqlite3_index_constraint
**)&pIdxInfo
->aConstraint
;
2410 for(i
=0; i
<pIdxInfo
->nConstraint
; i
++){
2411 if( pUsage
[i
].argvIndex
>0 ){
2412 pCost
->used
|= pWC
->a
[pIdxCons
[i
].iTermOffset
].prereqRight
;
2416 /* If there is an ORDER BY clause, and the selected virtual table index
2417 ** does not satisfy it, increase the cost of the scan accordingly. This
2418 ** matches the processing for non-virtual tables in bestBtreeIndex().
2420 rCost
= pIdxInfo
->estimatedCost
;
2421 if( pOrderBy
&& pIdxInfo
->orderByConsumed
==0 ){
2422 rCost
+= estLog(rCost
)*rCost
;
2425 /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
2426 ** inital value of lowestCost in this loop. If it is, then the
2427 ** (cost<lowestCost) test below will never be true.
2429 ** Use "(double)2" instead of "2.0" in case OMIT_FLOATING_POINT
2432 if( (SQLITE_BIG_DBL
/((double)2))<rCost
){
2433 pCost
->rCost
= (SQLITE_BIG_DBL
/((double)2));
2435 pCost
->rCost
= rCost
;
2437 pCost
->plan
.u
.pVtabIdx
= pIdxInfo
;
2438 if( pIdxInfo
->orderByConsumed
){
2439 pCost
->plan
.wsFlags
|= WHERE_ORDERBY
;
2441 pCost
->plan
.nEq
= 0;
2442 pIdxInfo
->nOrderBy
= nOrderBy
;
2444 /* Try to find a more efficient access pattern by using multiple indexes
2445 ** to optimize an OR expression within the WHERE clause.
2447 bestOrClauseIndex(pParse
, pWC
, pSrc
, notReady
, notValid
, pOrderBy
, pCost
);
2449 #endif /* SQLITE_OMIT_VIRTUALTABLE */
2451 #ifdef SQLITE_ENABLE_STAT3
2453 ** Estimate the location of a particular key among all keys in an
2454 ** index. Store the results in aStat as follows:
2456 ** aStat[0] Est. number of rows less than pVal
2457 ** aStat[1] Est. number of rows equal to pVal
2459 ** Return SQLITE_OK on success.
2461 static int whereKeyStats(
2462 Parse
*pParse
, /* Database connection */
2463 Index
*pIdx
, /* Index to consider domain of */
2464 sqlite3_value
*pVal
, /* Value to consider */
2465 int roundUp
, /* Round up if true. Round down if false */
2466 tRowcnt
*aStat
/* OUT: stats written here */
2469 IndexSample
*aSample
;
2475 assert( roundUp
==0 || roundUp
==1 );
2476 assert( pIdx
->nSample
>0 );
2477 if( pVal
==0 ) return SQLITE_ERROR
;
2478 n
= pIdx
->aiRowEst
[0];
2479 aSample
= pIdx
->aSample
;
2480 eType
= sqlite3_value_type(pVal
);
2482 if( eType
==SQLITE_INTEGER
){
2483 v
= sqlite3_value_int64(pVal
);
2485 for(i
=0; i
<pIdx
->nSample
; i
++){
2486 if( aSample
[i
].eType
==SQLITE_NULL
) continue;
2487 if( aSample
[i
].eType
>=SQLITE_TEXT
) break;
2488 if( aSample
[i
].eType
==SQLITE_INTEGER
){
2489 if( aSample
[i
].u
.i
>=v
){
2490 isEq
= aSample
[i
].u
.i
==v
;
2494 assert( aSample
[i
].eType
==SQLITE_FLOAT
);
2495 if( aSample
[i
].u
.r
>=r
){
2496 isEq
= aSample
[i
].u
.r
==r
;
2501 }else if( eType
==SQLITE_FLOAT
){
2502 r
= sqlite3_value_double(pVal
);
2503 for(i
=0; i
<pIdx
->nSample
; i
++){
2504 if( aSample
[i
].eType
==SQLITE_NULL
) continue;
2505 if( aSample
[i
].eType
>=SQLITE_TEXT
) break;
2506 if( aSample
[i
].eType
==SQLITE_FLOAT
){
2507 rS
= aSample
[i
].u
.r
;
2509 rS
= aSample
[i
].u
.i
;
2516 }else if( eType
==SQLITE_NULL
){
2518 if( aSample
[0].eType
==SQLITE_NULL
) isEq
= 1;
2520 assert( eType
==SQLITE_TEXT
|| eType
==SQLITE_BLOB
);
2521 for(i
=0; i
<pIdx
->nSample
; i
++){
2522 if( aSample
[i
].eType
==SQLITE_TEXT
|| aSample
[i
].eType
==SQLITE_BLOB
){
2526 if( i
<pIdx
->nSample
){
2527 sqlite3
*db
= pParse
->db
;
2530 if( eType
==SQLITE_BLOB
){
2531 z
= (const u8
*)sqlite3_value_blob(pVal
);
2532 pColl
= db
->pDfltColl
;
2533 assert( pColl
->enc
==SQLITE_UTF8
);
2535 pColl
= sqlite3GetCollSeq(db
, SQLITE_UTF8
, 0, *pIdx
->azColl
);
2537 sqlite3ErrorMsg(pParse
, "no such collation sequence: %s",
2539 return SQLITE_ERROR
;
2541 z
= (const u8
*)sqlite3ValueText(pVal
, pColl
->enc
);
2543 return SQLITE_NOMEM
;
2545 assert( z
&& pColl
&& pColl
->xCmp
);
2547 n
= sqlite3ValueBytes(pVal
, pColl
->enc
);
2549 for(; i
<pIdx
->nSample
; i
++){
2551 int eSampletype
= aSample
[i
].eType
;
2552 if( eSampletype
<eType
) continue;
2553 if( eSampletype
!=eType
) break;
2554 #ifndef SQLITE_OMIT_UTF16
2555 if( pColl
->enc
!=SQLITE_UTF8
){
2557 char *zSample
= sqlite3Utf8to16(
2558 db
, pColl
->enc
, aSample
[i
].u
.z
, aSample
[i
].nByte
, &nSample
2561 assert( db
->mallocFailed
);
2562 return SQLITE_NOMEM
;
2564 c
= pColl
->xCmp(pColl
->pUser
, nSample
, zSample
, n
, z
);
2565 sqlite3DbFree(db
, zSample
);
2569 c
= pColl
->xCmp(pColl
->pUser
, aSample
[i
].nByte
, aSample
[i
].u
.z
, n
, z
);
2572 if( c
==0 ) isEq
= 1;
2579 /* At this point, aSample[i] is the first sample that is greater than
2580 ** or equal to pVal. Or if i==pIdx->nSample, then all samples are less
2581 ** than pVal. If aSample[i]==pVal, then isEq==1.
2584 assert( i
<pIdx
->nSample
);
2585 aStat
[0] = aSample
[i
].nLt
;
2586 aStat
[1] = aSample
[i
].nEq
;
2588 tRowcnt iLower
, iUpper
, iGap
;
2591 iUpper
= aSample
[0].nLt
;
2593 iUpper
= i
>=pIdx
->nSample
? n
: aSample
[i
].nLt
;
2594 iLower
= aSample
[i
-1].nEq
+ aSample
[i
-1].nLt
;
2596 aStat
[1] = pIdx
->avgEq
;
2597 if( iLower
>=iUpper
){
2600 iGap
= iUpper
- iLower
;
2607 aStat
[0] = iLower
+ iGap
;
2611 #endif /* SQLITE_ENABLE_STAT3 */
2614 ** If expression pExpr represents a literal value, set *pp to point to
2615 ** an sqlite3_value structure containing the same value, with affinity
2616 ** aff applied to it, before returning. It is the responsibility of the
2617 ** caller to eventually release this structure by passing it to
2618 ** sqlite3ValueFree().
2620 ** If the current parse is a recompile (sqlite3Reprepare()) and pExpr
2621 ** is an SQL variable that currently has a non-NULL value bound to it,
2622 ** create an sqlite3_value structure containing this value, again with
2623 ** affinity aff applied to it, instead.
2625 ** If neither of the above apply, set *pp to NULL.
2627 ** If an error occurs, return an error code. Otherwise, SQLITE_OK.
2629 #ifdef SQLITE_ENABLE_STAT3
2630 static int valueFromExpr(
2636 if( pExpr
->op
==TK_VARIABLE
2637 || (pExpr
->op
==TK_REGISTER
&& pExpr
->op2
==TK_VARIABLE
)
2639 int iVar
= pExpr
->iColumn
;
2640 sqlite3VdbeSetVarmask(pParse
->pVdbe
, iVar
);
2641 *pp
= sqlite3VdbeGetValue(pParse
->pReprepare
, iVar
, aff
);
2644 return sqlite3ValueFromExpr(pParse
->db
, pExpr
, SQLITE_UTF8
, aff
, pp
);
2649 ** This function is used to estimate the number of rows that will be visited
2650 ** by scanning an index for a range of values. The range may have an upper
2651 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
2652 ** and lower bounds are represented by pLower and pUpper respectively. For
2653 ** example, assuming that index p is on t1(a):
2655 ** ... FROM t1 WHERE a > ? AND a < ? ...
2660 ** If either of the upper or lower bound is not present, then NULL is passed in
2661 ** place of the corresponding WhereTerm.
2663 ** The nEq parameter is passed the index of the index column subject to the
2664 ** range constraint. Or, equivalently, the number of equality constraints
2665 ** optimized by the proposed index scan. For example, assuming index p is
2666 ** on t1(a, b), and the SQL query is:
2668 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
2670 ** then nEq should be passed the value 1 (as the range restricted column,
2671 ** b, is the second left-most column of the index). Or, if the query is:
2673 ** ... FROM t1 WHERE a > ? AND a < ? ...
2675 ** then nEq should be passed 0.
2677 ** The returned value is an integer divisor to reduce the estimated
2678 ** search space. A return value of 1 means that range constraints are
2679 ** no help at all. A return value of 2 means range constraints are
2680 ** expected to reduce the search space by half. And so forth...
2682 ** In the absence of sqlite_stat3 ANALYZE data, each range inequality
2683 ** reduces the search space by a factor of 4. Hence a single constraint (x>?)
2684 ** results in a return of 4 and a range constraint (x>? AND x<?) results
2685 ** in a return of 16.
2687 static int whereRangeScanEst(
2688 Parse
*pParse
, /* Parsing & code generating context */
2689 Index
*p
, /* The index containing the range-compared column; "x" */
2690 int nEq
, /* index into p->aCol[] of the range-compared column */
2691 WhereTerm
*pLower
, /* Lower bound on the range. ex: "x>123" Might be NULL */
2692 WhereTerm
*pUpper
, /* Upper bound on the range. ex: "x<455" Might be NULL */
2693 double *pRangeDiv
/* OUT: Reduce search space by this divisor */
2697 #ifdef SQLITE_ENABLE_STAT3
2699 if( nEq
==0 && p
->nSample
){
2700 sqlite3_value
*pRangeVal
;
2702 tRowcnt iUpper
= p
->aiRowEst
[0];
2704 u8 aff
= p
->pTable
->aCol
[p
->aiColumn
[0]].affinity
;
2707 Expr
*pExpr
= pLower
->pExpr
->pRight
;
2708 rc
= valueFromExpr(pParse
, pExpr
, aff
, &pRangeVal
);
2709 assert( pLower
->eOperator
==WO_GT
|| pLower
->eOperator
==WO_GE
);
2711 && whereKeyStats(pParse
, p
, pRangeVal
, 0, a
)==SQLITE_OK
2714 if( pLower
->eOperator
==WO_GT
) iLower
+= a
[1];
2716 sqlite3ValueFree(pRangeVal
);
2718 if( rc
==SQLITE_OK
&& pUpper
){
2719 Expr
*pExpr
= pUpper
->pExpr
->pRight
;
2720 rc
= valueFromExpr(pParse
, pExpr
, aff
, &pRangeVal
);
2721 assert( pUpper
->eOperator
==WO_LT
|| pUpper
->eOperator
==WO_LE
);
2723 && whereKeyStats(pParse
, p
, pRangeVal
, 1, a
)==SQLITE_OK
2726 if( pUpper
->eOperator
==WO_LE
) iUpper
+= a
[1];
2728 sqlite3ValueFree(pRangeVal
);
2730 if( rc
==SQLITE_OK
){
2731 if( iUpper
<=iLower
){
2732 *pRangeDiv
= (double)p
->aiRowEst
[0];
2734 *pRangeDiv
= (double)p
->aiRowEst
[0]/(double)(iUpper
- iLower
);
2736 WHERETRACE(("range scan regions: %u..%u div=%g\n",
2737 (u32
)iLower
, (u32
)iUpper
, *pRangeDiv
));
2742 UNUSED_PARAMETER(pParse
);
2743 UNUSED_PARAMETER(p
);
2744 UNUSED_PARAMETER(nEq
);
2746 assert( pLower
|| pUpper
);
2747 *pRangeDiv
= (double)1;
2748 if( pLower
&& (pLower
->wtFlags
& TERM_VNULL
)==0 ) *pRangeDiv
*= (double)4;
2749 if( pUpper
) *pRangeDiv
*= (double)4;
2753 #ifdef SQLITE_ENABLE_STAT3
2755 ** Estimate the number of rows that will be returned based on
2756 ** an equality constraint x=VALUE and where that VALUE occurs in
2757 ** the histogram data. This only works when x is the left-most
2758 ** column of an index and sqlite_stat3 histogram data is available
2759 ** for that index. When pExpr==NULL that means the constraint is
2760 ** "x IS NULL" instead of "x=VALUE".
2762 ** Write the estimated row count into *pnRow and return SQLITE_OK.
2763 ** If unable to make an estimate, leave *pnRow unchanged and return
2766 ** This routine can fail if it is unable to load a collating sequence
2767 ** required for string comparison, or if unable to allocate memory
2768 ** for a UTF conversion required for comparison. The error is stored
2769 ** in the pParse structure.
2771 static int whereEqualScanEst(
2772 Parse
*pParse
, /* Parsing & code generating context */
2773 Index
*p
, /* The index whose left-most column is pTerm */
2774 Expr
*pExpr
, /* Expression for VALUE in the x=VALUE constraint */
2775 double *pnRow
/* Write the revised row estimate here */
2777 sqlite3_value
*pRhs
= 0; /* VALUE on right-hand side of pTerm */
2778 u8 aff
; /* Column affinity */
2779 int rc
; /* Subfunction return code */
2780 tRowcnt a
[2]; /* Statistics */
2782 assert( p
->aSample
!=0 );
2783 assert( p
->nSample
>0 );
2784 aff
= p
->pTable
->aCol
[p
->aiColumn
[0]].affinity
;
2786 rc
= valueFromExpr(pParse
, pExpr
, aff
, &pRhs
);
2787 if( rc
) goto whereEqualScanEst_cancel
;
2789 pRhs
= sqlite3ValueNew(pParse
->db
);
2791 if( pRhs
==0 ) return SQLITE_NOTFOUND
;
2792 rc
= whereKeyStats(pParse
, p
, pRhs
, 0, a
);
2793 if( rc
==SQLITE_OK
){
2794 WHERETRACE(("equality scan regions: %d\n", (int)a
[1]));
2797 whereEqualScanEst_cancel
:
2798 sqlite3ValueFree(pRhs
);
2801 #endif /* defined(SQLITE_ENABLE_STAT3) */
2803 #ifdef SQLITE_ENABLE_STAT3
2805 ** Estimate the number of rows that will be returned based on
2806 ** an IN constraint where the right-hand side of the IN operator
2807 ** is a list of values. Example:
2809 ** WHERE x IN (1,2,3,4)
2811 ** Write the estimated row count into *pnRow and return SQLITE_OK.
2812 ** If unable to make an estimate, leave *pnRow unchanged and return
2815 ** This routine can fail if it is unable to load a collating sequence
2816 ** required for string comparison, or if unable to allocate memory
2817 ** for a UTF conversion required for comparison. The error is stored
2818 ** in the pParse structure.
2820 static int whereInScanEst(
2821 Parse
*pParse
, /* Parsing & code generating context */
2822 Index
*p
, /* The index whose left-most column is pTerm */
2823 ExprList
*pList
, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
2824 double *pnRow
/* Write the revised row estimate here */
2826 int rc
= SQLITE_OK
; /* Subfunction return code */
2827 double nEst
; /* Number of rows for a single term */
2828 double nRowEst
= (double)0; /* New estimate of the number of rows */
2829 int i
; /* Loop counter */
2831 assert( p
->aSample
!=0 );
2832 for(i
=0; rc
==SQLITE_OK
&& i
<pList
->nExpr
; i
++){
2833 nEst
= p
->aiRowEst
[0];
2834 rc
= whereEqualScanEst(pParse
, p
, pList
->a
[i
].pExpr
, &nEst
);
2837 if( rc
==SQLITE_OK
){
2838 if( nRowEst
> p
->aiRowEst
[0] ) nRowEst
= p
->aiRowEst
[0];
2840 WHERETRACE(("IN row estimate: est=%g\n", nRowEst
));
2844 #endif /* defined(SQLITE_ENABLE_STAT3) */
2848 ** Find the best query plan for accessing a particular table. Write the
2849 ** best query plan and its cost into the WhereCost object supplied as the
2852 ** The lowest cost plan wins. The cost is an estimate of the amount of
2853 ** CPU and disk I/O needed to process the requested result.
2854 ** Factors that influence cost include:
2856 ** * The estimated number of rows that will be retrieved. (The
2857 ** fewer the better.)
2859 ** * Whether or not sorting must occur.
2861 ** * Whether or not there must be separate lookups in the
2862 ** index and in the main table.
2864 ** If there was an INDEXED BY clause (pSrc->pIndex) attached to the table in
2865 ** the SQL statement, then this function only considers plans using the
2866 ** named index. If no such plan is found, then the returned cost is
2867 ** SQLITE_BIG_DBL. If a plan is found that uses the named index,
2868 ** then the cost is calculated in the usual way.
2870 ** If a NOT INDEXED clause (pSrc->notIndexed!=0) was attached to the table
2871 ** in the SELECT statement, then no indexes are considered. However, the
2872 ** selected plan may still take advantage of the built-in rowid primary key
2875 static void bestBtreeIndex(
2876 Parse
*pParse
, /* The parsing context */
2877 WhereClause
*pWC
, /* The WHERE clause */
2878 struct SrcList_item
*pSrc
, /* The FROM clause term to search */
2879 Bitmask notReady
, /* Mask of cursors not available for indexing */
2880 Bitmask notValid
, /* Cursors not available for any purpose */
2881 ExprList
*pOrderBy
, /* The ORDER BY clause */
2882 ExprList
*pDistinct
, /* The select-list if query is DISTINCT */
2883 WhereCost
*pCost
/* Lowest cost query plan */
2885 int iCur
= pSrc
->iCursor
; /* The cursor of the table to be accessed */
2886 Index
*pProbe
; /* An index we are evaluating */
2887 Index
*pIdx
; /* Copy of pProbe, or zero for IPK index */
2888 int eqTermMask
; /* Current mask of valid equality operators */
2889 int idxEqTermMask
; /* Index mask of valid equality operators */
2890 Index sPk
; /* A fake index object for the primary key */
2891 tRowcnt aiRowEstPk
[2]; /* The aiRowEst[] value for the sPk index */
2892 int aiColumnPk
= -1; /* The aColumn[] value for the sPk index */
2893 int wsFlagMask
; /* Allowed flags in pCost->plan.wsFlag */
2895 /* Initialize the cost to a worst-case value */
2896 memset(pCost
, 0, sizeof(*pCost
));
2897 pCost
->rCost
= SQLITE_BIG_DBL
;
2899 /* If the pSrc table is the right table of a LEFT JOIN then we may not
2900 ** use an index to satisfy IS NULL constraints on that table. This is
2901 ** because columns might end up being NULL if the table does not match -
2902 ** a circumstance which the index cannot help us discover. Ticket #2177.
2904 if( pSrc
->jointype
& JT_LEFT
){
2905 idxEqTermMask
= WO_EQ
|WO_IN
;
2907 idxEqTermMask
= WO_EQ
|WO_IN
|WO_ISNULL
;
2911 /* An INDEXED BY clause specifies a particular index to use */
2912 pIdx
= pProbe
= pSrc
->pIndex
;
2913 wsFlagMask
= ~(WHERE_ROWID_EQ
|WHERE_ROWID_RANGE
);
2914 eqTermMask
= idxEqTermMask
;
2916 /* There is no INDEXED BY clause. Create a fake Index object in local
2917 ** variable sPk to represent the rowid primary key index. Make this
2918 ** fake index the first in a chain of Index objects with all of the real
2919 ** indices to follow */
2920 Index
*pFirst
; /* First of real indices on the table */
2921 memset(&sPk
, 0, sizeof(Index
));
2923 sPk
.aiColumn
= &aiColumnPk
;
2924 sPk
.aiRowEst
= aiRowEstPk
;
2925 sPk
.onError
= OE_Replace
;
2926 sPk
.pTable
= pSrc
->pTab
;
2927 aiRowEstPk
[0] = pSrc
->pTab
->nRowEst
;
2929 pFirst
= pSrc
->pTab
->pIndex
;
2930 if( pSrc
->notIndexed
==0 ){
2931 /* The real indices of the table are only considered if the
2932 ** NOT INDEXED qualifier is omitted from the FROM clause */
2937 WHERE_COLUMN_IN
|WHERE_COLUMN_EQ
|WHERE_COLUMN_NULL
|WHERE_COLUMN_RANGE
2939 eqTermMask
= WO_EQ
|WO_IN
;
2943 /* Loop over all indices looking for the best one to use
2945 for(; pProbe
; pIdx
=pProbe
=pProbe
->pNext
){
2946 const tRowcnt
* const aiRowEst
= pProbe
->aiRowEst
;
2947 double cost
; /* Cost of using pProbe */
2948 double nRow
; /* Estimated number of rows in result set */
2949 double log10N
= (double)1; /* base-10 logarithm of nRow (inexact) */
2950 int rev
; /* True to scan in reverse order */
2954 /* The following variables are populated based on the properties of
2955 ** index being evaluated. They are then used to determine the expected
2956 ** cost and number of rows returned.
2959 ** Number of equality terms that can be implemented using the index.
2960 ** In other words, the number of initial fields in the index that
2961 ** are used in == or IN or NOT NULL constraints of the WHERE clause.
2964 ** The "in-multiplier". This is an estimate of how many seek operations
2965 ** SQLite must perform on the index in question. For example, if the
2968 ** WHERE a IN (1, 2, 3) AND b IN (4, 5, 6)
2970 ** SQLite must perform 9 lookups on an index on (a, b), so nInMul is
2971 ** set to 9. Given the same schema and either of the following WHERE
2977 ** nInMul is set to 1.
2979 ** If there exists a WHERE term of the form "x IN (SELECT ...)", then
2980 ** the sub-select is assumed to return 25 rows for the purposes of
2981 ** determining nInMul.
2984 ** Set to true if there was at least one "x IN (SELECT ...)" term used
2985 ** in determining the value of nInMul. Note that the RHS of the
2986 ** IN operator must be a SELECT, not a value list, for this variable
2990 ** An estimate of a divisor by which to reduce the search space due
2991 ** to inequality constraints. In the absence of sqlite_stat3 ANALYZE
2992 ** data, a single inequality reduces the search space to 1/4rd its
2993 ** original size (rangeDiv==4). Two inequalities reduce the search
2994 ** space to 1/16th of its original size (rangeDiv==16).
2997 ** Boolean. True if there is an ORDER BY clause that will require an
2998 ** external sort (i.e. scanning the index being evaluated will not
2999 ** correctly order records).
3002 ** Boolean. True if a table lookup is required for each index entry
3003 ** visited. In other words, true if this is not a covering index.
3004 ** This is always false for the rowid primary key index of a table.
3005 ** For other indexes, it is true unless all the columns of the table
3006 ** used by the SELECT statement are present in the index (such an
3007 ** index is sometimes described as a covering index).
3008 ** For example, given the index on (a, b), the second of the following
3009 ** two queries requires table b-tree lookups in order to find the value
3010 ** of column c, but the first does not because columns a and b are
3011 ** both available in the index.
3013 ** SELECT a, b FROM tbl WHERE a = 1;
3014 ** SELECT a, b, c FROM tbl WHERE a = 1;
3016 int nEq
; /* Number of == or IN terms matching index */
3017 int bInEst
= 0; /* True if "x IN (SELECT...)" seen */
3018 int nInMul
= 1; /* Number of distinct equalities to lookup */
3019 double rangeDiv
= (double)1; /* Estimated reduction in search space */
3020 int nBound
= 0; /* Number of range constraints seen */
3021 int bSort
= !!pOrderBy
; /* True if external sort required */
3022 int bDist
= !!pDistinct
; /* True if index cannot help with DISTINCT */
3023 int bLookup
= 0; /* True if not a covering index */
3024 WhereTerm
*pTerm
; /* A single term of the WHERE clause */
3025 #ifdef SQLITE_ENABLE_STAT3
3026 WhereTerm
*pFirstTerm
= 0; /* First term matching the index */
3029 /* Determine the values of nEq and nInMul */
3030 for(nEq
=0; nEq
<pProbe
->nColumn
; nEq
++){
3031 int j
= pProbe
->aiColumn
[nEq
];
3032 pTerm
= findTerm(pWC
, iCur
, j
, notReady
, eqTermMask
, pIdx
);
3033 if( pTerm
==0 ) break;
3034 wsFlags
|= (WHERE_COLUMN_EQ
|WHERE_ROWID_EQ
);
3035 testcase( pTerm
->pWC
!=pWC
);
3036 if( pTerm
->eOperator
& WO_IN
){
3037 Expr
*pExpr
= pTerm
->pExpr
;
3038 wsFlags
|= WHERE_COLUMN_IN
;
3039 if( ExprHasProperty(pExpr
, EP_xIsSelect
) ){
3040 /* "x IN (SELECT ...)": Assume the SELECT returns 25 rows */
3043 }else if( ALWAYS(pExpr
->x
.pList
&& pExpr
->x
.pList
->nExpr
) ){
3044 /* "x IN (value, value, ...)" */
3045 nInMul
*= pExpr
->x
.pList
->nExpr
;
3047 }else if( pTerm
->eOperator
& WO_ISNULL
){
3048 wsFlags
|= WHERE_COLUMN_NULL
;
3050 #ifdef SQLITE_ENABLE_STAT3
3051 if( nEq
==0 && pProbe
->aSample
) pFirstTerm
= pTerm
;
3053 used
|= pTerm
->prereqRight
;
3056 /* Determine the value of rangeDiv */
3057 if( nEq
<pProbe
->nColumn
&& pProbe
->bUnordered
==0 ){
3058 int j
= pProbe
->aiColumn
[nEq
];
3059 if( findTerm(pWC
, iCur
, j
, notReady
, WO_LT
|WO_LE
|WO_GT
|WO_GE
, pIdx
) ){
3060 WhereTerm
*pTop
= findTerm(pWC
, iCur
, j
, notReady
, WO_LT
|WO_LE
, pIdx
);
3061 WhereTerm
*pBtm
= findTerm(pWC
, iCur
, j
, notReady
, WO_GT
|WO_GE
, pIdx
);
3062 whereRangeScanEst(pParse
, pProbe
, nEq
, pBtm
, pTop
, &rangeDiv
);
3065 wsFlags
|= WHERE_TOP_LIMIT
;
3066 used
|= pTop
->prereqRight
;
3067 testcase( pTop
->pWC
!=pWC
);
3071 wsFlags
|= WHERE_BTM_LIMIT
;
3072 used
|= pBtm
->prereqRight
;
3073 testcase( pBtm
->pWC
!=pWC
);
3075 wsFlags
|= (WHERE_COLUMN_RANGE
|WHERE_ROWID_RANGE
);
3077 }else if( pProbe
->onError
!=OE_None
){
3078 testcase( wsFlags
& WHERE_COLUMN_IN
);
3079 testcase( wsFlags
& WHERE_COLUMN_NULL
);
3080 if( (wsFlags
& (WHERE_COLUMN_IN
|WHERE_COLUMN_NULL
))==0 ){
3081 wsFlags
|= WHERE_UNIQUE
;
3085 /* If there is an ORDER BY clause and the index being considered will
3086 ** naturally scan rows in the required order, set the appropriate flags
3087 ** in wsFlags. Otherwise, if there is an ORDER BY clause but the index
3088 ** will scan rows in a different order, set the bSort variable. */
3090 pParse
, pWC
->pMaskSet
, pProbe
, iCur
, pOrderBy
, nEq
, wsFlags
, &rev
)
3093 wsFlags
|= WHERE_ROWID_RANGE
|WHERE_COLUMN_RANGE
|WHERE_ORDERBY
;
3094 wsFlags
|= (rev
? WHERE_REVERSE
: 0);
3097 /* If there is a DISTINCT qualifier and this index will scan rows in
3098 ** order of the DISTINCT expressions, clear bDist and set the appropriate
3099 ** flags in wsFlags. */
3100 if( isDistinctIndex(pParse
, pWC
, pProbe
, iCur
, pDistinct
, nEq
) ){
3102 wsFlags
|= WHERE_ROWID_RANGE
|WHERE_COLUMN_RANGE
|WHERE_DISTINCT
;
3105 /* If currently calculating the cost of using an index (not the IPK
3106 ** index), determine if all required column data may be obtained without
3107 ** using the main table (i.e. if the index is a covering
3108 ** index for this query). If it is, set the WHERE_IDX_ONLY flag in
3109 ** wsFlags. Otherwise, set the bLookup variable to true. */
3110 if( pIdx
&& wsFlags
){
3111 Bitmask m
= pSrc
->colUsed
;
3113 for(j
=0; j
<pIdx
->nColumn
; j
++){
3114 int x
= pIdx
->aiColumn
[j
];
3116 m
&= ~(((Bitmask
)1)<<x
);
3120 wsFlags
|= WHERE_IDX_ONLY
;
3127 ** Estimate the number of rows of output. For an "x IN (SELECT...)"
3128 ** constraint, do not let the estimate exceed half the rows in the table.
3130 nRow
= (double)(aiRowEst
[nEq
] * nInMul
);
3131 if( bInEst
&& nRow
*2>aiRowEst
[0] ){
3132 nRow
= aiRowEst
[0]/2;
3133 nInMul
= (int)(nRow
/ aiRowEst
[nEq
]);
3136 #ifdef SQLITE_ENABLE_STAT3
3137 /* If the constraint is of the form x=VALUE or x IN (E1,E2,...)
3138 ** and we do not think that values of x are unique and if histogram
3139 ** data is available for column x, then it might be possible
3140 ** to get a better estimate on the number of rows based on
3141 ** VALUE and how common that value is according to the histogram.
3143 if( nRow
>(double)1 && nEq
==1 && pFirstTerm
!=0 && aiRowEst
[1]>1 ){
3144 assert( (pFirstTerm
->eOperator
& (WO_EQ
|WO_ISNULL
|WO_IN
))!=0 );
3145 if( pFirstTerm
->eOperator
& (WO_EQ
|WO_ISNULL
) ){
3146 testcase( pFirstTerm
->eOperator
==WO_EQ
);
3147 testcase( pFirstTerm
->eOperator
==WO_ISNULL
);
3148 whereEqualScanEst(pParse
, pProbe
, pFirstTerm
->pExpr
->pRight
, &nRow
);
3149 }else if( bInEst
==0 ){
3150 assert( pFirstTerm
->eOperator
==WO_IN
);
3151 whereInScanEst(pParse
, pProbe
, pFirstTerm
->pExpr
->x
.pList
, &nRow
);
3154 #endif /* SQLITE_ENABLE_STAT3 */
3156 /* Adjust the number of output rows and downward to reflect rows
3157 ** that are excluded by range constraints.
3159 nRow
= nRow
/rangeDiv
;
3160 if( nRow
<1 ) nRow
= 1;
3162 /* Experiments run on real SQLite databases show that the time needed
3163 ** to do a binary search to locate a row in a table or index is roughly
3164 ** log10(N) times the time to move from one row to the next row within
3165 ** a table or index. The actual times can vary, with the size of
3166 ** records being an important factor. Both moves and searches are
3167 ** slower with larger records, presumably because fewer records fit
3168 ** on one page and hence more pages have to be fetched.
3170 ** The ANALYZE command and the sqlite_stat1 and sqlite_stat3 tables do
3171 ** not give us data on the relative sizes of table and index records.
3172 ** So this computation assumes table records are about twice as big
3175 if( (wsFlags
& WHERE_NOT_FULLSCAN
)==0 ){
3176 /* The cost of a full table scan is a number of move operations equal
3177 ** to the number of rows in the table.
3179 ** We add an additional 4x penalty to full table scans. This causes
3180 ** the cost function to err on the side of choosing an index over
3181 ** choosing a full scan. This 4x full-scan penalty is an arguable
3182 ** decision and one which we expect to revisit in the future. But
3183 ** it seems to be working well enough at the moment.
3185 cost
= aiRowEst
[0]*4;
3187 log10N
= estLog(aiRowEst
[0]);
3191 /* For an index lookup followed by a table lookup:
3192 ** nInMul index searches to find the start of each index range
3193 ** + nRow steps through the index
3194 ** + nRow table searches to lookup the table entry using the rowid
3196 cost
+= (nInMul
+ nRow
)*log10N
;
3198 /* For a covering index:
3199 ** nInMul index searches to find the initial entry
3200 ** + nRow steps through the index
3202 cost
+= nInMul
*log10N
;
3205 /* For a rowid primary key lookup:
3206 ** nInMult table searches to find the initial entry for each range
3207 ** + nRow steps through the table
3209 cost
+= nInMul
*log10N
;
3213 /* Add in the estimated cost of sorting the result. Actual experimental
3214 ** measurements of sorting performance in SQLite show that sorting time
3215 ** adds C*N*log10(N) to the cost, where N is the number of rows to be
3216 ** sorted and C is a factor between 1.95 and 4.3. We will split the
3217 ** difference and select C of 3.0.
3220 cost
+= nRow
*estLog(nRow
)*3;
3223 cost
+= nRow
*estLog(nRow
)*3;
3226 /**** Cost of using this index has now been computed ****/
3228 /* If there are additional constraints on this table that cannot
3229 ** be used with the current index, but which might lower the number
3230 ** of output rows, adjust the nRow value accordingly. This only
3231 ** matters if the current index is the least costly, so do not bother
3232 ** with this step if we already know this index will not be chosen.
3233 ** Also, never reduce the output row count below 2 using this step.
3235 ** It is critical that the notValid mask be used here instead of
3236 ** the notReady mask. When computing an "optimal" index, the notReady
3237 ** mask will only have one bit set - the bit for the current table.
3238 ** The notValid mask, on the other hand, always has all bits set for
3239 ** tables that are not in outer loops. If notReady is used here instead
3240 ** of notValid, then a optimal index that depends on inner joins loops
3241 ** might be selected even when there exists an optimal index that has
3242 ** no such dependency.
3244 if( nRow
>2 && cost
<=pCost
->rCost
){
3245 int k
; /* Loop counter */
3246 int nSkipEq
= nEq
; /* Number of == constraints to skip */
3247 int nSkipRange
= nBound
; /* Number of < constraints to skip */
3248 Bitmask thisTab
; /* Bitmap for pSrc */
3250 thisTab
= getMask(pWC
->pMaskSet
, iCur
);
3251 for(pTerm
=pWC
->a
, k
=pWC
->nTerm
; nRow
>2 && k
; k
--, pTerm
++){
3252 if( pTerm
->wtFlags
& TERM_VIRTUAL
) continue;
3253 if( (pTerm
->prereqAll
& notValid
)!=thisTab
) continue;
3254 if( pTerm
->eOperator
& (WO_EQ
|WO_IN
|WO_ISNULL
) ){
3256 /* Ignore the first nEq equality matches since the index
3257 ** has already accounted for these */
3260 /* Assume each additional equality match reduces the result
3261 ** set size by a factor of 10 */
3264 }else if( pTerm
->eOperator
& (WO_LT
|WO_LE
|WO_GT
|WO_GE
) ){
3266 /* Ignore the first nSkipRange range constraints since the index
3267 ** has already accounted for these */
3270 /* Assume each additional range constraint reduces the result
3271 ** set size by a factor of 3. Indexed range constraints reduce
3272 ** the search space by a larger factor: 4. We make indexed range
3273 ** more selective intentionally because of the subjective
3274 ** observation that indexed range constraints really are more
3275 ** selective in practice, on average. */
3278 }else if( pTerm
->eOperator
!=WO_NOOP
){
3279 /* Any other expression lowers the output row count by half */
3283 if( nRow
<2 ) nRow
= 2;
3288 "%s(%s): nEq=%d nInMul=%d rangeDiv=%d bSort=%d bLookup=%d wsFlags=0x%x\n"
3289 " notReady=0x%llx log10N=%.1f nRow=%.1f cost=%.1f used=0x%llx\n",
3290 pSrc
->pTab
->zName
, (pIdx
? pIdx
->zName
: "ipk"),
3291 nEq
, nInMul
, (int)rangeDiv
, bSort
, bLookup
, wsFlags
,
3292 notReady
, log10N
, nRow
, cost
, used
3295 /* If this index is the best we have seen so far, then record this
3296 ** index and its cost in the pCost structure.
3298 if( (!pIdx
|| wsFlags
)
3299 && (cost
<pCost
->rCost
|| (cost
<=pCost
->rCost
&& nRow
<pCost
->plan
.nRow
))
3301 pCost
->rCost
= cost
;
3303 pCost
->plan
.nRow
= nRow
;
3304 pCost
->plan
.wsFlags
= (wsFlags
&wsFlagMask
);
3305 pCost
->plan
.nEq
= nEq
;
3306 pCost
->plan
.u
.pIdx
= pIdx
;
3309 /* If there was an INDEXED BY clause, then only that one index is
3311 if( pSrc
->pIndex
) break;
3313 /* Reset masks for the next index in the loop */
3314 wsFlagMask
= ~(WHERE_ROWID_EQ
|WHERE_ROWID_RANGE
);
3315 eqTermMask
= idxEqTermMask
;
3318 /* If there is no ORDER BY clause and the SQLITE_ReverseOrder flag
3319 ** is set, then reverse the order that the index will be scanned
3320 ** in. This is used for application testing, to help find cases
3321 ** where application behaviour depends on the (undefined) order that
3322 ** SQLite outputs rows in in the absence of an ORDER BY clause. */
3323 if( !pOrderBy
&& pParse
->db
->flags
& SQLITE_ReverseOrder
){
3324 pCost
->plan
.wsFlags
|= WHERE_REVERSE
;
3327 assert( pOrderBy
|| (pCost
->plan
.wsFlags
&WHERE_ORDERBY
)==0 );
3328 assert( pCost
->plan
.u
.pIdx
==0 || (pCost
->plan
.wsFlags
&WHERE_ROWID_EQ
)==0 );
3329 assert( pSrc
->pIndex
==0
3330 || pCost
->plan
.u
.pIdx
==0
3331 || pCost
->plan
.u
.pIdx
==pSrc
->pIndex
3334 WHERETRACE(("best index is: %s\n",
3335 ((pCost
->plan
.wsFlags
& WHERE_NOT_FULLSCAN
)==0 ? "none" :
3336 pCost
->plan
.u
.pIdx
? pCost
->plan
.u
.pIdx
->zName
: "ipk")
3339 bestOrClauseIndex(pParse
, pWC
, pSrc
, notReady
, notValid
, pOrderBy
, pCost
);
3340 bestAutomaticIndex(pParse
, pWC
, pSrc
, notReady
, pCost
);
3341 pCost
->plan
.wsFlags
|= eqTermMask
;
3345 ** Find the query plan for accessing table pSrc->pTab. Write the
3346 ** best query plan and its cost into the WhereCost object supplied
3347 ** as the last parameter. This function may calculate the cost of
3348 ** both real and virtual table scans.
3350 static void bestIndex(
3351 Parse
*pParse
, /* The parsing context */
3352 WhereClause
*pWC
, /* The WHERE clause */
3353 struct SrcList_item
*pSrc
, /* The FROM clause term to search */
3354 Bitmask notReady
, /* Mask of cursors not available for indexing */
3355 Bitmask notValid
, /* Cursors not available for any purpose */
3356 ExprList
*pOrderBy
, /* The ORDER BY clause */
3357 WhereCost
*pCost
/* Lowest cost query plan */
3359 #ifndef SQLITE_OMIT_VIRTUALTABLE
3360 if( IsVirtual(pSrc
->pTab
) ){
3361 sqlite3_index_info
*p
= 0;
3362 bestVirtualIndex(pParse
, pWC
, pSrc
, notReady
, notValid
, pOrderBy
, pCost
,&p
);
3363 if( p
->needToFreeIdxStr
){
3364 sqlite3_free(p
->idxStr
);
3366 sqlite3DbFree(pParse
->db
, p
);
3370 bestBtreeIndex(pParse
, pWC
, pSrc
, notReady
, notValid
, pOrderBy
, 0, pCost
);
3375 ** Disable a term in the WHERE clause. Except, do not disable the term
3376 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
3377 ** or USING clause of that join.
3379 ** Consider the term t2.z='ok' in the following queries:
3381 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
3382 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
3383 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
3385 ** The t2.z='ok' is disabled in the in (2) because it originates
3386 ** in the ON clause. The term is disabled in (3) because it is not part
3387 ** of a LEFT OUTER JOIN. In (1), the term is not disabled.
3389 ** IMPLEMENTATION-OF: R-24597-58655 No tests are done for terms that are
3390 ** completely satisfied by indices.
3392 ** Disabling a term causes that term to not be tested in the inner loop
3393 ** of the join. Disabling is an optimization. When terms are satisfied
3394 ** by indices, we disable them to prevent redundant tests in the inner
3395 ** loop. We would get the correct results if nothing were ever disabled,
3396 ** but joins might run a little slower. The trick is to disable as much
3397 ** as we can without disabling too much. If we disabled in (1), we'd get
3398 ** the wrong answer. See ticket #813.
3400 static void disableTerm(WhereLevel
*pLevel
, WhereTerm
*pTerm
){
3402 && (pTerm
->wtFlags
& TERM_CODED
)==0
3403 && (pLevel
->iLeftJoin
==0 || ExprHasProperty(pTerm
->pExpr
, EP_FromJoin
))
3405 pTerm
->wtFlags
|= TERM_CODED
;
3406 if( pTerm
->iParent
>=0 ){
3407 WhereTerm
*pOther
= &pTerm
->pWC
->a
[pTerm
->iParent
];
3408 if( (--pOther
->nChild
)==0 ){
3409 disableTerm(pLevel
, pOther
);
3416 ** Code an OP_Affinity opcode to apply the column affinity string zAff
3417 ** to the n registers starting at base.
3419 ** As an optimization, SQLITE_AFF_NONE entries (which are no-ops) at the
3420 ** beginning and end of zAff are ignored. If all entries in zAff are
3421 ** SQLITE_AFF_NONE, then no code gets generated.
3423 ** This routine makes its own copy of zAff so that the caller is free
3424 ** to modify zAff after this routine returns.
3426 static void codeApplyAffinity(Parse
*pParse
, int base
, int n
, char *zAff
){
3427 Vdbe
*v
= pParse
->pVdbe
;
3429 assert( pParse
->db
->mallocFailed
);
3434 /* Adjust base and n to skip over SQLITE_AFF_NONE entries at the beginning
3435 ** and end of the affinity string.
3437 while( n
>0 && zAff
[0]==SQLITE_AFF_NONE
){
3442 while( n
>1 && zAff
[n
-1]==SQLITE_AFF_NONE
){
3446 /* Code the OP_Affinity opcode if there is anything left to do. */
3448 sqlite3VdbeAddOp2(v
, OP_Affinity
, base
, n
);
3449 sqlite3VdbeChangeP4(v
, -1, zAff
, n
);
3450 sqlite3ExprCacheAffinityChange(pParse
, base
, n
);
3456 ** Generate code for a single equality term of the WHERE clause. An equality
3457 ** term can be either X=expr or X IN (...). pTerm is the term to be
3460 ** The current value for the constraint is left in register iReg.
3462 ** For a constraint of the form X=expr, the expression is evaluated and its
3463 ** result is left on the stack. For constraints of the form X IN (...)
3464 ** this routine sets up a loop that will iterate over all values of X.
3466 static int codeEqualityTerm(
3467 Parse
*pParse
, /* The parsing context */
3468 WhereTerm
*pTerm
, /* The term of the WHERE clause to be coded */
3469 WhereLevel
*pLevel
, /* When level of the FROM clause we are working on */
3470 int iTarget
/* Attempt to leave results in this register */
3472 Expr
*pX
= pTerm
->pExpr
;
3473 Vdbe
*v
= pParse
->pVdbe
;
3474 int iReg
; /* Register holding results */
3476 assert( iTarget
>0 );
3477 if( pX
->op
==TK_EQ
){
3478 iReg
= sqlite3ExprCodeTarget(pParse
, pX
->pRight
, iTarget
);
3479 }else if( pX
->op
==TK_ISNULL
){
3481 sqlite3VdbeAddOp2(v
, OP_Null
, 0, iReg
);
3482 #ifndef SQLITE_OMIT_SUBQUERY
3488 assert( pX
->op
==TK_IN
);
3490 eType
= sqlite3FindInIndex(pParse
, pX
, 0);
3492 sqlite3VdbeAddOp2(v
, OP_Rewind
, iTab
, 0);
3493 assert( pLevel
->plan
.wsFlags
& WHERE_IN_ABLE
);
3494 if( pLevel
->u
.in
.nIn
==0 ){
3495 pLevel
->addrNxt
= sqlite3VdbeMakeLabel(v
);
3498 pLevel
->u
.in
.aInLoop
=
3499 sqlite3DbReallocOrFree(pParse
->db
, pLevel
->u
.in
.aInLoop
,
3500 sizeof(pLevel
->u
.in
.aInLoop
[0])*pLevel
->u
.in
.nIn
);
3501 pIn
= pLevel
->u
.in
.aInLoop
;
3503 pIn
+= pLevel
->u
.in
.nIn
- 1;
3505 if( eType
==IN_INDEX_ROWID
){
3506 pIn
->addrInTop
= sqlite3VdbeAddOp2(v
, OP_Rowid
, iTab
, iReg
);
3508 pIn
->addrInTop
= sqlite3VdbeAddOp3(v
, OP_Column
, iTab
, 0, iReg
);
3510 sqlite3VdbeAddOp1(v
, OP_IsNull
, iReg
);
3512 pLevel
->u
.in
.nIn
= 0;
3516 disableTerm(pLevel
, pTerm
);
3521 ** Generate code that will evaluate all == and IN constraints for an
3524 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
3525 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
3526 ** The index has as many as three equality constraints, but in this
3527 ** example, the third "c" value is an inequality. So only two
3528 ** constraints are coded. This routine will generate code to evaluate
3529 ** a==5 and b IN (1,2,3). The current values for a and b will be stored
3530 ** in consecutive registers and the index of the first register is returned.
3532 ** In the example above nEq==2. But this subroutine works for any value
3533 ** of nEq including 0. If nEq==0, this routine is nearly a no-op.
3534 ** The only thing it does is allocate the pLevel->iMem memory cell and
3535 ** compute the affinity string.
3537 ** This routine always allocates at least one memory cell and returns
3538 ** the index of that memory cell. The code that
3539 ** calls this routine will use that memory cell to store the termination
3540 ** key value of the loop. If one or more IN operators appear, then
3541 ** this routine allocates an additional nEq memory cells for internal
3544 ** Before returning, *pzAff is set to point to a buffer containing a
3545 ** copy of the column affinity string of the index allocated using
3546 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
3547 ** with equality constraints that use NONE affinity are set to
3548 ** SQLITE_AFF_NONE. This is to deal with SQL such as the following:
3550 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b);
3551 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
3553 ** In the example above, the index on t1(a) has TEXT affinity. But since
3554 ** the right hand side of the equality constraint (t2.b) has NONE affinity,
3555 ** no conversion should be attempted before using a t2.b value as part of
3556 ** a key to search the index. Hence the first byte in the returned affinity
3557 ** string in this example would be set to SQLITE_AFF_NONE.
3559 static int codeAllEqualityTerms(
3560 Parse
*pParse
, /* Parsing context */
3561 WhereLevel
*pLevel
, /* Which nested loop of the FROM we are coding */
3562 WhereClause
*pWC
, /* The WHERE clause */
3563 Bitmask notReady
, /* Which parts of FROM have not yet been coded */
3564 int nExtraReg
, /* Number of extra registers to allocate */
3565 char **pzAff
/* OUT: Set to point to affinity string */
3567 int nEq
= pLevel
->plan
.nEq
; /* The number of == or IN constraints to code */
3568 Vdbe
*v
= pParse
->pVdbe
; /* The vm under construction */
3569 Index
*pIdx
; /* The index being used for this loop */
3570 int iCur
= pLevel
->iTabCur
; /* The cursor of the table */
3571 WhereTerm
*pTerm
; /* A single constraint term */
3572 int j
; /* Loop counter */
3573 int regBase
; /* Base register */
3574 int nReg
; /* Number of registers to allocate */
3575 char *zAff
; /* Affinity string to return */
3577 /* This module is only called on query plans that use an index. */
3578 assert( pLevel
->plan
.wsFlags
& WHERE_INDEXED
);
3579 pIdx
= pLevel
->plan
.u
.pIdx
;
3581 /* Figure out how many memory cells we will need then allocate them.
3583 regBase
= pParse
->nMem
+ 1;
3584 nReg
= pLevel
->plan
.nEq
+ nExtraReg
;
3585 pParse
->nMem
+= nReg
;
3587 zAff
= sqlite3DbStrDup(pParse
->db
, sqlite3IndexAffinityStr(v
, pIdx
));
3589 pParse
->db
->mallocFailed
= 1;
3592 /* Evaluate the equality constraints
3594 assert( pIdx
->nColumn
>=nEq
);
3595 for(j
=0; j
<nEq
; j
++){
3597 int k
= pIdx
->aiColumn
[j
];
3598 pTerm
= findTerm(pWC
, iCur
, k
, notReady
, pLevel
->plan
.wsFlags
, pIdx
);
3599 if( NEVER(pTerm
==0) ) break;
3600 /* The following true for indices with redundant columns.
3601 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
3602 testcase( (pTerm
->wtFlags
& TERM_CODED
)!=0 );
3603 testcase( pTerm
->wtFlags
& TERM_VIRTUAL
); /* EV: R-30575-11662 */
3604 r1
= codeEqualityTerm(pParse
, pTerm
, pLevel
, regBase
+j
);
3605 if( r1
!=regBase
+j
){
3607 sqlite3ReleaseTempReg(pParse
, regBase
);
3610 sqlite3VdbeAddOp2(v
, OP_SCopy
, r1
, regBase
+j
);
3613 testcase( pTerm
->eOperator
& WO_ISNULL
);
3614 testcase( pTerm
->eOperator
& WO_IN
);
3615 if( (pTerm
->eOperator
& (WO_ISNULL
|WO_IN
))==0 ){
3616 Expr
*pRight
= pTerm
->pExpr
->pRight
;
3617 sqlite3ExprCodeIsNullJump(v
, pRight
, regBase
+j
, pLevel
->addrBrk
);
3619 if( sqlite3CompareAffinity(pRight
, zAff
[j
])==SQLITE_AFF_NONE
){
3620 zAff
[j
] = SQLITE_AFF_NONE
;
3622 if( sqlite3ExprNeedsNoAffinityChange(pRight
, zAff
[j
]) ){
3623 zAff
[j
] = SQLITE_AFF_NONE
;
3632 #ifndef SQLITE_OMIT_EXPLAIN
3634 ** This routine is a helper for explainIndexRange() below
3636 ** pStr holds the text of an expression that we are building up one term
3637 ** at a time. This routine adds a new term to the end of the expression.
3638 ** Terms are separated by AND so add the "AND" text for second and subsequent
3641 static void explainAppendTerm(
3642 StrAccum
*pStr
, /* The text expression being built */
3643 int iTerm
, /* Index of this term. First is zero */
3644 const char *zColumn
, /* Name of the column */
3645 const char *zOp
/* Name of the operator */
3647 if( iTerm
) sqlite3StrAccumAppend(pStr
, " AND ", 5);
3648 sqlite3StrAccumAppend(pStr
, zColumn
, -1);
3649 sqlite3StrAccumAppend(pStr
, zOp
, 1);
3650 sqlite3StrAccumAppend(pStr
, "?", 1);
3654 ** Argument pLevel describes a strategy for scanning table pTab. This
3655 ** function returns a pointer to a string buffer containing a description
3656 ** of the subset of table rows scanned by the strategy in the form of an
3657 ** SQL expression. Or, if all rows are scanned, NULL is returned.
3659 ** For example, if the query:
3661 ** SELECT * FROM t1 WHERE a=1 AND b>2;
3663 ** is run and there is an index on (a, b), then this function returns a
3664 ** string similar to:
3668 ** The returned pointer points to memory obtained from sqlite3DbMalloc().
3669 ** It is the responsibility of the caller to free the buffer when it is
3670 ** no longer required.
3672 static char *explainIndexRange(sqlite3
*db
, WhereLevel
*pLevel
, Table
*pTab
){
3673 WherePlan
*pPlan
= &pLevel
->plan
;
3674 Index
*pIndex
= pPlan
->u
.pIdx
;
3675 int nEq
= pPlan
->nEq
;
3677 Column
*aCol
= pTab
->aCol
;
3678 int *aiColumn
= pIndex
->aiColumn
;
3681 if( nEq
==0 && (pPlan
->wsFlags
& (WHERE_BTM_LIMIT
|WHERE_TOP_LIMIT
))==0 ){
3684 sqlite3StrAccumInit(&txt
, 0, 0, SQLITE_MAX_LENGTH
);
3686 sqlite3StrAccumAppend(&txt
, " (", 2);
3687 for(i
=0; i
<nEq
; i
++){
3688 explainAppendTerm(&txt
, i
, aCol
[aiColumn
[i
]].zName
, "=");
3692 if( pPlan
->wsFlags
&WHERE_BTM_LIMIT
){
3693 explainAppendTerm(&txt
, i
++, aCol
[aiColumn
[j
]].zName
, ">");
3695 if( pPlan
->wsFlags
&WHERE_TOP_LIMIT
){
3696 explainAppendTerm(&txt
, i
, aCol
[aiColumn
[j
]].zName
, "<");
3698 sqlite3StrAccumAppend(&txt
, ")", 1);
3699 return sqlite3StrAccumFinish(&txt
);
3703 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
3704 ** command. If the query being compiled is an EXPLAIN QUERY PLAN, a single
3705 ** record is added to the output to describe the table scan strategy in
3708 static void explainOneScan(
3709 Parse
*pParse
, /* Parse context */
3710 SrcList
*pTabList
, /* Table list this loop refers to */
3711 WhereLevel
*pLevel
, /* Scan to write OP_Explain opcode for */
3712 int iLevel
, /* Value for "level" column of output */
3713 int iFrom
, /* Value for "from" column of output */
3714 u16 wctrlFlags
/* Flags passed to sqlite3WhereBegin() */
3716 if( pParse
->explain
==2 ){
3717 u32 flags
= pLevel
->plan
.wsFlags
;
3718 struct SrcList_item
*pItem
= &pTabList
->a
[pLevel
->iFrom
];
3719 Vdbe
*v
= pParse
->pVdbe
; /* VM being constructed */
3720 sqlite3
*db
= pParse
->db
; /* Database handle */
3721 char *zMsg
; /* Text to add to EQP output */
3722 sqlite3_int64 nRow
; /* Expected number of rows visited by scan */
3723 int iId
= pParse
->iSelectId
; /* Select id (left-most output column) */
3724 int isSearch
; /* True for a SEARCH. False for SCAN. */
3726 if( (flags
&WHERE_MULTI_OR
) || (wctrlFlags
&WHERE_ONETABLE_ONLY
) ) return;
3728 isSearch
= (pLevel
->plan
.nEq
>0)
3729 || (flags
&(WHERE_BTM_LIMIT
|WHERE_TOP_LIMIT
))!=0
3730 || (wctrlFlags
&(WHERE_ORDERBY_MIN
|WHERE_ORDERBY_MAX
));
3732 zMsg
= sqlite3MPrintf(db
, "%s", isSearch
?"SEARCH":"SCAN");
3733 if( pItem
->pSelect
){
3734 zMsg
= sqlite3MAppendf(db
, zMsg
, "%s SUBQUERY %d", zMsg
,pItem
->iSelectId
);
3736 zMsg
= sqlite3MAppendf(db
, zMsg
, "%s TABLE %s", zMsg
, pItem
->zName
);
3739 if( pItem
->zAlias
){
3740 zMsg
= sqlite3MAppendf(db
, zMsg
, "%s AS %s", zMsg
, pItem
->zAlias
);
3742 if( (flags
& WHERE_INDEXED
)!=0 ){
3743 char *zWhere
= explainIndexRange(db
, pLevel
, pItem
->pTab
);
3744 zMsg
= sqlite3MAppendf(db
, zMsg
, "%s USING %s%sINDEX%s%s%s", zMsg
,
3745 ((flags
& WHERE_TEMP_INDEX
)?"AUTOMATIC ":""),
3746 ((flags
& WHERE_IDX_ONLY
)?"COVERING ":""),
3747 ((flags
& WHERE_TEMP_INDEX
)?"":" "),
3748 ((flags
& WHERE_TEMP_INDEX
)?"": pLevel
->plan
.u
.pIdx
->zName
),
3751 sqlite3DbFree(db
, zWhere
);
3752 }else if( flags
& (WHERE_ROWID_EQ
|WHERE_ROWID_RANGE
) ){
3753 zMsg
= sqlite3MAppendf(db
, zMsg
, "%s USING INTEGER PRIMARY KEY", zMsg
);
3755 if( flags
&WHERE_ROWID_EQ
){
3756 zMsg
= sqlite3MAppendf(db
, zMsg
, "%s (rowid=?)", zMsg
);
3757 }else if( (flags
&WHERE_BOTH_LIMIT
)==WHERE_BOTH_LIMIT
){
3758 zMsg
= sqlite3MAppendf(db
, zMsg
, "%s (rowid>? AND rowid<?)", zMsg
);
3759 }else if( flags
&WHERE_BTM_LIMIT
){
3760 zMsg
= sqlite3MAppendf(db
, zMsg
, "%s (rowid>?)", zMsg
);
3761 }else if( flags
&WHERE_TOP_LIMIT
){
3762 zMsg
= sqlite3MAppendf(db
, zMsg
, "%s (rowid<?)", zMsg
);
3765 #ifndef SQLITE_OMIT_VIRTUALTABLE
3766 else if( (flags
& WHERE_VIRTUALTABLE
)!=0 ){
3767 sqlite3_index_info
*pVtabIdx
= pLevel
->plan
.u
.pVtabIdx
;
3768 zMsg
= sqlite3MAppendf(db
, zMsg
, "%s VIRTUAL TABLE INDEX %d:%s", zMsg
,
3769 pVtabIdx
->idxNum
, pVtabIdx
->idxStr
);
3772 if( wctrlFlags
&(WHERE_ORDERBY_MIN
|WHERE_ORDERBY_MAX
) ){
3773 testcase( wctrlFlags
& WHERE_ORDERBY_MIN
);
3776 nRow
= (sqlite3_int64
)pLevel
->plan
.nRow
;
3778 zMsg
= sqlite3MAppendf(db
, zMsg
, "%s (~%lld rows)", zMsg
, nRow
);
3779 sqlite3VdbeAddOp4(v
, OP_Explain
, iId
, iLevel
, iFrom
, zMsg
, P4_DYNAMIC
);
3783 # define explainOneScan(u,v,w,x,y,z)
3784 #endif /* SQLITE_OMIT_EXPLAIN */
3788 ** Generate code for the start of the iLevel-th loop in the WHERE clause
3789 ** implementation described by pWInfo.
3791 static Bitmask
codeOneLoopStart(
3792 WhereInfo
*pWInfo
, /* Complete information about the WHERE clause */
3793 int iLevel
, /* Which level of pWInfo->a[] should be coded */
3794 u16 wctrlFlags
, /* One of the WHERE_* flags defined in sqliteInt.h */
3795 Bitmask notReady
, /* Which tables are currently available */
3796 Expr
*pWhere
/* Complete WHERE clause */
3798 int j
, k
; /* Loop counters */
3799 int iCur
; /* The VDBE cursor for the table */
3800 int addrNxt
; /* Where to jump to continue with the next IN case */
3801 int omitTable
; /* True if we use the index only */
3802 int bRev
; /* True if we need to scan in reverse order */
3803 WhereLevel
*pLevel
; /* The where level to be coded */
3804 WhereClause
*pWC
; /* Decomposition of the entire WHERE clause */
3805 WhereTerm
*pTerm
; /* A WHERE clause term */
3806 Parse
*pParse
; /* Parsing context */
3807 Vdbe
*v
; /* The prepared stmt under constructions */
3808 struct SrcList_item
*pTabItem
; /* FROM clause term being coded */
3809 int addrBrk
; /* Jump here to break out of the loop */
3810 int addrCont
; /* Jump here to continue with next cycle */
3811 int iRowidReg
= 0; /* Rowid is stored in this register, if not zero */
3812 int iReleaseReg
= 0; /* Temp register to free before returning */
3814 pParse
= pWInfo
->pParse
;
3817 pLevel
= &pWInfo
->a
[iLevel
];
3818 pTabItem
= &pWInfo
->pTabList
->a
[pLevel
->iFrom
];
3819 iCur
= pTabItem
->iCursor
;
3820 bRev
= (pLevel
->plan
.wsFlags
& WHERE_REVERSE
)!=0;
3821 omitTable
= (pLevel
->plan
.wsFlags
& WHERE_IDX_ONLY
)!=0
3822 && (wctrlFlags
& WHERE_FORCE_TABLE
)==0;
3824 /* Create labels for the "break" and "continue" instructions
3825 ** for the current loop. Jump to addrBrk to break out of a loop.
3826 ** Jump to cont to go immediately to the next iteration of the
3829 ** When there is an IN operator, we also have a "addrNxt" label that
3830 ** means to continue with the next IN value combination. When
3831 ** there are no IN operators in the constraints, the "addrNxt" label
3832 ** is the same as "addrBrk".
3834 addrBrk
= pLevel
->addrBrk
= pLevel
->addrNxt
= sqlite3VdbeMakeLabel(v
);
3835 addrCont
= pLevel
->addrCont
= sqlite3VdbeMakeLabel(v
);
3837 /* If this is the right table of a LEFT OUTER JOIN, allocate and
3838 ** initialize a memory cell that records if this table matches any
3839 ** row of the left table of the join.
3841 if( pLevel
->iFrom
>0 && (pTabItem
[0].jointype
& JT_LEFT
)!=0 ){
3842 pLevel
->iLeftJoin
= ++pParse
->nMem
;
3843 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, pLevel
->iLeftJoin
);
3844 VdbeComment((v
, "init LEFT JOIN no-match flag"));
3847 #ifndef SQLITE_OMIT_VIRTUALTABLE
3848 if( (pLevel
->plan
.wsFlags
& WHERE_VIRTUALTABLE
)!=0 ){
3849 /* Case 0: The table is a virtual-table. Use the VFilter and VNext
3850 ** to access the data.
3852 int iReg
; /* P3 Value for OP_VFilter */
3853 sqlite3_index_info
*pVtabIdx
= pLevel
->plan
.u
.pVtabIdx
;
3854 int nConstraint
= pVtabIdx
->nConstraint
;
3855 struct sqlite3_index_constraint_usage
*aUsage
=
3856 pVtabIdx
->aConstraintUsage
;
3857 const struct sqlite3_index_constraint
*aConstraint
=
3858 pVtabIdx
->aConstraint
;
3860 sqlite3ExprCachePush(pParse
);
3861 iReg
= sqlite3GetTempRange(pParse
, nConstraint
+2);
3862 for(j
=1; j
<=nConstraint
; j
++){
3863 for(k
=0; k
<nConstraint
; k
++){
3864 if( aUsage
[k
].argvIndex
==j
){
3865 int iTerm
= aConstraint
[k
].iTermOffset
;
3866 sqlite3ExprCode(pParse
, pWC
->a
[iTerm
].pExpr
->pRight
, iReg
+j
+1);
3870 if( k
==nConstraint
) break;
3872 sqlite3VdbeAddOp2(v
, OP_Integer
, pVtabIdx
->idxNum
, iReg
);
3873 sqlite3VdbeAddOp2(v
, OP_Integer
, j
-1, iReg
+1);
3874 sqlite3VdbeAddOp4(v
, OP_VFilter
, iCur
, addrBrk
, iReg
, pVtabIdx
->idxStr
,
3875 pVtabIdx
->needToFreeIdxStr
? P4_MPRINTF
: P4_STATIC
);
3876 pVtabIdx
->needToFreeIdxStr
= 0;
3877 for(j
=0; j
<nConstraint
; j
++){
3878 if( aUsage
[j
].omit
){
3879 int iTerm
= aConstraint
[j
].iTermOffset
;
3880 disableTerm(pLevel
, &pWC
->a
[iTerm
]);
3883 pLevel
->op
= OP_VNext
;
3885 pLevel
->p2
= sqlite3VdbeCurrentAddr(v
);
3886 sqlite3ReleaseTempRange(pParse
, iReg
, nConstraint
+2);
3887 sqlite3ExprCachePop(pParse
, 1);
3889 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3891 if( pLevel
->plan
.wsFlags
& WHERE_ROWID_EQ
){
3892 /* Case 1: We can directly reference a single row using an
3893 ** equality comparison against the ROWID field. Or
3894 ** we reference multiple rows using a "rowid IN (...)"
3897 iReleaseReg
= sqlite3GetTempReg(pParse
);
3898 pTerm
= findTerm(pWC
, iCur
, -1, notReady
, WO_EQ
|WO_IN
, 0);
3900 assert( pTerm
->pExpr
!=0 );
3901 assert( pTerm
->leftCursor
==iCur
);
3902 assert( omitTable
==0 );
3903 testcase( pTerm
->wtFlags
& TERM_VIRTUAL
); /* EV: R-30575-11662 */
3904 iRowidReg
= codeEqualityTerm(pParse
, pTerm
, pLevel
, iReleaseReg
);
3905 addrNxt
= pLevel
->addrNxt
;
3906 sqlite3VdbeAddOp2(v
, OP_MustBeInt
, iRowidReg
, addrNxt
);
3907 sqlite3VdbeAddOp3(v
, OP_NotExists
, iCur
, addrNxt
, iRowidReg
);
3908 sqlite3ExprCacheStore(pParse
, iCur
, -1, iRowidReg
);
3909 VdbeComment((v
, "pk"));
3910 pLevel
->op
= OP_Noop
;
3911 }else if( pLevel
->plan
.wsFlags
& WHERE_ROWID_RANGE
){
3912 /* Case 2: We have an inequality comparison against the ROWID field.
3914 int testOp
= OP_Noop
;
3916 int memEndValue
= 0;
3917 WhereTerm
*pStart
, *pEnd
;
3919 assert( omitTable
==0 );
3920 pStart
= findTerm(pWC
, iCur
, -1, notReady
, WO_GT
|WO_GE
, 0);
3921 pEnd
= findTerm(pWC
, iCur
, -1, notReady
, WO_LT
|WO_LE
, 0);
3928 Expr
*pX
; /* The expression that defines the start bound */
3929 int r1
, rTemp
; /* Registers for holding the start boundary */
3931 /* The following constant maps TK_xx codes into corresponding
3932 ** seek opcodes. It depends on a particular ordering of TK_xx
3934 const u8 aMoveOp
[] = {
3935 /* TK_GT */ OP_SeekGt
,
3936 /* TK_LE */ OP_SeekLe
,
3937 /* TK_LT */ OP_SeekLt
,
3938 /* TK_GE */ OP_SeekGe
3940 assert( TK_LE
==TK_GT
+1 ); /* Make sure the ordering.. */
3941 assert( TK_LT
==TK_GT
+2 ); /* ... of the TK_xx values... */
3942 assert( TK_GE
==TK_GT
+3 ); /* ... is correcct. */
3944 testcase( pStart
->wtFlags
& TERM_VIRTUAL
); /* EV: R-30575-11662 */
3947 assert( pStart
->leftCursor
==iCur
);
3948 r1
= sqlite3ExprCodeTemp(pParse
, pX
->pRight
, &rTemp
);
3949 sqlite3VdbeAddOp3(v
, aMoveOp
[pX
->op
-TK_GT
], iCur
, addrBrk
, r1
);
3950 VdbeComment((v
, "pk"));
3951 sqlite3ExprCacheAffinityChange(pParse
, r1
, 1);
3952 sqlite3ReleaseTempReg(pParse
, rTemp
);
3953 disableTerm(pLevel
, pStart
);
3955 sqlite3VdbeAddOp2(v
, bRev
? OP_Last
: OP_Rewind
, iCur
, addrBrk
);
3961 assert( pEnd
->leftCursor
==iCur
);
3962 testcase( pEnd
->wtFlags
& TERM_VIRTUAL
); /* EV: R-30575-11662 */
3963 memEndValue
= ++pParse
->nMem
;
3964 sqlite3ExprCode(pParse
, pX
->pRight
, memEndValue
);
3965 if( pX
->op
==TK_LT
|| pX
->op
==TK_GT
){
3966 testOp
= bRev
? OP_Le
: OP_Ge
;
3968 testOp
= bRev
? OP_Lt
: OP_Gt
;
3970 disableTerm(pLevel
, pEnd
);
3972 start
= sqlite3VdbeCurrentAddr(v
);
3973 pLevel
->op
= bRev
? OP_Prev
: OP_Next
;
3976 if( pStart
==0 && pEnd
==0 ){
3977 pLevel
->p5
= SQLITE_STMTSTATUS_FULLSCAN_STEP
;
3979 assert( pLevel
->p5
==0 );
3981 if( testOp
!=OP_Noop
){
3982 iRowidReg
= iReleaseReg
= sqlite3GetTempReg(pParse
);
3983 sqlite3VdbeAddOp2(v
, OP_Rowid
, iCur
, iRowidReg
);
3984 sqlite3ExprCacheStore(pParse
, iCur
, -1, iRowidReg
);
3985 sqlite3VdbeAddOp3(v
, testOp
, memEndValue
, addrBrk
, iRowidReg
);
3986 sqlite3VdbeChangeP5(v
, SQLITE_AFF_NUMERIC
| SQLITE_JUMPIFNULL
);
3988 }else if( pLevel
->plan
.wsFlags
& (WHERE_COLUMN_RANGE
|WHERE_COLUMN_EQ
) ){
3989 /* Case 3: A scan using an index.
3991 ** The WHERE clause may contain zero or more equality
3992 ** terms ("==" or "IN" operators) that refer to the N
3993 ** left-most columns of the index. It may also contain
3994 ** inequality constraints (>, <, >= or <=) on the indexed
3995 ** column that immediately follows the N equalities. Only
3996 ** the right-most column can be an inequality - the rest must
3997 ** use the "==" and "IN" operators. For example, if the
3998 ** index is on (x,y,z), then the following clauses are all
4004 ** x=5 AND y>5 AND y<10
4005 ** x=5 AND y=5 AND z<=10
4007 ** The z<10 term of the following cannot be used, only
4012 ** N may be zero if there are inequality constraints.
4013 ** If there are no inequality constraints, then N is at
4016 ** This case is also used when there are no WHERE clause
4017 ** constraints but an index is selected anyway, in order
4018 ** to force the output order to conform to an ORDER BY.
4020 static const u8 aStartOp
[] = {
4023 OP_Rewind
, /* 2: (!start_constraints && startEq && !bRev) */
4024 OP_Last
, /* 3: (!start_constraints && startEq && bRev) */
4025 OP_SeekGt
, /* 4: (start_constraints && !startEq && !bRev) */
4026 OP_SeekLt
, /* 5: (start_constraints && !startEq && bRev) */
4027 OP_SeekGe
, /* 6: (start_constraints && startEq && !bRev) */
4028 OP_SeekLe
/* 7: (start_constraints && startEq && bRev) */
4030 static const u8 aEndOp
[] = {
4031 OP_Noop
, /* 0: (!end_constraints) */
4032 OP_IdxGE
, /* 1: (end_constraints && !bRev) */
4033 OP_IdxLT
/* 2: (end_constraints && bRev) */
4035 int nEq
= pLevel
->plan
.nEq
; /* Number of == or IN terms */
4036 int isMinQuery
= 0; /* If this is an optimized SELECT min(x).. */
4037 int regBase
; /* Base register holding constraint values */
4038 int r1
; /* Temp register */
4039 WhereTerm
*pRangeStart
= 0; /* Inequality constraint at range start */
4040 WhereTerm
*pRangeEnd
= 0; /* Inequality constraint at range end */
4041 int startEq
; /* True if range start uses ==, >= or <= */
4042 int endEq
; /* True if range end uses ==, >= or <= */
4043 int start_constraints
; /* Start of range is constrained */
4044 int nConstraint
; /* Number of constraint terms */
4045 Index
*pIdx
; /* The index we will be using */
4046 int iIdxCur
; /* The VDBE cursor for the index */
4047 int nExtraReg
= 0; /* Number of extra registers needed */
4048 int op
; /* Instruction opcode */
4049 char *zStartAff
; /* Affinity for start of range constraint */
4050 char *zEndAff
; /* Affinity for end of range constraint */
4052 pIdx
= pLevel
->plan
.u
.pIdx
;
4053 iIdxCur
= pLevel
->iIdxCur
;
4054 k
= pIdx
->aiColumn
[nEq
]; /* Column for inequality constraints */
4056 /* If this loop satisfies a sort order (pOrderBy) request that
4057 ** was passed to this function to implement a "SELECT min(x) ..."
4058 ** query, then the caller will only allow the loop to run for
4059 ** a single iteration. This means that the first row returned
4060 ** should not have a NULL value stored in 'x'. If column 'x' is
4061 ** the first one after the nEq equality constraints in the index,
4062 ** this requires some special handling.
4064 if( (wctrlFlags
&WHERE_ORDERBY_MIN
)!=0
4065 && (pLevel
->plan
.wsFlags
&WHERE_ORDERBY
)
4066 && (pIdx
->nColumn
>nEq
)
4068 /* assert( pOrderBy->nExpr==1 ); */
4069 /* assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); */
4074 /* Find any inequality constraint terms for the start and end
4077 if( pLevel
->plan
.wsFlags
& WHERE_TOP_LIMIT
){
4078 pRangeEnd
= findTerm(pWC
, iCur
, k
, notReady
, (WO_LT
|WO_LE
), pIdx
);
4081 if( pLevel
->plan
.wsFlags
& WHERE_BTM_LIMIT
){
4082 pRangeStart
= findTerm(pWC
, iCur
, k
, notReady
, (WO_GT
|WO_GE
), pIdx
);
4086 /* Generate code to evaluate all constraint terms using == or IN
4087 ** and store the values of those terms in an array of registers
4088 ** starting at regBase.
4090 regBase
= codeAllEqualityTerms(
4091 pParse
, pLevel
, pWC
, notReady
, nExtraReg
, &zStartAff
4093 zEndAff
= sqlite3DbStrDup(pParse
->db
, zStartAff
);
4094 addrNxt
= pLevel
->addrNxt
;
4096 /* If we are doing a reverse order scan on an ascending index, or
4097 ** a forward order scan on a descending index, interchange the
4098 ** start and end terms (pRangeStart and pRangeEnd).
4100 if( nEq
<pIdx
->nColumn
&& bRev
==(pIdx
->aSortOrder
[nEq
]==SQLITE_SO_ASC
) ){
4101 SWAP(WhereTerm
*, pRangeEnd
, pRangeStart
);
4104 testcase( pRangeStart
&& pRangeStart
->eOperator
& WO_LE
);
4105 testcase( pRangeStart
&& pRangeStart
->eOperator
& WO_GE
);
4106 testcase( pRangeEnd
&& pRangeEnd
->eOperator
& WO_LE
);
4107 testcase( pRangeEnd
&& pRangeEnd
->eOperator
& WO_GE
);
4108 startEq
= !pRangeStart
|| pRangeStart
->eOperator
& (WO_LE
|WO_GE
);
4109 endEq
= !pRangeEnd
|| pRangeEnd
->eOperator
& (WO_LE
|WO_GE
);
4110 start_constraints
= pRangeStart
|| nEq
>0;
4112 /* Seek the index cursor to the start of the range. */
4115 Expr
*pRight
= pRangeStart
->pExpr
->pRight
;
4116 sqlite3ExprCode(pParse
, pRight
, regBase
+nEq
);
4117 if( (pRangeStart
->wtFlags
& TERM_VNULL
)==0 ){
4118 sqlite3ExprCodeIsNullJump(v
, pRight
, regBase
+nEq
, addrNxt
);
4121 if( sqlite3CompareAffinity(pRight
, zStartAff
[nEq
])==SQLITE_AFF_NONE
){
4122 /* Since the comparison is to be performed with no conversions
4123 ** applied to the operands, set the affinity to apply to pRight to
4124 ** SQLITE_AFF_NONE. */
4125 zStartAff
[nEq
] = SQLITE_AFF_NONE
;
4127 if( sqlite3ExprNeedsNoAffinityChange(pRight
, zStartAff
[nEq
]) ){
4128 zStartAff
[nEq
] = SQLITE_AFF_NONE
;
4132 testcase( pRangeStart
->wtFlags
& TERM_VIRTUAL
); /* EV: R-30575-11662 */
4133 }else if( isMinQuery
){
4134 sqlite3VdbeAddOp2(v
, OP_Null
, 0, regBase
+nEq
);
4137 start_constraints
= 1;
4139 codeApplyAffinity(pParse
, regBase
, nConstraint
, zStartAff
);
4140 op
= aStartOp
[(start_constraints
<<2) + (startEq
<<1) + bRev
];
4142 testcase( op
==OP_Rewind
);
4143 testcase( op
==OP_Last
);
4144 testcase( op
==OP_SeekGt
);
4145 testcase( op
==OP_SeekGe
);
4146 testcase( op
==OP_SeekLe
);
4147 testcase( op
==OP_SeekLt
);
4148 sqlite3VdbeAddOp4Int(v
, op
, iIdxCur
, addrNxt
, regBase
, nConstraint
);
4150 /* Load the value for the inequality constraint at the end of the
4155 Expr
*pRight
= pRangeEnd
->pExpr
->pRight
;
4156 sqlite3ExprCacheRemove(pParse
, regBase
+nEq
, 1);
4157 sqlite3ExprCode(pParse
, pRight
, regBase
+nEq
);
4158 if( (pRangeEnd
->wtFlags
& TERM_VNULL
)==0 ){
4159 sqlite3ExprCodeIsNullJump(v
, pRight
, regBase
+nEq
, addrNxt
);
4162 if( sqlite3CompareAffinity(pRight
, zEndAff
[nEq
])==SQLITE_AFF_NONE
){
4163 /* Since the comparison is to be performed with no conversions
4164 ** applied to the operands, set the affinity to apply to pRight to
4165 ** SQLITE_AFF_NONE. */
4166 zEndAff
[nEq
] = SQLITE_AFF_NONE
;
4168 if( sqlite3ExprNeedsNoAffinityChange(pRight
, zEndAff
[nEq
]) ){
4169 zEndAff
[nEq
] = SQLITE_AFF_NONE
;
4172 codeApplyAffinity(pParse
, regBase
, nEq
+1, zEndAff
);
4174 testcase( pRangeEnd
->wtFlags
& TERM_VIRTUAL
); /* EV: R-30575-11662 */
4176 sqlite3DbFree(pParse
->db
, zStartAff
);
4177 sqlite3DbFree(pParse
->db
, zEndAff
);
4179 /* Top of the loop body */
4180 pLevel
->p2
= sqlite3VdbeCurrentAddr(v
);
4182 /* Check if the index cursor is past the end of the range. */
4183 op
= aEndOp
[(pRangeEnd
|| nEq
) * (1 + bRev
)];
4184 testcase( op
==OP_Noop
);
4185 testcase( op
==OP_IdxGE
);
4186 testcase( op
==OP_IdxLT
);
4188 sqlite3VdbeAddOp4Int(v
, op
, iIdxCur
, addrNxt
, regBase
, nConstraint
);
4189 sqlite3VdbeChangeP5(v
, endEq
!=bRev
?1:0);
4192 /* If there are inequality constraints, check that the value
4193 ** of the table column that the inequality contrains is not NULL.
4194 ** If it is, jump to the next iteration of the loop.
4196 r1
= sqlite3GetTempReg(pParse
);
4197 testcase( pLevel
->plan
.wsFlags
& WHERE_BTM_LIMIT
);
4198 testcase( pLevel
->plan
.wsFlags
& WHERE_TOP_LIMIT
);
4199 if( (pLevel
->plan
.wsFlags
& (WHERE_BTM_LIMIT
|WHERE_TOP_LIMIT
))!=0 ){
4200 sqlite3VdbeAddOp3(v
, OP_Column
, iIdxCur
, nEq
, r1
);
4201 sqlite3VdbeAddOp2(v
, OP_IsNull
, r1
, addrCont
);
4203 sqlite3ReleaseTempReg(pParse
, r1
);
4205 /* Seek the table cursor, if required */
4206 disableTerm(pLevel
, pRangeStart
);
4207 disableTerm(pLevel
, pRangeEnd
);
4209 iRowidReg
= iReleaseReg
= sqlite3GetTempReg(pParse
);
4210 sqlite3VdbeAddOp2(v
, OP_IdxRowid
, iIdxCur
, iRowidReg
);
4211 sqlite3ExprCacheStore(pParse
, iCur
, -1, iRowidReg
);
4212 sqlite3VdbeAddOp2(v
, OP_Seek
, iCur
, iRowidReg
); /* Deferred seek */
4215 /* Record the instruction used to terminate the loop. Disable
4216 ** WHERE clause terms made redundant by the index range scan.
4218 if( pLevel
->plan
.wsFlags
& WHERE_UNIQUE
){
4219 pLevel
->op
= OP_Noop
;
4221 pLevel
->op
= OP_Prev
;
4223 pLevel
->op
= OP_Next
;
4225 pLevel
->p1
= iIdxCur
;
4228 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
4229 if( pLevel
->plan
.wsFlags
& WHERE_MULTI_OR
){
4230 /* Case 4: Two or more separately indexed terms connected by OR
4234 ** CREATE TABLE t1(a,b,c,d);
4235 ** CREATE INDEX i1 ON t1(a);
4236 ** CREATE INDEX i2 ON t1(b);
4237 ** CREATE INDEX i3 ON t1(c);
4239 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
4241 ** In the example, there are three indexed terms connected by OR.
4242 ** The top of the loop looks like this:
4244 ** Null 1 # Zero the rowset in reg 1
4246 ** Then, for each indexed term, the following. The arguments to
4247 ** RowSetTest are such that the rowid of the current row is inserted
4248 ** into the RowSet. If it is already present, control skips the
4249 ** Gosub opcode and jumps straight to the code generated by WhereEnd().
4251 ** sqlite3WhereBegin(<term>)
4252 ** RowSetTest # Insert rowid into rowset
4254 ** sqlite3WhereEnd()
4256 ** Following the above, code to terminate the loop. Label A, the target
4257 ** of the Gosub above, jumps to the instruction right after the Goto.
4259 ** Null 1 # Zero the rowset in reg 1
4260 ** Goto B # The loop is finished.
4262 ** A: <loop body> # Return data, whatever.
4264 ** Return 2 # Jump back to the Gosub
4266 ** B: <after the loop>
4269 WhereClause
*pOrWc
; /* The OR-clause broken out into subterms */
4270 SrcList
*pOrTab
; /* Shortened table list or OR-clause generation */
4272 int regReturn
= ++pParse
->nMem
; /* Register used with OP_Gosub */
4273 int regRowset
= 0; /* Register for RowSet object */
4274 int regRowid
= 0; /* Register holding rowid */
4275 int iLoopBody
= sqlite3VdbeMakeLabel(v
); /* Start of loop body */
4276 int iRetInit
; /* Address of regReturn init */
4277 int untestedTerms
= 0; /* Some terms not completely tested */
4278 int ii
; /* Loop counter */
4279 Expr
*pAndExpr
= 0; /* An ".. AND (...)" expression */
4281 pTerm
= pLevel
->plan
.u
.pTerm
;
4283 assert( pTerm
->eOperator
==WO_OR
);
4284 assert( (pTerm
->wtFlags
& TERM_ORINFO
)!=0 );
4285 pOrWc
= &pTerm
->u
.pOrInfo
->wc
;
4286 pLevel
->op
= OP_Return
;
4287 pLevel
->p1
= regReturn
;
4289 /* Set up a new SrcList ni pOrTab containing the table being scanned
4290 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
4291 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
4293 if( pWInfo
->nLevel
>1 ){
4294 int nNotReady
; /* The number of notReady tables */
4295 struct SrcList_item
*origSrc
; /* Original list of tables */
4296 nNotReady
= pWInfo
->nLevel
- iLevel
- 1;
4297 pOrTab
= sqlite3StackAllocRaw(pParse
->db
,
4298 sizeof(*pOrTab
)+ nNotReady
*sizeof(pOrTab
->a
[0]));
4299 if( pOrTab
==0 ) return notReady
;
4300 pOrTab
->nAlloc
= (i16
)(nNotReady
+ 1);
4301 pOrTab
->nSrc
= pOrTab
->nAlloc
;
4302 memcpy(pOrTab
->a
, pTabItem
, sizeof(*pTabItem
));
4303 origSrc
= pWInfo
->pTabList
->a
;
4304 for(k
=1; k
<=nNotReady
; k
++){
4305 memcpy(&pOrTab
->a
[k
], &origSrc
[pLevel
[k
].iFrom
], sizeof(pOrTab
->a
[k
]));
4308 pOrTab
= pWInfo
->pTabList
;
4311 /* Initialize the rowset register to contain NULL. An SQL NULL is
4312 ** equivalent to an empty rowset.
4314 ** Also initialize regReturn to contain the address of the instruction
4315 ** immediately following the OP_Return at the bottom of the loop. This
4316 ** is required in a few obscure LEFT JOIN cases where control jumps
4317 ** over the top of the loop into the body of it. In this case the
4318 ** correct response for the end-of-loop code (the OP_Return) is to
4319 ** fall through to the next instruction, just as an OP_Next does if
4320 ** called on an uninitialized cursor.
4322 if( (wctrlFlags
& WHERE_DUPLICATES_OK
)==0 ){
4323 regRowset
= ++pParse
->nMem
;
4324 regRowid
= ++pParse
->nMem
;
4325 sqlite3VdbeAddOp2(v
, OP_Null
, 0, regRowset
);
4327 iRetInit
= sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regReturn
);
4329 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y
4330 ** Then for every term xN, evaluate as the subexpression: xN AND z
4331 ** That way, terms in y that are factored into the disjunction will
4332 ** be picked up by the recursive calls to sqlite3WhereBegin() below.
4335 pAndExpr
= sqlite3ExprAlloc(pParse
->db
, TK_AND
, 0, 0);
4336 pAndExpr
->pRight
= pWhere
;
4339 for(ii
=0; ii
<pOrWc
->nTerm
; ii
++){
4340 WhereTerm
*pOrTerm
= &pOrWc
->a
[ii
];
4341 if( pOrTerm
->leftCursor
==iCur
|| pOrTerm
->eOperator
==WO_AND
){
4342 WhereInfo
*pSubWInfo
; /* Info for single OR-term scan */
4343 Expr
*pOrExpr
= pOrTerm
->pExpr
;
4345 pAndExpr
->pLeft
= pOrExpr
;
4348 /* Loop through table entries that match term pOrTerm. */
4349 pSubWInfo
= sqlite3WhereBegin(pParse
, pOrTab
, pOrExpr
, 0, 0,
4350 WHERE_OMIT_OPEN_CLOSE
| WHERE_AND_ONLY
|
4351 WHERE_FORCE_TABLE
| WHERE_ONETABLE_ONLY
);
4354 pParse
, pOrTab
, &pSubWInfo
->a
[0], iLevel
, pLevel
->iFrom
, 0
4356 if( (wctrlFlags
& WHERE_DUPLICATES_OK
)==0 ){
4357 int iSet
= ((ii
==pOrWc
->nTerm
-1)?-1:ii
);
4359 r
= sqlite3ExprCodeGetColumn(pParse
, pTabItem
->pTab
, -1, iCur
,
4361 sqlite3VdbeAddOp4Int(v
, OP_RowSetTest
, regRowset
,
4362 sqlite3VdbeCurrentAddr(v
)+2, r
, iSet
);
4364 sqlite3VdbeAddOp2(v
, OP_Gosub
, regReturn
, iLoopBody
);
4366 /* The pSubWInfo->untestedTerms flag means that this OR term
4367 ** contained one or more AND term from a notReady table. The
4368 ** terms from the notReady table could not be tested and will
4369 ** need to be tested later.
4371 if( pSubWInfo
->untestedTerms
) untestedTerms
= 1;
4373 /* Finish the loop through table entries that match term pOrTerm. */
4374 sqlite3WhereEnd(pSubWInfo
);
4378 sqlite3DbFree(pParse
->db
, pAndExpr
);
4379 sqlite3VdbeChangeP1(v
, iRetInit
, sqlite3VdbeCurrentAddr(v
));
4380 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, pLevel
->addrBrk
);
4381 sqlite3VdbeResolveLabel(v
, iLoopBody
);
4383 if( pWInfo
->nLevel
>1 ) sqlite3StackFree(pParse
->db
, pOrTab
);
4384 if( !untestedTerms
) disableTerm(pLevel
, pTerm
);
4386 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
4389 /* Case 5: There is no usable index. We must do a complete
4390 ** scan of the entire table.
4392 static const u8 aStep
[] = { OP_Next
, OP_Prev
};
4393 static const u8 aStart
[] = { OP_Rewind
, OP_Last
};
4394 assert( bRev
==0 || bRev
==1 );
4395 assert( omitTable
==0 );
4396 pLevel
->op
= aStep
[bRev
];
4398 pLevel
->p2
= 1 + sqlite3VdbeAddOp2(v
, aStart
[bRev
], iCur
, addrBrk
);
4399 pLevel
->p5
= SQLITE_STMTSTATUS_FULLSCAN_STEP
;
4401 notReady
&= ~getMask(pWC
->pMaskSet
, iCur
);
4403 /* Insert code to test every subexpression that can be completely
4404 ** computed using the current set of tables.
4406 ** IMPLEMENTATION-OF: R-49525-50935 Terms that cannot be satisfied through
4407 ** the use of indices become tests that are evaluated against each row of
4408 ** the relevant input tables.
4410 for(pTerm
=pWC
->a
, j
=pWC
->nTerm
; j
>0; j
--, pTerm
++){
4412 testcase( pTerm
->wtFlags
& TERM_VIRTUAL
); /* IMP: R-30575-11662 */
4413 testcase( pTerm
->wtFlags
& TERM_CODED
);
4414 if( pTerm
->wtFlags
& (TERM_VIRTUAL
|TERM_CODED
) ) continue;
4415 if( (pTerm
->prereqAll
& notReady
)!=0 ){
4416 testcase( pWInfo
->untestedTerms
==0
4417 && (pWInfo
->wctrlFlags
& WHERE_ONETABLE_ONLY
)!=0 );
4418 pWInfo
->untestedTerms
= 1;
4423 if( pLevel
->iLeftJoin
&& !ExprHasProperty(pE
, EP_FromJoin
) ){
4426 sqlite3ExprIfFalse(pParse
, pE
, addrCont
, SQLITE_JUMPIFNULL
);
4427 pTerm
->wtFlags
|= TERM_CODED
;
4430 /* For a LEFT OUTER JOIN, generate code that will record the fact that
4431 ** at least one row of the right table has matched the left table.
4433 if( pLevel
->iLeftJoin
){
4434 pLevel
->addrFirst
= sqlite3VdbeCurrentAddr(v
);
4435 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, pLevel
->iLeftJoin
);
4436 VdbeComment((v
, "record LEFT JOIN hit"));
4437 sqlite3ExprCacheClear(pParse
);
4438 for(pTerm
=pWC
->a
, j
=0; j
<pWC
->nTerm
; j
++, pTerm
++){
4439 testcase( pTerm
->wtFlags
& TERM_VIRTUAL
); /* IMP: R-30575-11662 */
4440 testcase( pTerm
->wtFlags
& TERM_CODED
);
4441 if( pTerm
->wtFlags
& (TERM_VIRTUAL
|TERM_CODED
) ) continue;
4442 if( (pTerm
->prereqAll
& notReady
)!=0 ){
4443 assert( pWInfo
->untestedTerms
);
4446 assert( pTerm
->pExpr
);
4447 sqlite3ExprIfFalse(pParse
, pTerm
->pExpr
, addrCont
, SQLITE_JUMPIFNULL
);
4448 pTerm
->wtFlags
|= TERM_CODED
;
4451 sqlite3ReleaseTempReg(pParse
, iReleaseReg
);
4456 #if defined(SQLITE_TEST)
4458 ** The following variable holds a text description of query plan generated
4459 ** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin
4460 ** overwrites the previous. This information is used for testing and
4463 char sqlite3_query_plan
[BMS
*2*40]; /* Text of the join */
4464 static int nQPlan
= 0; /* Next free slow in _query_plan[] */
4466 #endif /* SQLITE_TEST */
4470 ** Free a WhereInfo structure
4472 static void whereInfoFree(sqlite3
*db
, WhereInfo
*pWInfo
){
4473 if( ALWAYS(pWInfo
) ){
4475 for(i
=0; i
<pWInfo
->nLevel
; i
++){
4476 sqlite3_index_info
*pInfo
= pWInfo
->a
[i
].pIdxInfo
;
4478 /* assert( pInfo->needToFreeIdxStr==0 || db->mallocFailed ); */
4479 if( pInfo
->needToFreeIdxStr
){
4480 sqlite3_free(pInfo
->idxStr
);
4482 sqlite3DbFree(db
, pInfo
);
4484 if( pWInfo
->a
[i
].plan
.wsFlags
& WHERE_TEMP_INDEX
){
4485 Index
*pIdx
= pWInfo
->a
[i
].plan
.u
.pIdx
;
4487 sqlite3DbFree(db
, pIdx
->zColAff
);
4488 sqlite3DbFree(db
, pIdx
);
4492 whereClauseClear(pWInfo
->pWC
);
4493 sqlite3DbFree(db
, pWInfo
);
4499 ** Generate the beginning of the loop used for WHERE clause processing.
4500 ** The return value is a pointer to an opaque structure that contains
4501 ** information needed to terminate the loop. Later, the calling routine
4502 ** should invoke sqlite3WhereEnd() with the return value of this function
4503 ** in order to complete the WHERE clause processing.
4505 ** If an error occurs, this routine returns NULL.
4507 ** The basic idea is to do a nested loop, one loop for each table in
4508 ** the FROM clause of a select. (INSERT and UPDATE statements are the
4509 ** same as a SELECT with only a single table in the FROM clause.) For
4510 ** example, if the SQL is this:
4512 ** SELECT * FROM t1, t2, t3 WHERE ...;
4514 ** Then the code generated is conceptually like the following:
4516 ** foreach row1 in t1 do \ Code generated
4517 ** foreach row2 in t2 do |-- by sqlite3WhereBegin()
4518 ** foreach row3 in t3 do /
4520 ** end \ Code generated
4521 ** end |-- by sqlite3WhereEnd()
4524 ** Note that the loops might not be nested in the order in which they
4525 ** appear in the FROM clause if a different order is better able to make
4526 ** use of indices. Note also that when the IN operator appears in
4527 ** the WHERE clause, it might result in additional nested loops for
4528 ** scanning through all values on the right-hand side of the IN.
4530 ** There are Btree cursors associated with each table. t1 uses cursor
4531 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
4532 ** And so forth. This routine generates code to open those VDBE cursors
4533 ** and sqlite3WhereEnd() generates the code to close them.
4535 ** The code that sqlite3WhereBegin() generates leaves the cursors named
4536 ** in pTabList pointing at their appropriate entries. The [...] code
4537 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
4538 ** data from the various tables of the loop.
4540 ** If the WHERE clause is empty, the foreach loops must each scan their
4541 ** entire tables. Thus a three-way join is an O(N^3) operation. But if
4542 ** the tables have indices and there are terms in the WHERE clause that
4543 ** refer to those indices, a complete table scan can be avoided and the
4544 ** code will run much faster. Most of the work of this routine is checking
4545 ** to see if there are indices that can be used to speed up the loop.
4547 ** Terms of the WHERE clause are also used to limit which rows actually
4548 ** make it to the "..." in the middle of the loop. After each "foreach",
4549 ** terms of the WHERE clause that use only terms in that loop and outer
4550 ** loops are evaluated and if false a jump is made around all subsequent
4551 ** inner loops (or around the "..." if the test occurs within the inner-
4556 ** An outer join of tables t1 and t2 is conceptally coded as follows:
4558 ** foreach row1 in t1 do
4560 ** foreach row2 in t2 do
4566 ** move the row2 cursor to a null row
4571 ** ORDER BY CLAUSE PROCESSING
4573 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
4574 ** if there is one. If there is no ORDER BY clause or if this routine
4575 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
4577 ** If an index can be used so that the natural output order of the table
4578 ** scan is correct for the ORDER BY clause, then that index is used and
4579 ** *ppOrderBy is set to NULL. This is an optimization that prevents an
4580 ** unnecessary sort of the result set if an index appropriate for the
4581 ** ORDER BY clause already exists.
4583 ** If the where clause loops cannot be arranged to provide the correct
4584 ** output order, then the *ppOrderBy is unchanged.
4586 WhereInfo
*sqlite3WhereBegin(
4587 Parse
*pParse
, /* The parser context */
4588 SrcList
*pTabList
, /* A list of all tables to be scanned */
4589 Expr
*pWhere
, /* The WHERE clause */
4590 ExprList
**ppOrderBy
, /* An ORDER BY clause, or NULL */
4591 ExprList
*pDistinct
, /* The select-list for DISTINCT queries - or NULL */
4592 u16 wctrlFlags
/* One of the WHERE_* flags defined in sqliteInt.h */
4594 int i
; /* Loop counter */
4595 int nByteWInfo
; /* Num. bytes allocated for WhereInfo struct */
4596 int nTabList
; /* Number of elements in pTabList */
4597 WhereInfo
*pWInfo
; /* Will become the return value of this function */
4598 Vdbe
*v
= pParse
->pVdbe
; /* The virtual database engine */
4599 Bitmask notReady
; /* Cursors that are not yet positioned */
4600 WhereMaskSet
*pMaskSet
; /* The expression mask set */
4601 WhereClause
*pWC
; /* Decomposition of the WHERE clause */
4602 struct SrcList_item
*pTabItem
; /* A single entry from pTabList */
4603 WhereLevel
*pLevel
; /* A single level in the pWInfo list */
4604 int iFrom
; /* First unused FROM clause element */
4605 int andFlags
; /* AND-ed combination of all pWC->a[].wtFlags */
4606 sqlite3
*db
; /* Database connection */
4608 /* The number of tables in the FROM clause is limited by the number of
4609 ** bits in a Bitmask
4611 testcase( pTabList
->nSrc
==BMS
);
4612 if( pTabList
->nSrc
>BMS
){
4613 sqlite3ErrorMsg(pParse
, "at most %d tables in a join", BMS
);
4617 /* This function normally generates a nested loop for all tables in
4618 ** pTabList. But if the WHERE_ONETABLE_ONLY flag is set, then we should
4619 ** only generate code for the first table in pTabList and assume that
4620 ** any cursors associated with subsequent tables are uninitialized.
4622 nTabList
= (wctrlFlags
& WHERE_ONETABLE_ONLY
) ? 1 : pTabList
->nSrc
;
4624 /* Allocate and initialize the WhereInfo structure that will become the
4625 ** return value. A single allocation is used to store the WhereInfo
4626 ** struct, the contents of WhereInfo.a[], the WhereClause structure
4627 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
4628 ** field (type Bitmask) it must be aligned on an 8-byte boundary on
4629 ** some architectures. Hence the ROUND8() below.
4632 nByteWInfo
= ROUND8(sizeof(WhereInfo
)+(nTabList
-1)*sizeof(WhereLevel
));
4633 pWInfo
= sqlite3DbMallocZero(db
,
4635 sizeof(WhereClause
) +
4636 sizeof(WhereMaskSet
)
4638 if( db
->mallocFailed
){
4639 sqlite3DbFree(db
, pWInfo
);
4641 goto whereBeginError
;
4643 pWInfo
->nLevel
= nTabList
;
4644 pWInfo
->pParse
= pParse
;
4645 pWInfo
->pTabList
= pTabList
;
4646 pWInfo
->iBreak
= sqlite3VdbeMakeLabel(v
);
4647 pWInfo
->pWC
= pWC
= (WhereClause
*)&((u8
*)pWInfo
)[nByteWInfo
];
4648 pWInfo
->wctrlFlags
= wctrlFlags
;
4649 pWInfo
->savedNQueryLoop
= pParse
->nQueryLoop
;
4650 pMaskSet
= (WhereMaskSet
*)&pWC
[1];
4652 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
4653 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
4654 if( db
->flags
& SQLITE_DistinctOpt
) pDistinct
= 0;
4656 /* Split the WHERE clause into separate subexpressions where each
4657 ** subexpression is separated by an AND operator.
4659 initMaskSet(pMaskSet
);
4660 whereClauseInit(pWC
, pParse
, pMaskSet
, wctrlFlags
);
4661 sqlite3ExprCodeConstants(pParse
, pWhere
);
4662 whereSplit(pWC
, pWhere
, TK_AND
); /* IMP: R-15842-53296 */
4664 /* Special case: a WHERE clause that is constant. Evaluate the
4665 ** expression and either jump over all of the code or fall thru.
4667 if( pWhere
&& (nTabList
==0 || sqlite3ExprIsConstantNotJoin(pWhere
)) ){
4668 sqlite3ExprIfFalse(pParse
, pWhere
, pWInfo
->iBreak
, SQLITE_JUMPIFNULL
);
4672 /* Assign a bit from the bitmask to every term in the FROM clause.
4674 ** When assigning bitmask values to FROM clause cursors, it must be
4675 ** the case that if X is the bitmask for the N-th FROM clause term then
4676 ** the bitmask for all FROM clause terms to the left of the N-th term
4677 ** is (X-1). An expression from the ON clause of a LEFT JOIN can use
4678 ** its Expr.iRightJoinTable value to find the bitmask of the right table
4679 ** of the join. Subtracting one from the right table bitmask gives a
4680 ** bitmask for all tables to the left of the join. Knowing the bitmask
4681 ** for all tables to the left of a left join is important. Ticket #3015.
4683 ** Configure the WhereClause.vmask variable so that bits that correspond
4684 ** to virtual table cursors are set. This is used to selectively disable
4685 ** the OR-to-IN transformation in exprAnalyzeOrTerm(). It is not helpful
4686 ** with virtual tables.
4688 ** Note that bitmasks are created for all pTabList->nSrc tables in
4689 ** pTabList, not just the first nTabList tables. nTabList is normally
4690 ** equal to pTabList->nSrc but might be shortened to 1 if the
4691 ** WHERE_ONETABLE_ONLY flag is set.
4693 assert( pWC
->vmask
==0 && pMaskSet
->n
==0 );
4694 for(i
=0; i
<pTabList
->nSrc
; i
++){
4695 createMask(pMaskSet
, pTabList
->a
[i
].iCursor
);
4696 #ifndef SQLITE_OMIT_VIRTUALTABLE
4697 if( ALWAYS(pTabList
->a
[i
].pTab
) && IsVirtual(pTabList
->a
[i
].pTab
) ){
4698 pWC
->vmask
|= ((Bitmask
)1 << i
);
4704 Bitmask toTheLeft
= 0;
4705 for(i
=0; i
<pTabList
->nSrc
; i
++){
4706 Bitmask m
= getMask(pMaskSet
, pTabList
->a
[i
].iCursor
);
4707 assert( (m
-1)==toTheLeft
);
4713 /* Analyze all of the subexpressions. Note that exprAnalyze() might
4714 ** add new virtual terms onto the end of the WHERE clause. We do not
4715 ** want to analyze these virtual terms, so start analyzing at the end
4716 ** and work forward so that the added virtual terms are never processed.
4718 exprAnalyzeAll(pTabList
, pWC
);
4719 if( db
->mallocFailed
){
4720 goto whereBeginError
;
4723 /* Check if the DISTINCT qualifier, if there is one, is redundant.
4724 ** If it is, then set pDistinct to NULL and WhereInfo.eDistinct to
4725 ** WHERE_DISTINCT_UNIQUE to tell the caller to ignore the DISTINCT.
4727 if( pDistinct
&& isDistinctRedundant(pParse
, pTabList
, pWC
, pDistinct
) ){
4729 pWInfo
->eDistinct
= WHERE_DISTINCT_UNIQUE
;
4732 /* Chose the best index to use for each table in the FROM clause.
4734 ** This loop fills in the following fields:
4736 ** pWInfo->a[].pIdx The index to use for this level of the loop.
4737 ** pWInfo->a[].wsFlags WHERE_xxx flags associated with pIdx
4738 ** pWInfo->a[].nEq The number of == and IN constraints
4739 ** pWInfo->a[].iFrom Which term of the FROM clause is being coded
4740 ** pWInfo->a[].iTabCur The VDBE cursor for the database table
4741 ** pWInfo->a[].iIdxCur The VDBE cursor for the index
4742 ** pWInfo->a[].pTerm When wsFlags==WO_OR, the OR-clause term
4744 ** This loop also figures out the nesting order of tables in the FROM
4747 notReady
= ~(Bitmask
)0;
4749 WHERETRACE(("*** Optimizer Start ***\n"));
4750 for(i
=iFrom
=0, pLevel
=pWInfo
->a
; i
<nTabList
; i
++, pLevel
++){
4751 WhereCost bestPlan
; /* Most efficient plan seen so far */
4752 Index
*pIdx
; /* Index for FROM table at pTabItem */
4753 int j
; /* For looping over FROM tables */
4754 int bestJ
= -1; /* The value of j */
4755 Bitmask m
; /* Bitmask value for j or bestJ */
4756 int isOptimal
; /* Iterator for optimal/non-optimal search */
4757 int nUnconstrained
; /* Number tables without INDEXED BY */
4758 Bitmask notIndexed
; /* Mask of tables that cannot use an index */
4760 memset(&bestPlan
, 0, sizeof(bestPlan
));
4761 bestPlan
.rCost
= SQLITE_BIG_DBL
;
4762 WHERETRACE(("*** Begin search for loop %d ***\n", i
));
4764 /* Loop through the remaining entries in the FROM clause to find the
4765 ** next nested loop. The loop tests all FROM clause entries
4766 ** either once or twice.
4768 ** The first test is always performed if there are two or more entries
4769 ** remaining and never performed if there is only one FROM clause entry
4770 ** to choose from. The first test looks for an "optimal" scan. In
4771 ** this context an optimal scan is one that uses the same strategy
4772 ** for the given FROM clause entry as would be selected if the entry
4773 ** were used as the innermost nested loop. In other words, a table
4774 ** is chosen such that the cost of running that table cannot be reduced
4775 ** by waiting for other tables to run first. This "optimal" test works
4776 ** by first assuming that the FROM clause is on the inner loop and finding
4777 ** its query plan, then checking to see if that query plan uses any
4778 ** other FROM clause terms that are notReady. If no notReady terms are
4779 ** used then the "optimal" query plan works.
4781 ** Note that the WhereCost.nRow parameter for an optimal scan might
4782 ** not be as small as it would be if the table really were the innermost
4783 ** join. The nRow value can be reduced by WHERE clause constraints
4784 ** that do not use indices. But this nRow reduction only happens if the
4785 ** table really is the innermost join.
4787 ** The second loop iteration is only performed if no optimal scan
4788 ** strategies were found by the first iteration. This second iteration
4789 ** is used to search for the lowest cost scan overall.
4791 ** Previous versions of SQLite performed only the second iteration -
4792 ** the next outermost loop was always that with the lowest overall
4793 ** cost. However, this meant that SQLite could select the wrong plan
4794 ** for scripts such as the following:
4796 ** CREATE TABLE t1(a, b);
4797 ** CREATE TABLE t2(c, d);
4798 ** SELECT * FROM t2, t1 WHERE t2.rowid = t1.a;
4800 ** The best strategy is to iterate through table t1 first. However it
4801 ** is not possible to determine this with a simple greedy algorithm.
4802 ** Since the cost of a linear scan through table t2 is the same
4803 ** as the cost of a linear scan through table t1, a simple greedy
4804 ** algorithm may choose to use t2 for the outer loop, which is a much
4805 ** costlier approach.
4809 for(isOptimal
=(iFrom
<nTabList
-1); isOptimal
>=0 && bestJ
<0; isOptimal
--){
4810 Bitmask mask
; /* Mask of tables not yet ready */
4811 for(j
=iFrom
, pTabItem
=&pTabList
->a
[j
]; j
<nTabList
; j
++, pTabItem
++){
4812 int doNotReorder
; /* True if this table should not be reordered */
4813 WhereCost sCost
; /* Cost information from best[Virtual]Index() */
4814 ExprList
*pOrderBy
; /* ORDER BY clause for index to optimize */
4815 ExprList
*pDist
; /* DISTINCT clause for index to optimize */
4817 doNotReorder
= (pTabItem
->jointype
& (JT_LEFT
|JT_CROSS
))!=0;
4818 if( j
!=iFrom
&& doNotReorder
) break;
4819 m
= getMask(pMaskSet
, pTabItem
->iCursor
);
4820 if( (m
& notReady
)==0 ){
4821 if( j
==iFrom
) iFrom
++;
4824 mask
= (isOptimal
? m
: notReady
);
4825 pOrderBy
= ((i
==0 && ppOrderBy
)?*ppOrderBy
:0);
4826 pDist
= (i
==0 ? pDistinct
: 0);
4827 if( pTabItem
->pIndex
==0 ) nUnconstrained
++;
4829 WHERETRACE(("=== trying table %d with isOptimal=%d ===\n",
4831 assert( pTabItem
->pTab
);
4832 #ifndef SQLITE_OMIT_VIRTUALTABLE
4833 if( IsVirtual(pTabItem
->pTab
) ){
4834 sqlite3_index_info
**pp
= &pWInfo
->a
[j
].pIdxInfo
;
4835 bestVirtualIndex(pParse
, pWC
, pTabItem
, mask
, notReady
, pOrderBy
,
4840 bestBtreeIndex(pParse
, pWC
, pTabItem
, mask
, notReady
, pOrderBy
,
4843 assert( isOptimal
|| (sCost
.used
¬Ready
)==0 );
4845 /* If an INDEXED BY clause is present, then the plan must use that
4846 ** index if it uses any index at all */
4847 assert( pTabItem
->pIndex
==0
4848 || (sCost
.plan
.wsFlags
& WHERE_NOT_FULLSCAN
)==0
4849 || sCost
.plan
.u
.pIdx
==pTabItem
->pIndex
);
4851 if( isOptimal
&& (sCost
.plan
.wsFlags
& WHERE_NOT_FULLSCAN
)==0 ){
4855 /* Conditions under which this table becomes the best so far:
4857 ** (1) The table must not depend on other tables that have not
4860 ** (2) A full-table-scan plan cannot supercede indexed plan unless
4861 ** the full-table-scan is an "optimal" plan as defined above.
4863 ** (3) All tables have an INDEXED BY clause or this table lacks an
4864 ** INDEXED BY clause or this table uses the specific
4865 ** index specified by its INDEXED BY clause. This rule ensures
4866 ** that a best-so-far is always selected even if an impossible
4867 ** combination of INDEXED BY clauses are given. The error
4868 ** will be detected and relayed back to the application later.
4869 ** The NEVER() comes about because rule (2) above prevents
4870 ** An indexable full-table-scan from reaching rule (3).
4872 ** (4) The plan cost must be lower than prior plans or else the
4873 ** cost must be the same and the number of rows must be lower.
4875 if( (sCost
.used
¬Ready
)==0 /* (1) */
4876 && (bestJ
<0 || (notIndexed
&m
)!=0 /* (2) */
4877 || (bestPlan
.plan
.wsFlags
& WHERE_NOT_FULLSCAN
)==0
4878 || (sCost
.plan
.wsFlags
& WHERE_NOT_FULLSCAN
)!=0)
4879 && (nUnconstrained
==0 || pTabItem
->pIndex
==0 /* (3) */
4880 || NEVER((sCost
.plan
.wsFlags
& WHERE_NOT_FULLSCAN
)!=0))
4881 && (bestJ
<0 || sCost
.rCost
<bestPlan
.rCost
/* (4) */
4882 || (sCost
.rCost
<=bestPlan
.rCost
4883 && sCost
.plan
.nRow
<bestPlan
.plan
.nRow
))
4885 WHERETRACE(("=== table %d is best so far"
4886 " with cost=%g and nRow=%g\n",
4887 j
, sCost
.rCost
, sCost
.plan
.nRow
));
4891 if( doNotReorder
) break;
4895 assert( notReady
& getMask(pMaskSet
, pTabList
->a
[bestJ
].iCursor
) );
4896 WHERETRACE(("*** Optimizer selects table %d for loop %d"
4897 " with cost=%g and nRow=%g\n",
4898 bestJ
, pLevel
-pWInfo
->a
, bestPlan
.rCost
, bestPlan
.plan
.nRow
));
4899 /* The ALWAYS() that follows was added to hush up clang scan-build */
4900 if( (bestPlan
.plan
.wsFlags
& WHERE_ORDERBY
)!=0 && ALWAYS(ppOrderBy
) ){
4903 if( (bestPlan
.plan
.wsFlags
& WHERE_DISTINCT
)!=0 ){
4904 assert( pWInfo
->eDistinct
==0 );
4905 pWInfo
->eDistinct
= WHERE_DISTINCT_ORDERED
;
4907 andFlags
&= bestPlan
.plan
.wsFlags
;
4908 pLevel
->plan
= bestPlan
.plan
;
4909 testcase( bestPlan
.plan
.wsFlags
& WHERE_INDEXED
);
4910 testcase( bestPlan
.plan
.wsFlags
& WHERE_TEMP_INDEX
);
4911 if( bestPlan
.plan
.wsFlags
& (WHERE_INDEXED
|WHERE_TEMP_INDEX
) ){
4912 pLevel
->iIdxCur
= pParse
->nTab
++;
4914 pLevel
->iIdxCur
= -1;
4916 notReady
&= ~getMask(pMaskSet
, pTabList
->a
[bestJ
].iCursor
);
4917 pLevel
->iFrom
= (u8
)bestJ
;
4918 if( bestPlan
.plan
.nRow
>=(double)1 ){
4919 pParse
->nQueryLoop
*= bestPlan
.plan
.nRow
;
4922 /* Check that if the table scanned by this loop iteration had an
4923 ** INDEXED BY clause attached to it, that the named index is being
4924 ** used for the scan. If not, then query compilation has failed.
4927 pIdx
= pTabList
->a
[bestJ
].pIndex
;
4929 if( (bestPlan
.plan
.wsFlags
& WHERE_INDEXED
)==0 ){
4930 sqlite3ErrorMsg(pParse
, "cannot use index: %s", pIdx
->zName
);
4931 goto whereBeginError
;
4933 /* If an INDEXED BY clause is used, the bestIndex() function is
4934 ** guaranteed to find the index specified in the INDEXED BY clause
4935 ** if it find an index at all. */
4936 assert( bestPlan
.plan
.u
.pIdx
==pIdx
);
4940 WHERETRACE(("*** Optimizer Finished ***\n"));
4941 if( pParse
->nErr
|| db
->mallocFailed
){
4942 goto whereBeginError
;
4945 /* If the total query only selects a single row, then the ORDER BY
4946 ** clause is irrelevant.
4948 if( (andFlags
& WHERE_UNIQUE
)!=0 && ppOrderBy
){
4952 /* If the caller is an UPDATE or DELETE statement that is requesting
4953 ** to use a one-pass algorithm, determine if this is appropriate.
4954 ** The one-pass algorithm only works if the WHERE clause constraints
4955 ** the statement to update a single row.
4957 assert( (wctrlFlags
& WHERE_ONEPASS_DESIRED
)==0 || pWInfo
->nLevel
==1 );
4958 if( (wctrlFlags
& WHERE_ONEPASS_DESIRED
)!=0 && (andFlags
& WHERE_UNIQUE
)!=0 ){
4959 pWInfo
->okOnePass
= 1;
4960 pWInfo
->a
[0].plan
.wsFlags
&= ~WHERE_IDX_ONLY
;
4963 /* Open all tables in the pTabList and any indices selected for
4964 ** searching those tables.
4966 sqlite3CodeVerifySchema(pParse
, -1); /* Insert the cookie verifier Goto */
4967 notReady
= ~(Bitmask
)0;
4968 pWInfo
->nRowOut
= (double)1;
4969 for(i
=0, pLevel
=pWInfo
->a
; i
<nTabList
; i
++, pLevel
++){
4970 Table
*pTab
; /* Table to open */
4971 int iDb
; /* Index of database containing table/index */
4973 pTabItem
= &pTabList
->a
[pLevel
->iFrom
];
4974 pTab
= pTabItem
->pTab
;
4975 pLevel
->iTabCur
= pTabItem
->iCursor
;
4976 pWInfo
->nRowOut
*= pLevel
->plan
.nRow
;
4977 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
4978 if( (pTab
->tabFlags
& TF_Ephemeral
)!=0 || pTab
->pSelect
){
4981 #ifndef SQLITE_OMIT_VIRTUALTABLE
4982 if( (pLevel
->plan
.wsFlags
& WHERE_VIRTUALTABLE
)!=0 ){
4983 const char *pVTab
= (const char *)sqlite3GetVTable(db
, pTab
);
4984 int iCur
= pTabItem
->iCursor
;
4985 sqlite3VdbeAddOp4(v
, OP_VOpen
, iCur
, 0, 0, pVTab
, P4_VTAB
);
4988 if( (pLevel
->plan
.wsFlags
& WHERE_IDX_ONLY
)==0
4989 && (wctrlFlags
& WHERE_OMIT_OPEN_CLOSE
)==0 ){
4990 int op
= pWInfo
->okOnePass
? OP_OpenWrite
: OP_OpenRead
;
4991 sqlite3OpenTable(pParse
, pTabItem
->iCursor
, iDb
, pTab
, op
);
4992 testcase( pTab
->nCol
==BMS
-1 );
4993 testcase( pTab
->nCol
==BMS
);
4994 if( !pWInfo
->okOnePass
&& pTab
->nCol
<BMS
){
4995 Bitmask b
= pTabItem
->colUsed
;
4997 for(; b
; b
=b
>>1, n
++){}
4998 sqlite3VdbeChangeP4(v
, sqlite3VdbeCurrentAddr(v
)-1,
4999 SQLITE_INT_TO_PTR(n
), P4_INT32
);
5000 assert( n
<=pTab
->nCol
);
5003 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, 0, pTab
->zName
);
5005 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
5006 if( (pLevel
->plan
.wsFlags
& WHERE_TEMP_INDEX
)!=0 ){
5007 constructAutomaticIndex(pParse
, pWC
, pTabItem
, notReady
, pLevel
);
5010 if( (pLevel
->plan
.wsFlags
& WHERE_INDEXED
)!=0 ){
5011 Index
*pIx
= pLevel
->plan
.u
.pIdx
;
5012 KeyInfo
*pKey
= sqlite3IndexKeyinfo(pParse
, pIx
);
5013 int iIdxCur
= pLevel
->iIdxCur
;
5014 assert( pIx
->pSchema
==pTab
->pSchema
);
5015 assert( iIdxCur
>=0 );
5016 sqlite3VdbeAddOp4(v
, OP_OpenRead
, iIdxCur
, pIx
->tnum
, iDb
,
5017 (char*)pKey
, P4_KEYINFO_HANDOFF
);
5018 VdbeComment((v
, "%s", pIx
->zName
));
5020 sqlite3CodeVerifySchema(pParse
, iDb
);
5021 notReady
&= ~getMask(pWC
->pMaskSet
, pTabItem
->iCursor
);
5023 pWInfo
->iTop
= sqlite3VdbeCurrentAddr(v
);
5024 if( db
->mallocFailed
) goto whereBeginError
;
5026 /* Generate the code to do the search. Each iteration of the for
5027 ** loop below generates code for a single nested loop of the VM
5030 notReady
= ~(Bitmask
)0;
5031 for(i
=0; i
<nTabList
; i
++){
5032 pLevel
= &pWInfo
->a
[i
];
5033 explainOneScan(pParse
, pTabList
, pLevel
, i
, pLevel
->iFrom
, wctrlFlags
);
5034 notReady
= codeOneLoopStart(pWInfo
, i
, wctrlFlags
, notReady
, pWhere
);
5035 pWInfo
->iContinue
= pLevel
->addrCont
;
5038 #ifdef SQLITE_TEST /* For testing and debugging use only */
5039 /* Record in the query plan information about the current table
5040 ** and the index used to access it (if any). If the table itself
5041 ** is not used, its name is just '{}'. If no index is used
5042 ** the index is listed as "{}". If the primary key is used the
5043 ** index name is '*'.
5045 for(i
=0; i
<nTabList
; i
++){
5048 pLevel
= &pWInfo
->a
[i
];
5049 pTabItem
= &pTabList
->a
[pLevel
->iFrom
];
5050 z
= pTabItem
->zAlias
;
5051 if( z
==0 ) z
= pTabItem
->pTab
->zName
;
5052 n
= sqlite3Strlen30(z
);
5053 if( n
+nQPlan
< sizeof(sqlite3_query_plan
)-10 ){
5054 if( pLevel
->plan
.wsFlags
& WHERE_IDX_ONLY
){
5055 memcpy(&sqlite3_query_plan
[nQPlan
], "{}", 2);
5058 memcpy(&sqlite3_query_plan
[nQPlan
], z
, n
);
5061 sqlite3_query_plan
[nQPlan
++] = ' ';
5063 testcase( pLevel
->plan
.wsFlags
& WHERE_ROWID_EQ
);
5064 testcase( pLevel
->plan
.wsFlags
& WHERE_ROWID_RANGE
);
5065 if( pLevel
->plan
.wsFlags
& (WHERE_ROWID_EQ
|WHERE_ROWID_RANGE
) ){
5066 memcpy(&sqlite3_query_plan
[nQPlan
], "* ", 2);
5068 }else if( (pLevel
->plan
.wsFlags
& WHERE_INDEXED
)!=0 ){
5069 n
= sqlite3Strlen30(pLevel
->plan
.u
.pIdx
->zName
);
5070 if( n
+nQPlan
< sizeof(sqlite3_query_plan
)-2 ){
5071 memcpy(&sqlite3_query_plan
[nQPlan
], pLevel
->plan
.u
.pIdx
->zName
, n
);
5073 sqlite3_query_plan
[nQPlan
++] = ' ';
5076 memcpy(&sqlite3_query_plan
[nQPlan
], "{} ", 3);
5080 while( nQPlan
>0 && sqlite3_query_plan
[nQPlan
-1]==' ' ){
5081 sqlite3_query_plan
[--nQPlan
] = 0;
5083 sqlite3_query_plan
[nQPlan
] = 0;
5085 #endif /* SQLITE_TEST // Testing and debugging use only */
5087 /* Record the continuation address in the WhereInfo structure. Then
5088 ** clean up and return.
5092 /* Jump here if malloc fails */
5095 pParse
->nQueryLoop
= pWInfo
->savedNQueryLoop
;
5096 whereInfoFree(db
, pWInfo
);
5102 ** Generate the end of the WHERE loop. See comments on
5103 ** sqlite3WhereBegin() for additional information.
5105 void sqlite3WhereEnd(WhereInfo
*pWInfo
){
5106 Parse
*pParse
= pWInfo
->pParse
;
5107 Vdbe
*v
= pParse
->pVdbe
;
5110 SrcList
*pTabList
= pWInfo
->pTabList
;
5111 sqlite3
*db
= pParse
->db
;
5113 /* Generate loop termination code.
5115 sqlite3ExprCacheClear(pParse
);
5116 for(i
=pWInfo
->nLevel
-1; i
>=0; i
--){
5117 pLevel
= &pWInfo
->a
[i
];
5118 sqlite3VdbeResolveLabel(v
, pLevel
->addrCont
);
5119 if( pLevel
->op
!=OP_Noop
){
5120 sqlite3VdbeAddOp2(v
, pLevel
->op
, pLevel
->p1
, pLevel
->p2
);
5121 sqlite3VdbeChangeP5(v
, pLevel
->p5
);
5123 if( pLevel
->plan
.wsFlags
& WHERE_IN_ABLE
&& pLevel
->u
.in
.nIn
>0 ){
5126 sqlite3VdbeResolveLabel(v
, pLevel
->addrNxt
);
5127 for(j
=pLevel
->u
.in
.nIn
, pIn
=&pLevel
->u
.in
.aInLoop
[j
-1]; j
>0; j
--, pIn
--){
5128 sqlite3VdbeJumpHere(v
, pIn
->addrInTop
+1);
5129 sqlite3VdbeAddOp2(v
, OP_Next
, pIn
->iCur
, pIn
->addrInTop
);
5130 sqlite3VdbeJumpHere(v
, pIn
->addrInTop
-1);
5132 sqlite3DbFree(db
, pLevel
->u
.in
.aInLoop
);
5134 sqlite3VdbeResolveLabel(v
, pLevel
->addrBrk
);
5135 if( pLevel
->iLeftJoin
){
5137 addr
= sqlite3VdbeAddOp1(v
, OP_IfPos
, pLevel
->iLeftJoin
);
5138 assert( (pLevel
->plan
.wsFlags
& WHERE_IDX_ONLY
)==0
5139 || (pLevel
->plan
.wsFlags
& WHERE_INDEXED
)!=0 );
5140 if( (pLevel
->plan
.wsFlags
& WHERE_IDX_ONLY
)==0 ){
5141 sqlite3VdbeAddOp1(v
, OP_NullRow
, pTabList
->a
[i
].iCursor
);
5143 if( pLevel
->iIdxCur
>=0 ){
5144 sqlite3VdbeAddOp1(v
, OP_NullRow
, pLevel
->iIdxCur
);
5146 if( pLevel
->op
==OP_Return
){
5147 sqlite3VdbeAddOp2(v
, OP_Gosub
, pLevel
->p1
, pLevel
->addrFirst
);
5149 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, pLevel
->addrFirst
);
5151 sqlite3VdbeJumpHere(v
, addr
);
5155 /* The "break" point is here, just past the end of the outer loop.
5158 sqlite3VdbeResolveLabel(v
, pWInfo
->iBreak
);
5160 /* Close all of the cursors that were opened by sqlite3WhereBegin.
5162 assert( pWInfo
->nLevel
==1 || pWInfo
->nLevel
==pTabList
->nSrc
);
5163 for(i
=0, pLevel
=pWInfo
->a
; i
<pWInfo
->nLevel
; i
++, pLevel
++){
5164 struct SrcList_item
*pTabItem
= &pTabList
->a
[pLevel
->iFrom
];
5165 Table
*pTab
= pTabItem
->pTab
;
5167 if( (pTab
->tabFlags
& TF_Ephemeral
)==0
5169 && (pWInfo
->wctrlFlags
& WHERE_OMIT_OPEN_CLOSE
)==0
5171 int ws
= pLevel
->plan
.wsFlags
;
5172 if( !pWInfo
->okOnePass
&& (ws
& WHERE_IDX_ONLY
)==0 ){
5173 sqlite3VdbeAddOp1(v
, OP_Close
, pTabItem
->iCursor
);
5175 if( (ws
& WHERE_INDEXED
)!=0 && (ws
& WHERE_TEMP_INDEX
)==0 ){
5176 sqlite3VdbeAddOp1(v
, OP_Close
, pLevel
->iIdxCur
);
5180 /* If this scan uses an index, make code substitutions to read data
5181 ** from the index in preference to the table. Sometimes, this means
5182 ** the table need never be read from. This is a performance boost,
5183 ** as the vdbe level waits until the table is read before actually
5184 ** seeking the table cursor to the record corresponding to the current
5185 ** position in the index.
5187 ** Calls to the code generator in between sqlite3WhereBegin and
5188 ** sqlite3WhereEnd will have created code that references the table
5189 ** directly. This loop scans all that code looking for opcodes
5190 ** that reference the table and converts them into opcodes that
5191 ** reference the index.
5193 if( (pLevel
->plan
.wsFlags
& WHERE_INDEXED
)!=0 && !db
->mallocFailed
){
5196 Index
*pIdx
= pLevel
->plan
.u
.pIdx
;
5199 pOp
= sqlite3VdbeGetOp(v
, pWInfo
->iTop
);
5200 last
= sqlite3VdbeCurrentAddr(v
);
5201 for(k
=pWInfo
->iTop
; k
<last
; k
++, pOp
++){
5202 if( pOp
->p1
!=pLevel
->iTabCur
) continue;
5203 if( pOp
->opcode
==OP_Column
){
5204 for(j
=0; j
<pIdx
->nColumn
; j
++){
5205 if( pOp
->p2
==pIdx
->aiColumn
[j
] ){
5207 pOp
->p1
= pLevel
->iIdxCur
;
5211 assert( (pLevel
->plan
.wsFlags
& WHERE_IDX_ONLY
)==0
5212 || j
<pIdx
->nColumn
);
5213 }else if( pOp
->opcode
==OP_Rowid
){
5214 pOp
->p1
= pLevel
->iIdxCur
;
5215 pOp
->opcode
= OP_IdxRowid
;
5223 pParse
->nQueryLoop
= pWInfo
->savedNQueryLoop
;
5224 whereInfoFree(db
, pWInfo
);