add pragma cipher_default_use_hmac to toggle global HMAC setting
[sqlcipher.git] / src / test_fuzzer.c
blobcf59257175a32bfaa2b9d69eb859a0824fb6194d
1 /*
2 ** 2011 March 24
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** Code for demonstartion virtual table that generates variations
14 ** on an input word at increasing edit distances from the original.
16 ** A fuzzer virtual table is created like this:
18 ** CREATE VIRTUAL TABLE temp.f USING fuzzer;
20 ** The name of the new virtual table in the example above is "f".
21 ** Note that all fuzzer virtual tables must be TEMP tables. The
22 ** "temp." prefix in front of the table name is required when the
23 ** table is being created. The "temp." prefix can be omitted when
24 ** using the table as long as the name is unambiguous.
26 ** Before being used, the fuzzer needs to be programmed by giving it
27 ** character transformations and a cost associated with each transformation.
28 ** Examples:
30 ** INSERT INTO f(cFrom,cTo,Cost) VALUES('','a',100);
32 ** The above statement says that the cost of inserting a letter 'a' is
33 ** 100. (All costs are integers. We recommend that costs be scaled so
34 ** that the average cost is around 100.)
36 ** INSERT INTO f(cFrom,cTo,Cost) VALUES('b','',87);
38 ** The above statement says that the cost of deleting a single letter
39 ** 'b' is 87.
41 ** INSERT INTO f(cFrom,cTo,Cost) VALUES('o','oe',38);
42 ** INSERT INTO f(cFrom,cTo,Cost) VALUES('oe','o',40);
44 ** This third example says that the cost of transforming the single
45 ** letter "o" into the two-letter sequence "oe" is 38 and that the
46 ** cost of transforming "oe" back into "o" is 40.
48 ** After all the transformation costs have been set, the fuzzer table
49 ** can be queried as follows:
51 ** SELECT word, distance FROM f
52 ** WHERE word MATCH 'abcdefg'
53 ** AND distance<200;
55 ** This first query outputs the string "abcdefg" and all strings that
56 ** can be derived from that string by appling the specified transformations.
57 ** The strings are output together with their total transformation cost
58 ** (called "distance") and appear in order of increasing cost. No string
59 ** is output more than once. If there are multiple ways to transform the
60 ** target string into the output string then the lowest cost transform is
61 ** the one that is returned. In the example, the search is limited to
62 ** strings with a total distance of less than 200.
64 ** It is important to put some kind of a limit on the fuzzer output. This
65 ** can be either in the form of a LIMIT clause at the end of the query,
66 ** or better, a "distance<NNN" constraint where NNN is some number. The
67 ** running time and memory requirement is exponential in the value of NNN
68 ** so you want to make sure that NNN is not too big. A value of NNN that
69 ** is about twice the average transformation cost seems to give good results.
71 ** The fuzzer table can be useful for tasks such as spelling correction.
72 ** Suppose there is a second table vocabulary(w) where the w column contains
73 ** all correctly spelled words. Let $word be a word you want to look up.
75 ** SELECT vocabulary.w FROM f, vocabulary
76 ** WHERE f.word MATCH $word
77 ** AND f.distance<=200
78 ** AND f.word=vocabulary.w
79 ** LIMIT 20
81 ** The query above gives the 20 closest words to the $word being tested.
82 ** (Note that for good performance, the vocubulary.w column should be
83 ** indexed.)
85 ** A similar query can be used to find all words in the dictionary that
86 ** begin with some prefix $prefix:
88 ** SELECT vocabulary.w FROM f, vocabulary
89 ** WHERE f.word MATCH $prefix
90 ** AND f.distance<=200
91 ** AND vocabulary.w BETWEEN f.word AND (f.word || x'F7BFBFBF')
92 ** LIMIT 50
94 ** This last query will show up to 50 words out of the vocabulary that
95 ** match or nearly match the $prefix.
97 #include "sqlite3.h"
98 #include <stdlib.h>
99 #include <string.h>
100 #include <assert.h>
101 #include <stdio.h>
103 #ifndef SQLITE_OMIT_VIRTUALTABLE
106 ** Forward declaration of objects used by this implementation
108 typedef struct fuzzer_vtab fuzzer_vtab;
109 typedef struct fuzzer_cursor fuzzer_cursor;
110 typedef struct fuzzer_rule fuzzer_rule;
111 typedef struct fuzzer_seen fuzzer_seen;
112 typedef struct fuzzer_stem fuzzer_stem;
115 ** Type of the "cost" of an edit operation. Might be changed to
116 ** "float" or "double" or "sqlite3_int64" in the future.
118 typedef int fuzzer_cost;
122 ** Each transformation rule is stored as an instance of this object.
123 ** All rules are kept on a linked list sorted by rCost.
125 struct fuzzer_rule {
126 fuzzer_rule *pNext; /* Next rule in order of increasing rCost */
127 fuzzer_cost rCost; /* Cost of this transformation */
128 int nFrom, nTo; /* Length of the zFrom and zTo strings */
129 char *zFrom; /* Transform from */
130 char zTo[4]; /* Transform to (extra space appended) */
134 ** A stem object is used to generate variants. It is also used to record
135 ** previously generated outputs.
137 ** Every stem is added to a hash table as it is output. Generation of
138 ** duplicate stems is suppressed.
140 ** Active stems (those that might generate new outputs) are kepts on a linked
141 ** list sorted by increasing cost. The cost is the sum of rBaseCost and
142 ** pRule->rCost.
144 struct fuzzer_stem {
145 char *zBasis; /* Word being fuzzed */
146 int nBasis; /* Length of the zBasis string */
147 const fuzzer_rule *pRule; /* Current rule to apply */
148 int n; /* Apply pRule at this character offset */
149 fuzzer_cost rBaseCost; /* Base cost of getting to zBasis */
150 fuzzer_cost rCostX; /* Precomputed rBaseCost + pRule->rCost */
151 fuzzer_stem *pNext; /* Next stem in rCost order */
152 fuzzer_stem *pHash; /* Next stem with same hash on zBasis */
156 ** A fuzzer virtual-table object
158 struct fuzzer_vtab {
159 sqlite3_vtab base; /* Base class - must be first */
160 char *zClassName; /* Name of this class. Default: "fuzzer" */
161 fuzzer_rule *pRule; /* All active rules in this fuzzer */
162 fuzzer_rule *pNewRule; /* New rules to add when last cursor expires */
163 int nCursor; /* Number of active cursors */
166 #define FUZZER_HASH 4001 /* Hash table size */
167 #define FUZZER_NQUEUE 20 /* Number of slots on the stem queue */
169 /* A fuzzer cursor object */
170 struct fuzzer_cursor {
171 sqlite3_vtab_cursor base; /* Base class - must be first */
172 sqlite3_int64 iRowid; /* The rowid of the current word */
173 fuzzer_vtab *pVtab; /* The virtual table this cursor belongs to */
174 fuzzer_cost rLimit; /* Maximum cost of any term */
175 fuzzer_stem *pStem; /* Stem with smallest rCostX */
176 fuzzer_stem *pDone; /* Stems already processed to completion */
177 fuzzer_stem *aQueue[FUZZER_NQUEUE]; /* Queue of stems with higher rCostX */
178 int mxQueue; /* Largest used index in aQueue[] */
179 char *zBuf; /* Temporary use buffer */
180 int nBuf; /* Bytes allocated for zBuf */
181 int nStem; /* Number of stems allocated */
182 fuzzer_rule nullRule; /* Null rule used first */
183 fuzzer_stem *apHash[FUZZER_HASH]; /* Hash of previously generated terms */
186 /* Methods for the fuzzer module */
187 static int fuzzerConnect(
188 sqlite3 *db,
189 void *pAux,
190 int argc, const char *const*argv,
191 sqlite3_vtab **ppVtab,
192 char **pzErr
194 fuzzer_vtab *pNew;
195 int n;
196 if( strcmp(argv[1],"temp")!=0 ){
197 *pzErr = sqlite3_mprintf("%s virtual tables must be TEMP", argv[0]);
198 return SQLITE_ERROR;
200 n = strlen(argv[0]) + 1;
201 pNew = sqlite3_malloc( sizeof(*pNew) + n );
202 if( pNew==0 ) return SQLITE_NOMEM;
203 pNew->zClassName = (char*)&pNew[1];
204 memcpy(pNew->zClassName, argv[0], n);
205 sqlite3_declare_vtab(db, "CREATE TABLE x(word,distance,cFrom,cTo,cost)");
206 memset(pNew, 0, sizeof(*pNew));
207 *ppVtab = &pNew->base;
208 return SQLITE_OK;
210 /* Note that for this virtual table, the xCreate and xConnect
211 ** methods are identical. */
213 static int fuzzerDisconnect(sqlite3_vtab *pVtab){
214 fuzzer_vtab *p = (fuzzer_vtab*)pVtab;
215 assert( p->nCursor==0 );
217 while( p->pRule ){
218 fuzzer_rule *pRule = p->pRule;
219 p->pRule = pRule->pNext;
220 sqlite3_free(pRule);
222 p->pRule = p->pNewRule;
223 p->pNewRule = 0;
224 }while( p->pRule );
225 sqlite3_free(p);
226 return SQLITE_OK;
228 /* The xDisconnect and xDestroy methods are also the same */
231 ** The two input rule lists are both sorted in order of increasing
232 ** cost. Merge them together into a single list, sorted by cost, and
233 ** return a pointer to the head of that list.
235 static fuzzer_rule *fuzzerMergeRules(fuzzer_rule *pA, fuzzer_rule *pB){
236 fuzzer_rule head;
237 fuzzer_rule *pTail;
239 pTail = &head;
240 while( pA && pB ){
241 if( pA->rCost<=pB->rCost ){
242 pTail->pNext = pA;
243 pTail = pA;
244 pA = pA->pNext;
245 }else{
246 pTail->pNext = pB;
247 pTail = pB;
248 pB = pB->pNext;
251 if( pA==0 ){
252 pTail->pNext = pB;
253 }else{
254 pTail->pNext = pA;
256 return head.pNext;
261 ** Open a new fuzzer cursor.
263 static int fuzzerOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
264 fuzzer_vtab *p = (fuzzer_vtab*)pVTab;
265 fuzzer_cursor *pCur;
266 pCur = sqlite3_malloc( sizeof(*pCur) );
267 if( pCur==0 ) return SQLITE_NOMEM;
268 memset(pCur, 0, sizeof(*pCur));
269 pCur->pVtab = p;
270 *ppCursor = &pCur->base;
271 if( p->nCursor==0 && p->pNewRule ){
272 unsigned int i;
273 fuzzer_rule *pX;
274 fuzzer_rule *a[15];
275 for(i=0; i<sizeof(a)/sizeof(a[0]); i++) a[i] = 0;
276 while( (pX = p->pNewRule)!=0 ){
277 p->pNewRule = pX->pNext;
278 pX->pNext = 0;
279 for(i=0; a[i] && i<sizeof(a)/sizeof(a[0])-1; i++){
280 pX = fuzzerMergeRules(a[i], pX);
281 a[i] = 0;
283 a[i] = fuzzerMergeRules(a[i], pX);
285 for(pX=a[0], i=1; i<sizeof(a)/sizeof(a[0]); i++){
286 pX = fuzzerMergeRules(a[i], pX);
288 p->pRule = fuzzerMergeRules(p->pRule, pX);
290 p->nCursor++;
291 return SQLITE_OK;
295 ** Free all stems in a list.
297 static void fuzzerClearStemList(fuzzer_stem *pStem){
298 while( pStem ){
299 fuzzer_stem *pNext = pStem->pNext;
300 sqlite3_free(pStem);
301 pStem = pNext;
306 ** Free up all the memory allocated by a cursor. Set it rLimit to 0
307 ** to indicate that it is at EOF.
309 static void fuzzerClearCursor(fuzzer_cursor *pCur, int clearHash){
310 int i;
311 fuzzerClearStemList(pCur->pStem);
312 fuzzerClearStemList(pCur->pDone);
313 for(i=0; i<FUZZER_NQUEUE; i++) fuzzerClearStemList(pCur->aQueue[i]);
314 pCur->rLimit = (fuzzer_cost)0;
315 if( clearHash && pCur->nStem ){
316 pCur->mxQueue = 0;
317 pCur->pStem = 0;
318 pCur->pDone = 0;
319 memset(pCur->aQueue, 0, sizeof(pCur->aQueue));
320 memset(pCur->apHash, 0, sizeof(pCur->apHash));
322 pCur->nStem = 0;
326 ** Close a fuzzer cursor.
328 static int fuzzerClose(sqlite3_vtab_cursor *cur){
329 fuzzer_cursor *pCur = (fuzzer_cursor *)cur;
330 fuzzerClearCursor(pCur, 0);
331 sqlite3_free(pCur->zBuf);
332 pCur->pVtab->nCursor--;
333 sqlite3_free(pCur);
334 return SQLITE_OK;
338 ** Compute the current output term for a fuzzer_stem.
340 static int fuzzerRender(
341 fuzzer_stem *pStem, /* The stem to be rendered */
342 char **pzBuf, /* Write results into this buffer. realloc if needed */
343 int *pnBuf /* Size of the buffer */
345 const fuzzer_rule *pRule = pStem->pRule;
346 int n;
347 char *z;
349 n = pStem->nBasis + pRule->nTo - pRule->nFrom;
350 if( (*pnBuf)<n+1 ){
351 (*pzBuf) = sqlite3_realloc((*pzBuf), n+100);
352 if( (*pzBuf)==0 ) return SQLITE_NOMEM;
353 (*pnBuf) = n+100;
355 n = pStem->n;
356 z = *pzBuf;
357 if( n<0 ){
358 memcpy(z, pStem->zBasis, pStem->nBasis+1);
359 }else{
360 memcpy(z, pStem->zBasis, n);
361 memcpy(&z[n], pRule->zTo, pRule->nTo);
362 memcpy(&z[n+pRule->nTo], &pStem->zBasis[n+pRule->nFrom],
363 pStem->nBasis-n-pRule->nFrom+1);
365 return SQLITE_OK;
369 ** Compute a hash on zBasis.
371 static unsigned int fuzzerHash(const char *z){
372 unsigned int h = 0;
373 while( *z ){ h = (h<<3) ^ (h>>29) ^ *(z++); }
374 return h % FUZZER_HASH;
378 ** Current cost of a stem
380 static fuzzer_cost fuzzerCost(fuzzer_stem *pStem){
381 return pStem->rCostX = pStem->rBaseCost + pStem->pRule->rCost;
384 #if 0
386 ** Print a description of a fuzzer_stem on stderr.
388 static void fuzzerStemPrint(
389 const char *zPrefix,
390 fuzzer_stem *pStem,
391 const char *zSuffix
393 if( pStem->n<0 ){
394 fprintf(stderr, "%s[%s](%d)-->self%s",
395 zPrefix,
396 pStem->zBasis, pStem->rBaseCost,
397 zSuffix
399 }else{
400 char *zBuf = 0;
401 int nBuf = 0;
402 if( fuzzerRender(pStem, &zBuf, &nBuf)!=SQLITE_OK ) return;
403 fprintf(stderr, "%s[%s](%d)-->{%s}(%d)%s",
404 zPrefix,
405 pStem->zBasis, pStem->rBaseCost, zBuf, pStem->,
406 zSuffix
408 sqlite3_free(zBuf);
411 #endif
414 ** Return 1 if the string to which the cursor is point has already
415 ** been emitted. Return 0 if not. Return -1 on a memory allocation
416 ** failures.
418 static int fuzzerSeen(fuzzer_cursor *pCur, fuzzer_stem *pStem){
419 unsigned int h;
420 fuzzer_stem *pLookup;
422 if( fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){
423 return -1;
425 h = fuzzerHash(pCur->zBuf);
426 pLookup = pCur->apHash[h];
427 while( pLookup && strcmp(pLookup->zBasis, pCur->zBuf)!=0 ){
428 pLookup = pLookup->pHash;
430 return pLookup!=0;
434 ** Advance a fuzzer_stem to its next value. Return 0 if there are
435 ** no more values that can be generated by this fuzzer_stem. Return
436 ** -1 on a memory allocation failure.
438 static int fuzzerAdvance(fuzzer_cursor *pCur, fuzzer_stem *pStem){
439 const fuzzer_rule *pRule;
440 while( (pRule = pStem->pRule)!=0 ){
441 while( pStem->n < pStem->nBasis - pRule->nFrom ){
442 pStem->n++;
443 if( pRule->nFrom==0
444 || memcmp(&pStem->zBasis[pStem->n], pRule->zFrom, pRule->nFrom)==0
446 /* Found a rewrite case. Make sure it is not a duplicate */
447 int rc = fuzzerSeen(pCur, pStem);
448 if( rc<0 ) return -1;
449 if( rc==0 ){
450 fuzzerCost(pStem);
451 return 1;
455 pStem->n = -1;
456 pStem->pRule = pRule->pNext;
457 if( pStem->pRule && fuzzerCost(pStem)>pCur->rLimit ) pStem->pRule = 0;
459 return 0;
463 ** The two input stem lists are both sorted in order of increasing
464 ** rCostX. Merge them together into a single list, sorted by rCostX, and
465 ** return a pointer to the head of that new list.
467 static fuzzer_stem *fuzzerMergeStems(fuzzer_stem *pA, fuzzer_stem *pB){
468 fuzzer_stem head;
469 fuzzer_stem *pTail;
471 pTail = &head;
472 while( pA && pB ){
473 if( pA->rCostX<=pB->rCostX ){
474 pTail->pNext = pA;
475 pTail = pA;
476 pA = pA->pNext;
477 }else{
478 pTail->pNext = pB;
479 pTail = pB;
480 pB = pB->pNext;
483 if( pA==0 ){
484 pTail->pNext = pB;
485 }else{
486 pTail->pNext = pA;
488 return head.pNext;
492 ** Load pCur->pStem with the lowest-cost stem. Return a pointer
493 ** to the lowest-cost stem.
495 static fuzzer_stem *fuzzerLowestCostStem(fuzzer_cursor *pCur){
496 fuzzer_stem *pBest, *pX;
497 int iBest;
498 int i;
500 if( pCur->pStem==0 ){
501 iBest = -1;
502 pBest = 0;
503 for(i=0; i<=pCur->mxQueue; i++){
504 pX = pCur->aQueue[i];
505 if( pX==0 ) continue;
506 if( pBest==0 || pBest->rCostX>pX->rCostX ){
507 pBest = pX;
508 iBest = i;
511 if( pBest ){
512 pCur->aQueue[iBest] = pBest->pNext;
513 pBest->pNext = 0;
514 pCur->pStem = pBest;
517 return pCur->pStem;
521 ** Insert pNew into queue of pending stems. Then find the stem
522 ** with the lowest rCostX and move it into pCur->pStem.
523 ** list. The insert is done such the pNew is in the correct order
524 ** according to fuzzer_stem.zBaseCost+fuzzer_stem.pRule->rCost.
526 static fuzzer_stem *fuzzerInsert(fuzzer_cursor *pCur, fuzzer_stem *pNew){
527 fuzzer_stem *pX;
528 int i;
530 /* If pCur->pStem exists and is greater than pNew, then make pNew
531 ** the new pCur->pStem and insert the old pCur->pStem instead.
533 if( (pX = pCur->pStem)!=0 && pX->rCostX>pNew->rCostX ){
534 pNew->pNext = 0;
535 pCur->pStem = pNew;
536 pNew = pX;
539 /* Insert the new value */
540 pNew->pNext = 0;
541 pX = pNew;
542 for(i=0; i<=pCur->mxQueue; i++){
543 if( pCur->aQueue[i] ){
544 pX = fuzzerMergeStems(pX, pCur->aQueue[i]);
545 pCur->aQueue[i] = 0;
546 }else{
547 pCur->aQueue[i] = pX;
548 break;
551 if( i>pCur->mxQueue ){
552 if( i<FUZZER_NQUEUE ){
553 pCur->mxQueue = i;
554 pCur->aQueue[i] = pX;
555 }else{
556 assert( pCur->mxQueue==FUZZER_NQUEUE-1 );
557 pX = fuzzerMergeStems(pX, pCur->aQueue[FUZZER_NQUEUE-1]);
558 pCur->aQueue[FUZZER_NQUEUE-1] = pX;
562 return fuzzerLowestCostStem(pCur);
566 ** Allocate a new fuzzer_stem. Add it to the hash table but do not
567 ** link it into either the pCur->pStem or pCur->pDone lists.
569 static fuzzer_stem *fuzzerNewStem(
570 fuzzer_cursor *pCur,
571 const char *zWord,
572 fuzzer_cost rBaseCost
574 fuzzer_stem *pNew;
575 unsigned int h;
577 pNew = sqlite3_malloc( sizeof(*pNew) + strlen(zWord) + 1 );
578 if( pNew==0 ) return 0;
579 memset(pNew, 0, sizeof(*pNew));
580 pNew->zBasis = (char*)&pNew[1];
581 pNew->nBasis = strlen(zWord);
582 memcpy(pNew->zBasis, zWord, pNew->nBasis+1);
583 pNew->pRule = pCur->pVtab->pRule;
584 pNew->n = -1;
585 pNew->rBaseCost = pNew->rCostX = rBaseCost;
586 h = fuzzerHash(pNew->zBasis);
587 pNew->pHash = pCur->apHash[h];
588 pCur->apHash[h] = pNew;
589 pCur->nStem++;
590 return pNew;
595 ** Advance a cursor to its next row of output
597 static int fuzzerNext(sqlite3_vtab_cursor *cur){
598 fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
599 int rc;
600 fuzzer_stem *pStem, *pNew;
602 pCur->iRowid++;
604 /* Use the element the cursor is currently point to to create
605 ** a new stem and insert the new stem into the priority queue.
607 pStem = pCur->pStem;
608 if( pStem->rCostX>0 ){
609 rc = fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf);
610 if( rc==SQLITE_NOMEM ) return SQLITE_NOMEM;
611 pNew = fuzzerNewStem(pCur, pCur->zBuf, pStem->rCostX);
612 if( pNew ){
613 if( fuzzerAdvance(pCur, pNew)==0 ){
614 pNew->pNext = pCur->pDone;
615 pCur->pDone = pNew;
616 }else{
617 if( fuzzerInsert(pCur, pNew)==pNew ){
618 return SQLITE_OK;
621 }else{
622 return SQLITE_NOMEM;
626 /* Adjust the priority queue so that the first element of the
627 ** stem list is the next lowest cost word.
629 while( (pStem = pCur->pStem)!=0 ){
630 if( fuzzerAdvance(pCur, pStem) ){
631 pCur->pStem = 0;
632 pStem = fuzzerInsert(pCur, pStem);
633 if( (rc = fuzzerSeen(pCur, pStem))!=0 ){
634 if( rc<0 ) return SQLITE_NOMEM;
635 continue;
637 return SQLITE_OK; /* New word found */
639 pCur->pStem = 0;
640 pStem->pNext = pCur->pDone;
641 pCur->pDone = pStem;
642 if( fuzzerLowestCostStem(pCur) ){
643 rc = fuzzerSeen(pCur, pCur->pStem);
644 if( rc<0 ) return SQLITE_NOMEM;
645 if( rc==0 ){
646 return SQLITE_OK;
651 /* Reach this point only if queue has been exhausted and there is
652 ** nothing left to be output. */
653 pCur->rLimit = (fuzzer_cost)0;
654 return SQLITE_OK;
658 ** Called to "rewind" a cursor back to the beginning so that
659 ** it starts its output over again. Always called at least once
660 ** prior to any fuzzerColumn, fuzzerRowid, or fuzzerEof call.
662 static int fuzzerFilter(
663 sqlite3_vtab_cursor *pVtabCursor,
664 int idxNum, const char *idxStr,
665 int argc, sqlite3_value **argv
667 fuzzer_cursor *pCur = (fuzzer_cursor *)pVtabCursor;
668 const char *zWord = 0;
669 fuzzer_stem *pStem;
671 fuzzerClearCursor(pCur, 1);
672 pCur->rLimit = 2147483647;
673 if( idxNum==1 ){
674 zWord = (const char*)sqlite3_value_text(argv[0]);
675 }else if( idxNum==2 ){
676 pCur->rLimit = (fuzzer_cost)sqlite3_value_int(argv[0]);
677 }else if( idxNum==3 ){
678 zWord = (const char*)sqlite3_value_text(argv[0]);
679 pCur->rLimit = (fuzzer_cost)sqlite3_value_int(argv[1]);
681 if( zWord==0 ) zWord = "";
682 pCur->pStem = pStem = fuzzerNewStem(pCur, zWord, (fuzzer_cost)0);
683 if( pStem==0 ) return SQLITE_NOMEM;
684 pCur->nullRule.pNext = pCur->pVtab->pRule;
685 pCur->nullRule.rCost = 0;
686 pCur->nullRule.nFrom = 0;
687 pCur->nullRule.nTo = 0;
688 pCur->nullRule.zFrom = "";
689 pStem->pRule = &pCur->nullRule;
690 pStem->n = pStem->nBasis;
691 pCur->iRowid = 1;
692 return SQLITE_OK;
696 ** Only the word and distance columns have values. All other columns
697 ** return NULL
699 static int fuzzerColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
700 fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
701 if( i==0 ){
702 /* the "word" column */
703 if( fuzzerRender(pCur->pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){
704 return SQLITE_NOMEM;
706 sqlite3_result_text(ctx, pCur->zBuf, -1, SQLITE_TRANSIENT);
707 }else if( i==1 ){
708 /* the "distance" column */
709 sqlite3_result_int(ctx, pCur->pStem->rCostX);
710 }else{
711 /* All other columns are NULL */
712 sqlite3_result_null(ctx);
714 return SQLITE_OK;
718 ** The rowid.
720 static int fuzzerRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
721 fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
722 *pRowid = pCur->iRowid;
723 return SQLITE_OK;
727 ** When the fuzzer_cursor.rLimit value is 0 or less, that is a signal
728 ** that the cursor has nothing more to output.
730 static int fuzzerEof(sqlite3_vtab_cursor *cur){
731 fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
732 return pCur->rLimit<=(fuzzer_cost)0;
736 ** Search for terms of these forms:
738 ** word MATCH $str
739 ** distance < $value
740 ** distance <= $value
742 ** The distance< and distance<= are both treated as distance<=.
743 ** The query plan number is as follows:
745 ** 0: None of the terms above are found
746 ** 1: There is a "word MATCH" term with $str in filter.argv[0].
747 ** 2: There is a "distance<" term with $value in filter.argv[0].
748 ** 3: Both "word MATCH" and "distance<" with $str in argv[0] and
749 ** $value in argv[1].
751 static int fuzzerBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
752 int iPlan = 0;
753 int iDistTerm = -1;
754 int i;
755 const struct sqlite3_index_constraint *pConstraint;
756 pConstraint = pIdxInfo->aConstraint;
757 for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
758 if( pConstraint->usable==0 ) continue;
759 if( (iPlan & 1)==0
760 && pConstraint->iColumn==0
761 && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH
763 iPlan |= 1;
764 pIdxInfo->aConstraintUsage[i].argvIndex = 1;
765 pIdxInfo->aConstraintUsage[i].omit = 1;
767 if( (iPlan & 2)==0
768 && pConstraint->iColumn==1
769 && (pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT
770 || pConstraint->op==SQLITE_INDEX_CONSTRAINT_LE)
772 iPlan |= 2;
773 iDistTerm = i;
776 if( iPlan==2 ){
777 pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 1;
778 }else if( iPlan==3 ){
779 pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 2;
781 pIdxInfo->idxNum = iPlan;
782 if( pIdxInfo->nOrderBy==1
783 && pIdxInfo->aOrderBy[0].iColumn==1
784 && pIdxInfo->aOrderBy[0].desc==0
786 pIdxInfo->orderByConsumed = 1;
788 pIdxInfo->estimatedCost = (double)10000;
790 return SQLITE_OK;
794 ** Disallow all attempts to DELETE or UPDATE. Only INSERTs are allowed.
796 ** On an insert, the cFrom, cTo, and cost columns are used to construct
797 ** a new rule. All other columns are ignored. The rule is ignored
798 ** if cFrom and cTo are identical. A NULL value for cFrom or cTo is
799 ** interpreted as an empty string. The cost must be positive.
801 static int fuzzerUpdate(
802 sqlite3_vtab *pVTab,
803 int argc,
804 sqlite3_value **argv,
805 sqlite_int64 *pRowid
807 fuzzer_vtab *p = (fuzzer_vtab*)pVTab;
808 fuzzer_rule *pRule;
809 const char *zFrom;
810 int nFrom;
811 const char *zTo;
812 int nTo;
813 fuzzer_cost rCost;
814 if( argc!=7 ){
815 sqlite3_free(pVTab->zErrMsg);
816 pVTab->zErrMsg = sqlite3_mprintf("cannot delete from a %s virtual table",
817 p->zClassName);
818 return SQLITE_CONSTRAINT;
820 if( sqlite3_value_type(argv[0])!=SQLITE_NULL ){
821 sqlite3_free(pVTab->zErrMsg);
822 pVTab->zErrMsg = sqlite3_mprintf("cannot update a %s virtual table",
823 p->zClassName);
824 return SQLITE_CONSTRAINT;
826 zFrom = (char*)sqlite3_value_text(argv[4]);
827 if( zFrom==0 ) zFrom = "";
828 zTo = (char*)sqlite3_value_text(argv[5]);
829 if( zTo==0 ) zTo = "";
830 if( strcmp(zFrom,zTo)==0 ){
831 /* Silently ignore null transformations */
832 return SQLITE_OK;
834 rCost = sqlite3_value_int(argv[6]);
835 if( rCost<=0 ){
836 sqlite3_free(pVTab->zErrMsg);
837 pVTab->zErrMsg = sqlite3_mprintf("cost must be positive");
838 return SQLITE_CONSTRAINT;
840 nFrom = strlen(zFrom);
841 nTo = strlen(zTo);
842 pRule = sqlite3_malloc( sizeof(*pRule) + nFrom + nTo );
843 if( pRule==0 ){
844 return SQLITE_NOMEM;
846 pRule->zFrom = &pRule->zTo[nTo+1];
847 pRule->nFrom = nFrom;
848 memcpy(pRule->zFrom, zFrom, nFrom+1);
849 memcpy(pRule->zTo, zTo, nTo+1);
850 pRule->nTo = nTo;
851 pRule->rCost = rCost;
852 pRule->pNext = p->pNewRule;
853 p->pNewRule = pRule;
854 return SQLITE_OK;
858 ** A virtual table module that provides read-only access to a
859 ** Tcl global variable namespace.
861 static sqlite3_module fuzzerModule = {
862 0, /* iVersion */
863 fuzzerConnect,
864 fuzzerConnect,
865 fuzzerBestIndex,
866 fuzzerDisconnect,
867 fuzzerDisconnect,
868 fuzzerOpen, /* xOpen - open a cursor */
869 fuzzerClose, /* xClose - close a cursor */
870 fuzzerFilter, /* xFilter - configure scan constraints */
871 fuzzerNext, /* xNext - advance a cursor */
872 fuzzerEof, /* xEof - check for end of scan */
873 fuzzerColumn, /* xColumn - read data */
874 fuzzerRowid, /* xRowid - read data */
875 fuzzerUpdate, /* xUpdate - INSERT */
876 0, /* xBegin */
877 0, /* xSync */
878 0, /* xCommit */
879 0, /* xRollback */
880 0, /* xFindMethod */
881 0, /* xRename */
884 #endif /* SQLITE_OMIT_VIRTUALTABLE */
888 ** Register the fuzzer virtual table
890 int fuzzer_register(sqlite3 *db){
891 int rc = SQLITE_OK;
892 #ifndef SQLITE_OMIT_VIRTUALTABLE
893 rc = sqlite3_create_module(db, "fuzzer", &fuzzerModule, 0);
894 #endif
895 return rc;
898 #ifdef SQLITE_TEST
899 #include <tcl.h>
901 ** Decode a pointer to an sqlite3 object.
903 extern int getDbPointer(Tcl_Interp *interp, const char *zA, sqlite3 **ppDb);
906 ** Register the echo virtual table module.
908 static int register_fuzzer_module(
909 ClientData clientData, /* Pointer to sqlite3_enable_XXX function */
910 Tcl_Interp *interp, /* The TCL interpreter that invoked this command */
911 int objc, /* Number of arguments */
912 Tcl_Obj *CONST objv[] /* Command arguments */
914 sqlite3 *db;
915 if( objc!=2 ){
916 Tcl_WrongNumArgs(interp, 1, objv, "DB");
917 return TCL_ERROR;
919 if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
920 fuzzer_register(db);
921 return TCL_OK;
926 ** Register commands with the TCL interpreter.
928 int Sqlitetestfuzzer_Init(Tcl_Interp *interp){
929 static struct {
930 char *zName;
931 Tcl_ObjCmdProc *xProc;
932 void *clientData;
933 } aObjCmd[] = {
934 { "register_fuzzer_module", register_fuzzer_module, 0 },
936 int i;
937 for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){
938 Tcl_CreateObjCommand(interp, aObjCmd[i].zName,
939 aObjCmd[i].xProc, aObjCmd[i].clientData, 0);
941 return TCL_OK;
944 #endif /* SQLITE_TEST */