4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 ******************************************************************************
13 ** This file contains the VFS implementation for unix-like operating systems
14 ** include Linux, MacOSX, *BSD, QNX, VxWorks, AIX, HPUX, and others.
16 ** There are actually several different VFS implementations in this file.
17 ** The differences are in the way that file locking is done. The default
18 ** implementation uses Posix Advisory Locks. Alternative implementations
19 ** use flock(), dot-files, various proprietary locking schemas, or simply
20 ** skip locking all together.
22 ** This source file is organized into divisions where the logic for various
23 ** subfunctions is contained within the appropriate division. PLEASE
24 ** KEEP THE STRUCTURE OF THIS FILE INTACT. New code should be placed
25 ** in the correct division and should be clearly labeled.
27 ** The layout of divisions is as follows:
29 ** * General-purpose declarations and utility functions.
30 ** * Unique file ID logic used by VxWorks.
31 ** * Various locking primitive implementations (all except proxy locking):
32 ** + for Posix Advisory Locks
34 ** + for dot-file locks
35 ** + for flock() locking
36 ** + for named semaphore locks (VxWorks only)
37 ** + for AFP filesystem locks (MacOSX only)
38 ** * sqlite3_file methods not associated with locking.
39 ** * Definitions of sqlite3_io_methods objects for all locking
40 ** methods plus "finder" functions for each locking method.
41 ** * sqlite3_vfs method implementations.
42 ** * Locking primitives for the proxy uber-locking-method. (MacOSX only)
43 ** * Definitions of sqlite3_vfs objects for all locking methods
44 ** plus implementations of sqlite3_os_init() and sqlite3_os_end().
46 #include "sqliteInt.h"
47 #if SQLITE_OS_UNIX /* This file is used on unix only */
50 ** There are various methods for file locking used for concurrency
53 ** 1. POSIX locking (the default),
55 ** 3. Dot-file locking,
56 ** 4. flock() locking,
57 ** 5. AFP locking (OSX only),
58 ** 6. Named POSIX semaphores (VXWorks only),
59 ** 7. proxy locking. (OSX only)
61 ** Styles 4, 5, and 7 are only available of SQLITE_ENABLE_LOCKING_STYLE
62 ** is defined to 1. The SQLITE_ENABLE_LOCKING_STYLE also enables automatic
63 ** selection of the appropriate locking style based on the filesystem
64 ** where the database is located.
66 #if !defined(SQLITE_ENABLE_LOCKING_STYLE)
67 # if defined(__APPLE__)
68 # define SQLITE_ENABLE_LOCKING_STYLE 1
70 # define SQLITE_ENABLE_LOCKING_STYLE 0
75 ** Define the OS_VXWORKS pre-processor macro to 1 if building on
76 ** vxworks, or 0 otherwise.
79 # if defined(__RTP__) || defined(_WRS_KERNEL)
87 ** These #defines should enable >2GB file support on Posix if the
88 ** underlying operating system supports it. If the OS lacks
89 ** large file support, these should be no-ops.
91 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
92 ** on the compiler command line. This is necessary if you are compiling
93 ** on a recent machine (ex: RedHat 7.2) but you want your code to work
94 ** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2
95 ** without this option, LFS is enable. But LFS does not exist in the kernel
96 ** in RedHat 6.0, so the code won't work. Hence, for maximum binary
97 ** portability you should omit LFS.
99 ** The previous paragraph was written in 2005. (This paragraph is written
100 ** on 2008-11-28.) These days, all Linux kernels support large files, so
101 ** you should probably leave LFS enabled. But some embedded platforms might
102 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful.
104 #ifndef SQLITE_DISABLE_LFS
105 # define _LARGE_FILE 1
106 # ifndef _FILE_OFFSET_BITS
107 # define _FILE_OFFSET_BITS 64
109 # define _LARGEFILE_SOURCE 1
113 ** standard include files.
115 #include <sys/types.h>
116 #include <sys/stat.h>
120 #include <sys/time.h>
122 #ifndef SQLITE_OMIT_WAL
123 #include <sys/mman.h>
126 #if SQLITE_ENABLE_LOCKING_STYLE
127 # include <sys/ioctl.h>
129 # include <semaphore.h>
132 # include <sys/file.h>
133 # include <sys/param.h>
135 #endif /* SQLITE_ENABLE_LOCKING_STYLE */
137 #if defined(__APPLE__) || (SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS)
138 # include <sys/mount.h>
146 ** Allowed values of unixFile.fsFlags
148 #define SQLITE_FSFLAGS_IS_MSDOS 0x1
151 ** If we are to be thread-safe, include the pthreads header and define
152 ** the SQLITE_UNIX_THREADS macro.
154 #if SQLITE_THREADSAFE
155 # include <pthread.h>
156 # define SQLITE_UNIX_THREADS 1
160 ** Default permissions when creating a new file
162 #ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
163 # define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
167 ** Default permissions when creating auto proxy dir
169 #ifndef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
170 # define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755
174 ** Maximum supported path-length.
176 #define MAX_PATHNAME 512
179 ** Only set the lastErrno if the error code is a real error and not
180 ** a normal expected return code of SQLITE_BUSY or SQLITE_OK
182 #define IS_LOCK_ERROR(x) ((x != SQLITE_OK) && (x != SQLITE_BUSY))
184 /* Forward references */
185 typedef struct unixShm unixShm
; /* Connection shared memory */
186 typedef struct unixShmNode unixShmNode
; /* Shared memory instance */
187 typedef struct unixInodeInfo unixInodeInfo
; /* An i-node */
188 typedef struct UnixUnusedFd UnixUnusedFd
; /* An unused file descriptor */
191 ** Sometimes, after a file handle is closed by SQLite, the file descriptor
192 ** cannot be closed immediately. In these cases, instances of the following
193 ** structure are used to store the file descriptor while waiting for an
194 ** opportunity to either close or reuse it.
196 struct UnixUnusedFd
{
197 int fd
; /* File descriptor to close */
198 int flags
; /* Flags this file descriptor was opened with */
199 UnixUnusedFd
*pNext
; /* Next unused file descriptor on same file */
203 ** The unixFile structure is subclass of sqlite3_file specific to the unix
204 ** VFS implementations.
206 typedef struct unixFile unixFile
;
208 sqlite3_io_methods
const *pMethod
; /* Always the first entry */
209 unixInodeInfo
*pInode
; /* Info about locks on this inode */
210 int h
; /* The file descriptor */
211 unsigned char eFileLock
; /* The type of lock held on this fd */
212 unsigned char ctrlFlags
; /* Behavioral bits. UNIXFILE_* flags */
213 int lastErrno
; /* The unix errno from last I/O error */
214 void *lockingContext
; /* Locking style specific state */
215 UnixUnusedFd
*pUnused
; /* Pre-allocated UnixUnusedFd */
216 const char *zPath
; /* Name of the file */
217 unixShm
*pShm
; /* Shared memory segment information */
218 int szChunk
; /* Configured by FCNTL_CHUNK_SIZE */
219 #if SQLITE_ENABLE_LOCKING_STYLE
220 int openFlags
; /* The flags specified at open() */
222 #if SQLITE_ENABLE_LOCKING_STYLE || defined(__APPLE__)
223 unsigned fsFlags
; /* cached details from statfs() */
226 int isDelete
; /* Delete on close if true */
227 struct vxworksFileId
*pId
; /* Unique file ID */
230 /* The next group of variables are used to track whether or not the
231 ** transaction counter in bytes 24-27 of database files are updated
232 ** whenever any part of the database changes. An assertion fault will
233 ** occur if a file is updated without also updating the transaction
234 ** counter. This test is made to avoid new problems similar to the
235 ** one described by ticket #3584.
237 unsigned char transCntrChng
; /* True if the transaction counter changed */
238 unsigned char dbUpdate
; /* True if any part of database file changed */
239 unsigned char inNormalWrite
; /* True if in a normal write operation */
242 /* In test mode, increase the size of this structure a bit so that
243 ** it is larger than the struct CrashFile defined in test6.c.
250 ** Allowed values for the unixFile.ctrlFlags bitmask:
252 #define UNIXFILE_EXCL 0x01 /* Connections from one process only */
253 #define UNIXFILE_RDONLY 0x02 /* Connection is read only */
254 #define UNIXFILE_PERSIST_WAL 0x04 /* Persistent WAL mode */
255 #ifndef SQLITE_DISABLE_DIRSYNC
256 # define UNIXFILE_DIRSYNC 0x08 /* Directory sync needed */
258 # define UNIXFILE_DIRSYNC 0x00
262 ** Include code that is common to all os_*.c files
264 #include "os_common.h"
267 ** Define various macros that are missing from some systems.
270 # define O_LARGEFILE 0
272 #ifdef SQLITE_DISABLE_LFS
274 # define O_LARGEFILE 0
277 # define O_NOFOLLOW 0
284 ** The threadid macro resolves to the thread-id or to 0. Used for
285 ** testing and debugging only.
287 #if SQLITE_THREADSAFE
288 #define threadid pthread_self()
294 ** Different Unix systems declare open() in different ways. Same use
295 ** open(const char*,int,mode_t). Others use open(const char*,int,...).
296 ** The difference is important when using a pointer to the function.
298 ** The safest way to deal with the problem is to always use this wrapper
299 ** which always has the same well-defined interface.
301 static int posixOpen(const char *zFile
, int flags
, int mode
){
302 return open(zFile
, flags
, mode
);
305 /* Forward reference */
306 static int openDirectory(const char*, int*);
309 ** Many system calls are accessed through pointer-to-functions so that
310 ** they may be overridden at runtime to facilitate fault injection during
311 ** testing and sandboxing. The following array holds the names and pointers
312 ** to all overrideable system calls.
314 static struct unix_syscall
{
315 const char *zName
; /* Name of the sytem call */
316 sqlite3_syscall_ptr pCurrent
; /* Current value of the system call */
317 sqlite3_syscall_ptr pDefault
; /* Default value */
319 { "open", (sqlite3_syscall_ptr
)posixOpen
, 0 },
320 #define osOpen ((int(*)(const char*,int,int))aSyscall[0].pCurrent)
322 { "close", (sqlite3_syscall_ptr
)close
, 0 },
323 #define osClose ((int(*)(int))aSyscall[1].pCurrent)
325 { "access", (sqlite3_syscall_ptr
)access
, 0 },
326 #define osAccess ((int(*)(const char*,int))aSyscall[2].pCurrent)
328 { "getcwd", (sqlite3_syscall_ptr
)getcwd
, 0 },
329 #define osGetcwd ((char*(*)(char*,size_t))aSyscall[3].pCurrent)
331 { "stat", (sqlite3_syscall_ptr
)stat
, 0 },
332 #define osStat ((int(*)(const char*,struct stat*))aSyscall[4].pCurrent)
335 ** The DJGPP compiler environment looks mostly like Unix, but it
336 ** lacks the fcntl() system call. So redefine fcntl() to be something
337 ** that always succeeds. This means that locking does not occur under
338 ** DJGPP. But it is DOS - what did you expect?
342 #define osFstat(a,b,c) 0
344 { "fstat", (sqlite3_syscall_ptr
)fstat
, 0 },
345 #define osFstat ((int(*)(int,struct stat*))aSyscall[5].pCurrent)
348 { "ftruncate", (sqlite3_syscall_ptr
)ftruncate
, 0 },
349 #define osFtruncate ((int(*)(int,off_t))aSyscall[6].pCurrent)
351 { "fcntl", (sqlite3_syscall_ptr
)fcntl
, 0 },
352 #define osFcntl ((int(*)(int,int,...))aSyscall[7].pCurrent)
354 { "read", (sqlite3_syscall_ptr
)read
, 0 },
355 #define osRead ((ssize_t(*)(int,void*,size_t))aSyscall[8].pCurrent)
357 #if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE
358 { "pread", (sqlite3_syscall_ptr
)pread
, 0 },
360 { "pread", (sqlite3_syscall_ptr
)0, 0 },
362 #define osPread ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[9].pCurrent)
364 #if defined(USE_PREAD64)
365 { "pread64", (sqlite3_syscall_ptr
)pread64
, 0 },
367 { "pread64", (sqlite3_syscall_ptr
)0, 0 },
369 #define osPread64 ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[10].pCurrent)
371 { "write", (sqlite3_syscall_ptr
)write
, 0 },
372 #define osWrite ((ssize_t(*)(int,const void*,size_t))aSyscall[11].pCurrent)
374 #if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE
375 { "pwrite", (sqlite3_syscall_ptr
)pwrite
, 0 },
377 { "pwrite", (sqlite3_syscall_ptr
)0, 0 },
379 #define osPwrite ((ssize_t(*)(int,const void*,size_t,off_t))\
380 aSyscall[12].pCurrent)
382 #if defined(USE_PREAD64)
383 { "pwrite64", (sqlite3_syscall_ptr
)pwrite64
, 0 },
385 { "pwrite64", (sqlite3_syscall_ptr
)0, 0 },
387 #define osPwrite64 ((ssize_t(*)(int,const void*,size_t,off_t))\
388 aSyscall[13].pCurrent)
390 #if SQLITE_ENABLE_LOCKING_STYLE
391 { "fchmod", (sqlite3_syscall_ptr
)fchmod
, 0 },
393 { "fchmod", (sqlite3_syscall_ptr
)0, 0 },
395 #define osFchmod ((int(*)(int,mode_t))aSyscall[14].pCurrent)
397 #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
398 { "fallocate", (sqlite3_syscall_ptr
)posix_fallocate
, 0 },
400 { "fallocate", (sqlite3_syscall_ptr
)0, 0 },
402 #define osFallocate ((int(*)(int,off_t,off_t))aSyscall[15].pCurrent)
404 { "unlink", (sqlite3_syscall_ptr
)unlink
, 0 },
405 #define osUnlink ((int(*)(const char*))aSyscall[16].pCurrent)
407 { "openDirectory", (sqlite3_syscall_ptr
)openDirectory
, 0 },
408 #define osOpenDirectory ((int(*)(const char*,int*))aSyscall[17].pCurrent)
410 }; /* End of the overrideable system calls */
413 ** This is the xSetSystemCall() method of sqlite3_vfs for all of the
414 ** "unix" VFSes. Return SQLITE_OK opon successfully updating the
415 ** system call pointer, or SQLITE_NOTFOUND if there is no configurable
416 ** system call named zName.
418 static int unixSetSystemCall(
419 sqlite3_vfs
*pNotUsed
, /* The VFS pointer. Not used */
420 const char *zName
, /* Name of system call to override */
421 sqlite3_syscall_ptr pNewFunc
/* Pointer to new system call value */
424 int rc
= SQLITE_NOTFOUND
;
426 UNUSED_PARAMETER(pNotUsed
);
428 /* If no zName is given, restore all system calls to their default
429 ** settings and return NULL
432 for(i
=0; i
<sizeof(aSyscall
)/sizeof(aSyscall
[0]); i
++){
433 if( aSyscall
[i
].pDefault
){
434 aSyscall
[i
].pCurrent
= aSyscall
[i
].pDefault
;
438 /* If zName is specified, operate on only the one system call
441 for(i
=0; i
<sizeof(aSyscall
)/sizeof(aSyscall
[0]); i
++){
442 if( strcmp(zName
, aSyscall
[i
].zName
)==0 ){
443 if( aSyscall
[i
].pDefault
==0 ){
444 aSyscall
[i
].pDefault
= aSyscall
[i
].pCurrent
;
447 if( pNewFunc
==0 ) pNewFunc
= aSyscall
[i
].pDefault
;
448 aSyscall
[i
].pCurrent
= pNewFunc
;
457 ** Return the value of a system call. Return NULL if zName is not a
458 ** recognized system call name. NULL is also returned if the system call
459 ** is currently undefined.
461 static sqlite3_syscall_ptr
unixGetSystemCall(
462 sqlite3_vfs
*pNotUsed
,
467 UNUSED_PARAMETER(pNotUsed
);
468 for(i
=0; i
<sizeof(aSyscall
)/sizeof(aSyscall
[0]); i
++){
469 if( strcmp(zName
, aSyscall
[i
].zName
)==0 ) return aSyscall
[i
].pCurrent
;
475 ** Return the name of the first system call after zName. If zName==NULL
476 ** then return the name of the first system call. Return NULL if zName
477 ** is the last system call or if zName is not the name of a valid
480 static const char *unixNextSystemCall(sqlite3_vfs
*p
, const char *zName
){
485 for(i
=0; i
<ArraySize(aSyscall
)-1; i
++){
486 if( strcmp(zName
, aSyscall
[i
].zName
)==0 ) break;
489 for(i
++; i
<ArraySize(aSyscall
); i
++){
490 if( aSyscall
[i
].pCurrent
!=0 ) return aSyscall
[i
].zName
;
496 ** Retry open() calls that fail due to EINTR
498 static int robust_open(const char *z
, int f
, int m
){
500 do{ rc
= osOpen(z
,f
,m
); }while( rc
<0 && errno
==EINTR
);
505 ** Helper functions to obtain and relinquish the global mutex. The
506 ** global mutex is used to protect the unixInodeInfo and
507 ** vxworksFileId objects used by this file, all of which may be
508 ** shared by multiple threads.
510 ** Function unixMutexHeld() is used to assert() that the global mutex
511 ** is held when required. This function is only used as part of assert()
515 ** assert( unixMutexHeld() );
518 static void unixEnterMutex(void){
519 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER
));
521 static void unixLeaveMutex(void){
522 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER
));
525 static int unixMutexHeld(void) {
526 return sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER
));
531 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
533 ** Helper function for printing out trace information from debugging
534 ** binaries. This returns the string represetation of the supplied
535 ** integer lock-type.
537 static const char *azFileLock(int eFileLock
){
539 case NO_LOCK
: return "NONE";
540 case SHARED_LOCK
: return "SHARED";
541 case RESERVED_LOCK
: return "RESERVED";
542 case PENDING_LOCK
: return "PENDING";
543 case EXCLUSIVE_LOCK
: return "EXCLUSIVE";
549 #ifdef SQLITE_LOCK_TRACE
551 ** Print out information about all locking operations.
553 ** This routine is used for troubleshooting locks on multithreaded
554 ** platforms. Enable by compiling with the -DSQLITE_LOCK_TRACE
555 ** command-line option on the compiler. This code is normally
558 static int lockTrace(int fd
, int op
, struct flock
*p
){
559 char *zOpName
, *zType
;
564 }else if( op
==F_SETLK
){
567 s
= osFcntl(fd
, op
, p
);
568 sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd
, op
, s
);
571 if( p
->l_type
==F_RDLCK
){
573 }else if( p
->l_type
==F_WRLCK
){
575 }else if( p
->l_type
==F_UNLCK
){
580 assert( p
->l_whence
==SEEK_SET
);
581 s
= osFcntl(fd
, op
, p
);
583 sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n",
584 threadid
, fd
, zOpName
, zType
, (int)p
->l_start
, (int)p
->l_len
,
586 if( s
==(-1) && op
==F_SETLK
&& (p
->l_type
==F_RDLCK
|| p
->l_type
==F_WRLCK
) ){
589 osFcntl(fd
, F_GETLK
, &l2
);
590 if( l2
.l_type
==F_RDLCK
){
592 }else if( l2
.l_type
==F_WRLCK
){
594 }else if( l2
.l_type
==F_UNLCK
){
599 sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n",
600 zType
, (int)l2
.l_start
, (int)l2
.l_len
, (int)l2
.l_pid
);
606 #define osFcntl lockTrace
607 #endif /* SQLITE_LOCK_TRACE */
610 ** Retry ftruncate() calls that fail due to EINTR
612 static int robust_ftruncate(int h
, sqlite3_int64 sz
){
614 do{ rc
= osFtruncate(h
,sz
); }while( rc
<0 && errno
==EINTR
);
619 ** This routine translates a standard POSIX errno code into something
620 ** useful to the clients of the sqlite3 functions. Specifically, it is
621 ** intended to translate a variety of "try again" errors into SQLITE_BUSY
622 ** and a variety of "please close the file descriptor NOW" errors into
625 ** Errors during initialization of locks, or file system support for locks,
626 ** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately.
628 static int sqliteErrorFromPosixError(int posixError
, int sqliteIOErr
) {
629 switch (posixError
) {
631 /* At one point this code was not commented out. In theory, this branch
632 ** should never be hit, as this function should only be called after
633 ** a locking-related function (i.e. fcntl()) has returned non-zero with
634 ** the value of errno as the first argument. Since a system call has failed,
635 ** errno should be non-zero.
637 ** Despite this, if errno really is zero, we still don't want to return
638 ** SQLITE_OK. The system call failed, and *some* SQLite error should be
639 ** propagated back to the caller. Commenting this branch out means errno==0
640 ** will be handled by the "default:" case below.
651 /* random NFS retry error, unless during file system support
652 * introspection, in which it actually means what it says */
656 /* EACCES is like EAGAIN during locking operations, but not any other time*/
657 if( (sqliteIOErr
== SQLITE_IOERR_LOCK
) ||
658 (sqliteIOErr
== SQLITE_IOERR_UNLOCK
) ||
659 (sqliteIOErr
== SQLITE_IOERR_RDLOCK
) ||
660 (sqliteIOErr
== SQLITE_IOERR_CHECKRESERVEDLOCK
) ){
663 /* else fall through */
667 /* EDEADLK is only possible if a call to fcntl(F_SETLKW) is made. And
668 ** this module never makes such a call. And the code in SQLite itself
669 ** asserts that SQLITE_IOERR_BLOCKED is never returned. For these reasons
670 ** this case is also commented out. If the system does set errno to EDEADLK,
671 ** the default SQLITE_IOERR_XXX code will be returned. */
674 return SQLITE_IOERR_BLOCKED
;
677 #if EOPNOTSUPP!=ENOTSUP
679 /* something went terribly awry, unless during file system support
680 * introspection, in which it actually means what it says */
684 /* invalid fd, unless during file system support introspection, in which
685 * it actually means what it says */
694 #ifdef ESTALE /* ESTALE is not defined on Interix systems */
698 /* these should force the client to close the file and reconnect */
707 /******************************************************************************
708 ****************** Begin Unique File ID Utility Used By VxWorks ***************
710 ** On most versions of unix, we can get a unique ID for a file by concatenating
711 ** the device number and the inode number. But this does not work on VxWorks.
712 ** On VxWorks, a unique file id must be based on the canonical filename.
714 ** A pointer to an instance of the following structure can be used as a
715 ** unique file ID in VxWorks. Each instance of this structure contains
716 ** a copy of the canonical filename. There is also a reference count.
717 ** The structure is reclaimed when the number of pointers to it drops to
720 ** There are never very many files open at one time and lookups are not
721 ** a performance-critical path, so it is sufficient to put these
722 ** structures on a linked list.
724 struct vxworksFileId
{
725 struct vxworksFileId
*pNext
; /* Next in a list of them all */
726 int nRef
; /* Number of references to this one */
727 int nName
; /* Length of the zCanonicalName[] string */
728 char *zCanonicalName
; /* Canonical filename */
733 ** All unique filenames are held on a linked list headed by this
736 static struct vxworksFileId
*vxworksFileList
= 0;
739 ** Simplify a filename into its canonical form
740 ** by making the following changes:
742 ** * removing any trailing and duplicate /
743 ** * convert /./ into just /
744 ** * convert /A/../ where A is any simple name into just /
746 ** Changes are made in-place. Return the new name length.
748 ** The original filename is in z[0..n-1]. Return the number of
749 ** characters in the simplified name.
751 static int vxworksSimplifyName(char *z
, int n
){
753 while( n
>1 && z
[n
-1]=='/' ){ n
--; }
754 for(i
=j
=0; i
<n
; i
++){
756 if( z
[i
+1]=='/' ) continue;
757 if( z
[i
+1]=='.' && i
+2<n
&& z
[i
+2]=='/' ){
761 if( z
[i
+1]=='.' && i
+3<n
&& z
[i
+2]=='.' && z
[i
+3]=='/' ){
762 while( j
>0 && z
[j
-1]!='/' ){ j
--; }
775 ** Find a unique file ID for the given absolute pathname. Return
776 ** a pointer to the vxworksFileId object. This pointer is the unique
779 ** The nRef field of the vxworksFileId object is incremented before
780 ** the object is returned. A new vxworksFileId object is created
781 ** and added to the global list if necessary.
783 ** If a memory allocation error occurs, return NULL.
785 static struct vxworksFileId
*vxworksFindFileId(const char *zAbsoluteName
){
786 struct vxworksFileId
*pNew
; /* search key and new file ID */
787 struct vxworksFileId
*pCandidate
; /* For looping over existing file IDs */
788 int n
; /* Length of zAbsoluteName string */
790 assert( zAbsoluteName
[0]=='/' );
791 n
= (int)strlen(zAbsoluteName
);
792 pNew
= sqlite3_malloc( sizeof(*pNew
) + (n
+1) );
793 if( pNew
==0 ) return 0;
794 pNew
->zCanonicalName
= (char*)&pNew
[1];
795 memcpy(pNew
->zCanonicalName
, zAbsoluteName
, n
+1);
796 n
= vxworksSimplifyName(pNew
->zCanonicalName
, n
);
798 /* Search for an existing entry that matching the canonical name.
799 ** If found, increment the reference count and return a pointer to
800 ** the existing file ID.
803 for(pCandidate
=vxworksFileList
; pCandidate
; pCandidate
=pCandidate
->pNext
){
804 if( pCandidate
->nName
==n
805 && memcmp(pCandidate
->zCanonicalName
, pNew
->zCanonicalName
, n
)==0
814 /* No match was found. We will make a new file ID */
817 pNew
->pNext
= vxworksFileList
;
818 vxworksFileList
= pNew
;
824 ** Decrement the reference count on a vxworksFileId object. Free
825 ** the object when the reference count reaches zero.
827 static void vxworksReleaseFileId(struct vxworksFileId
*pId
){
829 assert( pId
->nRef
>0 );
832 struct vxworksFileId
**pp
;
833 for(pp
=&vxworksFileList
; *pp
&& *pp
!=pId
; pp
= &((*pp
)->pNext
)){}
840 #endif /* OS_VXWORKS */
841 /*************** End of Unique File ID Utility Used By VxWorks ****************
842 ******************************************************************************/
845 /******************************************************************************
846 *************************** Posix Advisory Locking ****************************
848 ** POSIX advisory locks are broken by design. ANSI STD 1003.1 (1996)
849 ** section 6.5.2.2 lines 483 through 490 specify that when a process
850 ** sets or clears a lock, that operation overrides any prior locks set
851 ** by the same process. It does not explicitly say so, but this implies
852 ** that it overrides locks set by the same process using a different
853 ** file descriptor. Consider this test case:
855 ** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
856 ** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
858 ** Suppose ./file1 and ./file2 are really the same file (because
859 ** one is a hard or symbolic link to the other) then if you set
860 ** an exclusive lock on fd1, then try to get an exclusive lock
861 ** on fd2, it works. I would have expected the second lock to
862 ** fail since there was already a lock on the file due to fd1.
863 ** But not so. Since both locks came from the same process, the
864 ** second overrides the first, even though they were on different
865 ** file descriptors opened on different file names.
867 ** This means that we cannot use POSIX locks to synchronize file access
868 ** among competing threads of the same process. POSIX locks will work fine
869 ** to synchronize access for threads in separate processes, but not
870 ** threads within the same process.
872 ** To work around the problem, SQLite has to manage file locks internally
873 ** on its own. Whenever a new database is opened, we have to find the
874 ** specific inode of the database file (the inode is determined by the
875 ** st_dev and st_ino fields of the stat structure that fstat() fills in)
876 ** and check for locks already existing on that inode. When locks are
877 ** created or removed, we have to look at our own internal record of the
878 ** locks to see if another thread has previously set a lock on that same
881 ** (Aside: The use of inode numbers as unique IDs does not work on VxWorks.
882 ** For VxWorks, we have to use the alternative unique ID system based on
883 ** canonical filename and implemented in the previous division.)
885 ** The sqlite3_file structure for POSIX is no longer just an integer file
886 ** descriptor. It is now a structure that holds the integer file
887 ** descriptor and a pointer to a structure that describes the internal
888 ** locks on the corresponding inode. There is one locking structure
889 ** per inode, so if the same inode is opened twice, both unixFile structures
890 ** point to the same locking structure. The locking structure keeps
891 ** a reference count (so we will know when to delete it) and a "cnt"
892 ** field that tells us its internal lock status. cnt==0 means the
893 ** file is unlocked. cnt==-1 means the file has an exclusive lock.
894 ** cnt>0 means there are cnt shared locks on the file.
896 ** Any attempt to lock or unlock a file first checks the locking
897 ** structure. The fcntl() system call is only invoked to set a
898 ** POSIX lock if the internal lock structure transitions between
899 ** a locked and an unlocked state.
901 ** But wait: there are yet more problems with POSIX advisory locks.
903 ** If you close a file descriptor that points to a file that has locks,
904 ** all locks on that file that are owned by the current process are
905 ** released. To work around this problem, each unixInodeInfo object
906 ** maintains a count of the number of pending locks on tha inode.
907 ** When an attempt is made to close an unixFile, if there are
908 ** other unixFile open on the same inode that are holding locks, the call
909 ** to close() the file descriptor is deferred until all of the locks clear.
910 ** The unixInodeInfo structure keeps a list of file descriptors that need to
911 ** be closed and that list is walked (and cleared) when the last lock
914 ** Yet another problem: LinuxThreads do not play well with posix locks.
916 ** Many older versions of linux use the LinuxThreads library which is
917 ** not posix compliant. Under LinuxThreads, a lock created by thread
918 ** A cannot be modified or overridden by a different thread B.
919 ** Only thread A can modify the lock. Locking behavior is correct
920 ** if the appliation uses the newer Native Posix Thread Library (NPTL)
921 ** on linux - with NPTL a lock created by thread A can override locks
922 ** in thread B. But there is no way to know at compile-time which
923 ** threading library is being used. So there is no way to know at
924 ** compile-time whether or not thread A can override locks on thread B.
925 ** One has to do a run-time check to discover the behavior of the
928 ** SQLite used to support LinuxThreads. But support for LinuxThreads
929 ** was dropped beginning with version 3.7.0. SQLite will still work with
930 ** LinuxThreads provided that (1) there is no more than one connection
931 ** per database file in the same process and (2) database connections
932 ** do not move across threads.
936 ** An instance of the following structure serves as the key used
937 ** to locate a particular unixInodeInfo object.
940 dev_t dev
; /* Device number */
942 struct vxworksFileId
*pId
; /* Unique file ID for vxworks. */
944 ino_t ino
; /* Inode number */
949 ** An instance of the following structure is allocated for each open
950 ** inode. Or, on LinuxThreads, there is one of these structures for
951 ** each inode opened by each thread.
953 ** A single inode can have multiple file descriptors, so each unixFile
954 ** structure contains a pointer to an instance of this object and this
955 ** object keeps a count of the number of unixFile pointing to it.
957 struct unixInodeInfo
{
958 struct unixFileId fileId
; /* The lookup key */
959 int nShared
; /* Number of SHARED locks held */
960 unsigned char eFileLock
; /* One of SHARED_LOCK, RESERVED_LOCK etc. */
961 unsigned char bProcessLock
; /* An exclusive process lock is held */
962 int nRef
; /* Number of pointers to this structure */
963 unixShmNode
*pShmNode
; /* Shared memory associated with this inode */
964 int nLock
; /* Number of outstanding file locks */
965 UnixUnusedFd
*pUnused
; /* Unused file descriptors to close */
966 unixInodeInfo
*pNext
; /* List of all unixInodeInfo objects */
967 unixInodeInfo
*pPrev
; /* .... doubly linked */
968 #if SQLITE_ENABLE_LOCKING_STYLE
969 unsigned long long sharedByte
; /* for AFP simulated shared lock */
972 sem_t
*pSem
; /* Named POSIX semaphore */
973 char aSemName
[MAX_PATHNAME
+2]; /* Name of that semaphore */
978 ** A lists of all unixInodeInfo objects.
980 static unixInodeInfo
*inodeList
= 0;
984 ** This function - unixLogError_x(), is only ever called via the macro
987 ** It is invoked after an error occurs in an OS function and errno has been
988 ** set. It logs a message using sqlite3_log() containing the current value of
989 ** errno and, if possible, the human-readable equivalent from strerror() or
992 ** The first argument passed to the macro should be the error code that
993 ** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN).
994 ** The two subsequent arguments should be the name of the OS function that
995 ** failed (e.g. "unlink", "open") and the the associated file-system path,
998 #define unixLogError(a,b,c) unixLogErrorAtLine(a,b,c,__LINE__)
999 static int unixLogErrorAtLine(
1000 int errcode
, /* SQLite error code */
1001 const char *zFunc
, /* Name of OS function that failed */
1002 const char *zPath
, /* File path associated with error */
1003 int iLine
/* Source line number where error occurred */
1005 char *zErr
; /* Message from strerror() or equivalent */
1006 int iErrno
= errno
; /* Saved syscall error number */
1008 /* If this is not a threadsafe build (SQLITE_THREADSAFE==0), then use
1009 ** the strerror() function to obtain the human-readable error message
1010 ** equivalent to errno. Otherwise, use strerror_r().
1012 #if SQLITE_THREADSAFE && defined(HAVE_STRERROR_R)
1014 memset(aErr
, 0, sizeof(aErr
));
1017 /* If STRERROR_R_CHAR_P (set by autoconf scripts) or __USE_GNU is defined,
1018 ** assume that the system provides the the GNU version of strerror_r() that
1019 ** returns a pointer to a buffer containing the error message. That pointer
1020 ** may point to aErr[], or it may point to some static storage somewhere.
1021 ** Otherwise, assume that the system provides the POSIX version of
1022 ** strerror_r(), which always writes an error message into aErr[].
1024 ** If the code incorrectly assumes that it is the POSIX version that is
1025 ** available, the error message will often be an empty string. Not a
1026 ** huge problem. Incorrectly concluding that the GNU version is available
1027 ** could lead to a segfault though.
1029 #if defined(STRERROR_R_CHAR_P) || defined(__USE_GNU)
1032 strerror_r(iErrno
, aErr
, sizeof(aErr
)-1);
1034 #elif SQLITE_THREADSAFE
1035 /* This is a threadsafe build, but strerror_r() is not available. */
1038 /* Non-threadsafe build, use strerror(). */
1039 zErr
= strerror(iErrno
);
1042 assert( errcode
!=SQLITE_OK
);
1043 if( zPath
==0 ) zPath
= "";
1044 sqlite3_log(errcode
,
1045 "os_unix.c:%d: (%d) %s(%s) - %s",
1046 iLine
, iErrno
, zFunc
, zPath
, zErr
1053 ** Close a file descriptor.
1055 ** We assume that close() almost always works, since it is only in a
1056 ** very sick application or on a very sick platform that it might fail.
1057 ** If it does fail, simply leak the file descriptor, but do log the
1060 ** Note that it is not safe to retry close() after EINTR since the
1061 ** file descriptor might have already been reused by another thread.
1062 ** So we don't even try to recover from an EINTR. Just log the error
1065 static void robust_close(unixFile
*pFile
, int h
, int lineno
){
1067 unixLogErrorAtLine(SQLITE_IOERR_CLOSE
, "close",
1068 pFile
? pFile
->zPath
: 0, lineno
);
1073 ** Close all file descriptors accumuated in the unixInodeInfo->pUnused list.
1075 static void closePendingFds(unixFile
*pFile
){
1076 unixInodeInfo
*pInode
= pFile
->pInode
;
1078 UnixUnusedFd
*pNext
;
1079 for(p
=pInode
->pUnused
; p
; p
=pNext
){
1081 robust_close(pFile
, p
->fd
, __LINE__
);
1084 pInode
->pUnused
= 0;
1088 ** Release a unixInodeInfo structure previously allocated by findInodeInfo().
1090 ** The mutex entered using the unixEnterMutex() function must be held
1091 ** when this function is called.
1093 static void releaseInodeInfo(unixFile
*pFile
){
1094 unixInodeInfo
*pInode
= pFile
->pInode
;
1095 assert( unixMutexHeld() );
1096 if( ALWAYS(pInode
) ){
1098 if( pInode
->nRef
==0 ){
1099 assert( pInode
->pShmNode
==0 );
1100 closePendingFds(pFile
);
1101 if( pInode
->pPrev
){
1102 assert( pInode
->pPrev
->pNext
==pInode
);
1103 pInode
->pPrev
->pNext
= pInode
->pNext
;
1105 assert( inodeList
==pInode
);
1106 inodeList
= pInode
->pNext
;
1108 if( pInode
->pNext
){
1109 assert( pInode
->pNext
->pPrev
==pInode
);
1110 pInode
->pNext
->pPrev
= pInode
->pPrev
;
1112 sqlite3_free(pInode
);
1118 ** Given a file descriptor, locate the unixInodeInfo object that
1119 ** describes that file descriptor. Create a new one if necessary. The
1120 ** return value might be uninitialized if an error occurs.
1122 ** The mutex entered using the unixEnterMutex() function must be held
1123 ** when this function is called.
1125 ** Return an appropriate error code.
1127 static int findInodeInfo(
1128 unixFile
*pFile
, /* Unix file with file desc used in the key */
1129 unixInodeInfo
**ppInode
/* Return the unixInodeInfo object here */
1131 int rc
; /* System call return code */
1132 int fd
; /* The file descriptor for pFile */
1133 struct unixFileId fileId
; /* Lookup key for the unixInodeInfo */
1134 struct stat statbuf
; /* Low-level file information */
1135 unixInodeInfo
*pInode
= 0; /* Candidate unixInodeInfo object */
1137 assert( unixMutexHeld() );
1139 /* Get low-level information about the file that we can used to
1140 ** create a unique name for the file.
1143 rc
= osFstat(fd
, &statbuf
);
1145 pFile
->lastErrno
= errno
;
1147 if( pFile
->lastErrno
==EOVERFLOW
) return SQLITE_NOLFS
;
1149 return SQLITE_IOERR
;
1153 /* On OS X on an msdos filesystem, the inode number is reported
1154 ** incorrectly for zero-size files. See ticket #3260. To work
1155 ** around this problem (we consider it a bug in OS X, not SQLite)
1156 ** we always increase the file size to 1 by writing a single byte
1157 ** prior to accessing the inode number. The one byte written is
1158 ** an ASCII 'S' character which also happens to be the first byte
1159 ** in the header of every SQLite database. In this way, if there
1160 ** is a race condition such that another thread has already populated
1161 ** the first page of the database, no damage is done.
1163 if( statbuf
.st_size
==0 && (pFile
->fsFlags
& SQLITE_FSFLAGS_IS_MSDOS
)!=0 ){
1164 do{ rc
= osWrite(fd
, "S", 1); }while( rc
<0 && errno
==EINTR
);
1166 pFile
->lastErrno
= errno
;
1167 return SQLITE_IOERR
;
1169 rc
= osFstat(fd
, &statbuf
);
1171 pFile
->lastErrno
= errno
;
1172 return SQLITE_IOERR
;
1177 memset(&fileId
, 0, sizeof(fileId
));
1178 fileId
.dev
= statbuf
.st_dev
;
1180 fileId
.pId
= pFile
->pId
;
1182 fileId
.ino
= statbuf
.st_ino
;
1185 while( pInode
&& memcmp(&fileId
, &pInode
->fileId
, sizeof(fileId
)) ){
1186 pInode
= pInode
->pNext
;
1189 pInode
= sqlite3_malloc( sizeof(*pInode
) );
1191 return SQLITE_NOMEM
;
1193 memset(pInode
, 0, sizeof(*pInode
));
1194 memcpy(&pInode
->fileId
, &fileId
, sizeof(fileId
));
1196 pInode
->pNext
= inodeList
;
1198 if( inodeList
) inodeList
->pPrev
= pInode
;
1209 ** This routine checks if there is a RESERVED lock held on the specified
1210 ** file by this or any other process. If such a lock is held, set *pResOut
1211 ** to a non-zero value otherwise *pResOut is set to zero. The return value
1212 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
1214 static int unixCheckReservedLock(sqlite3_file
*id
, int *pResOut
){
1217 unixFile
*pFile
= (unixFile
*)id
;
1219 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK
; );
1222 unixEnterMutex(); /* Because pFile->pInode is shared across threads */
1224 /* Check if a thread in this process holds such a lock */
1225 if( pFile
->pInode
->eFileLock
>SHARED_LOCK
){
1229 /* Otherwise see if some other process holds it.
1232 if( !reserved
&& !pFile
->pInode
->bProcessLock
){
1234 lock
.l_whence
= SEEK_SET
;
1235 lock
.l_start
= RESERVED_BYTE
;
1237 lock
.l_type
= F_WRLCK
;
1238 if( osFcntl(pFile
->h
, F_GETLK
, &lock
) ){
1239 rc
= SQLITE_IOERR_CHECKRESERVEDLOCK
;
1240 pFile
->lastErrno
= errno
;
1241 } else if( lock
.l_type
!=F_UNLCK
){
1248 OSTRACE(("TEST WR-LOCK %d %d %d (unix)\n", pFile
->h
, rc
, reserved
));
1250 *pResOut
= reserved
;
1255 ** Attempt to set a system-lock on the file pFile. The lock is
1256 ** described by pLock.
1258 ** If the pFile was opened read/write from unix-excl, then the only lock
1259 ** ever obtained is an exclusive lock, and it is obtained exactly once
1260 ** the first time any lock is attempted. All subsequent system locking
1261 ** operations become no-ops. Locking operations still happen internally,
1262 ** in order to coordinate access between separate database connections
1263 ** within this process, but all of that is handled in memory and the
1264 ** operating system does not participate.
1266 ** This function is a pass-through to fcntl(F_SETLK) if pFile is using
1267 ** any VFS other than "unix-excl" or if pFile is opened on "unix-excl"
1268 ** and is read-only.
1270 ** Zero is returned if the call completes successfully, or -1 if a call
1271 ** to fcntl() fails. In this case, errno is set appropriately (by fcntl()).
1273 static int unixFileLock(unixFile
*pFile
, struct flock
*pLock
){
1275 unixInodeInfo
*pInode
= pFile
->pInode
;
1276 assert( unixMutexHeld() );
1277 assert( pInode
!=0 );
1278 if( ((pFile
->ctrlFlags
& UNIXFILE_EXCL
)!=0 || pInode
->bProcessLock
)
1279 && ((pFile
->ctrlFlags
& UNIXFILE_RDONLY
)==0)
1281 if( pInode
->bProcessLock
==0 ){
1283 assert( pInode
->nLock
==0 );
1284 lock
.l_whence
= SEEK_SET
;
1285 lock
.l_start
= SHARED_FIRST
;
1286 lock
.l_len
= SHARED_SIZE
;
1287 lock
.l_type
= F_WRLCK
;
1288 rc
= osFcntl(pFile
->h
, F_SETLK
, &lock
);
1289 if( rc
<0 ) return rc
;
1290 pInode
->bProcessLock
= 1;
1296 rc
= osFcntl(pFile
->h
, F_SETLK
, pLock
);
1302 ** Lock the file with the lock specified by parameter eFileLock - one
1303 ** of the following:
1306 ** (2) RESERVED_LOCK
1308 ** (4) EXCLUSIVE_LOCK
1310 ** Sometimes when requesting one lock state, additional lock states
1311 ** are inserted in between. The locking might fail on one of the later
1312 ** transitions leaving the lock state different from what it started but
1313 ** still short of its goal. The following chart shows the allowed
1314 ** transitions and the inserted intermediate states:
1316 ** UNLOCKED -> SHARED
1317 ** SHARED -> RESERVED
1318 ** SHARED -> (PENDING) -> EXCLUSIVE
1319 ** RESERVED -> (PENDING) -> EXCLUSIVE
1320 ** PENDING -> EXCLUSIVE
1322 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
1323 ** routine to lower a locking level.
1325 static int unixLock(sqlite3_file
*id
, int eFileLock
){
1326 /* The following describes the implementation of the various locks and
1327 ** lock transitions in terms of the POSIX advisory shared and exclusive
1328 ** lock primitives (called read-locks and write-locks below, to avoid
1329 ** confusion with SQLite lock names). The algorithms are complicated
1330 ** slightly in order to be compatible with windows systems simultaneously
1331 ** accessing the same database file, in case that is ever required.
1333 ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved
1334 ** byte', each single bytes at well known offsets, and the 'shared byte
1335 ** range', a range of 510 bytes at a well known offset.
1337 ** To obtain a SHARED lock, a read-lock is obtained on the 'pending
1338 ** byte'. If this is successful, a random byte from the 'shared byte
1339 ** range' is read-locked and the lock on the 'pending byte' released.
1341 ** A process may only obtain a RESERVED lock after it has a SHARED lock.
1342 ** A RESERVED lock is implemented by grabbing a write-lock on the
1345 ** A process may only obtain a PENDING lock after it has obtained a
1346 ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock
1347 ** on the 'pending byte'. This ensures that no new SHARED locks can be
1348 ** obtained, but existing SHARED locks are allowed to persist. A process
1349 ** does not have to obtain a RESERVED lock on the way to a PENDING lock.
1350 ** This property is used by the algorithm for rolling back a journal file
1353 ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is
1354 ** implemented by obtaining a write-lock on the entire 'shared byte
1355 ** range'. Since all other locks require a read-lock on one of the bytes
1356 ** within this range, this ensures that no other locks are held on the
1359 ** The reason a single byte cannot be used instead of the 'shared byte
1360 ** range' is that some versions of windows do not support read-locks. By
1361 ** locking a random byte from a range, concurrent SHARED locks may exist
1362 ** even if the locking primitive used is always a write-lock.
1365 unixFile
*pFile
= (unixFile
*)id
;
1366 unixInodeInfo
*pInode
;
1371 OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (unix)\n", pFile
->h
,
1372 azFileLock(eFileLock
), azFileLock(pFile
->eFileLock
),
1373 azFileLock(pFile
->pInode
->eFileLock
), pFile
->pInode
->nShared
, getpid()));
1375 /* If there is already a lock of this type or more restrictive on the
1376 ** unixFile, do nothing. Don't use the end_lock: exit path, as
1377 ** unixEnterMutex() hasn't been called yet.
1379 if( pFile
->eFileLock
>=eFileLock
){
1380 OSTRACE(("LOCK %d %s ok (already held) (unix)\n", pFile
->h
,
1381 azFileLock(eFileLock
)));
1385 /* Make sure the locking sequence is correct.
1386 ** (1) We never move from unlocked to anything higher than shared lock.
1387 ** (2) SQLite never explicitly requests a pendig lock.
1388 ** (3) A shared lock is always held when a reserve lock is requested.
1390 assert( pFile
->eFileLock
!=NO_LOCK
|| eFileLock
==SHARED_LOCK
);
1391 assert( eFileLock
!=PENDING_LOCK
);
1392 assert( eFileLock
!=RESERVED_LOCK
|| pFile
->eFileLock
==SHARED_LOCK
);
1394 /* This mutex is needed because pFile->pInode is shared across threads
1397 pInode
= pFile
->pInode
;
1399 /* If some thread using this PID has a lock via a different unixFile*
1400 ** handle that precludes the requested lock, return BUSY.
1402 if( (pFile
->eFileLock
!=pInode
->eFileLock
&&
1403 (pInode
->eFileLock
>=PENDING_LOCK
|| eFileLock
>SHARED_LOCK
))
1409 /* If a SHARED lock is requested, and some thread using this PID already
1410 ** has a SHARED or RESERVED lock, then increment reference counts and
1411 ** return SQLITE_OK.
1413 if( eFileLock
==SHARED_LOCK
&&
1414 (pInode
->eFileLock
==SHARED_LOCK
|| pInode
->eFileLock
==RESERVED_LOCK
) ){
1415 assert( eFileLock
==SHARED_LOCK
);
1416 assert( pFile
->eFileLock
==0 );
1417 assert( pInode
->nShared
>0 );
1418 pFile
->eFileLock
= SHARED_LOCK
;
1425 /* A PENDING lock is needed before acquiring a SHARED lock and before
1426 ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
1430 lock
.l_whence
= SEEK_SET
;
1431 if( eFileLock
==SHARED_LOCK
1432 || (eFileLock
==EXCLUSIVE_LOCK
&& pFile
->eFileLock
<PENDING_LOCK
)
1434 lock
.l_type
= (eFileLock
==SHARED_LOCK
?F_RDLCK
:F_WRLCK
);
1435 lock
.l_start
= PENDING_BYTE
;
1436 if( unixFileLock(pFile
, &lock
) ){
1438 rc
= sqliteErrorFromPosixError(tErrno
, SQLITE_IOERR_LOCK
);
1439 if( rc
!=SQLITE_BUSY
){
1440 pFile
->lastErrno
= tErrno
;
1447 /* If control gets to this point, then actually go ahead and make
1448 ** operating system calls for the specified lock.
1450 if( eFileLock
==SHARED_LOCK
){
1451 assert( pInode
->nShared
==0 );
1452 assert( pInode
->eFileLock
==0 );
1453 assert( rc
==SQLITE_OK
);
1455 /* Now get the read-lock */
1456 lock
.l_start
= SHARED_FIRST
;
1457 lock
.l_len
= SHARED_SIZE
;
1458 if( unixFileLock(pFile
, &lock
) ){
1460 rc
= sqliteErrorFromPosixError(tErrno
, SQLITE_IOERR_LOCK
);
1463 /* Drop the temporary PENDING lock */
1464 lock
.l_start
= PENDING_BYTE
;
1466 lock
.l_type
= F_UNLCK
;
1467 if( unixFileLock(pFile
, &lock
) && rc
==SQLITE_OK
){
1468 /* This could happen with a network mount */
1470 rc
= SQLITE_IOERR_UNLOCK
;
1474 if( rc
!=SQLITE_BUSY
){
1475 pFile
->lastErrno
= tErrno
;
1479 pFile
->eFileLock
= SHARED_LOCK
;
1481 pInode
->nShared
= 1;
1483 }else if( eFileLock
==EXCLUSIVE_LOCK
&& pInode
->nShared
>1 ){
1484 /* We are trying for an exclusive lock but another thread in this
1485 ** same process is still holding a shared lock. */
1488 /* The request was for a RESERVED or EXCLUSIVE lock. It is
1489 ** assumed that there is a SHARED or greater lock on the file
1492 assert( 0!=pFile
->eFileLock
);
1493 lock
.l_type
= F_WRLCK
;
1495 assert( eFileLock
==RESERVED_LOCK
|| eFileLock
==EXCLUSIVE_LOCK
);
1496 if( eFileLock
==RESERVED_LOCK
){
1497 lock
.l_start
= RESERVED_BYTE
;
1500 lock
.l_start
= SHARED_FIRST
;
1501 lock
.l_len
= SHARED_SIZE
;
1504 if( unixFileLock(pFile
, &lock
) ){
1506 rc
= sqliteErrorFromPosixError(tErrno
, SQLITE_IOERR_LOCK
);
1507 if( rc
!=SQLITE_BUSY
){
1508 pFile
->lastErrno
= tErrno
;
1515 /* Set up the transaction-counter change checking flags when
1516 ** transitioning from a SHARED to a RESERVED lock. The change
1517 ** from SHARED to RESERVED marks the beginning of a normal
1518 ** write operation (not a hot journal rollback).
1521 && pFile
->eFileLock
<=SHARED_LOCK
1522 && eFileLock
==RESERVED_LOCK
1524 pFile
->transCntrChng
= 0;
1525 pFile
->dbUpdate
= 0;
1526 pFile
->inNormalWrite
= 1;
1531 if( rc
==SQLITE_OK
){
1532 pFile
->eFileLock
= eFileLock
;
1533 pInode
->eFileLock
= eFileLock
;
1534 }else if( eFileLock
==EXCLUSIVE_LOCK
){
1535 pFile
->eFileLock
= PENDING_LOCK
;
1536 pInode
->eFileLock
= PENDING_LOCK
;
1541 OSTRACE(("LOCK %d %s %s (unix)\n", pFile
->h
, azFileLock(eFileLock
),
1542 rc
==SQLITE_OK
? "ok" : "failed"));
1547 ** Add the file descriptor used by file handle pFile to the corresponding
1550 static void setPendingFd(unixFile
*pFile
){
1551 unixInodeInfo
*pInode
= pFile
->pInode
;
1552 UnixUnusedFd
*p
= pFile
->pUnused
;
1553 p
->pNext
= pInode
->pUnused
;
1554 pInode
->pUnused
= p
;
1560 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
1561 ** must be either NO_LOCK or SHARED_LOCK.
1563 ** If the locking level of the file descriptor is already at or below
1564 ** the requested locking level, this routine is a no-op.
1566 ** If handleNFSUnlock is true, then on downgrading an EXCLUSIVE_LOCK to SHARED
1567 ** the byte range is divided into 2 parts and the first part is unlocked then
1568 ** set to a read lock, then the other part is simply unlocked. This works
1569 ** around a bug in BSD NFS lockd (also seen on MacOSX 10.3+) that fails to
1570 ** remove the write lock on a region when a read lock is set.
1572 static int posixUnlock(sqlite3_file
*id
, int eFileLock
, int handleNFSUnlock
){
1573 unixFile
*pFile
= (unixFile
*)id
;
1574 unixInodeInfo
*pInode
;
1579 OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (unix)\n", pFile
->h
, eFileLock
,
1580 pFile
->eFileLock
, pFile
->pInode
->eFileLock
, pFile
->pInode
->nShared
,
1583 assert( eFileLock
<=SHARED_LOCK
);
1584 if( pFile
->eFileLock
<=eFileLock
){
1588 pInode
= pFile
->pInode
;
1589 assert( pInode
->nShared
!=0 );
1590 if( pFile
->eFileLock
>SHARED_LOCK
){
1591 assert( pInode
->eFileLock
==pFile
->eFileLock
);
1594 /* When reducing a lock such that other processes can start
1595 ** reading the database file again, make sure that the
1596 ** transaction counter was updated if any part of the database
1597 ** file changed. If the transaction counter is not updated,
1598 ** other connections to the same file might not realize that
1599 ** the file has changed and hence might not know to flush their
1600 ** cache. The use of a stale cache can lead to database corruption.
1602 pFile
->inNormalWrite
= 0;
1605 /* downgrading to a shared lock on NFS involves clearing the write lock
1606 ** before establishing the readlock - to avoid a race condition we downgrade
1607 ** the lock in 2 blocks, so that part of the range will be covered by a
1608 ** write lock until the rest is covered by a read lock:
1614 if( eFileLock
==SHARED_LOCK
){
1616 #if !defined(__APPLE__) || !SQLITE_ENABLE_LOCKING_STYLE
1617 (void)handleNFSUnlock
;
1618 assert( handleNFSUnlock
==0 );
1620 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
1621 if( handleNFSUnlock
){
1622 int tErrno
; /* Error code from system call errors */
1623 off_t divSize
= SHARED_SIZE
- 1;
1625 lock
.l_type
= F_UNLCK
;
1626 lock
.l_whence
= SEEK_SET
;
1627 lock
.l_start
= SHARED_FIRST
;
1628 lock
.l_len
= divSize
;
1629 if( unixFileLock(pFile
, &lock
)==(-1) ){
1631 rc
= SQLITE_IOERR_UNLOCK
;
1632 if( IS_LOCK_ERROR(rc
) ){
1633 pFile
->lastErrno
= tErrno
;
1637 lock
.l_type
= F_RDLCK
;
1638 lock
.l_whence
= SEEK_SET
;
1639 lock
.l_start
= SHARED_FIRST
;
1640 lock
.l_len
= divSize
;
1641 if( unixFileLock(pFile
, &lock
)==(-1) ){
1643 rc
= sqliteErrorFromPosixError(tErrno
, SQLITE_IOERR_RDLOCK
);
1644 if( IS_LOCK_ERROR(rc
) ){
1645 pFile
->lastErrno
= tErrno
;
1649 lock
.l_type
= F_UNLCK
;
1650 lock
.l_whence
= SEEK_SET
;
1651 lock
.l_start
= SHARED_FIRST
+divSize
;
1652 lock
.l_len
= SHARED_SIZE
-divSize
;
1653 if( unixFileLock(pFile
, &lock
)==(-1) ){
1655 rc
= SQLITE_IOERR_UNLOCK
;
1656 if( IS_LOCK_ERROR(rc
) ){
1657 pFile
->lastErrno
= tErrno
;
1662 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
1664 lock
.l_type
= F_RDLCK
;
1665 lock
.l_whence
= SEEK_SET
;
1666 lock
.l_start
= SHARED_FIRST
;
1667 lock
.l_len
= SHARED_SIZE
;
1668 if( unixFileLock(pFile
, &lock
) ){
1669 /* In theory, the call to unixFileLock() cannot fail because another
1670 ** process is holding an incompatible lock. If it does, this
1671 ** indicates that the other process is not following the locking
1672 ** protocol. If this happens, return SQLITE_IOERR_RDLOCK. Returning
1673 ** SQLITE_BUSY would confuse the upper layer (in practice it causes
1674 ** an assert to fail). */
1675 rc
= SQLITE_IOERR_RDLOCK
;
1676 pFile
->lastErrno
= errno
;
1681 lock
.l_type
= F_UNLCK
;
1682 lock
.l_whence
= SEEK_SET
;
1683 lock
.l_start
= PENDING_BYTE
;
1684 lock
.l_len
= 2L; assert( PENDING_BYTE
+1==RESERVED_BYTE
);
1685 if( unixFileLock(pFile
, &lock
)==0 ){
1686 pInode
->eFileLock
= SHARED_LOCK
;
1688 rc
= SQLITE_IOERR_UNLOCK
;
1689 pFile
->lastErrno
= errno
;
1693 if( eFileLock
==NO_LOCK
){
1694 /* Decrement the shared lock counter. Release the lock using an
1695 ** OS call only when all threads in this same process have released
1699 if( pInode
->nShared
==0 ){
1700 lock
.l_type
= F_UNLCK
;
1701 lock
.l_whence
= SEEK_SET
;
1702 lock
.l_start
= lock
.l_len
= 0L;
1703 if( unixFileLock(pFile
, &lock
)==0 ){
1704 pInode
->eFileLock
= NO_LOCK
;
1706 rc
= SQLITE_IOERR_UNLOCK
;
1707 pFile
->lastErrno
= errno
;
1708 pInode
->eFileLock
= NO_LOCK
;
1709 pFile
->eFileLock
= NO_LOCK
;
1713 /* Decrement the count of locks against this same file. When the
1714 ** count reaches zero, close any other file descriptors whose close
1715 ** was deferred because of outstanding locks.
1718 assert( pInode
->nLock
>=0 );
1719 if( pInode
->nLock
==0 ){
1720 closePendingFds(pFile
);
1726 if( rc
==SQLITE_OK
) pFile
->eFileLock
= eFileLock
;
1731 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
1732 ** must be either NO_LOCK or SHARED_LOCK.
1734 ** If the locking level of the file descriptor is already at or below
1735 ** the requested locking level, this routine is a no-op.
1737 static int unixUnlock(sqlite3_file
*id
, int eFileLock
){
1738 return posixUnlock(id
, eFileLock
, 0);
1742 ** This function performs the parts of the "close file" operation
1743 ** common to all locking schemes. It closes the directory and file
1744 ** handles, if they are valid, and sets all fields of the unixFile
1747 ** It is *not* necessary to hold the mutex when this routine is called,
1748 ** even on VxWorks. A mutex will be acquired on VxWorks by the
1749 ** vxworksReleaseFileId() routine.
1751 static int closeUnixFile(sqlite3_file
*id
){
1752 unixFile
*pFile
= (unixFile
*)id
;
1754 robust_close(pFile
, pFile
->h
, __LINE__
);
1759 if( pFile
->isDelete
){
1760 osUnlink(pFile
->pId
->zCanonicalName
);
1762 vxworksReleaseFileId(pFile
->pId
);
1766 OSTRACE(("CLOSE %-3d\n", pFile
->h
));
1768 sqlite3_free(pFile
->pUnused
);
1769 memset(pFile
, 0, sizeof(unixFile
));
1776 static int unixClose(sqlite3_file
*id
){
1778 unixFile
*pFile
= (unixFile
*)id
;
1779 unixUnlock(id
, NO_LOCK
);
1782 /* unixFile.pInode is always valid here. Otherwise, a different close
1783 ** routine (e.g. nolockClose()) would be called instead.
1785 assert( pFile
->pInode
->nLock
>0 || pFile
->pInode
->bProcessLock
==0 );
1786 if( ALWAYS(pFile
->pInode
) && pFile
->pInode
->nLock
){
1787 /* If there are outstanding locks, do not actually close the file just
1788 ** yet because that would clear those locks. Instead, add the file
1789 ** descriptor to pInode->pUnused list. It will be automatically closed
1790 ** when the last lock is cleared.
1792 setPendingFd(pFile
);
1794 releaseInodeInfo(pFile
);
1795 rc
= closeUnixFile(id
);
1800 /************** End of the posix advisory lock implementation *****************
1801 ******************************************************************************/
1803 /******************************************************************************
1804 ****************************** No-op Locking **********************************
1806 ** Of the various locking implementations available, this is by far the
1807 ** simplest: locking is ignored. No attempt is made to lock the database
1808 ** file for reading or writing.
1810 ** This locking mode is appropriate for use on read-only databases
1811 ** (ex: databases that are burned into CD-ROM, for example.) It can
1812 ** also be used if the application employs some external mechanism to
1813 ** prevent simultaneous access of the same database by two or more
1814 ** database connections. But there is a serious risk of database
1815 ** corruption if this locking mode is used in situations where multiple
1816 ** database connections are accessing the same database file at the same
1817 ** time and one or more of those connections are writing.
1820 static int nolockCheckReservedLock(sqlite3_file
*NotUsed
, int *pResOut
){
1821 UNUSED_PARAMETER(NotUsed
);
1825 static int nolockLock(sqlite3_file
*NotUsed
, int NotUsed2
){
1826 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
1829 static int nolockUnlock(sqlite3_file
*NotUsed
, int NotUsed2
){
1830 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
1837 static int nolockClose(sqlite3_file
*id
) {
1838 return closeUnixFile(id
);
1841 /******************* End of the no-op lock implementation *********************
1842 ******************************************************************************/
1844 /******************************************************************************
1845 ************************* Begin dot-file Locking ******************************
1847 ** The dotfile locking implementation uses the existance of separate lock
1848 ** files in order to control access to the database. This works on just
1849 ** about every filesystem imaginable. But there are serious downsides:
1851 ** (1) There is zero concurrency. A single reader blocks all other
1852 ** connections from reading or writing the database.
1854 ** (2) An application crash or power loss can leave stale lock files
1855 ** sitting around that need to be cleared manually.
1857 ** Nevertheless, a dotlock is an appropriate locking mode for use if no
1858 ** other locking strategy is available.
1860 ** Dotfile locking works by creating a file in the same directory as the
1861 ** database and with the same name but with a ".lock" extension added.
1862 ** The existance of a lock file implies an EXCLUSIVE lock. All other lock
1863 ** types (SHARED, RESERVED, PENDING) are mapped into EXCLUSIVE.
1867 ** The file suffix added to the data base filename in order to create the
1870 #define DOTLOCK_SUFFIX ".lock"
1873 ** This routine checks if there is a RESERVED lock held on the specified
1874 ** file by this or any other process. If such a lock is held, set *pResOut
1875 ** to a non-zero value otherwise *pResOut is set to zero. The return value
1876 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
1878 ** In dotfile locking, either a lock exists or it does not. So in this
1879 ** variation of CheckReservedLock(), *pResOut is set to true if any lock
1880 ** is held on the file and false if the file is unlocked.
1882 static int dotlockCheckReservedLock(sqlite3_file
*id
, int *pResOut
) {
1885 unixFile
*pFile
= (unixFile
*)id
;
1887 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK
; );
1891 /* Check if a thread in this process holds such a lock */
1892 if( pFile
->eFileLock
>SHARED_LOCK
){
1893 /* Either this connection or some other connection in the same process
1894 ** holds a lock on the file. No need to check further. */
1897 /* The lock is held if and only if the lockfile exists */
1898 const char *zLockFile
= (const char*)pFile
->lockingContext
;
1899 reserved
= osAccess(zLockFile
, 0)==0;
1901 OSTRACE(("TEST WR-LOCK %d %d %d (dotlock)\n", pFile
->h
, rc
, reserved
));
1902 *pResOut
= reserved
;
1907 ** Lock the file with the lock specified by parameter eFileLock - one
1908 ** of the following:
1911 ** (2) RESERVED_LOCK
1913 ** (4) EXCLUSIVE_LOCK
1915 ** Sometimes when requesting one lock state, additional lock states
1916 ** are inserted in between. The locking might fail on one of the later
1917 ** transitions leaving the lock state different from what it started but
1918 ** still short of its goal. The following chart shows the allowed
1919 ** transitions and the inserted intermediate states:
1921 ** UNLOCKED -> SHARED
1922 ** SHARED -> RESERVED
1923 ** SHARED -> (PENDING) -> EXCLUSIVE
1924 ** RESERVED -> (PENDING) -> EXCLUSIVE
1925 ** PENDING -> EXCLUSIVE
1927 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
1928 ** routine to lower a locking level.
1930 ** With dotfile locking, we really only support state (4): EXCLUSIVE.
1931 ** But we track the other locking levels internally.
1933 static int dotlockLock(sqlite3_file
*id
, int eFileLock
) {
1934 unixFile
*pFile
= (unixFile
*)id
;
1936 char *zLockFile
= (char *)pFile
->lockingContext
;
1940 /* If we have any lock, then the lock file already exists. All we have
1941 ** to do is adjust our internal record of the lock level.
1943 if( pFile
->eFileLock
> NO_LOCK
){
1944 pFile
->eFileLock
= eFileLock
;
1945 /* Always update the timestamp on the old file */
1947 utime(zLockFile
, NULL
);
1949 utimes(zLockFile
, NULL
);
1954 /* grab an exclusive lock */
1955 fd
= robust_open(zLockFile
,O_RDONLY
|O_CREAT
|O_EXCL
,0600);
1957 /* failed to open/create the file, someone else may have stolen the lock */
1959 if( EEXIST
== tErrno
){
1962 rc
= sqliteErrorFromPosixError(tErrno
, SQLITE_IOERR_LOCK
);
1963 if( IS_LOCK_ERROR(rc
) ){
1964 pFile
->lastErrno
= tErrno
;
1969 robust_close(pFile
, fd
, __LINE__
);
1971 /* got it, set the type and return ok */
1972 pFile
->eFileLock
= eFileLock
;
1977 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
1978 ** must be either NO_LOCK or SHARED_LOCK.
1980 ** If the locking level of the file descriptor is already at or below
1981 ** the requested locking level, this routine is a no-op.
1983 ** When the locking level reaches NO_LOCK, delete the lock file.
1985 static int dotlockUnlock(sqlite3_file
*id
, int eFileLock
) {
1986 unixFile
*pFile
= (unixFile
*)id
;
1987 char *zLockFile
= (char *)pFile
->lockingContext
;
1990 OSTRACE(("UNLOCK %d %d was %d pid=%d (dotlock)\n", pFile
->h
, eFileLock
,
1991 pFile
->eFileLock
, getpid()));
1992 assert( eFileLock
<=SHARED_LOCK
);
1994 /* no-op if possible */
1995 if( pFile
->eFileLock
==eFileLock
){
1999 /* To downgrade to shared, simply update our internal notion of the
2000 ** lock state. No need to mess with the file on disk.
2002 if( eFileLock
==SHARED_LOCK
){
2003 pFile
->eFileLock
= SHARED_LOCK
;
2007 /* To fully unlock the database, delete the lock file */
2008 assert( eFileLock
==NO_LOCK
);
2009 if( osUnlink(zLockFile
) ){
2012 if( ENOENT
!= tErrno
){
2013 rc
= SQLITE_IOERR_UNLOCK
;
2015 if( IS_LOCK_ERROR(rc
) ){
2016 pFile
->lastErrno
= tErrno
;
2020 pFile
->eFileLock
= NO_LOCK
;
2025 ** Close a file. Make sure the lock has been released before closing.
2027 static int dotlockClose(sqlite3_file
*id
) {
2030 unixFile
*pFile
= (unixFile
*)id
;
2031 dotlockUnlock(id
, NO_LOCK
);
2032 sqlite3_free(pFile
->lockingContext
);
2034 rc
= closeUnixFile(id
);
2037 /****************** End of the dot-file lock implementation *******************
2038 ******************************************************************************/
2040 /******************************************************************************
2041 ************************** Begin flock Locking ********************************
2043 ** Use the flock() system call to do file locking.
2045 ** flock() locking is like dot-file locking in that the various
2046 ** fine-grain locking levels supported by SQLite are collapsed into
2047 ** a single exclusive lock. In other words, SHARED, RESERVED, and
2048 ** PENDING locks are the same thing as an EXCLUSIVE lock. SQLite
2049 ** still works when you do this, but concurrency is reduced since
2050 ** only a single process can be reading the database at a time.
2052 ** Omit this section if SQLITE_ENABLE_LOCKING_STYLE is turned off or if
2053 ** compiling for VXWORKS.
2055 #if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS
2058 ** Retry flock() calls that fail with EINTR
2061 static int robust_flock(int fd
, int op
){
2063 do{ rc
= flock(fd
,op
); }while( rc
<0 && errno
==EINTR
);
2067 # define robust_flock(a,b) flock(a,b)
2072 ** This routine checks if there is a RESERVED lock held on the specified
2073 ** file by this or any other process. If such a lock is held, set *pResOut
2074 ** to a non-zero value otherwise *pResOut is set to zero. The return value
2075 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2077 static int flockCheckReservedLock(sqlite3_file
*id
, int *pResOut
){
2080 unixFile
*pFile
= (unixFile
*)id
;
2082 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK
; );
2086 /* Check if a thread in this process holds such a lock */
2087 if( pFile
->eFileLock
>SHARED_LOCK
){
2091 /* Otherwise see if some other process holds it. */
2093 /* attempt to get the lock */
2094 int lrc
= robust_flock(pFile
->h
, LOCK_EX
| LOCK_NB
);
2096 /* got the lock, unlock it */
2097 lrc
= robust_flock(pFile
->h
, LOCK_UN
);
2100 /* unlock failed with an error */
2101 lrc
= SQLITE_IOERR_UNLOCK
;
2102 if( IS_LOCK_ERROR(lrc
) ){
2103 pFile
->lastErrno
= tErrno
;
2110 /* someone else might have it reserved */
2111 lrc
= sqliteErrorFromPosixError(tErrno
, SQLITE_IOERR_LOCK
);
2112 if( IS_LOCK_ERROR(lrc
) ){
2113 pFile
->lastErrno
= tErrno
;
2118 OSTRACE(("TEST WR-LOCK %d %d %d (flock)\n", pFile
->h
, rc
, reserved
));
2120 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
2121 if( (rc
& SQLITE_IOERR
) == SQLITE_IOERR
){
2125 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
2126 *pResOut
= reserved
;
2131 ** Lock the file with the lock specified by parameter eFileLock - one
2132 ** of the following:
2135 ** (2) RESERVED_LOCK
2137 ** (4) EXCLUSIVE_LOCK
2139 ** Sometimes when requesting one lock state, additional lock states
2140 ** are inserted in between. The locking might fail on one of the later
2141 ** transitions leaving the lock state different from what it started but
2142 ** still short of its goal. The following chart shows the allowed
2143 ** transitions and the inserted intermediate states:
2145 ** UNLOCKED -> SHARED
2146 ** SHARED -> RESERVED
2147 ** SHARED -> (PENDING) -> EXCLUSIVE
2148 ** RESERVED -> (PENDING) -> EXCLUSIVE
2149 ** PENDING -> EXCLUSIVE
2151 ** flock() only really support EXCLUSIVE locks. We track intermediate
2152 ** lock states in the sqlite3_file structure, but all locks SHARED or
2153 ** above are really EXCLUSIVE locks and exclude all other processes from
2156 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
2157 ** routine to lower a locking level.
2159 static int flockLock(sqlite3_file
*id
, int eFileLock
) {
2161 unixFile
*pFile
= (unixFile
*)id
;
2165 /* if we already have a lock, it is exclusive.
2166 ** Just adjust level and punt on outta here. */
2167 if (pFile
->eFileLock
> NO_LOCK
) {
2168 pFile
->eFileLock
= eFileLock
;
2172 /* grab an exclusive lock */
2174 if (robust_flock(pFile
->h
, LOCK_EX
| LOCK_NB
)) {
2176 /* didn't get, must be busy */
2177 rc
= sqliteErrorFromPosixError(tErrno
, SQLITE_IOERR_LOCK
);
2178 if( IS_LOCK_ERROR(rc
) ){
2179 pFile
->lastErrno
= tErrno
;
2182 /* got it, set the type and return ok */
2183 pFile
->eFileLock
= eFileLock
;
2185 OSTRACE(("LOCK %d %s %s (flock)\n", pFile
->h
, azFileLock(eFileLock
),
2186 rc
==SQLITE_OK
? "ok" : "failed"));
2187 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
2188 if( (rc
& SQLITE_IOERR
) == SQLITE_IOERR
){
2191 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
2197 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
2198 ** must be either NO_LOCK or SHARED_LOCK.
2200 ** If the locking level of the file descriptor is already at or below
2201 ** the requested locking level, this routine is a no-op.
2203 static int flockUnlock(sqlite3_file
*id
, int eFileLock
) {
2204 unixFile
*pFile
= (unixFile
*)id
;
2207 OSTRACE(("UNLOCK %d %d was %d pid=%d (flock)\n", pFile
->h
, eFileLock
,
2208 pFile
->eFileLock
, getpid()));
2209 assert( eFileLock
<=SHARED_LOCK
);
2211 /* no-op if possible */
2212 if( pFile
->eFileLock
==eFileLock
){
2216 /* shared can just be set because we always have an exclusive */
2217 if (eFileLock
==SHARED_LOCK
) {
2218 pFile
->eFileLock
= eFileLock
;
2222 /* no, really, unlock. */
2223 if( robust_flock(pFile
->h
, LOCK_UN
) ){
2224 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
2226 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
2227 return SQLITE_IOERR_UNLOCK
;
2229 pFile
->eFileLock
= NO_LOCK
;
2237 static int flockClose(sqlite3_file
*id
) {
2239 flockUnlock(id
, NO_LOCK
);
2241 return closeUnixFile(id
);
2244 #endif /* SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORK */
2246 /******************* End of the flock lock implementation *********************
2247 ******************************************************************************/
2249 /******************************************************************************
2250 ************************ Begin Named Semaphore Locking ************************
2252 ** Named semaphore locking is only supported on VxWorks.
2254 ** Semaphore locking is like dot-lock and flock in that it really only
2255 ** supports EXCLUSIVE locking. Only a single process can read or write
2256 ** the database file at a time. This reduces potential concurrency, but
2257 ** makes the lock implementation much easier.
2262 ** This routine checks if there is a RESERVED lock held on the specified
2263 ** file by this or any other process. If such a lock is held, set *pResOut
2264 ** to a non-zero value otherwise *pResOut is set to zero. The return value
2265 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2267 static int semCheckReservedLock(sqlite3_file
*id
, int *pResOut
) {
2270 unixFile
*pFile
= (unixFile
*)id
;
2272 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK
; );
2276 /* Check if a thread in this process holds such a lock */
2277 if( pFile
->eFileLock
>SHARED_LOCK
){
2281 /* Otherwise see if some other process holds it. */
2283 sem_t
*pSem
= pFile
->pInode
->pSem
;
2284 struct stat statBuf
;
2286 if( sem_trywait(pSem
)==-1 ){
2288 if( EAGAIN
!= tErrno
){
2289 rc
= sqliteErrorFromPosixError(tErrno
, SQLITE_IOERR_CHECKRESERVEDLOCK
);
2290 pFile
->lastErrno
= tErrno
;
2292 /* someone else has the lock when we are in NO_LOCK */
2293 reserved
= (pFile
->eFileLock
< SHARED_LOCK
);
2296 /* we could have it if we want it */
2300 OSTRACE(("TEST WR-LOCK %d %d %d (sem)\n", pFile
->h
, rc
, reserved
));
2302 *pResOut
= reserved
;
2307 ** Lock the file with the lock specified by parameter eFileLock - one
2308 ** of the following:
2311 ** (2) RESERVED_LOCK
2313 ** (4) EXCLUSIVE_LOCK
2315 ** Sometimes when requesting one lock state, additional lock states
2316 ** are inserted in between. The locking might fail on one of the later
2317 ** transitions leaving the lock state different from what it started but
2318 ** still short of its goal. The following chart shows the allowed
2319 ** transitions and the inserted intermediate states:
2321 ** UNLOCKED -> SHARED
2322 ** SHARED -> RESERVED
2323 ** SHARED -> (PENDING) -> EXCLUSIVE
2324 ** RESERVED -> (PENDING) -> EXCLUSIVE
2325 ** PENDING -> EXCLUSIVE
2327 ** Semaphore locks only really support EXCLUSIVE locks. We track intermediate
2328 ** lock states in the sqlite3_file structure, but all locks SHARED or
2329 ** above are really EXCLUSIVE locks and exclude all other processes from
2332 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
2333 ** routine to lower a locking level.
2335 static int semLock(sqlite3_file
*id
, int eFileLock
) {
2336 unixFile
*pFile
= (unixFile
*)id
;
2338 sem_t
*pSem
= pFile
->pInode
->pSem
;
2341 /* if we already have a lock, it is exclusive.
2342 ** Just adjust level and punt on outta here. */
2343 if (pFile
->eFileLock
> NO_LOCK
) {
2344 pFile
->eFileLock
= eFileLock
;
2349 /* lock semaphore now but bail out when already locked. */
2350 if( sem_trywait(pSem
)==-1 ){
2355 /* got it, set the type and return ok */
2356 pFile
->eFileLock
= eFileLock
;
2363 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
2364 ** must be either NO_LOCK or SHARED_LOCK.
2366 ** If the locking level of the file descriptor is already at or below
2367 ** the requested locking level, this routine is a no-op.
2369 static int semUnlock(sqlite3_file
*id
, int eFileLock
) {
2370 unixFile
*pFile
= (unixFile
*)id
;
2371 sem_t
*pSem
= pFile
->pInode
->pSem
;
2375 OSTRACE(("UNLOCK %d %d was %d pid=%d (sem)\n", pFile
->h
, eFileLock
,
2376 pFile
->eFileLock
, getpid()));
2377 assert( eFileLock
<=SHARED_LOCK
);
2379 /* no-op if possible */
2380 if( pFile
->eFileLock
==eFileLock
){
2384 /* shared can just be set because we always have an exclusive */
2385 if (eFileLock
==SHARED_LOCK
) {
2386 pFile
->eFileLock
= eFileLock
;
2390 /* no, really unlock. */
2391 if ( sem_post(pSem
)==-1 ) {
2392 int rc
, tErrno
= errno
;
2393 rc
= sqliteErrorFromPosixError(tErrno
, SQLITE_IOERR_UNLOCK
);
2394 if( IS_LOCK_ERROR(rc
) ){
2395 pFile
->lastErrno
= tErrno
;
2399 pFile
->eFileLock
= NO_LOCK
;
2406 static int semClose(sqlite3_file
*id
) {
2408 unixFile
*pFile
= (unixFile
*)id
;
2409 semUnlock(id
, NO_LOCK
);
2412 releaseInodeInfo(pFile
);
2419 #endif /* OS_VXWORKS */
2421 ** Named semaphore locking is only available on VxWorks.
2423 *************** End of the named semaphore lock implementation ****************
2424 ******************************************************************************/
2427 /******************************************************************************
2428 *************************** Begin AFP Locking *********************************
2430 ** AFP is the Apple Filing Protocol. AFP is a network filesystem found
2431 ** on Apple Macintosh computers - both OS9 and OSX.
2433 ** Third-party implementations of AFP are available. But this code here
2434 ** only works on OSX.
2437 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
2439 ** The afpLockingContext structure contains all afp lock specific state
2441 typedef struct afpLockingContext afpLockingContext
;
2442 struct afpLockingContext
{
2444 const char *dbPath
; /* Name of the open file */
2447 struct ByteRangeLockPB2
2449 unsigned long long offset
; /* offset to first byte to lock */
2450 unsigned long long length
; /* nbr of bytes to lock */
2451 unsigned long long retRangeStart
; /* nbr of 1st byte locked if successful */
2452 unsigned char unLockFlag
; /* 1 = unlock, 0 = lock */
2453 unsigned char startEndFlag
; /* 1=rel to end of fork, 0=rel to start */
2454 int fd
; /* file desc to assoc this lock with */
2457 #define afpfsByteRangeLock2FSCTL _IOWR('z', 23, struct ByteRangeLockPB2)
2460 ** This is a utility for setting or clearing a bit-range lock on an
2463 ** Return SQLITE_OK on success, SQLITE_BUSY on failure.
2465 static int afpSetLock(
2466 const char *path
, /* Name of the file to be locked or unlocked */
2467 unixFile
*pFile
, /* Open file descriptor on path */
2468 unsigned long long offset
, /* First byte to be locked */
2469 unsigned long long length
, /* Number of bytes to lock */
2470 int setLockFlag
/* True to set lock. False to clear lock */
2472 struct ByteRangeLockPB2 pb
;
2475 pb
.unLockFlag
= setLockFlag
? 0 : 1;
2476 pb
.startEndFlag
= 0;
2481 OSTRACE(("AFPSETLOCK [%s] for %d%s in range %llx:%llx\n",
2482 (setLockFlag
?"ON":"OFF"), pFile
->h
, (pb
.fd
==-1?"[testval-1]":""),
2484 err
= fsctl(path
, afpfsByteRangeLock2FSCTL
, &pb
, 0);
2488 OSTRACE(("AFPSETLOCK failed to fsctl() '%s' %d %s\n",
2489 path
, tErrno
, strerror(tErrno
)));
2490 #ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS
2493 rc
= sqliteErrorFromPosixError(tErrno
,
2494 setLockFlag
? SQLITE_IOERR_LOCK
: SQLITE_IOERR_UNLOCK
);
2495 #endif /* SQLITE_IGNORE_AFP_LOCK_ERRORS */
2496 if( IS_LOCK_ERROR(rc
) ){
2497 pFile
->lastErrno
= tErrno
;
2506 ** This routine checks if there is a RESERVED lock held on the specified
2507 ** file by this or any other process. If such a lock is held, set *pResOut
2508 ** to a non-zero value otherwise *pResOut is set to zero. The return value
2509 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2511 static int afpCheckReservedLock(sqlite3_file
*id
, int *pResOut
){
2514 unixFile
*pFile
= (unixFile
*)id
;
2515 afpLockingContext
*context
;
2517 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK
; );
2520 context
= (afpLockingContext
*) pFile
->lockingContext
;
2521 if( context
->reserved
){
2525 unixEnterMutex(); /* Because pFile->pInode is shared across threads */
2527 /* Check if a thread in this process holds such a lock */
2528 if( pFile
->pInode
->eFileLock
>SHARED_LOCK
){
2532 /* Otherwise see if some other process holds it.
2535 /* lock the RESERVED byte */
2536 int lrc
= afpSetLock(context
->dbPath
, pFile
, RESERVED_BYTE
, 1,1);
2537 if( SQLITE_OK
==lrc
){
2538 /* if we succeeded in taking the reserved lock, unlock it to restore
2539 ** the original state */
2540 lrc
= afpSetLock(context
->dbPath
, pFile
, RESERVED_BYTE
, 1, 0);
2542 /* if we failed to get the lock then someone else must have it */
2545 if( IS_LOCK_ERROR(lrc
) ){
2551 OSTRACE(("TEST WR-LOCK %d %d %d (afp)\n", pFile
->h
, rc
, reserved
));
2553 *pResOut
= reserved
;
2558 ** Lock the file with the lock specified by parameter eFileLock - one
2559 ** of the following:
2562 ** (2) RESERVED_LOCK
2564 ** (4) EXCLUSIVE_LOCK
2566 ** Sometimes when requesting one lock state, additional lock states
2567 ** are inserted in between. The locking might fail on one of the later
2568 ** transitions leaving the lock state different from what it started but
2569 ** still short of its goal. The following chart shows the allowed
2570 ** transitions and the inserted intermediate states:
2572 ** UNLOCKED -> SHARED
2573 ** SHARED -> RESERVED
2574 ** SHARED -> (PENDING) -> EXCLUSIVE
2575 ** RESERVED -> (PENDING) -> EXCLUSIVE
2576 ** PENDING -> EXCLUSIVE
2578 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
2579 ** routine to lower a locking level.
2581 static int afpLock(sqlite3_file
*id
, int eFileLock
){
2583 unixFile
*pFile
= (unixFile
*)id
;
2584 unixInodeInfo
*pInode
= pFile
->pInode
;
2585 afpLockingContext
*context
= (afpLockingContext
*) pFile
->lockingContext
;
2588 OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (afp)\n", pFile
->h
,
2589 azFileLock(eFileLock
), azFileLock(pFile
->eFileLock
),
2590 azFileLock(pInode
->eFileLock
), pInode
->nShared
, getpid()));
2592 /* If there is already a lock of this type or more restrictive on the
2593 ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as
2594 ** unixEnterMutex() hasn't been called yet.
2596 if( pFile
->eFileLock
>=eFileLock
){
2597 OSTRACE(("LOCK %d %s ok (already held) (afp)\n", pFile
->h
,
2598 azFileLock(eFileLock
)));
2602 /* Make sure the locking sequence is correct
2603 ** (1) We never move from unlocked to anything higher than shared lock.
2604 ** (2) SQLite never explicitly requests a pendig lock.
2605 ** (3) A shared lock is always held when a reserve lock is requested.
2607 assert( pFile
->eFileLock
!=NO_LOCK
|| eFileLock
==SHARED_LOCK
);
2608 assert( eFileLock
!=PENDING_LOCK
);
2609 assert( eFileLock
!=RESERVED_LOCK
|| pFile
->eFileLock
==SHARED_LOCK
);
2611 /* This mutex is needed because pFile->pInode is shared across threads
2614 pInode
= pFile
->pInode
;
2616 /* If some thread using this PID has a lock via a different unixFile*
2617 ** handle that precludes the requested lock, return BUSY.
2619 if( (pFile
->eFileLock
!=pInode
->eFileLock
&&
2620 (pInode
->eFileLock
>=PENDING_LOCK
|| eFileLock
>SHARED_LOCK
))
2626 /* If a SHARED lock is requested, and some thread using this PID already
2627 ** has a SHARED or RESERVED lock, then increment reference counts and
2628 ** return SQLITE_OK.
2630 if( eFileLock
==SHARED_LOCK
&&
2631 (pInode
->eFileLock
==SHARED_LOCK
|| pInode
->eFileLock
==RESERVED_LOCK
) ){
2632 assert( eFileLock
==SHARED_LOCK
);
2633 assert( pFile
->eFileLock
==0 );
2634 assert( pInode
->nShared
>0 );
2635 pFile
->eFileLock
= SHARED_LOCK
;
2641 /* A PENDING lock is needed before acquiring a SHARED lock and before
2642 ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
2645 if( eFileLock
==SHARED_LOCK
2646 || (eFileLock
==EXCLUSIVE_LOCK
&& pFile
->eFileLock
<PENDING_LOCK
)
2649 failed
= afpSetLock(context
->dbPath
, pFile
, PENDING_BYTE
, 1, 1);
2656 /* If control gets to this point, then actually go ahead and make
2657 ** operating system calls for the specified lock.
2659 if( eFileLock
==SHARED_LOCK
){
2660 int lrc1
, lrc2
, lrc1Errno
= 0;
2663 assert( pInode
->nShared
==0 );
2664 assert( pInode
->eFileLock
==0 );
2666 mask
= (sizeof(long)==8) ? LARGEST_INT64
: 0x7fffffff;
2667 /* Now get the read-lock SHARED_LOCK */
2668 /* note that the quality of the randomness doesn't matter that much */
2670 pInode
->sharedByte
= (lk
& mask
)%(SHARED_SIZE
- 1);
2671 lrc1
= afpSetLock(context
->dbPath
, pFile
,
2672 SHARED_FIRST
+pInode
->sharedByte
, 1, 1);
2673 if( IS_LOCK_ERROR(lrc1
) ){
2674 lrc1Errno
= pFile
->lastErrno
;
2676 /* Drop the temporary PENDING lock */
2677 lrc2
= afpSetLock(context
->dbPath
, pFile
, PENDING_BYTE
, 1, 0);
2679 if( IS_LOCK_ERROR(lrc1
) ) {
2680 pFile
->lastErrno
= lrc1Errno
;
2683 } else if( IS_LOCK_ERROR(lrc2
) ){
2686 } else if( lrc1
!= SQLITE_OK
) {
2689 pFile
->eFileLock
= SHARED_LOCK
;
2691 pInode
->nShared
= 1;
2693 }else if( eFileLock
==EXCLUSIVE_LOCK
&& pInode
->nShared
>1 ){
2694 /* We are trying for an exclusive lock but another thread in this
2695 ** same process is still holding a shared lock. */
2698 /* The request was for a RESERVED or EXCLUSIVE lock. It is
2699 ** assumed that there is a SHARED or greater lock on the file
2703 assert( 0!=pFile
->eFileLock
);
2704 if (eFileLock
>= RESERVED_LOCK
&& pFile
->eFileLock
< RESERVED_LOCK
) {
2705 /* Acquire a RESERVED lock */
2706 failed
= afpSetLock(context
->dbPath
, pFile
, RESERVED_BYTE
, 1,1);
2708 context
->reserved
= 1;
2711 if (!failed
&& eFileLock
== EXCLUSIVE_LOCK
) {
2712 /* Acquire an EXCLUSIVE lock */
2714 /* Remove the shared lock before trying the range. we'll need to
2715 ** reestablish the shared lock if we can't get the afpUnlock
2717 if( !(failed
= afpSetLock(context
->dbPath
, pFile
, SHARED_FIRST
+
2718 pInode
->sharedByte
, 1, 0)) ){
2719 int failed2
= SQLITE_OK
;
2720 /* now attemmpt to get the exclusive lock range */
2721 failed
= afpSetLock(context
->dbPath
, pFile
, SHARED_FIRST
,
2723 if( failed
&& (failed2
= afpSetLock(context
->dbPath
, pFile
,
2724 SHARED_FIRST
+ pInode
->sharedByte
, 1, 1)) ){
2725 /* Can't reestablish the shared lock. Sqlite can't deal, this is
2726 ** a critical I/O error
2728 rc
= ((failed
& SQLITE_IOERR
) == SQLITE_IOERR
) ? failed2
:
2741 if( rc
==SQLITE_OK
){
2742 pFile
->eFileLock
= eFileLock
;
2743 pInode
->eFileLock
= eFileLock
;
2744 }else if( eFileLock
==EXCLUSIVE_LOCK
){
2745 pFile
->eFileLock
= PENDING_LOCK
;
2746 pInode
->eFileLock
= PENDING_LOCK
;
2751 OSTRACE(("LOCK %d %s %s (afp)\n", pFile
->h
, azFileLock(eFileLock
),
2752 rc
==SQLITE_OK
? "ok" : "failed"));
2757 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
2758 ** must be either NO_LOCK or SHARED_LOCK.
2760 ** If the locking level of the file descriptor is already at or below
2761 ** the requested locking level, this routine is a no-op.
2763 static int afpUnlock(sqlite3_file
*id
, int eFileLock
) {
2765 unixFile
*pFile
= (unixFile
*)id
;
2766 unixInodeInfo
*pInode
;
2767 afpLockingContext
*context
= (afpLockingContext
*) pFile
->lockingContext
;
2774 OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (afp)\n", pFile
->h
, eFileLock
,
2775 pFile
->eFileLock
, pFile
->pInode
->eFileLock
, pFile
->pInode
->nShared
,
2778 assert( eFileLock
<=SHARED_LOCK
);
2779 if( pFile
->eFileLock
<=eFileLock
){
2783 pInode
= pFile
->pInode
;
2784 assert( pInode
->nShared
!=0 );
2785 if( pFile
->eFileLock
>SHARED_LOCK
){
2786 assert( pInode
->eFileLock
==pFile
->eFileLock
);
2787 SimulateIOErrorBenign(1);
2788 SimulateIOError( h
=(-1) )
2789 SimulateIOErrorBenign(0);
2792 /* When reducing a lock such that other processes can start
2793 ** reading the database file again, make sure that the
2794 ** transaction counter was updated if any part of the database
2795 ** file changed. If the transaction counter is not updated,
2796 ** other connections to the same file might not realize that
2797 ** the file has changed and hence might not know to flush their
2798 ** cache. The use of a stale cache can lead to database corruption.
2800 assert( pFile
->inNormalWrite
==0
2801 || pFile
->dbUpdate
==0
2802 || pFile
->transCntrChng
==1 );
2803 pFile
->inNormalWrite
= 0;
2806 if( pFile
->eFileLock
==EXCLUSIVE_LOCK
){
2807 rc
= afpSetLock(context
->dbPath
, pFile
, SHARED_FIRST
, SHARED_SIZE
, 0);
2808 if( rc
==SQLITE_OK
&& (eFileLock
==SHARED_LOCK
|| pInode
->nShared
>1) ){
2809 /* only re-establish the shared lock if necessary */
2810 int sharedLockByte
= SHARED_FIRST
+pInode
->sharedByte
;
2811 rc
= afpSetLock(context
->dbPath
, pFile
, sharedLockByte
, 1, 1);
2816 if( rc
==SQLITE_OK
&& pFile
->eFileLock
>=PENDING_LOCK
){
2817 rc
= afpSetLock(context
->dbPath
, pFile
, PENDING_BYTE
, 1, 0);
2819 if( rc
==SQLITE_OK
&& pFile
->eFileLock
>=RESERVED_LOCK
&& context
->reserved
){
2820 rc
= afpSetLock(context
->dbPath
, pFile
, RESERVED_BYTE
, 1, 0);
2822 context
->reserved
= 0;
2825 if( rc
==SQLITE_OK
&& (eFileLock
==SHARED_LOCK
|| pInode
->nShared
>1)){
2826 pInode
->eFileLock
= SHARED_LOCK
;
2829 if( rc
==SQLITE_OK
&& eFileLock
==NO_LOCK
){
2831 /* Decrement the shared lock counter. Release the lock using an
2832 ** OS call only when all threads in this same process have released
2835 unsigned long long sharedLockByte
= SHARED_FIRST
+pInode
->sharedByte
;
2837 if( pInode
->nShared
==0 ){
2838 SimulateIOErrorBenign(1);
2839 SimulateIOError( h
=(-1) )
2840 SimulateIOErrorBenign(0);
2842 rc
= afpSetLock(context
->dbPath
, pFile
, sharedLockByte
, 1, 0);
2845 pInode
->eFileLock
= NO_LOCK
;
2846 pFile
->eFileLock
= NO_LOCK
;
2849 if( rc
==SQLITE_OK
){
2851 assert( pInode
->nLock
>=0 );
2852 if( pInode
->nLock
==0 ){
2853 closePendingFds(pFile
);
2859 if( rc
==SQLITE_OK
) pFile
->eFileLock
= eFileLock
;
2864 ** Close a file & cleanup AFP specific locking context
2866 static int afpClose(sqlite3_file
*id
) {
2869 unixFile
*pFile
= (unixFile
*)id
;
2870 afpUnlock(id
, NO_LOCK
);
2872 if( pFile
->pInode
&& pFile
->pInode
->nLock
){
2873 /* If there are outstanding locks, do not actually close the file just
2874 ** yet because that would clear those locks. Instead, add the file
2875 ** descriptor to pInode->aPending. It will be automatically closed when
2876 ** the last lock is cleared.
2878 setPendingFd(pFile
);
2880 releaseInodeInfo(pFile
);
2881 sqlite3_free(pFile
->lockingContext
);
2882 rc
= closeUnixFile(id
);
2888 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
2890 ** The code above is the AFP lock implementation. The code is specific
2891 ** to MacOSX and does not work on other unix platforms. No alternative
2892 ** is available. If you don't compile for a mac, then the "unix-afp"
2893 ** VFS is not available.
2895 ********************* End of the AFP lock implementation **********************
2896 ******************************************************************************/
2898 /******************************************************************************
2899 *************************** Begin NFS Locking ********************************/
2901 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
2903 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
2904 ** must be either NO_LOCK or SHARED_LOCK.
2906 ** If the locking level of the file descriptor is already at or below
2907 ** the requested locking level, this routine is a no-op.
2909 static int nfsUnlock(sqlite3_file
*id
, int eFileLock
){
2910 return posixUnlock(id
, eFileLock
, 1);
2913 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
2915 ** The code above is the NFS lock implementation. The code is specific
2916 ** to MacOSX and does not work on other unix platforms. No alternative
2919 ********************* End of the NFS lock implementation **********************
2920 ******************************************************************************/
2922 /******************************************************************************
2923 **************** Non-locking sqlite3_file methods *****************************
2925 ** The next division contains implementations for all methods of the
2926 ** sqlite3_file object other than the locking methods. The locking
2927 ** methods were defined in divisions above (one locking method per
2928 ** division). Those methods that are common to all locking modes
2929 ** are gather together into this division.
2933 ** Seek to the offset passed as the second argument, then read cnt
2934 ** bytes into pBuf. Return the number of bytes actually read.
2936 ** NB: If you define USE_PREAD or USE_PREAD64, then it might also
2937 ** be necessary to define _XOPEN_SOURCE to be 500. This varies from
2938 ** one system to another. Since SQLite does not define USE_PREAD
2939 ** any any form by default, we will not attempt to define _XOPEN_SOURCE.
2940 ** See tickets #2741 and #2681.
2942 ** To avoid stomping the errno value on a failed read the lastErrno value
2943 ** is set before returning.
2945 static int seekAndRead(unixFile
*id
, sqlite3_int64 offset
, void *pBuf
, int cnt
){
2947 #if (!defined(USE_PREAD) && !defined(USE_PREAD64))
2951 #if defined(USE_PREAD)
2952 do{ got
= osPread(id
->h
, pBuf
, cnt
, offset
); }while( got
<0 && errno
==EINTR
);
2953 SimulateIOError( got
= -1 );
2954 #elif defined(USE_PREAD64)
2955 do{ got
= osPread64(id
->h
, pBuf
, cnt
, offset
); }while( got
<0 && errno
==EINTR
);
2956 SimulateIOError( got
= -1 );
2958 newOffset
= lseek(id
->h
, offset
, SEEK_SET
);
2959 SimulateIOError( newOffset
-- );
2960 if( newOffset
!=offset
){
2961 if( newOffset
== -1 ){
2962 ((unixFile
*)id
)->lastErrno
= errno
;
2964 ((unixFile
*)id
)->lastErrno
= 0;
2968 do{ got
= osRead(id
->h
, pBuf
, cnt
); }while( got
<0 && errno
==EINTR
);
2972 ((unixFile
*)id
)->lastErrno
= errno
;
2974 OSTRACE(("READ %-3d %5d %7lld %llu\n", id
->h
, got
, offset
, TIMER_ELAPSED
));
2979 ** Read data from a file into a buffer. Return SQLITE_OK if all
2980 ** bytes were read successfully and SQLITE_IOERR if anything goes
2983 static int unixRead(
2987 sqlite3_int64 offset
2989 unixFile
*pFile
= (unixFile
*)id
;
2993 /* If this is a database file (not a journal, master-journal or temp
2994 ** file), the bytes in the locking range should never be read or written. */
2996 assert( pFile
->pUnused
==0
2997 || offset
>=PENDING_BYTE
+512
2998 || offset
+amt
<=PENDING_BYTE
3002 got
= seekAndRead(pFile
, offset
, pBuf
, amt
);
3006 /* lastErrno set by seekAndRead */
3007 return SQLITE_IOERR_READ
;
3009 pFile
->lastErrno
= 0; /* not a system error */
3010 /* Unread parts of the buffer must be zero-filled */
3011 memset(&((char*)pBuf
)[got
], 0, amt
-got
);
3012 return SQLITE_IOERR_SHORT_READ
;
3017 ** Seek to the offset in id->offset then read cnt bytes into pBuf.
3018 ** Return the number of bytes actually read. Update the offset.
3020 ** To avoid stomping the errno value on a failed write the lastErrno value
3021 ** is set before returning.
3023 static int seekAndWrite(unixFile
*id
, i64 offset
, const void *pBuf
, int cnt
){
3025 #if (!defined(USE_PREAD) && !defined(USE_PREAD64))
3029 #if defined(USE_PREAD)
3030 do{ got
= osPwrite(id
->h
, pBuf
, cnt
, offset
); }while( got
<0 && errno
==EINTR
);
3031 #elif defined(USE_PREAD64)
3032 do{ got
= osPwrite64(id
->h
, pBuf
, cnt
, offset
);}while( got
<0 && errno
==EINTR
);
3035 newOffset
= lseek(id
->h
, offset
, SEEK_SET
);
3036 SimulateIOError( newOffset
-- );
3037 if( newOffset
!=offset
){
3038 if( newOffset
== -1 ){
3039 ((unixFile
*)id
)->lastErrno
= errno
;
3041 ((unixFile
*)id
)->lastErrno
= 0;
3045 got
= osWrite(id
->h
, pBuf
, cnt
);
3046 }while( got
<0 && errno
==EINTR
);
3050 ((unixFile
*)id
)->lastErrno
= errno
;
3053 OSTRACE(("WRITE %-3d %5d %7lld %llu\n", id
->h
, got
, offset
, TIMER_ELAPSED
));
3059 ** Write data from a buffer into a file. Return SQLITE_OK on success
3060 ** or some other error code on failure.
3062 static int unixWrite(
3066 sqlite3_int64 offset
3068 unixFile
*pFile
= (unixFile
*)id
;
3073 /* If this is a database file (not a journal, master-journal or temp
3074 ** file), the bytes in the locking range should never be read or written. */
3076 assert( pFile
->pUnused
==0
3077 || offset
>=PENDING_BYTE
+512
3078 || offset
+amt
<=PENDING_BYTE
3083 /* If we are doing a normal write to a database file (as opposed to
3084 ** doing a hot-journal rollback or a write to some file other than a
3085 ** normal database file) then record the fact that the database
3086 ** has changed. If the transaction counter is modified, record that
3089 if( pFile
->inNormalWrite
){
3090 pFile
->dbUpdate
= 1; /* The database has been modified */
3091 if( offset
<=24 && offset
+amt
>=27 ){
3094 SimulateIOErrorBenign(1);
3095 rc
= seekAndRead(pFile
, 24, oldCntr
, 4);
3096 SimulateIOErrorBenign(0);
3097 if( rc
!=4 || memcmp(oldCntr
, &((char*)pBuf
)[24-offset
], 4)!=0 ){
3098 pFile
->transCntrChng
= 1; /* The transaction counter has changed */
3104 while( amt
>0 && (wrote
= seekAndWrite(pFile
, offset
, pBuf
, amt
))>0 ){
3107 pBuf
= &((char*)pBuf
)[wrote
];
3109 SimulateIOError(( wrote
=(-1), amt
=1 ));
3110 SimulateDiskfullError(( wrote
=0, amt
=1 ));
3113 if( wrote
<0 && pFile
->lastErrno
!=ENOSPC
){
3114 /* lastErrno set by seekAndWrite */
3115 return SQLITE_IOERR_WRITE
;
3117 pFile
->lastErrno
= 0; /* not a system error */
3127 ** Count the number of fullsyncs and normal syncs. This is used to test
3128 ** that syncs and fullsyncs are occurring at the right times.
3130 int sqlite3_sync_count
= 0;
3131 int sqlite3_fullsync_count
= 0;
3135 ** We do not trust systems to provide a working fdatasync(). Some do.
3136 ** Others do no. To be safe, we will stick with the (slightly slower)
3137 ** fsync(). If you know that your system does support fdatasync() correctly,
3138 ** then simply compile with -Dfdatasync=fdatasync
3140 #if !defined(fdatasync)
3141 # define fdatasync fsync
3145 ** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not
3146 ** the F_FULLFSYNC macro is defined. F_FULLFSYNC is currently
3147 ** only available on Mac OS X. But that could change.
3150 # define HAVE_FULLFSYNC 1
3152 # define HAVE_FULLFSYNC 0
3157 ** The fsync() system call does not work as advertised on many
3158 ** unix systems. The following procedure is an attempt to make
3161 ** The SQLITE_NO_SYNC macro disables all fsync()s. This is useful
3162 ** for testing when we want to run through the test suite quickly.
3163 ** You are strongly advised *not* to deploy with SQLITE_NO_SYNC
3164 ** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash
3165 ** or power failure will likely corrupt the database file.
3167 ** SQLite sets the dataOnly flag if the size of the file is unchanged.
3168 ** The idea behind dataOnly is that it should only write the file content
3169 ** to disk, not the inode. We only set dataOnly if the file size is
3170 ** unchanged since the file size is part of the inode. However,
3171 ** Ted Ts'o tells us that fdatasync() will also write the inode if the
3172 ** file size has changed. The only real difference between fdatasync()
3173 ** and fsync(), Ted tells us, is that fdatasync() will not flush the
3174 ** inode if the mtime or owner or other inode attributes have changed.
3175 ** We only care about the file size, not the other file attributes, so
3176 ** as far as SQLite is concerned, an fdatasync() is always adequate.
3177 ** So, we always use fdatasync() if it is available, regardless of
3178 ** the value of the dataOnly flag.
3180 static int full_fsync(int fd
, int fullSync
, int dataOnly
){
3183 /* The following "ifdef/elif/else/" block has the same structure as
3184 ** the one below. It is replicated here solely to avoid cluttering
3185 ** up the real code with the UNUSED_PARAMETER() macros.
3187 #ifdef SQLITE_NO_SYNC
3188 UNUSED_PARAMETER(fd
);
3189 UNUSED_PARAMETER(fullSync
);
3190 UNUSED_PARAMETER(dataOnly
);
3191 #elif HAVE_FULLFSYNC
3192 UNUSED_PARAMETER(dataOnly
);
3194 UNUSED_PARAMETER(fullSync
);
3195 UNUSED_PARAMETER(dataOnly
);
3198 /* Record the number of times that we do a normal fsync() and
3199 ** FULLSYNC. This is used during testing to verify that this procedure
3200 ** gets called with the correct arguments.
3203 if( fullSync
) sqlite3_fullsync_count
++;
3204 sqlite3_sync_count
++;
3207 /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
3210 #ifdef SQLITE_NO_SYNC
3212 #elif HAVE_FULLFSYNC
3214 rc
= osFcntl(fd
, F_FULLFSYNC
, 0);
3218 /* If the FULLFSYNC failed, fall back to attempting an fsync().
3219 ** It shouldn't be possible for fullfsync to fail on the local
3220 ** file system (on OSX), so failure indicates that FULLFSYNC
3221 ** isn't supported for this file system. So, attempt an fsync
3222 ** and (for now) ignore the overhead of a superfluous fcntl call.
3223 ** It'd be better to detect fullfsync support once and avoid
3224 ** the fcntl call every time sync is called.
3226 if( rc
) rc
= fsync(fd
);
3228 #elif defined(__APPLE__)
3229 /* fdatasync() on HFS+ doesn't yet flush the file size if it changed correctly
3230 ** so currently we default to the macro that redefines fdatasync to fsync
3236 if( rc
==-1 && errno
==ENOTSUP
){
3239 #endif /* OS_VXWORKS */
3240 #endif /* ifdef SQLITE_NO_SYNC elif HAVE_FULLFSYNC */
3242 if( OS_VXWORKS
&& rc
!= -1 ){
3249 ** Open a file descriptor to the directory containing file zFilename.
3250 ** If successful, *pFd is set to the opened file descriptor and
3251 ** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM
3252 ** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined
3255 ** The directory file descriptor is used for only one thing - to
3256 ** fsync() a directory to make sure file creation and deletion events
3257 ** are flushed to disk. Such fsyncs are not needed on newer
3258 ** journaling filesystems, but are required on older filesystems.
3260 ** This routine can be overridden using the xSetSysCall interface.
3261 ** The ability to override this routine was added in support of the
3262 ** chromium sandbox. Opening a directory is a security risk (we are
3263 ** told) so making it overrideable allows the chromium sandbox to
3264 ** replace this routine with a harmless no-op. To make this routine
3265 ** a no-op, replace it with a stub that returns SQLITE_OK but leaves
3266 ** *pFd set to a negative number.
3268 ** If SQLITE_OK is returned, the caller is responsible for closing
3269 ** the file descriptor *pFd using close().
3271 static int openDirectory(const char *zFilename
, int *pFd
){
3274 char zDirname
[MAX_PATHNAME
+1];
3276 sqlite3_snprintf(MAX_PATHNAME
, zDirname
, "%s", zFilename
);
3277 for(ii
=(int)strlen(zDirname
); ii
>1 && zDirname
[ii
]!='/'; ii
--);
3279 zDirname
[ii
] = '\0';
3280 fd
= robust_open(zDirname
, O_RDONLY
|O_BINARY
, 0);
3283 osFcntl(fd
, F_SETFD
, osFcntl(fd
, F_GETFD
, 0) | FD_CLOEXEC
);
3285 OSTRACE(("OPENDIR %-3d %s\n", fd
, zDirname
));
3289 return (fd
>=0?SQLITE_OK
:unixLogError(SQLITE_CANTOPEN_BKPT
, "open", zDirname
));
3293 ** Make sure all writes to a particular file are committed to disk.
3295 ** If dataOnly==0 then both the file itself and its metadata (file
3296 ** size, access time, etc) are synced. If dataOnly!=0 then only the
3297 ** file data is synced.
3299 ** Under Unix, also make sure that the directory entry for the file
3300 ** has been created by fsync-ing the directory that contains the file.
3301 ** If we do not do this and we encounter a power failure, the directory
3302 ** entry for the journal might not exist after we reboot. The next
3303 ** SQLite to access the file will not know that the journal exists (because
3304 ** the directory entry for the journal was never created) and the transaction
3305 ** will not roll back - possibly leading to database corruption.
3307 static int unixSync(sqlite3_file
*id
, int flags
){
3309 unixFile
*pFile
= (unixFile
*)id
;
3311 int isDataOnly
= (flags
&SQLITE_SYNC_DATAONLY
);
3312 int isFullsync
= (flags
&0x0F)==SQLITE_SYNC_FULL
;
3314 /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */
3315 assert((flags
&0x0F)==SQLITE_SYNC_NORMAL
3316 || (flags
&0x0F)==SQLITE_SYNC_FULL
3319 /* Unix cannot, but some systems may return SQLITE_FULL from here. This
3320 ** line is to test that doing so does not cause any problems.
3322 SimulateDiskfullError( return SQLITE_FULL
);
3325 OSTRACE(("SYNC %-3d\n", pFile
->h
));
3326 rc
= full_fsync(pFile
->h
, isFullsync
, isDataOnly
);
3327 SimulateIOError( rc
=1 );
3329 pFile
->lastErrno
= errno
;
3330 return unixLogError(SQLITE_IOERR_FSYNC
, "full_fsync", pFile
->zPath
);
3333 /* Also fsync the directory containing the file if the DIRSYNC flag
3334 ** is set. This is a one-time occurrance. Many systems (examples: AIX)
3335 ** are unable to fsync a directory, so ignore errors on the fsync.
3337 if( pFile
->ctrlFlags
& UNIXFILE_DIRSYNC
){
3339 OSTRACE(("DIRSYNC %s (have_fullfsync=%d fullsync=%d)\n", pFile
->zPath
,
3340 HAVE_FULLFSYNC
, isFullsync
));
3341 rc
= osOpenDirectory(pFile
->zPath
, &dirfd
);
3342 if( rc
==SQLITE_OK
&& dirfd
>=0 ){
3343 full_fsync(dirfd
, 0, 0);
3344 robust_close(pFile
, dirfd
, __LINE__
);
3345 }else if( rc
==SQLITE_CANTOPEN
){
3348 pFile
->ctrlFlags
&= ~UNIXFILE_DIRSYNC
;
3354 ** Truncate an open file to a specified size
3356 static int unixTruncate(sqlite3_file
*id
, i64 nByte
){
3357 unixFile
*pFile
= (unixFile
*)id
;
3360 SimulateIOError( return SQLITE_IOERR_TRUNCATE
);
3362 /* If the user has configured a chunk-size for this file, truncate the
3363 ** file so that it consists of an integer number of chunks (i.e. the
3364 ** actual file size after the operation may be larger than the requested
3367 if( pFile
->szChunk
){
3368 nByte
= ((nByte
+ pFile
->szChunk
- 1)/pFile
->szChunk
) * pFile
->szChunk
;
3371 rc
= robust_ftruncate(pFile
->h
, (off_t
)nByte
);
3373 pFile
->lastErrno
= errno
;
3374 return unixLogError(SQLITE_IOERR_TRUNCATE
, "ftruncate", pFile
->zPath
);
3377 /* If we are doing a normal write to a database file (as opposed to
3378 ** doing a hot-journal rollback or a write to some file other than a
3379 ** normal database file) and we truncate the file to zero length,
3380 ** that effectively updates the change counter. This might happen
3381 ** when restoring a database using the backup API from a zero-length
3384 if( pFile
->inNormalWrite
&& nByte
==0 ){
3385 pFile
->transCntrChng
= 1;
3394 ** Determine the current size of a file in bytes
3396 static int unixFileSize(sqlite3_file
*id
, i64
*pSize
){
3400 rc
= osFstat(((unixFile
*)id
)->h
, &buf
);
3401 SimulateIOError( rc
=1 );
3403 ((unixFile
*)id
)->lastErrno
= errno
;
3404 return SQLITE_IOERR_FSTAT
;
3406 *pSize
= buf
.st_size
;
3408 /* When opening a zero-size database, the findInodeInfo() procedure
3409 ** writes a single byte into that file in order to work around a bug
3410 ** in the OS-X msdos filesystem. In order to avoid problems with upper
3411 ** layers, we need to report this file size as zero even though it is
3412 ** really 1. Ticket #3260.
3414 if( *pSize
==1 ) *pSize
= 0;
3420 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
3422 ** Handler for proxy-locking file-control verbs. Defined below in the
3423 ** proxying locking division.
3425 static int proxyFileControl(sqlite3_file
*,int,void*);
3429 ** This function is called to handle the SQLITE_FCNTL_SIZE_HINT
3430 ** file-control operation. Enlarge the database to nBytes in size
3431 ** (rounded up to the next chunk-size). If the database is already
3432 ** nBytes or larger, this routine is a no-op.
3434 static int fcntlSizeHint(unixFile
*pFile
, i64 nByte
){
3435 if( pFile
->szChunk
>0 ){
3436 i64 nSize
; /* Required file size */
3437 struct stat buf
; /* Used to hold return values of fstat() */
3439 if( osFstat(pFile
->h
, &buf
) ) return SQLITE_IOERR_FSTAT
;
3441 nSize
= ((nByte
+pFile
->szChunk
-1) / pFile
->szChunk
) * pFile
->szChunk
;
3442 if( nSize
>(i64
)buf
.st_size
){
3444 #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
3445 /* The code below is handling the return value of osFallocate()
3446 ** correctly. posix_fallocate() is defined to "returns zero on success,
3447 ** or an error number on failure". See the manpage for details. */
3450 err
= osFallocate(pFile
->h
, buf
.st_size
, nSize
-buf
.st_size
);
3451 }while( err
==EINTR
);
3452 if( err
) return SQLITE_IOERR_WRITE
;
3454 /* If the OS does not have posix_fallocate(), fake it. First use
3455 ** ftruncate() to set the file size, then write a single byte to
3456 ** the last byte in each block within the extended region. This
3457 ** is the same technique used by glibc to implement posix_fallocate()
3458 ** on systems that do not have a real fallocate() system call.
3460 int nBlk
= buf
.st_blksize
; /* File-system block size */
3461 i64 iWrite
; /* Next offset to write to */
3463 if( robust_ftruncate(pFile
->h
, nSize
) ){
3464 pFile
->lastErrno
= errno
;
3465 return unixLogError(SQLITE_IOERR_TRUNCATE
, "ftruncate", pFile
->zPath
);
3467 iWrite
= ((buf
.st_size
+ 2*nBlk
- 1)/nBlk
)*nBlk
-1;
3468 while( iWrite
<nSize
){
3469 int nWrite
= seekAndWrite(pFile
, iWrite
, "", 1);
3470 if( nWrite
!=1 ) return SQLITE_IOERR_WRITE
;
3481 ** Information and control of an open file handle.
3483 static int unixFileControl(sqlite3_file
*id
, int op
, void *pArg
){
3484 unixFile
*pFile
= (unixFile
*)id
;
3486 case SQLITE_FCNTL_LOCKSTATE
: {
3487 *(int*)pArg
= pFile
->eFileLock
;
3490 case SQLITE_LAST_ERRNO
: {
3491 *(int*)pArg
= pFile
->lastErrno
;
3494 case SQLITE_FCNTL_CHUNK_SIZE
: {
3495 pFile
->szChunk
= *(int *)pArg
;
3498 case SQLITE_FCNTL_SIZE_HINT
: {
3500 SimulateIOErrorBenign(1);
3501 rc
= fcntlSizeHint(pFile
, *(i64
*)pArg
);
3502 SimulateIOErrorBenign(0);
3505 case SQLITE_FCNTL_PERSIST_WAL
: {
3506 int bPersist
= *(int*)pArg
;
3508 *(int*)pArg
= (pFile
->ctrlFlags
& UNIXFILE_PERSIST_WAL
)!=0;
3509 }else if( bPersist
==0 ){
3510 pFile
->ctrlFlags
&= ~UNIXFILE_PERSIST_WAL
;
3512 pFile
->ctrlFlags
|= UNIXFILE_PERSIST_WAL
;
3517 /* The pager calls this method to signal that it has done
3518 ** a rollback and that the database is therefore unchanged and
3519 ** it hence it is OK for the transaction change counter to be
3522 case SQLITE_FCNTL_DB_UNCHANGED
: {
3523 ((unixFile
*)id
)->dbUpdate
= 0;
3527 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
3528 case SQLITE_SET_LOCKPROXYFILE
:
3529 case SQLITE_GET_LOCKPROXYFILE
: {
3530 return proxyFileControl(id
,op
,pArg
);
3532 #endif /* SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) */
3533 case SQLITE_FCNTL_SYNC_OMITTED
: {
3534 return SQLITE_OK
; /* A no-op */
3537 return SQLITE_NOTFOUND
;
3541 ** Return the sector size in bytes of the underlying block device for
3542 ** the specified file. This is almost always 512 bytes, but may be
3543 ** larger for some devices.
3545 ** SQLite code assumes this function cannot fail. It also assumes that
3546 ** if two files are created in the same file-system directory (i.e.
3547 ** a database and its journal file) that the sector size will be the
3550 static int unixSectorSize(sqlite3_file
*NotUsed
){
3551 UNUSED_PARAMETER(NotUsed
);
3552 return SQLITE_DEFAULT_SECTOR_SIZE
;
3556 ** Return the device characteristics for the file. This is always 0 for unix.
3558 static int unixDeviceCharacteristics(sqlite3_file
*NotUsed
){
3559 UNUSED_PARAMETER(NotUsed
);
3563 #ifndef SQLITE_OMIT_WAL
3567 ** Object used to represent an shared memory buffer.
3569 ** When multiple threads all reference the same wal-index, each thread
3570 ** has its own unixShm object, but they all point to a single instance
3571 ** of this unixShmNode object. In other words, each wal-index is opened
3572 ** only once per process.
3574 ** Each unixShmNode object is connected to a single unixInodeInfo object.
3575 ** We could coalesce this object into unixInodeInfo, but that would mean
3576 ** every open file that does not use shared memory (in other words, most
3577 ** open files) would have to carry around this extra information. So
3578 ** the unixInodeInfo object contains a pointer to this unixShmNode object
3579 ** and the unixShmNode object is created only when needed.
3581 ** unixMutexHeld() must be true when creating or destroying
3582 ** this object or while reading or writing the following fields:
3586 ** The following fields are read-only after the object is created:
3591 ** Either unixShmNode.mutex must be held or unixShmNode.nRef==0 and
3592 ** unixMutexHeld() is true when reading or writing any other field
3593 ** in this structure.
3595 struct unixShmNode
{
3596 unixInodeInfo
*pInode
; /* unixInodeInfo that owns this SHM node */
3597 sqlite3_mutex
*mutex
; /* Mutex to access this object */
3598 char *zFilename
; /* Name of the mmapped file */
3599 int h
; /* Open file descriptor */
3600 int szRegion
; /* Size of shared-memory regions */
3601 u16 nRegion
; /* Size of array apRegion */
3602 u8 isReadonly
; /* True if read-only */
3603 char **apRegion
; /* Array of mapped shared-memory regions */
3604 int nRef
; /* Number of unixShm objects pointing to this */
3605 unixShm
*pFirst
; /* All unixShm objects pointing to this */
3607 u8 exclMask
; /* Mask of exclusive locks held */
3608 u8 sharedMask
; /* Mask of shared locks held */
3609 u8 nextShmId
; /* Next available unixShm.id value */
3614 ** Structure used internally by this VFS to record the state of an
3615 ** open shared memory connection.
3617 ** The following fields are initialized when this object is created and
3618 ** are read-only thereafter:
3623 ** All other fields are read/write. The unixShm.pFile->mutex must be held
3624 ** while accessing any read/write fields.
3627 unixShmNode
*pShmNode
; /* The underlying unixShmNode object */
3628 unixShm
*pNext
; /* Next unixShm with the same unixShmNode */
3629 u8 hasMutex
; /* True if holding the unixShmNode mutex */
3630 u8 id
; /* Id of this connection within its unixShmNode */
3631 u16 sharedMask
; /* Mask of shared locks held */
3632 u16 exclMask
; /* Mask of exclusive locks held */
3636 ** Constants used for locking
3638 #define UNIX_SHM_BASE ((22+SQLITE_SHM_NLOCK)*4) /* first lock byte */
3639 #define UNIX_SHM_DMS (UNIX_SHM_BASE+SQLITE_SHM_NLOCK) /* deadman switch */
3642 ** Apply posix advisory locks for all bytes from ofst through ofst+n-1.
3644 ** Locks block if the mask is exactly UNIX_SHM_C and are non-blocking
3647 static int unixShmSystemLock(
3648 unixShmNode
*pShmNode
, /* Apply locks to this open shared-memory segment */
3649 int lockType
, /* F_UNLCK, F_RDLCK, or F_WRLCK */
3650 int ofst
, /* First byte of the locking range */
3651 int n
/* Number of bytes to lock */
3653 struct flock f
; /* The posix advisory locking structure */
3654 int rc
= SQLITE_OK
; /* Result code form fcntl() */
3656 /* Access to the unixShmNode object is serialized by the caller */
3657 assert( sqlite3_mutex_held(pShmNode
->mutex
) || pShmNode
->nRef
==0 );
3659 /* Shared locks never span more than one byte */
3660 assert( n
==1 || lockType
!=F_RDLCK
);
3662 /* Locks are within range */
3663 assert( n
>=1 && n
<SQLITE_SHM_NLOCK
);
3665 if( pShmNode
->h
>=0 ){
3666 /* Initialize the locking parameters */
3667 memset(&f
, 0, sizeof(f
));
3668 f
.l_type
= lockType
;
3669 f
.l_whence
= SEEK_SET
;
3673 rc
= osFcntl(pShmNode
->h
, F_SETLK
, &f
);
3674 rc
= (rc
!=(-1)) ? SQLITE_OK
: SQLITE_BUSY
;
3677 /* Update the global lock state and do debug tracing */
3680 OSTRACE(("SHM-LOCK "));
3681 mask
= (1<<(ofst
+n
)) - (1<<ofst
);
3682 if( rc
==SQLITE_OK
){
3683 if( lockType
==F_UNLCK
){
3684 OSTRACE(("unlock %d ok", ofst
));
3685 pShmNode
->exclMask
&= ~mask
;
3686 pShmNode
->sharedMask
&= ~mask
;
3687 }else if( lockType
==F_RDLCK
){
3688 OSTRACE(("read-lock %d ok", ofst
));
3689 pShmNode
->exclMask
&= ~mask
;
3690 pShmNode
->sharedMask
|= mask
;
3692 assert( lockType
==F_WRLCK
);
3693 OSTRACE(("write-lock %d ok", ofst
));
3694 pShmNode
->exclMask
|= mask
;
3695 pShmNode
->sharedMask
&= ~mask
;
3698 if( lockType
==F_UNLCK
){
3699 OSTRACE(("unlock %d failed", ofst
));
3700 }else if( lockType
==F_RDLCK
){
3701 OSTRACE(("read-lock failed"));
3703 assert( lockType
==F_WRLCK
);
3704 OSTRACE(("write-lock %d failed", ofst
));
3707 OSTRACE((" - afterwards %03x,%03x\n",
3708 pShmNode
->sharedMask
, pShmNode
->exclMask
));
3717 ** Purge the unixShmNodeList list of all entries with unixShmNode.nRef==0.
3719 ** This is not a VFS shared-memory method; it is a utility function called
3720 ** by VFS shared-memory methods.
3722 static void unixShmPurge(unixFile
*pFd
){
3723 unixShmNode
*p
= pFd
->pInode
->pShmNode
;
3724 assert( unixMutexHeld() );
3725 if( p
&& p
->nRef
==0 ){
3727 assert( p
->pInode
==pFd
->pInode
);
3728 sqlite3_mutex_free(p
->mutex
);
3729 for(i
=0; i
<p
->nRegion
; i
++){
3731 munmap(p
->apRegion
[i
], p
->szRegion
);
3733 sqlite3_free(p
->apRegion
[i
]);
3736 sqlite3_free(p
->apRegion
);
3738 robust_close(pFd
, p
->h
, __LINE__
);
3741 p
->pInode
->pShmNode
= 0;
3747 ** Open a shared-memory area associated with open database file pDbFd.
3748 ** This particular implementation uses mmapped files.
3750 ** The file used to implement shared-memory is in the same directory
3751 ** as the open database file and has the same name as the open database
3752 ** file with the "-shm" suffix added. For example, if the database file
3753 ** is "/home/user1/config.db" then the file that is created and mmapped
3754 ** for shared memory will be called "/home/user1/config.db-shm".
3756 ** Another approach to is to use files in /dev/shm or /dev/tmp or an
3757 ** some other tmpfs mount. But if a file in a different directory
3758 ** from the database file is used, then differing access permissions
3759 ** or a chroot() might cause two different processes on the same
3760 ** database to end up using different files for shared memory -
3761 ** meaning that their memory would not really be shared - resulting
3762 ** in database corruption. Nevertheless, this tmpfs file usage
3763 ** can be enabled at compile-time using -DSQLITE_SHM_DIRECTORY="/dev/shm"
3764 ** or the equivalent. The use of the SQLITE_SHM_DIRECTORY compile-time
3765 ** option results in an incompatible build of SQLite; builds of SQLite
3766 ** that with differing SQLITE_SHM_DIRECTORY settings attempt to use the
3767 ** same database file at the same time, database corruption will likely
3768 ** result. The SQLITE_SHM_DIRECTORY compile-time option is considered
3769 ** "unsupported" and may go away in a future SQLite release.
3771 ** When opening a new shared-memory file, if no other instances of that
3772 ** file are currently open, in this process or in other processes, then
3773 ** the file must be truncated to zero length or have its header cleared.
3775 ** If the original database file (pDbFd) is using the "unix-excl" VFS
3776 ** that means that an exclusive lock is held on the database file and
3777 ** that no other processes are able to read or write the database. In
3778 ** that case, we do not really need shared memory. No shared memory
3779 ** file is created. The shared memory will be simulated with heap memory.
3781 static int unixOpenSharedMemory(unixFile
*pDbFd
){
3782 struct unixShm
*p
= 0; /* The connection to be opened */
3783 struct unixShmNode
*pShmNode
; /* The underlying mmapped file */
3784 int rc
; /* Result code */
3785 unixInodeInfo
*pInode
; /* The inode of fd */
3786 char *zShmFilename
; /* Name of the file used for SHM */
3787 int nShmFilename
; /* Size of the SHM filename in bytes */
3789 /* Allocate space for the new unixShm object. */
3790 p
= sqlite3_malloc( sizeof(*p
) );
3791 if( p
==0 ) return SQLITE_NOMEM
;
3792 memset(p
, 0, sizeof(*p
));
3793 assert( pDbFd
->pShm
==0 );
3795 /* Check to see if a unixShmNode object already exists. Reuse an existing
3796 ** one if present. Create a new one if necessary.
3799 pInode
= pDbFd
->pInode
;
3800 pShmNode
= pInode
->pShmNode
;
3802 struct stat sStat
; /* fstat() info for database file */
3804 /* Call fstat() to figure out the permissions on the database file. If
3805 ** a new *-shm file is created, an attempt will be made to create it
3806 ** with the same permissions. The actual permissions the file is created
3807 ** with are subject to the current umask setting.
3809 if( osFstat(pDbFd
->h
, &sStat
) && pInode
->bProcessLock
==0 ){
3810 rc
= SQLITE_IOERR_FSTAT
;
3814 #ifdef SQLITE_SHM_DIRECTORY
3815 nShmFilename
= sizeof(SQLITE_SHM_DIRECTORY
) + 30;
3817 nShmFilename
= 5 + (int)strlen(pDbFd
->zPath
);
3819 pShmNode
= sqlite3_malloc( sizeof(*pShmNode
) + nShmFilename
);
3824 memset(pShmNode
, 0, sizeof(*pShmNode
));
3825 zShmFilename
= pShmNode
->zFilename
= (char*)&pShmNode
[1];
3826 #ifdef SQLITE_SHM_DIRECTORY
3827 sqlite3_snprintf(nShmFilename
, zShmFilename
,
3828 SQLITE_SHM_DIRECTORY
"/sqlite-shm-%x-%x",
3829 (u32
)sStat
.st_ino
, (u32
)sStat
.st_dev
);
3831 sqlite3_snprintf(nShmFilename
, zShmFilename
, "%s-shm", pDbFd
->zPath
);
3832 sqlite3FileSuffix3(pDbFd
->zPath
, zShmFilename
);
3835 pDbFd
->pInode
->pShmNode
= pShmNode
;
3836 pShmNode
->pInode
= pDbFd
->pInode
;
3837 pShmNode
->mutex
= sqlite3_mutex_alloc(SQLITE_MUTEX_FAST
);
3838 if( pShmNode
->mutex
==0 ){
3843 if( pInode
->bProcessLock
==0 ){
3845 int openFlags
= O_RDWR
| O_CREAT
;
3846 zRO
= sqlite3_uri_parameter(pDbFd
->zPath
, "readonly_shm");
3847 if( zRO
&& sqlite3GetBoolean(zRO
) ){
3848 openFlags
= O_RDONLY
;
3849 pShmNode
->isReadonly
= 1;
3851 pShmNode
->h
= robust_open(zShmFilename
, openFlags
, (sStat
.st_mode
&0777));
3852 if( pShmNode
->h
<0 ){
3853 if( pShmNode
->h
<0 ){
3854 rc
= unixLogError(SQLITE_CANTOPEN_BKPT
, "open", zShmFilename
);
3859 /* Check to see if another process is holding the dead-man switch.
3860 ** If not, truncate the file to zero length.
3863 if( unixShmSystemLock(pShmNode
, F_WRLCK
, UNIX_SHM_DMS
, 1)==SQLITE_OK
){
3864 if( robust_ftruncate(pShmNode
->h
, 0) ){
3865 rc
= unixLogError(SQLITE_IOERR_SHMOPEN
, "ftruncate", zShmFilename
);
3868 if( rc
==SQLITE_OK
){
3869 rc
= unixShmSystemLock(pShmNode
, F_RDLCK
, UNIX_SHM_DMS
, 1);
3871 if( rc
) goto shm_open_err
;
3875 /* Make the new connection a child of the unixShmNode */
3876 p
->pShmNode
= pShmNode
;
3878 p
->id
= pShmNode
->nextShmId
++;
3884 /* The reference count on pShmNode has already been incremented under
3885 ** the cover of the unixEnterMutex() mutex and the pointer from the
3886 ** new (struct unixShm) object to the pShmNode has been set. All that is
3887 ** left to do is to link the new object into the linked list starting
3888 ** at pShmNode->pFirst. This must be done while holding the pShmNode->mutex
3891 sqlite3_mutex_enter(pShmNode
->mutex
);
3892 p
->pNext
= pShmNode
->pFirst
;
3893 pShmNode
->pFirst
= p
;
3894 sqlite3_mutex_leave(pShmNode
->mutex
);
3897 /* Jump here on any error */
3899 unixShmPurge(pDbFd
); /* This call frees pShmNode if required */
3906 ** This function is called to obtain a pointer to region iRegion of the
3907 ** shared-memory associated with the database file fd. Shared-memory regions
3908 ** are numbered starting from zero. Each shared-memory region is szRegion
3911 ** If an error occurs, an error code is returned and *pp is set to NULL.
3913 ** Otherwise, if the bExtend parameter is 0 and the requested shared-memory
3914 ** region has not been allocated (by any client, including one running in a
3915 ** separate process), then *pp is set to NULL and SQLITE_OK returned. If
3916 ** bExtend is non-zero and the requested shared-memory region has not yet
3917 ** been allocated, it is allocated by this function.
3919 ** If the shared-memory region has already been allocated or is allocated by
3920 ** this call as described above, then it is mapped into this processes
3921 ** address space (if it is not already), *pp is set to point to the mapped
3922 ** memory and SQLITE_OK returned.
3924 static int unixShmMap(
3925 sqlite3_file
*fd
, /* Handle open on database file */
3926 int iRegion
, /* Region to retrieve */
3927 int szRegion
, /* Size of regions */
3928 int bExtend
, /* True to extend file if necessary */
3929 void volatile **pp
/* OUT: Mapped memory */
3931 unixFile
*pDbFd
= (unixFile
*)fd
;
3933 unixShmNode
*pShmNode
;
3936 /* If the shared-memory file has not yet been opened, open it now. */
3937 if( pDbFd
->pShm
==0 ){
3938 rc
= unixOpenSharedMemory(pDbFd
);
3939 if( rc
!=SQLITE_OK
) return rc
;
3943 pShmNode
= p
->pShmNode
;
3944 sqlite3_mutex_enter(pShmNode
->mutex
);
3945 assert( szRegion
==pShmNode
->szRegion
|| pShmNode
->nRegion
==0 );
3946 assert( pShmNode
->pInode
==pDbFd
->pInode
);
3947 assert( pShmNode
->h
>=0 || pDbFd
->pInode
->bProcessLock
==1 );
3948 assert( pShmNode
->h
<0 || pDbFd
->pInode
->bProcessLock
==0 );
3950 if( pShmNode
->nRegion
<=iRegion
){
3951 char **apNew
; /* New apRegion[] array */
3952 int nByte
= (iRegion
+1)*szRegion
; /* Minimum required file size */
3953 struct stat sStat
; /* Used by fstat() */
3955 pShmNode
->szRegion
= szRegion
;
3957 if( pShmNode
->h
>=0 ){
3958 /* The requested region is not mapped into this processes address space.
3959 ** Check to see if it has been allocated (i.e. if the wal-index file is
3960 ** large enough to contain the requested region).
3962 if( osFstat(pShmNode
->h
, &sStat
) ){
3963 rc
= SQLITE_IOERR_SHMSIZE
;
3967 if( sStat
.st_size
<nByte
){
3968 /* The requested memory region does not exist. If bExtend is set to
3969 ** false, exit early. *pp will be set to NULL and SQLITE_OK returned.
3971 ** Alternatively, if bExtend is true, use ftruncate() to allocate
3972 ** the requested memory region.
3974 if( !bExtend
) goto shmpage_out
;
3975 if( robust_ftruncate(pShmNode
->h
, nByte
) ){
3976 rc
= unixLogError(SQLITE_IOERR_SHMSIZE
, "ftruncate",
3977 pShmNode
->zFilename
);
3983 /* Map the requested memory region into this processes address space. */
3984 apNew
= (char **)sqlite3_realloc(
3985 pShmNode
->apRegion
, (iRegion
+1)*sizeof(char *)
3988 rc
= SQLITE_IOERR_NOMEM
;
3991 pShmNode
->apRegion
= apNew
;
3992 while(pShmNode
->nRegion
<=iRegion
){
3994 if( pShmNode
->h
>=0 ){
3995 pMem
= mmap(0, szRegion
,
3996 pShmNode
->isReadonly
? PROT_READ
: PROT_READ
|PROT_WRITE
,
3997 MAP_SHARED
, pShmNode
->h
, pShmNode
->nRegion
*szRegion
3999 if( pMem
==MAP_FAILED
){
4000 rc
= unixLogError(SQLITE_IOERR_SHMMAP
, "mmap", pShmNode
->zFilename
);
4004 pMem
= sqlite3_malloc(szRegion
);
4009 memset(pMem
, 0, szRegion
);
4011 pShmNode
->apRegion
[pShmNode
->nRegion
] = pMem
;
4012 pShmNode
->nRegion
++;
4017 if( pShmNode
->nRegion
>iRegion
){
4018 *pp
= pShmNode
->apRegion
[iRegion
];
4022 if( pShmNode
->isReadonly
&& rc
==SQLITE_OK
) rc
= SQLITE_READONLY
;
4023 sqlite3_mutex_leave(pShmNode
->mutex
);
4028 ** Change the lock state for a shared-memory segment.
4030 ** Note that the relationship between SHAREd and EXCLUSIVE locks is a little
4031 ** different here than in posix. In xShmLock(), one can go from unlocked
4032 ** to shared and back or from unlocked to exclusive and back. But one may
4033 ** not go from shared to exclusive or from exclusive to shared.
4035 static int unixShmLock(
4036 sqlite3_file
*fd
, /* Database file holding the shared memory */
4037 int ofst
, /* First lock to acquire or release */
4038 int n
, /* Number of locks to acquire or release */
4039 int flags
/* What to do with the lock */
4041 unixFile
*pDbFd
= (unixFile
*)fd
; /* Connection holding shared memory */
4042 unixShm
*p
= pDbFd
->pShm
; /* The shared memory being locked */
4043 unixShm
*pX
; /* For looping over all siblings */
4044 unixShmNode
*pShmNode
= p
->pShmNode
; /* The underlying file iNode */
4045 int rc
= SQLITE_OK
; /* Result code */
4046 u16 mask
; /* Mask of locks to take or release */
4048 assert( pShmNode
==pDbFd
->pInode
->pShmNode
);
4049 assert( pShmNode
->pInode
==pDbFd
->pInode
);
4050 assert( ofst
>=0 && ofst
+n
<=SQLITE_SHM_NLOCK
);
4052 assert( flags
==(SQLITE_SHM_LOCK
| SQLITE_SHM_SHARED
)
4053 || flags
==(SQLITE_SHM_LOCK
| SQLITE_SHM_EXCLUSIVE
)
4054 || flags
==(SQLITE_SHM_UNLOCK
| SQLITE_SHM_SHARED
)
4055 || flags
==(SQLITE_SHM_UNLOCK
| SQLITE_SHM_EXCLUSIVE
) );
4056 assert( n
==1 || (flags
& SQLITE_SHM_EXCLUSIVE
)!=0 );
4057 assert( pShmNode
->h
>=0 || pDbFd
->pInode
->bProcessLock
==1 );
4058 assert( pShmNode
->h
<0 || pDbFd
->pInode
->bProcessLock
==0 );
4060 mask
= (1<<(ofst
+n
)) - (1<<ofst
);
4061 assert( n
>1 || mask
==(1<<ofst
) );
4062 sqlite3_mutex_enter(pShmNode
->mutex
);
4063 if( flags
& SQLITE_SHM_UNLOCK
){
4064 u16 allMask
= 0; /* Mask of locks held by siblings */
4066 /* See if any siblings hold this same lock */
4067 for(pX
=pShmNode
->pFirst
; pX
; pX
=pX
->pNext
){
4068 if( pX
==p
) continue;
4069 assert( (pX
->exclMask
& (p
->exclMask
|p
->sharedMask
))==0 );
4070 allMask
|= pX
->sharedMask
;
4073 /* Unlock the system-level locks */
4074 if( (mask
& allMask
)==0 ){
4075 rc
= unixShmSystemLock(pShmNode
, F_UNLCK
, ofst
+UNIX_SHM_BASE
, n
);
4080 /* Undo the local locks */
4081 if( rc
==SQLITE_OK
){
4082 p
->exclMask
&= ~mask
;
4083 p
->sharedMask
&= ~mask
;
4085 }else if( flags
& SQLITE_SHM_SHARED
){
4086 u16 allShared
= 0; /* Union of locks held by connections other than "p" */
4088 /* Find out which shared locks are already held by sibling connections.
4089 ** If any sibling already holds an exclusive lock, go ahead and return
4092 for(pX
=pShmNode
->pFirst
; pX
; pX
=pX
->pNext
){
4093 if( (pX
->exclMask
& mask
)!=0 ){
4097 allShared
|= pX
->sharedMask
;
4100 /* Get shared locks at the system level, if necessary */
4101 if( rc
==SQLITE_OK
){
4102 if( (allShared
& mask
)==0 ){
4103 rc
= unixShmSystemLock(pShmNode
, F_RDLCK
, ofst
+UNIX_SHM_BASE
, n
);
4109 /* Get the local shared locks */
4110 if( rc
==SQLITE_OK
){
4111 p
->sharedMask
|= mask
;
4114 /* Make sure no sibling connections hold locks that will block this
4115 ** lock. If any do, return SQLITE_BUSY right away.
4117 for(pX
=pShmNode
->pFirst
; pX
; pX
=pX
->pNext
){
4118 if( (pX
->exclMask
& mask
)!=0 || (pX
->sharedMask
& mask
)!=0 ){
4124 /* Get the exclusive locks at the system level. Then if successful
4125 ** also mark the local connection as being locked.
4127 if( rc
==SQLITE_OK
){
4128 rc
= unixShmSystemLock(pShmNode
, F_WRLCK
, ofst
+UNIX_SHM_BASE
, n
);
4129 if( rc
==SQLITE_OK
){
4130 assert( (p
->sharedMask
& mask
)==0 );
4131 p
->exclMask
|= mask
;
4135 sqlite3_mutex_leave(pShmNode
->mutex
);
4136 OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n",
4137 p
->id
, getpid(), p
->sharedMask
, p
->exclMask
));
4142 ** Implement a memory barrier or memory fence on shared memory.
4144 ** All loads and stores begun before the barrier must complete before
4145 ** any load or store begun after the barrier.
4147 static void unixShmBarrier(
4148 sqlite3_file
*fd
/* Database file holding the shared memory */
4150 UNUSED_PARAMETER(fd
);
4156 ** Close a connection to shared-memory. Delete the underlying
4157 ** storage if deleteFlag is true.
4159 ** If there is no shared memory associated with the connection then this
4160 ** routine is a harmless no-op.
4162 static int unixShmUnmap(
4163 sqlite3_file
*fd
, /* The underlying database file */
4164 int deleteFlag
/* Delete shared-memory if true */
4166 unixShm
*p
; /* The connection to be closed */
4167 unixShmNode
*pShmNode
; /* The underlying shared-memory file */
4168 unixShm
**pp
; /* For looping over sibling connections */
4169 unixFile
*pDbFd
; /* The underlying database file */
4171 pDbFd
= (unixFile
*)fd
;
4173 if( p
==0 ) return SQLITE_OK
;
4174 pShmNode
= p
->pShmNode
;
4176 assert( pShmNode
==pDbFd
->pInode
->pShmNode
);
4177 assert( pShmNode
->pInode
==pDbFd
->pInode
);
4179 /* Remove connection p from the set of connections associated
4181 sqlite3_mutex_enter(pShmNode
->mutex
);
4182 for(pp
=&pShmNode
->pFirst
; (*pp
)!=p
; pp
= &(*pp
)->pNext
){}
4185 /* Free the connection p */
4188 sqlite3_mutex_leave(pShmNode
->mutex
);
4190 /* If pShmNode->nRef has reached 0, then close the underlying
4191 ** shared-memory file, too */
4193 assert( pShmNode
->nRef
>0 );
4195 if( pShmNode
->nRef
==0 ){
4196 if( deleteFlag
&& pShmNode
->h
>=0 ) osUnlink(pShmNode
->zFilename
);
4197 unixShmPurge(pDbFd
);
4206 # define unixShmMap 0
4207 # define unixShmLock 0
4208 # define unixShmBarrier 0
4209 # define unixShmUnmap 0
4210 #endif /* #ifndef SQLITE_OMIT_WAL */
4213 ** Here ends the implementation of all sqlite3_file methods.
4215 ********************** End sqlite3_file Methods *******************************
4216 ******************************************************************************/
4219 ** This division contains definitions of sqlite3_io_methods objects that
4220 ** implement various file locking strategies. It also contains definitions
4221 ** of "finder" functions. A finder-function is used to locate the appropriate
4222 ** sqlite3_io_methods object for a particular database file. The pAppData
4223 ** field of the sqlite3_vfs VFS objects are initialized to be pointers to
4224 ** the correct finder-function for that VFS.
4226 ** Most finder functions return a pointer to a fixed sqlite3_io_methods
4227 ** object. The only interesting finder-function is autolockIoFinder, which
4228 ** looks at the filesystem type and tries to guess the best locking
4229 ** strategy from that.
4231 ** For finder-funtion F, two objects are created:
4233 ** (1) The real finder-function named "FImpt()".
4235 ** (2) A constant pointer to this function named just "F".
4238 ** A pointer to the F pointer is used as the pAppData value for VFS
4239 ** objects. We have to do this instead of letting pAppData point
4240 ** directly at the finder-function since C90 rules prevent a void*
4241 ** from be cast into a function pointer.
4244 ** Each instance of this macro generates two objects:
4246 ** * A constant sqlite3_io_methods object call METHOD that has locking
4247 ** methods CLOSE, LOCK, UNLOCK, CKRESLOCK.
4249 ** * An I/O method finder function called FINDER that returns a pointer
4250 ** to the METHOD object in the previous bullet.
4252 #define IOMETHODS(FINDER, METHOD, VERSION, CLOSE, LOCK, UNLOCK, CKLOCK) \
4253 static const sqlite3_io_methods METHOD = { \
4254 VERSION, /* iVersion */ \
4255 CLOSE, /* xClose */ \
4256 unixRead, /* xRead */ \
4257 unixWrite, /* xWrite */ \
4258 unixTruncate, /* xTruncate */ \
4259 unixSync, /* xSync */ \
4260 unixFileSize, /* xFileSize */ \
4262 UNLOCK, /* xUnlock */ \
4263 CKLOCK, /* xCheckReservedLock */ \
4264 unixFileControl, /* xFileControl */ \
4265 unixSectorSize, /* xSectorSize */ \
4266 unixDeviceCharacteristics, /* xDeviceCapabilities */ \
4267 unixShmMap, /* xShmMap */ \
4268 unixShmLock, /* xShmLock */ \
4269 unixShmBarrier, /* xShmBarrier */ \
4270 unixShmUnmap /* xShmUnmap */ \
4272 static const sqlite3_io_methods *FINDER##Impl(const char *z, unixFile *p){ \
4273 UNUSED_PARAMETER(z); UNUSED_PARAMETER(p); \
4276 static const sqlite3_io_methods *(*const FINDER)(const char*,unixFile *p) \
4280 ** Here are all of the sqlite3_io_methods objects for each of the
4281 ** locking strategies. Functions that return pointers to these methods
4282 ** are also created.
4285 posixIoFinder
, /* Finder function name */
4286 posixIoMethods
, /* sqlite3_io_methods object name */
4287 2, /* shared memory is enabled */
4288 unixClose
, /* xClose method */
4289 unixLock
, /* xLock method */
4290 unixUnlock
, /* xUnlock method */
4291 unixCheckReservedLock
/* xCheckReservedLock method */
4294 nolockIoFinder
, /* Finder function name */
4295 nolockIoMethods
, /* sqlite3_io_methods object name */
4296 1, /* shared memory is disabled */
4297 nolockClose
, /* xClose method */
4298 nolockLock
, /* xLock method */
4299 nolockUnlock
, /* xUnlock method */
4300 nolockCheckReservedLock
/* xCheckReservedLock method */
4303 dotlockIoFinder
, /* Finder function name */
4304 dotlockIoMethods
, /* sqlite3_io_methods object name */
4305 1, /* shared memory is disabled */
4306 dotlockClose
, /* xClose method */
4307 dotlockLock
, /* xLock method */
4308 dotlockUnlock
, /* xUnlock method */
4309 dotlockCheckReservedLock
/* xCheckReservedLock method */
4312 #if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS
4314 flockIoFinder
, /* Finder function name */
4315 flockIoMethods
, /* sqlite3_io_methods object name */
4316 1, /* shared memory is disabled */
4317 flockClose
, /* xClose method */
4318 flockLock
, /* xLock method */
4319 flockUnlock
, /* xUnlock method */
4320 flockCheckReservedLock
/* xCheckReservedLock method */
4326 semIoFinder
, /* Finder function name */
4327 semIoMethods
, /* sqlite3_io_methods object name */
4328 1, /* shared memory is disabled */
4329 semClose
, /* xClose method */
4330 semLock
, /* xLock method */
4331 semUnlock
, /* xUnlock method */
4332 semCheckReservedLock
/* xCheckReservedLock method */
4336 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4338 afpIoFinder
, /* Finder function name */
4339 afpIoMethods
, /* sqlite3_io_methods object name */
4340 1, /* shared memory is disabled */
4341 afpClose
, /* xClose method */
4342 afpLock
, /* xLock method */
4343 afpUnlock
, /* xUnlock method */
4344 afpCheckReservedLock
/* xCheckReservedLock method */
4349 ** The proxy locking method is a "super-method" in the sense that it
4350 ** opens secondary file descriptors for the conch and lock files and
4351 ** it uses proxy, dot-file, AFP, and flock() locking methods on those
4352 ** secondary files. For this reason, the division that implements
4353 ** proxy locking is located much further down in the file. But we need
4354 ** to go ahead and define the sqlite3_io_methods and finder function
4355 ** for proxy locking here. So we forward declare the I/O methods.
4357 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4358 static int proxyClose(sqlite3_file
*);
4359 static int proxyLock(sqlite3_file
*, int);
4360 static int proxyUnlock(sqlite3_file
*, int);
4361 static int proxyCheckReservedLock(sqlite3_file
*, int*);
4363 proxyIoFinder
, /* Finder function name */
4364 proxyIoMethods
, /* sqlite3_io_methods object name */
4365 1, /* shared memory is disabled */
4366 proxyClose
, /* xClose method */
4367 proxyLock
, /* xLock method */
4368 proxyUnlock
, /* xUnlock method */
4369 proxyCheckReservedLock
/* xCheckReservedLock method */
4373 /* nfs lockd on OSX 10.3+ doesn't clear write locks when a read lock is set */
4374 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4376 nfsIoFinder
, /* Finder function name */
4377 nfsIoMethods
, /* sqlite3_io_methods object name */
4378 1, /* shared memory is disabled */
4379 unixClose
, /* xClose method */
4380 unixLock
, /* xLock method */
4381 nfsUnlock
, /* xUnlock method */
4382 unixCheckReservedLock
/* xCheckReservedLock method */
4386 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4388 ** This "finder" function attempts to determine the best locking strategy
4389 ** for the database file "filePath". It then returns the sqlite3_io_methods
4390 ** object that implements that strategy.
4392 ** This is for MacOSX only.
4394 static const sqlite3_io_methods
*autolockIoFinderImpl(
4395 const char *filePath
, /* name of the database file */
4396 unixFile
*pNew
/* open file object for the database file */
4398 static const struct Mapping
{
4399 const char *zFilesystem
; /* Filesystem type name */
4400 const sqlite3_io_methods
*pMethods
; /* Appropriate locking method */
4402 { "hfs", &posixIoMethods
},
4403 { "ufs", &posixIoMethods
},
4404 { "afpfs", &afpIoMethods
},
4405 { "smbfs", &afpIoMethods
},
4406 { "webdav", &nolockIoMethods
},
4410 struct statfs fsInfo
;
4411 struct flock lockInfo
;
4414 /* If filePath==NULL that means we are dealing with a transient file
4415 ** that does not need to be locked. */
4416 return &nolockIoMethods
;
4418 if( statfs(filePath
, &fsInfo
) != -1 ){
4419 if( fsInfo
.f_flags
& MNT_RDONLY
){
4420 return &nolockIoMethods
;
4422 for(i
=0; aMap
[i
].zFilesystem
; i
++){
4423 if( strcmp(fsInfo
.f_fstypename
, aMap
[i
].zFilesystem
)==0 ){
4424 return aMap
[i
].pMethods
;
4429 /* Default case. Handles, amongst others, "nfs".
4430 ** Test byte-range lock using fcntl(). If the call succeeds,
4431 ** assume that the file-system supports POSIX style locks.
4434 lockInfo
.l_start
= 0;
4435 lockInfo
.l_whence
= SEEK_SET
;
4436 lockInfo
.l_type
= F_RDLCK
;
4437 if( osFcntl(pNew
->h
, F_GETLK
, &lockInfo
)!=-1 ) {
4438 if( strcmp(fsInfo
.f_fstypename
, "nfs")==0 ){
4439 return &nfsIoMethods
;
4441 return &posixIoMethods
;
4444 return &dotlockIoMethods
;
4447 static const sqlite3_io_methods
4448 *(*const autolockIoFinder
)(const char*,unixFile
*) = autolockIoFinderImpl
;
4450 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
4452 #if OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE
4454 ** This "finder" function attempts to determine the best locking strategy
4455 ** for the database file "filePath". It then returns the sqlite3_io_methods
4456 ** object that implements that strategy.
4458 ** This is for VXWorks only.
4460 static const sqlite3_io_methods
*autolockIoFinderImpl(
4461 const char *filePath
, /* name of the database file */
4462 unixFile
*pNew
/* the open file object */
4464 struct flock lockInfo
;
4467 /* If filePath==NULL that means we are dealing with a transient file
4468 ** that does not need to be locked. */
4469 return &nolockIoMethods
;
4472 /* Test if fcntl() is supported and use POSIX style locks.
4473 ** Otherwise fall back to the named semaphore method.
4476 lockInfo
.l_start
= 0;
4477 lockInfo
.l_whence
= SEEK_SET
;
4478 lockInfo
.l_type
= F_RDLCK
;
4479 if( osFcntl(pNew
->h
, F_GETLK
, &lockInfo
)!=-1 ) {
4480 return &posixIoMethods
;
4482 return &semIoMethods
;
4485 static const sqlite3_io_methods
4486 *(*const autolockIoFinder
)(const char*,unixFile
*) = autolockIoFinderImpl
;
4488 #endif /* OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE */
4491 ** An abstract type for a pointer to a IO method finder function:
4493 typedef const sqlite3_io_methods
*(*finder_type
)(const char*,unixFile
*);
4496 /****************************************************************************
4497 **************************** sqlite3_vfs methods ****************************
4499 ** This division contains the implementation of methods on the
4500 ** sqlite3_vfs object.
4504 ** Initialize the contents of the unixFile structure pointed to by pId.
4506 static int fillInUnixFile(
4507 sqlite3_vfs
*pVfs
, /* Pointer to vfs object */
4508 int h
, /* Open file descriptor of file being opened */
4509 int syncDir
, /* True to sync directory on first sync */
4510 sqlite3_file
*pId
, /* Write to the unixFile structure here */
4511 const char *zFilename
, /* Name of the file being opened */
4512 int noLock
, /* Omit locking if true */
4513 int isDelete
, /* Delete on close if true */
4514 int isReadOnly
/* True if the file is opened read-only */
4516 const sqlite3_io_methods
*pLockingStyle
;
4517 unixFile
*pNew
= (unixFile
*)pId
;
4520 assert( pNew
->pInode
==NULL
);
4522 /* Parameter isDelete is only used on vxworks. Express this explicitly
4523 ** here to prevent compiler warnings about unused parameters.
4525 UNUSED_PARAMETER(isDelete
);
4527 /* Usually the path zFilename should not be a relative pathname. The
4528 ** exception is when opening the proxy "conch" file in builds that
4529 ** include the special Apple locking styles.
4531 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4532 assert( zFilename
==0 || zFilename
[0]=='/'
4533 || pVfs
->pAppData
==(void*)&autolockIoFinder
);
4535 assert( zFilename
==0 || zFilename
[0]=='/' );
4538 /* No locking occurs in temporary files */
4539 assert( zFilename
!=0 || noLock
);
4541 OSTRACE(("OPEN %-3d %s\n", h
, zFilename
));
4543 pNew
->zPath
= zFilename
;
4544 if( memcmp(pVfs
->zName
,"unix-excl",10)==0 ){
4545 pNew
->ctrlFlags
= UNIXFILE_EXCL
;
4547 pNew
->ctrlFlags
= 0;
4550 pNew
->ctrlFlags
|= UNIXFILE_RDONLY
;
4553 pNew
->ctrlFlags
|= UNIXFILE_DIRSYNC
;
4557 pNew
->pId
= vxworksFindFileId(zFilename
);
4565 pLockingStyle
= &nolockIoMethods
;
4567 pLockingStyle
= (**(finder_type
*)pVfs
->pAppData
)(zFilename
, pNew
);
4568 #if SQLITE_ENABLE_LOCKING_STYLE
4569 /* Cache zFilename in the locking context (AFP and dotlock override) for
4570 ** proxyLock activation is possible (remote proxy is based on db name)
4571 ** zFilename remains valid until file is closed, to support */
4572 pNew
->lockingContext
= (void*)zFilename
;
4576 if( pLockingStyle
== &posixIoMethods
4577 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4578 || pLockingStyle
== &nfsIoMethods
4582 rc
= findInodeInfo(pNew
, &pNew
->pInode
);
4583 if( rc
!=SQLITE_OK
){
4584 /* If an error occured in findInodeInfo(), close the file descriptor
4585 ** immediately, before releasing the mutex. findInodeInfo() may fail
4586 ** in two scenarios:
4588 ** (a) A call to fstat() failed.
4589 ** (b) A malloc failed.
4591 ** Scenario (b) may only occur if the process is holding no other
4592 ** file descriptors open on the same file. If there were other file
4593 ** descriptors on this file, then no malloc would be required by
4594 ** findInodeInfo(). If this is the case, it is quite safe to close
4595 ** handle h - as it is guaranteed that no posix locks will be released
4598 ** If scenario (a) caused the error then things are not so safe. The
4599 ** implicit assumption here is that if fstat() fails, things are in
4600 ** such bad shape that dropping a lock or two doesn't matter much.
4602 robust_close(pNew
, h
, __LINE__
);
4608 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
4609 else if( pLockingStyle
== &afpIoMethods
){
4610 /* AFP locking uses the file path so it needs to be included in
4611 ** the afpLockingContext.
4613 afpLockingContext
*pCtx
;
4614 pNew
->lockingContext
= pCtx
= sqlite3_malloc( sizeof(*pCtx
) );
4618 /* NB: zFilename exists and remains valid until the file is closed
4619 ** according to requirement F11141. So we do not need to make a
4620 ** copy of the filename. */
4621 pCtx
->dbPath
= zFilename
;
4625 rc
= findInodeInfo(pNew
, &pNew
->pInode
);
4626 if( rc
!=SQLITE_OK
){
4627 sqlite3_free(pNew
->lockingContext
);
4628 robust_close(pNew
, h
, __LINE__
);
4636 else if( pLockingStyle
== &dotlockIoMethods
){
4637 /* Dotfile locking uses the file path so it needs to be included in
4638 ** the dotlockLockingContext
4642 assert( zFilename
!=0 );
4643 nFilename
= (int)strlen(zFilename
) + 6;
4644 zLockFile
= (char *)sqlite3_malloc(nFilename
);
4648 sqlite3_snprintf(nFilename
, zLockFile
, "%s" DOTLOCK_SUFFIX
, zFilename
);
4650 pNew
->lockingContext
= zLockFile
;
4654 else if( pLockingStyle
== &semIoMethods
){
4655 /* Named semaphore locking uses the file path so it needs to be
4656 ** included in the semLockingContext
4659 rc
= findInodeInfo(pNew
, &pNew
->pInode
);
4660 if( (rc
==SQLITE_OK
) && (pNew
->pInode
->pSem
==NULL
) ){
4661 char *zSemName
= pNew
->pInode
->aSemName
;
4663 sqlite3_snprintf(MAX_PATHNAME
, zSemName
, "/%s.sem",
4664 pNew
->pId
->zCanonicalName
);
4665 for( n
=1; zSemName
[n
]; n
++ )
4666 if( zSemName
[n
]=='/' ) zSemName
[n
] = '_';
4667 pNew
->pInode
->pSem
= sem_open(zSemName
, O_CREAT
, 0666, 1);
4668 if( pNew
->pInode
->pSem
== SEM_FAILED
){
4670 pNew
->pInode
->aSemName
[0] = '\0';
4677 pNew
->lastErrno
= 0;
4679 if( rc
!=SQLITE_OK
){
4680 if( h
>=0 ) robust_close(pNew
, h
, __LINE__
);
4682 osUnlink(zFilename
);
4685 pNew
->isDelete
= isDelete
;
4687 if( rc
!=SQLITE_OK
){
4688 if( h
>=0 ) robust_close(pNew
, h
, __LINE__
);
4690 pNew
->pMethod
= pLockingStyle
;
4697 ** Return the name of a directory in which to put temporary files.
4698 ** If no suitable temporary file directory can be found, return NULL.
4700 static const char *unixTempFileDir(void){
4701 static const char *azDirs
[] = {
4707 0 /* List terminator */
4711 const char *zDir
= 0;
4713 azDirs
[0] = sqlite3_temp_directory
;
4714 if( !azDirs
[1] ) azDirs
[1] = getenv("TMPDIR");
4715 for(i
=0; i
<sizeof(azDirs
)/sizeof(azDirs
[0]); zDir
=azDirs
[i
++]){
4716 if( zDir
==0 ) continue;
4717 if( osStat(zDir
, &buf
) ) continue;
4718 if( !S_ISDIR(buf
.st_mode
) ) continue;
4719 if( osAccess(zDir
, 07) ) continue;
4726 ** Create a temporary file name in zBuf. zBuf must be allocated
4727 ** by the calling process and must be big enough to hold at least
4728 ** pVfs->mxPathname bytes.
4730 static int unixGetTempname(int nBuf
, char *zBuf
){
4731 static const unsigned char zChars
[] =
4732 "abcdefghijklmnopqrstuvwxyz"
4733 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
4738 /* It's odd to simulate an io-error here, but really this is just
4739 ** using the io-error infrastructure to test that SQLite handles this
4740 ** function failing.
4742 SimulateIOError( return SQLITE_IOERR
);
4744 zDir
= unixTempFileDir();
4745 if( zDir
==0 ) zDir
= ".";
4747 /* Check that the output buffer is large enough for the temporary file
4748 ** name. If it is not, return SQLITE_ERROR.
4750 if( (strlen(zDir
) + strlen(SQLITE_TEMP_FILE_PREFIX
) + 17) >= (size_t)nBuf
){
4751 return SQLITE_ERROR
;
4755 sqlite3_snprintf(nBuf
-17, zBuf
, "%s/"SQLITE_TEMP_FILE_PREFIX
, zDir
);
4756 j
= (int)strlen(zBuf
);
4757 sqlite3_randomness(15, &zBuf
[j
]);
4758 for(i
=0; i
<15; i
++, j
++){
4759 zBuf
[j
] = (char)zChars
[ ((unsigned char)zBuf
[j
])%(sizeof(zChars
)-1) ];
4762 }while( osAccess(zBuf
,0)==0 );
4766 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
4768 ** Routine to transform a unixFile into a proxy-locking unixFile.
4769 ** Implementation in the proxy-lock division, but used by unixOpen()
4770 ** if SQLITE_PREFER_PROXY_LOCKING is defined.
4772 static int proxyTransformUnixFile(unixFile
*, const char*);
4776 ** Search for an unused file descriptor that was opened on the database
4777 ** file (not a journal or master-journal file) identified by pathname
4778 ** zPath with SQLITE_OPEN_XXX flags matching those passed as the second
4779 ** argument to this function.
4781 ** Such a file descriptor may exist if a database connection was closed
4782 ** but the associated file descriptor could not be closed because some
4783 ** other file descriptor open on the same file is holding a file-lock.
4784 ** Refer to comments in the unixClose() function and the lengthy comment
4785 ** describing "Posix Advisory Locking" at the start of this file for
4786 ** further details. Also, ticket #4018.
4788 ** If a suitable file descriptor is found, then it is returned. If no
4789 ** such file descriptor is located, -1 is returned.
4791 static UnixUnusedFd
*findReusableFd(const char *zPath
, int flags
){
4792 UnixUnusedFd
*pUnused
= 0;
4794 /* Do not search for an unused file descriptor on vxworks. Not because
4795 ** vxworks would not benefit from the change (it might, we're not sure),
4796 ** but because no way to test it is currently available. It is better
4797 ** not to risk breaking vxworks support for the sake of such an obscure
4800 struct stat sStat
; /* Results of stat() call */
4802 /* A stat() call may fail for various reasons. If this happens, it is
4803 ** almost certain that an open() call on the same path will also fail.
4804 ** For this reason, if an error occurs in the stat() call here, it is
4805 ** ignored and -1 is returned. The caller will try to open a new file
4806 ** descriptor on the same path, fail, and return an error to SQLite.
4808 ** Even if a subsequent open() call does succeed, the consequences of
4809 ** not searching for a resusable file descriptor are not dire. */
4810 if( 0==osStat(zPath
, &sStat
) ){
4811 unixInodeInfo
*pInode
;
4815 while( pInode
&& (pInode
->fileId
.dev
!=sStat
.st_dev
4816 || pInode
->fileId
.ino
!=sStat
.st_ino
) ){
4817 pInode
= pInode
->pNext
;
4821 for(pp
=&pInode
->pUnused
; *pp
&& (*pp
)->flags
!=flags
; pp
=&((*pp
)->pNext
));
4824 *pp
= pUnused
->pNext
;
4829 #endif /* if !OS_VXWORKS */
4834 ** This function is called by unixOpen() to determine the unix permissions
4835 ** to create new files with. If no error occurs, then SQLITE_OK is returned
4836 ** and a value suitable for passing as the third argument to open(2) is
4837 ** written to *pMode. If an IO error occurs, an SQLite error code is
4838 ** returned and the value of *pMode is not modified.
4840 ** If the file being opened is a temporary file, it is always created with
4841 ** the octal permissions 0600 (read/writable by owner only). If the file
4842 ** is a database or master journal file, it is created with the permissions
4843 ** mask SQLITE_DEFAULT_FILE_PERMISSIONS.
4845 ** Finally, if the file being opened is a WAL or regular journal file, then
4846 ** this function queries the file-system for the permissions on the
4847 ** corresponding database file and sets *pMode to this value. Whenever
4848 ** possible, WAL and journal files are created using the same permissions
4849 ** as the associated database file.
4851 ** If the SQLITE_ENABLE_8_3_NAMES option is enabled, then the
4852 ** original filename is unavailable. But 8_3_NAMES is only used for
4853 ** FAT filesystems and permissions do not matter there, so just use
4854 ** the default permissions.
4856 static int findCreateFileMode(
4857 const char *zPath
, /* Path of file (possibly) being created */
4858 int flags
, /* Flags passed as 4th argument to xOpen() */
4859 mode_t
*pMode
/* OUT: Permissions to open file with */
4861 int rc
= SQLITE_OK
; /* Return Code */
4862 *pMode
= SQLITE_DEFAULT_FILE_PERMISSIONS
;
4863 if( flags
& (SQLITE_OPEN_WAL
|SQLITE_OPEN_MAIN_JOURNAL
) ){
4864 char zDb
[MAX_PATHNAME
+1]; /* Database file path */
4865 int nDb
; /* Number of valid bytes in zDb */
4866 struct stat sStat
; /* Output of stat() on database file */
4868 /* zPath is a path to a WAL or journal file. The following block derives
4869 ** the path to the associated database file from zPath. This block handles
4870 ** the following naming conventions:
4872 ** "<path to db>-journal"
4873 ** "<path to db>-wal"
4874 ** "<path to db>-journalNN"
4875 ** "<path to db>-walNN"
4877 ** where NN is a decimal number. The NN naming schemes are
4878 ** used by the test_multiplex.c module.
4880 nDb
= sqlite3Strlen30(zPath
) - 1;
4881 #ifdef SQLITE_ENABLE_8_3_NAMES
4882 while( nDb
>0 && !sqlite3Isalnum(zPath
[nDb
]) ) nDb
--;
4883 if( nDb
==0 || zPath
[nDb
]!='-' ) return SQLITE_OK
;
4885 while( zPath
[nDb
]!='-' ){
4887 assert( zPath
[nDb
]!='\n' );
4891 memcpy(zDb
, zPath
, nDb
);
4894 if( 0==osStat(zDb
, &sStat
) ){
4895 *pMode
= sStat
.st_mode
& 0777;
4897 rc
= SQLITE_IOERR_FSTAT
;
4899 }else if( flags
& SQLITE_OPEN_DELETEONCLOSE
){
4906 ** Open the file zPath.
4908 ** Previously, the SQLite OS layer used three functions in place of this
4911 ** sqlite3OsOpenReadWrite();
4912 ** sqlite3OsOpenReadOnly();
4913 ** sqlite3OsOpenExclusive();
4915 ** These calls correspond to the following combinations of flags:
4917 ** ReadWrite() -> (READWRITE | CREATE)
4918 ** ReadOnly() -> (READONLY)
4919 ** OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE)
4921 ** The old OpenExclusive() accepted a boolean argument - "delFlag". If
4922 ** true, the file was configured to be automatically deleted when the
4923 ** file handle closed. To achieve the same effect using this new
4924 ** interface, add the DELETEONCLOSE flag to those specified above for
4927 static int unixOpen(
4928 sqlite3_vfs
*pVfs
, /* The VFS for which this is the xOpen method */
4929 const char *zPath
, /* Pathname of file to be opened */
4930 sqlite3_file
*pFile
, /* The file descriptor to be filled in */
4931 int flags
, /* Input flags to control the opening */
4932 int *pOutFlags
/* Output flags returned to SQLite core */
4934 unixFile
*p
= (unixFile
*)pFile
;
4935 int fd
= -1; /* File descriptor returned by open() */
4936 int openFlags
= 0; /* Flags to pass to open() */
4937 int eType
= flags
&0xFFFFFF00; /* Type of file to open */
4938 int noLock
; /* True to omit locking primitives */
4939 int rc
= SQLITE_OK
; /* Function Return Code */
4941 int isExclusive
= (flags
& SQLITE_OPEN_EXCLUSIVE
);
4942 int isDelete
= (flags
& SQLITE_OPEN_DELETEONCLOSE
);
4943 int isCreate
= (flags
& SQLITE_OPEN_CREATE
);
4944 int isReadonly
= (flags
& SQLITE_OPEN_READONLY
);
4945 int isReadWrite
= (flags
& SQLITE_OPEN_READWRITE
);
4946 #if SQLITE_ENABLE_LOCKING_STYLE
4947 int isAutoProxy
= (flags
& SQLITE_OPEN_AUTOPROXY
);
4949 #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
4950 struct statfs fsInfo
;
4953 /* If creating a master or main-file journal, this function will open
4954 ** a file-descriptor on the directory too. The first time unixSync()
4955 ** is called the directory file descriptor will be fsync()ed and close()d.
4957 int syncDir
= (isCreate
&& (
4958 eType
==SQLITE_OPEN_MASTER_JOURNAL
4959 || eType
==SQLITE_OPEN_MAIN_JOURNAL
4960 || eType
==SQLITE_OPEN_WAL
4963 /* If argument zPath is a NULL pointer, this function is required to open
4964 ** a temporary file. Use this buffer to store the file name in.
4966 char zTmpname
[MAX_PATHNAME
+1];
4967 const char *zName
= zPath
;
4969 /* Check the following statements are true:
4971 ** (a) Exactly one of the READWRITE and READONLY flags must be set, and
4972 ** (b) if CREATE is set, then READWRITE must also be set, and
4973 ** (c) if EXCLUSIVE is set, then CREATE must also be set.
4974 ** (d) if DELETEONCLOSE is set, then CREATE must also be set.
4976 assert((isReadonly
==0 || isReadWrite
==0) && (isReadWrite
|| isReadonly
));
4977 assert(isCreate
==0 || isReadWrite
);
4978 assert(isExclusive
==0 || isCreate
);
4979 assert(isDelete
==0 || isCreate
);
4981 /* The main DB, main journal, WAL file and master journal are never
4982 ** automatically deleted. Nor are they ever temporary files. */
4983 assert( (!isDelete
&& zName
) || eType
!=SQLITE_OPEN_MAIN_DB
);
4984 assert( (!isDelete
&& zName
) || eType
!=SQLITE_OPEN_MAIN_JOURNAL
);
4985 assert( (!isDelete
&& zName
) || eType
!=SQLITE_OPEN_MASTER_JOURNAL
);
4986 assert( (!isDelete
&& zName
) || eType
!=SQLITE_OPEN_WAL
);
4988 /* Assert that the upper layer has set one of the "file-type" flags. */
4989 assert( eType
==SQLITE_OPEN_MAIN_DB
|| eType
==SQLITE_OPEN_TEMP_DB
4990 || eType
==SQLITE_OPEN_MAIN_JOURNAL
|| eType
==SQLITE_OPEN_TEMP_JOURNAL
4991 || eType
==SQLITE_OPEN_SUBJOURNAL
|| eType
==SQLITE_OPEN_MASTER_JOURNAL
4992 || eType
==SQLITE_OPEN_TRANSIENT_DB
|| eType
==SQLITE_OPEN_WAL
4995 memset(p
, 0, sizeof(unixFile
));
4997 if( eType
==SQLITE_OPEN_MAIN_DB
){
4998 UnixUnusedFd
*pUnused
;
4999 pUnused
= findReusableFd(zName
, flags
);
5003 pUnused
= sqlite3_malloc(sizeof(*pUnused
));
5005 return SQLITE_NOMEM
;
5008 p
->pUnused
= pUnused
;
5010 /* If zName is NULL, the upper layer is requesting a temp file. */
5011 assert(isDelete
&& !syncDir
);
5012 rc
= unixGetTempname(MAX_PATHNAME
+1, zTmpname
);
5013 if( rc
!=SQLITE_OK
){
5019 /* Determine the value of the flags parameter passed to POSIX function
5020 ** open(). These must be calculated even if open() is not called, as
5021 ** they may be stored as part of the file handle and used by the
5022 ** 'conch file' locking functions later on. */
5023 if( isReadonly
) openFlags
|= O_RDONLY
;
5024 if( isReadWrite
) openFlags
|= O_RDWR
;
5025 if( isCreate
) openFlags
|= O_CREAT
;
5026 if( isExclusive
) openFlags
|= (O_EXCL
|O_NOFOLLOW
);
5027 openFlags
|= (O_LARGEFILE
|O_BINARY
);
5030 mode_t openMode
; /* Permissions to create file with */
5031 rc
= findCreateFileMode(zName
, flags
, &openMode
);
5032 if( rc
!=SQLITE_OK
){
5033 assert( !p
->pUnused
);
5034 assert( eType
==SQLITE_OPEN_WAL
|| eType
==SQLITE_OPEN_MAIN_JOURNAL
);
5037 fd
= robust_open(zName
, openFlags
, openMode
);
5038 OSTRACE(("OPENX %-3d %s 0%o\n", fd
, zName
, openFlags
));
5039 if( fd
<0 && errno
!=EISDIR
&& isReadWrite
&& !isExclusive
){
5040 /* Failed to open the file for read/write access. Try read-only. */
5041 flags
&= ~(SQLITE_OPEN_READWRITE
|SQLITE_OPEN_CREATE
);
5042 openFlags
&= ~(O_RDWR
|O_CREAT
);
5043 flags
|= SQLITE_OPEN_READONLY
;
5044 openFlags
|= O_RDONLY
;
5046 fd
= robust_open(zName
, openFlags
, openMode
);
5049 rc
= unixLogError(SQLITE_CANTOPEN_BKPT
, "open", zName
);
5059 p
->pUnused
->fd
= fd
;
5060 p
->pUnused
->flags
= flags
;
5070 #if SQLITE_ENABLE_LOCKING_STYLE
5072 p
->openFlags
= openFlags
;
5077 osFcntl(fd
, F_SETFD
, osFcntl(fd
, F_GETFD
, 0) | FD_CLOEXEC
);
5080 noLock
= eType
!=SQLITE_OPEN_MAIN_DB
;
5083 #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
5084 if( fstatfs(fd
, &fsInfo
) == -1 ){
5085 ((unixFile
*)pFile
)->lastErrno
= errno
;
5086 robust_close(p
, fd
, __LINE__
);
5087 return SQLITE_IOERR_ACCESS
;
5089 if (0 == strncmp("msdos", fsInfo
.f_fstypename
, 5)) {
5090 ((unixFile
*)pFile
)->fsFlags
|= SQLITE_FSFLAGS_IS_MSDOS
;
5094 #if SQLITE_ENABLE_LOCKING_STYLE
5095 #if SQLITE_PREFER_PROXY_LOCKING
5098 if( isAutoProxy
&& (zPath
!=NULL
) && (!noLock
) && pVfs
->xOpen
){
5099 char *envforce
= getenv("SQLITE_FORCE_PROXY_LOCKING");
5102 /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means
5103 ** never use proxy, NULL means use proxy for non-local files only. */
5104 if( envforce
!=NULL
){
5105 useProxy
= atoi(envforce
)>0;
5107 if( statfs(zPath
, &fsInfo
) == -1 ){
5108 /* In theory, the close(fd) call is sub-optimal. If the file opened
5109 ** with fd is a database file, and there are other connections open
5110 ** on that file that are currently holding advisory locks on it,
5111 ** then the call to close() will cancel those locks. In practice,
5112 ** we're assuming that statfs() doesn't fail very often. At least
5113 ** not while other file descriptors opened by the same process on
5114 ** the same file are working. */
5115 p
->lastErrno
= errno
;
5116 robust_close(p
, fd
, __LINE__
);
5117 rc
= SQLITE_IOERR_ACCESS
;
5120 useProxy
= !(fsInfo
.f_flags
&MNT_LOCAL
);
5123 rc
= fillInUnixFile(pVfs
, fd
, syncDir
, pFile
, zPath
, noLock
,
5124 isDelete
, isReadonly
);
5125 if( rc
==SQLITE_OK
){
5126 rc
= proxyTransformUnixFile((unixFile
*)pFile
, ":auto:");
5127 if( rc
!=SQLITE_OK
){
5128 /* Use unixClose to clean up the resources added in fillInUnixFile
5129 ** and clear all the structure's references. Specifically,
5130 ** pFile->pMethods will be NULL so sqlite3OsClose will be a no-op
5141 rc
= fillInUnixFile(pVfs
, fd
, syncDir
, pFile
, zPath
, noLock
,
5142 isDelete
, isReadonly
);
5144 if( rc
!=SQLITE_OK
){
5145 sqlite3_free(p
->pUnused
);
5152 ** Delete the file at zPath. If the dirSync argument is true, fsync()
5153 ** the directory after deleting the file.
5155 static int unixDelete(
5156 sqlite3_vfs
*NotUsed
, /* VFS containing this as the xDelete method */
5157 const char *zPath
, /* Name of file to be deleted */
5158 int dirSync
/* If true, fsync() directory after deleting file */
5161 UNUSED_PARAMETER(NotUsed
);
5162 SimulateIOError(return SQLITE_IOERR_DELETE
);
5163 if( osUnlink(zPath
)==(-1) && errno
!=ENOENT
){
5164 return unixLogError(SQLITE_IOERR_DELETE
, "unlink", zPath
);
5166 #ifndef SQLITE_DISABLE_DIRSYNC
5169 rc
= osOpenDirectory(zPath
, &fd
);
5170 if( rc
==SQLITE_OK
){
5177 rc
= unixLogError(SQLITE_IOERR_DIR_FSYNC
, "fsync", zPath
);
5179 robust_close(0, fd
, __LINE__
);
5180 }else if( rc
==SQLITE_CANTOPEN
){
5189 ** Test the existance of or access permissions of file zPath. The
5190 ** test performed depends on the value of flags:
5192 ** SQLITE_ACCESS_EXISTS: Return 1 if the file exists
5193 ** SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable.
5194 ** SQLITE_ACCESS_READONLY: Return 1 if the file is readable.
5196 ** Otherwise return 0.
5198 static int unixAccess(
5199 sqlite3_vfs
*NotUsed
, /* The VFS containing this xAccess method */
5200 const char *zPath
, /* Path of the file to examine */
5201 int flags
, /* What do we want to learn about the zPath file? */
5202 int *pResOut
/* Write result boolean here */
5205 UNUSED_PARAMETER(NotUsed
);
5206 SimulateIOError( return SQLITE_IOERR_ACCESS
; );
5208 case SQLITE_ACCESS_EXISTS
:
5211 case SQLITE_ACCESS_READWRITE
:
5214 case SQLITE_ACCESS_READ
:
5219 assert(!"Invalid flags argument");
5221 *pResOut
= (osAccess(zPath
, amode
)==0);
5222 if( flags
==SQLITE_ACCESS_EXISTS
&& *pResOut
){
5224 if( 0==osStat(zPath
, &buf
) && buf
.st_size
==0 ){
5233 ** Turn a relative pathname into a full pathname. The relative path
5234 ** is stored as a nul-terminated string in the buffer pointed to by
5237 ** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes
5238 ** (in this case, MAX_PATHNAME bytes). The full-path is written to
5239 ** this buffer before returning.
5241 static int unixFullPathname(
5242 sqlite3_vfs
*pVfs
, /* Pointer to vfs object */
5243 const char *zPath
, /* Possibly relative input path */
5244 int nOut
, /* Size of output buffer in bytes */
5245 char *zOut
/* Output buffer */
5248 /* It's odd to simulate an io-error here, but really this is just
5249 ** using the io-error infrastructure to test that SQLite handles this
5250 ** function failing. This function could fail if, for example, the
5251 ** current working directory has been unlinked.
5253 SimulateIOError( return SQLITE_ERROR
);
5255 assert( pVfs
->mxPathname
==MAX_PATHNAME
);
5256 UNUSED_PARAMETER(pVfs
);
5258 zOut
[nOut
-1] = '\0';
5259 if( zPath
[0]=='/' ){
5260 sqlite3_snprintf(nOut
, zOut
, "%s", zPath
);
5263 if( osGetcwd(zOut
, nOut
-1)==0 ){
5264 return unixLogError(SQLITE_CANTOPEN_BKPT
, "getcwd", zPath
);
5266 nCwd
= (int)strlen(zOut
);
5267 sqlite3_snprintf(nOut
-nCwd
, &zOut
[nCwd
], "/%s", zPath
);
5273 #ifndef SQLITE_OMIT_LOAD_EXTENSION
5275 ** Interfaces for opening a shared library, finding entry points
5276 ** within the shared library, and closing the shared library.
5279 static void *unixDlOpen(sqlite3_vfs
*NotUsed
, const char *zFilename
){
5280 UNUSED_PARAMETER(NotUsed
);
5281 return dlopen(zFilename
, RTLD_NOW
| RTLD_GLOBAL
);
5285 ** SQLite calls this function immediately after a call to unixDlSym() or
5286 ** unixDlOpen() fails (returns a null pointer). If a more detailed error
5287 ** message is available, it is written to zBufOut. If no error message
5288 ** is available, zBufOut is left unmodified and SQLite uses a default
5291 static void unixDlError(sqlite3_vfs
*NotUsed
, int nBuf
, char *zBufOut
){
5293 UNUSED_PARAMETER(NotUsed
);
5297 sqlite3_snprintf(nBuf
, zBufOut
, "%s", zErr
);
5301 static void (*unixDlSym(sqlite3_vfs
*NotUsed
, void *p
, const char*zSym
))(void){
5303 ** GCC with -pedantic-errors says that C90 does not allow a void* to be
5304 ** cast into a pointer to a function. And yet the library dlsym() routine
5305 ** returns a void* which is really a pointer to a function. So how do we
5306 ** use dlsym() with -pedantic-errors?
5308 ** Variable x below is defined to be a pointer to a function taking
5309 ** parameters void* and const char* and returning a pointer to a function.
5310 ** We initialize x by assigning it a pointer to the dlsym() function.
5311 ** (That assignment requires a cast.) Then we call the function that
5314 ** This work-around is unlikely to work correctly on any system where
5315 ** you really cannot cast a function pointer into void*. But then, on the
5316 ** other hand, dlsym() will not work on such a system either, so we have
5317 ** not really lost anything.
5319 void (*(*x
)(void*,const char*))(void);
5320 UNUSED_PARAMETER(NotUsed
);
5321 x
= (void(*(*)(void*,const char*))(void))dlsym
;
5322 return (*x
)(p
, zSym
);
5324 static void unixDlClose(sqlite3_vfs
*NotUsed
, void *pHandle
){
5325 UNUSED_PARAMETER(NotUsed
);
5328 #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
5329 #define unixDlOpen 0
5330 #define unixDlError 0
5332 #define unixDlClose 0
5336 ** Write nBuf bytes of random data to the supplied buffer zBuf.
5338 static int unixRandomness(sqlite3_vfs
*NotUsed
, int nBuf
, char *zBuf
){
5339 UNUSED_PARAMETER(NotUsed
);
5340 assert((size_t)nBuf
>=(sizeof(time_t)+sizeof(int)));
5342 /* We have to initialize zBuf to prevent valgrind from reporting
5343 ** errors. The reports issued by valgrind are incorrect - we would
5344 ** prefer that the randomness be increased by making use of the
5345 ** uninitialized space in zBuf - but valgrind errors tend to worry
5346 ** some users. Rather than argue, it seems easier just to initialize
5347 ** the whole array and silence valgrind, even if that means less randomness
5348 ** in the random seed.
5350 ** When testing, initializing zBuf[] to zero is all we do. That means
5351 ** that we always use the same random number sequence. This makes the
5352 ** tests repeatable.
5354 memset(zBuf
, 0, nBuf
);
5355 #if !defined(SQLITE_TEST)
5358 fd
= robust_open("/dev/urandom", O_RDONLY
, 0);
5362 memcpy(zBuf
, &t
, sizeof(t
));
5364 memcpy(&zBuf
[sizeof(t
)], &pid
, sizeof(pid
));
5365 assert( sizeof(t
)+sizeof(pid
)<=(size_t)nBuf
);
5366 nBuf
= sizeof(t
) + sizeof(pid
);
5368 do{ nBuf
= osRead(fd
, zBuf
, nBuf
); }while( nBuf
<0 && errno
==EINTR
);
5369 robust_close(0, fd
, __LINE__
);
5378 ** Sleep for a little while. Return the amount of time slept.
5379 ** The argument is the number of microseconds we want to sleep.
5380 ** The return value is the number of microseconds of sleep actually
5381 ** requested from the underlying operating system, a number which
5382 ** might be greater than or equal to the argument, but not less
5383 ** than the argument.
5385 static int unixSleep(sqlite3_vfs
*NotUsed
, int microseconds
){
5389 sp
.tv_sec
= microseconds
/ 1000000;
5390 sp
.tv_nsec
= (microseconds
% 1000000) * 1000;
5391 nanosleep(&sp
, NULL
);
5392 UNUSED_PARAMETER(NotUsed
);
5393 return microseconds
;
5394 #elif defined(HAVE_USLEEP) && HAVE_USLEEP
5395 usleep(microseconds
);
5396 UNUSED_PARAMETER(NotUsed
);
5397 return microseconds
;
5399 int seconds
= (microseconds
+999999)/1000000;
5401 UNUSED_PARAMETER(NotUsed
);
5402 return seconds
*1000000;
5407 ** The following variable, if set to a non-zero value, is interpreted as
5408 ** the number of seconds since 1970 and is used to set the result of
5409 ** sqlite3OsCurrentTime() during testing.
5412 int sqlite3_current_time
= 0; /* Fake system time in seconds since 1970. */
5416 ** Find the current time (in Universal Coordinated Time). Write into *piNow
5417 ** the current time and date as a Julian Day number times 86_400_000. In
5418 ** other words, write into *piNow the number of milliseconds since the Julian
5419 ** epoch of noon in Greenwich on November 24, 4714 B.C according to the
5420 ** proleptic Gregorian calendar.
5422 ** On success, return SQLITE_OK. Return SQLITE_ERROR if the time and date
5425 static int unixCurrentTimeInt64(sqlite3_vfs
*NotUsed
, sqlite3_int64
*piNow
){
5426 static const sqlite3_int64 unixEpoch
= 24405875*(sqlite3_int64
)8640000;
5428 #if defined(NO_GETTOD)
5431 *piNow
= ((sqlite3_int64
)t
)*1000 + unixEpoch
;
5433 struct timespec sNow
;
5434 clock_gettime(CLOCK_REALTIME
, &sNow
);
5435 *piNow
= unixEpoch
+ 1000*(sqlite3_int64
)sNow
.tv_sec
+ sNow
.tv_nsec
/1000000;
5437 struct timeval sNow
;
5438 if( gettimeofday(&sNow
, 0)==0 ){
5439 *piNow
= unixEpoch
+ 1000*(sqlite3_int64
)sNow
.tv_sec
+ sNow
.tv_usec
/1000;
5446 if( sqlite3_current_time
){
5447 *piNow
= 1000*(sqlite3_int64
)sqlite3_current_time
+ unixEpoch
;
5450 UNUSED_PARAMETER(NotUsed
);
5455 ** Find the current time (in Universal Coordinated Time). Write the
5456 ** current time and date as a Julian Day number into *prNow and
5457 ** return 0. Return 1 if the time and date cannot be found.
5459 static int unixCurrentTime(sqlite3_vfs
*NotUsed
, double *prNow
){
5460 sqlite3_int64 i
= 0;
5462 UNUSED_PARAMETER(NotUsed
);
5463 rc
= unixCurrentTimeInt64(0, &i
);
5464 *prNow
= i
/86400000.0;
5469 ** We added the xGetLastError() method with the intention of providing
5470 ** better low-level error messages when operating-system problems come up
5471 ** during SQLite operation. But so far, none of that has been implemented
5472 ** in the core. So this routine is never called. For now, it is merely
5475 static int unixGetLastError(sqlite3_vfs
*NotUsed
, int NotUsed2
, char *NotUsed3
){
5476 UNUSED_PARAMETER(NotUsed
);
5477 UNUSED_PARAMETER(NotUsed2
);
5478 UNUSED_PARAMETER(NotUsed3
);
5484 ************************ End of sqlite3_vfs methods ***************************
5485 ******************************************************************************/
5487 /******************************************************************************
5488 ************************** Begin Proxy Locking ********************************
5490 ** Proxy locking is a "uber-locking-method" in this sense: It uses the
5491 ** other locking methods on secondary lock files. Proxy locking is a
5492 ** meta-layer over top of the primitive locking implemented above. For
5493 ** this reason, the division that implements of proxy locking is deferred
5494 ** until late in the file (here) after all of the other I/O methods have
5495 ** been defined - so that the primitive locking methods are available
5496 ** as services to help with the implementation of proxy locking.
5500 ** The default locking schemes in SQLite use byte-range locks on the
5501 ** database file to coordinate safe, concurrent access by multiple readers
5502 ** and writers [http://sqlite.org/lockingv3.html]. The five file locking
5503 ** states (UNLOCKED, PENDING, SHARED, RESERVED, EXCLUSIVE) are implemented
5504 ** as POSIX read & write locks over fixed set of locations (via fsctl),
5505 ** on AFP and SMB only exclusive byte-range locks are available via fsctl
5506 ** with _IOWR('z', 23, struct ByteRangeLockPB2) to track the same 5 states.
5507 ** To simulate a F_RDLCK on the shared range, on AFP a randomly selected
5508 ** address in the shared range is taken for a SHARED lock, the entire
5509 ** shared range is taken for an EXCLUSIVE lock):
5511 ** PENDING_BYTE 0x40000000
5512 ** RESERVED_BYTE 0x40000001
5513 ** SHARED_RANGE 0x40000002 -> 0x40000200
5515 ** This works well on the local file system, but shows a nearly 100x
5516 ** slowdown in read performance on AFP because the AFP client disables
5517 ** the read cache when byte-range locks are present. Enabling the read
5518 ** cache exposes a cache coherency problem that is present on all OS X
5519 ** supported network file systems. NFS and AFP both observe the
5520 ** close-to-open semantics for ensuring cache coherency
5521 ** [http://nfs.sourceforge.net/#faq_a8], which does not effectively
5522 ** address the requirements for concurrent database access by multiple
5523 ** readers and writers
5524 ** [http://www.nabble.com/SQLite-on-NFS-cache-coherency-td15655701.html].
5526 ** To address the performance and cache coherency issues, proxy file locking
5527 ** changes the way database access is controlled by limiting access to a
5528 ** single host at a time and moving file locks off of the database file
5529 ** and onto a proxy file on the local file system.
5532 ** Using proxy locks
5533 ** -----------------
5537 ** sqlite3_file_control(db, dbname, SQLITE_SET_LOCKPROXYFILE,
5538 ** <proxy_path> | ":auto:");
5539 ** sqlite3_file_control(db, dbname, SQLITE_GET_LOCKPROXYFILE, &<proxy_path>);
5544 ** PRAGMA [database.]lock_proxy_file=<proxy_path> | :auto:
5545 ** PRAGMA [database.]lock_proxy_file
5547 ** Specifying ":auto:" means that if there is a conch file with a matching
5548 ** host ID in it, the proxy path in the conch file will be used, otherwise
5549 ** a proxy path based on the user's temp dir
5550 ** (via confstr(_CS_DARWIN_USER_TEMP_DIR,...)) will be used and the
5551 ** actual proxy file name is generated from the name and path of the
5552 ** database file. For example:
5554 ** For database path "/Users/me/foo.db"
5555 ** The lock path will be "<tmpdir>/sqliteplocks/_Users_me_foo.db:auto:")
5557 ** Once a lock proxy is configured for a database connection, it can not
5558 ** be removed, however it may be switched to a different proxy path via
5559 ** the above APIs (assuming the conch file is not being held by another
5560 ** connection or process).
5563 ** How proxy locking works
5564 ** -----------------------
5566 ** Proxy file locking relies primarily on two new supporting files:
5568 ** * conch file to limit access to the database file to a single host
5571 ** * proxy file to act as a proxy for the advisory locks normally
5572 ** taken on the database
5574 ** The conch file - to use a proxy file, sqlite must first "hold the conch"
5575 ** by taking an sqlite-style shared lock on the conch file, reading the
5576 ** contents and comparing the host's unique host ID (see below) and lock
5577 ** proxy path against the values stored in the conch. The conch file is
5578 ** stored in the same directory as the database file and the file name
5579 ** is patterned after the database file name as ".<databasename>-conch".
5580 ** If the conch file does not exist, or it's contents do not match the
5581 ** host ID and/or proxy path, then the lock is escalated to an exclusive
5582 ** lock and the conch file contents is updated with the host ID and proxy
5583 ** path and the lock is downgraded to a shared lock again. If the conch
5584 ** is held by another process (with a shared lock), the exclusive lock
5585 ** will fail and SQLITE_BUSY is returned.
5587 ** The proxy file - a single-byte file used for all advisory file locks
5588 ** normally taken on the database file. This allows for safe sharing
5589 ** of the database file for multiple readers and writers on the same
5590 ** host (the conch ensures that they all use the same local lock file).
5592 ** Requesting the lock proxy does not immediately take the conch, it is
5593 ** only taken when the first request to lock database file is made.
5594 ** This matches the semantics of the traditional locking behavior, where
5595 ** opening a connection to a database file does not take a lock on it.
5596 ** The shared lock and an open file descriptor are maintained until
5597 ** the connection to the database is closed.
5599 ** The proxy file and the lock file are never deleted so they only need
5600 ** to be created the first time they are used.
5602 ** Configuration options
5603 ** ---------------------
5605 ** SQLITE_PREFER_PROXY_LOCKING
5607 ** Database files accessed on non-local file systems are
5608 ** automatically configured for proxy locking, lock files are
5609 ** named automatically using the same logic as
5610 ** PRAGMA lock_proxy_file=":auto:"
5612 ** SQLITE_PROXY_DEBUG
5614 ** Enables the logging of error messages during host id file
5615 ** retrieval and creation
5619 ** Overrides the default directory used for lock proxy files that
5620 ** are named automatically via the ":auto:" setting
5622 ** SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
5624 ** Permissions to use when creating a directory for storing the
5625 ** lock proxy files, only used when LOCKPROXYDIR is not set.
5628 ** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING,
5629 ** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will
5630 ** force proxy locking to be used for every database file opened, and 0
5631 ** will force automatic proxy locking to be disabled for all database
5632 ** files (explicity calling the SQLITE_SET_LOCKPROXYFILE pragma or
5633 ** sqlite_file_control API is not affected by SQLITE_FORCE_PROXY_LOCKING).
5637 ** Proxy locking is only available on MacOSX
5639 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
5642 ** The proxyLockingContext has the path and file structures for the remote
5643 ** and local proxy files in it
5645 typedef struct proxyLockingContext proxyLockingContext
;
5646 struct proxyLockingContext
{
5647 unixFile
*conchFile
; /* Open conch file */
5648 char *conchFilePath
; /* Name of the conch file */
5649 unixFile
*lockProxy
; /* Open proxy lock file */
5650 char *lockProxyPath
; /* Name of the proxy lock file */
5651 char *dbPath
; /* Name of the open file */
5652 int conchHeld
; /* 1 if the conch is held, -1 if lockless */
5653 void *oldLockingContext
; /* Original lockingcontext to restore on close */
5654 sqlite3_io_methods
const *pOldMethod
; /* Original I/O methods for close */
5658 ** The proxy lock file path for the database at dbPath is written into lPath,
5659 ** which must point to valid, writable memory large enough for a maxLen length
5662 static int proxyGetLockPath(const char *dbPath
, char *lPath
, size_t maxLen
){
5668 len
= strlcpy(lPath
, LOCKPROXYDIR
, maxLen
);
5670 # ifdef _CS_DARWIN_USER_TEMP_DIR
5672 if( !confstr(_CS_DARWIN_USER_TEMP_DIR
, lPath
, maxLen
) ){
5673 OSTRACE(("GETLOCKPATH failed %s errno=%d pid=%d\n",
5674 lPath
, errno
, getpid()));
5675 return SQLITE_IOERR_LOCK
;
5677 len
= strlcat(lPath
, "sqliteplocks", maxLen
);
5680 len
= strlcpy(lPath
, "/tmp/", maxLen
);
5684 if( lPath
[len
-1]!='/' ){
5685 len
= strlcat(lPath
, "/", maxLen
);
5688 /* transform the db path to a unique cache name */
5689 dbLen
= (int)strlen(dbPath
);
5690 for( i
=0; i
<dbLen
&& (i
+len
+7)<(int)maxLen
; i
++){
5692 lPath
[i
+len
] = (c
=='/')?'_':c
;
5695 strlcat(lPath
, ":auto:", maxLen
);
5696 OSTRACE(("GETLOCKPATH proxy lock path=%s pid=%d\n", lPath
, getpid()));
5701 ** Creates the lock file and any missing directories in lockPath
5703 static int proxyCreateLockPath(const char *lockPath
){
5705 char buf
[MAXPATHLEN
];
5708 assert(lockPath
!=NULL
);
5709 /* try to create all the intermediate directories */
5710 len
= (int)strlen(lockPath
);
5711 buf
[0] = lockPath
[0];
5712 for( i
=1; i
<len
; i
++ ){
5713 if( lockPath
[i
] == '/' && (i
- start
> 0) ){
5714 /* only mkdir if leaf dir != "." or "/" or ".." */
5715 if( i
-start
>2 || (i
-start
==1 && buf
[start
] != '.' && buf
[start
] != '/')
5716 || (i
-start
==2 && buf
[start
] != '.' && buf
[start
+1] != '.') ){
5718 if( mkdir(buf
, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
) ){
5721 OSTRACE(("CREATELOCKPATH FAILED creating %s, "
5722 "'%s' proxy lock path=%s pid=%d\n",
5723 buf
, strerror(err
), lockPath
, getpid()));
5730 buf
[i
] = lockPath
[i
];
5732 OSTRACE(("CREATELOCKPATH proxy lock path=%s pid=%d\n", lockPath
, getpid()));
5737 ** Create a new VFS file descriptor (stored in memory obtained from
5738 ** sqlite3_malloc) and open the file named "path" in the file descriptor.
5740 ** The caller is responsible not only for closing the file descriptor
5741 ** but also for freeing the memory associated with the file descriptor.
5743 static int proxyCreateUnixFile(
5744 const char *path
, /* path for the new unixFile */
5745 unixFile
**ppFile
, /* unixFile created and returned by ref */
5746 int islockfile
/* if non zero missing dirs will be created */
5751 int openFlags
= O_RDWR
| O_CREAT
;
5752 sqlite3_vfs dummyVfs
;
5754 UnixUnusedFd
*pUnused
= NULL
;
5756 /* 1. first try to open/create the file
5757 ** 2. if that fails, and this is a lock file (not-conch), try creating
5758 ** the parent directories and then try again.
5759 ** 3. if that fails, try to open the file read-only
5760 ** otherwise return BUSY (if lock file) or CANTOPEN for the conch file
5762 pUnused
= findReusableFd(path
, openFlags
);
5766 pUnused
= sqlite3_malloc(sizeof(*pUnused
));
5768 return SQLITE_NOMEM
;
5772 fd
= robust_open(path
, openFlags
, SQLITE_DEFAULT_FILE_PERMISSIONS
);
5774 if( fd
<0 && errno
==ENOENT
&& islockfile
){
5775 if( proxyCreateLockPath(path
) == SQLITE_OK
){
5776 fd
= robust_open(path
, openFlags
, SQLITE_DEFAULT_FILE_PERMISSIONS
);
5781 openFlags
= O_RDONLY
;
5782 fd
= robust_open(path
, openFlags
, SQLITE_DEFAULT_FILE_PERMISSIONS
);
5793 return SQLITE_IOERR_LOCK
; /* even though it is the conch */
5795 return SQLITE_CANTOPEN_BKPT
;
5799 pNew
= (unixFile
*)sqlite3_malloc(sizeof(*pNew
));
5802 goto end_create_proxy
;
5804 memset(pNew
, 0, sizeof(unixFile
));
5805 pNew
->openFlags
= openFlags
;
5806 memset(&dummyVfs
, 0, sizeof(dummyVfs
));
5807 dummyVfs
.pAppData
= (void*)&autolockIoFinder
;
5808 dummyVfs
.zName
= "dummy";
5810 pUnused
->flags
= openFlags
;
5811 pNew
->pUnused
= pUnused
;
5813 rc
= fillInUnixFile(&dummyVfs
, fd
, 0, (sqlite3_file
*)pNew
, path
, 0, 0, 0);
5814 if( rc
==SQLITE_OK
){
5819 robust_close(pNew
, fd
, __LINE__
);
5821 sqlite3_free(pUnused
);
5826 /* simulate multiple hosts by creating unique hostid file paths */
5827 int sqlite3_hostid_num
= 0;
5830 #define PROXY_HOSTIDLEN 16 /* conch file host id length */
5832 /* Not always defined in the headers as it ought to be */
5833 extern int gethostuuid(uuid_t id
, const struct timespec
*wait
);
5835 /* get the host ID via gethostuuid(), pHostID must point to PROXY_HOSTIDLEN
5836 ** bytes of writable memory.
5838 static int proxyGetHostID(unsigned char *pHostID
, int *pError
){
5839 assert(PROXY_HOSTIDLEN
== sizeof(uuid_t
));
5840 memset(pHostID
, 0, PROXY_HOSTIDLEN
);
5841 #if defined(__MAX_OS_X_VERSION_MIN_REQUIRED)\
5842 && __MAC_OS_X_VERSION_MIN_REQUIRED<1050
5844 static const struct timespec timeout
= {1, 0}; /* 1 sec timeout */
5845 if( gethostuuid(pHostID
, &timeout
) ){
5850 return SQLITE_IOERR
;
5854 UNUSED_PARAMETER(pError
);
5857 /* simulate multiple hosts by creating unique hostid file paths */
5858 if( sqlite3_hostid_num
!= 0){
5859 pHostID
[0] = (char)(pHostID
[0] + (char)(sqlite3_hostid_num
& 0xFF));
5866 /* The conch file contains the header, host id and lock file path
5868 #define PROXY_CONCHVERSION 2 /* 1-byte header, 16-byte host id, path */
5869 #define PROXY_HEADERLEN 1 /* conch file header length */
5870 #define PROXY_PATHINDEX (PROXY_HEADERLEN+PROXY_HOSTIDLEN)
5871 #define PROXY_MAXCONCHLEN (PROXY_HEADERLEN+PROXY_HOSTIDLEN+MAXPATHLEN)
5874 ** Takes an open conch file, copies the contents to a new path and then moves
5875 ** it back. The newly created file's file descriptor is assigned to the
5876 ** conch file structure and finally the original conch file descriptor is
5877 ** closed. Returns zero if successful.
5879 static int proxyBreakConchLock(unixFile
*pFile
, uuid_t myHostID
){
5880 proxyLockingContext
*pCtx
= (proxyLockingContext
*)pFile
->lockingContext
;
5881 unixFile
*conchFile
= pCtx
->conchFile
;
5882 char tPath
[MAXPATHLEN
];
5883 char buf
[PROXY_MAXCONCHLEN
];
5884 char *cPath
= pCtx
->conchFilePath
;
5887 char errmsg
[64] = "";
5890 UNUSED_PARAMETER(myHostID
);
5892 /* create a new path by replace the trailing '-conch' with '-break' */
5893 pathLen
= strlcpy(tPath
, cPath
, MAXPATHLEN
);
5894 if( pathLen
>MAXPATHLEN
|| pathLen
<6 ||
5895 (strlcpy(&tPath
[pathLen
-5], "break", 6) != 5) ){
5896 sqlite3_snprintf(sizeof(errmsg
),errmsg
,"path error (len %d)",(int)pathLen
);
5899 /* read the conch content */
5900 readLen
= osPread(conchFile
->h
, buf
, PROXY_MAXCONCHLEN
, 0);
5901 if( readLen
<PROXY_PATHINDEX
){
5902 sqlite3_snprintf(sizeof(errmsg
),errmsg
,"read error (len %d)",(int)readLen
);
5905 /* write it out to the temporary break file */
5906 fd
= robust_open(tPath
, (O_RDWR
|O_CREAT
|O_EXCL
),
5907 SQLITE_DEFAULT_FILE_PERMISSIONS
);
5909 sqlite3_snprintf(sizeof(errmsg
), errmsg
, "create failed (%d)", errno
);
5912 if( osPwrite(fd
, buf
, readLen
, 0) != (ssize_t
)readLen
){
5913 sqlite3_snprintf(sizeof(errmsg
), errmsg
, "write failed (%d)", errno
);
5916 if( rename(tPath
, cPath
) ){
5917 sqlite3_snprintf(sizeof(errmsg
), errmsg
, "rename failed (%d)", errno
);
5921 fprintf(stderr
, "broke stale lock on %s\n", cPath
);
5922 robust_close(pFile
, conchFile
->h
, __LINE__
);
5924 conchFile
->openFlags
= O_RDWR
| O_CREAT
;
5930 robust_close(pFile
, fd
, __LINE__
);
5932 fprintf(stderr
, "failed to break stale lock on %s, %s\n", cPath
, errmsg
);
5937 /* Take the requested lock on the conch file and break a stale lock if the
5940 static int proxyConchLock(unixFile
*pFile
, uuid_t myHostID
, int lockType
){
5941 proxyLockingContext
*pCtx
= (proxyLockingContext
*)pFile
->lockingContext
;
5942 unixFile
*conchFile
= pCtx
->conchFile
;
5945 struct timespec conchModTime
;
5947 memset(&conchModTime
, 0, sizeof(conchModTime
));
5949 rc
= conchFile
->pMethod
->xLock((sqlite3_file
*)conchFile
, lockType
);
5951 if( rc
==SQLITE_BUSY
){
5952 /* If the lock failed (busy):
5953 * 1st try: get the mod time of the conch, wait 0.5s and try again.
5954 * 2nd try: fail if the mod time changed or host id is different, wait
5955 * 10 sec and try again
5956 * 3rd try: break the lock unless the mod time has changed.
5959 if( osFstat(conchFile
->h
, &buf
) ){
5960 pFile
->lastErrno
= errno
;
5961 return SQLITE_IOERR_LOCK
;
5965 conchModTime
= buf
.st_mtimespec
;
5966 usleep(500000); /* wait 0.5 sec and try the lock again*/
5971 if( conchModTime
.tv_sec
!= buf
.st_mtimespec
.tv_sec
||
5972 conchModTime
.tv_nsec
!= buf
.st_mtimespec
.tv_nsec
){
5977 char tBuf
[PROXY_MAXCONCHLEN
];
5978 int len
= osPread(conchFile
->h
, tBuf
, PROXY_MAXCONCHLEN
, 0);
5980 pFile
->lastErrno
= errno
;
5981 return SQLITE_IOERR_LOCK
;
5983 if( len
>PROXY_PATHINDEX
&& tBuf
[0]==(char)PROXY_CONCHVERSION
){
5984 /* don't break the lock if the host id doesn't match */
5985 if( 0!=memcmp(&tBuf
[PROXY_HEADERLEN
], myHostID
, PROXY_HOSTIDLEN
) ){
5989 /* don't break the lock on short read or a version mismatch */
5992 usleep(10000000); /* wait 10 sec and try the lock again */
5996 assert( nTries
==3 );
5997 if( 0==proxyBreakConchLock(pFile
, myHostID
) ){
5999 if( lockType
==EXCLUSIVE_LOCK
){
6000 rc
= conchFile
->pMethod
->xLock((sqlite3_file
*)conchFile
, SHARED_LOCK
);
6003 rc
= conchFile
->pMethod
->xLock((sqlite3_file
*)conchFile
, lockType
);
6007 } while( rc
==SQLITE_BUSY
&& nTries
<3 );
6012 /* Takes the conch by taking a shared lock and read the contents conch, if
6013 ** lockPath is non-NULL, the host ID and lock file path must match. A NULL
6014 ** lockPath means that the lockPath in the conch file will be used if the
6015 ** host IDs match, or a new lock path will be generated automatically
6016 ** and written to the conch file.
6018 static int proxyTakeConch(unixFile
*pFile
){
6019 proxyLockingContext
*pCtx
= (proxyLockingContext
*)pFile
->lockingContext
;
6021 if( pCtx
->conchHeld
!=0 ){
6024 unixFile
*conchFile
= pCtx
->conchFile
;
6027 char readBuf
[PROXY_MAXCONCHLEN
];
6028 char lockPath
[MAXPATHLEN
];
6029 char *tempLockPath
= NULL
;
6031 int createConch
= 0;
6032 int hostIdMatch
= 0;
6034 int tryOldLockPath
= 0;
6035 int forceNewLockPath
= 0;
6037 OSTRACE(("TAKECONCH %d for %s pid=%d\n", conchFile
->h
,
6038 (pCtx
->lockProxyPath
? pCtx
->lockProxyPath
: ":auto:"), getpid()));
6040 rc
= proxyGetHostID(myHostID
, &pError
);
6041 if( (rc
&0xff)==SQLITE_IOERR
){
6042 pFile
->lastErrno
= pError
;
6045 rc
= proxyConchLock(pFile
, myHostID
, SHARED_LOCK
);
6046 if( rc
!=SQLITE_OK
){
6049 /* read the existing conch file */
6050 readLen
= seekAndRead((unixFile
*)conchFile
, 0, readBuf
, PROXY_MAXCONCHLEN
);
6052 /* I/O error: lastErrno set by seekAndRead */
6053 pFile
->lastErrno
= conchFile
->lastErrno
;
6054 rc
= SQLITE_IOERR_READ
;
6056 }else if( readLen
<=(PROXY_HEADERLEN
+PROXY_HOSTIDLEN
) ||
6057 readBuf
[0]!=(char)PROXY_CONCHVERSION
){
6058 /* a short read or version format mismatch means we need to create a new
6063 /* if the host id matches and the lock path already exists in the conch
6064 ** we'll try to use the path there, if we can't open that path, we'll
6065 ** retry with a new auto-generated path
6067 do { /* in case we need to try again for an :auto: named lock file */
6069 if( !createConch
&& !forceNewLockPath
){
6070 hostIdMatch
= !memcmp(&readBuf
[PROXY_HEADERLEN
], myHostID
,
6072 /* if the conch has data compare the contents */
6073 if( !pCtx
->lockProxyPath
){
6074 /* for auto-named local lock file, just check the host ID and we'll
6075 ** use the local lock file path that's already in there
6078 size_t pathLen
= (readLen
- PROXY_PATHINDEX
);
6080 if( pathLen
>=MAXPATHLEN
){
6081 pathLen
=MAXPATHLEN
-1;
6083 memcpy(lockPath
, &readBuf
[PROXY_PATHINDEX
], pathLen
);
6084 lockPath
[pathLen
] = 0;
6085 tempLockPath
= lockPath
;
6087 /* create a copy of the lock path if the conch is taken */
6090 }else if( hostIdMatch
6091 && !strncmp(pCtx
->lockProxyPath
, &readBuf
[PROXY_PATHINDEX
],
6092 readLen
-PROXY_PATHINDEX
)
6094 /* conch host and lock path match */
6099 /* if the conch isn't writable and doesn't match, we can't take it */
6100 if( (conchFile
->openFlags
&O_RDWR
) == 0 ){
6105 /* either the conch didn't match or we need to create a new one */
6106 if( !pCtx
->lockProxyPath
){
6107 proxyGetLockPath(pCtx
->dbPath
, lockPath
, MAXPATHLEN
);
6108 tempLockPath
= lockPath
;
6109 /* create a copy of the lock path _only_ if the conch is taken */
6112 /* update conch with host and path (this will fail if other process
6113 ** has a shared lock already), if the host id matches, use the big
6116 futimes(conchFile
->h
, NULL
);
6117 if( hostIdMatch
&& !createConch
){
6118 if( conchFile
->pInode
&& conchFile
->pInode
->nShared
>1 ){
6119 /* We are trying for an exclusive lock but another thread in this
6120 ** same process is still holding a shared lock. */
6123 rc
= proxyConchLock(pFile
, myHostID
, EXCLUSIVE_LOCK
);
6126 rc
= conchFile
->pMethod
->xLock((sqlite3_file
*)conchFile
, EXCLUSIVE_LOCK
);
6128 if( rc
==SQLITE_OK
){
6129 char writeBuffer
[PROXY_MAXCONCHLEN
];
6132 writeBuffer
[0] = (char)PROXY_CONCHVERSION
;
6133 memcpy(&writeBuffer
[PROXY_HEADERLEN
], myHostID
, PROXY_HOSTIDLEN
);
6134 if( pCtx
->lockProxyPath
!=NULL
){
6135 strlcpy(&writeBuffer
[PROXY_PATHINDEX
], pCtx
->lockProxyPath
, MAXPATHLEN
);
6137 strlcpy(&writeBuffer
[PROXY_PATHINDEX
], tempLockPath
, MAXPATHLEN
);
6139 writeSize
= PROXY_PATHINDEX
+ strlen(&writeBuffer
[PROXY_PATHINDEX
]);
6140 robust_ftruncate(conchFile
->h
, writeSize
);
6141 rc
= unixWrite((sqlite3_file
*)conchFile
, writeBuffer
, writeSize
, 0);
6142 fsync(conchFile
->h
);
6143 /* If we created a new conch file (not just updated the contents of a
6144 ** valid conch file), try to match the permissions of the database
6146 if( rc
==SQLITE_OK
&& createConch
){
6148 int err
= osFstat(pFile
->h
, &buf
);
6150 mode_t cmode
= buf
.st_mode
&(S_IRUSR
|S_IWUSR
| S_IRGRP
|S_IWGRP
|
6152 /* try to match the database file R/W permissions, ignore failure */
6153 #ifndef SQLITE_PROXY_DEBUG
6154 osFchmod(conchFile
->h
, cmode
);
6157 rc
= osFchmod(conchFile
->h
, cmode
);
6158 }while( rc
==(-1) && errno
==EINTR
);
6161 fprintf(stderr
, "fchmod %o FAILED with %d %s\n",
6162 cmode
, code
, strerror(code
));
6164 fprintf(stderr
, "fchmod %o SUCCEDED\n",cmode
);
6168 fprintf(stderr
, "STAT FAILED[%d] with %d %s\n",
6169 err
, code
, strerror(code
));
6174 conchFile
->pMethod
->xUnlock((sqlite3_file
*)conchFile
, SHARED_LOCK
);
6177 OSTRACE(("TRANSPROXY: CLOSE %d\n", pFile
->h
));
6178 if( rc
==SQLITE_OK
&& pFile
->openFlags
){
6181 robust_close(pFile
, pFile
->h
, __LINE__
);
6184 fd
= robust_open(pCtx
->dbPath
, pFile
->openFlags
,
6185 SQLITE_DEFAULT_FILE_PERMISSIONS
);
6186 OSTRACE(("TRANSPROXY: OPEN %d\n", fd
));
6190 rc
=SQLITE_CANTOPEN_BKPT
; /* SQLITE_BUSY? proxyTakeConch called
6194 if( rc
==SQLITE_OK
&& !pCtx
->lockProxy
){
6195 char *path
= tempLockPath
? tempLockPath
: pCtx
->lockProxyPath
;
6196 rc
= proxyCreateUnixFile(path
, &pCtx
->lockProxy
, 1);
6197 if( rc
!=SQLITE_OK
&& rc
!=SQLITE_NOMEM
&& tryOldLockPath
){
6198 /* we couldn't create the proxy lock file with the old lock file path
6199 ** so try again via auto-naming
6201 forceNewLockPath
= 1;
6203 continue; /* go back to the do {} while start point, try again */
6206 if( rc
==SQLITE_OK
){
6207 /* Need to make a copy of path if we extracted the value
6208 ** from the conch file or the path was allocated on the stack
6211 pCtx
->lockProxyPath
= sqlite3DbStrDup(0, tempLockPath
);
6212 if( !pCtx
->lockProxyPath
){
6217 if( rc
==SQLITE_OK
){
6218 pCtx
->conchHeld
= 1;
6220 if( pCtx
->lockProxy
->pMethod
== &afpIoMethods
){
6221 afpLockingContext
*afpCtx
;
6222 afpCtx
= (afpLockingContext
*)pCtx
->lockProxy
->lockingContext
;
6223 afpCtx
->dbPath
= pCtx
->lockProxyPath
;
6226 conchFile
->pMethod
->xUnlock((sqlite3_file
*)conchFile
, NO_LOCK
);
6228 OSTRACE(("TAKECONCH %d %s\n", conchFile
->h
,
6229 rc
==SQLITE_OK
?"ok":"failed"));
6231 } while (1); /* in case we need to retry the :auto: lock file -
6232 ** we should never get here except via the 'continue' call. */
6237 ** If pFile holds a lock on a conch file, then release that lock.
6239 static int proxyReleaseConch(unixFile
*pFile
){
6240 int rc
= SQLITE_OK
; /* Subroutine return code */
6241 proxyLockingContext
*pCtx
; /* The locking context for the proxy lock */
6242 unixFile
*conchFile
; /* Name of the conch file */
6244 pCtx
= (proxyLockingContext
*)pFile
->lockingContext
;
6245 conchFile
= pCtx
->conchFile
;
6246 OSTRACE(("RELEASECONCH %d for %s pid=%d\n", conchFile
->h
,
6247 (pCtx
->lockProxyPath
? pCtx
->lockProxyPath
: ":auto:"),
6249 if( pCtx
->conchHeld
>0 ){
6250 rc
= conchFile
->pMethod
->xUnlock((sqlite3_file
*)conchFile
, NO_LOCK
);
6252 pCtx
->conchHeld
= 0;
6253 OSTRACE(("RELEASECONCH %d %s\n", conchFile
->h
,
6254 (rc
==SQLITE_OK
? "ok" : "failed")));
6259 ** Given the name of a database file, compute the name of its conch file.
6260 ** Store the conch filename in memory obtained from sqlite3_malloc().
6261 ** Make *pConchPath point to the new name. Return SQLITE_OK on success
6262 ** or SQLITE_NOMEM if unable to obtain memory.
6264 ** The caller is responsible for ensuring that the allocated memory
6265 ** space is eventually freed.
6267 ** *pConchPath is set to NULL if a memory allocation error occurs.
6269 static int proxyCreateConchPathname(char *dbPath
, char **pConchPath
){
6270 int i
; /* Loop counter */
6271 int len
= (int)strlen(dbPath
); /* Length of database filename - dbPath */
6272 char *conchPath
; /* buffer in which to construct conch name */
6274 /* Allocate space for the conch filename and initialize the name to
6275 ** the name of the original database file. */
6276 *pConchPath
= conchPath
= (char *)sqlite3_malloc(len
+ 8);
6278 return SQLITE_NOMEM
;
6280 memcpy(conchPath
, dbPath
, len
+1);
6282 /* now insert a "." before the last / character */
6283 for( i
=(len
-1); i
>=0; i
-- ){
6284 if( conchPath
[i
]=='/' ){
6291 conchPath
[i
+1]=dbPath
[i
];
6295 /* append the "-conch" suffix to the file */
6296 memcpy(&conchPath
[i
+1], "-conch", 7);
6297 assert( (int)strlen(conchPath
) == len
+7 );
6303 /* Takes a fully configured proxy locking-style unix file and switches
6304 ** the local lock file path
6306 static int switchLockProxyPath(unixFile
*pFile
, const char *path
) {
6307 proxyLockingContext
*pCtx
= (proxyLockingContext
*)pFile
->lockingContext
;
6308 char *oldPath
= pCtx
->lockProxyPath
;
6311 if( pFile
->eFileLock
!=NO_LOCK
){
6315 /* nothing to do if the path is NULL, :auto: or matches the existing path */
6316 if( !path
|| path
[0]=='\0' || !strcmp(path
, ":auto:") ||
6317 (oldPath
&& !strncmp(oldPath
, path
, MAXPATHLEN
)) ){
6320 unixFile
*lockProxy
= pCtx
->lockProxy
;
6321 pCtx
->lockProxy
=NULL
;
6322 pCtx
->conchHeld
= 0;
6323 if( lockProxy
!=NULL
){
6324 rc
=lockProxy
->pMethod
->xClose((sqlite3_file
*)lockProxy
);
6326 sqlite3_free(lockProxy
);
6328 sqlite3_free(oldPath
);
6329 pCtx
->lockProxyPath
= sqlite3DbStrDup(0, path
);
6336 ** pFile is a file that has been opened by a prior xOpen call. dbPath
6337 ** is a string buffer at least MAXPATHLEN+1 characters in size.
6339 ** This routine find the filename associated with pFile and writes it
6342 static int proxyGetDbPathForUnixFile(unixFile
*pFile
, char *dbPath
){
6343 #if defined(__APPLE__)
6344 if( pFile
->pMethod
== &afpIoMethods
){
6345 /* afp style keeps a reference to the db path in the filePath field
6347 assert( (int)strlen((char*)pFile
->lockingContext
)<=MAXPATHLEN
);
6348 strlcpy(dbPath
, ((afpLockingContext
*)pFile
->lockingContext
)->dbPath
, MAXPATHLEN
);
6351 if( pFile
->pMethod
== &dotlockIoMethods
){
6352 /* dot lock style uses the locking context to store the dot lock
6354 int len
= strlen((char *)pFile
->lockingContext
) - strlen(DOTLOCK_SUFFIX
);
6355 memcpy(dbPath
, (char *)pFile
->lockingContext
, len
+ 1);
6357 /* all other styles use the locking context to store the db file path */
6358 assert( strlen((char*)pFile
->lockingContext
)<=MAXPATHLEN
);
6359 strlcpy(dbPath
, (char *)pFile
->lockingContext
, MAXPATHLEN
);
6365 ** Takes an already filled in unix file and alters it so all file locking
6366 ** will be performed on the local proxy lock file. The following fields
6367 ** are preserved in the locking context so that they can be restored and
6368 ** the unix structure properly cleaned up at close time:
6372 static int proxyTransformUnixFile(unixFile
*pFile
, const char *path
) {
6373 proxyLockingContext
*pCtx
;
6374 char dbPath
[MAXPATHLEN
+1]; /* Name of the database file */
6375 char *lockPath
=NULL
;
6378 if( pFile
->eFileLock
!=NO_LOCK
){
6381 proxyGetDbPathForUnixFile(pFile
, dbPath
);
6382 if( !path
|| path
[0]=='\0' || !strcmp(path
, ":auto:") ){
6385 lockPath
=(char *)path
;
6388 OSTRACE(("TRANSPROXY %d for %s pid=%d\n", pFile
->h
,
6389 (lockPath
? lockPath
: ":auto:"), getpid()));
6391 pCtx
= sqlite3_malloc( sizeof(*pCtx
) );
6393 return SQLITE_NOMEM
;
6395 memset(pCtx
, 0, sizeof(*pCtx
));
6397 rc
= proxyCreateConchPathname(dbPath
, &pCtx
->conchFilePath
);
6398 if( rc
==SQLITE_OK
){
6399 rc
= proxyCreateUnixFile(pCtx
->conchFilePath
, &pCtx
->conchFile
, 0);
6400 if( rc
==SQLITE_CANTOPEN
&& ((pFile
->openFlags
&O_RDWR
) == 0) ){
6401 /* if (a) the open flags are not O_RDWR, (b) the conch isn't there, and
6402 ** (c) the file system is read-only, then enable no-locking access.
6403 ** Ugh, since O_RDONLY==0x0000 we test for !O_RDWR since unixOpen asserts
6404 ** that openFlags will have only one of O_RDONLY or O_RDWR.
6406 struct statfs fsInfo
;
6407 struct stat conchInfo
;
6410 if( osStat(pCtx
->conchFilePath
, &conchInfo
) == -1 ) {
6412 if( (err
==ENOENT
) && (statfs(dbPath
, &fsInfo
) != -1) ){
6413 goLockless
= (fsInfo
.f_flags
&MNT_RDONLY
) == MNT_RDONLY
;
6417 pCtx
->conchHeld
= -1; /* read only FS/ lockless */
6422 if( rc
==SQLITE_OK
&& lockPath
){
6423 pCtx
->lockProxyPath
= sqlite3DbStrDup(0, lockPath
);
6426 if( rc
==SQLITE_OK
){
6427 pCtx
->dbPath
= sqlite3DbStrDup(0, dbPath
);
6428 if( pCtx
->dbPath
==NULL
){
6432 if( rc
==SQLITE_OK
){
6433 /* all memory is allocated, proxys are created and assigned,
6434 ** switch the locking context and pMethod then return.
6436 pCtx
->oldLockingContext
= pFile
->lockingContext
;
6437 pFile
->lockingContext
= pCtx
;
6438 pCtx
->pOldMethod
= pFile
->pMethod
;
6439 pFile
->pMethod
= &proxyIoMethods
;
6441 if( pCtx
->conchFile
){
6442 pCtx
->conchFile
->pMethod
->xClose((sqlite3_file
*)pCtx
->conchFile
);
6443 sqlite3_free(pCtx
->conchFile
);
6445 sqlite3DbFree(0, pCtx
->lockProxyPath
);
6446 sqlite3_free(pCtx
->conchFilePath
);
6449 OSTRACE(("TRANSPROXY %d %s\n", pFile
->h
,
6450 (rc
==SQLITE_OK
? "ok" : "failed")));
6456 ** This routine handles sqlite3_file_control() calls that are specific
6457 ** to proxy locking.
6459 static int proxyFileControl(sqlite3_file
*id
, int op
, void *pArg
){
6461 case SQLITE_GET_LOCKPROXYFILE
: {
6462 unixFile
*pFile
= (unixFile
*)id
;
6463 if( pFile
->pMethod
== &proxyIoMethods
){
6464 proxyLockingContext
*pCtx
= (proxyLockingContext
*)pFile
->lockingContext
;
6465 proxyTakeConch(pFile
);
6466 if( pCtx
->lockProxyPath
){
6467 *(const char **)pArg
= pCtx
->lockProxyPath
;
6469 *(const char **)pArg
= ":auto: (not held)";
6472 *(const char **)pArg
= NULL
;
6476 case SQLITE_SET_LOCKPROXYFILE
: {
6477 unixFile
*pFile
= (unixFile
*)id
;
6479 int isProxyStyle
= (pFile
->pMethod
== &proxyIoMethods
);
6480 if( pArg
==NULL
|| (const char *)pArg
==0 ){
6482 /* turn off proxy locking - not supported */
6483 rc
= SQLITE_ERROR
/*SQLITE_PROTOCOL? SQLITE_MISUSE?*/;
6485 /* turn off proxy locking - already off - NOOP */
6489 const char *proxyPath
= (const char *)pArg
;
6491 proxyLockingContext
*pCtx
=
6492 (proxyLockingContext
*)pFile
->lockingContext
;
6493 if( !strcmp(pArg
, ":auto:")
6494 || (pCtx
->lockProxyPath
&&
6495 !strncmp(pCtx
->lockProxyPath
, proxyPath
, MAXPATHLEN
))
6499 rc
= switchLockProxyPath(pFile
, proxyPath
);
6502 /* turn on proxy file locking */
6503 rc
= proxyTransformUnixFile(pFile
, proxyPath
);
6509 assert( 0 ); /* The call assures that only valid opcodes are sent */
6513 return SQLITE_ERROR
;
6517 ** Within this division (the proxying locking implementation) the procedures
6518 ** above this point are all utilities. The lock-related methods of the
6519 ** proxy-locking sqlite3_io_method object follow.
6524 ** This routine checks if there is a RESERVED lock held on the specified
6525 ** file by this or any other process. If such a lock is held, set *pResOut
6526 ** to a non-zero value otherwise *pResOut is set to zero. The return value
6527 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
6529 static int proxyCheckReservedLock(sqlite3_file
*id
, int *pResOut
) {
6530 unixFile
*pFile
= (unixFile
*)id
;
6531 int rc
= proxyTakeConch(pFile
);
6532 if( rc
==SQLITE_OK
){
6533 proxyLockingContext
*pCtx
= (proxyLockingContext
*)pFile
->lockingContext
;
6534 if( pCtx
->conchHeld
>0 ){
6535 unixFile
*proxy
= pCtx
->lockProxy
;
6536 return proxy
->pMethod
->xCheckReservedLock((sqlite3_file
*)proxy
, pResOut
);
6537 }else{ /* conchHeld < 0 is lockless */
6545 ** Lock the file with the lock specified by parameter eFileLock - one
6546 ** of the following:
6549 ** (2) RESERVED_LOCK
6551 ** (4) EXCLUSIVE_LOCK
6553 ** Sometimes when requesting one lock state, additional lock states
6554 ** are inserted in between. The locking might fail on one of the later
6555 ** transitions leaving the lock state different from what it started but
6556 ** still short of its goal. The following chart shows the allowed
6557 ** transitions and the inserted intermediate states:
6559 ** UNLOCKED -> SHARED
6560 ** SHARED -> RESERVED
6561 ** SHARED -> (PENDING) -> EXCLUSIVE
6562 ** RESERVED -> (PENDING) -> EXCLUSIVE
6563 ** PENDING -> EXCLUSIVE
6565 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
6566 ** routine to lower a locking level.
6568 static int proxyLock(sqlite3_file
*id
, int eFileLock
) {
6569 unixFile
*pFile
= (unixFile
*)id
;
6570 int rc
= proxyTakeConch(pFile
);
6571 if( rc
==SQLITE_OK
){
6572 proxyLockingContext
*pCtx
= (proxyLockingContext
*)pFile
->lockingContext
;
6573 if( pCtx
->conchHeld
>0 ){
6574 unixFile
*proxy
= pCtx
->lockProxy
;
6575 rc
= proxy
->pMethod
->xLock((sqlite3_file
*)proxy
, eFileLock
);
6576 pFile
->eFileLock
= proxy
->eFileLock
;
6578 /* conchHeld < 0 is lockless */
6586 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
6587 ** must be either NO_LOCK or SHARED_LOCK.
6589 ** If the locking level of the file descriptor is already at or below
6590 ** the requested locking level, this routine is a no-op.
6592 static int proxyUnlock(sqlite3_file
*id
, int eFileLock
) {
6593 unixFile
*pFile
= (unixFile
*)id
;
6594 int rc
= proxyTakeConch(pFile
);
6595 if( rc
==SQLITE_OK
){
6596 proxyLockingContext
*pCtx
= (proxyLockingContext
*)pFile
->lockingContext
;
6597 if( pCtx
->conchHeld
>0 ){
6598 unixFile
*proxy
= pCtx
->lockProxy
;
6599 rc
= proxy
->pMethod
->xUnlock((sqlite3_file
*)proxy
, eFileLock
);
6600 pFile
->eFileLock
= proxy
->eFileLock
;
6602 /* conchHeld < 0 is lockless */
6609 ** Close a file that uses proxy locks.
6611 static int proxyClose(sqlite3_file
*id
) {
6613 unixFile
*pFile
= (unixFile
*)id
;
6614 proxyLockingContext
*pCtx
= (proxyLockingContext
*)pFile
->lockingContext
;
6615 unixFile
*lockProxy
= pCtx
->lockProxy
;
6616 unixFile
*conchFile
= pCtx
->conchFile
;
6620 rc
= lockProxy
->pMethod
->xUnlock((sqlite3_file
*)lockProxy
, NO_LOCK
);
6622 rc
= lockProxy
->pMethod
->xClose((sqlite3_file
*)lockProxy
);
6624 sqlite3_free(lockProxy
);
6625 pCtx
->lockProxy
= 0;
6628 if( pCtx
->conchHeld
){
6629 rc
= proxyReleaseConch(pFile
);
6632 rc
= conchFile
->pMethod
->xClose((sqlite3_file
*)conchFile
);
6634 sqlite3_free(conchFile
);
6636 sqlite3DbFree(0, pCtx
->lockProxyPath
);
6637 sqlite3_free(pCtx
->conchFilePath
);
6638 sqlite3DbFree(0, pCtx
->dbPath
);
6639 /* restore the original locking context and pMethod then close it */
6640 pFile
->lockingContext
= pCtx
->oldLockingContext
;
6641 pFile
->pMethod
= pCtx
->pOldMethod
;
6643 return pFile
->pMethod
->xClose(id
);
6650 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
6652 ** The proxy locking style is intended for use with AFP filesystems.
6653 ** And since AFP is only supported on MacOSX, the proxy locking is also
6654 ** restricted to MacOSX.
6657 ******************* End of the proxy lock implementation **********************
6658 ******************************************************************************/
6661 ** Initialize the operating system interface.
6663 ** This routine registers all VFS implementations for unix-like operating
6664 ** systems. This routine, and the sqlite3_os_end() routine that follows,
6665 ** should be the only routines in this file that are visible from other
6668 ** This routine is called once during SQLite initialization and by a
6669 ** single thread. The memory allocation and mutex subsystems have not
6670 ** necessarily been initialized when this routine is called, and so they
6671 ** should not be used.
6673 int sqlite3_os_init(void){
6675 ** The following macro defines an initializer for an sqlite3_vfs object.
6676 ** The name of the VFS is NAME. The pAppData is a pointer to a pointer
6677 ** to the "finder" function. (pAppData is a pointer to a pointer because
6678 ** silly C90 rules prohibit a void* from being cast to a function pointer
6679 ** and so we have to go through the intermediate pointer to avoid problems
6680 ** when compiling with -pedantic-errors on GCC.)
6682 ** The FINDER parameter to this macro is the name of the pointer to the
6683 ** finder-function. The finder-function returns a pointer to the
6684 ** sqlite_io_methods object that implements the desired locking
6685 ** behaviors. See the division above that contains the IOMETHODS
6686 ** macro for addition information on finder-functions.
6688 ** Most finders simply return a pointer to a fixed sqlite3_io_methods
6689 ** object. But the "autolockIoFinder" available on MacOSX does a little
6690 ** more than that; it looks at the filesystem type that hosts the
6691 ** database file and tries to choose an locking method appropriate for
6692 ** that filesystem time.
6694 #define UNIXVFS(VFSNAME, FINDER) { \
6696 sizeof(unixFile), /* szOsFile */ \
6697 MAX_PATHNAME, /* mxPathname */ \
6699 VFSNAME, /* zName */ \
6700 (void*)&FINDER, /* pAppData */ \
6701 unixOpen, /* xOpen */ \
6702 unixDelete, /* xDelete */ \
6703 unixAccess, /* xAccess */ \
6704 unixFullPathname, /* xFullPathname */ \
6705 unixDlOpen, /* xDlOpen */ \
6706 unixDlError, /* xDlError */ \
6707 unixDlSym, /* xDlSym */ \
6708 unixDlClose, /* xDlClose */ \
6709 unixRandomness, /* xRandomness */ \
6710 unixSleep, /* xSleep */ \
6711 unixCurrentTime, /* xCurrentTime */ \
6712 unixGetLastError, /* xGetLastError */ \
6713 unixCurrentTimeInt64, /* xCurrentTimeInt64 */ \
6714 unixSetSystemCall, /* xSetSystemCall */ \
6715 unixGetSystemCall, /* xGetSystemCall */ \
6716 unixNextSystemCall, /* xNextSystemCall */ \
6720 ** All default VFSes for unix are contained in the following array.
6722 ** Note that the sqlite3_vfs.pNext field of the VFS object is modified
6723 ** by the SQLite core when the VFS is registered. So the following
6724 ** array cannot be const.
6726 static sqlite3_vfs aVfs
[] = {
6727 #if SQLITE_ENABLE_LOCKING_STYLE && (OS_VXWORKS || defined(__APPLE__))
6728 UNIXVFS("unix", autolockIoFinder
),
6730 UNIXVFS("unix", posixIoFinder
),
6732 UNIXVFS("unix-none", nolockIoFinder
),
6733 UNIXVFS("unix-dotfile", dotlockIoFinder
),
6734 UNIXVFS("unix-excl", posixIoFinder
),
6736 UNIXVFS("unix-namedsem", semIoFinder
),
6738 #if SQLITE_ENABLE_LOCKING_STYLE
6739 UNIXVFS("unix-posix", posixIoFinder
),
6741 UNIXVFS("unix-flock", flockIoFinder
),
6744 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
6745 UNIXVFS("unix-afp", afpIoFinder
),
6746 UNIXVFS("unix-nfs", nfsIoFinder
),
6747 UNIXVFS("unix-proxy", proxyIoFinder
),
6750 unsigned int i
; /* Loop counter */
6752 /* Double-check that the aSyscall[] array has been constructed
6753 ** correctly. See ticket [bb3a86e890c8e96ab] */
6754 assert( ArraySize(aSyscall
)==18 );
6756 /* Register all VFSes defined in the aVfs[] array */
6757 for(i
=0; i
<(sizeof(aVfs
)/sizeof(sqlite3_vfs
)); i
++){
6758 sqlite3_vfs_register(&aVfs
[i
], i
==0);
6764 ** Shutdown the operating system interface.
6766 ** Some operating systems might need to do some cleanup in this routine,
6767 ** to release dynamically allocated objects. But not on unix.
6768 ** This routine is a no-op for unix.
6770 int sqlite3_os_end(void){
6774 #endif /* SQLITE_OS_UNIX */