add pragma cipher_default_use_hmac to toggle global HMAC setting
[sqlcipher.git] / src / os_unix.c
blob0ea6daf27fe0613cff67fcc3186f8e3b1e4e5b4a
1 /*
2 ** 2004 May 22
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 ******************************************************************************
13 ** This file contains the VFS implementation for unix-like operating systems
14 ** include Linux, MacOSX, *BSD, QNX, VxWorks, AIX, HPUX, and others.
16 ** There are actually several different VFS implementations in this file.
17 ** The differences are in the way that file locking is done. The default
18 ** implementation uses Posix Advisory Locks. Alternative implementations
19 ** use flock(), dot-files, various proprietary locking schemas, or simply
20 ** skip locking all together.
22 ** This source file is organized into divisions where the logic for various
23 ** subfunctions is contained within the appropriate division. PLEASE
24 ** KEEP THE STRUCTURE OF THIS FILE INTACT. New code should be placed
25 ** in the correct division and should be clearly labeled.
27 ** The layout of divisions is as follows:
29 ** * General-purpose declarations and utility functions.
30 ** * Unique file ID logic used by VxWorks.
31 ** * Various locking primitive implementations (all except proxy locking):
32 ** + for Posix Advisory Locks
33 ** + for no-op locks
34 ** + for dot-file locks
35 ** + for flock() locking
36 ** + for named semaphore locks (VxWorks only)
37 ** + for AFP filesystem locks (MacOSX only)
38 ** * sqlite3_file methods not associated with locking.
39 ** * Definitions of sqlite3_io_methods objects for all locking
40 ** methods plus "finder" functions for each locking method.
41 ** * sqlite3_vfs method implementations.
42 ** * Locking primitives for the proxy uber-locking-method. (MacOSX only)
43 ** * Definitions of sqlite3_vfs objects for all locking methods
44 ** plus implementations of sqlite3_os_init() and sqlite3_os_end().
46 #include "sqliteInt.h"
47 #if SQLITE_OS_UNIX /* This file is used on unix only */
50 ** There are various methods for file locking used for concurrency
51 ** control:
53 ** 1. POSIX locking (the default),
54 ** 2. No locking,
55 ** 3. Dot-file locking,
56 ** 4. flock() locking,
57 ** 5. AFP locking (OSX only),
58 ** 6. Named POSIX semaphores (VXWorks only),
59 ** 7. proxy locking. (OSX only)
61 ** Styles 4, 5, and 7 are only available of SQLITE_ENABLE_LOCKING_STYLE
62 ** is defined to 1. The SQLITE_ENABLE_LOCKING_STYLE also enables automatic
63 ** selection of the appropriate locking style based on the filesystem
64 ** where the database is located.
66 #if !defined(SQLITE_ENABLE_LOCKING_STYLE)
67 # if defined(__APPLE__)
68 # define SQLITE_ENABLE_LOCKING_STYLE 1
69 # else
70 # define SQLITE_ENABLE_LOCKING_STYLE 0
71 # endif
72 #endif
75 ** Define the OS_VXWORKS pre-processor macro to 1 if building on
76 ** vxworks, or 0 otherwise.
78 #ifndef OS_VXWORKS
79 # if defined(__RTP__) || defined(_WRS_KERNEL)
80 # define OS_VXWORKS 1
81 # else
82 # define OS_VXWORKS 0
83 # endif
84 #endif
87 ** These #defines should enable >2GB file support on Posix if the
88 ** underlying operating system supports it. If the OS lacks
89 ** large file support, these should be no-ops.
91 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
92 ** on the compiler command line. This is necessary if you are compiling
93 ** on a recent machine (ex: RedHat 7.2) but you want your code to work
94 ** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2
95 ** without this option, LFS is enable. But LFS does not exist in the kernel
96 ** in RedHat 6.0, so the code won't work. Hence, for maximum binary
97 ** portability you should omit LFS.
99 ** The previous paragraph was written in 2005. (This paragraph is written
100 ** on 2008-11-28.) These days, all Linux kernels support large files, so
101 ** you should probably leave LFS enabled. But some embedded platforms might
102 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful.
104 #ifndef SQLITE_DISABLE_LFS
105 # define _LARGE_FILE 1
106 # ifndef _FILE_OFFSET_BITS
107 # define _FILE_OFFSET_BITS 64
108 # endif
109 # define _LARGEFILE_SOURCE 1
110 #endif
113 ** standard include files.
115 #include <sys/types.h>
116 #include <sys/stat.h>
117 #include <fcntl.h>
118 #include <unistd.h>
119 #include <time.h>
120 #include <sys/time.h>
121 #include <errno.h>
122 #ifndef SQLITE_OMIT_WAL
123 #include <sys/mman.h>
124 #endif
126 #if SQLITE_ENABLE_LOCKING_STYLE
127 # include <sys/ioctl.h>
128 # if OS_VXWORKS
129 # include <semaphore.h>
130 # include <limits.h>
131 # else
132 # include <sys/file.h>
133 # include <sys/param.h>
134 # endif
135 #endif /* SQLITE_ENABLE_LOCKING_STYLE */
137 #if defined(__APPLE__) || (SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS)
138 # include <sys/mount.h>
139 #endif
141 #ifdef HAVE_UTIME
142 # include <utime.h>
143 #endif
146 ** Allowed values of unixFile.fsFlags
148 #define SQLITE_FSFLAGS_IS_MSDOS 0x1
151 ** If we are to be thread-safe, include the pthreads header and define
152 ** the SQLITE_UNIX_THREADS macro.
154 #if SQLITE_THREADSAFE
155 # include <pthread.h>
156 # define SQLITE_UNIX_THREADS 1
157 #endif
160 ** Default permissions when creating a new file
162 #ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
163 # define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
164 #endif
167 ** Default permissions when creating auto proxy dir
169 #ifndef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
170 # define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755
171 #endif
174 ** Maximum supported path-length.
176 #define MAX_PATHNAME 512
179 ** Only set the lastErrno if the error code is a real error and not
180 ** a normal expected return code of SQLITE_BUSY or SQLITE_OK
182 #define IS_LOCK_ERROR(x) ((x != SQLITE_OK) && (x != SQLITE_BUSY))
184 /* Forward references */
185 typedef struct unixShm unixShm; /* Connection shared memory */
186 typedef struct unixShmNode unixShmNode; /* Shared memory instance */
187 typedef struct unixInodeInfo unixInodeInfo; /* An i-node */
188 typedef struct UnixUnusedFd UnixUnusedFd; /* An unused file descriptor */
191 ** Sometimes, after a file handle is closed by SQLite, the file descriptor
192 ** cannot be closed immediately. In these cases, instances of the following
193 ** structure are used to store the file descriptor while waiting for an
194 ** opportunity to either close or reuse it.
196 struct UnixUnusedFd {
197 int fd; /* File descriptor to close */
198 int flags; /* Flags this file descriptor was opened with */
199 UnixUnusedFd *pNext; /* Next unused file descriptor on same file */
203 ** The unixFile structure is subclass of sqlite3_file specific to the unix
204 ** VFS implementations.
206 typedef struct unixFile unixFile;
207 struct unixFile {
208 sqlite3_io_methods const *pMethod; /* Always the first entry */
209 unixInodeInfo *pInode; /* Info about locks on this inode */
210 int h; /* The file descriptor */
211 unsigned char eFileLock; /* The type of lock held on this fd */
212 unsigned char ctrlFlags; /* Behavioral bits. UNIXFILE_* flags */
213 int lastErrno; /* The unix errno from last I/O error */
214 void *lockingContext; /* Locking style specific state */
215 UnixUnusedFd *pUnused; /* Pre-allocated UnixUnusedFd */
216 const char *zPath; /* Name of the file */
217 unixShm *pShm; /* Shared memory segment information */
218 int szChunk; /* Configured by FCNTL_CHUNK_SIZE */
219 #if SQLITE_ENABLE_LOCKING_STYLE
220 int openFlags; /* The flags specified at open() */
221 #endif
222 #if SQLITE_ENABLE_LOCKING_STYLE || defined(__APPLE__)
223 unsigned fsFlags; /* cached details from statfs() */
224 #endif
225 #if OS_VXWORKS
226 int isDelete; /* Delete on close if true */
227 struct vxworksFileId *pId; /* Unique file ID */
228 #endif
229 #ifndef NDEBUG
230 /* The next group of variables are used to track whether or not the
231 ** transaction counter in bytes 24-27 of database files are updated
232 ** whenever any part of the database changes. An assertion fault will
233 ** occur if a file is updated without also updating the transaction
234 ** counter. This test is made to avoid new problems similar to the
235 ** one described by ticket #3584.
237 unsigned char transCntrChng; /* True if the transaction counter changed */
238 unsigned char dbUpdate; /* True if any part of database file changed */
239 unsigned char inNormalWrite; /* True if in a normal write operation */
240 #endif
241 #ifdef SQLITE_TEST
242 /* In test mode, increase the size of this structure a bit so that
243 ** it is larger than the struct CrashFile defined in test6.c.
245 char aPadding[32];
246 #endif
250 ** Allowed values for the unixFile.ctrlFlags bitmask:
252 #define UNIXFILE_EXCL 0x01 /* Connections from one process only */
253 #define UNIXFILE_RDONLY 0x02 /* Connection is read only */
254 #define UNIXFILE_PERSIST_WAL 0x04 /* Persistent WAL mode */
255 #ifndef SQLITE_DISABLE_DIRSYNC
256 # define UNIXFILE_DIRSYNC 0x08 /* Directory sync needed */
257 #else
258 # define UNIXFILE_DIRSYNC 0x00
259 #endif
262 ** Include code that is common to all os_*.c files
264 #include "os_common.h"
267 ** Define various macros that are missing from some systems.
269 #ifndef O_LARGEFILE
270 # define O_LARGEFILE 0
271 #endif
272 #ifdef SQLITE_DISABLE_LFS
273 # undef O_LARGEFILE
274 # define O_LARGEFILE 0
275 #endif
276 #ifndef O_NOFOLLOW
277 # define O_NOFOLLOW 0
278 #endif
279 #ifndef O_BINARY
280 # define O_BINARY 0
281 #endif
284 ** The threadid macro resolves to the thread-id or to 0. Used for
285 ** testing and debugging only.
287 #if SQLITE_THREADSAFE
288 #define threadid pthread_self()
289 #else
290 #define threadid 0
291 #endif
294 ** Different Unix systems declare open() in different ways. Same use
295 ** open(const char*,int,mode_t). Others use open(const char*,int,...).
296 ** The difference is important when using a pointer to the function.
298 ** The safest way to deal with the problem is to always use this wrapper
299 ** which always has the same well-defined interface.
301 static int posixOpen(const char *zFile, int flags, int mode){
302 return open(zFile, flags, mode);
305 /* Forward reference */
306 static int openDirectory(const char*, int*);
309 ** Many system calls are accessed through pointer-to-functions so that
310 ** they may be overridden at runtime to facilitate fault injection during
311 ** testing and sandboxing. The following array holds the names and pointers
312 ** to all overrideable system calls.
314 static struct unix_syscall {
315 const char *zName; /* Name of the sytem call */
316 sqlite3_syscall_ptr pCurrent; /* Current value of the system call */
317 sqlite3_syscall_ptr pDefault; /* Default value */
318 } aSyscall[] = {
319 { "open", (sqlite3_syscall_ptr)posixOpen, 0 },
320 #define osOpen ((int(*)(const char*,int,int))aSyscall[0].pCurrent)
322 { "close", (sqlite3_syscall_ptr)close, 0 },
323 #define osClose ((int(*)(int))aSyscall[1].pCurrent)
325 { "access", (sqlite3_syscall_ptr)access, 0 },
326 #define osAccess ((int(*)(const char*,int))aSyscall[2].pCurrent)
328 { "getcwd", (sqlite3_syscall_ptr)getcwd, 0 },
329 #define osGetcwd ((char*(*)(char*,size_t))aSyscall[3].pCurrent)
331 { "stat", (sqlite3_syscall_ptr)stat, 0 },
332 #define osStat ((int(*)(const char*,struct stat*))aSyscall[4].pCurrent)
335 ** The DJGPP compiler environment looks mostly like Unix, but it
336 ** lacks the fcntl() system call. So redefine fcntl() to be something
337 ** that always succeeds. This means that locking does not occur under
338 ** DJGPP. But it is DOS - what did you expect?
340 #ifdef __DJGPP__
341 { "fstat", 0, 0 },
342 #define osFstat(a,b,c) 0
343 #else
344 { "fstat", (sqlite3_syscall_ptr)fstat, 0 },
345 #define osFstat ((int(*)(int,struct stat*))aSyscall[5].pCurrent)
346 #endif
348 { "ftruncate", (sqlite3_syscall_ptr)ftruncate, 0 },
349 #define osFtruncate ((int(*)(int,off_t))aSyscall[6].pCurrent)
351 { "fcntl", (sqlite3_syscall_ptr)fcntl, 0 },
352 #define osFcntl ((int(*)(int,int,...))aSyscall[7].pCurrent)
354 { "read", (sqlite3_syscall_ptr)read, 0 },
355 #define osRead ((ssize_t(*)(int,void*,size_t))aSyscall[8].pCurrent)
357 #if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE
358 { "pread", (sqlite3_syscall_ptr)pread, 0 },
359 #else
360 { "pread", (sqlite3_syscall_ptr)0, 0 },
361 #endif
362 #define osPread ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[9].pCurrent)
364 #if defined(USE_PREAD64)
365 { "pread64", (sqlite3_syscall_ptr)pread64, 0 },
366 #else
367 { "pread64", (sqlite3_syscall_ptr)0, 0 },
368 #endif
369 #define osPread64 ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[10].pCurrent)
371 { "write", (sqlite3_syscall_ptr)write, 0 },
372 #define osWrite ((ssize_t(*)(int,const void*,size_t))aSyscall[11].pCurrent)
374 #if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE
375 { "pwrite", (sqlite3_syscall_ptr)pwrite, 0 },
376 #else
377 { "pwrite", (sqlite3_syscall_ptr)0, 0 },
378 #endif
379 #define osPwrite ((ssize_t(*)(int,const void*,size_t,off_t))\
380 aSyscall[12].pCurrent)
382 #if defined(USE_PREAD64)
383 { "pwrite64", (sqlite3_syscall_ptr)pwrite64, 0 },
384 #else
385 { "pwrite64", (sqlite3_syscall_ptr)0, 0 },
386 #endif
387 #define osPwrite64 ((ssize_t(*)(int,const void*,size_t,off_t))\
388 aSyscall[13].pCurrent)
390 #if SQLITE_ENABLE_LOCKING_STYLE
391 { "fchmod", (sqlite3_syscall_ptr)fchmod, 0 },
392 #else
393 { "fchmod", (sqlite3_syscall_ptr)0, 0 },
394 #endif
395 #define osFchmod ((int(*)(int,mode_t))aSyscall[14].pCurrent)
397 #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
398 { "fallocate", (sqlite3_syscall_ptr)posix_fallocate, 0 },
399 #else
400 { "fallocate", (sqlite3_syscall_ptr)0, 0 },
401 #endif
402 #define osFallocate ((int(*)(int,off_t,off_t))aSyscall[15].pCurrent)
404 { "unlink", (sqlite3_syscall_ptr)unlink, 0 },
405 #define osUnlink ((int(*)(const char*))aSyscall[16].pCurrent)
407 { "openDirectory", (sqlite3_syscall_ptr)openDirectory, 0 },
408 #define osOpenDirectory ((int(*)(const char*,int*))aSyscall[17].pCurrent)
410 }; /* End of the overrideable system calls */
413 ** This is the xSetSystemCall() method of sqlite3_vfs for all of the
414 ** "unix" VFSes. Return SQLITE_OK opon successfully updating the
415 ** system call pointer, or SQLITE_NOTFOUND if there is no configurable
416 ** system call named zName.
418 static int unixSetSystemCall(
419 sqlite3_vfs *pNotUsed, /* The VFS pointer. Not used */
420 const char *zName, /* Name of system call to override */
421 sqlite3_syscall_ptr pNewFunc /* Pointer to new system call value */
423 unsigned int i;
424 int rc = SQLITE_NOTFOUND;
426 UNUSED_PARAMETER(pNotUsed);
427 if( zName==0 ){
428 /* If no zName is given, restore all system calls to their default
429 ** settings and return NULL
431 rc = SQLITE_OK;
432 for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
433 if( aSyscall[i].pDefault ){
434 aSyscall[i].pCurrent = aSyscall[i].pDefault;
437 }else{
438 /* If zName is specified, operate on only the one system call
439 ** specified.
441 for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
442 if( strcmp(zName, aSyscall[i].zName)==0 ){
443 if( aSyscall[i].pDefault==0 ){
444 aSyscall[i].pDefault = aSyscall[i].pCurrent;
446 rc = SQLITE_OK;
447 if( pNewFunc==0 ) pNewFunc = aSyscall[i].pDefault;
448 aSyscall[i].pCurrent = pNewFunc;
449 break;
453 return rc;
457 ** Return the value of a system call. Return NULL if zName is not a
458 ** recognized system call name. NULL is also returned if the system call
459 ** is currently undefined.
461 static sqlite3_syscall_ptr unixGetSystemCall(
462 sqlite3_vfs *pNotUsed,
463 const char *zName
465 unsigned int i;
467 UNUSED_PARAMETER(pNotUsed);
468 for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
469 if( strcmp(zName, aSyscall[i].zName)==0 ) return aSyscall[i].pCurrent;
471 return 0;
475 ** Return the name of the first system call after zName. If zName==NULL
476 ** then return the name of the first system call. Return NULL if zName
477 ** is the last system call or if zName is not the name of a valid
478 ** system call.
480 static const char *unixNextSystemCall(sqlite3_vfs *p, const char *zName){
481 int i = -1;
483 UNUSED_PARAMETER(p);
484 if( zName ){
485 for(i=0; i<ArraySize(aSyscall)-1; i++){
486 if( strcmp(zName, aSyscall[i].zName)==0 ) break;
489 for(i++; i<ArraySize(aSyscall); i++){
490 if( aSyscall[i].pCurrent!=0 ) return aSyscall[i].zName;
492 return 0;
496 ** Retry open() calls that fail due to EINTR
498 static int robust_open(const char *z, int f, int m){
499 int rc;
500 do{ rc = osOpen(z,f,m); }while( rc<0 && errno==EINTR );
501 return rc;
505 ** Helper functions to obtain and relinquish the global mutex. The
506 ** global mutex is used to protect the unixInodeInfo and
507 ** vxworksFileId objects used by this file, all of which may be
508 ** shared by multiple threads.
510 ** Function unixMutexHeld() is used to assert() that the global mutex
511 ** is held when required. This function is only used as part of assert()
512 ** statements. e.g.
514 ** unixEnterMutex()
515 ** assert( unixMutexHeld() );
516 ** unixEnterLeave()
518 static void unixEnterMutex(void){
519 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
521 static void unixLeaveMutex(void){
522 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
524 #ifdef SQLITE_DEBUG
525 static int unixMutexHeld(void) {
526 return sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
528 #endif
531 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
533 ** Helper function for printing out trace information from debugging
534 ** binaries. This returns the string represetation of the supplied
535 ** integer lock-type.
537 static const char *azFileLock(int eFileLock){
538 switch( eFileLock ){
539 case NO_LOCK: return "NONE";
540 case SHARED_LOCK: return "SHARED";
541 case RESERVED_LOCK: return "RESERVED";
542 case PENDING_LOCK: return "PENDING";
543 case EXCLUSIVE_LOCK: return "EXCLUSIVE";
545 return "ERROR";
547 #endif
549 #ifdef SQLITE_LOCK_TRACE
551 ** Print out information about all locking operations.
553 ** This routine is used for troubleshooting locks on multithreaded
554 ** platforms. Enable by compiling with the -DSQLITE_LOCK_TRACE
555 ** command-line option on the compiler. This code is normally
556 ** turned off.
558 static int lockTrace(int fd, int op, struct flock *p){
559 char *zOpName, *zType;
560 int s;
561 int savedErrno;
562 if( op==F_GETLK ){
563 zOpName = "GETLK";
564 }else if( op==F_SETLK ){
565 zOpName = "SETLK";
566 }else{
567 s = osFcntl(fd, op, p);
568 sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s);
569 return s;
571 if( p->l_type==F_RDLCK ){
572 zType = "RDLCK";
573 }else if( p->l_type==F_WRLCK ){
574 zType = "WRLCK";
575 }else if( p->l_type==F_UNLCK ){
576 zType = "UNLCK";
577 }else{
578 assert( 0 );
580 assert( p->l_whence==SEEK_SET );
581 s = osFcntl(fd, op, p);
582 savedErrno = errno;
583 sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n",
584 threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len,
585 (int)p->l_pid, s);
586 if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){
587 struct flock l2;
588 l2 = *p;
589 osFcntl(fd, F_GETLK, &l2);
590 if( l2.l_type==F_RDLCK ){
591 zType = "RDLCK";
592 }else if( l2.l_type==F_WRLCK ){
593 zType = "WRLCK";
594 }else if( l2.l_type==F_UNLCK ){
595 zType = "UNLCK";
596 }else{
597 assert( 0 );
599 sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n",
600 zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid);
602 errno = savedErrno;
603 return s;
605 #undef osFcntl
606 #define osFcntl lockTrace
607 #endif /* SQLITE_LOCK_TRACE */
610 ** Retry ftruncate() calls that fail due to EINTR
612 static int robust_ftruncate(int h, sqlite3_int64 sz){
613 int rc;
614 do{ rc = osFtruncate(h,sz); }while( rc<0 && errno==EINTR );
615 return rc;
619 ** This routine translates a standard POSIX errno code into something
620 ** useful to the clients of the sqlite3 functions. Specifically, it is
621 ** intended to translate a variety of "try again" errors into SQLITE_BUSY
622 ** and a variety of "please close the file descriptor NOW" errors into
623 ** SQLITE_IOERR
625 ** Errors during initialization of locks, or file system support for locks,
626 ** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately.
628 static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) {
629 switch (posixError) {
630 #if 0
631 /* At one point this code was not commented out. In theory, this branch
632 ** should never be hit, as this function should only be called after
633 ** a locking-related function (i.e. fcntl()) has returned non-zero with
634 ** the value of errno as the first argument. Since a system call has failed,
635 ** errno should be non-zero.
637 ** Despite this, if errno really is zero, we still don't want to return
638 ** SQLITE_OK. The system call failed, and *some* SQLite error should be
639 ** propagated back to the caller. Commenting this branch out means errno==0
640 ** will be handled by the "default:" case below.
642 case 0:
643 return SQLITE_OK;
644 #endif
646 case EAGAIN:
647 case ETIMEDOUT:
648 case EBUSY:
649 case EINTR:
650 case ENOLCK:
651 /* random NFS retry error, unless during file system support
652 * introspection, in which it actually means what it says */
653 return SQLITE_BUSY;
655 case EACCES:
656 /* EACCES is like EAGAIN during locking operations, but not any other time*/
657 if( (sqliteIOErr == SQLITE_IOERR_LOCK) ||
658 (sqliteIOErr == SQLITE_IOERR_UNLOCK) ||
659 (sqliteIOErr == SQLITE_IOERR_RDLOCK) ||
660 (sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) ){
661 return SQLITE_BUSY;
663 /* else fall through */
664 case EPERM:
665 return SQLITE_PERM;
667 /* EDEADLK is only possible if a call to fcntl(F_SETLKW) is made. And
668 ** this module never makes such a call. And the code in SQLite itself
669 ** asserts that SQLITE_IOERR_BLOCKED is never returned. For these reasons
670 ** this case is also commented out. If the system does set errno to EDEADLK,
671 ** the default SQLITE_IOERR_XXX code will be returned. */
672 #if 0
673 case EDEADLK:
674 return SQLITE_IOERR_BLOCKED;
675 #endif
677 #if EOPNOTSUPP!=ENOTSUP
678 case EOPNOTSUPP:
679 /* something went terribly awry, unless during file system support
680 * introspection, in which it actually means what it says */
681 #endif
682 #ifdef ENOTSUP
683 case ENOTSUP:
684 /* invalid fd, unless during file system support introspection, in which
685 * it actually means what it says */
686 #endif
687 case EIO:
688 case EBADF:
689 case EINVAL:
690 case ENOTCONN:
691 case ENODEV:
692 case ENXIO:
693 case ENOENT:
694 #ifdef ESTALE /* ESTALE is not defined on Interix systems */
695 case ESTALE:
696 #endif
697 case ENOSYS:
698 /* these should force the client to close the file and reconnect */
700 default:
701 return sqliteIOErr;
707 /******************************************************************************
708 ****************** Begin Unique File ID Utility Used By VxWorks ***************
710 ** On most versions of unix, we can get a unique ID for a file by concatenating
711 ** the device number and the inode number. But this does not work on VxWorks.
712 ** On VxWorks, a unique file id must be based on the canonical filename.
714 ** A pointer to an instance of the following structure can be used as a
715 ** unique file ID in VxWorks. Each instance of this structure contains
716 ** a copy of the canonical filename. There is also a reference count.
717 ** The structure is reclaimed when the number of pointers to it drops to
718 ** zero.
720 ** There are never very many files open at one time and lookups are not
721 ** a performance-critical path, so it is sufficient to put these
722 ** structures on a linked list.
724 struct vxworksFileId {
725 struct vxworksFileId *pNext; /* Next in a list of them all */
726 int nRef; /* Number of references to this one */
727 int nName; /* Length of the zCanonicalName[] string */
728 char *zCanonicalName; /* Canonical filename */
731 #if OS_VXWORKS
733 ** All unique filenames are held on a linked list headed by this
734 ** variable:
736 static struct vxworksFileId *vxworksFileList = 0;
739 ** Simplify a filename into its canonical form
740 ** by making the following changes:
742 ** * removing any trailing and duplicate /
743 ** * convert /./ into just /
744 ** * convert /A/../ where A is any simple name into just /
746 ** Changes are made in-place. Return the new name length.
748 ** The original filename is in z[0..n-1]. Return the number of
749 ** characters in the simplified name.
751 static int vxworksSimplifyName(char *z, int n){
752 int i, j;
753 while( n>1 && z[n-1]=='/' ){ n--; }
754 for(i=j=0; i<n; i++){
755 if( z[i]=='/' ){
756 if( z[i+1]=='/' ) continue;
757 if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){
758 i += 1;
759 continue;
761 if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){
762 while( j>0 && z[j-1]!='/' ){ j--; }
763 if( j>0 ){ j--; }
764 i += 2;
765 continue;
768 z[j++] = z[i];
770 z[j] = 0;
771 return j;
775 ** Find a unique file ID for the given absolute pathname. Return
776 ** a pointer to the vxworksFileId object. This pointer is the unique
777 ** file ID.
779 ** The nRef field of the vxworksFileId object is incremented before
780 ** the object is returned. A new vxworksFileId object is created
781 ** and added to the global list if necessary.
783 ** If a memory allocation error occurs, return NULL.
785 static struct vxworksFileId *vxworksFindFileId(const char *zAbsoluteName){
786 struct vxworksFileId *pNew; /* search key and new file ID */
787 struct vxworksFileId *pCandidate; /* For looping over existing file IDs */
788 int n; /* Length of zAbsoluteName string */
790 assert( zAbsoluteName[0]=='/' );
791 n = (int)strlen(zAbsoluteName);
792 pNew = sqlite3_malloc( sizeof(*pNew) + (n+1) );
793 if( pNew==0 ) return 0;
794 pNew->zCanonicalName = (char*)&pNew[1];
795 memcpy(pNew->zCanonicalName, zAbsoluteName, n+1);
796 n = vxworksSimplifyName(pNew->zCanonicalName, n);
798 /* Search for an existing entry that matching the canonical name.
799 ** If found, increment the reference count and return a pointer to
800 ** the existing file ID.
802 unixEnterMutex();
803 for(pCandidate=vxworksFileList; pCandidate; pCandidate=pCandidate->pNext){
804 if( pCandidate->nName==n
805 && memcmp(pCandidate->zCanonicalName, pNew->zCanonicalName, n)==0
807 sqlite3_free(pNew);
808 pCandidate->nRef++;
809 unixLeaveMutex();
810 return pCandidate;
814 /* No match was found. We will make a new file ID */
815 pNew->nRef = 1;
816 pNew->nName = n;
817 pNew->pNext = vxworksFileList;
818 vxworksFileList = pNew;
819 unixLeaveMutex();
820 return pNew;
824 ** Decrement the reference count on a vxworksFileId object. Free
825 ** the object when the reference count reaches zero.
827 static void vxworksReleaseFileId(struct vxworksFileId *pId){
828 unixEnterMutex();
829 assert( pId->nRef>0 );
830 pId->nRef--;
831 if( pId->nRef==0 ){
832 struct vxworksFileId **pp;
833 for(pp=&vxworksFileList; *pp && *pp!=pId; pp = &((*pp)->pNext)){}
834 assert( *pp==pId );
835 *pp = pId->pNext;
836 sqlite3_free(pId);
838 unixLeaveMutex();
840 #endif /* OS_VXWORKS */
841 /*************** End of Unique File ID Utility Used By VxWorks ****************
842 ******************************************************************************/
845 /******************************************************************************
846 *************************** Posix Advisory Locking ****************************
848 ** POSIX advisory locks are broken by design. ANSI STD 1003.1 (1996)
849 ** section 6.5.2.2 lines 483 through 490 specify that when a process
850 ** sets or clears a lock, that operation overrides any prior locks set
851 ** by the same process. It does not explicitly say so, but this implies
852 ** that it overrides locks set by the same process using a different
853 ** file descriptor. Consider this test case:
855 ** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
856 ** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
858 ** Suppose ./file1 and ./file2 are really the same file (because
859 ** one is a hard or symbolic link to the other) then if you set
860 ** an exclusive lock on fd1, then try to get an exclusive lock
861 ** on fd2, it works. I would have expected the second lock to
862 ** fail since there was already a lock on the file due to fd1.
863 ** But not so. Since both locks came from the same process, the
864 ** second overrides the first, even though they were on different
865 ** file descriptors opened on different file names.
867 ** This means that we cannot use POSIX locks to synchronize file access
868 ** among competing threads of the same process. POSIX locks will work fine
869 ** to synchronize access for threads in separate processes, but not
870 ** threads within the same process.
872 ** To work around the problem, SQLite has to manage file locks internally
873 ** on its own. Whenever a new database is opened, we have to find the
874 ** specific inode of the database file (the inode is determined by the
875 ** st_dev and st_ino fields of the stat structure that fstat() fills in)
876 ** and check for locks already existing on that inode. When locks are
877 ** created or removed, we have to look at our own internal record of the
878 ** locks to see if another thread has previously set a lock on that same
879 ** inode.
881 ** (Aside: The use of inode numbers as unique IDs does not work on VxWorks.
882 ** For VxWorks, we have to use the alternative unique ID system based on
883 ** canonical filename and implemented in the previous division.)
885 ** The sqlite3_file structure for POSIX is no longer just an integer file
886 ** descriptor. It is now a structure that holds the integer file
887 ** descriptor and a pointer to a structure that describes the internal
888 ** locks on the corresponding inode. There is one locking structure
889 ** per inode, so if the same inode is opened twice, both unixFile structures
890 ** point to the same locking structure. The locking structure keeps
891 ** a reference count (so we will know when to delete it) and a "cnt"
892 ** field that tells us its internal lock status. cnt==0 means the
893 ** file is unlocked. cnt==-1 means the file has an exclusive lock.
894 ** cnt>0 means there are cnt shared locks on the file.
896 ** Any attempt to lock or unlock a file first checks the locking
897 ** structure. The fcntl() system call is only invoked to set a
898 ** POSIX lock if the internal lock structure transitions between
899 ** a locked and an unlocked state.
901 ** But wait: there are yet more problems with POSIX advisory locks.
903 ** If you close a file descriptor that points to a file that has locks,
904 ** all locks on that file that are owned by the current process are
905 ** released. To work around this problem, each unixInodeInfo object
906 ** maintains a count of the number of pending locks on tha inode.
907 ** When an attempt is made to close an unixFile, if there are
908 ** other unixFile open on the same inode that are holding locks, the call
909 ** to close() the file descriptor is deferred until all of the locks clear.
910 ** The unixInodeInfo structure keeps a list of file descriptors that need to
911 ** be closed and that list is walked (and cleared) when the last lock
912 ** clears.
914 ** Yet another problem: LinuxThreads do not play well with posix locks.
916 ** Many older versions of linux use the LinuxThreads library which is
917 ** not posix compliant. Under LinuxThreads, a lock created by thread
918 ** A cannot be modified or overridden by a different thread B.
919 ** Only thread A can modify the lock. Locking behavior is correct
920 ** if the appliation uses the newer Native Posix Thread Library (NPTL)
921 ** on linux - with NPTL a lock created by thread A can override locks
922 ** in thread B. But there is no way to know at compile-time which
923 ** threading library is being used. So there is no way to know at
924 ** compile-time whether or not thread A can override locks on thread B.
925 ** One has to do a run-time check to discover the behavior of the
926 ** current process.
928 ** SQLite used to support LinuxThreads. But support for LinuxThreads
929 ** was dropped beginning with version 3.7.0. SQLite will still work with
930 ** LinuxThreads provided that (1) there is no more than one connection
931 ** per database file in the same process and (2) database connections
932 ** do not move across threads.
936 ** An instance of the following structure serves as the key used
937 ** to locate a particular unixInodeInfo object.
939 struct unixFileId {
940 dev_t dev; /* Device number */
941 #if OS_VXWORKS
942 struct vxworksFileId *pId; /* Unique file ID for vxworks. */
943 #else
944 ino_t ino; /* Inode number */
945 #endif
949 ** An instance of the following structure is allocated for each open
950 ** inode. Or, on LinuxThreads, there is one of these structures for
951 ** each inode opened by each thread.
953 ** A single inode can have multiple file descriptors, so each unixFile
954 ** structure contains a pointer to an instance of this object and this
955 ** object keeps a count of the number of unixFile pointing to it.
957 struct unixInodeInfo {
958 struct unixFileId fileId; /* The lookup key */
959 int nShared; /* Number of SHARED locks held */
960 unsigned char eFileLock; /* One of SHARED_LOCK, RESERVED_LOCK etc. */
961 unsigned char bProcessLock; /* An exclusive process lock is held */
962 int nRef; /* Number of pointers to this structure */
963 unixShmNode *pShmNode; /* Shared memory associated with this inode */
964 int nLock; /* Number of outstanding file locks */
965 UnixUnusedFd *pUnused; /* Unused file descriptors to close */
966 unixInodeInfo *pNext; /* List of all unixInodeInfo objects */
967 unixInodeInfo *pPrev; /* .... doubly linked */
968 #if SQLITE_ENABLE_LOCKING_STYLE
969 unsigned long long sharedByte; /* for AFP simulated shared lock */
970 #endif
971 #if OS_VXWORKS
972 sem_t *pSem; /* Named POSIX semaphore */
973 char aSemName[MAX_PATHNAME+2]; /* Name of that semaphore */
974 #endif
978 ** A lists of all unixInodeInfo objects.
980 static unixInodeInfo *inodeList = 0;
984 ** This function - unixLogError_x(), is only ever called via the macro
985 ** unixLogError().
987 ** It is invoked after an error occurs in an OS function and errno has been
988 ** set. It logs a message using sqlite3_log() containing the current value of
989 ** errno and, if possible, the human-readable equivalent from strerror() or
990 ** strerror_r().
992 ** The first argument passed to the macro should be the error code that
993 ** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN).
994 ** The two subsequent arguments should be the name of the OS function that
995 ** failed (e.g. "unlink", "open") and the the associated file-system path,
996 ** if any.
998 #define unixLogError(a,b,c) unixLogErrorAtLine(a,b,c,__LINE__)
999 static int unixLogErrorAtLine(
1000 int errcode, /* SQLite error code */
1001 const char *zFunc, /* Name of OS function that failed */
1002 const char *zPath, /* File path associated with error */
1003 int iLine /* Source line number where error occurred */
1005 char *zErr; /* Message from strerror() or equivalent */
1006 int iErrno = errno; /* Saved syscall error number */
1008 /* If this is not a threadsafe build (SQLITE_THREADSAFE==0), then use
1009 ** the strerror() function to obtain the human-readable error message
1010 ** equivalent to errno. Otherwise, use strerror_r().
1012 #if SQLITE_THREADSAFE && defined(HAVE_STRERROR_R)
1013 char aErr[80];
1014 memset(aErr, 0, sizeof(aErr));
1015 zErr = aErr;
1017 /* If STRERROR_R_CHAR_P (set by autoconf scripts) or __USE_GNU is defined,
1018 ** assume that the system provides the the GNU version of strerror_r() that
1019 ** returns a pointer to a buffer containing the error message. That pointer
1020 ** may point to aErr[], or it may point to some static storage somewhere.
1021 ** Otherwise, assume that the system provides the POSIX version of
1022 ** strerror_r(), which always writes an error message into aErr[].
1024 ** If the code incorrectly assumes that it is the POSIX version that is
1025 ** available, the error message will often be an empty string. Not a
1026 ** huge problem. Incorrectly concluding that the GNU version is available
1027 ** could lead to a segfault though.
1029 #if defined(STRERROR_R_CHAR_P) || defined(__USE_GNU)
1030 zErr =
1031 # endif
1032 strerror_r(iErrno, aErr, sizeof(aErr)-1);
1034 #elif SQLITE_THREADSAFE
1035 /* This is a threadsafe build, but strerror_r() is not available. */
1036 zErr = "";
1037 #else
1038 /* Non-threadsafe build, use strerror(). */
1039 zErr = strerror(iErrno);
1040 #endif
1042 assert( errcode!=SQLITE_OK );
1043 if( zPath==0 ) zPath = "";
1044 sqlite3_log(errcode,
1045 "os_unix.c:%d: (%d) %s(%s) - %s",
1046 iLine, iErrno, zFunc, zPath, zErr
1049 return errcode;
1053 ** Close a file descriptor.
1055 ** We assume that close() almost always works, since it is only in a
1056 ** very sick application or on a very sick platform that it might fail.
1057 ** If it does fail, simply leak the file descriptor, but do log the
1058 ** error.
1060 ** Note that it is not safe to retry close() after EINTR since the
1061 ** file descriptor might have already been reused by another thread.
1062 ** So we don't even try to recover from an EINTR. Just log the error
1063 ** and move on.
1065 static void robust_close(unixFile *pFile, int h, int lineno){
1066 if( osClose(h) ){
1067 unixLogErrorAtLine(SQLITE_IOERR_CLOSE, "close",
1068 pFile ? pFile->zPath : 0, lineno);
1073 ** Close all file descriptors accumuated in the unixInodeInfo->pUnused list.
1075 static void closePendingFds(unixFile *pFile){
1076 unixInodeInfo *pInode = pFile->pInode;
1077 UnixUnusedFd *p;
1078 UnixUnusedFd *pNext;
1079 for(p=pInode->pUnused; p; p=pNext){
1080 pNext = p->pNext;
1081 robust_close(pFile, p->fd, __LINE__);
1082 sqlite3_free(p);
1084 pInode->pUnused = 0;
1088 ** Release a unixInodeInfo structure previously allocated by findInodeInfo().
1090 ** The mutex entered using the unixEnterMutex() function must be held
1091 ** when this function is called.
1093 static void releaseInodeInfo(unixFile *pFile){
1094 unixInodeInfo *pInode = pFile->pInode;
1095 assert( unixMutexHeld() );
1096 if( ALWAYS(pInode) ){
1097 pInode->nRef--;
1098 if( pInode->nRef==0 ){
1099 assert( pInode->pShmNode==0 );
1100 closePendingFds(pFile);
1101 if( pInode->pPrev ){
1102 assert( pInode->pPrev->pNext==pInode );
1103 pInode->pPrev->pNext = pInode->pNext;
1104 }else{
1105 assert( inodeList==pInode );
1106 inodeList = pInode->pNext;
1108 if( pInode->pNext ){
1109 assert( pInode->pNext->pPrev==pInode );
1110 pInode->pNext->pPrev = pInode->pPrev;
1112 sqlite3_free(pInode);
1118 ** Given a file descriptor, locate the unixInodeInfo object that
1119 ** describes that file descriptor. Create a new one if necessary. The
1120 ** return value might be uninitialized if an error occurs.
1122 ** The mutex entered using the unixEnterMutex() function must be held
1123 ** when this function is called.
1125 ** Return an appropriate error code.
1127 static int findInodeInfo(
1128 unixFile *pFile, /* Unix file with file desc used in the key */
1129 unixInodeInfo **ppInode /* Return the unixInodeInfo object here */
1131 int rc; /* System call return code */
1132 int fd; /* The file descriptor for pFile */
1133 struct unixFileId fileId; /* Lookup key for the unixInodeInfo */
1134 struct stat statbuf; /* Low-level file information */
1135 unixInodeInfo *pInode = 0; /* Candidate unixInodeInfo object */
1137 assert( unixMutexHeld() );
1139 /* Get low-level information about the file that we can used to
1140 ** create a unique name for the file.
1142 fd = pFile->h;
1143 rc = osFstat(fd, &statbuf);
1144 if( rc!=0 ){
1145 pFile->lastErrno = errno;
1146 #ifdef EOVERFLOW
1147 if( pFile->lastErrno==EOVERFLOW ) return SQLITE_NOLFS;
1148 #endif
1149 return SQLITE_IOERR;
1152 #ifdef __APPLE__
1153 /* On OS X on an msdos filesystem, the inode number is reported
1154 ** incorrectly for zero-size files. See ticket #3260. To work
1155 ** around this problem (we consider it a bug in OS X, not SQLite)
1156 ** we always increase the file size to 1 by writing a single byte
1157 ** prior to accessing the inode number. The one byte written is
1158 ** an ASCII 'S' character which also happens to be the first byte
1159 ** in the header of every SQLite database. In this way, if there
1160 ** is a race condition such that another thread has already populated
1161 ** the first page of the database, no damage is done.
1163 if( statbuf.st_size==0 && (pFile->fsFlags & SQLITE_FSFLAGS_IS_MSDOS)!=0 ){
1164 do{ rc = osWrite(fd, "S", 1); }while( rc<0 && errno==EINTR );
1165 if( rc!=1 ){
1166 pFile->lastErrno = errno;
1167 return SQLITE_IOERR;
1169 rc = osFstat(fd, &statbuf);
1170 if( rc!=0 ){
1171 pFile->lastErrno = errno;
1172 return SQLITE_IOERR;
1175 #endif
1177 memset(&fileId, 0, sizeof(fileId));
1178 fileId.dev = statbuf.st_dev;
1179 #if OS_VXWORKS
1180 fileId.pId = pFile->pId;
1181 #else
1182 fileId.ino = statbuf.st_ino;
1183 #endif
1184 pInode = inodeList;
1185 while( pInode && memcmp(&fileId, &pInode->fileId, sizeof(fileId)) ){
1186 pInode = pInode->pNext;
1188 if( pInode==0 ){
1189 pInode = sqlite3_malloc( sizeof(*pInode) );
1190 if( pInode==0 ){
1191 return SQLITE_NOMEM;
1193 memset(pInode, 0, sizeof(*pInode));
1194 memcpy(&pInode->fileId, &fileId, sizeof(fileId));
1195 pInode->nRef = 1;
1196 pInode->pNext = inodeList;
1197 pInode->pPrev = 0;
1198 if( inodeList ) inodeList->pPrev = pInode;
1199 inodeList = pInode;
1200 }else{
1201 pInode->nRef++;
1203 *ppInode = pInode;
1204 return SQLITE_OK;
1209 ** This routine checks if there is a RESERVED lock held on the specified
1210 ** file by this or any other process. If such a lock is held, set *pResOut
1211 ** to a non-zero value otherwise *pResOut is set to zero. The return value
1212 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
1214 static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){
1215 int rc = SQLITE_OK;
1216 int reserved = 0;
1217 unixFile *pFile = (unixFile*)id;
1219 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
1221 assert( pFile );
1222 unixEnterMutex(); /* Because pFile->pInode is shared across threads */
1224 /* Check if a thread in this process holds such a lock */
1225 if( pFile->pInode->eFileLock>SHARED_LOCK ){
1226 reserved = 1;
1229 /* Otherwise see if some other process holds it.
1231 #ifndef __DJGPP__
1232 if( !reserved && !pFile->pInode->bProcessLock ){
1233 struct flock lock;
1234 lock.l_whence = SEEK_SET;
1235 lock.l_start = RESERVED_BYTE;
1236 lock.l_len = 1;
1237 lock.l_type = F_WRLCK;
1238 if( osFcntl(pFile->h, F_GETLK, &lock) ){
1239 rc = SQLITE_IOERR_CHECKRESERVEDLOCK;
1240 pFile->lastErrno = errno;
1241 } else if( lock.l_type!=F_UNLCK ){
1242 reserved = 1;
1245 #endif
1247 unixLeaveMutex();
1248 OSTRACE(("TEST WR-LOCK %d %d %d (unix)\n", pFile->h, rc, reserved));
1250 *pResOut = reserved;
1251 return rc;
1255 ** Attempt to set a system-lock on the file pFile. The lock is
1256 ** described by pLock.
1258 ** If the pFile was opened read/write from unix-excl, then the only lock
1259 ** ever obtained is an exclusive lock, and it is obtained exactly once
1260 ** the first time any lock is attempted. All subsequent system locking
1261 ** operations become no-ops. Locking operations still happen internally,
1262 ** in order to coordinate access between separate database connections
1263 ** within this process, but all of that is handled in memory and the
1264 ** operating system does not participate.
1266 ** This function is a pass-through to fcntl(F_SETLK) if pFile is using
1267 ** any VFS other than "unix-excl" or if pFile is opened on "unix-excl"
1268 ** and is read-only.
1270 ** Zero is returned if the call completes successfully, or -1 if a call
1271 ** to fcntl() fails. In this case, errno is set appropriately (by fcntl()).
1273 static int unixFileLock(unixFile *pFile, struct flock *pLock){
1274 int rc;
1275 unixInodeInfo *pInode = pFile->pInode;
1276 assert( unixMutexHeld() );
1277 assert( pInode!=0 );
1278 if( ((pFile->ctrlFlags & UNIXFILE_EXCL)!=0 || pInode->bProcessLock)
1279 && ((pFile->ctrlFlags & UNIXFILE_RDONLY)==0)
1281 if( pInode->bProcessLock==0 ){
1282 struct flock lock;
1283 assert( pInode->nLock==0 );
1284 lock.l_whence = SEEK_SET;
1285 lock.l_start = SHARED_FIRST;
1286 lock.l_len = SHARED_SIZE;
1287 lock.l_type = F_WRLCK;
1288 rc = osFcntl(pFile->h, F_SETLK, &lock);
1289 if( rc<0 ) return rc;
1290 pInode->bProcessLock = 1;
1291 pInode->nLock++;
1292 }else{
1293 rc = 0;
1295 }else{
1296 rc = osFcntl(pFile->h, F_SETLK, pLock);
1298 return rc;
1302 ** Lock the file with the lock specified by parameter eFileLock - one
1303 ** of the following:
1305 ** (1) SHARED_LOCK
1306 ** (2) RESERVED_LOCK
1307 ** (3) PENDING_LOCK
1308 ** (4) EXCLUSIVE_LOCK
1310 ** Sometimes when requesting one lock state, additional lock states
1311 ** are inserted in between. The locking might fail on one of the later
1312 ** transitions leaving the lock state different from what it started but
1313 ** still short of its goal. The following chart shows the allowed
1314 ** transitions and the inserted intermediate states:
1316 ** UNLOCKED -> SHARED
1317 ** SHARED -> RESERVED
1318 ** SHARED -> (PENDING) -> EXCLUSIVE
1319 ** RESERVED -> (PENDING) -> EXCLUSIVE
1320 ** PENDING -> EXCLUSIVE
1322 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
1323 ** routine to lower a locking level.
1325 static int unixLock(sqlite3_file *id, int eFileLock){
1326 /* The following describes the implementation of the various locks and
1327 ** lock transitions in terms of the POSIX advisory shared and exclusive
1328 ** lock primitives (called read-locks and write-locks below, to avoid
1329 ** confusion with SQLite lock names). The algorithms are complicated
1330 ** slightly in order to be compatible with windows systems simultaneously
1331 ** accessing the same database file, in case that is ever required.
1333 ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved
1334 ** byte', each single bytes at well known offsets, and the 'shared byte
1335 ** range', a range of 510 bytes at a well known offset.
1337 ** To obtain a SHARED lock, a read-lock is obtained on the 'pending
1338 ** byte'. If this is successful, a random byte from the 'shared byte
1339 ** range' is read-locked and the lock on the 'pending byte' released.
1341 ** A process may only obtain a RESERVED lock after it has a SHARED lock.
1342 ** A RESERVED lock is implemented by grabbing a write-lock on the
1343 ** 'reserved byte'.
1345 ** A process may only obtain a PENDING lock after it has obtained a
1346 ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock
1347 ** on the 'pending byte'. This ensures that no new SHARED locks can be
1348 ** obtained, but existing SHARED locks are allowed to persist. A process
1349 ** does not have to obtain a RESERVED lock on the way to a PENDING lock.
1350 ** This property is used by the algorithm for rolling back a journal file
1351 ** after a crash.
1353 ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is
1354 ** implemented by obtaining a write-lock on the entire 'shared byte
1355 ** range'. Since all other locks require a read-lock on one of the bytes
1356 ** within this range, this ensures that no other locks are held on the
1357 ** database.
1359 ** The reason a single byte cannot be used instead of the 'shared byte
1360 ** range' is that some versions of windows do not support read-locks. By
1361 ** locking a random byte from a range, concurrent SHARED locks may exist
1362 ** even if the locking primitive used is always a write-lock.
1364 int rc = SQLITE_OK;
1365 unixFile *pFile = (unixFile*)id;
1366 unixInodeInfo *pInode;
1367 struct flock lock;
1368 int tErrno = 0;
1370 assert( pFile );
1371 OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (unix)\n", pFile->h,
1372 azFileLock(eFileLock), azFileLock(pFile->eFileLock),
1373 azFileLock(pFile->pInode->eFileLock), pFile->pInode->nShared , getpid()));
1375 /* If there is already a lock of this type or more restrictive on the
1376 ** unixFile, do nothing. Don't use the end_lock: exit path, as
1377 ** unixEnterMutex() hasn't been called yet.
1379 if( pFile->eFileLock>=eFileLock ){
1380 OSTRACE(("LOCK %d %s ok (already held) (unix)\n", pFile->h,
1381 azFileLock(eFileLock)));
1382 return SQLITE_OK;
1385 /* Make sure the locking sequence is correct.
1386 ** (1) We never move from unlocked to anything higher than shared lock.
1387 ** (2) SQLite never explicitly requests a pendig lock.
1388 ** (3) A shared lock is always held when a reserve lock is requested.
1390 assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK );
1391 assert( eFileLock!=PENDING_LOCK );
1392 assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK );
1394 /* This mutex is needed because pFile->pInode is shared across threads
1396 unixEnterMutex();
1397 pInode = pFile->pInode;
1399 /* If some thread using this PID has a lock via a different unixFile*
1400 ** handle that precludes the requested lock, return BUSY.
1402 if( (pFile->eFileLock!=pInode->eFileLock &&
1403 (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK))
1405 rc = SQLITE_BUSY;
1406 goto end_lock;
1409 /* If a SHARED lock is requested, and some thread using this PID already
1410 ** has a SHARED or RESERVED lock, then increment reference counts and
1411 ** return SQLITE_OK.
1413 if( eFileLock==SHARED_LOCK &&
1414 (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){
1415 assert( eFileLock==SHARED_LOCK );
1416 assert( pFile->eFileLock==0 );
1417 assert( pInode->nShared>0 );
1418 pFile->eFileLock = SHARED_LOCK;
1419 pInode->nShared++;
1420 pInode->nLock++;
1421 goto end_lock;
1425 /* A PENDING lock is needed before acquiring a SHARED lock and before
1426 ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
1427 ** be released.
1429 lock.l_len = 1L;
1430 lock.l_whence = SEEK_SET;
1431 if( eFileLock==SHARED_LOCK
1432 || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK)
1434 lock.l_type = (eFileLock==SHARED_LOCK?F_RDLCK:F_WRLCK);
1435 lock.l_start = PENDING_BYTE;
1436 if( unixFileLock(pFile, &lock) ){
1437 tErrno = errno;
1438 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
1439 if( rc!=SQLITE_BUSY ){
1440 pFile->lastErrno = tErrno;
1442 goto end_lock;
1447 /* If control gets to this point, then actually go ahead and make
1448 ** operating system calls for the specified lock.
1450 if( eFileLock==SHARED_LOCK ){
1451 assert( pInode->nShared==0 );
1452 assert( pInode->eFileLock==0 );
1453 assert( rc==SQLITE_OK );
1455 /* Now get the read-lock */
1456 lock.l_start = SHARED_FIRST;
1457 lock.l_len = SHARED_SIZE;
1458 if( unixFileLock(pFile, &lock) ){
1459 tErrno = errno;
1460 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
1463 /* Drop the temporary PENDING lock */
1464 lock.l_start = PENDING_BYTE;
1465 lock.l_len = 1L;
1466 lock.l_type = F_UNLCK;
1467 if( unixFileLock(pFile, &lock) && rc==SQLITE_OK ){
1468 /* This could happen with a network mount */
1469 tErrno = errno;
1470 rc = SQLITE_IOERR_UNLOCK;
1473 if( rc ){
1474 if( rc!=SQLITE_BUSY ){
1475 pFile->lastErrno = tErrno;
1477 goto end_lock;
1478 }else{
1479 pFile->eFileLock = SHARED_LOCK;
1480 pInode->nLock++;
1481 pInode->nShared = 1;
1483 }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){
1484 /* We are trying for an exclusive lock but another thread in this
1485 ** same process is still holding a shared lock. */
1486 rc = SQLITE_BUSY;
1487 }else{
1488 /* The request was for a RESERVED or EXCLUSIVE lock. It is
1489 ** assumed that there is a SHARED or greater lock on the file
1490 ** already.
1492 assert( 0!=pFile->eFileLock );
1493 lock.l_type = F_WRLCK;
1495 assert( eFileLock==RESERVED_LOCK || eFileLock==EXCLUSIVE_LOCK );
1496 if( eFileLock==RESERVED_LOCK ){
1497 lock.l_start = RESERVED_BYTE;
1498 lock.l_len = 1L;
1499 }else{
1500 lock.l_start = SHARED_FIRST;
1501 lock.l_len = SHARED_SIZE;
1504 if( unixFileLock(pFile, &lock) ){
1505 tErrno = errno;
1506 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
1507 if( rc!=SQLITE_BUSY ){
1508 pFile->lastErrno = tErrno;
1514 #ifndef NDEBUG
1515 /* Set up the transaction-counter change checking flags when
1516 ** transitioning from a SHARED to a RESERVED lock. The change
1517 ** from SHARED to RESERVED marks the beginning of a normal
1518 ** write operation (not a hot journal rollback).
1520 if( rc==SQLITE_OK
1521 && pFile->eFileLock<=SHARED_LOCK
1522 && eFileLock==RESERVED_LOCK
1524 pFile->transCntrChng = 0;
1525 pFile->dbUpdate = 0;
1526 pFile->inNormalWrite = 1;
1528 #endif
1531 if( rc==SQLITE_OK ){
1532 pFile->eFileLock = eFileLock;
1533 pInode->eFileLock = eFileLock;
1534 }else if( eFileLock==EXCLUSIVE_LOCK ){
1535 pFile->eFileLock = PENDING_LOCK;
1536 pInode->eFileLock = PENDING_LOCK;
1539 end_lock:
1540 unixLeaveMutex();
1541 OSTRACE(("LOCK %d %s %s (unix)\n", pFile->h, azFileLock(eFileLock),
1542 rc==SQLITE_OK ? "ok" : "failed"));
1543 return rc;
1547 ** Add the file descriptor used by file handle pFile to the corresponding
1548 ** pUnused list.
1550 static void setPendingFd(unixFile *pFile){
1551 unixInodeInfo *pInode = pFile->pInode;
1552 UnixUnusedFd *p = pFile->pUnused;
1553 p->pNext = pInode->pUnused;
1554 pInode->pUnused = p;
1555 pFile->h = -1;
1556 pFile->pUnused = 0;
1560 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
1561 ** must be either NO_LOCK or SHARED_LOCK.
1563 ** If the locking level of the file descriptor is already at or below
1564 ** the requested locking level, this routine is a no-op.
1566 ** If handleNFSUnlock is true, then on downgrading an EXCLUSIVE_LOCK to SHARED
1567 ** the byte range is divided into 2 parts and the first part is unlocked then
1568 ** set to a read lock, then the other part is simply unlocked. This works
1569 ** around a bug in BSD NFS lockd (also seen on MacOSX 10.3+) that fails to
1570 ** remove the write lock on a region when a read lock is set.
1572 static int posixUnlock(sqlite3_file *id, int eFileLock, int handleNFSUnlock){
1573 unixFile *pFile = (unixFile*)id;
1574 unixInodeInfo *pInode;
1575 struct flock lock;
1576 int rc = SQLITE_OK;
1578 assert( pFile );
1579 OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (unix)\n", pFile->h, eFileLock,
1580 pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
1581 getpid()));
1583 assert( eFileLock<=SHARED_LOCK );
1584 if( pFile->eFileLock<=eFileLock ){
1585 return SQLITE_OK;
1587 unixEnterMutex();
1588 pInode = pFile->pInode;
1589 assert( pInode->nShared!=0 );
1590 if( pFile->eFileLock>SHARED_LOCK ){
1591 assert( pInode->eFileLock==pFile->eFileLock );
1593 #ifndef NDEBUG
1594 /* When reducing a lock such that other processes can start
1595 ** reading the database file again, make sure that the
1596 ** transaction counter was updated if any part of the database
1597 ** file changed. If the transaction counter is not updated,
1598 ** other connections to the same file might not realize that
1599 ** the file has changed and hence might not know to flush their
1600 ** cache. The use of a stale cache can lead to database corruption.
1602 pFile->inNormalWrite = 0;
1603 #endif
1605 /* downgrading to a shared lock on NFS involves clearing the write lock
1606 ** before establishing the readlock - to avoid a race condition we downgrade
1607 ** the lock in 2 blocks, so that part of the range will be covered by a
1608 ** write lock until the rest is covered by a read lock:
1609 ** 1: [WWWWW]
1610 ** 2: [....W]
1611 ** 3: [RRRRW]
1612 ** 4: [RRRR.]
1614 if( eFileLock==SHARED_LOCK ){
1616 #if !defined(__APPLE__) || !SQLITE_ENABLE_LOCKING_STYLE
1617 (void)handleNFSUnlock;
1618 assert( handleNFSUnlock==0 );
1619 #endif
1620 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
1621 if( handleNFSUnlock ){
1622 int tErrno; /* Error code from system call errors */
1623 off_t divSize = SHARED_SIZE - 1;
1625 lock.l_type = F_UNLCK;
1626 lock.l_whence = SEEK_SET;
1627 lock.l_start = SHARED_FIRST;
1628 lock.l_len = divSize;
1629 if( unixFileLock(pFile, &lock)==(-1) ){
1630 tErrno = errno;
1631 rc = SQLITE_IOERR_UNLOCK;
1632 if( IS_LOCK_ERROR(rc) ){
1633 pFile->lastErrno = tErrno;
1635 goto end_unlock;
1637 lock.l_type = F_RDLCK;
1638 lock.l_whence = SEEK_SET;
1639 lock.l_start = SHARED_FIRST;
1640 lock.l_len = divSize;
1641 if( unixFileLock(pFile, &lock)==(-1) ){
1642 tErrno = errno;
1643 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK);
1644 if( IS_LOCK_ERROR(rc) ){
1645 pFile->lastErrno = tErrno;
1647 goto end_unlock;
1649 lock.l_type = F_UNLCK;
1650 lock.l_whence = SEEK_SET;
1651 lock.l_start = SHARED_FIRST+divSize;
1652 lock.l_len = SHARED_SIZE-divSize;
1653 if( unixFileLock(pFile, &lock)==(-1) ){
1654 tErrno = errno;
1655 rc = SQLITE_IOERR_UNLOCK;
1656 if( IS_LOCK_ERROR(rc) ){
1657 pFile->lastErrno = tErrno;
1659 goto end_unlock;
1661 }else
1662 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
1664 lock.l_type = F_RDLCK;
1665 lock.l_whence = SEEK_SET;
1666 lock.l_start = SHARED_FIRST;
1667 lock.l_len = SHARED_SIZE;
1668 if( unixFileLock(pFile, &lock) ){
1669 /* In theory, the call to unixFileLock() cannot fail because another
1670 ** process is holding an incompatible lock. If it does, this
1671 ** indicates that the other process is not following the locking
1672 ** protocol. If this happens, return SQLITE_IOERR_RDLOCK. Returning
1673 ** SQLITE_BUSY would confuse the upper layer (in practice it causes
1674 ** an assert to fail). */
1675 rc = SQLITE_IOERR_RDLOCK;
1676 pFile->lastErrno = errno;
1677 goto end_unlock;
1681 lock.l_type = F_UNLCK;
1682 lock.l_whence = SEEK_SET;
1683 lock.l_start = PENDING_BYTE;
1684 lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE );
1685 if( unixFileLock(pFile, &lock)==0 ){
1686 pInode->eFileLock = SHARED_LOCK;
1687 }else{
1688 rc = SQLITE_IOERR_UNLOCK;
1689 pFile->lastErrno = errno;
1690 goto end_unlock;
1693 if( eFileLock==NO_LOCK ){
1694 /* Decrement the shared lock counter. Release the lock using an
1695 ** OS call only when all threads in this same process have released
1696 ** the lock.
1698 pInode->nShared--;
1699 if( pInode->nShared==0 ){
1700 lock.l_type = F_UNLCK;
1701 lock.l_whence = SEEK_SET;
1702 lock.l_start = lock.l_len = 0L;
1703 if( unixFileLock(pFile, &lock)==0 ){
1704 pInode->eFileLock = NO_LOCK;
1705 }else{
1706 rc = SQLITE_IOERR_UNLOCK;
1707 pFile->lastErrno = errno;
1708 pInode->eFileLock = NO_LOCK;
1709 pFile->eFileLock = NO_LOCK;
1713 /* Decrement the count of locks against this same file. When the
1714 ** count reaches zero, close any other file descriptors whose close
1715 ** was deferred because of outstanding locks.
1717 pInode->nLock--;
1718 assert( pInode->nLock>=0 );
1719 if( pInode->nLock==0 ){
1720 closePendingFds(pFile);
1724 end_unlock:
1725 unixLeaveMutex();
1726 if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock;
1727 return rc;
1731 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
1732 ** must be either NO_LOCK or SHARED_LOCK.
1734 ** If the locking level of the file descriptor is already at or below
1735 ** the requested locking level, this routine is a no-op.
1737 static int unixUnlock(sqlite3_file *id, int eFileLock){
1738 return posixUnlock(id, eFileLock, 0);
1742 ** This function performs the parts of the "close file" operation
1743 ** common to all locking schemes. It closes the directory and file
1744 ** handles, if they are valid, and sets all fields of the unixFile
1745 ** structure to 0.
1747 ** It is *not* necessary to hold the mutex when this routine is called,
1748 ** even on VxWorks. A mutex will be acquired on VxWorks by the
1749 ** vxworksReleaseFileId() routine.
1751 static int closeUnixFile(sqlite3_file *id){
1752 unixFile *pFile = (unixFile*)id;
1753 if( pFile->h>=0 ){
1754 robust_close(pFile, pFile->h, __LINE__);
1755 pFile->h = -1;
1757 #if OS_VXWORKS
1758 if( pFile->pId ){
1759 if( pFile->isDelete ){
1760 osUnlink(pFile->pId->zCanonicalName);
1762 vxworksReleaseFileId(pFile->pId);
1763 pFile->pId = 0;
1765 #endif
1766 OSTRACE(("CLOSE %-3d\n", pFile->h));
1767 OpenCounter(-1);
1768 sqlite3_free(pFile->pUnused);
1769 memset(pFile, 0, sizeof(unixFile));
1770 return SQLITE_OK;
1774 ** Close a file.
1776 static int unixClose(sqlite3_file *id){
1777 int rc = SQLITE_OK;
1778 unixFile *pFile = (unixFile *)id;
1779 unixUnlock(id, NO_LOCK);
1780 unixEnterMutex();
1782 /* unixFile.pInode is always valid here. Otherwise, a different close
1783 ** routine (e.g. nolockClose()) would be called instead.
1785 assert( pFile->pInode->nLock>0 || pFile->pInode->bProcessLock==0 );
1786 if( ALWAYS(pFile->pInode) && pFile->pInode->nLock ){
1787 /* If there are outstanding locks, do not actually close the file just
1788 ** yet because that would clear those locks. Instead, add the file
1789 ** descriptor to pInode->pUnused list. It will be automatically closed
1790 ** when the last lock is cleared.
1792 setPendingFd(pFile);
1794 releaseInodeInfo(pFile);
1795 rc = closeUnixFile(id);
1796 unixLeaveMutex();
1797 return rc;
1800 /************** End of the posix advisory lock implementation *****************
1801 ******************************************************************************/
1803 /******************************************************************************
1804 ****************************** No-op Locking **********************************
1806 ** Of the various locking implementations available, this is by far the
1807 ** simplest: locking is ignored. No attempt is made to lock the database
1808 ** file for reading or writing.
1810 ** This locking mode is appropriate for use on read-only databases
1811 ** (ex: databases that are burned into CD-ROM, for example.) It can
1812 ** also be used if the application employs some external mechanism to
1813 ** prevent simultaneous access of the same database by two or more
1814 ** database connections. But there is a serious risk of database
1815 ** corruption if this locking mode is used in situations where multiple
1816 ** database connections are accessing the same database file at the same
1817 ** time and one or more of those connections are writing.
1820 static int nolockCheckReservedLock(sqlite3_file *NotUsed, int *pResOut){
1821 UNUSED_PARAMETER(NotUsed);
1822 *pResOut = 0;
1823 return SQLITE_OK;
1825 static int nolockLock(sqlite3_file *NotUsed, int NotUsed2){
1826 UNUSED_PARAMETER2(NotUsed, NotUsed2);
1827 return SQLITE_OK;
1829 static int nolockUnlock(sqlite3_file *NotUsed, int NotUsed2){
1830 UNUSED_PARAMETER2(NotUsed, NotUsed2);
1831 return SQLITE_OK;
1835 ** Close the file.
1837 static int nolockClose(sqlite3_file *id) {
1838 return closeUnixFile(id);
1841 /******************* End of the no-op lock implementation *********************
1842 ******************************************************************************/
1844 /******************************************************************************
1845 ************************* Begin dot-file Locking ******************************
1847 ** The dotfile locking implementation uses the existance of separate lock
1848 ** files in order to control access to the database. This works on just
1849 ** about every filesystem imaginable. But there are serious downsides:
1851 ** (1) There is zero concurrency. A single reader blocks all other
1852 ** connections from reading or writing the database.
1854 ** (2) An application crash or power loss can leave stale lock files
1855 ** sitting around that need to be cleared manually.
1857 ** Nevertheless, a dotlock is an appropriate locking mode for use if no
1858 ** other locking strategy is available.
1860 ** Dotfile locking works by creating a file in the same directory as the
1861 ** database and with the same name but with a ".lock" extension added.
1862 ** The existance of a lock file implies an EXCLUSIVE lock. All other lock
1863 ** types (SHARED, RESERVED, PENDING) are mapped into EXCLUSIVE.
1867 ** The file suffix added to the data base filename in order to create the
1868 ** lock file.
1870 #define DOTLOCK_SUFFIX ".lock"
1873 ** This routine checks if there is a RESERVED lock held on the specified
1874 ** file by this or any other process. If such a lock is held, set *pResOut
1875 ** to a non-zero value otherwise *pResOut is set to zero. The return value
1876 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
1878 ** In dotfile locking, either a lock exists or it does not. So in this
1879 ** variation of CheckReservedLock(), *pResOut is set to true if any lock
1880 ** is held on the file and false if the file is unlocked.
1882 static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) {
1883 int rc = SQLITE_OK;
1884 int reserved = 0;
1885 unixFile *pFile = (unixFile*)id;
1887 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
1889 assert( pFile );
1891 /* Check if a thread in this process holds such a lock */
1892 if( pFile->eFileLock>SHARED_LOCK ){
1893 /* Either this connection or some other connection in the same process
1894 ** holds a lock on the file. No need to check further. */
1895 reserved = 1;
1896 }else{
1897 /* The lock is held if and only if the lockfile exists */
1898 const char *zLockFile = (const char*)pFile->lockingContext;
1899 reserved = osAccess(zLockFile, 0)==0;
1901 OSTRACE(("TEST WR-LOCK %d %d %d (dotlock)\n", pFile->h, rc, reserved));
1902 *pResOut = reserved;
1903 return rc;
1907 ** Lock the file with the lock specified by parameter eFileLock - one
1908 ** of the following:
1910 ** (1) SHARED_LOCK
1911 ** (2) RESERVED_LOCK
1912 ** (3) PENDING_LOCK
1913 ** (4) EXCLUSIVE_LOCK
1915 ** Sometimes when requesting one lock state, additional lock states
1916 ** are inserted in between. The locking might fail on one of the later
1917 ** transitions leaving the lock state different from what it started but
1918 ** still short of its goal. The following chart shows the allowed
1919 ** transitions and the inserted intermediate states:
1921 ** UNLOCKED -> SHARED
1922 ** SHARED -> RESERVED
1923 ** SHARED -> (PENDING) -> EXCLUSIVE
1924 ** RESERVED -> (PENDING) -> EXCLUSIVE
1925 ** PENDING -> EXCLUSIVE
1927 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
1928 ** routine to lower a locking level.
1930 ** With dotfile locking, we really only support state (4): EXCLUSIVE.
1931 ** But we track the other locking levels internally.
1933 static int dotlockLock(sqlite3_file *id, int eFileLock) {
1934 unixFile *pFile = (unixFile*)id;
1935 int fd;
1936 char *zLockFile = (char *)pFile->lockingContext;
1937 int rc = SQLITE_OK;
1940 /* If we have any lock, then the lock file already exists. All we have
1941 ** to do is adjust our internal record of the lock level.
1943 if( pFile->eFileLock > NO_LOCK ){
1944 pFile->eFileLock = eFileLock;
1945 /* Always update the timestamp on the old file */
1946 #ifdef HAVE_UTIME
1947 utime(zLockFile, NULL);
1948 #else
1949 utimes(zLockFile, NULL);
1950 #endif
1951 return SQLITE_OK;
1954 /* grab an exclusive lock */
1955 fd = robust_open(zLockFile,O_RDONLY|O_CREAT|O_EXCL,0600);
1956 if( fd<0 ){
1957 /* failed to open/create the file, someone else may have stolen the lock */
1958 int tErrno = errno;
1959 if( EEXIST == tErrno ){
1960 rc = SQLITE_BUSY;
1961 } else {
1962 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
1963 if( IS_LOCK_ERROR(rc) ){
1964 pFile->lastErrno = tErrno;
1967 return rc;
1969 robust_close(pFile, fd, __LINE__);
1971 /* got it, set the type and return ok */
1972 pFile->eFileLock = eFileLock;
1973 return rc;
1977 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
1978 ** must be either NO_LOCK or SHARED_LOCK.
1980 ** If the locking level of the file descriptor is already at or below
1981 ** the requested locking level, this routine is a no-op.
1983 ** When the locking level reaches NO_LOCK, delete the lock file.
1985 static int dotlockUnlock(sqlite3_file *id, int eFileLock) {
1986 unixFile *pFile = (unixFile*)id;
1987 char *zLockFile = (char *)pFile->lockingContext;
1989 assert( pFile );
1990 OSTRACE(("UNLOCK %d %d was %d pid=%d (dotlock)\n", pFile->h, eFileLock,
1991 pFile->eFileLock, getpid()));
1992 assert( eFileLock<=SHARED_LOCK );
1994 /* no-op if possible */
1995 if( pFile->eFileLock==eFileLock ){
1996 return SQLITE_OK;
1999 /* To downgrade to shared, simply update our internal notion of the
2000 ** lock state. No need to mess with the file on disk.
2002 if( eFileLock==SHARED_LOCK ){
2003 pFile->eFileLock = SHARED_LOCK;
2004 return SQLITE_OK;
2007 /* To fully unlock the database, delete the lock file */
2008 assert( eFileLock==NO_LOCK );
2009 if( osUnlink(zLockFile) ){
2010 int rc = 0;
2011 int tErrno = errno;
2012 if( ENOENT != tErrno ){
2013 rc = SQLITE_IOERR_UNLOCK;
2015 if( IS_LOCK_ERROR(rc) ){
2016 pFile->lastErrno = tErrno;
2018 return rc;
2020 pFile->eFileLock = NO_LOCK;
2021 return SQLITE_OK;
2025 ** Close a file. Make sure the lock has been released before closing.
2027 static int dotlockClose(sqlite3_file *id) {
2028 int rc;
2029 if( id ){
2030 unixFile *pFile = (unixFile*)id;
2031 dotlockUnlock(id, NO_LOCK);
2032 sqlite3_free(pFile->lockingContext);
2034 rc = closeUnixFile(id);
2035 return rc;
2037 /****************** End of the dot-file lock implementation *******************
2038 ******************************************************************************/
2040 /******************************************************************************
2041 ************************** Begin flock Locking ********************************
2043 ** Use the flock() system call to do file locking.
2045 ** flock() locking is like dot-file locking in that the various
2046 ** fine-grain locking levels supported by SQLite are collapsed into
2047 ** a single exclusive lock. In other words, SHARED, RESERVED, and
2048 ** PENDING locks are the same thing as an EXCLUSIVE lock. SQLite
2049 ** still works when you do this, but concurrency is reduced since
2050 ** only a single process can be reading the database at a time.
2052 ** Omit this section if SQLITE_ENABLE_LOCKING_STYLE is turned off or if
2053 ** compiling for VXWORKS.
2055 #if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS
2058 ** Retry flock() calls that fail with EINTR
2060 #ifdef EINTR
2061 static int robust_flock(int fd, int op){
2062 int rc;
2063 do{ rc = flock(fd,op); }while( rc<0 && errno==EINTR );
2064 return rc;
2066 #else
2067 # define robust_flock(a,b) flock(a,b)
2068 #endif
2072 ** This routine checks if there is a RESERVED lock held on the specified
2073 ** file by this or any other process. If such a lock is held, set *pResOut
2074 ** to a non-zero value otherwise *pResOut is set to zero. The return value
2075 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2077 static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){
2078 int rc = SQLITE_OK;
2079 int reserved = 0;
2080 unixFile *pFile = (unixFile*)id;
2082 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
2084 assert( pFile );
2086 /* Check if a thread in this process holds such a lock */
2087 if( pFile->eFileLock>SHARED_LOCK ){
2088 reserved = 1;
2091 /* Otherwise see if some other process holds it. */
2092 if( !reserved ){
2093 /* attempt to get the lock */
2094 int lrc = robust_flock(pFile->h, LOCK_EX | LOCK_NB);
2095 if( !lrc ){
2096 /* got the lock, unlock it */
2097 lrc = robust_flock(pFile->h, LOCK_UN);
2098 if ( lrc ) {
2099 int tErrno = errno;
2100 /* unlock failed with an error */
2101 lrc = SQLITE_IOERR_UNLOCK;
2102 if( IS_LOCK_ERROR(lrc) ){
2103 pFile->lastErrno = tErrno;
2104 rc = lrc;
2107 } else {
2108 int tErrno = errno;
2109 reserved = 1;
2110 /* someone else might have it reserved */
2111 lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
2112 if( IS_LOCK_ERROR(lrc) ){
2113 pFile->lastErrno = tErrno;
2114 rc = lrc;
2118 OSTRACE(("TEST WR-LOCK %d %d %d (flock)\n", pFile->h, rc, reserved));
2120 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
2121 if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){
2122 rc = SQLITE_OK;
2123 reserved=1;
2125 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
2126 *pResOut = reserved;
2127 return rc;
2131 ** Lock the file with the lock specified by parameter eFileLock - one
2132 ** of the following:
2134 ** (1) SHARED_LOCK
2135 ** (2) RESERVED_LOCK
2136 ** (3) PENDING_LOCK
2137 ** (4) EXCLUSIVE_LOCK
2139 ** Sometimes when requesting one lock state, additional lock states
2140 ** are inserted in between. The locking might fail on one of the later
2141 ** transitions leaving the lock state different from what it started but
2142 ** still short of its goal. The following chart shows the allowed
2143 ** transitions and the inserted intermediate states:
2145 ** UNLOCKED -> SHARED
2146 ** SHARED -> RESERVED
2147 ** SHARED -> (PENDING) -> EXCLUSIVE
2148 ** RESERVED -> (PENDING) -> EXCLUSIVE
2149 ** PENDING -> EXCLUSIVE
2151 ** flock() only really support EXCLUSIVE locks. We track intermediate
2152 ** lock states in the sqlite3_file structure, but all locks SHARED or
2153 ** above are really EXCLUSIVE locks and exclude all other processes from
2154 ** access the file.
2156 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
2157 ** routine to lower a locking level.
2159 static int flockLock(sqlite3_file *id, int eFileLock) {
2160 int rc = SQLITE_OK;
2161 unixFile *pFile = (unixFile*)id;
2163 assert( pFile );
2165 /* if we already have a lock, it is exclusive.
2166 ** Just adjust level and punt on outta here. */
2167 if (pFile->eFileLock > NO_LOCK) {
2168 pFile->eFileLock = eFileLock;
2169 return SQLITE_OK;
2172 /* grab an exclusive lock */
2174 if (robust_flock(pFile->h, LOCK_EX | LOCK_NB)) {
2175 int tErrno = errno;
2176 /* didn't get, must be busy */
2177 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
2178 if( IS_LOCK_ERROR(rc) ){
2179 pFile->lastErrno = tErrno;
2181 } else {
2182 /* got it, set the type and return ok */
2183 pFile->eFileLock = eFileLock;
2185 OSTRACE(("LOCK %d %s %s (flock)\n", pFile->h, azFileLock(eFileLock),
2186 rc==SQLITE_OK ? "ok" : "failed"));
2187 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
2188 if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){
2189 rc = SQLITE_BUSY;
2191 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
2192 return rc;
2197 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
2198 ** must be either NO_LOCK or SHARED_LOCK.
2200 ** If the locking level of the file descriptor is already at or below
2201 ** the requested locking level, this routine is a no-op.
2203 static int flockUnlock(sqlite3_file *id, int eFileLock) {
2204 unixFile *pFile = (unixFile*)id;
2206 assert( pFile );
2207 OSTRACE(("UNLOCK %d %d was %d pid=%d (flock)\n", pFile->h, eFileLock,
2208 pFile->eFileLock, getpid()));
2209 assert( eFileLock<=SHARED_LOCK );
2211 /* no-op if possible */
2212 if( pFile->eFileLock==eFileLock ){
2213 return SQLITE_OK;
2216 /* shared can just be set because we always have an exclusive */
2217 if (eFileLock==SHARED_LOCK) {
2218 pFile->eFileLock = eFileLock;
2219 return SQLITE_OK;
2222 /* no, really, unlock. */
2223 if( robust_flock(pFile->h, LOCK_UN) ){
2224 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
2225 return SQLITE_OK;
2226 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
2227 return SQLITE_IOERR_UNLOCK;
2228 }else{
2229 pFile->eFileLock = NO_LOCK;
2230 return SQLITE_OK;
2235 ** Close a file.
2237 static int flockClose(sqlite3_file *id) {
2238 if( id ){
2239 flockUnlock(id, NO_LOCK);
2241 return closeUnixFile(id);
2244 #endif /* SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORK */
2246 /******************* End of the flock lock implementation *********************
2247 ******************************************************************************/
2249 /******************************************************************************
2250 ************************ Begin Named Semaphore Locking ************************
2252 ** Named semaphore locking is only supported on VxWorks.
2254 ** Semaphore locking is like dot-lock and flock in that it really only
2255 ** supports EXCLUSIVE locking. Only a single process can read or write
2256 ** the database file at a time. This reduces potential concurrency, but
2257 ** makes the lock implementation much easier.
2259 #if OS_VXWORKS
2262 ** This routine checks if there is a RESERVED lock held on the specified
2263 ** file by this or any other process. If such a lock is held, set *pResOut
2264 ** to a non-zero value otherwise *pResOut is set to zero. The return value
2265 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2267 static int semCheckReservedLock(sqlite3_file *id, int *pResOut) {
2268 int rc = SQLITE_OK;
2269 int reserved = 0;
2270 unixFile *pFile = (unixFile*)id;
2272 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
2274 assert( pFile );
2276 /* Check if a thread in this process holds such a lock */
2277 if( pFile->eFileLock>SHARED_LOCK ){
2278 reserved = 1;
2281 /* Otherwise see if some other process holds it. */
2282 if( !reserved ){
2283 sem_t *pSem = pFile->pInode->pSem;
2284 struct stat statBuf;
2286 if( sem_trywait(pSem)==-1 ){
2287 int tErrno = errno;
2288 if( EAGAIN != tErrno ){
2289 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK);
2290 pFile->lastErrno = tErrno;
2291 } else {
2292 /* someone else has the lock when we are in NO_LOCK */
2293 reserved = (pFile->eFileLock < SHARED_LOCK);
2295 }else{
2296 /* we could have it if we want it */
2297 sem_post(pSem);
2300 OSTRACE(("TEST WR-LOCK %d %d %d (sem)\n", pFile->h, rc, reserved));
2302 *pResOut = reserved;
2303 return rc;
2307 ** Lock the file with the lock specified by parameter eFileLock - one
2308 ** of the following:
2310 ** (1) SHARED_LOCK
2311 ** (2) RESERVED_LOCK
2312 ** (3) PENDING_LOCK
2313 ** (4) EXCLUSIVE_LOCK
2315 ** Sometimes when requesting one lock state, additional lock states
2316 ** are inserted in between. The locking might fail on one of the later
2317 ** transitions leaving the lock state different from what it started but
2318 ** still short of its goal. The following chart shows the allowed
2319 ** transitions and the inserted intermediate states:
2321 ** UNLOCKED -> SHARED
2322 ** SHARED -> RESERVED
2323 ** SHARED -> (PENDING) -> EXCLUSIVE
2324 ** RESERVED -> (PENDING) -> EXCLUSIVE
2325 ** PENDING -> EXCLUSIVE
2327 ** Semaphore locks only really support EXCLUSIVE locks. We track intermediate
2328 ** lock states in the sqlite3_file structure, but all locks SHARED or
2329 ** above are really EXCLUSIVE locks and exclude all other processes from
2330 ** access the file.
2332 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
2333 ** routine to lower a locking level.
2335 static int semLock(sqlite3_file *id, int eFileLock) {
2336 unixFile *pFile = (unixFile*)id;
2337 int fd;
2338 sem_t *pSem = pFile->pInode->pSem;
2339 int rc = SQLITE_OK;
2341 /* if we already have a lock, it is exclusive.
2342 ** Just adjust level and punt on outta here. */
2343 if (pFile->eFileLock > NO_LOCK) {
2344 pFile->eFileLock = eFileLock;
2345 rc = SQLITE_OK;
2346 goto sem_end_lock;
2349 /* lock semaphore now but bail out when already locked. */
2350 if( sem_trywait(pSem)==-1 ){
2351 rc = SQLITE_BUSY;
2352 goto sem_end_lock;
2355 /* got it, set the type and return ok */
2356 pFile->eFileLock = eFileLock;
2358 sem_end_lock:
2359 return rc;
2363 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
2364 ** must be either NO_LOCK or SHARED_LOCK.
2366 ** If the locking level of the file descriptor is already at or below
2367 ** the requested locking level, this routine is a no-op.
2369 static int semUnlock(sqlite3_file *id, int eFileLock) {
2370 unixFile *pFile = (unixFile*)id;
2371 sem_t *pSem = pFile->pInode->pSem;
2373 assert( pFile );
2374 assert( pSem );
2375 OSTRACE(("UNLOCK %d %d was %d pid=%d (sem)\n", pFile->h, eFileLock,
2376 pFile->eFileLock, getpid()));
2377 assert( eFileLock<=SHARED_LOCK );
2379 /* no-op if possible */
2380 if( pFile->eFileLock==eFileLock ){
2381 return SQLITE_OK;
2384 /* shared can just be set because we always have an exclusive */
2385 if (eFileLock==SHARED_LOCK) {
2386 pFile->eFileLock = eFileLock;
2387 return SQLITE_OK;
2390 /* no, really unlock. */
2391 if ( sem_post(pSem)==-1 ) {
2392 int rc, tErrno = errno;
2393 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
2394 if( IS_LOCK_ERROR(rc) ){
2395 pFile->lastErrno = tErrno;
2397 return rc;
2399 pFile->eFileLock = NO_LOCK;
2400 return SQLITE_OK;
2404 ** Close a file.
2406 static int semClose(sqlite3_file *id) {
2407 if( id ){
2408 unixFile *pFile = (unixFile*)id;
2409 semUnlock(id, NO_LOCK);
2410 assert( pFile );
2411 unixEnterMutex();
2412 releaseInodeInfo(pFile);
2413 unixLeaveMutex();
2414 closeUnixFile(id);
2416 return SQLITE_OK;
2419 #endif /* OS_VXWORKS */
2421 ** Named semaphore locking is only available on VxWorks.
2423 *************** End of the named semaphore lock implementation ****************
2424 ******************************************************************************/
2427 /******************************************************************************
2428 *************************** Begin AFP Locking *********************************
2430 ** AFP is the Apple Filing Protocol. AFP is a network filesystem found
2431 ** on Apple Macintosh computers - both OS9 and OSX.
2433 ** Third-party implementations of AFP are available. But this code here
2434 ** only works on OSX.
2437 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
2439 ** The afpLockingContext structure contains all afp lock specific state
2441 typedef struct afpLockingContext afpLockingContext;
2442 struct afpLockingContext {
2443 int reserved;
2444 const char *dbPath; /* Name of the open file */
2447 struct ByteRangeLockPB2
2449 unsigned long long offset; /* offset to first byte to lock */
2450 unsigned long long length; /* nbr of bytes to lock */
2451 unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */
2452 unsigned char unLockFlag; /* 1 = unlock, 0 = lock */
2453 unsigned char startEndFlag; /* 1=rel to end of fork, 0=rel to start */
2454 int fd; /* file desc to assoc this lock with */
2457 #define afpfsByteRangeLock2FSCTL _IOWR('z', 23, struct ByteRangeLockPB2)
2460 ** This is a utility for setting or clearing a bit-range lock on an
2461 ** AFP filesystem.
2463 ** Return SQLITE_OK on success, SQLITE_BUSY on failure.
2465 static int afpSetLock(
2466 const char *path, /* Name of the file to be locked or unlocked */
2467 unixFile *pFile, /* Open file descriptor on path */
2468 unsigned long long offset, /* First byte to be locked */
2469 unsigned long long length, /* Number of bytes to lock */
2470 int setLockFlag /* True to set lock. False to clear lock */
2472 struct ByteRangeLockPB2 pb;
2473 int err;
2475 pb.unLockFlag = setLockFlag ? 0 : 1;
2476 pb.startEndFlag = 0;
2477 pb.offset = offset;
2478 pb.length = length;
2479 pb.fd = pFile->h;
2481 OSTRACE(("AFPSETLOCK [%s] for %d%s in range %llx:%llx\n",
2482 (setLockFlag?"ON":"OFF"), pFile->h, (pb.fd==-1?"[testval-1]":""),
2483 offset, length));
2484 err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0);
2485 if ( err==-1 ) {
2486 int rc;
2487 int tErrno = errno;
2488 OSTRACE(("AFPSETLOCK failed to fsctl() '%s' %d %s\n",
2489 path, tErrno, strerror(tErrno)));
2490 #ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS
2491 rc = SQLITE_BUSY;
2492 #else
2493 rc = sqliteErrorFromPosixError(tErrno,
2494 setLockFlag ? SQLITE_IOERR_LOCK : SQLITE_IOERR_UNLOCK);
2495 #endif /* SQLITE_IGNORE_AFP_LOCK_ERRORS */
2496 if( IS_LOCK_ERROR(rc) ){
2497 pFile->lastErrno = tErrno;
2499 return rc;
2500 } else {
2501 return SQLITE_OK;
2506 ** This routine checks if there is a RESERVED lock held on the specified
2507 ** file by this or any other process. If such a lock is held, set *pResOut
2508 ** to a non-zero value otherwise *pResOut is set to zero. The return value
2509 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2511 static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){
2512 int rc = SQLITE_OK;
2513 int reserved = 0;
2514 unixFile *pFile = (unixFile*)id;
2515 afpLockingContext *context;
2517 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
2519 assert( pFile );
2520 context = (afpLockingContext *) pFile->lockingContext;
2521 if( context->reserved ){
2522 *pResOut = 1;
2523 return SQLITE_OK;
2525 unixEnterMutex(); /* Because pFile->pInode is shared across threads */
2527 /* Check if a thread in this process holds such a lock */
2528 if( pFile->pInode->eFileLock>SHARED_LOCK ){
2529 reserved = 1;
2532 /* Otherwise see if some other process holds it.
2534 if( !reserved ){
2535 /* lock the RESERVED byte */
2536 int lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1);
2537 if( SQLITE_OK==lrc ){
2538 /* if we succeeded in taking the reserved lock, unlock it to restore
2539 ** the original state */
2540 lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0);
2541 } else {
2542 /* if we failed to get the lock then someone else must have it */
2543 reserved = 1;
2545 if( IS_LOCK_ERROR(lrc) ){
2546 rc=lrc;
2550 unixLeaveMutex();
2551 OSTRACE(("TEST WR-LOCK %d %d %d (afp)\n", pFile->h, rc, reserved));
2553 *pResOut = reserved;
2554 return rc;
2558 ** Lock the file with the lock specified by parameter eFileLock - one
2559 ** of the following:
2561 ** (1) SHARED_LOCK
2562 ** (2) RESERVED_LOCK
2563 ** (3) PENDING_LOCK
2564 ** (4) EXCLUSIVE_LOCK
2566 ** Sometimes when requesting one lock state, additional lock states
2567 ** are inserted in between. The locking might fail on one of the later
2568 ** transitions leaving the lock state different from what it started but
2569 ** still short of its goal. The following chart shows the allowed
2570 ** transitions and the inserted intermediate states:
2572 ** UNLOCKED -> SHARED
2573 ** SHARED -> RESERVED
2574 ** SHARED -> (PENDING) -> EXCLUSIVE
2575 ** RESERVED -> (PENDING) -> EXCLUSIVE
2576 ** PENDING -> EXCLUSIVE
2578 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
2579 ** routine to lower a locking level.
2581 static int afpLock(sqlite3_file *id, int eFileLock){
2582 int rc = SQLITE_OK;
2583 unixFile *pFile = (unixFile*)id;
2584 unixInodeInfo *pInode = pFile->pInode;
2585 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
2587 assert( pFile );
2588 OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (afp)\n", pFile->h,
2589 azFileLock(eFileLock), azFileLock(pFile->eFileLock),
2590 azFileLock(pInode->eFileLock), pInode->nShared , getpid()));
2592 /* If there is already a lock of this type or more restrictive on the
2593 ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as
2594 ** unixEnterMutex() hasn't been called yet.
2596 if( pFile->eFileLock>=eFileLock ){
2597 OSTRACE(("LOCK %d %s ok (already held) (afp)\n", pFile->h,
2598 azFileLock(eFileLock)));
2599 return SQLITE_OK;
2602 /* Make sure the locking sequence is correct
2603 ** (1) We never move from unlocked to anything higher than shared lock.
2604 ** (2) SQLite never explicitly requests a pendig lock.
2605 ** (3) A shared lock is always held when a reserve lock is requested.
2607 assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK );
2608 assert( eFileLock!=PENDING_LOCK );
2609 assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK );
2611 /* This mutex is needed because pFile->pInode is shared across threads
2613 unixEnterMutex();
2614 pInode = pFile->pInode;
2616 /* If some thread using this PID has a lock via a different unixFile*
2617 ** handle that precludes the requested lock, return BUSY.
2619 if( (pFile->eFileLock!=pInode->eFileLock &&
2620 (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK))
2622 rc = SQLITE_BUSY;
2623 goto afp_end_lock;
2626 /* If a SHARED lock is requested, and some thread using this PID already
2627 ** has a SHARED or RESERVED lock, then increment reference counts and
2628 ** return SQLITE_OK.
2630 if( eFileLock==SHARED_LOCK &&
2631 (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){
2632 assert( eFileLock==SHARED_LOCK );
2633 assert( pFile->eFileLock==0 );
2634 assert( pInode->nShared>0 );
2635 pFile->eFileLock = SHARED_LOCK;
2636 pInode->nShared++;
2637 pInode->nLock++;
2638 goto afp_end_lock;
2641 /* A PENDING lock is needed before acquiring a SHARED lock and before
2642 ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
2643 ** be released.
2645 if( eFileLock==SHARED_LOCK
2646 || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK)
2648 int failed;
2649 failed = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 1);
2650 if (failed) {
2651 rc = failed;
2652 goto afp_end_lock;
2656 /* If control gets to this point, then actually go ahead and make
2657 ** operating system calls for the specified lock.
2659 if( eFileLock==SHARED_LOCK ){
2660 int lrc1, lrc2, lrc1Errno = 0;
2661 long lk, mask;
2663 assert( pInode->nShared==0 );
2664 assert( pInode->eFileLock==0 );
2666 mask = (sizeof(long)==8) ? LARGEST_INT64 : 0x7fffffff;
2667 /* Now get the read-lock SHARED_LOCK */
2668 /* note that the quality of the randomness doesn't matter that much */
2669 lk = random();
2670 pInode->sharedByte = (lk & mask)%(SHARED_SIZE - 1);
2671 lrc1 = afpSetLock(context->dbPath, pFile,
2672 SHARED_FIRST+pInode->sharedByte, 1, 1);
2673 if( IS_LOCK_ERROR(lrc1) ){
2674 lrc1Errno = pFile->lastErrno;
2676 /* Drop the temporary PENDING lock */
2677 lrc2 = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0);
2679 if( IS_LOCK_ERROR(lrc1) ) {
2680 pFile->lastErrno = lrc1Errno;
2681 rc = lrc1;
2682 goto afp_end_lock;
2683 } else if( IS_LOCK_ERROR(lrc2) ){
2684 rc = lrc2;
2685 goto afp_end_lock;
2686 } else if( lrc1 != SQLITE_OK ) {
2687 rc = lrc1;
2688 } else {
2689 pFile->eFileLock = SHARED_LOCK;
2690 pInode->nLock++;
2691 pInode->nShared = 1;
2693 }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){
2694 /* We are trying for an exclusive lock but another thread in this
2695 ** same process is still holding a shared lock. */
2696 rc = SQLITE_BUSY;
2697 }else{
2698 /* The request was for a RESERVED or EXCLUSIVE lock. It is
2699 ** assumed that there is a SHARED or greater lock on the file
2700 ** already.
2702 int failed = 0;
2703 assert( 0!=pFile->eFileLock );
2704 if (eFileLock >= RESERVED_LOCK && pFile->eFileLock < RESERVED_LOCK) {
2705 /* Acquire a RESERVED lock */
2706 failed = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1);
2707 if( !failed ){
2708 context->reserved = 1;
2711 if (!failed && eFileLock == EXCLUSIVE_LOCK) {
2712 /* Acquire an EXCLUSIVE lock */
2714 /* Remove the shared lock before trying the range. we'll need to
2715 ** reestablish the shared lock if we can't get the afpUnlock
2717 if( !(failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST +
2718 pInode->sharedByte, 1, 0)) ){
2719 int failed2 = SQLITE_OK;
2720 /* now attemmpt to get the exclusive lock range */
2721 failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST,
2722 SHARED_SIZE, 1);
2723 if( failed && (failed2 = afpSetLock(context->dbPath, pFile,
2724 SHARED_FIRST + pInode->sharedByte, 1, 1)) ){
2725 /* Can't reestablish the shared lock. Sqlite can't deal, this is
2726 ** a critical I/O error
2728 rc = ((failed & SQLITE_IOERR) == SQLITE_IOERR) ? failed2 :
2729 SQLITE_IOERR_LOCK;
2730 goto afp_end_lock;
2732 }else{
2733 rc = failed;
2736 if( failed ){
2737 rc = failed;
2741 if( rc==SQLITE_OK ){
2742 pFile->eFileLock = eFileLock;
2743 pInode->eFileLock = eFileLock;
2744 }else if( eFileLock==EXCLUSIVE_LOCK ){
2745 pFile->eFileLock = PENDING_LOCK;
2746 pInode->eFileLock = PENDING_LOCK;
2749 afp_end_lock:
2750 unixLeaveMutex();
2751 OSTRACE(("LOCK %d %s %s (afp)\n", pFile->h, azFileLock(eFileLock),
2752 rc==SQLITE_OK ? "ok" : "failed"));
2753 return rc;
2757 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
2758 ** must be either NO_LOCK or SHARED_LOCK.
2760 ** If the locking level of the file descriptor is already at or below
2761 ** the requested locking level, this routine is a no-op.
2763 static int afpUnlock(sqlite3_file *id, int eFileLock) {
2764 int rc = SQLITE_OK;
2765 unixFile *pFile = (unixFile*)id;
2766 unixInodeInfo *pInode;
2767 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
2768 int skipShared = 0;
2769 #ifdef SQLITE_TEST
2770 int h = pFile->h;
2771 #endif
2773 assert( pFile );
2774 OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (afp)\n", pFile->h, eFileLock,
2775 pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
2776 getpid()));
2778 assert( eFileLock<=SHARED_LOCK );
2779 if( pFile->eFileLock<=eFileLock ){
2780 return SQLITE_OK;
2782 unixEnterMutex();
2783 pInode = pFile->pInode;
2784 assert( pInode->nShared!=0 );
2785 if( pFile->eFileLock>SHARED_LOCK ){
2786 assert( pInode->eFileLock==pFile->eFileLock );
2787 SimulateIOErrorBenign(1);
2788 SimulateIOError( h=(-1) )
2789 SimulateIOErrorBenign(0);
2791 #ifndef NDEBUG
2792 /* When reducing a lock such that other processes can start
2793 ** reading the database file again, make sure that the
2794 ** transaction counter was updated if any part of the database
2795 ** file changed. If the transaction counter is not updated,
2796 ** other connections to the same file might not realize that
2797 ** the file has changed and hence might not know to flush their
2798 ** cache. The use of a stale cache can lead to database corruption.
2800 assert( pFile->inNormalWrite==0
2801 || pFile->dbUpdate==0
2802 || pFile->transCntrChng==1 );
2803 pFile->inNormalWrite = 0;
2804 #endif
2806 if( pFile->eFileLock==EXCLUSIVE_LOCK ){
2807 rc = afpSetLock(context->dbPath, pFile, SHARED_FIRST, SHARED_SIZE, 0);
2808 if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1) ){
2809 /* only re-establish the shared lock if necessary */
2810 int sharedLockByte = SHARED_FIRST+pInode->sharedByte;
2811 rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 1);
2812 } else {
2813 skipShared = 1;
2816 if( rc==SQLITE_OK && pFile->eFileLock>=PENDING_LOCK ){
2817 rc = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0);
2819 if( rc==SQLITE_OK && pFile->eFileLock>=RESERVED_LOCK && context->reserved ){
2820 rc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0);
2821 if( !rc ){
2822 context->reserved = 0;
2825 if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1)){
2826 pInode->eFileLock = SHARED_LOCK;
2829 if( rc==SQLITE_OK && eFileLock==NO_LOCK ){
2831 /* Decrement the shared lock counter. Release the lock using an
2832 ** OS call only when all threads in this same process have released
2833 ** the lock.
2835 unsigned long long sharedLockByte = SHARED_FIRST+pInode->sharedByte;
2836 pInode->nShared--;
2837 if( pInode->nShared==0 ){
2838 SimulateIOErrorBenign(1);
2839 SimulateIOError( h=(-1) )
2840 SimulateIOErrorBenign(0);
2841 if( !skipShared ){
2842 rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 0);
2844 if( !rc ){
2845 pInode->eFileLock = NO_LOCK;
2846 pFile->eFileLock = NO_LOCK;
2849 if( rc==SQLITE_OK ){
2850 pInode->nLock--;
2851 assert( pInode->nLock>=0 );
2852 if( pInode->nLock==0 ){
2853 closePendingFds(pFile);
2858 unixLeaveMutex();
2859 if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock;
2860 return rc;
2864 ** Close a file & cleanup AFP specific locking context
2866 static int afpClose(sqlite3_file *id) {
2867 int rc = SQLITE_OK;
2868 if( id ){
2869 unixFile *pFile = (unixFile*)id;
2870 afpUnlock(id, NO_LOCK);
2871 unixEnterMutex();
2872 if( pFile->pInode && pFile->pInode->nLock ){
2873 /* If there are outstanding locks, do not actually close the file just
2874 ** yet because that would clear those locks. Instead, add the file
2875 ** descriptor to pInode->aPending. It will be automatically closed when
2876 ** the last lock is cleared.
2878 setPendingFd(pFile);
2880 releaseInodeInfo(pFile);
2881 sqlite3_free(pFile->lockingContext);
2882 rc = closeUnixFile(id);
2883 unixLeaveMutex();
2885 return rc;
2888 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
2890 ** The code above is the AFP lock implementation. The code is specific
2891 ** to MacOSX and does not work on other unix platforms. No alternative
2892 ** is available. If you don't compile for a mac, then the "unix-afp"
2893 ** VFS is not available.
2895 ********************* End of the AFP lock implementation **********************
2896 ******************************************************************************/
2898 /******************************************************************************
2899 *************************** Begin NFS Locking ********************************/
2901 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
2903 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
2904 ** must be either NO_LOCK or SHARED_LOCK.
2906 ** If the locking level of the file descriptor is already at or below
2907 ** the requested locking level, this routine is a no-op.
2909 static int nfsUnlock(sqlite3_file *id, int eFileLock){
2910 return posixUnlock(id, eFileLock, 1);
2913 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
2915 ** The code above is the NFS lock implementation. The code is specific
2916 ** to MacOSX and does not work on other unix platforms. No alternative
2917 ** is available.
2919 ********************* End of the NFS lock implementation **********************
2920 ******************************************************************************/
2922 /******************************************************************************
2923 **************** Non-locking sqlite3_file methods *****************************
2925 ** The next division contains implementations for all methods of the
2926 ** sqlite3_file object other than the locking methods. The locking
2927 ** methods were defined in divisions above (one locking method per
2928 ** division). Those methods that are common to all locking modes
2929 ** are gather together into this division.
2933 ** Seek to the offset passed as the second argument, then read cnt
2934 ** bytes into pBuf. Return the number of bytes actually read.
2936 ** NB: If you define USE_PREAD or USE_PREAD64, then it might also
2937 ** be necessary to define _XOPEN_SOURCE to be 500. This varies from
2938 ** one system to another. Since SQLite does not define USE_PREAD
2939 ** any any form by default, we will not attempt to define _XOPEN_SOURCE.
2940 ** See tickets #2741 and #2681.
2942 ** To avoid stomping the errno value on a failed read the lastErrno value
2943 ** is set before returning.
2945 static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){
2946 int got;
2947 #if (!defined(USE_PREAD) && !defined(USE_PREAD64))
2948 i64 newOffset;
2949 #endif
2950 TIMER_START;
2951 #if defined(USE_PREAD)
2952 do{ got = osPread(id->h, pBuf, cnt, offset); }while( got<0 && errno==EINTR );
2953 SimulateIOError( got = -1 );
2954 #elif defined(USE_PREAD64)
2955 do{ got = osPread64(id->h, pBuf, cnt, offset); }while( got<0 && errno==EINTR);
2956 SimulateIOError( got = -1 );
2957 #else
2958 newOffset = lseek(id->h, offset, SEEK_SET);
2959 SimulateIOError( newOffset-- );
2960 if( newOffset!=offset ){
2961 if( newOffset == -1 ){
2962 ((unixFile*)id)->lastErrno = errno;
2963 }else{
2964 ((unixFile*)id)->lastErrno = 0;
2966 return -1;
2968 do{ got = osRead(id->h, pBuf, cnt); }while( got<0 && errno==EINTR );
2969 #endif
2970 TIMER_END;
2971 if( got<0 ){
2972 ((unixFile*)id)->lastErrno = errno;
2974 OSTRACE(("READ %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED));
2975 return got;
2979 ** Read data from a file into a buffer. Return SQLITE_OK if all
2980 ** bytes were read successfully and SQLITE_IOERR if anything goes
2981 ** wrong.
2983 static int unixRead(
2984 sqlite3_file *id,
2985 void *pBuf,
2986 int amt,
2987 sqlite3_int64 offset
2989 unixFile *pFile = (unixFile *)id;
2990 int got;
2991 assert( id );
2993 /* If this is a database file (not a journal, master-journal or temp
2994 ** file), the bytes in the locking range should never be read or written. */
2995 #if 0
2996 assert( pFile->pUnused==0
2997 || offset>=PENDING_BYTE+512
2998 || offset+amt<=PENDING_BYTE
3000 #endif
3002 got = seekAndRead(pFile, offset, pBuf, amt);
3003 if( got==amt ){
3004 return SQLITE_OK;
3005 }else if( got<0 ){
3006 /* lastErrno set by seekAndRead */
3007 return SQLITE_IOERR_READ;
3008 }else{
3009 pFile->lastErrno = 0; /* not a system error */
3010 /* Unread parts of the buffer must be zero-filled */
3011 memset(&((char*)pBuf)[got], 0, amt-got);
3012 return SQLITE_IOERR_SHORT_READ;
3017 ** Seek to the offset in id->offset then read cnt bytes into pBuf.
3018 ** Return the number of bytes actually read. Update the offset.
3020 ** To avoid stomping the errno value on a failed write the lastErrno value
3021 ** is set before returning.
3023 static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){
3024 int got;
3025 #if (!defined(USE_PREAD) && !defined(USE_PREAD64))
3026 i64 newOffset;
3027 #endif
3028 TIMER_START;
3029 #if defined(USE_PREAD)
3030 do{ got = osPwrite(id->h, pBuf, cnt, offset); }while( got<0 && errno==EINTR );
3031 #elif defined(USE_PREAD64)
3032 do{ got = osPwrite64(id->h, pBuf, cnt, offset);}while( got<0 && errno==EINTR);
3033 #else
3035 newOffset = lseek(id->h, offset, SEEK_SET);
3036 SimulateIOError( newOffset-- );
3037 if( newOffset!=offset ){
3038 if( newOffset == -1 ){
3039 ((unixFile*)id)->lastErrno = errno;
3040 }else{
3041 ((unixFile*)id)->lastErrno = 0;
3043 return -1;
3045 got = osWrite(id->h, pBuf, cnt);
3046 }while( got<0 && errno==EINTR );
3047 #endif
3048 TIMER_END;
3049 if( got<0 ){
3050 ((unixFile*)id)->lastErrno = errno;
3053 OSTRACE(("WRITE %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED));
3054 return got;
3059 ** Write data from a buffer into a file. Return SQLITE_OK on success
3060 ** or some other error code on failure.
3062 static int unixWrite(
3063 sqlite3_file *id,
3064 const void *pBuf,
3065 int amt,
3066 sqlite3_int64 offset
3068 unixFile *pFile = (unixFile*)id;
3069 int wrote = 0;
3070 assert( id );
3071 assert( amt>0 );
3073 /* If this is a database file (not a journal, master-journal or temp
3074 ** file), the bytes in the locking range should never be read or written. */
3075 #if 0
3076 assert( pFile->pUnused==0
3077 || offset>=PENDING_BYTE+512
3078 || offset+amt<=PENDING_BYTE
3080 #endif
3082 #ifndef NDEBUG
3083 /* If we are doing a normal write to a database file (as opposed to
3084 ** doing a hot-journal rollback or a write to some file other than a
3085 ** normal database file) then record the fact that the database
3086 ** has changed. If the transaction counter is modified, record that
3087 ** fact too.
3089 if( pFile->inNormalWrite ){
3090 pFile->dbUpdate = 1; /* The database has been modified */
3091 if( offset<=24 && offset+amt>=27 ){
3092 int rc;
3093 char oldCntr[4];
3094 SimulateIOErrorBenign(1);
3095 rc = seekAndRead(pFile, 24, oldCntr, 4);
3096 SimulateIOErrorBenign(0);
3097 if( rc!=4 || memcmp(oldCntr, &((char*)pBuf)[24-offset], 4)!=0 ){
3098 pFile->transCntrChng = 1; /* The transaction counter has changed */
3102 #endif
3104 while( amt>0 && (wrote = seekAndWrite(pFile, offset, pBuf, amt))>0 ){
3105 amt -= wrote;
3106 offset += wrote;
3107 pBuf = &((char*)pBuf)[wrote];
3109 SimulateIOError(( wrote=(-1), amt=1 ));
3110 SimulateDiskfullError(( wrote=0, amt=1 ));
3112 if( amt>0 ){
3113 if( wrote<0 && pFile->lastErrno!=ENOSPC ){
3114 /* lastErrno set by seekAndWrite */
3115 return SQLITE_IOERR_WRITE;
3116 }else{
3117 pFile->lastErrno = 0; /* not a system error */
3118 return SQLITE_FULL;
3122 return SQLITE_OK;
3125 #ifdef SQLITE_TEST
3127 ** Count the number of fullsyncs and normal syncs. This is used to test
3128 ** that syncs and fullsyncs are occurring at the right times.
3130 int sqlite3_sync_count = 0;
3131 int sqlite3_fullsync_count = 0;
3132 #endif
3135 ** We do not trust systems to provide a working fdatasync(). Some do.
3136 ** Others do no. To be safe, we will stick with the (slightly slower)
3137 ** fsync(). If you know that your system does support fdatasync() correctly,
3138 ** then simply compile with -Dfdatasync=fdatasync
3140 #if !defined(fdatasync)
3141 # define fdatasync fsync
3142 #endif
3145 ** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not
3146 ** the F_FULLFSYNC macro is defined. F_FULLFSYNC is currently
3147 ** only available on Mac OS X. But that could change.
3149 #ifdef F_FULLFSYNC
3150 # define HAVE_FULLFSYNC 1
3151 #else
3152 # define HAVE_FULLFSYNC 0
3153 #endif
3157 ** The fsync() system call does not work as advertised on many
3158 ** unix systems. The following procedure is an attempt to make
3159 ** it work better.
3161 ** The SQLITE_NO_SYNC macro disables all fsync()s. This is useful
3162 ** for testing when we want to run through the test suite quickly.
3163 ** You are strongly advised *not* to deploy with SQLITE_NO_SYNC
3164 ** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash
3165 ** or power failure will likely corrupt the database file.
3167 ** SQLite sets the dataOnly flag if the size of the file is unchanged.
3168 ** The idea behind dataOnly is that it should only write the file content
3169 ** to disk, not the inode. We only set dataOnly if the file size is
3170 ** unchanged since the file size is part of the inode. However,
3171 ** Ted Ts'o tells us that fdatasync() will also write the inode if the
3172 ** file size has changed. The only real difference between fdatasync()
3173 ** and fsync(), Ted tells us, is that fdatasync() will not flush the
3174 ** inode if the mtime or owner or other inode attributes have changed.
3175 ** We only care about the file size, not the other file attributes, so
3176 ** as far as SQLite is concerned, an fdatasync() is always adequate.
3177 ** So, we always use fdatasync() if it is available, regardless of
3178 ** the value of the dataOnly flag.
3180 static int full_fsync(int fd, int fullSync, int dataOnly){
3181 int rc;
3183 /* The following "ifdef/elif/else/" block has the same structure as
3184 ** the one below. It is replicated here solely to avoid cluttering
3185 ** up the real code with the UNUSED_PARAMETER() macros.
3187 #ifdef SQLITE_NO_SYNC
3188 UNUSED_PARAMETER(fd);
3189 UNUSED_PARAMETER(fullSync);
3190 UNUSED_PARAMETER(dataOnly);
3191 #elif HAVE_FULLFSYNC
3192 UNUSED_PARAMETER(dataOnly);
3193 #else
3194 UNUSED_PARAMETER(fullSync);
3195 UNUSED_PARAMETER(dataOnly);
3196 #endif
3198 /* Record the number of times that we do a normal fsync() and
3199 ** FULLSYNC. This is used during testing to verify that this procedure
3200 ** gets called with the correct arguments.
3202 #ifdef SQLITE_TEST
3203 if( fullSync ) sqlite3_fullsync_count++;
3204 sqlite3_sync_count++;
3205 #endif
3207 /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
3208 ** no-op
3210 #ifdef SQLITE_NO_SYNC
3211 rc = SQLITE_OK;
3212 #elif HAVE_FULLFSYNC
3213 if( fullSync ){
3214 rc = osFcntl(fd, F_FULLFSYNC, 0);
3215 }else{
3216 rc = 1;
3218 /* If the FULLFSYNC failed, fall back to attempting an fsync().
3219 ** It shouldn't be possible for fullfsync to fail on the local
3220 ** file system (on OSX), so failure indicates that FULLFSYNC
3221 ** isn't supported for this file system. So, attempt an fsync
3222 ** and (for now) ignore the overhead of a superfluous fcntl call.
3223 ** It'd be better to detect fullfsync support once and avoid
3224 ** the fcntl call every time sync is called.
3226 if( rc ) rc = fsync(fd);
3228 #elif defined(__APPLE__)
3229 /* fdatasync() on HFS+ doesn't yet flush the file size if it changed correctly
3230 ** so currently we default to the macro that redefines fdatasync to fsync
3232 rc = fsync(fd);
3233 #else
3234 rc = fdatasync(fd);
3235 #if OS_VXWORKS
3236 if( rc==-1 && errno==ENOTSUP ){
3237 rc = fsync(fd);
3239 #endif /* OS_VXWORKS */
3240 #endif /* ifdef SQLITE_NO_SYNC elif HAVE_FULLFSYNC */
3242 if( OS_VXWORKS && rc!= -1 ){
3243 rc = 0;
3245 return rc;
3249 ** Open a file descriptor to the directory containing file zFilename.
3250 ** If successful, *pFd is set to the opened file descriptor and
3251 ** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM
3252 ** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined
3253 ** value.
3255 ** The directory file descriptor is used for only one thing - to
3256 ** fsync() a directory to make sure file creation and deletion events
3257 ** are flushed to disk. Such fsyncs are not needed on newer
3258 ** journaling filesystems, but are required on older filesystems.
3260 ** This routine can be overridden using the xSetSysCall interface.
3261 ** The ability to override this routine was added in support of the
3262 ** chromium sandbox. Opening a directory is a security risk (we are
3263 ** told) so making it overrideable allows the chromium sandbox to
3264 ** replace this routine with a harmless no-op. To make this routine
3265 ** a no-op, replace it with a stub that returns SQLITE_OK but leaves
3266 ** *pFd set to a negative number.
3268 ** If SQLITE_OK is returned, the caller is responsible for closing
3269 ** the file descriptor *pFd using close().
3271 static int openDirectory(const char *zFilename, int *pFd){
3272 int ii;
3273 int fd = -1;
3274 char zDirname[MAX_PATHNAME+1];
3276 sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename);
3277 for(ii=(int)strlen(zDirname); ii>1 && zDirname[ii]!='/'; ii--);
3278 if( ii>0 ){
3279 zDirname[ii] = '\0';
3280 fd = robust_open(zDirname, O_RDONLY|O_BINARY, 0);
3281 if( fd>=0 ){
3282 #ifdef FD_CLOEXEC
3283 osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
3284 #endif
3285 OSTRACE(("OPENDIR %-3d %s\n", fd, zDirname));
3288 *pFd = fd;
3289 return (fd>=0?SQLITE_OK:unixLogError(SQLITE_CANTOPEN_BKPT, "open", zDirname));
3293 ** Make sure all writes to a particular file are committed to disk.
3295 ** If dataOnly==0 then both the file itself and its metadata (file
3296 ** size, access time, etc) are synced. If dataOnly!=0 then only the
3297 ** file data is synced.
3299 ** Under Unix, also make sure that the directory entry for the file
3300 ** has been created by fsync-ing the directory that contains the file.
3301 ** If we do not do this and we encounter a power failure, the directory
3302 ** entry for the journal might not exist after we reboot. The next
3303 ** SQLite to access the file will not know that the journal exists (because
3304 ** the directory entry for the journal was never created) and the transaction
3305 ** will not roll back - possibly leading to database corruption.
3307 static int unixSync(sqlite3_file *id, int flags){
3308 int rc;
3309 unixFile *pFile = (unixFile*)id;
3311 int isDataOnly = (flags&SQLITE_SYNC_DATAONLY);
3312 int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL;
3314 /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */
3315 assert((flags&0x0F)==SQLITE_SYNC_NORMAL
3316 || (flags&0x0F)==SQLITE_SYNC_FULL
3319 /* Unix cannot, but some systems may return SQLITE_FULL from here. This
3320 ** line is to test that doing so does not cause any problems.
3322 SimulateDiskfullError( return SQLITE_FULL );
3324 assert( pFile );
3325 OSTRACE(("SYNC %-3d\n", pFile->h));
3326 rc = full_fsync(pFile->h, isFullsync, isDataOnly);
3327 SimulateIOError( rc=1 );
3328 if( rc ){
3329 pFile->lastErrno = errno;
3330 return unixLogError(SQLITE_IOERR_FSYNC, "full_fsync", pFile->zPath);
3333 /* Also fsync the directory containing the file if the DIRSYNC flag
3334 ** is set. This is a one-time occurrance. Many systems (examples: AIX)
3335 ** are unable to fsync a directory, so ignore errors on the fsync.
3337 if( pFile->ctrlFlags & UNIXFILE_DIRSYNC ){
3338 int dirfd;
3339 OSTRACE(("DIRSYNC %s (have_fullfsync=%d fullsync=%d)\n", pFile->zPath,
3340 HAVE_FULLFSYNC, isFullsync));
3341 rc = osOpenDirectory(pFile->zPath, &dirfd);
3342 if( rc==SQLITE_OK && dirfd>=0 ){
3343 full_fsync(dirfd, 0, 0);
3344 robust_close(pFile, dirfd, __LINE__);
3345 }else if( rc==SQLITE_CANTOPEN ){
3346 rc = SQLITE_OK;
3348 pFile->ctrlFlags &= ~UNIXFILE_DIRSYNC;
3350 return rc;
3354 ** Truncate an open file to a specified size
3356 static int unixTruncate(sqlite3_file *id, i64 nByte){
3357 unixFile *pFile = (unixFile *)id;
3358 int rc;
3359 assert( pFile );
3360 SimulateIOError( return SQLITE_IOERR_TRUNCATE );
3362 /* If the user has configured a chunk-size for this file, truncate the
3363 ** file so that it consists of an integer number of chunks (i.e. the
3364 ** actual file size after the operation may be larger than the requested
3365 ** size).
3367 if( pFile->szChunk ){
3368 nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
3371 rc = robust_ftruncate(pFile->h, (off_t)nByte);
3372 if( rc ){
3373 pFile->lastErrno = errno;
3374 return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
3375 }else{
3376 #ifndef NDEBUG
3377 /* If we are doing a normal write to a database file (as opposed to
3378 ** doing a hot-journal rollback or a write to some file other than a
3379 ** normal database file) and we truncate the file to zero length,
3380 ** that effectively updates the change counter. This might happen
3381 ** when restoring a database using the backup API from a zero-length
3382 ** source.
3384 if( pFile->inNormalWrite && nByte==0 ){
3385 pFile->transCntrChng = 1;
3387 #endif
3389 return SQLITE_OK;
3394 ** Determine the current size of a file in bytes
3396 static int unixFileSize(sqlite3_file *id, i64 *pSize){
3397 int rc;
3398 struct stat buf;
3399 assert( id );
3400 rc = osFstat(((unixFile*)id)->h, &buf);
3401 SimulateIOError( rc=1 );
3402 if( rc!=0 ){
3403 ((unixFile*)id)->lastErrno = errno;
3404 return SQLITE_IOERR_FSTAT;
3406 *pSize = buf.st_size;
3408 /* When opening a zero-size database, the findInodeInfo() procedure
3409 ** writes a single byte into that file in order to work around a bug
3410 ** in the OS-X msdos filesystem. In order to avoid problems with upper
3411 ** layers, we need to report this file size as zero even though it is
3412 ** really 1. Ticket #3260.
3414 if( *pSize==1 ) *pSize = 0;
3417 return SQLITE_OK;
3420 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
3422 ** Handler for proxy-locking file-control verbs. Defined below in the
3423 ** proxying locking division.
3425 static int proxyFileControl(sqlite3_file*,int,void*);
3426 #endif
3429 ** This function is called to handle the SQLITE_FCNTL_SIZE_HINT
3430 ** file-control operation. Enlarge the database to nBytes in size
3431 ** (rounded up to the next chunk-size). If the database is already
3432 ** nBytes or larger, this routine is a no-op.
3434 static int fcntlSizeHint(unixFile *pFile, i64 nByte){
3435 if( pFile->szChunk>0 ){
3436 i64 nSize; /* Required file size */
3437 struct stat buf; /* Used to hold return values of fstat() */
3439 if( osFstat(pFile->h, &buf) ) return SQLITE_IOERR_FSTAT;
3441 nSize = ((nByte+pFile->szChunk-1) / pFile->szChunk) * pFile->szChunk;
3442 if( nSize>(i64)buf.st_size ){
3444 #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
3445 /* The code below is handling the return value of osFallocate()
3446 ** correctly. posix_fallocate() is defined to "returns zero on success,
3447 ** or an error number on failure". See the manpage for details. */
3448 int err;
3450 err = osFallocate(pFile->h, buf.st_size, nSize-buf.st_size);
3451 }while( err==EINTR );
3452 if( err ) return SQLITE_IOERR_WRITE;
3453 #else
3454 /* If the OS does not have posix_fallocate(), fake it. First use
3455 ** ftruncate() to set the file size, then write a single byte to
3456 ** the last byte in each block within the extended region. This
3457 ** is the same technique used by glibc to implement posix_fallocate()
3458 ** on systems that do not have a real fallocate() system call.
3460 int nBlk = buf.st_blksize; /* File-system block size */
3461 i64 iWrite; /* Next offset to write to */
3463 if( robust_ftruncate(pFile->h, nSize) ){
3464 pFile->lastErrno = errno;
3465 return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
3467 iWrite = ((buf.st_size + 2*nBlk - 1)/nBlk)*nBlk-1;
3468 while( iWrite<nSize ){
3469 int nWrite = seekAndWrite(pFile, iWrite, "", 1);
3470 if( nWrite!=1 ) return SQLITE_IOERR_WRITE;
3471 iWrite += nBlk;
3473 #endif
3477 return SQLITE_OK;
3481 ** Information and control of an open file handle.
3483 static int unixFileControl(sqlite3_file *id, int op, void *pArg){
3484 unixFile *pFile = (unixFile*)id;
3485 switch( op ){
3486 case SQLITE_FCNTL_LOCKSTATE: {
3487 *(int*)pArg = pFile->eFileLock;
3488 return SQLITE_OK;
3490 case SQLITE_LAST_ERRNO: {
3491 *(int*)pArg = pFile->lastErrno;
3492 return SQLITE_OK;
3494 case SQLITE_FCNTL_CHUNK_SIZE: {
3495 pFile->szChunk = *(int *)pArg;
3496 return SQLITE_OK;
3498 case SQLITE_FCNTL_SIZE_HINT: {
3499 int rc;
3500 SimulateIOErrorBenign(1);
3501 rc = fcntlSizeHint(pFile, *(i64 *)pArg);
3502 SimulateIOErrorBenign(0);
3503 return rc;
3505 case SQLITE_FCNTL_PERSIST_WAL: {
3506 int bPersist = *(int*)pArg;
3507 if( bPersist<0 ){
3508 *(int*)pArg = (pFile->ctrlFlags & UNIXFILE_PERSIST_WAL)!=0;
3509 }else if( bPersist==0 ){
3510 pFile->ctrlFlags &= ~UNIXFILE_PERSIST_WAL;
3511 }else{
3512 pFile->ctrlFlags |= UNIXFILE_PERSIST_WAL;
3514 return SQLITE_OK;
3516 #ifndef NDEBUG
3517 /* The pager calls this method to signal that it has done
3518 ** a rollback and that the database is therefore unchanged and
3519 ** it hence it is OK for the transaction change counter to be
3520 ** unchanged.
3522 case SQLITE_FCNTL_DB_UNCHANGED: {
3523 ((unixFile*)id)->dbUpdate = 0;
3524 return SQLITE_OK;
3526 #endif
3527 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
3528 case SQLITE_SET_LOCKPROXYFILE:
3529 case SQLITE_GET_LOCKPROXYFILE: {
3530 return proxyFileControl(id,op,pArg);
3532 #endif /* SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) */
3533 case SQLITE_FCNTL_SYNC_OMITTED: {
3534 return SQLITE_OK; /* A no-op */
3537 return SQLITE_NOTFOUND;
3541 ** Return the sector size in bytes of the underlying block device for
3542 ** the specified file. This is almost always 512 bytes, but may be
3543 ** larger for some devices.
3545 ** SQLite code assumes this function cannot fail. It also assumes that
3546 ** if two files are created in the same file-system directory (i.e.
3547 ** a database and its journal file) that the sector size will be the
3548 ** same for both.
3550 static int unixSectorSize(sqlite3_file *NotUsed){
3551 UNUSED_PARAMETER(NotUsed);
3552 return SQLITE_DEFAULT_SECTOR_SIZE;
3556 ** Return the device characteristics for the file. This is always 0 for unix.
3558 static int unixDeviceCharacteristics(sqlite3_file *NotUsed){
3559 UNUSED_PARAMETER(NotUsed);
3560 return 0;
3563 #ifndef SQLITE_OMIT_WAL
3567 ** Object used to represent an shared memory buffer.
3569 ** When multiple threads all reference the same wal-index, each thread
3570 ** has its own unixShm object, but they all point to a single instance
3571 ** of this unixShmNode object. In other words, each wal-index is opened
3572 ** only once per process.
3574 ** Each unixShmNode object is connected to a single unixInodeInfo object.
3575 ** We could coalesce this object into unixInodeInfo, but that would mean
3576 ** every open file that does not use shared memory (in other words, most
3577 ** open files) would have to carry around this extra information. So
3578 ** the unixInodeInfo object contains a pointer to this unixShmNode object
3579 ** and the unixShmNode object is created only when needed.
3581 ** unixMutexHeld() must be true when creating or destroying
3582 ** this object or while reading or writing the following fields:
3584 ** nRef
3586 ** The following fields are read-only after the object is created:
3588 ** fid
3589 ** zFilename
3591 ** Either unixShmNode.mutex must be held or unixShmNode.nRef==0 and
3592 ** unixMutexHeld() is true when reading or writing any other field
3593 ** in this structure.
3595 struct unixShmNode {
3596 unixInodeInfo *pInode; /* unixInodeInfo that owns this SHM node */
3597 sqlite3_mutex *mutex; /* Mutex to access this object */
3598 char *zFilename; /* Name of the mmapped file */
3599 int h; /* Open file descriptor */
3600 int szRegion; /* Size of shared-memory regions */
3601 u16 nRegion; /* Size of array apRegion */
3602 u8 isReadonly; /* True if read-only */
3603 char **apRegion; /* Array of mapped shared-memory regions */
3604 int nRef; /* Number of unixShm objects pointing to this */
3605 unixShm *pFirst; /* All unixShm objects pointing to this */
3606 #ifdef SQLITE_DEBUG
3607 u8 exclMask; /* Mask of exclusive locks held */
3608 u8 sharedMask; /* Mask of shared locks held */
3609 u8 nextShmId; /* Next available unixShm.id value */
3610 #endif
3614 ** Structure used internally by this VFS to record the state of an
3615 ** open shared memory connection.
3617 ** The following fields are initialized when this object is created and
3618 ** are read-only thereafter:
3620 ** unixShm.pFile
3621 ** unixShm.id
3623 ** All other fields are read/write. The unixShm.pFile->mutex must be held
3624 ** while accessing any read/write fields.
3626 struct unixShm {
3627 unixShmNode *pShmNode; /* The underlying unixShmNode object */
3628 unixShm *pNext; /* Next unixShm with the same unixShmNode */
3629 u8 hasMutex; /* True if holding the unixShmNode mutex */
3630 u8 id; /* Id of this connection within its unixShmNode */
3631 u16 sharedMask; /* Mask of shared locks held */
3632 u16 exclMask; /* Mask of exclusive locks held */
3636 ** Constants used for locking
3638 #define UNIX_SHM_BASE ((22+SQLITE_SHM_NLOCK)*4) /* first lock byte */
3639 #define UNIX_SHM_DMS (UNIX_SHM_BASE+SQLITE_SHM_NLOCK) /* deadman switch */
3642 ** Apply posix advisory locks for all bytes from ofst through ofst+n-1.
3644 ** Locks block if the mask is exactly UNIX_SHM_C and are non-blocking
3645 ** otherwise.
3647 static int unixShmSystemLock(
3648 unixShmNode *pShmNode, /* Apply locks to this open shared-memory segment */
3649 int lockType, /* F_UNLCK, F_RDLCK, or F_WRLCK */
3650 int ofst, /* First byte of the locking range */
3651 int n /* Number of bytes to lock */
3653 struct flock f; /* The posix advisory locking structure */
3654 int rc = SQLITE_OK; /* Result code form fcntl() */
3656 /* Access to the unixShmNode object is serialized by the caller */
3657 assert( sqlite3_mutex_held(pShmNode->mutex) || pShmNode->nRef==0 );
3659 /* Shared locks never span more than one byte */
3660 assert( n==1 || lockType!=F_RDLCK );
3662 /* Locks are within range */
3663 assert( n>=1 && n<SQLITE_SHM_NLOCK );
3665 if( pShmNode->h>=0 ){
3666 /* Initialize the locking parameters */
3667 memset(&f, 0, sizeof(f));
3668 f.l_type = lockType;
3669 f.l_whence = SEEK_SET;
3670 f.l_start = ofst;
3671 f.l_len = n;
3673 rc = osFcntl(pShmNode->h, F_SETLK, &f);
3674 rc = (rc!=(-1)) ? SQLITE_OK : SQLITE_BUSY;
3677 /* Update the global lock state and do debug tracing */
3678 #ifdef SQLITE_DEBUG
3679 { u16 mask;
3680 OSTRACE(("SHM-LOCK "));
3681 mask = (1<<(ofst+n)) - (1<<ofst);
3682 if( rc==SQLITE_OK ){
3683 if( lockType==F_UNLCK ){
3684 OSTRACE(("unlock %d ok", ofst));
3685 pShmNode->exclMask &= ~mask;
3686 pShmNode->sharedMask &= ~mask;
3687 }else if( lockType==F_RDLCK ){
3688 OSTRACE(("read-lock %d ok", ofst));
3689 pShmNode->exclMask &= ~mask;
3690 pShmNode->sharedMask |= mask;
3691 }else{
3692 assert( lockType==F_WRLCK );
3693 OSTRACE(("write-lock %d ok", ofst));
3694 pShmNode->exclMask |= mask;
3695 pShmNode->sharedMask &= ~mask;
3697 }else{
3698 if( lockType==F_UNLCK ){
3699 OSTRACE(("unlock %d failed", ofst));
3700 }else if( lockType==F_RDLCK ){
3701 OSTRACE(("read-lock failed"));
3702 }else{
3703 assert( lockType==F_WRLCK );
3704 OSTRACE(("write-lock %d failed", ofst));
3707 OSTRACE((" - afterwards %03x,%03x\n",
3708 pShmNode->sharedMask, pShmNode->exclMask));
3710 #endif
3712 return rc;
3717 ** Purge the unixShmNodeList list of all entries with unixShmNode.nRef==0.
3719 ** This is not a VFS shared-memory method; it is a utility function called
3720 ** by VFS shared-memory methods.
3722 static void unixShmPurge(unixFile *pFd){
3723 unixShmNode *p = pFd->pInode->pShmNode;
3724 assert( unixMutexHeld() );
3725 if( p && p->nRef==0 ){
3726 int i;
3727 assert( p->pInode==pFd->pInode );
3728 sqlite3_mutex_free(p->mutex);
3729 for(i=0; i<p->nRegion; i++){
3730 if( p->h>=0 ){
3731 munmap(p->apRegion[i], p->szRegion);
3732 }else{
3733 sqlite3_free(p->apRegion[i]);
3736 sqlite3_free(p->apRegion);
3737 if( p->h>=0 ){
3738 robust_close(pFd, p->h, __LINE__);
3739 p->h = -1;
3741 p->pInode->pShmNode = 0;
3742 sqlite3_free(p);
3747 ** Open a shared-memory area associated with open database file pDbFd.
3748 ** This particular implementation uses mmapped files.
3750 ** The file used to implement shared-memory is in the same directory
3751 ** as the open database file and has the same name as the open database
3752 ** file with the "-shm" suffix added. For example, if the database file
3753 ** is "/home/user1/config.db" then the file that is created and mmapped
3754 ** for shared memory will be called "/home/user1/config.db-shm".
3756 ** Another approach to is to use files in /dev/shm or /dev/tmp or an
3757 ** some other tmpfs mount. But if a file in a different directory
3758 ** from the database file is used, then differing access permissions
3759 ** or a chroot() might cause two different processes on the same
3760 ** database to end up using different files for shared memory -
3761 ** meaning that their memory would not really be shared - resulting
3762 ** in database corruption. Nevertheless, this tmpfs file usage
3763 ** can be enabled at compile-time using -DSQLITE_SHM_DIRECTORY="/dev/shm"
3764 ** or the equivalent. The use of the SQLITE_SHM_DIRECTORY compile-time
3765 ** option results in an incompatible build of SQLite; builds of SQLite
3766 ** that with differing SQLITE_SHM_DIRECTORY settings attempt to use the
3767 ** same database file at the same time, database corruption will likely
3768 ** result. The SQLITE_SHM_DIRECTORY compile-time option is considered
3769 ** "unsupported" and may go away in a future SQLite release.
3771 ** When opening a new shared-memory file, if no other instances of that
3772 ** file are currently open, in this process or in other processes, then
3773 ** the file must be truncated to zero length or have its header cleared.
3775 ** If the original database file (pDbFd) is using the "unix-excl" VFS
3776 ** that means that an exclusive lock is held on the database file and
3777 ** that no other processes are able to read or write the database. In
3778 ** that case, we do not really need shared memory. No shared memory
3779 ** file is created. The shared memory will be simulated with heap memory.
3781 static int unixOpenSharedMemory(unixFile *pDbFd){
3782 struct unixShm *p = 0; /* The connection to be opened */
3783 struct unixShmNode *pShmNode; /* The underlying mmapped file */
3784 int rc; /* Result code */
3785 unixInodeInfo *pInode; /* The inode of fd */
3786 char *zShmFilename; /* Name of the file used for SHM */
3787 int nShmFilename; /* Size of the SHM filename in bytes */
3789 /* Allocate space for the new unixShm object. */
3790 p = sqlite3_malloc( sizeof(*p) );
3791 if( p==0 ) return SQLITE_NOMEM;
3792 memset(p, 0, sizeof(*p));
3793 assert( pDbFd->pShm==0 );
3795 /* Check to see if a unixShmNode object already exists. Reuse an existing
3796 ** one if present. Create a new one if necessary.
3798 unixEnterMutex();
3799 pInode = pDbFd->pInode;
3800 pShmNode = pInode->pShmNode;
3801 if( pShmNode==0 ){
3802 struct stat sStat; /* fstat() info for database file */
3804 /* Call fstat() to figure out the permissions on the database file. If
3805 ** a new *-shm file is created, an attempt will be made to create it
3806 ** with the same permissions. The actual permissions the file is created
3807 ** with are subject to the current umask setting.
3809 if( osFstat(pDbFd->h, &sStat) && pInode->bProcessLock==0 ){
3810 rc = SQLITE_IOERR_FSTAT;
3811 goto shm_open_err;
3814 #ifdef SQLITE_SHM_DIRECTORY
3815 nShmFilename = sizeof(SQLITE_SHM_DIRECTORY) + 30;
3816 #else
3817 nShmFilename = 5 + (int)strlen(pDbFd->zPath);
3818 #endif
3819 pShmNode = sqlite3_malloc( sizeof(*pShmNode) + nShmFilename );
3820 if( pShmNode==0 ){
3821 rc = SQLITE_NOMEM;
3822 goto shm_open_err;
3824 memset(pShmNode, 0, sizeof(*pShmNode));
3825 zShmFilename = pShmNode->zFilename = (char*)&pShmNode[1];
3826 #ifdef SQLITE_SHM_DIRECTORY
3827 sqlite3_snprintf(nShmFilename, zShmFilename,
3828 SQLITE_SHM_DIRECTORY "/sqlite-shm-%x-%x",
3829 (u32)sStat.st_ino, (u32)sStat.st_dev);
3830 #else
3831 sqlite3_snprintf(nShmFilename, zShmFilename, "%s-shm", pDbFd->zPath);
3832 sqlite3FileSuffix3(pDbFd->zPath, zShmFilename);
3833 #endif
3834 pShmNode->h = -1;
3835 pDbFd->pInode->pShmNode = pShmNode;
3836 pShmNode->pInode = pDbFd->pInode;
3837 pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
3838 if( pShmNode->mutex==0 ){
3839 rc = SQLITE_NOMEM;
3840 goto shm_open_err;
3843 if( pInode->bProcessLock==0 ){
3844 const char *zRO;
3845 int openFlags = O_RDWR | O_CREAT;
3846 zRO = sqlite3_uri_parameter(pDbFd->zPath, "readonly_shm");
3847 if( zRO && sqlite3GetBoolean(zRO) ){
3848 openFlags = O_RDONLY;
3849 pShmNode->isReadonly = 1;
3851 pShmNode->h = robust_open(zShmFilename, openFlags, (sStat.st_mode&0777));
3852 if( pShmNode->h<0 ){
3853 if( pShmNode->h<0 ){
3854 rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zShmFilename);
3855 goto shm_open_err;
3859 /* Check to see if another process is holding the dead-man switch.
3860 ** If not, truncate the file to zero length.
3862 rc = SQLITE_OK;
3863 if( unixShmSystemLock(pShmNode, F_WRLCK, UNIX_SHM_DMS, 1)==SQLITE_OK ){
3864 if( robust_ftruncate(pShmNode->h, 0) ){
3865 rc = unixLogError(SQLITE_IOERR_SHMOPEN, "ftruncate", zShmFilename);
3868 if( rc==SQLITE_OK ){
3869 rc = unixShmSystemLock(pShmNode, F_RDLCK, UNIX_SHM_DMS, 1);
3871 if( rc ) goto shm_open_err;
3875 /* Make the new connection a child of the unixShmNode */
3876 p->pShmNode = pShmNode;
3877 #ifdef SQLITE_DEBUG
3878 p->id = pShmNode->nextShmId++;
3879 #endif
3880 pShmNode->nRef++;
3881 pDbFd->pShm = p;
3882 unixLeaveMutex();
3884 /* The reference count on pShmNode has already been incremented under
3885 ** the cover of the unixEnterMutex() mutex and the pointer from the
3886 ** new (struct unixShm) object to the pShmNode has been set. All that is
3887 ** left to do is to link the new object into the linked list starting
3888 ** at pShmNode->pFirst. This must be done while holding the pShmNode->mutex
3889 ** mutex.
3891 sqlite3_mutex_enter(pShmNode->mutex);
3892 p->pNext = pShmNode->pFirst;
3893 pShmNode->pFirst = p;
3894 sqlite3_mutex_leave(pShmNode->mutex);
3895 return SQLITE_OK;
3897 /* Jump here on any error */
3898 shm_open_err:
3899 unixShmPurge(pDbFd); /* This call frees pShmNode if required */
3900 sqlite3_free(p);
3901 unixLeaveMutex();
3902 return rc;
3906 ** This function is called to obtain a pointer to region iRegion of the
3907 ** shared-memory associated with the database file fd. Shared-memory regions
3908 ** are numbered starting from zero. Each shared-memory region is szRegion
3909 ** bytes in size.
3911 ** If an error occurs, an error code is returned and *pp is set to NULL.
3913 ** Otherwise, if the bExtend parameter is 0 and the requested shared-memory
3914 ** region has not been allocated (by any client, including one running in a
3915 ** separate process), then *pp is set to NULL and SQLITE_OK returned. If
3916 ** bExtend is non-zero and the requested shared-memory region has not yet
3917 ** been allocated, it is allocated by this function.
3919 ** If the shared-memory region has already been allocated or is allocated by
3920 ** this call as described above, then it is mapped into this processes
3921 ** address space (if it is not already), *pp is set to point to the mapped
3922 ** memory and SQLITE_OK returned.
3924 static int unixShmMap(
3925 sqlite3_file *fd, /* Handle open on database file */
3926 int iRegion, /* Region to retrieve */
3927 int szRegion, /* Size of regions */
3928 int bExtend, /* True to extend file if necessary */
3929 void volatile **pp /* OUT: Mapped memory */
3931 unixFile *pDbFd = (unixFile*)fd;
3932 unixShm *p;
3933 unixShmNode *pShmNode;
3934 int rc = SQLITE_OK;
3936 /* If the shared-memory file has not yet been opened, open it now. */
3937 if( pDbFd->pShm==0 ){
3938 rc = unixOpenSharedMemory(pDbFd);
3939 if( rc!=SQLITE_OK ) return rc;
3942 p = pDbFd->pShm;
3943 pShmNode = p->pShmNode;
3944 sqlite3_mutex_enter(pShmNode->mutex);
3945 assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 );
3946 assert( pShmNode->pInode==pDbFd->pInode );
3947 assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 );
3948 assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 );
3950 if( pShmNode->nRegion<=iRegion ){
3951 char **apNew; /* New apRegion[] array */
3952 int nByte = (iRegion+1)*szRegion; /* Minimum required file size */
3953 struct stat sStat; /* Used by fstat() */
3955 pShmNode->szRegion = szRegion;
3957 if( pShmNode->h>=0 ){
3958 /* The requested region is not mapped into this processes address space.
3959 ** Check to see if it has been allocated (i.e. if the wal-index file is
3960 ** large enough to contain the requested region).
3962 if( osFstat(pShmNode->h, &sStat) ){
3963 rc = SQLITE_IOERR_SHMSIZE;
3964 goto shmpage_out;
3967 if( sStat.st_size<nByte ){
3968 /* The requested memory region does not exist. If bExtend is set to
3969 ** false, exit early. *pp will be set to NULL and SQLITE_OK returned.
3971 ** Alternatively, if bExtend is true, use ftruncate() to allocate
3972 ** the requested memory region.
3974 if( !bExtend ) goto shmpage_out;
3975 if( robust_ftruncate(pShmNode->h, nByte) ){
3976 rc = unixLogError(SQLITE_IOERR_SHMSIZE, "ftruncate",
3977 pShmNode->zFilename);
3978 goto shmpage_out;
3983 /* Map the requested memory region into this processes address space. */
3984 apNew = (char **)sqlite3_realloc(
3985 pShmNode->apRegion, (iRegion+1)*sizeof(char *)
3987 if( !apNew ){
3988 rc = SQLITE_IOERR_NOMEM;
3989 goto shmpage_out;
3991 pShmNode->apRegion = apNew;
3992 while(pShmNode->nRegion<=iRegion){
3993 void *pMem;
3994 if( pShmNode->h>=0 ){
3995 pMem = mmap(0, szRegion,
3996 pShmNode->isReadonly ? PROT_READ : PROT_READ|PROT_WRITE,
3997 MAP_SHARED, pShmNode->h, pShmNode->nRegion*szRegion
3999 if( pMem==MAP_FAILED ){
4000 rc = unixLogError(SQLITE_IOERR_SHMMAP, "mmap", pShmNode->zFilename);
4001 goto shmpage_out;
4003 }else{
4004 pMem = sqlite3_malloc(szRegion);
4005 if( pMem==0 ){
4006 rc = SQLITE_NOMEM;
4007 goto shmpage_out;
4009 memset(pMem, 0, szRegion);
4011 pShmNode->apRegion[pShmNode->nRegion] = pMem;
4012 pShmNode->nRegion++;
4016 shmpage_out:
4017 if( pShmNode->nRegion>iRegion ){
4018 *pp = pShmNode->apRegion[iRegion];
4019 }else{
4020 *pp = 0;
4022 if( pShmNode->isReadonly && rc==SQLITE_OK ) rc = SQLITE_READONLY;
4023 sqlite3_mutex_leave(pShmNode->mutex);
4024 return rc;
4028 ** Change the lock state for a shared-memory segment.
4030 ** Note that the relationship between SHAREd and EXCLUSIVE locks is a little
4031 ** different here than in posix. In xShmLock(), one can go from unlocked
4032 ** to shared and back or from unlocked to exclusive and back. But one may
4033 ** not go from shared to exclusive or from exclusive to shared.
4035 static int unixShmLock(
4036 sqlite3_file *fd, /* Database file holding the shared memory */
4037 int ofst, /* First lock to acquire or release */
4038 int n, /* Number of locks to acquire or release */
4039 int flags /* What to do with the lock */
4041 unixFile *pDbFd = (unixFile*)fd; /* Connection holding shared memory */
4042 unixShm *p = pDbFd->pShm; /* The shared memory being locked */
4043 unixShm *pX; /* For looping over all siblings */
4044 unixShmNode *pShmNode = p->pShmNode; /* The underlying file iNode */
4045 int rc = SQLITE_OK; /* Result code */
4046 u16 mask; /* Mask of locks to take or release */
4048 assert( pShmNode==pDbFd->pInode->pShmNode );
4049 assert( pShmNode->pInode==pDbFd->pInode );
4050 assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK );
4051 assert( n>=1 );
4052 assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED)
4053 || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE)
4054 || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED)
4055 || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) );
4056 assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 );
4057 assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 );
4058 assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 );
4060 mask = (1<<(ofst+n)) - (1<<ofst);
4061 assert( n>1 || mask==(1<<ofst) );
4062 sqlite3_mutex_enter(pShmNode->mutex);
4063 if( flags & SQLITE_SHM_UNLOCK ){
4064 u16 allMask = 0; /* Mask of locks held by siblings */
4066 /* See if any siblings hold this same lock */
4067 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
4068 if( pX==p ) continue;
4069 assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 );
4070 allMask |= pX->sharedMask;
4073 /* Unlock the system-level locks */
4074 if( (mask & allMask)==0 ){
4075 rc = unixShmSystemLock(pShmNode, F_UNLCK, ofst+UNIX_SHM_BASE, n);
4076 }else{
4077 rc = SQLITE_OK;
4080 /* Undo the local locks */
4081 if( rc==SQLITE_OK ){
4082 p->exclMask &= ~mask;
4083 p->sharedMask &= ~mask;
4085 }else if( flags & SQLITE_SHM_SHARED ){
4086 u16 allShared = 0; /* Union of locks held by connections other than "p" */
4088 /* Find out which shared locks are already held by sibling connections.
4089 ** If any sibling already holds an exclusive lock, go ahead and return
4090 ** SQLITE_BUSY.
4092 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
4093 if( (pX->exclMask & mask)!=0 ){
4094 rc = SQLITE_BUSY;
4095 break;
4097 allShared |= pX->sharedMask;
4100 /* Get shared locks at the system level, if necessary */
4101 if( rc==SQLITE_OK ){
4102 if( (allShared & mask)==0 ){
4103 rc = unixShmSystemLock(pShmNode, F_RDLCK, ofst+UNIX_SHM_BASE, n);
4104 }else{
4105 rc = SQLITE_OK;
4109 /* Get the local shared locks */
4110 if( rc==SQLITE_OK ){
4111 p->sharedMask |= mask;
4113 }else{
4114 /* Make sure no sibling connections hold locks that will block this
4115 ** lock. If any do, return SQLITE_BUSY right away.
4117 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
4118 if( (pX->exclMask & mask)!=0 || (pX->sharedMask & mask)!=0 ){
4119 rc = SQLITE_BUSY;
4120 break;
4124 /* Get the exclusive locks at the system level. Then if successful
4125 ** also mark the local connection as being locked.
4127 if( rc==SQLITE_OK ){
4128 rc = unixShmSystemLock(pShmNode, F_WRLCK, ofst+UNIX_SHM_BASE, n);
4129 if( rc==SQLITE_OK ){
4130 assert( (p->sharedMask & mask)==0 );
4131 p->exclMask |= mask;
4135 sqlite3_mutex_leave(pShmNode->mutex);
4136 OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n",
4137 p->id, getpid(), p->sharedMask, p->exclMask));
4138 return rc;
4142 ** Implement a memory barrier or memory fence on shared memory.
4144 ** All loads and stores begun before the barrier must complete before
4145 ** any load or store begun after the barrier.
4147 static void unixShmBarrier(
4148 sqlite3_file *fd /* Database file holding the shared memory */
4150 UNUSED_PARAMETER(fd);
4151 unixEnterMutex();
4152 unixLeaveMutex();
4156 ** Close a connection to shared-memory. Delete the underlying
4157 ** storage if deleteFlag is true.
4159 ** If there is no shared memory associated with the connection then this
4160 ** routine is a harmless no-op.
4162 static int unixShmUnmap(
4163 sqlite3_file *fd, /* The underlying database file */
4164 int deleteFlag /* Delete shared-memory if true */
4166 unixShm *p; /* The connection to be closed */
4167 unixShmNode *pShmNode; /* The underlying shared-memory file */
4168 unixShm **pp; /* For looping over sibling connections */
4169 unixFile *pDbFd; /* The underlying database file */
4171 pDbFd = (unixFile*)fd;
4172 p = pDbFd->pShm;
4173 if( p==0 ) return SQLITE_OK;
4174 pShmNode = p->pShmNode;
4176 assert( pShmNode==pDbFd->pInode->pShmNode );
4177 assert( pShmNode->pInode==pDbFd->pInode );
4179 /* Remove connection p from the set of connections associated
4180 ** with pShmNode */
4181 sqlite3_mutex_enter(pShmNode->mutex);
4182 for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){}
4183 *pp = p->pNext;
4185 /* Free the connection p */
4186 sqlite3_free(p);
4187 pDbFd->pShm = 0;
4188 sqlite3_mutex_leave(pShmNode->mutex);
4190 /* If pShmNode->nRef has reached 0, then close the underlying
4191 ** shared-memory file, too */
4192 unixEnterMutex();
4193 assert( pShmNode->nRef>0 );
4194 pShmNode->nRef--;
4195 if( pShmNode->nRef==0 ){
4196 if( deleteFlag && pShmNode->h>=0 ) osUnlink(pShmNode->zFilename);
4197 unixShmPurge(pDbFd);
4199 unixLeaveMutex();
4201 return SQLITE_OK;
4205 #else
4206 # define unixShmMap 0
4207 # define unixShmLock 0
4208 # define unixShmBarrier 0
4209 # define unixShmUnmap 0
4210 #endif /* #ifndef SQLITE_OMIT_WAL */
4213 ** Here ends the implementation of all sqlite3_file methods.
4215 ********************** End sqlite3_file Methods *******************************
4216 ******************************************************************************/
4219 ** This division contains definitions of sqlite3_io_methods objects that
4220 ** implement various file locking strategies. It also contains definitions
4221 ** of "finder" functions. A finder-function is used to locate the appropriate
4222 ** sqlite3_io_methods object for a particular database file. The pAppData
4223 ** field of the sqlite3_vfs VFS objects are initialized to be pointers to
4224 ** the correct finder-function for that VFS.
4226 ** Most finder functions return a pointer to a fixed sqlite3_io_methods
4227 ** object. The only interesting finder-function is autolockIoFinder, which
4228 ** looks at the filesystem type and tries to guess the best locking
4229 ** strategy from that.
4231 ** For finder-funtion F, two objects are created:
4233 ** (1) The real finder-function named "FImpt()".
4235 ** (2) A constant pointer to this function named just "F".
4238 ** A pointer to the F pointer is used as the pAppData value for VFS
4239 ** objects. We have to do this instead of letting pAppData point
4240 ** directly at the finder-function since C90 rules prevent a void*
4241 ** from be cast into a function pointer.
4244 ** Each instance of this macro generates two objects:
4246 ** * A constant sqlite3_io_methods object call METHOD that has locking
4247 ** methods CLOSE, LOCK, UNLOCK, CKRESLOCK.
4249 ** * An I/O method finder function called FINDER that returns a pointer
4250 ** to the METHOD object in the previous bullet.
4252 #define IOMETHODS(FINDER, METHOD, VERSION, CLOSE, LOCK, UNLOCK, CKLOCK) \
4253 static const sqlite3_io_methods METHOD = { \
4254 VERSION, /* iVersion */ \
4255 CLOSE, /* xClose */ \
4256 unixRead, /* xRead */ \
4257 unixWrite, /* xWrite */ \
4258 unixTruncate, /* xTruncate */ \
4259 unixSync, /* xSync */ \
4260 unixFileSize, /* xFileSize */ \
4261 LOCK, /* xLock */ \
4262 UNLOCK, /* xUnlock */ \
4263 CKLOCK, /* xCheckReservedLock */ \
4264 unixFileControl, /* xFileControl */ \
4265 unixSectorSize, /* xSectorSize */ \
4266 unixDeviceCharacteristics, /* xDeviceCapabilities */ \
4267 unixShmMap, /* xShmMap */ \
4268 unixShmLock, /* xShmLock */ \
4269 unixShmBarrier, /* xShmBarrier */ \
4270 unixShmUnmap /* xShmUnmap */ \
4271 }; \
4272 static const sqlite3_io_methods *FINDER##Impl(const char *z, unixFile *p){ \
4273 UNUSED_PARAMETER(z); UNUSED_PARAMETER(p); \
4274 return &METHOD; \
4276 static const sqlite3_io_methods *(*const FINDER)(const char*,unixFile *p) \
4277 = FINDER##Impl;
4280 ** Here are all of the sqlite3_io_methods objects for each of the
4281 ** locking strategies. Functions that return pointers to these methods
4282 ** are also created.
4284 IOMETHODS(
4285 posixIoFinder, /* Finder function name */
4286 posixIoMethods, /* sqlite3_io_methods object name */
4287 2, /* shared memory is enabled */
4288 unixClose, /* xClose method */
4289 unixLock, /* xLock method */
4290 unixUnlock, /* xUnlock method */
4291 unixCheckReservedLock /* xCheckReservedLock method */
4293 IOMETHODS(
4294 nolockIoFinder, /* Finder function name */
4295 nolockIoMethods, /* sqlite3_io_methods object name */
4296 1, /* shared memory is disabled */
4297 nolockClose, /* xClose method */
4298 nolockLock, /* xLock method */
4299 nolockUnlock, /* xUnlock method */
4300 nolockCheckReservedLock /* xCheckReservedLock method */
4302 IOMETHODS(
4303 dotlockIoFinder, /* Finder function name */
4304 dotlockIoMethods, /* sqlite3_io_methods object name */
4305 1, /* shared memory is disabled */
4306 dotlockClose, /* xClose method */
4307 dotlockLock, /* xLock method */
4308 dotlockUnlock, /* xUnlock method */
4309 dotlockCheckReservedLock /* xCheckReservedLock method */
4312 #if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS
4313 IOMETHODS(
4314 flockIoFinder, /* Finder function name */
4315 flockIoMethods, /* sqlite3_io_methods object name */
4316 1, /* shared memory is disabled */
4317 flockClose, /* xClose method */
4318 flockLock, /* xLock method */
4319 flockUnlock, /* xUnlock method */
4320 flockCheckReservedLock /* xCheckReservedLock method */
4322 #endif
4324 #if OS_VXWORKS
4325 IOMETHODS(
4326 semIoFinder, /* Finder function name */
4327 semIoMethods, /* sqlite3_io_methods object name */
4328 1, /* shared memory is disabled */
4329 semClose, /* xClose method */
4330 semLock, /* xLock method */
4331 semUnlock, /* xUnlock method */
4332 semCheckReservedLock /* xCheckReservedLock method */
4334 #endif
4336 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4337 IOMETHODS(
4338 afpIoFinder, /* Finder function name */
4339 afpIoMethods, /* sqlite3_io_methods object name */
4340 1, /* shared memory is disabled */
4341 afpClose, /* xClose method */
4342 afpLock, /* xLock method */
4343 afpUnlock, /* xUnlock method */
4344 afpCheckReservedLock /* xCheckReservedLock method */
4346 #endif
4349 ** The proxy locking method is a "super-method" in the sense that it
4350 ** opens secondary file descriptors for the conch and lock files and
4351 ** it uses proxy, dot-file, AFP, and flock() locking methods on those
4352 ** secondary files. For this reason, the division that implements
4353 ** proxy locking is located much further down in the file. But we need
4354 ** to go ahead and define the sqlite3_io_methods and finder function
4355 ** for proxy locking here. So we forward declare the I/O methods.
4357 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4358 static int proxyClose(sqlite3_file*);
4359 static int proxyLock(sqlite3_file*, int);
4360 static int proxyUnlock(sqlite3_file*, int);
4361 static int proxyCheckReservedLock(sqlite3_file*, int*);
4362 IOMETHODS(
4363 proxyIoFinder, /* Finder function name */
4364 proxyIoMethods, /* sqlite3_io_methods object name */
4365 1, /* shared memory is disabled */
4366 proxyClose, /* xClose method */
4367 proxyLock, /* xLock method */
4368 proxyUnlock, /* xUnlock method */
4369 proxyCheckReservedLock /* xCheckReservedLock method */
4371 #endif
4373 /* nfs lockd on OSX 10.3+ doesn't clear write locks when a read lock is set */
4374 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4375 IOMETHODS(
4376 nfsIoFinder, /* Finder function name */
4377 nfsIoMethods, /* sqlite3_io_methods object name */
4378 1, /* shared memory is disabled */
4379 unixClose, /* xClose method */
4380 unixLock, /* xLock method */
4381 nfsUnlock, /* xUnlock method */
4382 unixCheckReservedLock /* xCheckReservedLock method */
4384 #endif
4386 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4388 ** This "finder" function attempts to determine the best locking strategy
4389 ** for the database file "filePath". It then returns the sqlite3_io_methods
4390 ** object that implements that strategy.
4392 ** This is for MacOSX only.
4394 static const sqlite3_io_methods *autolockIoFinderImpl(
4395 const char *filePath, /* name of the database file */
4396 unixFile *pNew /* open file object for the database file */
4398 static const struct Mapping {
4399 const char *zFilesystem; /* Filesystem type name */
4400 const sqlite3_io_methods *pMethods; /* Appropriate locking method */
4401 } aMap[] = {
4402 { "hfs", &posixIoMethods },
4403 { "ufs", &posixIoMethods },
4404 { "afpfs", &afpIoMethods },
4405 { "smbfs", &afpIoMethods },
4406 { "webdav", &nolockIoMethods },
4407 { 0, 0 }
4409 int i;
4410 struct statfs fsInfo;
4411 struct flock lockInfo;
4413 if( !filePath ){
4414 /* If filePath==NULL that means we are dealing with a transient file
4415 ** that does not need to be locked. */
4416 return &nolockIoMethods;
4418 if( statfs(filePath, &fsInfo) != -1 ){
4419 if( fsInfo.f_flags & MNT_RDONLY ){
4420 return &nolockIoMethods;
4422 for(i=0; aMap[i].zFilesystem; i++){
4423 if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){
4424 return aMap[i].pMethods;
4429 /* Default case. Handles, amongst others, "nfs".
4430 ** Test byte-range lock using fcntl(). If the call succeeds,
4431 ** assume that the file-system supports POSIX style locks.
4433 lockInfo.l_len = 1;
4434 lockInfo.l_start = 0;
4435 lockInfo.l_whence = SEEK_SET;
4436 lockInfo.l_type = F_RDLCK;
4437 if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
4438 if( strcmp(fsInfo.f_fstypename, "nfs")==0 ){
4439 return &nfsIoMethods;
4440 } else {
4441 return &posixIoMethods;
4443 }else{
4444 return &dotlockIoMethods;
4447 static const sqlite3_io_methods
4448 *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;
4450 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
4452 #if OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE
4454 ** This "finder" function attempts to determine the best locking strategy
4455 ** for the database file "filePath". It then returns the sqlite3_io_methods
4456 ** object that implements that strategy.
4458 ** This is for VXWorks only.
4460 static const sqlite3_io_methods *autolockIoFinderImpl(
4461 const char *filePath, /* name of the database file */
4462 unixFile *pNew /* the open file object */
4464 struct flock lockInfo;
4466 if( !filePath ){
4467 /* If filePath==NULL that means we are dealing with a transient file
4468 ** that does not need to be locked. */
4469 return &nolockIoMethods;
4472 /* Test if fcntl() is supported and use POSIX style locks.
4473 ** Otherwise fall back to the named semaphore method.
4475 lockInfo.l_len = 1;
4476 lockInfo.l_start = 0;
4477 lockInfo.l_whence = SEEK_SET;
4478 lockInfo.l_type = F_RDLCK;
4479 if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
4480 return &posixIoMethods;
4481 }else{
4482 return &semIoMethods;
4485 static const sqlite3_io_methods
4486 *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;
4488 #endif /* OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE */
4491 ** An abstract type for a pointer to a IO method finder function:
4493 typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*);
4496 /****************************************************************************
4497 **************************** sqlite3_vfs methods ****************************
4499 ** This division contains the implementation of methods on the
4500 ** sqlite3_vfs object.
4504 ** Initialize the contents of the unixFile structure pointed to by pId.
4506 static int fillInUnixFile(
4507 sqlite3_vfs *pVfs, /* Pointer to vfs object */
4508 int h, /* Open file descriptor of file being opened */
4509 int syncDir, /* True to sync directory on first sync */
4510 sqlite3_file *pId, /* Write to the unixFile structure here */
4511 const char *zFilename, /* Name of the file being opened */
4512 int noLock, /* Omit locking if true */
4513 int isDelete, /* Delete on close if true */
4514 int isReadOnly /* True if the file is opened read-only */
4516 const sqlite3_io_methods *pLockingStyle;
4517 unixFile *pNew = (unixFile *)pId;
4518 int rc = SQLITE_OK;
4520 assert( pNew->pInode==NULL );
4522 /* Parameter isDelete is only used on vxworks. Express this explicitly
4523 ** here to prevent compiler warnings about unused parameters.
4525 UNUSED_PARAMETER(isDelete);
4527 /* Usually the path zFilename should not be a relative pathname. The
4528 ** exception is when opening the proxy "conch" file in builds that
4529 ** include the special Apple locking styles.
4531 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4532 assert( zFilename==0 || zFilename[0]=='/'
4533 || pVfs->pAppData==(void*)&autolockIoFinder );
4534 #else
4535 assert( zFilename==0 || zFilename[0]=='/' );
4536 #endif
4538 /* No locking occurs in temporary files */
4539 assert( zFilename!=0 || noLock );
4541 OSTRACE(("OPEN %-3d %s\n", h, zFilename));
4542 pNew->h = h;
4543 pNew->zPath = zFilename;
4544 if( memcmp(pVfs->zName,"unix-excl",10)==0 ){
4545 pNew->ctrlFlags = UNIXFILE_EXCL;
4546 }else{
4547 pNew->ctrlFlags = 0;
4549 if( isReadOnly ){
4550 pNew->ctrlFlags |= UNIXFILE_RDONLY;
4552 if( syncDir ){
4553 pNew->ctrlFlags |= UNIXFILE_DIRSYNC;
4556 #if OS_VXWORKS
4557 pNew->pId = vxworksFindFileId(zFilename);
4558 if( pNew->pId==0 ){
4559 noLock = 1;
4560 rc = SQLITE_NOMEM;
4562 #endif
4564 if( noLock ){
4565 pLockingStyle = &nolockIoMethods;
4566 }else{
4567 pLockingStyle = (**(finder_type*)pVfs->pAppData)(zFilename, pNew);
4568 #if SQLITE_ENABLE_LOCKING_STYLE
4569 /* Cache zFilename in the locking context (AFP and dotlock override) for
4570 ** proxyLock activation is possible (remote proxy is based on db name)
4571 ** zFilename remains valid until file is closed, to support */
4572 pNew->lockingContext = (void*)zFilename;
4573 #endif
4576 if( pLockingStyle == &posixIoMethods
4577 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4578 || pLockingStyle == &nfsIoMethods
4579 #endif
4581 unixEnterMutex();
4582 rc = findInodeInfo(pNew, &pNew->pInode);
4583 if( rc!=SQLITE_OK ){
4584 /* If an error occured in findInodeInfo(), close the file descriptor
4585 ** immediately, before releasing the mutex. findInodeInfo() may fail
4586 ** in two scenarios:
4588 ** (a) A call to fstat() failed.
4589 ** (b) A malloc failed.
4591 ** Scenario (b) may only occur if the process is holding no other
4592 ** file descriptors open on the same file. If there were other file
4593 ** descriptors on this file, then no malloc would be required by
4594 ** findInodeInfo(). If this is the case, it is quite safe to close
4595 ** handle h - as it is guaranteed that no posix locks will be released
4596 ** by doing so.
4598 ** If scenario (a) caused the error then things are not so safe. The
4599 ** implicit assumption here is that if fstat() fails, things are in
4600 ** such bad shape that dropping a lock or two doesn't matter much.
4602 robust_close(pNew, h, __LINE__);
4603 h = -1;
4605 unixLeaveMutex();
4608 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
4609 else if( pLockingStyle == &afpIoMethods ){
4610 /* AFP locking uses the file path so it needs to be included in
4611 ** the afpLockingContext.
4613 afpLockingContext *pCtx;
4614 pNew->lockingContext = pCtx = sqlite3_malloc( sizeof(*pCtx) );
4615 if( pCtx==0 ){
4616 rc = SQLITE_NOMEM;
4617 }else{
4618 /* NB: zFilename exists and remains valid until the file is closed
4619 ** according to requirement F11141. So we do not need to make a
4620 ** copy of the filename. */
4621 pCtx->dbPath = zFilename;
4622 pCtx->reserved = 0;
4623 srandomdev();
4624 unixEnterMutex();
4625 rc = findInodeInfo(pNew, &pNew->pInode);
4626 if( rc!=SQLITE_OK ){
4627 sqlite3_free(pNew->lockingContext);
4628 robust_close(pNew, h, __LINE__);
4629 h = -1;
4631 unixLeaveMutex();
4634 #endif
4636 else if( pLockingStyle == &dotlockIoMethods ){
4637 /* Dotfile locking uses the file path so it needs to be included in
4638 ** the dotlockLockingContext
4640 char *zLockFile;
4641 int nFilename;
4642 assert( zFilename!=0 );
4643 nFilename = (int)strlen(zFilename) + 6;
4644 zLockFile = (char *)sqlite3_malloc(nFilename);
4645 if( zLockFile==0 ){
4646 rc = SQLITE_NOMEM;
4647 }else{
4648 sqlite3_snprintf(nFilename, zLockFile, "%s" DOTLOCK_SUFFIX, zFilename);
4650 pNew->lockingContext = zLockFile;
4653 #if OS_VXWORKS
4654 else if( pLockingStyle == &semIoMethods ){
4655 /* Named semaphore locking uses the file path so it needs to be
4656 ** included in the semLockingContext
4658 unixEnterMutex();
4659 rc = findInodeInfo(pNew, &pNew->pInode);
4660 if( (rc==SQLITE_OK) && (pNew->pInode->pSem==NULL) ){
4661 char *zSemName = pNew->pInode->aSemName;
4662 int n;
4663 sqlite3_snprintf(MAX_PATHNAME, zSemName, "/%s.sem",
4664 pNew->pId->zCanonicalName);
4665 for( n=1; zSemName[n]; n++ )
4666 if( zSemName[n]=='/' ) zSemName[n] = '_';
4667 pNew->pInode->pSem = sem_open(zSemName, O_CREAT, 0666, 1);
4668 if( pNew->pInode->pSem == SEM_FAILED ){
4669 rc = SQLITE_NOMEM;
4670 pNew->pInode->aSemName[0] = '\0';
4673 unixLeaveMutex();
4675 #endif
4677 pNew->lastErrno = 0;
4678 #if OS_VXWORKS
4679 if( rc!=SQLITE_OK ){
4680 if( h>=0 ) robust_close(pNew, h, __LINE__);
4681 h = -1;
4682 osUnlink(zFilename);
4683 isDelete = 0;
4685 pNew->isDelete = isDelete;
4686 #endif
4687 if( rc!=SQLITE_OK ){
4688 if( h>=0 ) robust_close(pNew, h, __LINE__);
4689 }else{
4690 pNew->pMethod = pLockingStyle;
4691 OpenCounter(+1);
4693 return rc;
4697 ** Return the name of a directory in which to put temporary files.
4698 ** If no suitable temporary file directory can be found, return NULL.
4700 static const char *unixTempFileDir(void){
4701 static const char *azDirs[] = {
4704 "/var/tmp",
4705 "/usr/tmp",
4706 "/tmp",
4707 0 /* List terminator */
4709 unsigned int i;
4710 struct stat buf;
4711 const char *zDir = 0;
4713 azDirs[0] = sqlite3_temp_directory;
4714 if( !azDirs[1] ) azDirs[1] = getenv("TMPDIR");
4715 for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); zDir=azDirs[i++]){
4716 if( zDir==0 ) continue;
4717 if( osStat(zDir, &buf) ) continue;
4718 if( !S_ISDIR(buf.st_mode) ) continue;
4719 if( osAccess(zDir, 07) ) continue;
4720 break;
4722 return zDir;
4726 ** Create a temporary file name in zBuf. zBuf must be allocated
4727 ** by the calling process and must be big enough to hold at least
4728 ** pVfs->mxPathname bytes.
4730 static int unixGetTempname(int nBuf, char *zBuf){
4731 static const unsigned char zChars[] =
4732 "abcdefghijklmnopqrstuvwxyz"
4733 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
4734 "0123456789";
4735 unsigned int i, j;
4736 const char *zDir;
4738 /* It's odd to simulate an io-error here, but really this is just
4739 ** using the io-error infrastructure to test that SQLite handles this
4740 ** function failing.
4742 SimulateIOError( return SQLITE_IOERR );
4744 zDir = unixTempFileDir();
4745 if( zDir==0 ) zDir = ".";
4747 /* Check that the output buffer is large enough for the temporary file
4748 ** name. If it is not, return SQLITE_ERROR.
4750 if( (strlen(zDir) + strlen(SQLITE_TEMP_FILE_PREFIX) + 17) >= (size_t)nBuf ){
4751 return SQLITE_ERROR;
4755 sqlite3_snprintf(nBuf-17, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX, zDir);
4756 j = (int)strlen(zBuf);
4757 sqlite3_randomness(15, &zBuf[j]);
4758 for(i=0; i<15; i++, j++){
4759 zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
4761 zBuf[j] = 0;
4762 }while( osAccess(zBuf,0)==0 );
4763 return SQLITE_OK;
4766 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
4768 ** Routine to transform a unixFile into a proxy-locking unixFile.
4769 ** Implementation in the proxy-lock division, but used by unixOpen()
4770 ** if SQLITE_PREFER_PROXY_LOCKING is defined.
4772 static int proxyTransformUnixFile(unixFile*, const char*);
4773 #endif
4776 ** Search for an unused file descriptor that was opened on the database
4777 ** file (not a journal or master-journal file) identified by pathname
4778 ** zPath with SQLITE_OPEN_XXX flags matching those passed as the second
4779 ** argument to this function.
4781 ** Such a file descriptor may exist if a database connection was closed
4782 ** but the associated file descriptor could not be closed because some
4783 ** other file descriptor open on the same file is holding a file-lock.
4784 ** Refer to comments in the unixClose() function and the lengthy comment
4785 ** describing "Posix Advisory Locking" at the start of this file for
4786 ** further details. Also, ticket #4018.
4788 ** If a suitable file descriptor is found, then it is returned. If no
4789 ** such file descriptor is located, -1 is returned.
4791 static UnixUnusedFd *findReusableFd(const char *zPath, int flags){
4792 UnixUnusedFd *pUnused = 0;
4794 /* Do not search for an unused file descriptor on vxworks. Not because
4795 ** vxworks would not benefit from the change (it might, we're not sure),
4796 ** but because no way to test it is currently available. It is better
4797 ** not to risk breaking vxworks support for the sake of such an obscure
4798 ** feature. */
4799 #if !OS_VXWORKS
4800 struct stat sStat; /* Results of stat() call */
4802 /* A stat() call may fail for various reasons. If this happens, it is
4803 ** almost certain that an open() call on the same path will also fail.
4804 ** For this reason, if an error occurs in the stat() call here, it is
4805 ** ignored and -1 is returned. The caller will try to open a new file
4806 ** descriptor on the same path, fail, and return an error to SQLite.
4808 ** Even if a subsequent open() call does succeed, the consequences of
4809 ** not searching for a resusable file descriptor are not dire. */
4810 if( 0==osStat(zPath, &sStat) ){
4811 unixInodeInfo *pInode;
4813 unixEnterMutex();
4814 pInode = inodeList;
4815 while( pInode && (pInode->fileId.dev!=sStat.st_dev
4816 || pInode->fileId.ino!=sStat.st_ino) ){
4817 pInode = pInode->pNext;
4819 if( pInode ){
4820 UnixUnusedFd **pp;
4821 for(pp=&pInode->pUnused; *pp && (*pp)->flags!=flags; pp=&((*pp)->pNext));
4822 pUnused = *pp;
4823 if( pUnused ){
4824 *pp = pUnused->pNext;
4827 unixLeaveMutex();
4829 #endif /* if !OS_VXWORKS */
4830 return pUnused;
4834 ** This function is called by unixOpen() to determine the unix permissions
4835 ** to create new files with. If no error occurs, then SQLITE_OK is returned
4836 ** and a value suitable for passing as the third argument to open(2) is
4837 ** written to *pMode. If an IO error occurs, an SQLite error code is
4838 ** returned and the value of *pMode is not modified.
4840 ** If the file being opened is a temporary file, it is always created with
4841 ** the octal permissions 0600 (read/writable by owner only). If the file
4842 ** is a database or master journal file, it is created with the permissions
4843 ** mask SQLITE_DEFAULT_FILE_PERMISSIONS.
4845 ** Finally, if the file being opened is a WAL or regular journal file, then
4846 ** this function queries the file-system for the permissions on the
4847 ** corresponding database file and sets *pMode to this value. Whenever
4848 ** possible, WAL and journal files are created using the same permissions
4849 ** as the associated database file.
4851 ** If the SQLITE_ENABLE_8_3_NAMES option is enabled, then the
4852 ** original filename is unavailable. But 8_3_NAMES is only used for
4853 ** FAT filesystems and permissions do not matter there, so just use
4854 ** the default permissions.
4856 static int findCreateFileMode(
4857 const char *zPath, /* Path of file (possibly) being created */
4858 int flags, /* Flags passed as 4th argument to xOpen() */
4859 mode_t *pMode /* OUT: Permissions to open file with */
4861 int rc = SQLITE_OK; /* Return Code */
4862 *pMode = SQLITE_DEFAULT_FILE_PERMISSIONS;
4863 if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){
4864 char zDb[MAX_PATHNAME+1]; /* Database file path */
4865 int nDb; /* Number of valid bytes in zDb */
4866 struct stat sStat; /* Output of stat() on database file */
4868 /* zPath is a path to a WAL or journal file. The following block derives
4869 ** the path to the associated database file from zPath. This block handles
4870 ** the following naming conventions:
4872 ** "<path to db>-journal"
4873 ** "<path to db>-wal"
4874 ** "<path to db>-journalNN"
4875 ** "<path to db>-walNN"
4877 ** where NN is a decimal number. The NN naming schemes are
4878 ** used by the test_multiplex.c module.
4880 nDb = sqlite3Strlen30(zPath) - 1;
4881 #ifdef SQLITE_ENABLE_8_3_NAMES
4882 while( nDb>0 && !sqlite3Isalnum(zPath[nDb]) ) nDb--;
4883 if( nDb==0 || zPath[nDb]!='-' ) return SQLITE_OK;
4884 #else
4885 while( zPath[nDb]!='-' ){
4886 assert( nDb>0 );
4887 assert( zPath[nDb]!='\n' );
4888 nDb--;
4890 #endif
4891 memcpy(zDb, zPath, nDb);
4892 zDb[nDb] = '\0';
4894 if( 0==osStat(zDb, &sStat) ){
4895 *pMode = sStat.st_mode & 0777;
4896 }else{
4897 rc = SQLITE_IOERR_FSTAT;
4899 }else if( flags & SQLITE_OPEN_DELETEONCLOSE ){
4900 *pMode = 0600;
4902 return rc;
4906 ** Open the file zPath.
4908 ** Previously, the SQLite OS layer used three functions in place of this
4909 ** one:
4911 ** sqlite3OsOpenReadWrite();
4912 ** sqlite3OsOpenReadOnly();
4913 ** sqlite3OsOpenExclusive();
4915 ** These calls correspond to the following combinations of flags:
4917 ** ReadWrite() -> (READWRITE | CREATE)
4918 ** ReadOnly() -> (READONLY)
4919 ** OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE)
4921 ** The old OpenExclusive() accepted a boolean argument - "delFlag". If
4922 ** true, the file was configured to be automatically deleted when the
4923 ** file handle closed. To achieve the same effect using this new
4924 ** interface, add the DELETEONCLOSE flag to those specified above for
4925 ** OpenExclusive().
4927 static int unixOpen(
4928 sqlite3_vfs *pVfs, /* The VFS for which this is the xOpen method */
4929 const char *zPath, /* Pathname of file to be opened */
4930 sqlite3_file *pFile, /* The file descriptor to be filled in */
4931 int flags, /* Input flags to control the opening */
4932 int *pOutFlags /* Output flags returned to SQLite core */
4934 unixFile *p = (unixFile *)pFile;
4935 int fd = -1; /* File descriptor returned by open() */
4936 int openFlags = 0; /* Flags to pass to open() */
4937 int eType = flags&0xFFFFFF00; /* Type of file to open */
4938 int noLock; /* True to omit locking primitives */
4939 int rc = SQLITE_OK; /* Function Return Code */
4941 int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE);
4942 int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE);
4943 int isCreate = (flags & SQLITE_OPEN_CREATE);
4944 int isReadonly = (flags & SQLITE_OPEN_READONLY);
4945 int isReadWrite = (flags & SQLITE_OPEN_READWRITE);
4946 #if SQLITE_ENABLE_LOCKING_STYLE
4947 int isAutoProxy = (flags & SQLITE_OPEN_AUTOPROXY);
4948 #endif
4949 #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
4950 struct statfs fsInfo;
4951 #endif
4953 /* If creating a master or main-file journal, this function will open
4954 ** a file-descriptor on the directory too. The first time unixSync()
4955 ** is called the directory file descriptor will be fsync()ed and close()d.
4957 int syncDir = (isCreate && (
4958 eType==SQLITE_OPEN_MASTER_JOURNAL
4959 || eType==SQLITE_OPEN_MAIN_JOURNAL
4960 || eType==SQLITE_OPEN_WAL
4963 /* If argument zPath is a NULL pointer, this function is required to open
4964 ** a temporary file. Use this buffer to store the file name in.
4966 char zTmpname[MAX_PATHNAME+1];
4967 const char *zName = zPath;
4969 /* Check the following statements are true:
4971 ** (a) Exactly one of the READWRITE and READONLY flags must be set, and
4972 ** (b) if CREATE is set, then READWRITE must also be set, and
4973 ** (c) if EXCLUSIVE is set, then CREATE must also be set.
4974 ** (d) if DELETEONCLOSE is set, then CREATE must also be set.
4976 assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
4977 assert(isCreate==0 || isReadWrite);
4978 assert(isExclusive==0 || isCreate);
4979 assert(isDelete==0 || isCreate);
4981 /* The main DB, main journal, WAL file and master journal are never
4982 ** automatically deleted. Nor are they ever temporary files. */
4983 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB );
4984 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL );
4985 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MASTER_JOURNAL );
4986 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL );
4988 /* Assert that the upper layer has set one of the "file-type" flags. */
4989 assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB
4990 || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL
4991 || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_MASTER_JOURNAL
4992 || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL
4995 memset(p, 0, sizeof(unixFile));
4997 if( eType==SQLITE_OPEN_MAIN_DB ){
4998 UnixUnusedFd *pUnused;
4999 pUnused = findReusableFd(zName, flags);
5000 if( pUnused ){
5001 fd = pUnused->fd;
5002 }else{
5003 pUnused = sqlite3_malloc(sizeof(*pUnused));
5004 if( !pUnused ){
5005 return SQLITE_NOMEM;
5008 p->pUnused = pUnused;
5009 }else if( !zName ){
5010 /* If zName is NULL, the upper layer is requesting a temp file. */
5011 assert(isDelete && !syncDir);
5012 rc = unixGetTempname(MAX_PATHNAME+1, zTmpname);
5013 if( rc!=SQLITE_OK ){
5014 return rc;
5016 zName = zTmpname;
5019 /* Determine the value of the flags parameter passed to POSIX function
5020 ** open(). These must be calculated even if open() is not called, as
5021 ** they may be stored as part of the file handle and used by the
5022 ** 'conch file' locking functions later on. */
5023 if( isReadonly ) openFlags |= O_RDONLY;
5024 if( isReadWrite ) openFlags |= O_RDWR;
5025 if( isCreate ) openFlags |= O_CREAT;
5026 if( isExclusive ) openFlags |= (O_EXCL|O_NOFOLLOW);
5027 openFlags |= (O_LARGEFILE|O_BINARY);
5029 if( fd<0 ){
5030 mode_t openMode; /* Permissions to create file with */
5031 rc = findCreateFileMode(zName, flags, &openMode);
5032 if( rc!=SQLITE_OK ){
5033 assert( !p->pUnused );
5034 assert( eType==SQLITE_OPEN_WAL || eType==SQLITE_OPEN_MAIN_JOURNAL );
5035 return rc;
5037 fd = robust_open(zName, openFlags, openMode);
5038 OSTRACE(("OPENX %-3d %s 0%o\n", fd, zName, openFlags));
5039 if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){
5040 /* Failed to open the file for read/write access. Try read-only. */
5041 flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);
5042 openFlags &= ~(O_RDWR|O_CREAT);
5043 flags |= SQLITE_OPEN_READONLY;
5044 openFlags |= O_RDONLY;
5045 isReadonly = 1;
5046 fd = robust_open(zName, openFlags, openMode);
5048 if( fd<0 ){
5049 rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zName);
5050 goto open_finished;
5053 assert( fd>=0 );
5054 if( pOutFlags ){
5055 *pOutFlags = flags;
5058 if( p->pUnused ){
5059 p->pUnused->fd = fd;
5060 p->pUnused->flags = flags;
5063 if( isDelete ){
5064 #if OS_VXWORKS
5065 zPath = zName;
5066 #else
5067 osUnlink(zName);
5068 #endif
5070 #if SQLITE_ENABLE_LOCKING_STYLE
5071 else{
5072 p->openFlags = openFlags;
5074 #endif
5076 #ifdef FD_CLOEXEC
5077 osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
5078 #endif
5080 noLock = eType!=SQLITE_OPEN_MAIN_DB;
5083 #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
5084 if( fstatfs(fd, &fsInfo) == -1 ){
5085 ((unixFile*)pFile)->lastErrno = errno;
5086 robust_close(p, fd, __LINE__);
5087 return SQLITE_IOERR_ACCESS;
5089 if (0 == strncmp("msdos", fsInfo.f_fstypename, 5)) {
5090 ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS;
5092 #endif
5094 #if SQLITE_ENABLE_LOCKING_STYLE
5095 #if SQLITE_PREFER_PROXY_LOCKING
5096 isAutoProxy = 1;
5097 #endif
5098 if( isAutoProxy && (zPath!=NULL) && (!noLock) && pVfs->xOpen ){
5099 char *envforce = getenv("SQLITE_FORCE_PROXY_LOCKING");
5100 int useProxy = 0;
5102 /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means
5103 ** never use proxy, NULL means use proxy for non-local files only. */
5104 if( envforce!=NULL ){
5105 useProxy = atoi(envforce)>0;
5106 }else{
5107 if( statfs(zPath, &fsInfo) == -1 ){
5108 /* In theory, the close(fd) call is sub-optimal. If the file opened
5109 ** with fd is a database file, and there are other connections open
5110 ** on that file that are currently holding advisory locks on it,
5111 ** then the call to close() will cancel those locks. In practice,
5112 ** we're assuming that statfs() doesn't fail very often. At least
5113 ** not while other file descriptors opened by the same process on
5114 ** the same file are working. */
5115 p->lastErrno = errno;
5116 robust_close(p, fd, __LINE__);
5117 rc = SQLITE_IOERR_ACCESS;
5118 goto open_finished;
5120 useProxy = !(fsInfo.f_flags&MNT_LOCAL);
5122 if( useProxy ){
5123 rc = fillInUnixFile(pVfs, fd, syncDir, pFile, zPath, noLock,
5124 isDelete, isReadonly);
5125 if( rc==SQLITE_OK ){
5126 rc = proxyTransformUnixFile((unixFile*)pFile, ":auto:");
5127 if( rc!=SQLITE_OK ){
5128 /* Use unixClose to clean up the resources added in fillInUnixFile
5129 ** and clear all the structure's references. Specifically,
5130 ** pFile->pMethods will be NULL so sqlite3OsClose will be a no-op
5132 unixClose(pFile);
5133 return rc;
5136 goto open_finished;
5139 #endif
5141 rc = fillInUnixFile(pVfs, fd, syncDir, pFile, zPath, noLock,
5142 isDelete, isReadonly);
5143 open_finished:
5144 if( rc!=SQLITE_OK ){
5145 sqlite3_free(p->pUnused);
5147 return rc;
5152 ** Delete the file at zPath. If the dirSync argument is true, fsync()
5153 ** the directory after deleting the file.
5155 static int unixDelete(
5156 sqlite3_vfs *NotUsed, /* VFS containing this as the xDelete method */
5157 const char *zPath, /* Name of file to be deleted */
5158 int dirSync /* If true, fsync() directory after deleting file */
5160 int rc = SQLITE_OK;
5161 UNUSED_PARAMETER(NotUsed);
5162 SimulateIOError(return SQLITE_IOERR_DELETE);
5163 if( osUnlink(zPath)==(-1) && errno!=ENOENT ){
5164 return unixLogError(SQLITE_IOERR_DELETE, "unlink", zPath);
5166 #ifndef SQLITE_DISABLE_DIRSYNC
5167 if( dirSync ){
5168 int fd;
5169 rc = osOpenDirectory(zPath, &fd);
5170 if( rc==SQLITE_OK ){
5171 #if OS_VXWORKS
5172 if( fsync(fd)==-1 )
5173 #else
5174 if( fsync(fd) )
5175 #endif
5177 rc = unixLogError(SQLITE_IOERR_DIR_FSYNC, "fsync", zPath);
5179 robust_close(0, fd, __LINE__);
5180 }else if( rc==SQLITE_CANTOPEN ){
5181 rc = SQLITE_OK;
5184 #endif
5185 return rc;
5189 ** Test the existance of or access permissions of file zPath. The
5190 ** test performed depends on the value of flags:
5192 ** SQLITE_ACCESS_EXISTS: Return 1 if the file exists
5193 ** SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable.
5194 ** SQLITE_ACCESS_READONLY: Return 1 if the file is readable.
5196 ** Otherwise return 0.
5198 static int unixAccess(
5199 sqlite3_vfs *NotUsed, /* The VFS containing this xAccess method */
5200 const char *zPath, /* Path of the file to examine */
5201 int flags, /* What do we want to learn about the zPath file? */
5202 int *pResOut /* Write result boolean here */
5204 int amode = 0;
5205 UNUSED_PARAMETER(NotUsed);
5206 SimulateIOError( return SQLITE_IOERR_ACCESS; );
5207 switch( flags ){
5208 case SQLITE_ACCESS_EXISTS:
5209 amode = F_OK;
5210 break;
5211 case SQLITE_ACCESS_READWRITE:
5212 amode = W_OK|R_OK;
5213 break;
5214 case SQLITE_ACCESS_READ:
5215 amode = R_OK;
5216 break;
5218 default:
5219 assert(!"Invalid flags argument");
5221 *pResOut = (osAccess(zPath, amode)==0);
5222 if( flags==SQLITE_ACCESS_EXISTS && *pResOut ){
5223 struct stat buf;
5224 if( 0==osStat(zPath, &buf) && buf.st_size==0 ){
5225 *pResOut = 0;
5228 return SQLITE_OK;
5233 ** Turn a relative pathname into a full pathname. The relative path
5234 ** is stored as a nul-terminated string in the buffer pointed to by
5235 ** zPath.
5237 ** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes
5238 ** (in this case, MAX_PATHNAME bytes). The full-path is written to
5239 ** this buffer before returning.
5241 static int unixFullPathname(
5242 sqlite3_vfs *pVfs, /* Pointer to vfs object */
5243 const char *zPath, /* Possibly relative input path */
5244 int nOut, /* Size of output buffer in bytes */
5245 char *zOut /* Output buffer */
5248 /* It's odd to simulate an io-error here, but really this is just
5249 ** using the io-error infrastructure to test that SQLite handles this
5250 ** function failing. This function could fail if, for example, the
5251 ** current working directory has been unlinked.
5253 SimulateIOError( return SQLITE_ERROR );
5255 assert( pVfs->mxPathname==MAX_PATHNAME );
5256 UNUSED_PARAMETER(pVfs);
5258 zOut[nOut-1] = '\0';
5259 if( zPath[0]=='/' ){
5260 sqlite3_snprintf(nOut, zOut, "%s", zPath);
5261 }else{
5262 int nCwd;
5263 if( osGetcwd(zOut, nOut-1)==0 ){
5264 return unixLogError(SQLITE_CANTOPEN_BKPT, "getcwd", zPath);
5266 nCwd = (int)strlen(zOut);
5267 sqlite3_snprintf(nOut-nCwd, &zOut[nCwd], "/%s", zPath);
5269 return SQLITE_OK;
5273 #ifndef SQLITE_OMIT_LOAD_EXTENSION
5275 ** Interfaces for opening a shared library, finding entry points
5276 ** within the shared library, and closing the shared library.
5278 #include <dlfcn.h>
5279 static void *unixDlOpen(sqlite3_vfs *NotUsed, const char *zFilename){
5280 UNUSED_PARAMETER(NotUsed);
5281 return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL);
5285 ** SQLite calls this function immediately after a call to unixDlSym() or
5286 ** unixDlOpen() fails (returns a null pointer). If a more detailed error
5287 ** message is available, it is written to zBufOut. If no error message
5288 ** is available, zBufOut is left unmodified and SQLite uses a default
5289 ** error message.
5291 static void unixDlError(sqlite3_vfs *NotUsed, int nBuf, char *zBufOut){
5292 const char *zErr;
5293 UNUSED_PARAMETER(NotUsed);
5294 unixEnterMutex();
5295 zErr = dlerror();
5296 if( zErr ){
5297 sqlite3_snprintf(nBuf, zBufOut, "%s", zErr);
5299 unixLeaveMutex();
5301 static void (*unixDlSym(sqlite3_vfs *NotUsed, void *p, const char*zSym))(void){
5303 ** GCC with -pedantic-errors says that C90 does not allow a void* to be
5304 ** cast into a pointer to a function. And yet the library dlsym() routine
5305 ** returns a void* which is really a pointer to a function. So how do we
5306 ** use dlsym() with -pedantic-errors?
5308 ** Variable x below is defined to be a pointer to a function taking
5309 ** parameters void* and const char* and returning a pointer to a function.
5310 ** We initialize x by assigning it a pointer to the dlsym() function.
5311 ** (That assignment requires a cast.) Then we call the function that
5312 ** x points to.
5314 ** This work-around is unlikely to work correctly on any system where
5315 ** you really cannot cast a function pointer into void*. But then, on the
5316 ** other hand, dlsym() will not work on such a system either, so we have
5317 ** not really lost anything.
5319 void (*(*x)(void*,const char*))(void);
5320 UNUSED_PARAMETER(NotUsed);
5321 x = (void(*(*)(void*,const char*))(void))dlsym;
5322 return (*x)(p, zSym);
5324 static void unixDlClose(sqlite3_vfs *NotUsed, void *pHandle){
5325 UNUSED_PARAMETER(NotUsed);
5326 dlclose(pHandle);
5328 #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
5329 #define unixDlOpen 0
5330 #define unixDlError 0
5331 #define unixDlSym 0
5332 #define unixDlClose 0
5333 #endif
5336 ** Write nBuf bytes of random data to the supplied buffer zBuf.
5338 static int unixRandomness(sqlite3_vfs *NotUsed, int nBuf, char *zBuf){
5339 UNUSED_PARAMETER(NotUsed);
5340 assert((size_t)nBuf>=(sizeof(time_t)+sizeof(int)));
5342 /* We have to initialize zBuf to prevent valgrind from reporting
5343 ** errors. The reports issued by valgrind are incorrect - we would
5344 ** prefer that the randomness be increased by making use of the
5345 ** uninitialized space in zBuf - but valgrind errors tend to worry
5346 ** some users. Rather than argue, it seems easier just to initialize
5347 ** the whole array and silence valgrind, even if that means less randomness
5348 ** in the random seed.
5350 ** When testing, initializing zBuf[] to zero is all we do. That means
5351 ** that we always use the same random number sequence. This makes the
5352 ** tests repeatable.
5354 memset(zBuf, 0, nBuf);
5355 #if !defined(SQLITE_TEST)
5357 int pid, fd;
5358 fd = robust_open("/dev/urandom", O_RDONLY, 0);
5359 if( fd<0 ){
5360 time_t t;
5361 time(&t);
5362 memcpy(zBuf, &t, sizeof(t));
5363 pid = getpid();
5364 memcpy(&zBuf[sizeof(t)], &pid, sizeof(pid));
5365 assert( sizeof(t)+sizeof(pid)<=(size_t)nBuf );
5366 nBuf = sizeof(t) + sizeof(pid);
5367 }else{
5368 do{ nBuf = osRead(fd, zBuf, nBuf); }while( nBuf<0 && errno==EINTR );
5369 robust_close(0, fd, __LINE__);
5372 #endif
5373 return nBuf;
5378 ** Sleep for a little while. Return the amount of time slept.
5379 ** The argument is the number of microseconds we want to sleep.
5380 ** The return value is the number of microseconds of sleep actually
5381 ** requested from the underlying operating system, a number which
5382 ** might be greater than or equal to the argument, but not less
5383 ** than the argument.
5385 static int unixSleep(sqlite3_vfs *NotUsed, int microseconds){
5386 #if OS_VXWORKS
5387 struct timespec sp;
5389 sp.tv_sec = microseconds / 1000000;
5390 sp.tv_nsec = (microseconds % 1000000) * 1000;
5391 nanosleep(&sp, NULL);
5392 UNUSED_PARAMETER(NotUsed);
5393 return microseconds;
5394 #elif defined(HAVE_USLEEP) && HAVE_USLEEP
5395 usleep(microseconds);
5396 UNUSED_PARAMETER(NotUsed);
5397 return microseconds;
5398 #else
5399 int seconds = (microseconds+999999)/1000000;
5400 sleep(seconds);
5401 UNUSED_PARAMETER(NotUsed);
5402 return seconds*1000000;
5403 #endif
5407 ** The following variable, if set to a non-zero value, is interpreted as
5408 ** the number of seconds since 1970 and is used to set the result of
5409 ** sqlite3OsCurrentTime() during testing.
5411 #ifdef SQLITE_TEST
5412 int sqlite3_current_time = 0; /* Fake system time in seconds since 1970. */
5413 #endif
5416 ** Find the current time (in Universal Coordinated Time). Write into *piNow
5417 ** the current time and date as a Julian Day number times 86_400_000. In
5418 ** other words, write into *piNow the number of milliseconds since the Julian
5419 ** epoch of noon in Greenwich on November 24, 4714 B.C according to the
5420 ** proleptic Gregorian calendar.
5422 ** On success, return SQLITE_OK. Return SQLITE_ERROR if the time and date
5423 ** cannot be found.
5425 static int unixCurrentTimeInt64(sqlite3_vfs *NotUsed, sqlite3_int64 *piNow){
5426 static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000;
5427 int rc = SQLITE_OK;
5428 #if defined(NO_GETTOD)
5429 time_t t;
5430 time(&t);
5431 *piNow = ((sqlite3_int64)t)*1000 + unixEpoch;
5432 #elif OS_VXWORKS
5433 struct timespec sNow;
5434 clock_gettime(CLOCK_REALTIME, &sNow);
5435 *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_nsec/1000000;
5436 #else
5437 struct timeval sNow;
5438 if( gettimeofday(&sNow, 0)==0 ){
5439 *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_usec/1000;
5440 }else{
5441 rc = SQLITE_ERROR;
5443 #endif
5445 #ifdef SQLITE_TEST
5446 if( sqlite3_current_time ){
5447 *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch;
5449 #endif
5450 UNUSED_PARAMETER(NotUsed);
5451 return rc;
5455 ** Find the current time (in Universal Coordinated Time). Write the
5456 ** current time and date as a Julian Day number into *prNow and
5457 ** return 0. Return 1 if the time and date cannot be found.
5459 static int unixCurrentTime(sqlite3_vfs *NotUsed, double *prNow){
5460 sqlite3_int64 i = 0;
5461 int rc;
5462 UNUSED_PARAMETER(NotUsed);
5463 rc = unixCurrentTimeInt64(0, &i);
5464 *prNow = i/86400000.0;
5465 return rc;
5469 ** We added the xGetLastError() method with the intention of providing
5470 ** better low-level error messages when operating-system problems come up
5471 ** during SQLite operation. But so far, none of that has been implemented
5472 ** in the core. So this routine is never called. For now, it is merely
5473 ** a place-holder.
5475 static int unixGetLastError(sqlite3_vfs *NotUsed, int NotUsed2, char *NotUsed3){
5476 UNUSED_PARAMETER(NotUsed);
5477 UNUSED_PARAMETER(NotUsed2);
5478 UNUSED_PARAMETER(NotUsed3);
5479 return 0;
5484 ************************ End of sqlite3_vfs methods ***************************
5485 ******************************************************************************/
5487 /******************************************************************************
5488 ************************** Begin Proxy Locking ********************************
5490 ** Proxy locking is a "uber-locking-method" in this sense: It uses the
5491 ** other locking methods on secondary lock files. Proxy locking is a
5492 ** meta-layer over top of the primitive locking implemented above. For
5493 ** this reason, the division that implements of proxy locking is deferred
5494 ** until late in the file (here) after all of the other I/O methods have
5495 ** been defined - so that the primitive locking methods are available
5496 ** as services to help with the implementation of proxy locking.
5498 ****
5500 ** The default locking schemes in SQLite use byte-range locks on the
5501 ** database file to coordinate safe, concurrent access by multiple readers
5502 ** and writers [http://sqlite.org/lockingv3.html]. The five file locking
5503 ** states (UNLOCKED, PENDING, SHARED, RESERVED, EXCLUSIVE) are implemented
5504 ** as POSIX read & write locks over fixed set of locations (via fsctl),
5505 ** on AFP and SMB only exclusive byte-range locks are available via fsctl
5506 ** with _IOWR('z', 23, struct ByteRangeLockPB2) to track the same 5 states.
5507 ** To simulate a F_RDLCK on the shared range, on AFP a randomly selected
5508 ** address in the shared range is taken for a SHARED lock, the entire
5509 ** shared range is taken for an EXCLUSIVE lock):
5511 ** PENDING_BYTE 0x40000000
5512 ** RESERVED_BYTE 0x40000001
5513 ** SHARED_RANGE 0x40000002 -> 0x40000200
5515 ** This works well on the local file system, but shows a nearly 100x
5516 ** slowdown in read performance on AFP because the AFP client disables
5517 ** the read cache when byte-range locks are present. Enabling the read
5518 ** cache exposes a cache coherency problem that is present on all OS X
5519 ** supported network file systems. NFS and AFP both observe the
5520 ** close-to-open semantics for ensuring cache coherency
5521 ** [http://nfs.sourceforge.net/#faq_a8], which does not effectively
5522 ** address the requirements for concurrent database access by multiple
5523 ** readers and writers
5524 ** [http://www.nabble.com/SQLite-on-NFS-cache-coherency-td15655701.html].
5526 ** To address the performance and cache coherency issues, proxy file locking
5527 ** changes the way database access is controlled by limiting access to a
5528 ** single host at a time and moving file locks off of the database file
5529 ** and onto a proxy file on the local file system.
5532 ** Using proxy locks
5533 ** -----------------
5535 ** C APIs
5537 ** sqlite3_file_control(db, dbname, SQLITE_SET_LOCKPROXYFILE,
5538 ** <proxy_path> | ":auto:");
5539 ** sqlite3_file_control(db, dbname, SQLITE_GET_LOCKPROXYFILE, &<proxy_path>);
5542 ** SQL pragmas
5544 ** PRAGMA [database.]lock_proxy_file=<proxy_path> | :auto:
5545 ** PRAGMA [database.]lock_proxy_file
5547 ** Specifying ":auto:" means that if there is a conch file with a matching
5548 ** host ID in it, the proxy path in the conch file will be used, otherwise
5549 ** a proxy path based on the user's temp dir
5550 ** (via confstr(_CS_DARWIN_USER_TEMP_DIR,...)) will be used and the
5551 ** actual proxy file name is generated from the name and path of the
5552 ** database file. For example:
5554 ** For database path "/Users/me/foo.db"
5555 ** The lock path will be "<tmpdir>/sqliteplocks/_Users_me_foo.db:auto:")
5557 ** Once a lock proxy is configured for a database connection, it can not
5558 ** be removed, however it may be switched to a different proxy path via
5559 ** the above APIs (assuming the conch file is not being held by another
5560 ** connection or process).
5563 ** How proxy locking works
5564 ** -----------------------
5566 ** Proxy file locking relies primarily on two new supporting files:
5568 ** * conch file to limit access to the database file to a single host
5569 ** at a time
5571 ** * proxy file to act as a proxy for the advisory locks normally
5572 ** taken on the database
5574 ** The conch file - to use a proxy file, sqlite must first "hold the conch"
5575 ** by taking an sqlite-style shared lock on the conch file, reading the
5576 ** contents and comparing the host's unique host ID (see below) and lock
5577 ** proxy path against the values stored in the conch. The conch file is
5578 ** stored in the same directory as the database file and the file name
5579 ** is patterned after the database file name as ".<databasename>-conch".
5580 ** If the conch file does not exist, or it's contents do not match the
5581 ** host ID and/or proxy path, then the lock is escalated to an exclusive
5582 ** lock and the conch file contents is updated with the host ID and proxy
5583 ** path and the lock is downgraded to a shared lock again. If the conch
5584 ** is held by another process (with a shared lock), the exclusive lock
5585 ** will fail and SQLITE_BUSY is returned.
5587 ** The proxy file - a single-byte file used for all advisory file locks
5588 ** normally taken on the database file. This allows for safe sharing
5589 ** of the database file for multiple readers and writers on the same
5590 ** host (the conch ensures that they all use the same local lock file).
5592 ** Requesting the lock proxy does not immediately take the conch, it is
5593 ** only taken when the first request to lock database file is made.
5594 ** This matches the semantics of the traditional locking behavior, where
5595 ** opening a connection to a database file does not take a lock on it.
5596 ** The shared lock and an open file descriptor are maintained until
5597 ** the connection to the database is closed.
5599 ** The proxy file and the lock file are never deleted so they only need
5600 ** to be created the first time they are used.
5602 ** Configuration options
5603 ** ---------------------
5605 ** SQLITE_PREFER_PROXY_LOCKING
5607 ** Database files accessed on non-local file systems are
5608 ** automatically configured for proxy locking, lock files are
5609 ** named automatically using the same logic as
5610 ** PRAGMA lock_proxy_file=":auto:"
5612 ** SQLITE_PROXY_DEBUG
5614 ** Enables the logging of error messages during host id file
5615 ** retrieval and creation
5617 ** LOCKPROXYDIR
5619 ** Overrides the default directory used for lock proxy files that
5620 ** are named automatically via the ":auto:" setting
5622 ** SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
5624 ** Permissions to use when creating a directory for storing the
5625 ** lock proxy files, only used when LOCKPROXYDIR is not set.
5628 ** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING,
5629 ** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will
5630 ** force proxy locking to be used for every database file opened, and 0
5631 ** will force automatic proxy locking to be disabled for all database
5632 ** files (explicity calling the SQLITE_SET_LOCKPROXYFILE pragma or
5633 ** sqlite_file_control API is not affected by SQLITE_FORCE_PROXY_LOCKING).
5637 ** Proxy locking is only available on MacOSX
5639 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
5642 ** The proxyLockingContext has the path and file structures for the remote
5643 ** and local proxy files in it
5645 typedef struct proxyLockingContext proxyLockingContext;
5646 struct proxyLockingContext {
5647 unixFile *conchFile; /* Open conch file */
5648 char *conchFilePath; /* Name of the conch file */
5649 unixFile *lockProxy; /* Open proxy lock file */
5650 char *lockProxyPath; /* Name of the proxy lock file */
5651 char *dbPath; /* Name of the open file */
5652 int conchHeld; /* 1 if the conch is held, -1 if lockless */
5653 void *oldLockingContext; /* Original lockingcontext to restore on close */
5654 sqlite3_io_methods const *pOldMethod; /* Original I/O methods for close */
5658 ** The proxy lock file path for the database at dbPath is written into lPath,
5659 ** which must point to valid, writable memory large enough for a maxLen length
5660 ** file path.
5662 static int proxyGetLockPath(const char *dbPath, char *lPath, size_t maxLen){
5663 int len;
5664 int dbLen;
5665 int i;
5667 #ifdef LOCKPROXYDIR
5668 len = strlcpy(lPath, LOCKPROXYDIR, maxLen);
5669 #else
5670 # ifdef _CS_DARWIN_USER_TEMP_DIR
5672 if( !confstr(_CS_DARWIN_USER_TEMP_DIR, lPath, maxLen) ){
5673 OSTRACE(("GETLOCKPATH failed %s errno=%d pid=%d\n",
5674 lPath, errno, getpid()));
5675 return SQLITE_IOERR_LOCK;
5677 len = strlcat(lPath, "sqliteplocks", maxLen);
5679 # else
5680 len = strlcpy(lPath, "/tmp/", maxLen);
5681 # endif
5682 #endif
5684 if( lPath[len-1]!='/' ){
5685 len = strlcat(lPath, "/", maxLen);
5688 /* transform the db path to a unique cache name */
5689 dbLen = (int)strlen(dbPath);
5690 for( i=0; i<dbLen && (i+len+7)<(int)maxLen; i++){
5691 char c = dbPath[i];
5692 lPath[i+len] = (c=='/')?'_':c;
5694 lPath[i+len]='\0';
5695 strlcat(lPath, ":auto:", maxLen);
5696 OSTRACE(("GETLOCKPATH proxy lock path=%s pid=%d\n", lPath, getpid()));
5697 return SQLITE_OK;
5701 ** Creates the lock file and any missing directories in lockPath
5703 static int proxyCreateLockPath(const char *lockPath){
5704 int i, len;
5705 char buf[MAXPATHLEN];
5706 int start = 0;
5708 assert(lockPath!=NULL);
5709 /* try to create all the intermediate directories */
5710 len = (int)strlen(lockPath);
5711 buf[0] = lockPath[0];
5712 for( i=1; i<len; i++ ){
5713 if( lockPath[i] == '/' && (i - start > 0) ){
5714 /* only mkdir if leaf dir != "." or "/" or ".." */
5715 if( i-start>2 || (i-start==1 && buf[start] != '.' && buf[start] != '/')
5716 || (i-start==2 && buf[start] != '.' && buf[start+1] != '.') ){
5717 buf[i]='\0';
5718 if( mkdir(buf, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS) ){
5719 int err=errno;
5720 if( err!=EEXIST ) {
5721 OSTRACE(("CREATELOCKPATH FAILED creating %s, "
5722 "'%s' proxy lock path=%s pid=%d\n",
5723 buf, strerror(err), lockPath, getpid()));
5724 return err;
5728 start=i+1;
5730 buf[i] = lockPath[i];
5732 OSTRACE(("CREATELOCKPATH proxy lock path=%s pid=%d\n", lockPath, getpid()));
5733 return 0;
5737 ** Create a new VFS file descriptor (stored in memory obtained from
5738 ** sqlite3_malloc) and open the file named "path" in the file descriptor.
5740 ** The caller is responsible not only for closing the file descriptor
5741 ** but also for freeing the memory associated with the file descriptor.
5743 static int proxyCreateUnixFile(
5744 const char *path, /* path for the new unixFile */
5745 unixFile **ppFile, /* unixFile created and returned by ref */
5746 int islockfile /* if non zero missing dirs will be created */
5748 int fd = -1;
5749 unixFile *pNew;
5750 int rc = SQLITE_OK;
5751 int openFlags = O_RDWR | O_CREAT;
5752 sqlite3_vfs dummyVfs;
5753 int terrno = 0;
5754 UnixUnusedFd *pUnused = NULL;
5756 /* 1. first try to open/create the file
5757 ** 2. if that fails, and this is a lock file (not-conch), try creating
5758 ** the parent directories and then try again.
5759 ** 3. if that fails, try to open the file read-only
5760 ** otherwise return BUSY (if lock file) or CANTOPEN for the conch file
5762 pUnused = findReusableFd(path, openFlags);
5763 if( pUnused ){
5764 fd = pUnused->fd;
5765 }else{
5766 pUnused = sqlite3_malloc(sizeof(*pUnused));
5767 if( !pUnused ){
5768 return SQLITE_NOMEM;
5771 if( fd<0 ){
5772 fd = robust_open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS);
5773 terrno = errno;
5774 if( fd<0 && errno==ENOENT && islockfile ){
5775 if( proxyCreateLockPath(path) == SQLITE_OK ){
5776 fd = robust_open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS);
5780 if( fd<0 ){
5781 openFlags = O_RDONLY;
5782 fd = robust_open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS);
5783 terrno = errno;
5785 if( fd<0 ){
5786 if( islockfile ){
5787 return SQLITE_BUSY;
5789 switch (terrno) {
5790 case EACCES:
5791 return SQLITE_PERM;
5792 case EIO:
5793 return SQLITE_IOERR_LOCK; /* even though it is the conch */
5794 default:
5795 return SQLITE_CANTOPEN_BKPT;
5799 pNew = (unixFile *)sqlite3_malloc(sizeof(*pNew));
5800 if( pNew==NULL ){
5801 rc = SQLITE_NOMEM;
5802 goto end_create_proxy;
5804 memset(pNew, 0, sizeof(unixFile));
5805 pNew->openFlags = openFlags;
5806 memset(&dummyVfs, 0, sizeof(dummyVfs));
5807 dummyVfs.pAppData = (void*)&autolockIoFinder;
5808 dummyVfs.zName = "dummy";
5809 pUnused->fd = fd;
5810 pUnused->flags = openFlags;
5811 pNew->pUnused = pUnused;
5813 rc = fillInUnixFile(&dummyVfs, fd, 0, (sqlite3_file*)pNew, path, 0, 0, 0);
5814 if( rc==SQLITE_OK ){
5815 *ppFile = pNew;
5816 return SQLITE_OK;
5818 end_create_proxy:
5819 robust_close(pNew, fd, __LINE__);
5820 sqlite3_free(pNew);
5821 sqlite3_free(pUnused);
5822 return rc;
5825 #ifdef SQLITE_TEST
5826 /* simulate multiple hosts by creating unique hostid file paths */
5827 int sqlite3_hostid_num = 0;
5828 #endif
5830 #define PROXY_HOSTIDLEN 16 /* conch file host id length */
5832 /* Not always defined in the headers as it ought to be */
5833 extern int gethostuuid(uuid_t id, const struct timespec *wait);
5835 /* get the host ID via gethostuuid(), pHostID must point to PROXY_HOSTIDLEN
5836 ** bytes of writable memory.
5838 static int proxyGetHostID(unsigned char *pHostID, int *pError){
5839 assert(PROXY_HOSTIDLEN == sizeof(uuid_t));
5840 memset(pHostID, 0, PROXY_HOSTIDLEN);
5841 #if defined(__MAX_OS_X_VERSION_MIN_REQUIRED)\
5842 && __MAC_OS_X_VERSION_MIN_REQUIRED<1050
5844 static const struct timespec timeout = {1, 0}; /* 1 sec timeout */
5845 if( gethostuuid(pHostID, &timeout) ){
5846 int err = errno;
5847 if( pError ){
5848 *pError = err;
5850 return SQLITE_IOERR;
5853 #else
5854 UNUSED_PARAMETER(pError);
5855 #endif
5856 #ifdef SQLITE_TEST
5857 /* simulate multiple hosts by creating unique hostid file paths */
5858 if( sqlite3_hostid_num != 0){
5859 pHostID[0] = (char)(pHostID[0] + (char)(sqlite3_hostid_num & 0xFF));
5861 #endif
5863 return SQLITE_OK;
5866 /* The conch file contains the header, host id and lock file path
5868 #define PROXY_CONCHVERSION 2 /* 1-byte header, 16-byte host id, path */
5869 #define PROXY_HEADERLEN 1 /* conch file header length */
5870 #define PROXY_PATHINDEX (PROXY_HEADERLEN+PROXY_HOSTIDLEN)
5871 #define PROXY_MAXCONCHLEN (PROXY_HEADERLEN+PROXY_HOSTIDLEN+MAXPATHLEN)
5874 ** Takes an open conch file, copies the contents to a new path and then moves
5875 ** it back. The newly created file's file descriptor is assigned to the
5876 ** conch file structure and finally the original conch file descriptor is
5877 ** closed. Returns zero if successful.
5879 static int proxyBreakConchLock(unixFile *pFile, uuid_t myHostID){
5880 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
5881 unixFile *conchFile = pCtx->conchFile;
5882 char tPath[MAXPATHLEN];
5883 char buf[PROXY_MAXCONCHLEN];
5884 char *cPath = pCtx->conchFilePath;
5885 size_t readLen = 0;
5886 size_t pathLen = 0;
5887 char errmsg[64] = "";
5888 int fd = -1;
5889 int rc = -1;
5890 UNUSED_PARAMETER(myHostID);
5892 /* create a new path by replace the trailing '-conch' with '-break' */
5893 pathLen = strlcpy(tPath, cPath, MAXPATHLEN);
5894 if( pathLen>MAXPATHLEN || pathLen<6 ||
5895 (strlcpy(&tPath[pathLen-5], "break", 6) != 5) ){
5896 sqlite3_snprintf(sizeof(errmsg),errmsg,"path error (len %d)",(int)pathLen);
5897 goto end_breaklock;
5899 /* read the conch content */
5900 readLen = osPread(conchFile->h, buf, PROXY_MAXCONCHLEN, 0);
5901 if( readLen<PROXY_PATHINDEX ){
5902 sqlite3_snprintf(sizeof(errmsg),errmsg,"read error (len %d)",(int)readLen);
5903 goto end_breaklock;
5905 /* write it out to the temporary break file */
5906 fd = robust_open(tPath, (O_RDWR|O_CREAT|O_EXCL),
5907 SQLITE_DEFAULT_FILE_PERMISSIONS);
5908 if( fd<0 ){
5909 sqlite3_snprintf(sizeof(errmsg), errmsg, "create failed (%d)", errno);
5910 goto end_breaklock;
5912 if( osPwrite(fd, buf, readLen, 0) != (ssize_t)readLen ){
5913 sqlite3_snprintf(sizeof(errmsg), errmsg, "write failed (%d)", errno);
5914 goto end_breaklock;
5916 if( rename(tPath, cPath) ){
5917 sqlite3_snprintf(sizeof(errmsg), errmsg, "rename failed (%d)", errno);
5918 goto end_breaklock;
5920 rc = 0;
5921 fprintf(stderr, "broke stale lock on %s\n", cPath);
5922 robust_close(pFile, conchFile->h, __LINE__);
5923 conchFile->h = fd;
5924 conchFile->openFlags = O_RDWR | O_CREAT;
5926 end_breaklock:
5927 if( rc ){
5928 if( fd>=0 ){
5929 osUnlink(tPath);
5930 robust_close(pFile, fd, __LINE__);
5932 fprintf(stderr, "failed to break stale lock on %s, %s\n", cPath, errmsg);
5934 return rc;
5937 /* Take the requested lock on the conch file and break a stale lock if the
5938 ** host id matches.
5940 static int proxyConchLock(unixFile *pFile, uuid_t myHostID, int lockType){
5941 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
5942 unixFile *conchFile = pCtx->conchFile;
5943 int rc = SQLITE_OK;
5944 int nTries = 0;
5945 struct timespec conchModTime;
5947 memset(&conchModTime, 0, sizeof(conchModTime));
5948 do {
5949 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType);
5950 nTries ++;
5951 if( rc==SQLITE_BUSY ){
5952 /* If the lock failed (busy):
5953 * 1st try: get the mod time of the conch, wait 0.5s and try again.
5954 * 2nd try: fail if the mod time changed or host id is different, wait
5955 * 10 sec and try again
5956 * 3rd try: break the lock unless the mod time has changed.
5958 struct stat buf;
5959 if( osFstat(conchFile->h, &buf) ){
5960 pFile->lastErrno = errno;
5961 return SQLITE_IOERR_LOCK;
5964 if( nTries==1 ){
5965 conchModTime = buf.st_mtimespec;
5966 usleep(500000); /* wait 0.5 sec and try the lock again*/
5967 continue;
5970 assert( nTries>1 );
5971 if( conchModTime.tv_sec != buf.st_mtimespec.tv_sec ||
5972 conchModTime.tv_nsec != buf.st_mtimespec.tv_nsec ){
5973 return SQLITE_BUSY;
5976 if( nTries==2 ){
5977 char tBuf[PROXY_MAXCONCHLEN];
5978 int len = osPread(conchFile->h, tBuf, PROXY_MAXCONCHLEN, 0);
5979 if( len<0 ){
5980 pFile->lastErrno = errno;
5981 return SQLITE_IOERR_LOCK;
5983 if( len>PROXY_PATHINDEX && tBuf[0]==(char)PROXY_CONCHVERSION){
5984 /* don't break the lock if the host id doesn't match */
5985 if( 0!=memcmp(&tBuf[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN) ){
5986 return SQLITE_BUSY;
5988 }else{
5989 /* don't break the lock on short read or a version mismatch */
5990 return SQLITE_BUSY;
5992 usleep(10000000); /* wait 10 sec and try the lock again */
5993 continue;
5996 assert( nTries==3 );
5997 if( 0==proxyBreakConchLock(pFile, myHostID) ){
5998 rc = SQLITE_OK;
5999 if( lockType==EXCLUSIVE_LOCK ){
6000 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, SHARED_LOCK);
6002 if( !rc ){
6003 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType);
6007 } while( rc==SQLITE_BUSY && nTries<3 );
6009 return rc;
6012 /* Takes the conch by taking a shared lock and read the contents conch, if
6013 ** lockPath is non-NULL, the host ID and lock file path must match. A NULL
6014 ** lockPath means that the lockPath in the conch file will be used if the
6015 ** host IDs match, or a new lock path will be generated automatically
6016 ** and written to the conch file.
6018 static int proxyTakeConch(unixFile *pFile){
6019 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
6021 if( pCtx->conchHeld!=0 ){
6022 return SQLITE_OK;
6023 }else{
6024 unixFile *conchFile = pCtx->conchFile;
6025 uuid_t myHostID;
6026 int pError = 0;
6027 char readBuf[PROXY_MAXCONCHLEN];
6028 char lockPath[MAXPATHLEN];
6029 char *tempLockPath = NULL;
6030 int rc = SQLITE_OK;
6031 int createConch = 0;
6032 int hostIdMatch = 0;
6033 int readLen = 0;
6034 int tryOldLockPath = 0;
6035 int forceNewLockPath = 0;
6037 OSTRACE(("TAKECONCH %d for %s pid=%d\n", conchFile->h,
6038 (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), getpid()));
6040 rc = proxyGetHostID(myHostID, &pError);
6041 if( (rc&0xff)==SQLITE_IOERR ){
6042 pFile->lastErrno = pError;
6043 goto end_takeconch;
6045 rc = proxyConchLock(pFile, myHostID, SHARED_LOCK);
6046 if( rc!=SQLITE_OK ){
6047 goto end_takeconch;
6049 /* read the existing conch file */
6050 readLen = seekAndRead((unixFile*)conchFile, 0, readBuf, PROXY_MAXCONCHLEN);
6051 if( readLen<0 ){
6052 /* I/O error: lastErrno set by seekAndRead */
6053 pFile->lastErrno = conchFile->lastErrno;
6054 rc = SQLITE_IOERR_READ;
6055 goto end_takeconch;
6056 }else if( readLen<=(PROXY_HEADERLEN+PROXY_HOSTIDLEN) ||
6057 readBuf[0]!=(char)PROXY_CONCHVERSION ){
6058 /* a short read or version format mismatch means we need to create a new
6059 ** conch file.
6061 createConch = 1;
6063 /* if the host id matches and the lock path already exists in the conch
6064 ** we'll try to use the path there, if we can't open that path, we'll
6065 ** retry with a new auto-generated path
6067 do { /* in case we need to try again for an :auto: named lock file */
6069 if( !createConch && !forceNewLockPath ){
6070 hostIdMatch = !memcmp(&readBuf[PROXY_HEADERLEN], myHostID,
6071 PROXY_HOSTIDLEN);
6072 /* if the conch has data compare the contents */
6073 if( !pCtx->lockProxyPath ){
6074 /* for auto-named local lock file, just check the host ID and we'll
6075 ** use the local lock file path that's already in there
6077 if( hostIdMatch ){
6078 size_t pathLen = (readLen - PROXY_PATHINDEX);
6080 if( pathLen>=MAXPATHLEN ){
6081 pathLen=MAXPATHLEN-1;
6083 memcpy(lockPath, &readBuf[PROXY_PATHINDEX], pathLen);
6084 lockPath[pathLen] = 0;
6085 tempLockPath = lockPath;
6086 tryOldLockPath = 1;
6087 /* create a copy of the lock path if the conch is taken */
6088 goto end_takeconch;
6090 }else if( hostIdMatch
6091 && !strncmp(pCtx->lockProxyPath, &readBuf[PROXY_PATHINDEX],
6092 readLen-PROXY_PATHINDEX)
6094 /* conch host and lock path match */
6095 goto end_takeconch;
6099 /* if the conch isn't writable and doesn't match, we can't take it */
6100 if( (conchFile->openFlags&O_RDWR) == 0 ){
6101 rc = SQLITE_BUSY;
6102 goto end_takeconch;
6105 /* either the conch didn't match or we need to create a new one */
6106 if( !pCtx->lockProxyPath ){
6107 proxyGetLockPath(pCtx->dbPath, lockPath, MAXPATHLEN);
6108 tempLockPath = lockPath;
6109 /* create a copy of the lock path _only_ if the conch is taken */
6112 /* update conch with host and path (this will fail if other process
6113 ** has a shared lock already), if the host id matches, use the big
6114 ** stick.
6116 futimes(conchFile->h, NULL);
6117 if( hostIdMatch && !createConch ){
6118 if( conchFile->pInode && conchFile->pInode->nShared>1 ){
6119 /* We are trying for an exclusive lock but another thread in this
6120 ** same process is still holding a shared lock. */
6121 rc = SQLITE_BUSY;
6122 } else {
6123 rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK);
6125 }else{
6126 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, EXCLUSIVE_LOCK);
6128 if( rc==SQLITE_OK ){
6129 char writeBuffer[PROXY_MAXCONCHLEN];
6130 int writeSize = 0;
6132 writeBuffer[0] = (char)PROXY_CONCHVERSION;
6133 memcpy(&writeBuffer[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN);
6134 if( pCtx->lockProxyPath!=NULL ){
6135 strlcpy(&writeBuffer[PROXY_PATHINDEX], pCtx->lockProxyPath, MAXPATHLEN);
6136 }else{
6137 strlcpy(&writeBuffer[PROXY_PATHINDEX], tempLockPath, MAXPATHLEN);
6139 writeSize = PROXY_PATHINDEX + strlen(&writeBuffer[PROXY_PATHINDEX]);
6140 robust_ftruncate(conchFile->h, writeSize);
6141 rc = unixWrite((sqlite3_file *)conchFile, writeBuffer, writeSize, 0);
6142 fsync(conchFile->h);
6143 /* If we created a new conch file (not just updated the contents of a
6144 ** valid conch file), try to match the permissions of the database
6146 if( rc==SQLITE_OK && createConch ){
6147 struct stat buf;
6148 int err = osFstat(pFile->h, &buf);
6149 if( err==0 ){
6150 mode_t cmode = buf.st_mode&(S_IRUSR|S_IWUSR | S_IRGRP|S_IWGRP |
6151 S_IROTH|S_IWOTH);
6152 /* try to match the database file R/W permissions, ignore failure */
6153 #ifndef SQLITE_PROXY_DEBUG
6154 osFchmod(conchFile->h, cmode);
6155 #else
6157 rc = osFchmod(conchFile->h, cmode);
6158 }while( rc==(-1) && errno==EINTR );
6159 if( rc!=0 ){
6160 int code = errno;
6161 fprintf(stderr, "fchmod %o FAILED with %d %s\n",
6162 cmode, code, strerror(code));
6163 } else {
6164 fprintf(stderr, "fchmod %o SUCCEDED\n",cmode);
6166 }else{
6167 int code = errno;
6168 fprintf(stderr, "STAT FAILED[%d] with %d %s\n",
6169 err, code, strerror(code));
6170 #endif
6174 conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, SHARED_LOCK);
6176 end_takeconch:
6177 OSTRACE(("TRANSPROXY: CLOSE %d\n", pFile->h));
6178 if( rc==SQLITE_OK && pFile->openFlags ){
6179 int fd;
6180 if( pFile->h>=0 ){
6181 robust_close(pFile, pFile->h, __LINE__);
6183 pFile->h = -1;
6184 fd = robust_open(pCtx->dbPath, pFile->openFlags,
6185 SQLITE_DEFAULT_FILE_PERMISSIONS);
6186 OSTRACE(("TRANSPROXY: OPEN %d\n", fd));
6187 if( fd>=0 ){
6188 pFile->h = fd;
6189 }else{
6190 rc=SQLITE_CANTOPEN_BKPT; /* SQLITE_BUSY? proxyTakeConch called
6191 during locking */
6194 if( rc==SQLITE_OK && !pCtx->lockProxy ){
6195 char *path = tempLockPath ? tempLockPath : pCtx->lockProxyPath;
6196 rc = proxyCreateUnixFile(path, &pCtx->lockProxy, 1);
6197 if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && tryOldLockPath ){
6198 /* we couldn't create the proxy lock file with the old lock file path
6199 ** so try again via auto-naming
6201 forceNewLockPath = 1;
6202 tryOldLockPath = 0;
6203 continue; /* go back to the do {} while start point, try again */
6206 if( rc==SQLITE_OK ){
6207 /* Need to make a copy of path if we extracted the value
6208 ** from the conch file or the path was allocated on the stack
6210 if( tempLockPath ){
6211 pCtx->lockProxyPath = sqlite3DbStrDup(0, tempLockPath);
6212 if( !pCtx->lockProxyPath ){
6213 rc = SQLITE_NOMEM;
6217 if( rc==SQLITE_OK ){
6218 pCtx->conchHeld = 1;
6220 if( pCtx->lockProxy->pMethod == &afpIoMethods ){
6221 afpLockingContext *afpCtx;
6222 afpCtx = (afpLockingContext *)pCtx->lockProxy->lockingContext;
6223 afpCtx->dbPath = pCtx->lockProxyPath;
6225 } else {
6226 conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
6228 OSTRACE(("TAKECONCH %d %s\n", conchFile->h,
6229 rc==SQLITE_OK?"ok":"failed"));
6230 return rc;
6231 } while (1); /* in case we need to retry the :auto: lock file -
6232 ** we should never get here except via the 'continue' call. */
6237 ** If pFile holds a lock on a conch file, then release that lock.
6239 static int proxyReleaseConch(unixFile *pFile){
6240 int rc = SQLITE_OK; /* Subroutine return code */
6241 proxyLockingContext *pCtx; /* The locking context for the proxy lock */
6242 unixFile *conchFile; /* Name of the conch file */
6244 pCtx = (proxyLockingContext *)pFile->lockingContext;
6245 conchFile = pCtx->conchFile;
6246 OSTRACE(("RELEASECONCH %d for %s pid=%d\n", conchFile->h,
6247 (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"),
6248 getpid()));
6249 if( pCtx->conchHeld>0 ){
6250 rc = conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
6252 pCtx->conchHeld = 0;
6253 OSTRACE(("RELEASECONCH %d %s\n", conchFile->h,
6254 (rc==SQLITE_OK ? "ok" : "failed")));
6255 return rc;
6259 ** Given the name of a database file, compute the name of its conch file.
6260 ** Store the conch filename in memory obtained from sqlite3_malloc().
6261 ** Make *pConchPath point to the new name. Return SQLITE_OK on success
6262 ** or SQLITE_NOMEM if unable to obtain memory.
6264 ** The caller is responsible for ensuring that the allocated memory
6265 ** space is eventually freed.
6267 ** *pConchPath is set to NULL if a memory allocation error occurs.
6269 static int proxyCreateConchPathname(char *dbPath, char **pConchPath){
6270 int i; /* Loop counter */
6271 int len = (int)strlen(dbPath); /* Length of database filename - dbPath */
6272 char *conchPath; /* buffer in which to construct conch name */
6274 /* Allocate space for the conch filename and initialize the name to
6275 ** the name of the original database file. */
6276 *pConchPath = conchPath = (char *)sqlite3_malloc(len + 8);
6277 if( conchPath==0 ){
6278 return SQLITE_NOMEM;
6280 memcpy(conchPath, dbPath, len+1);
6282 /* now insert a "." before the last / character */
6283 for( i=(len-1); i>=0; i-- ){
6284 if( conchPath[i]=='/' ){
6285 i++;
6286 break;
6289 conchPath[i]='.';
6290 while ( i<len ){
6291 conchPath[i+1]=dbPath[i];
6292 i++;
6295 /* append the "-conch" suffix to the file */
6296 memcpy(&conchPath[i+1], "-conch", 7);
6297 assert( (int)strlen(conchPath) == len+7 );
6299 return SQLITE_OK;
6303 /* Takes a fully configured proxy locking-style unix file and switches
6304 ** the local lock file path
6306 static int switchLockProxyPath(unixFile *pFile, const char *path) {
6307 proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
6308 char *oldPath = pCtx->lockProxyPath;
6309 int rc = SQLITE_OK;
6311 if( pFile->eFileLock!=NO_LOCK ){
6312 return SQLITE_BUSY;
6315 /* nothing to do if the path is NULL, :auto: or matches the existing path */
6316 if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ||
6317 (oldPath && !strncmp(oldPath, path, MAXPATHLEN)) ){
6318 return SQLITE_OK;
6319 }else{
6320 unixFile *lockProxy = pCtx->lockProxy;
6321 pCtx->lockProxy=NULL;
6322 pCtx->conchHeld = 0;
6323 if( lockProxy!=NULL ){
6324 rc=lockProxy->pMethod->xClose((sqlite3_file *)lockProxy);
6325 if( rc ) return rc;
6326 sqlite3_free(lockProxy);
6328 sqlite3_free(oldPath);
6329 pCtx->lockProxyPath = sqlite3DbStrDup(0, path);
6332 return rc;
6336 ** pFile is a file that has been opened by a prior xOpen call. dbPath
6337 ** is a string buffer at least MAXPATHLEN+1 characters in size.
6339 ** This routine find the filename associated with pFile and writes it
6340 ** int dbPath.
6342 static int proxyGetDbPathForUnixFile(unixFile *pFile, char *dbPath){
6343 #if defined(__APPLE__)
6344 if( pFile->pMethod == &afpIoMethods ){
6345 /* afp style keeps a reference to the db path in the filePath field
6346 ** of the struct */
6347 assert( (int)strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
6348 strlcpy(dbPath, ((afpLockingContext *)pFile->lockingContext)->dbPath, MAXPATHLEN);
6349 } else
6350 #endif
6351 if( pFile->pMethod == &dotlockIoMethods ){
6352 /* dot lock style uses the locking context to store the dot lock
6353 ** file path */
6354 int len = strlen((char *)pFile->lockingContext) - strlen(DOTLOCK_SUFFIX);
6355 memcpy(dbPath, (char *)pFile->lockingContext, len + 1);
6356 }else{
6357 /* all other styles use the locking context to store the db file path */
6358 assert( strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
6359 strlcpy(dbPath, (char *)pFile->lockingContext, MAXPATHLEN);
6361 return SQLITE_OK;
6365 ** Takes an already filled in unix file and alters it so all file locking
6366 ** will be performed on the local proxy lock file. The following fields
6367 ** are preserved in the locking context so that they can be restored and
6368 ** the unix structure properly cleaned up at close time:
6369 ** ->lockingContext
6370 ** ->pMethod
6372 static int proxyTransformUnixFile(unixFile *pFile, const char *path) {
6373 proxyLockingContext *pCtx;
6374 char dbPath[MAXPATHLEN+1]; /* Name of the database file */
6375 char *lockPath=NULL;
6376 int rc = SQLITE_OK;
6378 if( pFile->eFileLock!=NO_LOCK ){
6379 return SQLITE_BUSY;
6381 proxyGetDbPathForUnixFile(pFile, dbPath);
6382 if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ){
6383 lockPath=NULL;
6384 }else{
6385 lockPath=(char *)path;
6388 OSTRACE(("TRANSPROXY %d for %s pid=%d\n", pFile->h,
6389 (lockPath ? lockPath : ":auto:"), getpid()));
6391 pCtx = sqlite3_malloc( sizeof(*pCtx) );
6392 if( pCtx==0 ){
6393 return SQLITE_NOMEM;
6395 memset(pCtx, 0, sizeof(*pCtx));
6397 rc = proxyCreateConchPathname(dbPath, &pCtx->conchFilePath);
6398 if( rc==SQLITE_OK ){
6399 rc = proxyCreateUnixFile(pCtx->conchFilePath, &pCtx->conchFile, 0);
6400 if( rc==SQLITE_CANTOPEN && ((pFile->openFlags&O_RDWR) == 0) ){
6401 /* if (a) the open flags are not O_RDWR, (b) the conch isn't there, and
6402 ** (c) the file system is read-only, then enable no-locking access.
6403 ** Ugh, since O_RDONLY==0x0000 we test for !O_RDWR since unixOpen asserts
6404 ** that openFlags will have only one of O_RDONLY or O_RDWR.
6406 struct statfs fsInfo;
6407 struct stat conchInfo;
6408 int goLockless = 0;
6410 if( osStat(pCtx->conchFilePath, &conchInfo) == -1 ) {
6411 int err = errno;
6412 if( (err==ENOENT) && (statfs(dbPath, &fsInfo) != -1) ){
6413 goLockless = (fsInfo.f_flags&MNT_RDONLY) == MNT_RDONLY;
6416 if( goLockless ){
6417 pCtx->conchHeld = -1; /* read only FS/ lockless */
6418 rc = SQLITE_OK;
6422 if( rc==SQLITE_OK && lockPath ){
6423 pCtx->lockProxyPath = sqlite3DbStrDup(0, lockPath);
6426 if( rc==SQLITE_OK ){
6427 pCtx->dbPath = sqlite3DbStrDup(0, dbPath);
6428 if( pCtx->dbPath==NULL ){
6429 rc = SQLITE_NOMEM;
6432 if( rc==SQLITE_OK ){
6433 /* all memory is allocated, proxys are created and assigned,
6434 ** switch the locking context and pMethod then return.
6436 pCtx->oldLockingContext = pFile->lockingContext;
6437 pFile->lockingContext = pCtx;
6438 pCtx->pOldMethod = pFile->pMethod;
6439 pFile->pMethod = &proxyIoMethods;
6440 }else{
6441 if( pCtx->conchFile ){
6442 pCtx->conchFile->pMethod->xClose((sqlite3_file *)pCtx->conchFile);
6443 sqlite3_free(pCtx->conchFile);
6445 sqlite3DbFree(0, pCtx->lockProxyPath);
6446 sqlite3_free(pCtx->conchFilePath);
6447 sqlite3_free(pCtx);
6449 OSTRACE(("TRANSPROXY %d %s\n", pFile->h,
6450 (rc==SQLITE_OK ? "ok" : "failed")));
6451 return rc;
6456 ** This routine handles sqlite3_file_control() calls that are specific
6457 ** to proxy locking.
6459 static int proxyFileControl(sqlite3_file *id, int op, void *pArg){
6460 switch( op ){
6461 case SQLITE_GET_LOCKPROXYFILE: {
6462 unixFile *pFile = (unixFile*)id;
6463 if( pFile->pMethod == &proxyIoMethods ){
6464 proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
6465 proxyTakeConch(pFile);
6466 if( pCtx->lockProxyPath ){
6467 *(const char **)pArg = pCtx->lockProxyPath;
6468 }else{
6469 *(const char **)pArg = ":auto: (not held)";
6471 } else {
6472 *(const char **)pArg = NULL;
6474 return SQLITE_OK;
6476 case SQLITE_SET_LOCKPROXYFILE: {
6477 unixFile *pFile = (unixFile*)id;
6478 int rc = SQLITE_OK;
6479 int isProxyStyle = (pFile->pMethod == &proxyIoMethods);
6480 if( pArg==NULL || (const char *)pArg==0 ){
6481 if( isProxyStyle ){
6482 /* turn off proxy locking - not supported */
6483 rc = SQLITE_ERROR /*SQLITE_PROTOCOL? SQLITE_MISUSE?*/;
6484 }else{
6485 /* turn off proxy locking - already off - NOOP */
6486 rc = SQLITE_OK;
6488 }else{
6489 const char *proxyPath = (const char *)pArg;
6490 if( isProxyStyle ){
6491 proxyLockingContext *pCtx =
6492 (proxyLockingContext*)pFile->lockingContext;
6493 if( !strcmp(pArg, ":auto:")
6494 || (pCtx->lockProxyPath &&
6495 !strncmp(pCtx->lockProxyPath, proxyPath, MAXPATHLEN))
6497 rc = SQLITE_OK;
6498 }else{
6499 rc = switchLockProxyPath(pFile, proxyPath);
6501 }else{
6502 /* turn on proxy file locking */
6503 rc = proxyTransformUnixFile(pFile, proxyPath);
6506 return rc;
6508 default: {
6509 assert( 0 ); /* The call assures that only valid opcodes are sent */
6512 /*NOTREACHED*/
6513 return SQLITE_ERROR;
6517 ** Within this division (the proxying locking implementation) the procedures
6518 ** above this point are all utilities. The lock-related methods of the
6519 ** proxy-locking sqlite3_io_method object follow.
6524 ** This routine checks if there is a RESERVED lock held on the specified
6525 ** file by this or any other process. If such a lock is held, set *pResOut
6526 ** to a non-zero value otherwise *pResOut is set to zero. The return value
6527 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
6529 static int proxyCheckReservedLock(sqlite3_file *id, int *pResOut) {
6530 unixFile *pFile = (unixFile*)id;
6531 int rc = proxyTakeConch(pFile);
6532 if( rc==SQLITE_OK ){
6533 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
6534 if( pCtx->conchHeld>0 ){
6535 unixFile *proxy = pCtx->lockProxy;
6536 return proxy->pMethod->xCheckReservedLock((sqlite3_file*)proxy, pResOut);
6537 }else{ /* conchHeld < 0 is lockless */
6538 pResOut=0;
6541 return rc;
6545 ** Lock the file with the lock specified by parameter eFileLock - one
6546 ** of the following:
6548 ** (1) SHARED_LOCK
6549 ** (2) RESERVED_LOCK
6550 ** (3) PENDING_LOCK
6551 ** (4) EXCLUSIVE_LOCK
6553 ** Sometimes when requesting one lock state, additional lock states
6554 ** are inserted in between. The locking might fail on one of the later
6555 ** transitions leaving the lock state different from what it started but
6556 ** still short of its goal. The following chart shows the allowed
6557 ** transitions and the inserted intermediate states:
6559 ** UNLOCKED -> SHARED
6560 ** SHARED -> RESERVED
6561 ** SHARED -> (PENDING) -> EXCLUSIVE
6562 ** RESERVED -> (PENDING) -> EXCLUSIVE
6563 ** PENDING -> EXCLUSIVE
6565 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
6566 ** routine to lower a locking level.
6568 static int proxyLock(sqlite3_file *id, int eFileLock) {
6569 unixFile *pFile = (unixFile*)id;
6570 int rc = proxyTakeConch(pFile);
6571 if( rc==SQLITE_OK ){
6572 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
6573 if( pCtx->conchHeld>0 ){
6574 unixFile *proxy = pCtx->lockProxy;
6575 rc = proxy->pMethod->xLock((sqlite3_file*)proxy, eFileLock);
6576 pFile->eFileLock = proxy->eFileLock;
6577 }else{
6578 /* conchHeld < 0 is lockless */
6581 return rc;
6586 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
6587 ** must be either NO_LOCK or SHARED_LOCK.
6589 ** If the locking level of the file descriptor is already at or below
6590 ** the requested locking level, this routine is a no-op.
6592 static int proxyUnlock(sqlite3_file *id, int eFileLock) {
6593 unixFile *pFile = (unixFile*)id;
6594 int rc = proxyTakeConch(pFile);
6595 if( rc==SQLITE_OK ){
6596 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
6597 if( pCtx->conchHeld>0 ){
6598 unixFile *proxy = pCtx->lockProxy;
6599 rc = proxy->pMethod->xUnlock((sqlite3_file*)proxy, eFileLock);
6600 pFile->eFileLock = proxy->eFileLock;
6601 }else{
6602 /* conchHeld < 0 is lockless */
6605 return rc;
6609 ** Close a file that uses proxy locks.
6611 static int proxyClose(sqlite3_file *id) {
6612 if( id ){
6613 unixFile *pFile = (unixFile*)id;
6614 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
6615 unixFile *lockProxy = pCtx->lockProxy;
6616 unixFile *conchFile = pCtx->conchFile;
6617 int rc = SQLITE_OK;
6619 if( lockProxy ){
6620 rc = lockProxy->pMethod->xUnlock((sqlite3_file*)lockProxy, NO_LOCK);
6621 if( rc ) return rc;
6622 rc = lockProxy->pMethod->xClose((sqlite3_file*)lockProxy);
6623 if( rc ) return rc;
6624 sqlite3_free(lockProxy);
6625 pCtx->lockProxy = 0;
6627 if( conchFile ){
6628 if( pCtx->conchHeld ){
6629 rc = proxyReleaseConch(pFile);
6630 if( rc ) return rc;
6632 rc = conchFile->pMethod->xClose((sqlite3_file*)conchFile);
6633 if( rc ) return rc;
6634 sqlite3_free(conchFile);
6636 sqlite3DbFree(0, pCtx->lockProxyPath);
6637 sqlite3_free(pCtx->conchFilePath);
6638 sqlite3DbFree(0, pCtx->dbPath);
6639 /* restore the original locking context and pMethod then close it */
6640 pFile->lockingContext = pCtx->oldLockingContext;
6641 pFile->pMethod = pCtx->pOldMethod;
6642 sqlite3_free(pCtx);
6643 return pFile->pMethod->xClose(id);
6645 return SQLITE_OK;
6650 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
6652 ** The proxy locking style is intended for use with AFP filesystems.
6653 ** And since AFP is only supported on MacOSX, the proxy locking is also
6654 ** restricted to MacOSX.
6657 ******************* End of the proxy lock implementation **********************
6658 ******************************************************************************/
6661 ** Initialize the operating system interface.
6663 ** This routine registers all VFS implementations for unix-like operating
6664 ** systems. This routine, and the sqlite3_os_end() routine that follows,
6665 ** should be the only routines in this file that are visible from other
6666 ** files.
6668 ** This routine is called once during SQLite initialization and by a
6669 ** single thread. The memory allocation and mutex subsystems have not
6670 ** necessarily been initialized when this routine is called, and so they
6671 ** should not be used.
6673 int sqlite3_os_init(void){
6675 ** The following macro defines an initializer for an sqlite3_vfs object.
6676 ** The name of the VFS is NAME. The pAppData is a pointer to a pointer
6677 ** to the "finder" function. (pAppData is a pointer to a pointer because
6678 ** silly C90 rules prohibit a void* from being cast to a function pointer
6679 ** and so we have to go through the intermediate pointer to avoid problems
6680 ** when compiling with -pedantic-errors on GCC.)
6682 ** The FINDER parameter to this macro is the name of the pointer to the
6683 ** finder-function. The finder-function returns a pointer to the
6684 ** sqlite_io_methods object that implements the desired locking
6685 ** behaviors. See the division above that contains the IOMETHODS
6686 ** macro for addition information on finder-functions.
6688 ** Most finders simply return a pointer to a fixed sqlite3_io_methods
6689 ** object. But the "autolockIoFinder" available on MacOSX does a little
6690 ** more than that; it looks at the filesystem type that hosts the
6691 ** database file and tries to choose an locking method appropriate for
6692 ** that filesystem time.
6694 #define UNIXVFS(VFSNAME, FINDER) { \
6695 3, /* iVersion */ \
6696 sizeof(unixFile), /* szOsFile */ \
6697 MAX_PATHNAME, /* mxPathname */ \
6698 0, /* pNext */ \
6699 VFSNAME, /* zName */ \
6700 (void*)&FINDER, /* pAppData */ \
6701 unixOpen, /* xOpen */ \
6702 unixDelete, /* xDelete */ \
6703 unixAccess, /* xAccess */ \
6704 unixFullPathname, /* xFullPathname */ \
6705 unixDlOpen, /* xDlOpen */ \
6706 unixDlError, /* xDlError */ \
6707 unixDlSym, /* xDlSym */ \
6708 unixDlClose, /* xDlClose */ \
6709 unixRandomness, /* xRandomness */ \
6710 unixSleep, /* xSleep */ \
6711 unixCurrentTime, /* xCurrentTime */ \
6712 unixGetLastError, /* xGetLastError */ \
6713 unixCurrentTimeInt64, /* xCurrentTimeInt64 */ \
6714 unixSetSystemCall, /* xSetSystemCall */ \
6715 unixGetSystemCall, /* xGetSystemCall */ \
6716 unixNextSystemCall, /* xNextSystemCall */ \
6720 ** All default VFSes for unix are contained in the following array.
6722 ** Note that the sqlite3_vfs.pNext field of the VFS object is modified
6723 ** by the SQLite core when the VFS is registered. So the following
6724 ** array cannot be const.
6726 static sqlite3_vfs aVfs[] = {
6727 #if SQLITE_ENABLE_LOCKING_STYLE && (OS_VXWORKS || defined(__APPLE__))
6728 UNIXVFS("unix", autolockIoFinder ),
6729 #else
6730 UNIXVFS("unix", posixIoFinder ),
6731 #endif
6732 UNIXVFS("unix-none", nolockIoFinder ),
6733 UNIXVFS("unix-dotfile", dotlockIoFinder ),
6734 UNIXVFS("unix-excl", posixIoFinder ),
6735 #if OS_VXWORKS
6736 UNIXVFS("unix-namedsem", semIoFinder ),
6737 #endif
6738 #if SQLITE_ENABLE_LOCKING_STYLE
6739 UNIXVFS("unix-posix", posixIoFinder ),
6740 #if !OS_VXWORKS
6741 UNIXVFS("unix-flock", flockIoFinder ),
6742 #endif
6743 #endif
6744 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
6745 UNIXVFS("unix-afp", afpIoFinder ),
6746 UNIXVFS("unix-nfs", nfsIoFinder ),
6747 UNIXVFS("unix-proxy", proxyIoFinder ),
6748 #endif
6750 unsigned int i; /* Loop counter */
6752 /* Double-check that the aSyscall[] array has been constructed
6753 ** correctly. See ticket [bb3a86e890c8e96ab] */
6754 assert( ArraySize(aSyscall)==18 );
6756 /* Register all VFSes defined in the aVfs[] array */
6757 for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){
6758 sqlite3_vfs_register(&aVfs[i], i==0);
6760 return SQLITE_OK;
6764 ** Shutdown the operating system interface.
6766 ** Some operating systems might need to do some cleanup in this routine,
6767 ** to release dynamically allocated objects. But not on unix.
6768 ** This routine is a no-op for unix.
6770 int sqlite3_os_end(void){
6771 return SQLITE_OK;
6774 #endif /* SQLITE_OS_UNIX */