Add contributions section to README
[sqlcipher.git] / src / vdbeaux.c
blobe07aacbcac361fb134cc9a672c4f584d508f6d74
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
15 #include "sqliteInt.h"
16 #include "vdbeInt.h"
19 ** Create a new virtual database engine.
21 Vdbe *sqlite3VdbeCreate(Parse *pParse){
22 sqlite3 *db = pParse->db;
23 Vdbe *p;
24 p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
25 if( p==0 ) return 0;
26 p->db = db;
27 if( db->pVdbe ){
28 db->pVdbe->pPrev = p;
30 p->pNext = db->pVdbe;
31 p->pPrev = 0;
32 db->pVdbe = p;
33 p->magic = VDBE_MAGIC_INIT;
34 p->pParse = pParse;
35 assert( pParse->aLabel==0 );
36 assert( pParse->nLabel==0 );
37 assert( pParse->nOpAlloc==0 );
38 return p;
42 ** Remember the SQL string for a prepared statement.
44 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){
45 assert( isPrepareV2==1 || isPrepareV2==0 );
46 if( p==0 ) return;
47 #if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG)
48 if( !isPrepareV2 ) return;
49 #endif
50 assert( p->zSql==0 );
51 p->zSql = sqlite3DbStrNDup(p->db, z, n);
52 p->isPrepareV2 = (u8)isPrepareV2;
56 ** Return the SQL associated with a prepared statement
58 const char *sqlite3_sql(sqlite3_stmt *pStmt){
59 Vdbe *p = (Vdbe *)pStmt;
60 return (p && p->isPrepareV2) ? p->zSql : 0;
64 ** Swap all content between two VDBE structures.
66 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
67 Vdbe tmp, *pTmp;
68 char *zTmp;
69 tmp = *pA;
70 *pA = *pB;
71 *pB = tmp;
72 pTmp = pA->pNext;
73 pA->pNext = pB->pNext;
74 pB->pNext = pTmp;
75 pTmp = pA->pPrev;
76 pA->pPrev = pB->pPrev;
77 pB->pPrev = pTmp;
78 zTmp = pA->zSql;
79 pA->zSql = pB->zSql;
80 pB->zSql = zTmp;
81 pB->isPrepareV2 = pA->isPrepareV2;
85 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
86 ** than its current size. nOp is guaranteed to be less than or equal
87 ** to 1024/sizeof(Op).
89 ** If an out-of-memory error occurs while resizing the array, return
90 ** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain
91 ** unchanged (this is so that any opcodes already allocated can be
92 ** correctly deallocated along with the rest of the Vdbe).
94 static int growOpArray(Vdbe *v, int nOp){
95 VdbeOp *pNew;
96 Parse *p = v->pParse;
98 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
99 ** more frequent reallocs and hence provide more opportunities for
100 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
101 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
102 ** by the minimum* amount required until the size reaches 512. Normal
103 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
104 ** size of the op array or add 1KB of space, whichever is smaller. */
105 #ifdef SQLITE_TEST_REALLOC_STRESS
106 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp);
107 #else
108 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
109 UNUSED_PARAMETER(nOp);
110 #endif
112 assert( nOp<=(1024/sizeof(Op)) );
113 assert( nNew>=(p->nOpAlloc+nOp) );
114 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
115 if( pNew ){
116 p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op);
117 v->aOp = pNew;
119 return (pNew ? SQLITE_OK : SQLITE_NOMEM);
122 #ifdef SQLITE_DEBUG
123 /* This routine is just a convenient place to set a breakpoint that will
124 ** fire after each opcode is inserted and displayed using
125 ** "PRAGMA vdbe_addoptrace=on".
127 static void test_addop_breakpoint(void){
128 static int n = 0;
129 n++;
131 #endif
134 ** Add a new instruction to the list of instructions current in the
135 ** VDBE. Return the address of the new instruction.
137 ** Parameters:
139 ** p Pointer to the VDBE
141 ** op The opcode for this instruction
143 ** p1, p2, p3 Operands
145 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
146 ** the sqlite3VdbeChangeP4() function to change the value of the P4
147 ** operand.
149 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
150 int i;
151 VdbeOp *pOp;
153 i = p->nOp;
154 assert( p->magic==VDBE_MAGIC_INIT );
155 assert( op>0 && op<0xff );
156 if( p->pParse->nOpAlloc<=i ){
157 if( growOpArray(p, 1) ){
158 return 1;
161 p->nOp++;
162 pOp = &p->aOp[i];
163 pOp->opcode = (u8)op;
164 pOp->p5 = 0;
165 pOp->p1 = p1;
166 pOp->p2 = p2;
167 pOp->p3 = p3;
168 pOp->p4.p = 0;
169 pOp->p4type = P4_NOTUSED;
170 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
171 pOp->zComment = 0;
172 #endif
173 #ifdef SQLITE_DEBUG
174 if( p->db->flags & SQLITE_VdbeAddopTrace ){
175 int jj, kk;
176 Parse *pParse = p->pParse;
177 for(jj=kk=0; jj<SQLITE_N_COLCACHE; jj++){
178 struct yColCache *x = pParse->aColCache + jj;
179 if( x->iLevel>pParse->iCacheLevel || x->iReg==0 ) continue;
180 printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn);
181 kk++;
183 if( kk ) printf("\n");
184 sqlite3VdbePrintOp(0, i, &p->aOp[i]);
185 test_addop_breakpoint();
187 #endif
188 #ifdef VDBE_PROFILE
189 pOp->cycles = 0;
190 pOp->cnt = 0;
191 #endif
192 #ifdef SQLITE_VDBE_COVERAGE
193 pOp->iSrcLine = 0;
194 #endif
195 return i;
197 int sqlite3VdbeAddOp0(Vdbe *p, int op){
198 return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
200 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
201 return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
203 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
204 return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
209 ** Add an opcode that includes the p4 value as a pointer.
211 int sqlite3VdbeAddOp4(
212 Vdbe *p, /* Add the opcode to this VM */
213 int op, /* The new opcode */
214 int p1, /* The P1 operand */
215 int p2, /* The P2 operand */
216 int p3, /* The P3 operand */
217 const char *zP4, /* The P4 operand */
218 int p4type /* P4 operand type */
220 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
221 sqlite3VdbeChangeP4(p, addr, zP4, p4type);
222 return addr;
226 ** Add an OP_ParseSchema opcode. This routine is broken out from
227 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
228 ** as having been used.
230 ** The zWhere string must have been obtained from sqlite3_malloc().
231 ** This routine will take ownership of the allocated memory.
233 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
234 int j;
235 int addr = sqlite3VdbeAddOp3(p, OP_ParseSchema, iDb, 0, 0);
236 sqlite3VdbeChangeP4(p, addr, zWhere, P4_DYNAMIC);
237 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
241 ** Add an opcode that includes the p4 value as an integer.
243 int sqlite3VdbeAddOp4Int(
244 Vdbe *p, /* Add the opcode to this VM */
245 int op, /* The new opcode */
246 int p1, /* The P1 operand */
247 int p2, /* The P2 operand */
248 int p3, /* The P3 operand */
249 int p4 /* The P4 operand as an integer */
251 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
252 sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32);
253 return addr;
257 ** Create a new symbolic label for an instruction that has yet to be
258 ** coded. The symbolic label is really just a negative number. The
259 ** label can be used as the P2 value of an operation. Later, when
260 ** the label is resolved to a specific address, the VDBE will scan
261 ** through its operation list and change all values of P2 which match
262 ** the label into the resolved address.
264 ** The VDBE knows that a P2 value is a label because labels are
265 ** always negative and P2 values are suppose to be non-negative.
266 ** Hence, a negative P2 value is a label that has yet to be resolved.
268 ** Zero is returned if a malloc() fails.
270 int sqlite3VdbeMakeLabel(Vdbe *v){
271 Parse *p = v->pParse;
272 int i = p->nLabel++;
273 assert( v->magic==VDBE_MAGIC_INIT );
274 if( (i & (i-1))==0 ){
275 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
276 (i*2+1)*sizeof(p->aLabel[0]));
278 if( p->aLabel ){
279 p->aLabel[i] = -1;
281 return -1-i;
285 ** Resolve label "x" to be the address of the next instruction to
286 ** be inserted. The parameter "x" must have been obtained from
287 ** a prior call to sqlite3VdbeMakeLabel().
289 void sqlite3VdbeResolveLabel(Vdbe *v, int x){
290 Parse *p = v->pParse;
291 int j = -1-x;
292 assert( v->magic==VDBE_MAGIC_INIT );
293 assert( j<p->nLabel );
294 if( ALWAYS(j>=0) && p->aLabel ){
295 p->aLabel[j] = v->nOp;
297 p->iFixedOp = v->nOp - 1;
301 ** Mark the VDBE as one that can only be run one time.
303 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
304 p->runOnlyOnce = 1;
307 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
310 ** The following type and function are used to iterate through all opcodes
311 ** in a Vdbe main program and each of the sub-programs (triggers) it may
312 ** invoke directly or indirectly. It should be used as follows:
314 ** Op *pOp;
315 ** VdbeOpIter sIter;
317 ** memset(&sIter, 0, sizeof(sIter));
318 ** sIter.v = v; // v is of type Vdbe*
319 ** while( (pOp = opIterNext(&sIter)) ){
320 ** // Do something with pOp
321 ** }
322 ** sqlite3DbFree(v->db, sIter.apSub);
325 typedef struct VdbeOpIter VdbeOpIter;
326 struct VdbeOpIter {
327 Vdbe *v; /* Vdbe to iterate through the opcodes of */
328 SubProgram **apSub; /* Array of subprograms */
329 int nSub; /* Number of entries in apSub */
330 int iAddr; /* Address of next instruction to return */
331 int iSub; /* 0 = main program, 1 = first sub-program etc. */
333 static Op *opIterNext(VdbeOpIter *p){
334 Vdbe *v = p->v;
335 Op *pRet = 0;
336 Op *aOp;
337 int nOp;
339 if( p->iSub<=p->nSub ){
341 if( p->iSub==0 ){
342 aOp = v->aOp;
343 nOp = v->nOp;
344 }else{
345 aOp = p->apSub[p->iSub-1]->aOp;
346 nOp = p->apSub[p->iSub-1]->nOp;
348 assert( p->iAddr<nOp );
350 pRet = &aOp[p->iAddr];
351 p->iAddr++;
352 if( p->iAddr==nOp ){
353 p->iSub++;
354 p->iAddr = 0;
357 if( pRet->p4type==P4_SUBPROGRAM ){
358 int nByte = (p->nSub+1)*sizeof(SubProgram*);
359 int j;
360 for(j=0; j<p->nSub; j++){
361 if( p->apSub[j]==pRet->p4.pProgram ) break;
363 if( j==p->nSub ){
364 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
365 if( !p->apSub ){
366 pRet = 0;
367 }else{
368 p->apSub[p->nSub++] = pRet->p4.pProgram;
374 return pRet;
378 ** Check if the program stored in the VM associated with pParse may
379 ** throw an ABORT exception (causing the statement, but not entire transaction
380 ** to be rolled back). This condition is true if the main program or any
381 ** sub-programs contains any of the following:
383 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
384 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
385 ** * OP_Destroy
386 ** * OP_VUpdate
387 ** * OP_VRename
388 ** * OP_FkCounter with P2==0 (immediate foreign key constraint)
390 ** Then check that the value of Parse.mayAbort is true if an
391 ** ABORT may be thrown, or false otherwise. Return true if it does
392 ** match, or false otherwise. This function is intended to be used as
393 ** part of an assert statement in the compiler. Similar to:
395 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
397 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
398 int hasAbort = 0;
399 int hasFkCounter = 0;
400 Op *pOp;
401 VdbeOpIter sIter;
402 memset(&sIter, 0, sizeof(sIter));
403 sIter.v = v;
405 while( (pOp = opIterNext(&sIter))!=0 ){
406 int opcode = pOp->opcode;
407 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
408 || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
409 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
411 hasAbort = 1;
412 break;
414 #ifndef SQLITE_OMIT_FOREIGN_KEY
415 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
416 hasFkCounter = 1;
418 #endif
420 sqlite3DbFree(v->db, sIter.apSub);
422 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
423 ** If malloc failed, then the while() loop above may not have iterated
424 ** through all opcodes and hasAbort may be set incorrectly. Return
425 ** true for this case to prevent the assert() in the callers frame
426 ** from failing. */
427 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter );
429 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
432 ** Loop through the program looking for P2 values that are negative
433 ** on jump instructions. Each such value is a label. Resolve the
434 ** label by setting the P2 value to its correct non-zero value.
436 ** This routine is called once after all opcodes have been inserted.
438 ** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument
439 ** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by
440 ** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
442 ** The Op.opflags field is set on all opcodes.
444 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
445 int i;
446 int nMaxArgs = *pMaxFuncArgs;
447 Op *pOp;
448 Parse *pParse = p->pParse;
449 int *aLabel = pParse->aLabel;
450 p->readOnly = 1;
451 p->bIsReader = 0;
452 for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
453 u8 opcode = pOp->opcode;
455 /* NOTE: Be sure to update mkopcodeh.awk when adding or removing
456 ** cases from this switch! */
457 switch( opcode ){
458 case OP_Function:
459 case OP_AggStep: {
460 if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
461 break;
463 case OP_Transaction: {
464 if( pOp->p2!=0 ) p->readOnly = 0;
465 /* fall thru */
467 case OP_AutoCommit:
468 case OP_Savepoint: {
469 p->bIsReader = 1;
470 break;
472 #ifndef SQLITE_OMIT_WAL
473 case OP_Checkpoint:
474 #endif
475 case OP_Vacuum:
476 case OP_JournalMode: {
477 p->readOnly = 0;
478 p->bIsReader = 1;
479 break;
481 #ifndef SQLITE_OMIT_VIRTUALTABLE
482 case OP_VUpdate: {
483 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
484 break;
486 case OP_VFilter: {
487 int n;
488 assert( p->nOp - i >= 3 );
489 assert( pOp[-1].opcode==OP_Integer );
490 n = pOp[-1].p1;
491 if( n>nMaxArgs ) nMaxArgs = n;
492 break;
494 #endif
495 case OP_Next:
496 case OP_NextIfOpen:
497 case OP_SorterNext: {
498 pOp->p4.xAdvance = sqlite3BtreeNext;
499 pOp->p4type = P4_ADVANCE;
500 break;
502 case OP_Prev:
503 case OP_PrevIfOpen: {
504 pOp->p4.xAdvance = sqlite3BtreePrevious;
505 pOp->p4type = P4_ADVANCE;
506 break;
510 pOp->opflags = sqlite3OpcodeProperty[opcode];
511 if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
512 assert( -1-pOp->p2<pParse->nLabel );
513 pOp->p2 = aLabel[-1-pOp->p2];
516 sqlite3DbFree(p->db, pParse->aLabel);
517 pParse->aLabel = 0;
518 pParse->nLabel = 0;
519 *pMaxFuncArgs = nMaxArgs;
520 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
524 ** Return the address of the next instruction to be inserted.
526 int sqlite3VdbeCurrentAddr(Vdbe *p){
527 assert( p->magic==VDBE_MAGIC_INIT );
528 return p->nOp;
532 ** This function returns a pointer to the array of opcodes associated with
533 ** the Vdbe passed as the first argument. It is the callers responsibility
534 ** to arrange for the returned array to be eventually freed using the
535 ** vdbeFreeOpArray() function.
537 ** Before returning, *pnOp is set to the number of entries in the returned
538 ** array. Also, *pnMaxArg is set to the larger of its current value and
539 ** the number of entries in the Vdbe.apArg[] array required to execute the
540 ** returned program.
542 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
543 VdbeOp *aOp = p->aOp;
544 assert( aOp && !p->db->mallocFailed );
546 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
547 assert( DbMaskAllZero(p->btreeMask) );
549 resolveP2Values(p, pnMaxArg);
550 *pnOp = p->nOp;
551 p->aOp = 0;
552 return aOp;
556 ** Add a whole list of operations to the operation stack. Return the
557 ** address of the first operation added.
559 int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp, int iLineno){
560 int addr;
561 assert( p->magic==VDBE_MAGIC_INIT );
562 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){
563 return 0;
565 addr = p->nOp;
566 if( ALWAYS(nOp>0) ){
567 int i;
568 VdbeOpList const *pIn = aOp;
569 for(i=0; i<nOp; i++, pIn++){
570 int p2 = pIn->p2;
571 VdbeOp *pOut = &p->aOp[i+addr];
572 pOut->opcode = pIn->opcode;
573 pOut->p1 = pIn->p1;
574 if( p2<0 ){
575 assert( sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP );
576 pOut->p2 = addr + ADDR(p2);
577 }else{
578 pOut->p2 = p2;
580 pOut->p3 = pIn->p3;
581 pOut->p4type = P4_NOTUSED;
582 pOut->p4.p = 0;
583 pOut->p5 = 0;
584 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
585 pOut->zComment = 0;
586 #endif
587 #ifdef SQLITE_VDBE_COVERAGE
588 pOut->iSrcLine = iLineno+i;
589 #else
590 (void)iLineno;
591 #endif
592 #ifdef SQLITE_DEBUG
593 if( p->db->flags & SQLITE_VdbeAddopTrace ){
594 sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
596 #endif
598 p->nOp += nOp;
600 return addr;
603 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
605 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
607 void sqlite3VdbeScanStatus(
608 Vdbe *p, /* VM to add scanstatus() to */
609 int addrExplain, /* Address of OP_Explain (or 0) */
610 int addrLoop, /* Address of loop counter */
611 int addrVisit, /* Address of rows visited counter */
612 LogEst nEst, /* Estimated number of output rows */
613 const char *zName /* Name of table or index being scanned */
615 int nByte = (p->nScan+1) * sizeof(ScanStatus);
616 ScanStatus *aNew;
617 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
618 if( aNew ){
619 ScanStatus *pNew = &aNew[p->nScan++];
620 pNew->addrExplain = addrExplain;
621 pNew->addrLoop = addrLoop;
622 pNew->addrVisit = addrVisit;
623 pNew->nEst = nEst;
624 pNew->zName = sqlite3DbStrDup(p->db, zName);
625 p->aScan = aNew;
628 #endif
632 ** Change the value of the P1 operand for a specific instruction.
633 ** This routine is useful when a large program is loaded from a
634 ** static array using sqlite3VdbeAddOpList but we want to make a
635 ** few minor changes to the program.
637 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){
638 assert( p!=0 );
639 if( ((u32)p->nOp)>addr ){
640 p->aOp[addr].p1 = val;
645 ** Change the value of the P2 operand for a specific instruction.
646 ** This routine is useful for setting a jump destination.
648 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
649 assert( p!=0 );
650 if( ((u32)p->nOp)>addr ){
651 p->aOp[addr].p2 = val;
656 ** Change the value of the P3 operand for a specific instruction.
658 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
659 assert( p!=0 );
660 if( ((u32)p->nOp)>addr ){
661 p->aOp[addr].p3 = val;
666 ** Change the value of the P5 operand for the most recently
667 ** added operation.
669 void sqlite3VdbeChangeP5(Vdbe *p, u8 val){
670 assert( p!=0 );
671 if( p->aOp ){
672 assert( p->nOp>0 );
673 p->aOp[p->nOp-1].p5 = val;
678 ** Change the P2 operand of instruction addr so that it points to
679 ** the address of the next instruction to be coded.
681 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
682 sqlite3VdbeChangeP2(p, addr, p->nOp);
683 p->pParse->iFixedOp = p->nOp - 1;
688 ** If the input FuncDef structure is ephemeral, then free it. If
689 ** the FuncDef is not ephermal, then do nothing.
691 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
692 if( ALWAYS(pDef) && (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
693 sqlite3DbFree(db, pDef);
697 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
700 ** Delete a P4 value if necessary.
702 static void freeP4(sqlite3 *db, int p4type, void *p4){
703 if( p4 ){
704 assert( db );
705 switch( p4type ){
706 case P4_REAL:
707 case P4_INT64:
708 case P4_DYNAMIC:
709 case P4_INTARRAY: {
710 sqlite3DbFree(db, p4);
711 break;
713 case P4_KEYINFO: {
714 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
715 break;
717 case P4_MPRINTF: {
718 if( db->pnBytesFreed==0 ) sqlite3_free(p4);
719 break;
721 case P4_FUNCDEF: {
722 freeEphemeralFunction(db, (FuncDef*)p4);
723 break;
725 case P4_MEM: {
726 if( db->pnBytesFreed==0 ){
727 sqlite3ValueFree((sqlite3_value*)p4);
728 }else{
729 Mem *p = (Mem*)p4;
730 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
731 sqlite3DbFree(db, p);
733 break;
735 case P4_VTAB : {
736 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
737 break;
744 ** Free the space allocated for aOp and any p4 values allocated for the
745 ** opcodes contained within. If aOp is not NULL it is assumed to contain
746 ** nOp entries.
748 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
749 if( aOp ){
750 Op *pOp;
751 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
752 freeP4(db, pOp->p4type, pOp->p4.p);
753 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
754 sqlite3DbFree(db, pOp->zComment);
755 #endif
758 sqlite3DbFree(db, aOp);
762 ** Link the SubProgram object passed as the second argument into the linked
763 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
764 ** objects when the VM is no longer required.
766 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
767 p->pNext = pVdbe->pProgram;
768 pVdbe->pProgram = p;
772 ** Change the opcode at addr into OP_Noop
774 void sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
775 if( addr<p->nOp ){
776 VdbeOp *pOp = &p->aOp[addr];
777 sqlite3 *db = p->db;
778 freeP4(db, pOp->p4type, pOp->p4.p);
779 memset(pOp, 0, sizeof(pOp[0]));
780 pOp->opcode = OP_Noop;
781 if( addr==p->nOp-1 ) p->nOp--;
786 ** If the last opcode is "op" and it is not a jump destination,
787 ** then remove it. Return true if and only if an opcode was removed.
789 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
790 if( (p->nOp-1)>(p->pParse->iFixedOp) && p->aOp[p->nOp-1].opcode==op ){
791 sqlite3VdbeChangeToNoop(p, p->nOp-1);
792 return 1;
793 }else{
794 return 0;
799 ** Change the value of the P4 operand for a specific instruction.
800 ** This routine is useful when a large program is loaded from a
801 ** static array using sqlite3VdbeAddOpList but we want to make a
802 ** few minor changes to the program.
804 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
805 ** the string is made into memory obtained from sqlite3_malloc().
806 ** A value of n==0 means copy bytes of zP4 up to and including the
807 ** first null byte. If n>0 then copy n+1 bytes of zP4.
809 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
810 ** to a string or structure that is guaranteed to exist for the lifetime of
811 ** the Vdbe. In these cases we can just copy the pointer.
813 ** If addr<0 then change P4 on the most recently inserted instruction.
815 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
816 Op *pOp;
817 sqlite3 *db;
818 assert( p!=0 );
819 db = p->db;
820 assert( p->magic==VDBE_MAGIC_INIT );
821 if( p->aOp==0 || db->mallocFailed ){
822 if( n!=P4_VTAB ){
823 freeP4(db, n, (void*)*(char**)&zP4);
825 return;
827 assert( p->nOp>0 );
828 assert( addr<p->nOp );
829 if( addr<0 ){
830 addr = p->nOp - 1;
832 pOp = &p->aOp[addr];
833 assert( pOp->p4type==P4_NOTUSED
834 || pOp->p4type==P4_INT32
835 || pOp->p4type==P4_KEYINFO );
836 freeP4(db, pOp->p4type, pOp->p4.p);
837 pOp->p4.p = 0;
838 if( n==P4_INT32 ){
839 /* Note: this cast is safe, because the origin data point was an int
840 ** that was cast to a (const char *). */
841 pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
842 pOp->p4type = P4_INT32;
843 }else if( zP4==0 ){
844 pOp->p4.p = 0;
845 pOp->p4type = P4_NOTUSED;
846 }else if( n==P4_KEYINFO ){
847 pOp->p4.p = (void*)zP4;
848 pOp->p4type = P4_KEYINFO;
849 }else if( n==P4_VTAB ){
850 pOp->p4.p = (void*)zP4;
851 pOp->p4type = P4_VTAB;
852 sqlite3VtabLock((VTable *)zP4);
853 assert( ((VTable *)zP4)->db==p->db );
854 }else if( n<0 ){
855 pOp->p4.p = (void*)zP4;
856 pOp->p4type = (signed char)n;
857 }else{
858 if( n==0 ) n = sqlite3Strlen30(zP4);
859 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
860 pOp->p4type = P4_DYNAMIC;
865 ** Set the P4 on the most recently added opcode to the KeyInfo for the
866 ** index given.
868 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
869 Vdbe *v = pParse->pVdbe;
870 assert( v!=0 );
871 assert( pIdx!=0 );
872 sqlite3VdbeChangeP4(v, -1, (char*)sqlite3KeyInfoOfIndex(pParse, pIdx),
873 P4_KEYINFO);
876 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
878 ** Change the comment on the most recently coded instruction. Or
879 ** insert a No-op and add the comment to that new instruction. This
880 ** makes the code easier to read during debugging. None of this happens
881 ** in a production build.
883 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
884 assert( p->nOp>0 || p->aOp==0 );
885 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
886 if( p->nOp ){
887 assert( p->aOp );
888 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
889 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
892 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
893 va_list ap;
894 if( p ){
895 va_start(ap, zFormat);
896 vdbeVComment(p, zFormat, ap);
897 va_end(ap);
900 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
901 va_list ap;
902 if( p ){
903 sqlite3VdbeAddOp0(p, OP_Noop);
904 va_start(ap, zFormat);
905 vdbeVComment(p, zFormat, ap);
906 va_end(ap);
909 #endif /* NDEBUG */
911 #ifdef SQLITE_VDBE_COVERAGE
913 ** Set the value if the iSrcLine field for the previously coded instruction.
915 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
916 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
918 #endif /* SQLITE_VDBE_COVERAGE */
921 ** Return the opcode for a given address. If the address is -1, then
922 ** return the most recently inserted opcode.
924 ** If a memory allocation error has occurred prior to the calling of this
925 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
926 ** is readable but not writable, though it is cast to a writable value.
927 ** The return of a dummy opcode allows the call to continue functioning
928 ** after an OOM fault without having to check to see if the return from
929 ** this routine is a valid pointer. But because the dummy.opcode is 0,
930 ** dummy will never be written to. This is verified by code inspection and
931 ** by running with Valgrind.
933 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
934 /* C89 specifies that the constant "dummy" will be initialized to all
935 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
936 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
937 assert( p->magic==VDBE_MAGIC_INIT );
938 if( addr<0 ){
939 addr = p->nOp - 1;
941 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
942 if( p->db->mallocFailed ){
943 return (VdbeOp*)&dummy;
944 }else{
945 return &p->aOp[addr];
949 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
951 ** Return an integer value for one of the parameters to the opcode pOp
952 ** determined by character c.
954 static int translateP(char c, const Op *pOp){
955 if( c=='1' ) return pOp->p1;
956 if( c=='2' ) return pOp->p2;
957 if( c=='3' ) return pOp->p3;
958 if( c=='4' ) return pOp->p4.i;
959 return pOp->p5;
963 ** Compute a string for the "comment" field of a VDBE opcode listing.
965 ** The Synopsis: field in comments in the vdbe.c source file gets converted
966 ** to an extra string that is appended to the sqlite3OpcodeName(). In the
967 ** absence of other comments, this synopsis becomes the comment on the opcode.
968 ** Some translation occurs:
970 ** "PX" -> "r[X]"
971 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
972 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
973 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
975 static int displayComment(
976 const Op *pOp, /* The opcode to be commented */
977 const char *zP4, /* Previously obtained value for P4 */
978 char *zTemp, /* Write result here */
979 int nTemp /* Space available in zTemp[] */
981 const char *zOpName;
982 const char *zSynopsis;
983 int nOpName;
984 int ii, jj;
985 zOpName = sqlite3OpcodeName(pOp->opcode);
986 nOpName = sqlite3Strlen30(zOpName);
987 if( zOpName[nOpName+1] ){
988 int seenCom = 0;
989 char c;
990 zSynopsis = zOpName += nOpName + 1;
991 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){
992 if( c=='P' ){
993 c = zSynopsis[++ii];
994 if( c=='4' ){
995 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4);
996 }else if( c=='X' ){
997 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment);
998 seenCom = 1;
999 }else{
1000 int v1 = translateP(c, pOp);
1001 int v2;
1002 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1);
1003 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1004 ii += 3;
1005 jj += sqlite3Strlen30(zTemp+jj);
1006 v2 = translateP(zSynopsis[ii], pOp);
1007 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1008 ii += 2;
1009 v2++;
1011 if( v2>1 ){
1012 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1);
1014 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1015 ii += 4;
1018 jj += sqlite3Strlen30(zTemp+jj);
1019 }else{
1020 zTemp[jj++] = c;
1023 if( !seenCom && jj<nTemp-5 && pOp->zComment ){
1024 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment);
1025 jj += sqlite3Strlen30(zTemp+jj);
1027 if( jj<nTemp ) zTemp[jj] = 0;
1028 }else if( pOp->zComment ){
1029 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment);
1030 jj = sqlite3Strlen30(zTemp);
1031 }else{
1032 zTemp[0] = 0;
1033 jj = 0;
1035 return jj;
1037 #endif /* SQLITE_DEBUG */
1040 #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
1041 || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1043 ** Compute a string that describes the P4 parameter for an opcode.
1044 ** Use zTemp for any required temporary buffer space.
1046 static char *displayP4(Op *pOp, char *zTemp, int nTemp){
1047 char *zP4 = zTemp;
1048 assert( nTemp>=20 );
1049 switch( pOp->p4type ){
1050 case P4_KEYINFO: {
1051 int i, j;
1052 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
1053 assert( pKeyInfo->aSortOrder!=0 );
1054 sqlite3_snprintf(nTemp, zTemp, "k(%d", pKeyInfo->nField);
1055 i = sqlite3Strlen30(zTemp);
1056 for(j=0; j<pKeyInfo->nField; j++){
1057 CollSeq *pColl = pKeyInfo->aColl[j];
1058 const char *zColl = pColl ? pColl->zName : "nil";
1059 int n = sqlite3Strlen30(zColl);
1060 if( n==6 && memcmp(zColl,"BINARY",6)==0 ){
1061 zColl = "B";
1062 n = 1;
1064 if( i+n>nTemp-6 ){
1065 memcpy(&zTemp[i],",...",4);
1066 break;
1068 zTemp[i++] = ',';
1069 if( pKeyInfo->aSortOrder[j] ){
1070 zTemp[i++] = '-';
1072 memcpy(&zTemp[i], zColl, n+1);
1073 i += n;
1075 zTemp[i++] = ')';
1076 zTemp[i] = 0;
1077 assert( i<nTemp );
1078 break;
1080 case P4_COLLSEQ: {
1081 CollSeq *pColl = pOp->p4.pColl;
1082 sqlite3_snprintf(nTemp, zTemp, "(%.20s)", pColl->zName);
1083 break;
1085 case P4_FUNCDEF: {
1086 FuncDef *pDef = pOp->p4.pFunc;
1087 sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
1088 break;
1090 case P4_INT64: {
1091 sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
1092 break;
1094 case P4_INT32: {
1095 sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
1096 break;
1098 case P4_REAL: {
1099 sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
1100 break;
1102 case P4_MEM: {
1103 Mem *pMem = pOp->p4.pMem;
1104 if( pMem->flags & MEM_Str ){
1105 zP4 = pMem->z;
1106 }else if( pMem->flags & MEM_Int ){
1107 sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
1108 }else if( pMem->flags & MEM_Real ){
1109 sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->u.r);
1110 }else if( pMem->flags & MEM_Null ){
1111 sqlite3_snprintf(nTemp, zTemp, "NULL");
1112 }else{
1113 assert( pMem->flags & MEM_Blob );
1114 zP4 = "(blob)";
1116 break;
1118 #ifndef SQLITE_OMIT_VIRTUALTABLE
1119 case P4_VTAB: {
1120 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
1121 sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
1122 break;
1124 #endif
1125 case P4_INTARRAY: {
1126 sqlite3_snprintf(nTemp, zTemp, "intarray");
1127 break;
1129 case P4_SUBPROGRAM: {
1130 sqlite3_snprintf(nTemp, zTemp, "program");
1131 break;
1133 case P4_ADVANCE: {
1134 zTemp[0] = 0;
1135 break;
1137 default: {
1138 zP4 = pOp->p4.z;
1139 if( zP4==0 ){
1140 zP4 = zTemp;
1141 zTemp[0] = 0;
1145 assert( zP4!=0 );
1146 return zP4;
1148 #endif
1151 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
1153 ** The prepared statements need to know in advance the complete set of
1154 ** attached databases that will be use. A mask of these databases
1155 ** is maintained in p->btreeMask. The p->lockMask value is the subset of
1156 ** p->btreeMask of databases that will require a lock.
1158 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
1159 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
1160 assert( i<(int)sizeof(p->btreeMask)*8 );
1161 DbMaskSet(p->btreeMask, i);
1162 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
1163 DbMaskSet(p->lockMask, i);
1167 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1169 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1170 ** this routine obtains the mutex associated with each BtShared structure
1171 ** that may be accessed by the VM passed as an argument. In doing so it also
1172 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1173 ** that the correct busy-handler callback is invoked if required.
1175 ** If SQLite is not threadsafe but does support shared-cache mode, then
1176 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1177 ** of all of BtShared structures accessible via the database handle
1178 ** associated with the VM.
1180 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1181 ** function is a no-op.
1183 ** The p->btreeMask field is a bitmask of all btrees that the prepared
1184 ** statement p will ever use. Let N be the number of bits in p->btreeMask
1185 ** corresponding to btrees that use shared cache. Then the runtime of
1186 ** this routine is N*N. But as N is rarely more than 1, this should not
1187 ** be a problem.
1189 void sqlite3VdbeEnter(Vdbe *p){
1190 int i;
1191 sqlite3 *db;
1192 Db *aDb;
1193 int nDb;
1194 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1195 db = p->db;
1196 aDb = db->aDb;
1197 nDb = db->nDb;
1198 for(i=0; i<nDb; i++){
1199 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1200 sqlite3BtreeEnter(aDb[i].pBt);
1204 #endif
1206 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1208 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1210 void sqlite3VdbeLeave(Vdbe *p){
1211 int i;
1212 sqlite3 *db;
1213 Db *aDb;
1214 int nDb;
1215 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1216 db = p->db;
1217 aDb = db->aDb;
1218 nDb = db->nDb;
1219 for(i=0; i<nDb; i++){
1220 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1221 sqlite3BtreeLeave(aDb[i].pBt);
1225 #endif
1227 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1229 ** Print a single opcode. This routine is used for debugging only.
1231 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
1232 char *zP4;
1233 char zPtr[50];
1234 char zCom[100];
1235 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
1236 if( pOut==0 ) pOut = stdout;
1237 zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
1238 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1239 displayComment(pOp, zP4, zCom, sizeof(zCom));
1240 #else
1241 zCom[0] = 0;
1242 #endif
1243 /* NB: The sqlite3OpcodeName() function is implemented by code created
1244 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1245 ** information from the vdbe.c source text */
1246 fprintf(pOut, zFormat1, pc,
1247 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
1248 zCom
1250 fflush(pOut);
1252 #endif
1255 ** Release an array of N Mem elements
1257 static void releaseMemArray(Mem *p, int N){
1258 if( p && N ){
1259 Mem *pEnd = &p[N];
1260 sqlite3 *db = p->db;
1261 u8 malloc_failed = db->mallocFailed;
1262 if( db->pnBytesFreed ){
1264 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1265 }while( (++p)<pEnd );
1266 return;
1269 assert( (&p[1])==pEnd || p[0].db==p[1].db );
1270 assert( sqlite3VdbeCheckMemInvariants(p) );
1272 /* This block is really an inlined version of sqlite3VdbeMemRelease()
1273 ** that takes advantage of the fact that the memory cell value is
1274 ** being set to NULL after releasing any dynamic resources.
1276 ** The justification for duplicating code is that according to
1277 ** callgrind, this causes a certain test case to hit the CPU 4.7
1278 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1279 ** sqlite3MemRelease() were called from here. With -O2, this jumps
1280 ** to 6.6 percent. The test case is inserting 1000 rows into a table
1281 ** with no indexes using a single prepared INSERT statement, bind()
1282 ** and reset(). Inserts are grouped into a transaction.
1284 testcase( p->flags & MEM_Agg );
1285 testcase( p->flags & MEM_Dyn );
1286 testcase( p->flags & MEM_Frame );
1287 testcase( p->flags & MEM_RowSet );
1288 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
1289 sqlite3VdbeMemRelease(p);
1290 }else if( p->szMalloc ){
1291 sqlite3DbFree(db, p->zMalloc);
1292 p->szMalloc = 0;
1295 p->flags = MEM_Undefined;
1296 }while( (++p)<pEnd );
1297 db->mallocFailed = malloc_failed;
1302 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
1303 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
1305 void sqlite3VdbeFrameDelete(VdbeFrame *p){
1306 int i;
1307 Mem *aMem = VdbeFrameMem(p);
1308 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
1309 for(i=0; i<p->nChildCsr; i++){
1310 sqlite3VdbeFreeCursor(p->v, apCsr[i]);
1312 releaseMemArray(aMem, p->nChildMem);
1313 sqlite3DbFree(p->v->db, p);
1316 #ifndef SQLITE_OMIT_EXPLAIN
1318 ** Give a listing of the program in the virtual machine.
1320 ** The interface is the same as sqlite3VdbeExec(). But instead of
1321 ** running the code, it invokes the callback once for each instruction.
1322 ** This feature is used to implement "EXPLAIN".
1324 ** When p->explain==1, each instruction is listed. When
1325 ** p->explain==2, only OP_Explain instructions are listed and these
1326 ** are shown in a different format. p->explain==2 is used to implement
1327 ** EXPLAIN QUERY PLAN.
1329 ** When p->explain==1, first the main program is listed, then each of
1330 ** the trigger subprograms are listed one by one.
1332 int sqlite3VdbeList(
1333 Vdbe *p /* The VDBE */
1335 int nRow; /* Stop when row count reaches this */
1336 int nSub = 0; /* Number of sub-vdbes seen so far */
1337 SubProgram **apSub = 0; /* Array of sub-vdbes */
1338 Mem *pSub = 0; /* Memory cell hold array of subprogs */
1339 sqlite3 *db = p->db; /* The database connection */
1340 int i; /* Loop counter */
1341 int rc = SQLITE_OK; /* Return code */
1342 Mem *pMem = &p->aMem[1]; /* First Mem of result set */
1344 assert( p->explain );
1345 assert( p->magic==VDBE_MAGIC_RUN );
1346 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
1348 /* Even though this opcode does not use dynamic strings for
1349 ** the result, result columns may become dynamic if the user calls
1350 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
1352 releaseMemArray(pMem, 8);
1353 p->pResultSet = 0;
1355 if( p->rc==SQLITE_NOMEM ){
1356 /* This happens if a malloc() inside a call to sqlite3_column_text() or
1357 ** sqlite3_column_text16() failed. */
1358 db->mallocFailed = 1;
1359 return SQLITE_ERROR;
1362 /* When the number of output rows reaches nRow, that means the
1363 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1364 ** nRow is the sum of the number of rows in the main program, plus
1365 ** the sum of the number of rows in all trigger subprograms encountered
1366 ** so far. The nRow value will increase as new trigger subprograms are
1367 ** encountered, but p->pc will eventually catch up to nRow.
1369 nRow = p->nOp;
1370 if( p->explain==1 ){
1371 /* The first 8 memory cells are used for the result set. So we will
1372 ** commandeer the 9th cell to use as storage for an array of pointers
1373 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
1374 ** cells. */
1375 assert( p->nMem>9 );
1376 pSub = &p->aMem[9];
1377 if( pSub->flags&MEM_Blob ){
1378 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is
1379 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
1380 nSub = pSub->n/sizeof(Vdbe*);
1381 apSub = (SubProgram **)pSub->z;
1383 for(i=0; i<nSub; i++){
1384 nRow += apSub[i]->nOp;
1389 i = p->pc++;
1390 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
1391 if( i>=nRow ){
1392 p->rc = SQLITE_OK;
1393 rc = SQLITE_DONE;
1394 }else if( db->u1.isInterrupted ){
1395 p->rc = SQLITE_INTERRUPT;
1396 rc = SQLITE_ERROR;
1397 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc));
1398 }else{
1399 char *zP4;
1400 Op *pOp;
1401 if( i<p->nOp ){
1402 /* The output line number is small enough that we are still in the
1403 ** main program. */
1404 pOp = &p->aOp[i];
1405 }else{
1406 /* We are currently listing subprograms. Figure out which one and
1407 ** pick up the appropriate opcode. */
1408 int j;
1409 i -= p->nOp;
1410 for(j=0; i>=apSub[j]->nOp; j++){
1411 i -= apSub[j]->nOp;
1413 pOp = &apSub[j]->aOp[i];
1415 if( p->explain==1 ){
1416 pMem->flags = MEM_Int;
1417 pMem->u.i = i; /* Program counter */
1418 pMem++;
1420 pMem->flags = MEM_Static|MEM_Str|MEM_Term;
1421 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
1422 assert( pMem->z!=0 );
1423 pMem->n = sqlite3Strlen30(pMem->z);
1424 pMem->enc = SQLITE_UTF8;
1425 pMem++;
1427 /* When an OP_Program opcode is encounter (the only opcode that has
1428 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
1429 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
1430 ** has not already been seen.
1432 if( pOp->p4type==P4_SUBPROGRAM ){
1433 int nByte = (nSub+1)*sizeof(SubProgram*);
1434 int j;
1435 for(j=0; j<nSub; j++){
1436 if( apSub[j]==pOp->p4.pProgram ) break;
1438 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){
1439 apSub = (SubProgram **)pSub->z;
1440 apSub[nSub++] = pOp->p4.pProgram;
1441 pSub->flags |= MEM_Blob;
1442 pSub->n = nSub*sizeof(SubProgram*);
1447 pMem->flags = MEM_Int;
1448 pMem->u.i = pOp->p1; /* P1 */
1449 pMem++;
1451 pMem->flags = MEM_Int;
1452 pMem->u.i = pOp->p2; /* P2 */
1453 pMem++;
1455 pMem->flags = MEM_Int;
1456 pMem->u.i = pOp->p3; /* P3 */
1457 pMem++;
1459 if( sqlite3VdbeMemClearAndResize(pMem, 32) ){ /* P4 */
1460 assert( p->db->mallocFailed );
1461 return SQLITE_ERROR;
1463 pMem->flags = MEM_Str|MEM_Term;
1464 zP4 = displayP4(pOp, pMem->z, 32);
1465 if( zP4!=pMem->z ){
1466 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
1467 }else{
1468 assert( pMem->z!=0 );
1469 pMem->n = sqlite3Strlen30(pMem->z);
1470 pMem->enc = SQLITE_UTF8;
1472 pMem++;
1474 if( p->explain==1 ){
1475 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){
1476 assert( p->db->mallocFailed );
1477 return SQLITE_ERROR;
1479 pMem->flags = MEM_Str|MEM_Term;
1480 pMem->n = 2;
1481 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
1482 pMem->enc = SQLITE_UTF8;
1483 pMem++;
1485 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1486 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){
1487 assert( p->db->mallocFailed );
1488 return SQLITE_ERROR;
1490 pMem->flags = MEM_Str|MEM_Term;
1491 pMem->n = displayComment(pOp, zP4, pMem->z, 500);
1492 pMem->enc = SQLITE_UTF8;
1493 #else
1494 pMem->flags = MEM_Null; /* Comment */
1495 #endif
1498 p->nResColumn = 8 - 4*(p->explain-1);
1499 p->pResultSet = &p->aMem[1];
1500 p->rc = SQLITE_OK;
1501 rc = SQLITE_ROW;
1503 return rc;
1505 #endif /* SQLITE_OMIT_EXPLAIN */
1507 #ifdef SQLITE_DEBUG
1509 ** Print the SQL that was used to generate a VDBE program.
1511 void sqlite3VdbePrintSql(Vdbe *p){
1512 const char *z = 0;
1513 if( p->zSql ){
1514 z = p->zSql;
1515 }else if( p->nOp>=1 ){
1516 const VdbeOp *pOp = &p->aOp[0];
1517 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
1518 z = pOp->p4.z;
1519 while( sqlite3Isspace(*z) ) z++;
1522 if( z ) printf("SQL: [%s]\n", z);
1524 #endif
1526 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
1528 ** Print an IOTRACE message showing SQL content.
1530 void sqlite3VdbeIOTraceSql(Vdbe *p){
1531 int nOp = p->nOp;
1532 VdbeOp *pOp;
1533 if( sqlite3IoTrace==0 ) return;
1534 if( nOp<1 ) return;
1535 pOp = &p->aOp[0];
1536 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
1537 int i, j;
1538 char z[1000];
1539 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
1540 for(i=0; sqlite3Isspace(z[i]); i++){}
1541 for(j=0; z[i]; i++){
1542 if( sqlite3Isspace(z[i]) ){
1543 if( z[i-1]!=' ' ){
1544 z[j++] = ' ';
1546 }else{
1547 z[j++] = z[i];
1550 z[j] = 0;
1551 sqlite3IoTrace("SQL %s\n", z);
1554 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
1557 ** Allocate space from a fixed size buffer and return a pointer to
1558 ** that space. If insufficient space is available, return NULL.
1560 ** The pBuf parameter is the initial value of a pointer which will
1561 ** receive the new memory. pBuf is normally NULL. If pBuf is not
1562 ** NULL, it means that memory space has already been allocated and that
1563 ** this routine should not allocate any new memory. When pBuf is not
1564 ** NULL simply return pBuf. Only allocate new memory space when pBuf
1565 ** is NULL.
1567 ** nByte is the number of bytes of space needed.
1569 ** *ppFrom points to available space and pEnd points to the end of the
1570 ** available space. When space is allocated, *ppFrom is advanced past
1571 ** the end of the allocated space.
1573 ** *pnByte is a counter of the number of bytes of space that have failed
1574 ** to allocate. If there is insufficient space in *ppFrom to satisfy the
1575 ** request, then increment *pnByte by the amount of the request.
1577 static void *allocSpace(
1578 void *pBuf, /* Where return pointer will be stored */
1579 int nByte, /* Number of bytes to allocate */
1580 u8 **ppFrom, /* IN/OUT: Allocate from *ppFrom */
1581 u8 *pEnd, /* Pointer to 1 byte past the end of *ppFrom buffer */
1582 int *pnByte /* If allocation cannot be made, increment *pnByte */
1584 assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) );
1585 if( pBuf ) return pBuf;
1586 nByte = ROUND8(nByte);
1587 if( &(*ppFrom)[nByte] <= pEnd ){
1588 pBuf = (void*)*ppFrom;
1589 *ppFrom += nByte;
1590 }else{
1591 *pnByte += nByte;
1593 return pBuf;
1597 ** Rewind the VDBE back to the beginning in preparation for
1598 ** running it.
1600 void sqlite3VdbeRewind(Vdbe *p){
1601 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
1602 int i;
1603 #endif
1604 assert( p!=0 );
1605 assert( p->magic==VDBE_MAGIC_INIT );
1607 /* There should be at least one opcode.
1609 assert( p->nOp>0 );
1611 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
1612 p->magic = VDBE_MAGIC_RUN;
1614 #ifdef SQLITE_DEBUG
1615 for(i=1; i<p->nMem; i++){
1616 assert( p->aMem[i].db==p->db );
1618 #endif
1619 p->pc = -1;
1620 p->rc = SQLITE_OK;
1621 p->errorAction = OE_Abort;
1622 p->magic = VDBE_MAGIC_RUN;
1623 p->nChange = 0;
1624 p->cacheCtr = 1;
1625 p->minWriteFileFormat = 255;
1626 p->iStatement = 0;
1627 p->nFkConstraint = 0;
1628 #ifdef VDBE_PROFILE
1629 for(i=0; i<p->nOp; i++){
1630 p->aOp[i].cnt = 0;
1631 p->aOp[i].cycles = 0;
1633 #endif
1637 ** Prepare a virtual machine for execution for the first time after
1638 ** creating the virtual machine. This involves things such
1639 ** as allocating registers and initializing the program counter.
1640 ** After the VDBE has be prepped, it can be executed by one or more
1641 ** calls to sqlite3VdbeExec().
1643 ** This function may be called exactly once on each virtual machine.
1644 ** After this routine is called the VM has been "packaged" and is ready
1645 ** to run. After this routine is called, further calls to
1646 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
1647 ** the Vdbe from the Parse object that helped generate it so that the
1648 ** the Vdbe becomes an independent entity and the Parse object can be
1649 ** destroyed.
1651 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
1652 ** to its initial state after it has been run.
1654 void sqlite3VdbeMakeReady(
1655 Vdbe *p, /* The VDBE */
1656 Parse *pParse /* Parsing context */
1658 sqlite3 *db; /* The database connection */
1659 int nVar; /* Number of parameters */
1660 int nMem; /* Number of VM memory registers */
1661 int nCursor; /* Number of cursors required */
1662 int nArg; /* Number of arguments in subprograms */
1663 int nOnce; /* Number of OP_Once instructions */
1664 int n; /* Loop counter */
1665 u8 *zCsr; /* Memory available for allocation */
1666 u8 *zEnd; /* First byte past allocated memory */
1667 int nByte; /* How much extra memory is needed */
1669 assert( p!=0 );
1670 assert( p->nOp>0 );
1671 assert( pParse!=0 );
1672 assert( p->magic==VDBE_MAGIC_INIT );
1673 assert( pParse==p->pParse );
1674 db = p->db;
1675 assert( db->mallocFailed==0 );
1676 nVar = pParse->nVar;
1677 nMem = pParse->nMem;
1678 nCursor = pParse->nTab;
1679 nArg = pParse->nMaxArg;
1680 nOnce = pParse->nOnce;
1681 if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */
1683 /* For each cursor required, also allocate a memory cell. Memory
1684 ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
1685 ** the vdbe program. Instead they are used to allocate space for
1686 ** VdbeCursor/BtCursor structures. The blob of memory associated with
1687 ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
1688 ** stores the blob of memory associated with cursor 1, etc.
1690 ** See also: allocateCursor().
1692 nMem += nCursor;
1694 /* Allocate space for memory registers, SQL variables, VDBE cursors and
1695 ** an array to marshal SQL function arguments in.
1697 zCsr = (u8*)&p->aOp[p->nOp]; /* Memory avaliable for allocation */
1698 zEnd = (u8*)&p->aOp[pParse->nOpAlloc]; /* First byte past end of zCsr[] */
1700 resolveP2Values(p, &nArg);
1701 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
1702 if( pParse->explain && nMem<10 ){
1703 nMem = 10;
1705 memset(zCsr, 0, zEnd-zCsr);
1706 zCsr += (zCsr - (u8*)0)&7;
1707 assert( EIGHT_BYTE_ALIGNMENT(zCsr) );
1708 p->expired = 0;
1710 /* Memory for registers, parameters, cursor, etc, is allocated in two
1711 ** passes. On the first pass, we try to reuse unused space at the
1712 ** end of the opcode array. If we are unable to satisfy all memory
1713 ** requirements by reusing the opcode array tail, then the second
1714 ** pass will fill in the rest using a fresh allocation.
1716 ** This two-pass approach that reuses as much memory as possible from
1717 ** the leftover space at the end of the opcode array can significantly
1718 ** reduce the amount of memory held by a prepared statement.
1720 do {
1721 nByte = 0;
1722 p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
1723 p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
1724 p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
1725 p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
1726 p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
1727 &zCsr, zEnd, &nByte);
1728 p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, &zCsr, zEnd, &nByte);
1729 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1730 p->anExec = allocSpace(p->anExec, p->nOp*sizeof(i64), &zCsr, zEnd, &nByte);
1731 #endif
1732 if( nByte ){
1733 p->pFree = sqlite3DbMallocZero(db, nByte);
1735 zCsr = p->pFree;
1736 zEnd = &zCsr[nByte];
1737 }while( nByte && !db->mallocFailed );
1739 p->nCursor = nCursor;
1740 p->nOnceFlag = nOnce;
1741 if( p->aVar ){
1742 p->nVar = (ynVar)nVar;
1743 for(n=0; n<nVar; n++){
1744 p->aVar[n].flags = MEM_Null;
1745 p->aVar[n].db = db;
1748 if( p->azVar && pParse->nzVar>0 ){
1749 p->nzVar = pParse->nzVar;
1750 memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0]));
1751 memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0]));
1753 if( p->aMem ){
1754 p->aMem--; /* aMem[] goes from 1..nMem */
1755 p->nMem = nMem; /* not from 0..nMem-1 */
1756 for(n=1; n<=nMem; n++){
1757 p->aMem[n].flags = MEM_Undefined;
1758 p->aMem[n].db = db;
1761 p->explain = pParse->explain;
1762 sqlite3VdbeRewind(p);
1766 ** Close a VDBE cursor and release all the resources that cursor
1767 ** happens to hold.
1769 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
1770 if( pCx==0 ){
1771 return;
1773 sqlite3VdbeSorterClose(p->db, pCx);
1774 if( pCx->pBt ){
1775 sqlite3BtreeClose(pCx->pBt);
1776 /* The pCx->pCursor will be close automatically, if it exists, by
1777 ** the call above. */
1778 }else if( pCx->pCursor ){
1779 sqlite3BtreeCloseCursor(pCx->pCursor);
1781 #ifndef SQLITE_OMIT_VIRTUALTABLE
1782 else if( pCx->pVtabCursor ){
1783 sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
1784 const sqlite3_module *pModule = pVtabCursor->pVtab->pModule;
1785 p->inVtabMethod = 1;
1786 pModule->xClose(pVtabCursor);
1787 p->inVtabMethod = 0;
1789 #endif
1793 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
1794 ** is used, for example, when a trigger sub-program is halted to restore
1795 ** control to the main program.
1797 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
1798 Vdbe *v = pFrame->v;
1799 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1800 v->anExec = pFrame->anExec;
1801 #endif
1802 v->aOnceFlag = pFrame->aOnceFlag;
1803 v->nOnceFlag = pFrame->nOnceFlag;
1804 v->aOp = pFrame->aOp;
1805 v->nOp = pFrame->nOp;
1806 v->aMem = pFrame->aMem;
1807 v->nMem = pFrame->nMem;
1808 v->apCsr = pFrame->apCsr;
1809 v->nCursor = pFrame->nCursor;
1810 v->db->lastRowid = pFrame->lastRowid;
1811 v->nChange = pFrame->nChange;
1812 v->db->nChange = pFrame->nDbChange;
1813 return pFrame->pc;
1817 ** Close all cursors.
1819 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
1820 ** cell array. This is necessary as the memory cell array may contain
1821 ** pointers to VdbeFrame objects, which may in turn contain pointers to
1822 ** open cursors.
1824 static void closeAllCursors(Vdbe *p){
1825 if( p->pFrame ){
1826 VdbeFrame *pFrame;
1827 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
1828 sqlite3VdbeFrameRestore(pFrame);
1829 p->pFrame = 0;
1830 p->nFrame = 0;
1832 assert( p->nFrame==0 );
1834 if( p->apCsr ){
1835 int i;
1836 for(i=0; i<p->nCursor; i++){
1837 VdbeCursor *pC = p->apCsr[i];
1838 if( pC ){
1839 sqlite3VdbeFreeCursor(p, pC);
1840 p->apCsr[i] = 0;
1844 if( p->aMem ){
1845 releaseMemArray(&p->aMem[1], p->nMem);
1847 while( p->pDelFrame ){
1848 VdbeFrame *pDel = p->pDelFrame;
1849 p->pDelFrame = pDel->pParent;
1850 sqlite3VdbeFrameDelete(pDel);
1853 /* Delete any auxdata allocations made by the VM */
1854 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p, -1, 0);
1855 assert( p->pAuxData==0 );
1859 ** Clean up the VM after a single run.
1861 static void Cleanup(Vdbe *p){
1862 sqlite3 *db = p->db;
1864 #ifdef SQLITE_DEBUG
1865 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
1866 ** Vdbe.aMem[] arrays have already been cleaned up. */
1867 int i;
1868 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
1869 if( p->aMem ){
1870 for(i=1; i<=p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
1872 #endif
1874 sqlite3DbFree(db, p->zErrMsg);
1875 p->zErrMsg = 0;
1876 p->pResultSet = 0;
1880 ** Set the number of result columns that will be returned by this SQL
1881 ** statement. This is now set at compile time, rather than during
1882 ** execution of the vdbe program so that sqlite3_column_count() can
1883 ** be called on an SQL statement before sqlite3_step().
1885 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
1886 Mem *pColName;
1887 int n;
1888 sqlite3 *db = p->db;
1890 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
1891 sqlite3DbFree(db, p->aColName);
1892 n = nResColumn*COLNAME_N;
1893 p->nResColumn = (u16)nResColumn;
1894 p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
1895 if( p->aColName==0 ) return;
1896 while( n-- > 0 ){
1897 pColName->flags = MEM_Null;
1898 pColName->db = p->db;
1899 pColName++;
1904 ** Set the name of the idx'th column to be returned by the SQL statement.
1905 ** zName must be a pointer to a nul terminated string.
1907 ** This call must be made after a call to sqlite3VdbeSetNumCols().
1909 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
1910 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
1911 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
1913 int sqlite3VdbeSetColName(
1914 Vdbe *p, /* Vdbe being configured */
1915 int idx, /* Index of column zName applies to */
1916 int var, /* One of the COLNAME_* constants */
1917 const char *zName, /* Pointer to buffer containing name */
1918 void (*xDel)(void*) /* Memory management strategy for zName */
1920 int rc;
1921 Mem *pColName;
1922 assert( idx<p->nResColumn );
1923 assert( var<COLNAME_N );
1924 if( p->db->mallocFailed ){
1925 assert( !zName || xDel!=SQLITE_DYNAMIC );
1926 return SQLITE_NOMEM;
1928 assert( p->aColName!=0 );
1929 pColName = &(p->aColName[idx+var*p->nResColumn]);
1930 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
1931 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
1932 return rc;
1936 ** A read or write transaction may or may not be active on database handle
1937 ** db. If a transaction is active, commit it. If there is a
1938 ** write-transaction spanning more than one database file, this routine
1939 ** takes care of the master journal trickery.
1941 static int vdbeCommit(sqlite3 *db, Vdbe *p){
1942 int i;
1943 int nTrans = 0; /* Number of databases with an active write-transaction */
1944 int rc = SQLITE_OK;
1945 int needXcommit = 0;
1947 #ifdef SQLITE_OMIT_VIRTUALTABLE
1948 /* With this option, sqlite3VtabSync() is defined to be simply
1949 ** SQLITE_OK so p is not used.
1951 UNUSED_PARAMETER(p);
1952 #endif
1954 /* Before doing anything else, call the xSync() callback for any
1955 ** virtual module tables written in this transaction. This has to
1956 ** be done before determining whether a master journal file is
1957 ** required, as an xSync() callback may add an attached database
1958 ** to the transaction.
1960 rc = sqlite3VtabSync(db, p);
1962 /* This loop determines (a) if the commit hook should be invoked and
1963 ** (b) how many database files have open write transactions, not
1964 ** including the temp database. (b) is important because if more than
1965 ** one database file has an open write transaction, a master journal
1966 ** file is required for an atomic commit.
1968 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
1969 Btree *pBt = db->aDb[i].pBt;
1970 if( sqlite3BtreeIsInTrans(pBt) ){
1971 needXcommit = 1;
1972 if( i!=1 ) nTrans++;
1973 sqlite3BtreeEnter(pBt);
1974 rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt));
1975 sqlite3BtreeLeave(pBt);
1978 if( rc!=SQLITE_OK ){
1979 return rc;
1982 /* If there are any write-transactions at all, invoke the commit hook */
1983 if( needXcommit && db->xCommitCallback ){
1984 rc = db->xCommitCallback(db->pCommitArg);
1985 if( rc ){
1986 return SQLITE_CONSTRAINT_COMMITHOOK;
1990 /* The simple case - no more than one database file (not counting the
1991 ** TEMP database) has a transaction active. There is no need for the
1992 ** master-journal.
1994 ** If the return value of sqlite3BtreeGetFilename() is a zero length
1995 ** string, it means the main database is :memory: or a temp file. In
1996 ** that case we do not support atomic multi-file commits, so use the
1997 ** simple case then too.
1999 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2000 || nTrans<=1
2002 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2003 Btree *pBt = db->aDb[i].pBt;
2004 if( pBt ){
2005 rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
2009 /* Do the commit only if all databases successfully complete phase 1.
2010 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2011 ** IO error while deleting or truncating a journal file. It is unlikely,
2012 ** but could happen. In this case abandon processing and return the error.
2014 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2015 Btree *pBt = db->aDb[i].pBt;
2016 if( pBt ){
2017 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
2020 if( rc==SQLITE_OK ){
2021 sqlite3VtabCommit(db);
2025 /* The complex case - There is a multi-file write-transaction active.
2026 ** This requires a master journal file to ensure the transaction is
2027 ** committed atomically.
2029 #ifndef SQLITE_OMIT_DISKIO
2030 else{
2031 sqlite3_vfs *pVfs = db->pVfs;
2032 int needSync = 0;
2033 char *zMaster = 0; /* File-name for the master journal */
2034 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
2035 sqlite3_file *pMaster = 0;
2036 i64 offset = 0;
2037 int res;
2038 int retryCount = 0;
2039 int nMainFile;
2041 /* Select a master journal file name */
2042 nMainFile = sqlite3Strlen30(zMainFile);
2043 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile);
2044 if( zMaster==0 ) return SQLITE_NOMEM;
2045 do {
2046 u32 iRandom;
2047 if( retryCount ){
2048 if( retryCount>100 ){
2049 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
2050 sqlite3OsDelete(pVfs, zMaster, 0);
2051 break;
2052 }else if( retryCount==1 ){
2053 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
2056 retryCount++;
2057 sqlite3_randomness(sizeof(iRandom), &iRandom);
2058 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
2059 (iRandom>>8)&0xffffff, iRandom&0xff);
2060 /* The antipenultimate character of the master journal name must
2061 ** be "9" to avoid name collisions when using 8+3 filenames. */
2062 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
2063 sqlite3FileSuffix3(zMainFile, zMaster);
2064 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
2065 }while( rc==SQLITE_OK && res );
2066 if( rc==SQLITE_OK ){
2067 /* Open the master journal. */
2068 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
2069 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2070 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
2073 if( rc!=SQLITE_OK ){
2074 sqlite3DbFree(db, zMaster);
2075 return rc;
2078 /* Write the name of each database file in the transaction into the new
2079 ** master journal file. If an error occurs at this point close
2080 ** and delete the master journal file. All the individual journal files
2081 ** still have 'null' as the master journal pointer, so they will roll
2082 ** back independently if a failure occurs.
2084 for(i=0; i<db->nDb; i++){
2085 Btree *pBt = db->aDb[i].pBt;
2086 if( sqlite3BtreeIsInTrans(pBt) ){
2087 char const *zFile = sqlite3BtreeGetJournalname(pBt);
2088 if( zFile==0 ){
2089 continue; /* Ignore TEMP and :memory: databases */
2091 assert( zFile[0]!=0 );
2092 if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
2093 needSync = 1;
2095 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
2096 offset += sqlite3Strlen30(zFile)+1;
2097 if( rc!=SQLITE_OK ){
2098 sqlite3OsCloseFree(pMaster);
2099 sqlite3OsDelete(pVfs, zMaster, 0);
2100 sqlite3DbFree(db, zMaster);
2101 return rc;
2106 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
2107 ** flag is set this is not required.
2109 if( needSync
2110 && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
2111 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
2113 sqlite3OsCloseFree(pMaster);
2114 sqlite3OsDelete(pVfs, zMaster, 0);
2115 sqlite3DbFree(db, zMaster);
2116 return rc;
2119 /* Sync all the db files involved in the transaction. The same call
2120 ** sets the master journal pointer in each individual journal. If
2121 ** an error occurs here, do not delete the master journal file.
2123 ** If the error occurs during the first call to
2124 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2125 ** master journal file will be orphaned. But we cannot delete it,
2126 ** in case the master journal file name was written into the journal
2127 ** file before the failure occurred.
2129 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2130 Btree *pBt = db->aDb[i].pBt;
2131 if( pBt ){
2132 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
2135 sqlite3OsCloseFree(pMaster);
2136 assert( rc!=SQLITE_BUSY );
2137 if( rc!=SQLITE_OK ){
2138 sqlite3DbFree(db, zMaster);
2139 return rc;
2142 /* Delete the master journal file. This commits the transaction. After
2143 ** doing this the directory is synced again before any individual
2144 ** transaction files are deleted.
2146 rc = sqlite3OsDelete(pVfs, zMaster, 1);
2147 sqlite3DbFree(db, zMaster);
2148 zMaster = 0;
2149 if( rc ){
2150 return rc;
2153 /* All files and directories have already been synced, so the following
2154 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2155 ** deleting or truncating journals. If something goes wrong while
2156 ** this is happening we don't really care. The integrity of the
2157 ** transaction is already guaranteed, but some stray 'cold' journals
2158 ** may be lying around. Returning an error code won't help matters.
2160 disable_simulated_io_errors();
2161 sqlite3BeginBenignMalloc();
2162 for(i=0; i<db->nDb; i++){
2163 Btree *pBt = db->aDb[i].pBt;
2164 if( pBt ){
2165 sqlite3BtreeCommitPhaseTwo(pBt, 1);
2168 sqlite3EndBenignMalloc();
2169 enable_simulated_io_errors();
2171 sqlite3VtabCommit(db);
2173 #endif
2175 return rc;
2179 ** This routine checks that the sqlite3.nVdbeActive count variable
2180 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
2181 ** currently active. An assertion fails if the two counts do not match.
2182 ** This is an internal self-check only - it is not an essential processing
2183 ** step.
2185 ** This is a no-op if NDEBUG is defined.
2187 #ifndef NDEBUG
2188 static void checkActiveVdbeCnt(sqlite3 *db){
2189 Vdbe *p;
2190 int cnt = 0;
2191 int nWrite = 0;
2192 int nRead = 0;
2193 p = db->pVdbe;
2194 while( p ){
2195 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
2196 cnt++;
2197 if( p->readOnly==0 ) nWrite++;
2198 if( p->bIsReader ) nRead++;
2200 p = p->pNext;
2202 assert( cnt==db->nVdbeActive );
2203 assert( nWrite==db->nVdbeWrite );
2204 assert( nRead==db->nVdbeRead );
2206 #else
2207 #define checkActiveVdbeCnt(x)
2208 #endif
2211 ** If the Vdbe passed as the first argument opened a statement-transaction,
2212 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2213 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2214 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
2215 ** statement transaction is committed.
2217 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2218 ** Otherwise SQLITE_OK.
2220 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
2221 sqlite3 *const db = p->db;
2222 int rc = SQLITE_OK;
2224 /* If p->iStatement is greater than zero, then this Vdbe opened a
2225 ** statement transaction that should be closed here. The only exception
2226 ** is that an IO error may have occurred, causing an emergency rollback.
2227 ** In this case (db->nStatement==0), and there is nothing to do.
2229 if( db->nStatement && p->iStatement ){
2230 int i;
2231 const int iSavepoint = p->iStatement-1;
2233 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2234 assert( db->nStatement>0 );
2235 assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2237 for(i=0; i<db->nDb; i++){
2238 int rc2 = SQLITE_OK;
2239 Btree *pBt = db->aDb[i].pBt;
2240 if( pBt ){
2241 if( eOp==SAVEPOINT_ROLLBACK ){
2242 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2244 if( rc2==SQLITE_OK ){
2245 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2247 if( rc==SQLITE_OK ){
2248 rc = rc2;
2252 db->nStatement--;
2253 p->iStatement = 0;
2255 if( rc==SQLITE_OK ){
2256 if( eOp==SAVEPOINT_ROLLBACK ){
2257 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2259 if( rc==SQLITE_OK ){
2260 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2264 /* If the statement transaction is being rolled back, also restore the
2265 ** database handles deferred constraint counter to the value it had when
2266 ** the statement transaction was opened. */
2267 if( eOp==SAVEPOINT_ROLLBACK ){
2268 db->nDeferredCons = p->nStmtDefCons;
2269 db->nDeferredImmCons = p->nStmtDefImmCons;
2272 return rc;
2276 ** This function is called when a transaction opened by the database
2277 ** handle associated with the VM passed as an argument is about to be
2278 ** committed. If there are outstanding deferred foreign key constraint
2279 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2281 ** If there are outstanding FK violations and this function returns
2282 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2283 ** and write an error message to it. Then return SQLITE_ERROR.
2285 #ifndef SQLITE_OMIT_FOREIGN_KEY
2286 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
2287 sqlite3 *db = p->db;
2288 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
2289 || (!deferred && p->nFkConstraint>0)
2291 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2292 p->errorAction = OE_Abort;
2293 sqlite3SetString(&p->zErrMsg, db, "FOREIGN KEY constraint failed");
2294 return SQLITE_ERROR;
2296 return SQLITE_OK;
2298 #endif
2301 ** This routine is called the when a VDBE tries to halt. If the VDBE
2302 ** has made changes and is in autocommit mode, then commit those
2303 ** changes. If a rollback is needed, then do the rollback.
2305 ** This routine is the only way to move the state of a VM from
2306 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
2307 ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
2309 ** Return an error code. If the commit could not complete because of
2310 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
2311 ** means the close did not happen and needs to be repeated.
2313 int sqlite3VdbeHalt(Vdbe *p){
2314 int rc; /* Used to store transient return codes */
2315 sqlite3 *db = p->db;
2317 /* This function contains the logic that determines if a statement or
2318 ** transaction will be committed or rolled back as a result of the
2319 ** execution of this virtual machine.
2321 ** If any of the following errors occur:
2323 ** SQLITE_NOMEM
2324 ** SQLITE_IOERR
2325 ** SQLITE_FULL
2326 ** SQLITE_INTERRUPT
2328 ** Then the internal cache might have been left in an inconsistent
2329 ** state. We need to rollback the statement transaction, if there is
2330 ** one, or the complete transaction if there is no statement transaction.
2333 if( p->db->mallocFailed ){
2334 p->rc = SQLITE_NOMEM;
2336 if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag);
2337 closeAllCursors(p);
2338 if( p->magic!=VDBE_MAGIC_RUN ){
2339 return SQLITE_OK;
2341 checkActiveVdbeCnt(db);
2343 /* No commit or rollback needed if the program never started or if the
2344 ** SQL statement does not read or write a database file. */
2345 if( p->pc>=0 && p->bIsReader ){
2346 int mrc; /* Primary error code from p->rc */
2347 int eStatementOp = 0;
2348 int isSpecialError; /* Set to true if a 'special' error */
2350 /* Lock all btrees used by the statement */
2351 sqlite3VdbeEnter(p);
2353 /* Check for one of the special errors */
2354 mrc = p->rc & 0xff;
2355 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
2356 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
2357 if( isSpecialError ){
2358 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
2359 ** no rollback is necessary. Otherwise, at least a savepoint
2360 ** transaction must be rolled back to restore the database to a
2361 ** consistent state.
2363 ** Even if the statement is read-only, it is important to perform
2364 ** a statement or transaction rollback operation. If the error
2365 ** occurred while writing to the journal, sub-journal or database
2366 ** file as part of an effort to free up cache space (see function
2367 ** pagerStress() in pager.c), the rollback is required to restore
2368 ** the pager to a consistent state.
2370 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
2371 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
2372 eStatementOp = SAVEPOINT_ROLLBACK;
2373 }else{
2374 /* We are forced to roll back the active transaction. Before doing
2375 ** so, abort any other statements this handle currently has active.
2377 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2378 sqlite3CloseSavepoints(db);
2379 db->autoCommit = 1;
2380 p->nChange = 0;
2385 /* Check for immediate foreign key violations. */
2386 if( p->rc==SQLITE_OK ){
2387 sqlite3VdbeCheckFk(p, 0);
2390 /* If the auto-commit flag is set and this is the only active writer
2391 ** VM, then we do either a commit or rollback of the current transaction.
2393 ** Note: This block also runs if one of the special errors handled
2394 ** above has occurred.
2396 if( !sqlite3VtabInSync(db)
2397 && db->autoCommit
2398 && db->nVdbeWrite==(p->readOnly==0)
2400 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
2401 rc = sqlite3VdbeCheckFk(p, 1);
2402 if( rc!=SQLITE_OK ){
2403 if( NEVER(p->readOnly) ){
2404 sqlite3VdbeLeave(p);
2405 return SQLITE_ERROR;
2407 rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2408 }else{
2409 /* The auto-commit flag is true, the vdbe program was successful
2410 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
2411 ** key constraints to hold up the transaction. This means a commit
2412 ** is required. */
2413 rc = vdbeCommit(db, p);
2415 if( rc==SQLITE_BUSY && p->readOnly ){
2416 sqlite3VdbeLeave(p);
2417 return SQLITE_BUSY;
2418 }else if( rc!=SQLITE_OK ){
2419 p->rc = rc;
2420 sqlite3RollbackAll(db, SQLITE_OK);
2421 p->nChange = 0;
2422 }else{
2423 db->nDeferredCons = 0;
2424 db->nDeferredImmCons = 0;
2425 db->flags &= ~SQLITE_DeferFKs;
2426 sqlite3CommitInternalChanges(db);
2428 }else{
2429 sqlite3RollbackAll(db, SQLITE_OK);
2430 p->nChange = 0;
2432 db->nStatement = 0;
2433 }else if( eStatementOp==0 ){
2434 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
2435 eStatementOp = SAVEPOINT_RELEASE;
2436 }else if( p->errorAction==OE_Abort ){
2437 eStatementOp = SAVEPOINT_ROLLBACK;
2438 }else{
2439 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2440 sqlite3CloseSavepoints(db);
2441 db->autoCommit = 1;
2442 p->nChange = 0;
2446 /* If eStatementOp is non-zero, then a statement transaction needs to
2447 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
2448 ** do so. If this operation returns an error, and the current statement
2449 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
2450 ** current statement error code.
2452 if( eStatementOp ){
2453 rc = sqlite3VdbeCloseStatement(p, eStatementOp);
2454 if( rc ){
2455 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
2456 p->rc = rc;
2457 sqlite3DbFree(db, p->zErrMsg);
2458 p->zErrMsg = 0;
2460 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2461 sqlite3CloseSavepoints(db);
2462 db->autoCommit = 1;
2463 p->nChange = 0;
2467 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
2468 ** has been rolled back, update the database connection change-counter.
2470 if( p->changeCntOn ){
2471 if( eStatementOp!=SAVEPOINT_ROLLBACK ){
2472 sqlite3VdbeSetChanges(db, p->nChange);
2473 }else{
2474 sqlite3VdbeSetChanges(db, 0);
2476 p->nChange = 0;
2479 /* Release the locks */
2480 sqlite3VdbeLeave(p);
2483 /* We have successfully halted and closed the VM. Record this fact. */
2484 if( p->pc>=0 ){
2485 db->nVdbeActive--;
2486 if( !p->readOnly ) db->nVdbeWrite--;
2487 if( p->bIsReader ) db->nVdbeRead--;
2488 assert( db->nVdbeActive>=db->nVdbeRead );
2489 assert( db->nVdbeRead>=db->nVdbeWrite );
2490 assert( db->nVdbeWrite>=0 );
2492 p->magic = VDBE_MAGIC_HALT;
2493 checkActiveVdbeCnt(db);
2494 if( p->db->mallocFailed ){
2495 p->rc = SQLITE_NOMEM;
2498 /* If the auto-commit flag is set to true, then any locks that were held
2499 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
2500 ** to invoke any required unlock-notify callbacks.
2502 if( db->autoCommit ){
2503 sqlite3ConnectionUnlocked(db);
2506 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
2507 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
2512 ** Each VDBE holds the result of the most recent sqlite3_step() call
2513 ** in p->rc. This routine sets that result back to SQLITE_OK.
2515 void sqlite3VdbeResetStepResult(Vdbe *p){
2516 p->rc = SQLITE_OK;
2520 ** Copy the error code and error message belonging to the VDBE passed
2521 ** as the first argument to its database handle (so that they will be
2522 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
2524 ** This function does not clear the VDBE error code or message, just
2525 ** copies them to the database handle.
2527 int sqlite3VdbeTransferError(Vdbe *p){
2528 sqlite3 *db = p->db;
2529 int rc = p->rc;
2530 if( p->zErrMsg ){
2531 u8 mallocFailed = db->mallocFailed;
2532 sqlite3BeginBenignMalloc();
2533 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
2534 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
2535 sqlite3EndBenignMalloc();
2536 db->mallocFailed = mallocFailed;
2537 db->errCode = rc;
2538 }else{
2539 sqlite3Error(db, rc);
2541 return rc;
2544 #ifdef SQLITE_ENABLE_SQLLOG
2546 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
2547 ** invoke it.
2549 static void vdbeInvokeSqllog(Vdbe *v){
2550 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
2551 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
2552 assert( v->db->init.busy==0 );
2553 if( zExpanded ){
2554 sqlite3GlobalConfig.xSqllog(
2555 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
2557 sqlite3DbFree(v->db, zExpanded);
2561 #else
2562 # define vdbeInvokeSqllog(x)
2563 #endif
2566 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
2567 ** Write any error messages into *pzErrMsg. Return the result code.
2569 ** After this routine is run, the VDBE should be ready to be executed
2570 ** again.
2572 ** To look at it another way, this routine resets the state of the
2573 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
2574 ** VDBE_MAGIC_INIT.
2576 int sqlite3VdbeReset(Vdbe *p){
2577 sqlite3 *db;
2578 db = p->db;
2580 /* If the VM did not run to completion or if it encountered an
2581 ** error, then it might not have been halted properly. So halt
2582 ** it now.
2584 sqlite3VdbeHalt(p);
2586 /* If the VDBE has be run even partially, then transfer the error code
2587 ** and error message from the VDBE into the main database structure. But
2588 ** if the VDBE has just been set to run but has not actually executed any
2589 ** instructions yet, leave the main database error information unchanged.
2591 if( p->pc>=0 ){
2592 vdbeInvokeSqllog(p);
2593 sqlite3VdbeTransferError(p);
2594 sqlite3DbFree(db, p->zErrMsg);
2595 p->zErrMsg = 0;
2596 if( p->runOnlyOnce ) p->expired = 1;
2597 }else if( p->rc && p->expired ){
2598 /* The expired flag was set on the VDBE before the first call
2599 ** to sqlite3_step(). For consistency (since sqlite3_step() was
2600 ** called), set the database error in this case as well.
2602 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
2603 sqlite3DbFree(db, p->zErrMsg);
2604 p->zErrMsg = 0;
2607 /* Reclaim all memory used by the VDBE
2609 Cleanup(p);
2611 /* Save profiling information from this VDBE run.
2613 #ifdef VDBE_PROFILE
2615 FILE *out = fopen("vdbe_profile.out", "a");
2616 if( out ){
2617 int i;
2618 fprintf(out, "---- ");
2619 for(i=0; i<p->nOp; i++){
2620 fprintf(out, "%02x", p->aOp[i].opcode);
2622 fprintf(out, "\n");
2623 if( p->zSql ){
2624 char c, pc = 0;
2625 fprintf(out, "-- ");
2626 for(i=0; (c = p->zSql[i])!=0; i++){
2627 if( pc=='\n' ) fprintf(out, "-- ");
2628 putc(c, out);
2629 pc = c;
2631 if( pc!='\n' ) fprintf(out, "\n");
2633 for(i=0; i<p->nOp; i++){
2634 char zHdr[100];
2635 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
2636 p->aOp[i].cnt,
2637 p->aOp[i].cycles,
2638 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
2640 fprintf(out, "%s", zHdr);
2641 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
2643 fclose(out);
2646 #endif
2647 p->iCurrentTime = 0;
2648 p->magic = VDBE_MAGIC_INIT;
2649 return p->rc & db->errMask;
2653 ** Clean up and delete a VDBE after execution. Return an integer which is
2654 ** the result code. Write any error message text into *pzErrMsg.
2656 int sqlite3VdbeFinalize(Vdbe *p){
2657 int rc = SQLITE_OK;
2658 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
2659 rc = sqlite3VdbeReset(p);
2660 assert( (rc & p->db->errMask)==rc );
2662 sqlite3VdbeDelete(p);
2663 return rc;
2667 ** If parameter iOp is less than zero, then invoke the destructor for
2668 ** all auxiliary data pointers currently cached by the VM passed as
2669 ** the first argument.
2671 ** Or, if iOp is greater than or equal to zero, then the destructor is
2672 ** only invoked for those auxiliary data pointers created by the user
2673 ** function invoked by the OP_Function opcode at instruction iOp of
2674 ** VM pVdbe, and only then if:
2676 ** * the associated function parameter is the 32nd or later (counting
2677 ** from left to right), or
2679 ** * the corresponding bit in argument mask is clear (where the first
2680 ** function parameter corresponds to bit 0 etc.).
2682 void sqlite3VdbeDeleteAuxData(Vdbe *pVdbe, int iOp, int mask){
2683 AuxData **pp = &pVdbe->pAuxData;
2684 while( *pp ){
2685 AuxData *pAux = *pp;
2686 if( (iOp<0)
2687 || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg))))
2689 testcase( pAux->iArg==31 );
2690 if( pAux->xDelete ){
2691 pAux->xDelete(pAux->pAux);
2693 *pp = pAux->pNext;
2694 sqlite3DbFree(pVdbe->db, pAux);
2695 }else{
2696 pp= &pAux->pNext;
2702 ** Free all memory associated with the Vdbe passed as the second argument,
2703 ** except for object itself, which is preserved.
2705 ** The difference between this function and sqlite3VdbeDelete() is that
2706 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
2707 ** the database connection and frees the object itself.
2709 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
2710 SubProgram *pSub, *pNext;
2711 int i;
2712 assert( p->db==0 || p->db==db );
2713 releaseMemArray(p->aVar, p->nVar);
2714 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2715 for(pSub=p->pProgram; pSub; pSub=pNext){
2716 pNext = pSub->pNext;
2717 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
2718 sqlite3DbFree(db, pSub);
2720 for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
2721 vdbeFreeOpArray(db, p->aOp, p->nOp);
2722 sqlite3DbFree(db, p->aColName);
2723 sqlite3DbFree(db, p->zSql);
2724 sqlite3DbFree(db, p->pFree);
2725 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2726 for(i=0; i<p->nScan; i++){
2727 sqlite3DbFree(db, p->aScan[i].zName);
2729 sqlite3DbFree(db, p->aScan);
2730 #endif
2734 ** Delete an entire VDBE.
2736 void sqlite3VdbeDelete(Vdbe *p){
2737 sqlite3 *db;
2739 if( NEVER(p==0) ) return;
2740 db = p->db;
2741 assert( sqlite3_mutex_held(db->mutex) );
2742 sqlite3VdbeClearObject(db, p);
2743 if( p->pPrev ){
2744 p->pPrev->pNext = p->pNext;
2745 }else{
2746 assert( db->pVdbe==p );
2747 db->pVdbe = p->pNext;
2749 if( p->pNext ){
2750 p->pNext->pPrev = p->pPrev;
2752 p->magic = VDBE_MAGIC_DEAD;
2753 p->db = 0;
2754 sqlite3DbFree(db, p);
2758 ** The cursor "p" has a pending seek operation that has not yet been
2759 ** carried out. Seek the cursor now. If an error occurs, return
2760 ** the appropriate error code.
2762 static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){
2763 int res, rc;
2764 #ifdef SQLITE_TEST
2765 extern int sqlite3_search_count;
2766 #endif
2767 assert( p->deferredMoveto );
2768 assert( p->isTable );
2769 rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
2770 if( rc ) return rc;
2771 if( res!=0 ) return SQLITE_CORRUPT_BKPT;
2772 #ifdef SQLITE_TEST
2773 sqlite3_search_count++;
2774 #endif
2775 p->deferredMoveto = 0;
2776 p->cacheStatus = CACHE_STALE;
2777 return SQLITE_OK;
2781 ** Something has moved cursor "p" out of place. Maybe the row it was
2782 ** pointed to was deleted out from under it. Or maybe the btree was
2783 ** rebalanced. Whatever the cause, try to restore "p" to the place it
2784 ** is supposed to be pointing. If the row was deleted out from under the
2785 ** cursor, set the cursor to point to a NULL row.
2787 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
2788 int isDifferentRow, rc;
2789 assert( p->pCursor!=0 );
2790 assert( sqlite3BtreeCursorHasMoved(p->pCursor) );
2791 rc = sqlite3BtreeCursorRestore(p->pCursor, &isDifferentRow);
2792 p->cacheStatus = CACHE_STALE;
2793 if( isDifferentRow ) p->nullRow = 1;
2794 return rc;
2798 ** Check to ensure that the cursor is valid. Restore the cursor
2799 ** if need be. Return any I/O error from the restore operation.
2801 int sqlite3VdbeCursorRestore(VdbeCursor *p){
2802 if( sqlite3BtreeCursorHasMoved(p->pCursor) ){
2803 return handleMovedCursor(p);
2805 return SQLITE_OK;
2809 ** Make sure the cursor p is ready to read or write the row to which it
2810 ** was last positioned. Return an error code if an OOM fault or I/O error
2811 ** prevents us from positioning the cursor to its correct position.
2813 ** If a MoveTo operation is pending on the given cursor, then do that
2814 ** MoveTo now. If no move is pending, check to see if the row has been
2815 ** deleted out from under the cursor and if it has, mark the row as
2816 ** a NULL row.
2818 ** If the cursor is already pointing to the correct row and that row has
2819 ** not been deleted out from under the cursor, then this routine is a no-op.
2821 int sqlite3VdbeCursorMoveto(VdbeCursor *p){
2822 if( p->deferredMoveto ){
2823 return handleDeferredMoveto(p);
2825 if( p->pCursor && sqlite3BtreeCursorHasMoved(p->pCursor) ){
2826 return handleMovedCursor(p);
2828 return SQLITE_OK;
2832 ** The following functions:
2834 ** sqlite3VdbeSerialType()
2835 ** sqlite3VdbeSerialTypeLen()
2836 ** sqlite3VdbeSerialLen()
2837 ** sqlite3VdbeSerialPut()
2838 ** sqlite3VdbeSerialGet()
2840 ** encapsulate the code that serializes values for storage in SQLite
2841 ** data and index records. Each serialized value consists of a
2842 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
2843 ** integer, stored as a varint.
2845 ** In an SQLite index record, the serial type is stored directly before
2846 ** the blob of data that it corresponds to. In a table record, all serial
2847 ** types are stored at the start of the record, and the blobs of data at
2848 ** the end. Hence these functions allow the caller to handle the
2849 ** serial-type and data blob separately.
2851 ** The following table describes the various storage classes for data:
2853 ** serial type bytes of data type
2854 ** -------------- --------------- ---------------
2855 ** 0 0 NULL
2856 ** 1 1 signed integer
2857 ** 2 2 signed integer
2858 ** 3 3 signed integer
2859 ** 4 4 signed integer
2860 ** 5 6 signed integer
2861 ** 6 8 signed integer
2862 ** 7 8 IEEE float
2863 ** 8 0 Integer constant 0
2864 ** 9 0 Integer constant 1
2865 ** 10,11 reserved for expansion
2866 ** N>=12 and even (N-12)/2 BLOB
2867 ** N>=13 and odd (N-13)/2 text
2869 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
2870 ** of SQLite will not understand those serial types.
2874 ** Return the serial-type for the value stored in pMem.
2876 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
2877 int flags = pMem->flags;
2878 u32 n;
2880 if( flags&MEM_Null ){
2881 return 0;
2883 if( flags&MEM_Int ){
2884 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
2885 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
2886 i64 i = pMem->u.i;
2887 u64 u;
2888 if( i<0 ){
2889 u = ~i;
2890 }else{
2891 u = i;
2893 if( u<=127 ){
2894 return ((i&1)==i && file_format>=4) ? 8+(u32)u : 1;
2896 if( u<=32767 ) return 2;
2897 if( u<=8388607 ) return 3;
2898 if( u<=2147483647 ) return 4;
2899 if( u<=MAX_6BYTE ) return 5;
2900 return 6;
2902 if( flags&MEM_Real ){
2903 return 7;
2905 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
2906 assert( pMem->n>=0 );
2907 n = (u32)pMem->n;
2908 if( flags & MEM_Zero ){
2909 n += pMem->u.nZero;
2911 return ((n*2) + 12 + ((flags&MEM_Str)!=0));
2915 ** Return the length of the data corresponding to the supplied serial-type.
2917 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
2918 if( serial_type>=12 ){
2919 return (serial_type-12)/2;
2920 }else{
2921 static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
2922 return aSize[serial_type];
2927 ** If we are on an architecture with mixed-endian floating
2928 ** points (ex: ARM7) then swap the lower 4 bytes with the
2929 ** upper 4 bytes. Return the result.
2931 ** For most architectures, this is a no-op.
2933 ** (later): It is reported to me that the mixed-endian problem
2934 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
2935 ** that early versions of GCC stored the two words of a 64-bit
2936 ** float in the wrong order. And that error has been propagated
2937 ** ever since. The blame is not necessarily with GCC, though.
2938 ** GCC might have just copying the problem from a prior compiler.
2939 ** I am also told that newer versions of GCC that follow a different
2940 ** ABI get the byte order right.
2942 ** Developers using SQLite on an ARM7 should compile and run their
2943 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
2944 ** enabled, some asserts below will ensure that the byte order of
2945 ** floating point values is correct.
2947 ** (2007-08-30) Frank van Vugt has studied this problem closely
2948 ** and has send his findings to the SQLite developers. Frank
2949 ** writes that some Linux kernels offer floating point hardware
2950 ** emulation that uses only 32-bit mantissas instead of a full
2951 ** 48-bits as required by the IEEE standard. (This is the
2952 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point
2953 ** byte swapping becomes very complicated. To avoid problems,
2954 ** the necessary byte swapping is carried out using a 64-bit integer
2955 ** rather than a 64-bit float. Frank assures us that the code here
2956 ** works for him. We, the developers, have no way to independently
2957 ** verify this, but Frank seems to know what he is talking about
2958 ** so we trust him.
2960 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
2961 static u64 floatSwap(u64 in){
2962 union {
2963 u64 r;
2964 u32 i[2];
2965 } u;
2966 u32 t;
2968 u.r = in;
2969 t = u.i[0];
2970 u.i[0] = u.i[1];
2971 u.i[1] = t;
2972 return u.r;
2974 # define swapMixedEndianFloat(X) X = floatSwap(X)
2975 #else
2976 # define swapMixedEndianFloat(X)
2977 #endif
2980 ** Write the serialized data blob for the value stored in pMem into
2981 ** buf. It is assumed that the caller has allocated sufficient space.
2982 ** Return the number of bytes written.
2984 ** nBuf is the amount of space left in buf[]. The caller is responsible
2985 ** for allocating enough space to buf[] to hold the entire field, exclusive
2986 ** of the pMem->u.nZero bytes for a MEM_Zero value.
2988 ** Return the number of bytes actually written into buf[]. The number
2989 ** of bytes in the zero-filled tail is included in the return value only
2990 ** if those bytes were zeroed in buf[].
2992 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
2993 u32 len;
2995 /* Integer and Real */
2996 if( serial_type<=7 && serial_type>0 ){
2997 u64 v;
2998 u32 i;
2999 if( serial_type==7 ){
3000 assert( sizeof(v)==sizeof(pMem->u.r) );
3001 memcpy(&v, &pMem->u.r, sizeof(v));
3002 swapMixedEndianFloat(v);
3003 }else{
3004 v = pMem->u.i;
3006 len = i = sqlite3VdbeSerialTypeLen(serial_type);
3007 assert( i>0 );
3009 buf[--i] = (u8)(v&0xFF);
3010 v >>= 8;
3011 }while( i );
3012 return len;
3015 /* String or blob */
3016 if( serial_type>=12 ){
3017 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
3018 == (int)sqlite3VdbeSerialTypeLen(serial_type) );
3019 len = pMem->n;
3020 memcpy(buf, pMem->z, len);
3021 return len;
3024 /* NULL or constants 0 or 1 */
3025 return 0;
3028 /* Input "x" is a sequence of unsigned characters that represent a
3029 ** big-endian integer. Return the equivalent native integer
3031 #define ONE_BYTE_INT(x) ((i8)(x)[0])
3032 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
3033 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3034 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3035 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3038 ** Deserialize the data blob pointed to by buf as serial type serial_type
3039 ** and store the result in pMem. Return the number of bytes read.
3041 ** This function is implemented as two separate routines for performance.
3042 ** The few cases that require local variables are broken out into a separate
3043 ** routine so that in most cases the overhead of moving the stack pointer
3044 ** is avoided.
3046 static u32 SQLITE_NOINLINE serialGet(
3047 const unsigned char *buf, /* Buffer to deserialize from */
3048 u32 serial_type, /* Serial type to deserialize */
3049 Mem *pMem /* Memory cell to write value into */
3051 u64 x = FOUR_BYTE_UINT(buf);
3052 u32 y = FOUR_BYTE_UINT(buf+4);
3053 x = (x<<32) + y;
3054 if( serial_type==6 ){
3055 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3056 ** twos-complement integer. */
3057 pMem->u.i = *(i64*)&x;
3058 pMem->flags = MEM_Int;
3059 testcase( pMem->u.i<0 );
3060 }else{
3061 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3062 ** floating point number. */
3063 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3064 /* Verify that integers and floating point values use the same
3065 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3066 ** defined that 64-bit floating point values really are mixed
3067 ** endian.
3069 static const u64 t1 = ((u64)0x3ff00000)<<32;
3070 static const double r1 = 1.0;
3071 u64 t2 = t1;
3072 swapMixedEndianFloat(t2);
3073 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3074 #endif
3075 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
3076 swapMixedEndianFloat(x);
3077 memcpy(&pMem->u.r, &x, sizeof(x));
3078 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real;
3080 return 8;
3082 u32 sqlite3VdbeSerialGet(
3083 const unsigned char *buf, /* Buffer to deserialize from */
3084 u32 serial_type, /* Serial type to deserialize */
3085 Mem *pMem /* Memory cell to write value into */
3087 switch( serial_type ){
3088 case 10: /* Reserved for future use */
3089 case 11: /* Reserved for future use */
3090 case 0: { /* Null */
3091 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
3092 pMem->flags = MEM_Null;
3093 break;
3095 case 1: {
3096 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3097 ** integer. */
3098 pMem->u.i = ONE_BYTE_INT(buf);
3099 pMem->flags = MEM_Int;
3100 testcase( pMem->u.i<0 );
3101 return 1;
3103 case 2: { /* 2-byte signed integer */
3104 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3105 ** twos-complement integer. */
3106 pMem->u.i = TWO_BYTE_INT(buf);
3107 pMem->flags = MEM_Int;
3108 testcase( pMem->u.i<0 );
3109 return 2;
3111 case 3: { /* 3-byte signed integer */
3112 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3113 ** twos-complement integer. */
3114 pMem->u.i = THREE_BYTE_INT(buf);
3115 pMem->flags = MEM_Int;
3116 testcase( pMem->u.i<0 );
3117 return 3;
3119 case 4: { /* 4-byte signed integer */
3120 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3121 ** twos-complement integer. */
3122 pMem->u.i = FOUR_BYTE_INT(buf);
3123 pMem->flags = MEM_Int;
3124 testcase( pMem->u.i<0 );
3125 return 4;
3127 case 5: { /* 6-byte signed integer */
3128 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3129 ** twos-complement integer. */
3130 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
3131 pMem->flags = MEM_Int;
3132 testcase( pMem->u.i<0 );
3133 return 6;
3135 case 6: /* 8-byte signed integer */
3136 case 7: { /* IEEE floating point */
3137 /* These use local variables, so do them in a separate routine
3138 ** to avoid having to move the frame pointer in the common case */
3139 return serialGet(buf,serial_type,pMem);
3141 case 8: /* Integer 0 */
3142 case 9: { /* Integer 1 */
3143 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
3144 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
3145 pMem->u.i = serial_type-8;
3146 pMem->flags = MEM_Int;
3147 return 0;
3149 default: {
3150 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
3151 ** length.
3152 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
3153 ** (N-13)/2 bytes in length. */
3154 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
3155 pMem->z = (char *)buf;
3156 pMem->n = (serial_type-12)/2;
3157 pMem->flags = aFlag[serial_type&1];
3158 return pMem->n;
3161 return 0;
3164 ** This routine is used to allocate sufficient space for an UnpackedRecord
3165 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3166 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
3168 ** The space is either allocated using sqlite3DbMallocRaw() or from within
3169 ** the unaligned buffer passed via the second and third arguments (presumably
3170 ** stack space). If the former, then *ppFree is set to a pointer that should
3171 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3172 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3173 ** before returning.
3175 ** If an OOM error occurs, NULL is returned.
3177 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
3178 KeyInfo *pKeyInfo, /* Description of the record */
3179 char *pSpace, /* Unaligned space available */
3180 int szSpace, /* Size of pSpace[] in bytes */
3181 char **ppFree /* OUT: Caller should free this pointer */
3183 UnpackedRecord *p; /* Unpacked record to return */
3184 int nOff; /* Increment pSpace by nOff to align it */
3185 int nByte; /* Number of bytes required for *p */
3187 /* We want to shift the pointer pSpace up such that it is 8-byte aligned.
3188 ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift
3189 ** it by. If pSpace is already 8-byte aligned, nOff should be zero.
3191 nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7;
3192 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
3193 if( nByte>szSpace+nOff ){
3194 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
3195 *ppFree = (char *)p;
3196 if( !p ) return 0;
3197 }else{
3198 p = (UnpackedRecord*)&pSpace[nOff];
3199 *ppFree = 0;
3202 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
3203 assert( pKeyInfo->aSortOrder!=0 );
3204 p->pKeyInfo = pKeyInfo;
3205 p->nField = pKeyInfo->nField + 1;
3206 return p;
3210 ** Given the nKey-byte encoding of a record in pKey[], populate the
3211 ** UnpackedRecord structure indicated by the fourth argument with the
3212 ** contents of the decoded record.
3214 void sqlite3VdbeRecordUnpack(
3215 KeyInfo *pKeyInfo, /* Information about the record format */
3216 int nKey, /* Size of the binary record */
3217 const void *pKey, /* The binary record */
3218 UnpackedRecord *p /* Populate this structure before returning. */
3220 const unsigned char *aKey = (const unsigned char *)pKey;
3221 int d;
3222 u32 idx; /* Offset in aKey[] to read from */
3223 u16 u; /* Unsigned loop counter */
3224 u32 szHdr;
3225 Mem *pMem = p->aMem;
3227 p->default_rc = 0;
3228 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
3229 idx = getVarint32(aKey, szHdr);
3230 d = szHdr;
3231 u = 0;
3232 while( idx<szHdr && d<=nKey ){
3233 u32 serial_type;
3235 idx += getVarint32(&aKey[idx], serial_type);
3236 pMem->enc = pKeyInfo->enc;
3237 pMem->db = pKeyInfo->db;
3238 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
3239 pMem->szMalloc = 0;
3240 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
3241 pMem++;
3242 if( (++u)>=p->nField ) break;
3244 assert( u<=pKeyInfo->nField + 1 );
3245 p->nField = u;
3248 #if SQLITE_DEBUG
3250 ** This function compares two index or table record keys in the same way
3251 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
3252 ** this function deserializes and compares values using the
3253 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
3254 ** in assert() statements to ensure that the optimized code in
3255 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
3257 ** Return true if the result of comparison is equivalent to desiredResult.
3258 ** Return false if there is a disagreement.
3260 static int vdbeRecordCompareDebug(
3261 int nKey1, const void *pKey1, /* Left key */
3262 const UnpackedRecord *pPKey2, /* Right key */
3263 int desiredResult /* Correct answer */
3265 u32 d1; /* Offset into aKey[] of next data element */
3266 u32 idx1; /* Offset into aKey[] of next header element */
3267 u32 szHdr1; /* Number of bytes in header */
3268 int i = 0;
3269 int rc = 0;
3270 const unsigned char *aKey1 = (const unsigned char *)pKey1;
3271 KeyInfo *pKeyInfo;
3272 Mem mem1;
3274 pKeyInfo = pPKey2->pKeyInfo;
3275 if( pKeyInfo->db==0 ) return 1;
3276 mem1.enc = pKeyInfo->enc;
3277 mem1.db = pKeyInfo->db;
3278 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
3279 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
3281 /* Compilers may complain that mem1.u.i is potentially uninitialized.
3282 ** We could initialize it, as shown here, to silence those complaints.
3283 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
3284 ** the unnecessary initialization has a measurable negative performance
3285 ** impact, since this routine is a very high runner. And so, we choose
3286 ** to ignore the compiler warnings and leave this variable uninitialized.
3288 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
3290 idx1 = getVarint32(aKey1, szHdr1);
3291 d1 = szHdr1;
3292 assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB );
3293 assert( pKeyInfo->aSortOrder!=0 );
3294 assert( pKeyInfo->nField>0 );
3295 assert( idx1<=szHdr1 || CORRUPT_DB );
3297 u32 serial_type1;
3299 /* Read the serial types for the next element in each key. */
3300 idx1 += getVarint32( aKey1+idx1, serial_type1 );
3302 /* Verify that there is enough key space remaining to avoid
3303 ** a buffer overread. The "d1+serial_type1+2" subexpression will
3304 ** always be greater than or equal to the amount of required key space.
3305 ** Use that approximation to avoid the more expensive call to
3306 ** sqlite3VdbeSerialTypeLen() in the common case.
3308 if( d1+serial_type1+2>(u32)nKey1
3309 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1
3311 break;
3314 /* Extract the values to be compared.
3316 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
3318 /* Do the comparison
3320 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);
3321 if( rc!=0 ){
3322 assert( mem1.szMalloc==0 ); /* See comment below */
3323 if( pKeyInfo->aSortOrder[i] ){
3324 rc = -rc; /* Invert the result for DESC sort order. */
3326 goto debugCompareEnd;
3328 i++;
3329 }while( idx1<szHdr1 && i<pPKey2->nField );
3331 /* No memory allocation is ever used on mem1. Prove this using
3332 ** the following assert(). If the assert() fails, it indicates a
3333 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
3335 assert( mem1.szMalloc==0 );
3337 /* rc==0 here means that one of the keys ran out of fields and
3338 ** all the fields up to that point were equal. Return the default_rc
3339 ** value. */
3340 rc = pPKey2->default_rc;
3342 debugCompareEnd:
3343 if( desiredResult==0 && rc==0 ) return 1;
3344 if( desiredResult<0 && rc<0 ) return 1;
3345 if( desiredResult>0 && rc>0 ) return 1;
3346 if( CORRUPT_DB ) return 1;
3347 if( pKeyInfo->db->mallocFailed ) return 1;
3348 return 0;
3350 #endif
3352 #if SQLITE_DEBUG
3354 ** Count the number of fields (a.k.a. columns) in the record given by
3355 ** pKey,nKey. The verify that this count is less than or equal to the
3356 ** limit given by pKeyInfo->nField + pKeyInfo->nXField.
3358 ** If this constraint is not satisfied, it means that the high-speed
3359 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
3360 ** not work correctly. If this assert() ever fires, it probably means
3361 ** that the KeyInfo.nField or KeyInfo.nXField values were computed
3362 ** incorrectly.
3364 static void vdbeAssertFieldCountWithinLimits(
3365 int nKey, const void *pKey, /* The record to verify */
3366 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */
3368 int nField = 0;
3369 u32 szHdr;
3370 u32 idx;
3371 u32 notUsed;
3372 const unsigned char *aKey = (const unsigned char*)pKey;
3374 if( CORRUPT_DB ) return;
3375 idx = getVarint32(aKey, szHdr);
3376 assert( szHdr<=nKey );
3377 while( idx<szHdr ){
3378 idx += getVarint32(aKey+idx, notUsed);
3379 nField++;
3381 assert( nField <= pKeyInfo->nField+pKeyInfo->nXField );
3383 #else
3384 # define vdbeAssertFieldCountWithinLimits(A,B,C)
3385 #endif
3388 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
3389 ** using the collation sequence pColl. As usual, return a negative , zero
3390 ** or positive value if *pMem1 is less than, equal to or greater than
3391 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
3393 static int vdbeCompareMemString(
3394 const Mem *pMem1,
3395 const Mem *pMem2,
3396 const CollSeq *pColl,
3397 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */
3399 if( pMem1->enc==pColl->enc ){
3400 /* The strings are already in the correct encoding. Call the
3401 ** comparison function directly */
3402 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
3403 }else{
3404 int rc;
3405 const void *v1, *v2;
3406 int n1, n2;
3407 Mem c1;
3408 Mem c2;
3409 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
3410 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
3411 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
3412 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
3413 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
3414 n1 = v1==0 ? 0 : c1.n;
3415 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
3416 n2 = v2==0 ? 0 : c2.n;
3417 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
3418 sqlite3VdbeMemRelease(&c1);
3419 sqlite3VdbeMemRelease(&c2);
3420 if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM;
3421 return rc;
3426 ** Compare two blobs. Return negative, zero, or positive if the first
3427 ** is less than, equal to, or greater than the second, respectively.
3428 ** If one blob is a prefix of the other, then the shorter is the lessor.
3430 static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
3431 int c = memcmp(pB1->z, pB2->z, pB1->n>pB2->n ? pB2->n : pB1->n);
3432 if( c ) return c;
3433 return pB1->n - pB2->n;
3438 ** Compare the values contained by the two memory cells, returning
3439 ** negative, zero or positive if pMem1 is less than, equal to, or greater
3440 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
3441 ** and reals) sorted numerically, followed by text ordered by the collating
3442 ** sequence pColl and finally blob's ordered by memcmp().
3444 ** Two NULL values are considered equal by this function.
3446 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
3447 int f1, f2;
3448 int combined_flags;
3450 f1 = pMem1->flags;
3451 f2 = pMem2->flags;
3452 combined_flags = f1|f2;
3453 assert( (combined_flags & MEM_RowSet)==0 );
3455 /* If one value is NULL, it is less than the other. If both values
3456 ** are NULL, return 0.
3458 if( combined_flags&MEM_Null ){
3459 return (f2&MEM_Null) - (f1&MEM_Null);
3462 /* If one value is a number and the other is not, the number is less.
3463 ** If both are numbers, compare as reals if one is a real, or as integers
3464 ** if both values are integers.
3466 if( combined_flags&(MEM_Int|MEM_Real) ){
3467 double r1, r2;
3468 if( (f1 & f2 & MEM_Int)!=0 ){
3469 if( pMem1->u.i < pMem2->u.i ) return -1;
3470 if( pMem1->u.i > pMem2->u.i ) return 1;
3471 return 0;
3473 if( (f1&MEM_Real)!=0 ){
3474 r1 = pMem1->u.r;
3475 }else if( (f1&MEM_Int)!=0 ){
3476 r1 = (double)pMem1->u.i;
3477 }else{
3478 return 1;
3480 if( (f2&MEM_Real)!=0 ){
3481 r2 = pMem2->u.r;
3482 }else if( (f2&MEM_Int)!=0 ){
3483 r2 = (double)pMem2->u.i;
3484 }else{
3485 return -1;
3487 if( r1<r2 ) return -1;
3488 if( r1>r2 ) return 1;
3489 return 0;
3492 /* If one value is a string and the other is a blob, the string is less.
3493 ** If both are strings, compare using the collating functions.
3495 if( combined_flags&MEM_Str ){
3496 if( (f1 & MEM_Str)==0 ){
3497 return 1;
3499 if( (f2 & MEM_Str)==0 ){
3500 return -1;
3503 assert( pMem1->enc==pMem2->enc );
3504 assert( pMem1->enc==SQLITE_UTF8 ||
3505 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
3507 /* The collation sequence must be defined at this point, even if
3508 ** the user deletes the collation sequence after the vdbe program is
3509 ** compiled (this was not always the case).
3511 assert( !pColl || pColl->xCmp );
3513 if( pColl ){
3514 return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
3516 /* If a NULL pointer was passed as the collate function, fall through
3517 ** to the blob case and use memcmp(). */
3520 /* Both values must be blobs. Compare using memcmp(). */
3521 return sqlite3BlobCompare(pMem1, pMem2);
3526 ** The first argument passed to this function is a serial-type that
3527 ** corresponds to an integer - all values between 1 and 9 inclusive
3528 ** except 7. The second points to a buffer containing an integer value
3529 ** serialized according to serial_type. This function deserializes
3530 ** and returns the value.
3532 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
3533 u32 y;
3534 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
3535 switch( serial_type ){
3536 case 0:
3537 case 1:
3538 testcase( aKey[0]&0x80 );
3539 return ONE_BYTE_INT(aKey);
3540 case 2:
3541 testcase( aKey[0]&0x80 );
3542 return TWO_BYTE_INT(aKey);
3543 case 3:
3544 testcase( aKey[0]&0x80 );
3545 return THREE_BYTE_INT(aKey);
3546 case 4: {
3547 testcase( aKey[0]&0x80 );
3548 y = FOUR_BYTE_UINT(aKey);
3549 return (i64)*(int*)&y;
3551 case 5: {
3552 testcase( aKey[0]&0x80 );
3553 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
3555 case 6: {
3556 u64 x = FOUR_BYTE_UINT(aKey);
3557 testcase( aKey[0]&0x80 );
3558 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
3559 return (i64)*(i64*)&x;
3563 return (serial_type - 8);
3567 ** This function compares the two table rows or index records
3568 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
3569 ** or positive integer if key1 is less than, equal to or
3570 ** greater than key2. The {nKey1, pKey1} key must be a blob
3571 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
3572 ** key must be a parsed key such as obtained from
3573 ** sqlite3VdbeParseRecord.
3575 ** If argument bSkip is non-zero, it is assumed that the caller has already
3576 ** determined that the first fields of the keys are equal.
3578 ** Key1 and Key2 do not have to contain the same number of fields. If all
3579 ** fields that appear in both keys are equal, then pPKey2->default_rc is
3580 ** returned.
3582 ** If database corruption is discovered, set pPKey2->errCode to
3583 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
3584 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
3585 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
3587 static int vdbeRecordCompareWithSkip(
3588 int nKey1, const void *pKey1, /* Left key */
3589 UnpackedRecord *pPKey2, /* Right key */
3590 int bSkip /* If true, skip the first field */
3592 u32 d1; /* Offset into aKey[] of next data element */
3593 int i; /* Index of next field to compare */
3594 u32 szHdr1; /* Size of record header in bytes */
3595 u32 idx1; /* Offset of first type in header */
3596 int rc = 0; /* Return value */
3597 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */
3598 KeyInfo *pKeyInfo = pPKey2->pKeyInfo;
3599 const unsigned char *aKey1 = (const unsigned char *)pKey1;
3600 Mem mem1;
3602 /* If bSkip is true, then the caller has already determined that the first
3603 ** two elements in the keys are equal. Fix the various stack variables so
3604 ** that this routine begins comparing at the second field. */
3605 if( bSkip ){
3606 u32 s1;
3607 idx1 = 1 + getVarint32(&aKey1[1], s1);
3608 szHdr1 = aKey1[0];
3609 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
3610 i = 1;
3611 pRhs++;
3612 }else{
3613 idx1 = getVarint32(aKey1, szHdr1);
3614 d1 = szHdr1;
3615 if( d1>(unsigned)nKey1 ){
3616 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
3617 return 0; /* Corruption */
3619 i = 0;
3622 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
3623 assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField
3624 || CORRUPT_DB );
3625 assert( pPKey2->pKeyInfo->aSortOrder!=0 );
3626 assert( pPKey2->pKeyInfo->nField>0 );
3627 assert( idx1<=szHdr1 || CORRUPT_DB );
3629 u32 serial_type;
3631 /* RHS is an integer */
3632 if( pRhs->flags & MEM_Int ){
3633 serial_type = aKey1[idx1];
3634 testcase( serial_type==12 );
3635 if( serial_type>=12 ){
3636 rc = +1;
3637 }else if( serial_type==0 ){
3638 rc = -1;
3639 }else if( serial_type==7 ){
3640 double rhs = (double)pRhs->u.i;
3641 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
3642 if( mem1.u.r<rhs ){
3643 rc = -1;
3644 }else if( mem1.u.r>rhs ){
3645 rc = +1;
3647 }else{
3648 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
3649 i64 rhs = pRhs->u.i;
3650 if( lhs<rhs ){
3651 rc = -1;
3652 }else if( lhs>rhs ){
3653 rc = +1;
3658 /* RHS is real */
3659 else if( pRhs->flags & MEM_Real ){
3660 serial_type = aKey1[idx1];
3661 if( serial_type>=12 ){
3662 rc = +1;
3663 }else if( serial_type==0 ){
3664 rc = -1;
3665 }else{
3666 double rhs = pRhs->u.r;
3667 double lhs;
3668 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
3669 if( serial_type==7 ){
3670 lhs = mem1.u.r;
3671 }else{
3672 lhs = (double)mem1.u.i;
3674 if( lhs<rhs ){
3675 rc = -1;
3676 }else if( lhs>rhs ){
3677 rc = +1;
3682 /* RHS is a string */
3683 else if( pRhs->flags & MEM_Str ){
3684 getVarint32(&aKey1[idx1], serial_type);
3685 testcase( serial_type==12 );
3686 if( serial_type<12 ){
3687 rc = -1;
3688 }else if( !(serial_type & 0x01) ){
3689 rc = +1;
3690 }else{
3691 mem1.n = (serial_type - 12) / 2;
3692 testcase( (d1+mem1.n)==(unsigned)nKey1 );
3693 testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
3694 if( (d1+mem1.n) > (unsigned)nKey1 ){
3695 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
3696 return 0; /* Corruption */
3697 }else if( pKeyInfo->aColl[i] ){
3698 mem1.enc = pKeyInfo->enc;
3699 mem1.db = pKeyInfo->db;
3700 mem1.flags = MEM_Str;
3701 mem1.z = (char*)&aKey1[d1];
3702 rc = vdbeCompareMemString(
3703 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
3705 }else{
3706 int nCmp = MIN(mem1.n, pRhs->n);
3707 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
3708 if( rc==0 ) rc = mem1.n - pRhs->n;
3713 /* RHS is a blob */
3714 else if( pRhs->flags & MEM_Blob ){
3715 getVarint32(&aKey1[idx1], serial_type);
3716 testcase( serial_type==12 );
3717 if( serial_type<12 || (serial_type & 0x01) ){
3718 rc = -1;
3719 }else{
3720 int nStr = (serial_type - 12) / 2;
3721 testcase( (d1+nStr)==(unsigned)nKey1 );
3722 testcase( (d1+nStr+1)==(unsigned)nKey1 );
3723 if( (d1+nStr) > (unsigned)nKey1 ){
3724 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
3725 return 0; /* Corruption */
3726 }else{
3727 int nCmp = MIN(nStr, pRhs->n);
3728 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
3729 if( rc==0 ) rc = nStr - pRhs->n;
3734 /* RHS is null */
3735 else{
3736 serial_type = aKey1[idx1];
3737 rc = (serial_type!=0);
3740 if( rc!=0 ){
3741 if( pKeyInfo->aSortOrder[i] ){
3742 rc = -rc;
3744 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
3745 assert( mem1.szMalloc==0 ); /* See comment below */
3746 return rc;
3749 i++;
3750 pRhs++;
3751 d1 += sqlite3VdbeSerialTypeLen(serial_type);
3752 idx1 += sqlite3VarintLen(serial_type);
3753 }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 );
3755 /* No memory allocation is ever used on mem1. Prove this using
3756 ** the following assert(). If the assert() fails, it indicates a
3757 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
3758 assert( mem1.szMalloc==0 );
3760 /* rc==0 here means that one or both of the keys ran out of fields and
3761 ** all the fields up to that point were equal. Return the default_rc
3762 ** value. */
3763 assert( CORRUPT_DB
3764 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
3765 || pKeyInfo->db->mallocFailed
3767 return pPKey2->default_rc;
3769 int sqlite3VdbeRecordCompare(
3770 int nKey1, const void *pKey1, /* Left key */
3771 UnpackedRecord *pPKey2 /* Right key */
3773 return vdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
3778 ** This function is an optimized version of sqlite3VdbeRecordCompare()
3779 ** that (a) the first field of pPKey2 is an integer, and (b) the
3780 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
3781 ** byte (i.e. is less than 128).
3783 ** To avoid concerns about buffer overreads, this routine is only used
3784 ** on schemas where the maximum valid header size is 63 bytes or less.
3786 static int vdbeRecordCompareInt(
3787 int nKey1, const void *pKey1, /* Left key */
3788 UnpackedRecord *pPKey2 /* Right key */
3790 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
3791 int serial_type = ((const u8*)pKey1)[1];
3792 int res;
3793 u32 y;
3794 u64 x;
3795 i64 v = pPKey2->aMem[0].u.i;
3796 i64 lhs;
3798 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
3799 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
3800 switch( serial_type ){
3801 case 1: { /* 1-byte signed integer */
3802 lhs = ONE_BYTE_INT(aKey);
3803 testcase( lhs<0 );
3804 break;
3806 case 2: { /* 2-byte signed integer */
3807 lhs = TWO_BYTE_INT(aKey);
3808 testcase( lhs<0 );
3809 break;
3811 case 3: { /* 3-byte signed integer */
3812 lhs = THREE_BYTE_INT(aKey);
3813 testcase( lhs<0 );
3814 break;
3816 case 4: { /* 4-byte signed integer */
3817 y = FOUR_BYTE_UINT(aKey);
3818 lhs = (i64)*(int*)&y;
3819 testcase( lhs<0 );
3820 break;
3822 case 5: { /* 6-byte signed integer */
3823 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
3824 testcase( lhs<0 );
3825 break;
3827 case 6: { /* 8-byte signed integer */
3828 x = FOUR_BYTE_UINT(aKey);
3829 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
3830 lhs = *(i64*)&x;
3831 testcase( lhs<0 );
3832 break;
3834 case 8:
3835 lhs = 0;
3836 break;
3837 case 9:
3838 lhs = 1;
3839 break;
3841 /* This case could be removed without changing the results of running
3842 ** this code. Including it causes gcc to generate a faster switch
3843 ** statement (since the range of switch targets now starts at zero and
3844 ** is contiguous) but does not cause any duplicate code to be generated
3845 ** (as gcc is clever enough to combine the two like cases). Other
3846 ** compilers might be similar. */
3847 case 0: case 7:
3848 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
3850 default:
3851 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
3854 if( v>lhs ){
3855 res = pPKey2->r1;
3856 }else if( v<lhs ){
3857 res = pPKey2->r2;
3858 }else if( pPKey2->nField>1 ){
3859 /* The first fields of the two keys are equal. Compare the trailing
3860 ** fields. */
3861 res = vdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
3862 }else{
3863 /* The first fields of the two keys are equal and there are no trailing
3864 ** fields. Return pPKey2->default_rc in this case. */
3865 res = pPKey2->default_rc;
3868 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
3869 return res;
3873 ** This function is an optimized version of sqlite3VdbeRecordCompare()
3874 ** that (a) the first field of pPKey2 is a string, that (b) the first field
3875 ** uses the collation sequence BINARY and (c) that the size-of-header varint
3876 ** at the start of (pKey1/nKey1) fits in a single byte.
3878 static int vdbeRecordCompareString(
3879 int nKey1, const void *pKey1, /* Left key */
3880 UnpackedRecord *pPKey2 /* Right key */
3882 const u8 *aKey1 = (const u8*)pKey1;
3883 int serial_type;
3884 int res;
3886 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
3887 getVarint32(&aKey1[1], serial_type);
3888 if( serial_type<12 ){
3889 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */
3890 }else if( !(serial_type & 0x01) ){
3891 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */
3892 }else{
3893 int nCmp;
3894 int nStr;
3895 int szHdr = aKey1[0];
3897 nStr = (serial_type-12) / 2;
3898 if( (szHdr + nStr) > nKey1 ){
3899 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
3900 return 0; /* Corruption */
3902 nCmp = MIN( pPKey2->aMem[0].n, nStr );
3903 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
3905 if( res==0 ){
3906 res = nStr - pPKey2->aMem[0].n;
3907 if( res==0 ){
3908 if( pPKey2->nField>1 ){
3909 res = vdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
3910 }else{
3911 res = pPKey2->default_rc;
3913 }else if( res>0 ){
3914 res = pPKey2->r2;
3915 }else{
3916 res = pPKey2->r1;
3918 }else if( res>0 ){
3919 res = pPKey2->r2;
3920 }else{
3921 res = pPKey2->r1;
3925 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
3926 || CORRUPT_DB
3927 || pPKey2->pKeyInfo->db->mallocFailed
3929 return res;
3933 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
3934 ** suitable for comparing serialized records to the unpacked record passed
3935 ** as the only argument.
3937 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
3938 /* varintRecordCompareInt() and varintRecordCompareString() both assume
3939 ** that the size-of-header varint that occurs at the start of each record
3940 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
3941 ** also assumes that it is safe to overread a buffer by at least the
3942 ** maximum possible legal header size plus 8 bytes. Because there is
3943 ** guaranteed to be at least 74 (but not 136) bytes of padding following each
3944 ** buffer passed to varintRecordCompareInt() this makes it convenient to
3945 ** limit the size of the header to 64 bytes in cases where the first field
3946 ** is an integer.
3948 ** The easiest way to enforce this limit is to consider only records with
3949 ** 13 fields or less. If the first field is an integer, the maximum legal
3950 ** header size is (12*5 + 1 + 1) bytes. */
3951 if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){
3952 int flags = p->aMem[0].flags;
3953 if( p->pKeyInfo->aSortOrder[0] ){
3954 p->r1 = 1;
3955 p->r2 = -1;
3956 }else{
3957 p->r1 = -1;
3958 p->r2 = 1;
3960 if( (flags & MEM_Int) ){
3961 return vdbeRecordCompareInt;
3963 testcase( flags & MEM_Real );
3964 testcase( flags & MEM_Null );
3965 testcase( flags & MEM_Blob );
3966 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){
3967 assert( flags & MEM_Str );
3968 return vdbeRecordCompareString;
3972 return sqlite3VdbeRecordCompare;
3976 ** pCur points at an index entry created using the OP_MakeRecord opcode.
3977 ** Read the rowid (the last field in the record) and store it in *rowid.
3978 ** Return SQLITE_OK if everything works, or an error code otherwise.
3980 ** pCur might be pointing to text obtained from a corrupt database file.
3981 ** So the content cannot be trusted. Do appropriate checks on the content.
3983 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
3984 i64 nCellKey = 0;
3985 int rc;
3986 u32 szHdr; /* Size of the header */
3987 u32 typeRowid; /* Serial type of the rowid */
3988 u32 lenRowid; /* Size of the rowid */
3989 Mem m, v;
3991 /* Get the size of the index entry. Only indices entries of less
3992 ** than 2GiB are support - anything large must be database corruption.
3993 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
3994 ** this code can safely assume that nCellKey is 32-bits
3996 assert( sqlite3BtreeCursorIsValid(pCur) );
3997 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
3998 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
3999 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
4001 /* Read in the complete content of the index entry */
4002 sqlite3VdbeMemInit(&m, db, 0);
4003 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m);
4004 if( rc ){
4005 return rc;
4008 /* The index entry must begin with a header size */
4009 (void)getVarint32((u8*)m.z, szHdr);
4010 testcase( szHdr==3 );
4011 testcase( szHdr==m.n );
4012 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
4013 goto idx_rowid_corruption;
4016 /* The last field of the index should be an integer - the ROWID.
4017 ** Verify that the last entry really is an integer. */
4018 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
4019 testcase( typeRowid==1 );
4020 testcase( typeRowid==2 );
4021 testcase( typeRowid==3 );
4022 testcase( typeRowid==4 );
4023 testcase( typeRowid==5 );
4024 testcase( typeRowid==6 );
4025 testcase( typeRowid==8 );
4026 testcase( typeRowid==9 );
4027 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
4028 goto idx_rowid_corruption;
4030 lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
4031 testcase( (u32)m.n==szHdr+lenRowid );
4032 if( unlikely((u32)m.n<szHdr+lenRowid) ){
4033 goto idx_rowid_corruption;
4036 /* Fetch the integer off the end of the index record */
4037 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
4038 *rowid = v.u.i;
4039 sqlite3VdbeMemRelease(&m);
4040 return SQLITE_OK;
4042 /* Jump here if database corruption is detected after m has been
4043 ** allocated. Free the m object and return SQLITE_CORRUPT. */
4044 idx_rowid_corruption:
4045 testcase( m.szMalloc!=0 );
4046 sqlite3VdbeMemRelease(&m);
4047 return SQLITE_CORRUPT_BKPT;
4051 ** Compare the key of the index entry that cursor pC is pointing to against
4052 ** the key string in pUnpacked. Write into *pRes a number
4053 ** that is negative, zero, or positive if pC is less than, equal to,
4054 ** or greater than pUnpacked. Return SQLITE_OK on success.
4056 ** pUnpacked is either created without a rowid or is truncated so that it
4057 ** omits the rowid at the end. The rowid at the end of the index entry
4058 ** is ignored as well. Hence, this routine only compares the prefixes
4059 ** of the keys prior to the final rowid, not the entire key.
4061 int sqlite3VdbeIdxKeyCompare(
4062 sqlite3 *db, /* Database connection */
4063 VdbeCursor *pC, /* The cursor to compare against */
4064 UnpackedRecord *pUnpacked, /* Unpacked version of key */
4065 int *res /* Write the comparison result here */
4067 i64 nCellKey = 0;
4068 int rc;
4069 BtCursor *pCur = pC->pCursor;
4070 Mem m;
4072 assert( sqlite3BtreeCursorIsValid(pCur) );
4073 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
4074 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
4075 /* nCellKey will always be between 0 and 0xffffffff because of the way
4076 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
4077 if( nCellKey<=0 || nCellKey>0x7fffffff ){
4078 *res = 0;
4079 return SQLITE_CORRUPT_BKPT;
4081 sqlite3VdbeMemInit(&m, db, 0);
4082 rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (u32)nCellKey, 1, &m);
4083 if( rc ){
4084 return rc;
4086 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
4087 sqlite3VdbeMemRelease(&m);
4088 return SQLITE_OK;
4092 ** This routine sets the value to be returned by subsequent calls to
4093 ** sqlite3_changes() on the database handle 'db'.
4095 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
4096 assert( sqlite3_mutex_held(db->mutex) );
4097 db->nChange = nChange;
4098 db->nTotalChange += nChange;
4102 ** Set a flag in the vdbe to update the change counter when it is finalised
4103 ** or reset.
4105 void sqlite3VdbeCountChanges(Vdbe *v){
4106 v->changeCntOn = 1;
4110 ** Mark every prepared statement associated with a database connection
4111 ** as expired.
4113 ** An expired statement means that recompilation of the statement is
4114 ** recommend. Statements expire when things happen that make their
4115 ** programs obsolete. Removing user-defined functions or collating
4116 ** sequences, or changing an authorization function are the types of
4117 ** things that make prepared statements obsolete.
4119 void sqlite3ExpirePreparedStatements(sqlite3 *db){
4120 Vdbe *p;
4121 for(p = db->pVdbe; p; p=p->pNext){
4122 p->expired = 1;
4127 ** Return the database associated with the Vdbe.
4129 sqlite3 *sqlite3VdbeDb(Vdbe *v){
4130 return v->db;
4134 ** Return a pointer to an sqlite3_value structure containing the value bound
4135 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
4136 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
4137 ** constants) to the value before returning it.
4139 ** The returned value must be freed by the caller using sqlite3ValueFree().
4141 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
4142 assert( iVar>0 );
4143 if( v ){
4144 Mem *pMem = &v->aVar[iVar-1];
4145 if( 0==(pMem->flags & MEM_Null) ){
4146 sqlite3_value *pRet = sqlite3ValueNew(v->db);
4147 if( pRet ){
4148 sqlite3VdbeMemCopy((Mem *)pRet, pMem);
4149 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
4151 return pRet;
4154 return 0;
4158 ** Configure SQL variable iVar so that binding a new value to it signals
4159 ** to sqlite3_reoptimize() that re-preparing the statement may result
4160 ** in a better query plan.
4162 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
4163 assert( iVar>0 );
4164 if( iVar>32 ){
4165 v->expmask = 0xffffffff;
4166 }else{
4167 v->expmask |= ((u32)1 << (iVar-1));
4171 #ifndef SQLITE_OMIT_VIRTUALTABLE
4173 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
4174 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
4175 ** in memory obtained from sqlite3DbMalloc).
4177 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
4178 sqlite3 *db = p->db;
4179 sqlite3DbFree(db, p->zErrMsg);
4180 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
4181 sqlite3_free(pVtab->zErrMsg);
4182 pVtab->zErrMsg = 0;
4184 #endif /* SQLITE_OMIT_VIRTUALTABLE */