Snapshot of upstream SQLite 3.31.0
[sqlcipher.git] / src / btree.c
blobbe5d639baa9ead443f816390c744129f091b7b62
1 /*
2 ** 2004 April 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file implements an external (disk-based) database using BTrees.
13 ** See the header comment on "btreeInt.h" for additional information.
14 ** Including a description of file format and an overview of operation.
16 #include "btreeInt.h"
19 ** The header string that appears at the beginning of every
20 ** SQLite database.
22 static const char zMagicHeader[] = SQLITE_FILE_HEADER;
25 ** Set this global variable to 1 to enable tracing using the TRACE
26 ** macro.
28 #if 0
29 int sqlite3BtreeTrace=1; /* True to enable tracing */
30 # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31 #else
32 # define TRACE(X)
33 #endif
36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37 ** But if the value is zero, make it 65536.
39 ** This routine is used to extract the "offset to cell content area" value
40 ** from the header of a btree page. If the page size is 65536 and the page
41 ** is empty, the offset should be 65536, but the 2-byte value stores zero.
42 ** This routine makes the necessary adjustment to 65536.
44 #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
47 ** Values passed as the 5th argument to allocateBtreePage()
49 #define BTALLOC_ANY 0 /* Allocate any page */
50 #define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51 #define BTALLOC_LE 2 /* Allocate any page <= the parameter */
54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55 ** defined, or 0 if it is. For example:
57 ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
59 #ifndef SQLITE_OMIT_AUTOVACUUM
60 #define IfNotOmitAV(expr) (expr)
61 #else
62 #define IfNotOmitAV(expr) 0
63 #endif
65 #ifndef SQLITE_OMIT_SHARED_CACHE
67 ** A list of BtShared objects that are eligible for participation
68 ** in shared cache. This variable has file scope during normal builds,
69 ** but the test harness needs to access it so we make it global for
70 ** test builds.
72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
74 #ifdef SQLITE_TEST
75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
76 #else
77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
78 #endif
79 #endif /* SQLITE_OMIT_SHARED_CACHE */
81 #ifndef SQLITE_OMIT_SHARED_CACHE
83 ** Enable or disable the shared pager and schema features.
85 ** This routine has no effect on existing database connections.
86 ** The shared cache setting effects only future calls to
87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
89 int sqlite3_enable_shared_cache(int enable){
90 sqlite3GlobalConfig.sharedCacheEnabled = enable;
91 return SQLITE_OK;
93 #endif
97 #ifdef SQLITE_OMIT_SHARED_CACHE
99 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
110 #define downgradeAllSharedCacheTableLocks(a)
111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
113 #endif
116 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
117 ** (MemPage*) as an argument. The (MemPage*) must not be NULL.
119 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to
120 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
121 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
122 ** with the page number and filename associated with the (MemPage*).
124 #ifdef SQLITE_DEBUG
125 int corruptPageError(int lineno, MemPage *p){
126 char *zMsg;
127 sqlite3BeginBenignMalloc();
128 zMsg = sqlite3_mprintf("database corruption page %d of %s",
129 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
131 sqlite3EndBenignMalloc();
132 if( zMsg ){
133 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
135 sqlite3_free(zMsg);
136 return SQLITE_CORRUPT_BKPT;
138 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
139 #else
140 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
141 #endif
143 #ifndef SQLITE_OMIT_SHARED_CACHE
145 #ifdef SQLITE_DEBUG
147 **** This function is only used as part of an assert() statement. ***
149 ** Check to see if pBtree holds the required locks to read or write to the
150 ** table with root page iRoot. Return 1 if it does and 0 if not.
152 ** For example, when writing to a table with root-page iRoot via
153 ** Btree connection pBtree:
155 ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
157 ** When writing to an index that resides in a sharable database, the
158 ** caller should have first obtained a lock specifying the root page of
159 ** the corresponding table. This makes things a bit more complicated,
160 ** as this module treats each table as a separate structure. To determine
161 ** the table corresponding to the index being written, this
162 ** function has to search through the database schema.
164 ** Instead of a lock on the table/index rooted at page iRoot, the caller may
165 ** hold a write-lock on the schema table (root page 1). This is also
166 ** acceptable.
168 static int hasSharedCacheTableLock(
169 Btree *pBtree, /* Handle that must hold lock */
170 Pgno iRoot, /* Root page of b-tree */
171 int isIndex, /* True if iRoot is the root of an index b-tree */
172 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
174 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
175 Pgno iTab = 0;
176 BtLock *pLock;
178 /* If this database is not shareable, or if the client is reading
179 ** and has the read-uncommitted flag set, then no lock is required.
180 ** Return true immediately.
182 if( (pBtree->sharable==0)
183 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
185 return 1;
188 /* If the client is reading or writing an index and the schema is
189 ** not loaded, then it is too difficult to actually check to see if
190 ** the correct locks are held. So do not bother - just return true.
191 ** This case does not come up very often anyhow.
193 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
194 return 1;
197 /* Figure out the root-page that the lock should be held on. For table
198 ** b-trees, this is just the root page of the b-tree being read or
199 ** written. For index b-trees, it is the root page of the associated
200 ** table. */
201 if( isIndex ){
202 HashElem *p;
203 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
204 Index *pIdx = (Index *)sqliteHashData(p);
205 if( pIdx->tnum==(int)iRoot ){
206 if( iTab ){
207 /* Two or more indexes share the same root page. There must
208 ** be imposter tables. So just return true. The assert is not
209 ** useful in that case. */
210 return 1;
212 iTab = pIdx->pTable->tnum;
215 }else{
216 iTab = iRoot;
219 /* Search for the required lock. Either a write-lock on root-page iTab, a
220 ** write-lock on the schema table, or (if the client is reading) a
221 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
222 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
223 if( pLock->pBtree==pBtree
224 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
225 && pLock->eLock>=eLockType
227 return 1;
231 /* Failed to find the required lock. */
232 return 0;
234 #endif /* SQLITE_DEBUG */
236 #ifdef SQLITE_DEBUG
238 **** This function may be used as part of assert() statements only. ****
240 ** Return true if it would be illegal for pBtree to write into the
241 ** table or index rooted at iRoot because other shared connections are
242 ** simultaneously reading that same table or index.
244 ** It is illegal for pBtree to write if some other Btree object that
245 ** shares the same BtShared object is currently reading or writing
246 ** the iRoot table. Except, if the other Btree object has the
247 ** read-uncommitted flag set, then it is OK for the other object to
248 ** have a read cursor.
250 ** For example, before writing to any part of the table or index
251 ** rooted at page iRoot, one should call:
253 ** assert( !hasReadConflicts(pBtree, iRoot) );
255 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
256 BtCursor *p;
257 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
258 if( p->pgnoRoot==iRoot
259 && p->pBtree!=pBtree
260 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
262 return 1;
265 return 0;
267 #endif /* #ifdef SQLITE_DEBUG */
270 ** Query to see if Btree handle p may obtain a lock of type eLock
271 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
272 ** SQLITE_OK if the lock may be obtained (by calling
273 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
275 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
276 BtShared *pBt = p->pBt;
277 BtLock *pIter;
279 assert( sqlite3BtreeHoldsMutex(p) );
280 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
281 assert( p->db!=0 );
282 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
284 /* If requesting a write-lock, then the Btree must have an open write
285 ** transaction on this file. And, obviously, for this to be so there
286 ** must be an open write transaction on the file itself.
288 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
289 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
291 /* This routine is a no-op if the shared-cache is not enabled */
292 if( !p->sharable ){
293 return SQLITE_OK;
296 /* If some other connection is holding an exclusive lock, the
297 ** requested lock may not be obtained.
299 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
300 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
301 return SQLITE_LOCKED_SHAREDCACHE;
304 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
305 /* The condition (pIter->eLock!=eLock) in the following if(...)
306 ** statement is a simplification of:
308 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
310 ** since we know that if eLock==WRITE_LOCK, then no other connection
311 ** may hold a WRITE_LOCK on any table in this file (since there can
312 ** only be a single writer).
314 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
315 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
316 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
317 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
318 if( eLock==WRITE_LOCK ){
319 assert( p==pBt->pWriter );
320 pBt->btsFlags |= BTS_PENDING;
322 return SQLITE_LOCKED_SHAREDCACHE;
325 return SQLITE_OK;
327 #endif /* !SQLITE_OMIT_SHARED_CACHE */
329 #ifndef SQLITE_OMIT_SHARED_CACHE
331 ** Add a lock on the table with root-page iTable to the shared-btree used
332 ** by Btree handle p. Parameter eLock must be either READ_LOCK or
333 ** WRITE_LOCK.
335 ** This function assumes the following:
337 ** (a) The specified Btree object p is connected to a sharable
338 ** database (one with the BtShared.sharable flag set), and
340 ** (b) No other Btree objects hold a lock that conflicts
341 ** with the requested lock (i.e. querySharedCacheTableLock() has
342 ** already been called and returned SQLITE_OK).
344 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
345 ** is returned if a malloc attempt fails.
347 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
348 BtShared *pBt = p->pBt;
349 BtLock *pLock = 0;
350 BtLock *pIter;
352 assert( sqlite3BtreeHoldsMutex(p) );
353 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
354 assert( p->db!=0 );
356 /* A connection with the read-uncommitted flag set will never try to
357 ** obtain a read-lock using this function. The only read-lock obtained
358 ** by a connection in read-uncommitted mode is on the sqlite_master
359 ** table, and that lock is obtained in BtreeBeginTrans(). */
360 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
362 /* This function should only be called on a sharable b-tree after it
363 ** has been determined that no other b-tree holds a conflicting lock. */
364 assert( p->sharable );
365 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
367 /* First search the list for an existing lock on this table. */
368 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
369 if( pIter->iTable==iTable && pIter->pBtree==p ){
370 pLock = pIter;
371 break;
375 /* If the above search did not find a BtLock struct associating Btree p
376 ** with table iTable, allocate one and link it into the list.
378 if( !pLock ){
379 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
380 if( !pLock ){
381 return SQLITE_NOMEM_BKPT;
383 pLock->iTable = iTable;
384 pLock->pBtree = p;
385 pLock->pNext = pBt->pLock;
386 pBt->pLock = pLock;
389 /* Set the BtLock.eLock variable to the maximum of the current lock
390 ** and the requested lock. This means if a write-lock was already held
391 ** and a read-lock requested, we don't incorrectly downgrade the lock.
393 assert( WRITE_LOCK>READ_LOCK );
394 if( eLock>pLock->eLock ){
395 pLock->eLock = eLock;
398 return SQLITE_OK;
400 #endif /* !SQLITE_OMIT_SHARED_CACHE */
402 #ifndef SQLITE_OMIT_SHARED_CACHE
404 ** Release all the table locks (locks obtained via calls to
405 ** the setSharedCacheTableLock() procedure) held by Btree object p.
407 ** This function assumes that Btree p has an open read or write
408 ** transaction. If it does not, then the BTS_PENDING flag
409 ** may be incorrectly cleared.
411 static void clearAllSharedCacheTableLocks(Btree *p){
412 BtShared *pBt = p->pBt;
413 BtLock **ppIter = &pBt->pLock;
415 assert( sqlite3BtreeHoldsMutex(p) );
416 assert( p->sharable || 0==*ppIter );
417 assert( p->inTrans>0 );
419 while( *ppIter ){
420 BtLock *pLock = *ppIter;
421 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
422 assert( pLock->pBtree->inTrans>=pLock->eLock );
423 if( pLock->pBtree==p ){
424 *ppIter = pLock->pNext;
425 assert( pLock->iTable!=1 || pLock==&p->lock );
426 if( pLock->iTable!=1 ){
427 sqlite3_free(pLock);
429 }else{
430 ppIter = &pLock->pNext;
434 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
435 if( pBt->pWriter==p ){
436 pBt->pWriter = 0;
437 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
438 }else if( pBt->nTransaction==2 ){
439 /* This function is called when Btree p is concluding its
440 ** transaction. If there currently exists a writer, and p is not
441 ** that writer, then the number of locks held by connections other
442 ** than the writer must be about to drop to zero. In this case
443 ** set the BTS_PENDING flag to 0.
445 ** If there is not currently a writer, then BTS_PENDING must
446 ** be zero already. So this next line is harmless in that case.
448 pBt->btsFlags &= ~BTS_PENDING;
453 ** This function changes all write-locks held by Btree p into read-locks.
455 static void downgradeAllSharedCacheTableLocks(Btree *p){
456 BtShared *pBt = p->pBt;
457 if( pBt->pWriter==p ){
458 BtLock *pLock;
459 pBt->pWriter = 0;
460 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
461 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
462 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
463 pLock->eLock = READ_LOCK;
468 #endif /* SQLITE_OMIT_SHARED_CACHE */
470 static void releasePage(MemPage *pPage); /* Forward reference */
471 static void releasePageOne(MemPage *pPage); /* Forward reference */
472 static void releasePageNotNull(MemPage *pPage); /* Forward reference */
475 ***** This routine is used inside of assert() only ****
477 ** Verify that the cursor holds the mutex on its BtShared
479 #ifdef SQLITE_DEBUG
480 static int cursorHoldsMutex(BtCursor *p){
481 return sqlite3_mutex_held(p->pBt->mutex);
484 /* Verify that the cursor and the BtShared agree about what is the current
485 ** database connetion. This is important in shared-cache mode. If the database
486 ** connection pointers get out-of-sync, it is possible for routines like
487 ** btreeInitPage() to reference an stale connection pointer that references a
488 ** a connection that has already closed. This routine is used inside assert()
489 ** statements only and for the purpose of double-checking that the btree code
490 ** does keep the database connection pointers up-to-date.
492 static int cursorOwnsBtShared(BtCursor *p){
493 assert( cursorHoldsMutex(p) );
494 return (p->pBtree->db==p->pBt->db);
496 #endif
499 ** Invalidate the overflow cache of the cursor passed as the first argument.
500 ** on the shared btree structure pBt.
502 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
505 ** Invalidate the overflow page-list cache for all cursors opened
506 ** on the shared btree structure pBt.
508 static void invalidateAllOverflowCache(BtShared *pBt){
509 BtCursor *p;
510 assert( sqlite3_mutex_held(pBt->mutex) );
511 for(p=pBt->pCursor; p; p=p->pNext){
512 invalidateOverflowCache(p);
516 #ifndef SQLITE_OMIT_INCRBLOB
518 ** This function is called before modifying the contents of a table
519 ** to invalidate any incrblob cursors that are open on the
520 ** row or one of the rows being modified.
522 ** If argument isClearTable is true, then the entire contents of the
523 ** table is about to be deleted. In this case invalidate all incrblob
524 ** cursors open on any row within the table with root-page pgnoRoot.
526 ** Otherwise, if argument isClearTable is false, then the row with
527 ** rowid iRow is being replaced or deleted. In this case invalidate
528 ** only those incrblob cursors open on that specific row.
530 static void invalidateIncrblobCursors(
531 Btree *pBtree, /* The database file to check */
532 Pgno pgnoRoot, /* The table that might be changing */
533 i64 iRow, /* The rowid that might be changing */
534 int isClearTable /* True if all rows are being deleted */
536 BtCursor *p;
537 if( pBtree->hasIncrblobCur==0 ) return;
538 assert( sqlite3BtreeHoldsMutex(pBtree) );
539 pBtree->hasIncrblobCur = 0;
540 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
541 if( (p->curFlags & BTCF_Incrblob)!=0 ){
542 pBtree->hasIncrblobCur = 1;
543 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
544 p->eState = CURSOR_INVALID;
550 #else
551 /* Stub function when INCRBLOB is omitted */
552 #define invalidateIncrblobCursors(w,x,y,z)
553 #endif /* SQLITE_OMIT_INCRBLOB */
556 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called
557 ** when a page that previously contained data becomes a free-list leaf
558 ** page.
560 ** The BtShared.pHasContent bitvec exists to work around an obscure
561 ** bug caused by the interaction of two useful IO optimizations surrounding
562 ** free-list leaf pages:
564 ** 1) When all data is deleted from a page and the page becomes
565 ** a free-list leaf page, the page is not written to the database
566 ** (as free-list leaf pages contain no meaningful data). Sometimes
567 ** such a page is not even journalled (as it will not be modified,
568 ** why bother journalling it?).
570 ** 2) When a free-list leaf page is reused, its content is not read
571 ** from the database or written to the journal file (why should it
572 ** be, if it is not at all meaningful?).
574 ** By themselves, these optimizations work fine and provide a handy
575 ** performance boost to bulk delete or insert operations. However, if
576 ** a page is moved to the free-list and then reused within the same
577 ** transaction, a problem comes up. If the page is not journalled when
578 ** it is moved to the free-list and it is also not journalled when it
579 ** is extracted from the free-list and reused, then the original data
580 ** may be lost. In the event of a rollback, it may not be possible
581 ** to restore the database to its original configuration.
583 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is
584 ** moved to become a free-list leaf page, the corresponding bit is
585 ** set in the bitvec. Whenever a leaf page is extracted from the free-list,
586 ** optimization 2 above is omitted if the corresponding bit is already
587 ** set in BtShared.pHasContent. The contents of the bitvec are cleared
588 ** at the end of every transaction.
590 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
591 int rc = SQLITE_OK;
592 if( !pBt->pHasContent ){
593 assert( pgno<=pBt->nPage );
594 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
595 if( !pBt->pHasContent ){
596 rc = SQLITE_NOMEM_BKPT;
599 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
600 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
602 return rc;
606 ** Query the BtShared.pHasContent vector.
608 ** This function is called when a free-list leaf page is removed from the
609 ** free-list for reuse. It returns false if it is safe to retrieve the
610 ** page from the pager layer with the 'no-content' flag set. True otherwise.
612 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
613 Bitvec *p = pBt->pHasContent;
614 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
618 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be
619 ** invoked at the conclusion of each write-transaction.
621 static void btreeClearHasContent(BtShared *pBt){
622 sqlite3BitvecDestroy(pBt->pHasContent);
623 pBt->pHasContent = 0;
627 ** Release all of the apPage[] pages for a cursor.
629 static void btreeReleaseAllCursorPages(BtCursor *pCur){
630 int i;
631 if( pCur->iPage>=0 ){
632 for(i=0; i<pCur->iPage; i++){
633 releasePageNotNull(pCur->apPage[i]);
635 releasePageNotNull(pCur->pPage);
636 pCur->iPage = -1;
641 ** The cursor passed as the only argument must point to a valid entry
642 ** when this function is called (i.e. have eState==CURSOR_VALID). This
643 ** function saves the current cursor key in variables pCur->nKey and
644 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
645 ** code otherwise.
647 ** If the cursor is open on an intkey table, then the integer key
648 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
649 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
650 ** set to point to a malloced buffer pCur->nKey bytes in size containing
651 ** the key.
653 static int saveCursorKey(BtCursor *pCur){
654 int rc = SQLITE_OK;
655 assert( CURSOR_VALID==pCur->eState );
656 assert( 0==pCur->pKey );
657 assert( cursorHoldsMutex(pCur) );
659 if( pCur->curIntKey ){
660 /* Only the rowid is required for a table btree */
661 pCur->nKey = sqlite3BtreeIntegerKey(pCur);
662 }else{
663 /* For an index btree, save the complete key content. It is possible
664 ** that the current key is corrupt. In that case, it is possible that
665 ** the sqlite3VdbeRecordUnpack() function may overread the buffer by
666 ** up to the size of 1 varint plus 1 8-byte value when the cursor
667 ** position is restored. Hence the 17 bytes of padding allocated
668 ** below. */
669 void *pKey;
670 pCur->nKey = sqlite3BtreePayloadSize(pCur);
671 pKey = sqlite3Malloc( pCur->nKey + 9 + 8 );
672 if( pKey ){
673 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
674 if( rc==SQLITE_OK ){
675 memset(((u8*)pKey)+pCur->nKey, 0, 9+8);
676 pCur->pKey = pKey;
677 }else{
678 sqlite3_free(pKey);
680 }else{
681 rc = SQLITE_NOMEM_BKPT;
684 assert( !pCur->curIntKey || !pCur->pKey );
685 return rc;
689 ** Save the current cursor position in the variables BtCursor.nKey
690 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
692 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
693 ** prior to calling this routine.
695 static int saveCursorPosition(BtCursor *pCur){
696 int rc;
698 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
699 assert( 0==pCur->pKey );
700 assert( cursorHoldsMutex(pCur) );
702 if( pCur->curFlags & BTCF_Pinned ){
703 return SQLITE_CONSTRAINT_PINNED;
705 if( pCur->eState==CURSOR_SKIPNEXT ){
706 pCur->eState = CURSOR_VALID;
707 }else{
708 pCur->skipNext = 0;
711 rc = saveCursorKey(pCur);
712 if( rc==SQLITE_OK ){
713 btreeReleaseAllCursorPages(pCur);
714 pCur->eState = CURSOR_REQUIRESEEK;
717 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
718 return rc;
721 /* Forward reference */
722 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
725 ** Save the positions of all cursors (except pExcept) that are open on
726 ** the table with root-page iRoot. "Saving the cursor position" means that
727 ** the location in the btree is remembered in such a way that it can be
728 ** moved back to the same spot after the btree has been modified. This
729 ** routine is called just before cursor pExcept is used to modify the
730 ** table, for example in BtreeDelete() or BtreeInsert().
732 ** If there are two or more cursors on the same btree, then all such
733 ** cursors should have their BTCF_Multiple flag set. The btreeCursor()
734 ** routine enforces that rule. This routine only needs to be called in
735 ** the uncommon case when pExpect has the BTCF_Multiple flag set.
737 ** If pExpect!=NULL and if no other cursors are found on the same root-page,
738 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
739 ** pointless call to this routine.
741 ** Implementation note: This routine merely checks to see if any cursors
742 ** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
743 ** event that cursors are in need to being saved.
745 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
746 BtCursor *p;
747 assert( sqlite3_mutex_held(pBt->mutex) );
748 assert( pExcept==0 || pExcept->pBt==pBt );
749 for(p=pBt->pCursor; p; p=p->pNext){
750 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
752 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
753 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
754 return SQLITE_OK;
757 /* This helper routine to saveAllCursors does the actual work of saving
758 ** the cursors if and when a cursor is found that actually requires saving.
759 ** The common case is that no cursors need to be saved, so this routine is
760 ** broken out from its caller to avoid unnecessary stack pointer movement.
762 static int SQLITE_NOINLINE saveCursorsOnList(
763 BtCursor *p, /* The first cursor that needs saving */
764 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
765 BtCursor *pExcept /* Do not save this cursor */
768 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
769 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
770 int rc = saveCursorPosition(p);
771 if( SQLITE_OK!=rc ){
772 return rc;
774 }else{
775 testcase( p->iPage>=0 );
776 btreeReleaseAllCursorPages(p);
779 p = p->pNext;
780 }while( p );
781 return SQLITE_OK;
785 ** Clear the current cursor position.
787 void sqlite3BtreeClearCursor(BtCursor *pCur){
788 assert( cursorHoldsMutex(pCur) );
789 sqlite3_free(pCur->pKey);
790 pCur->pKey = 0;
791 pCur->eState = CURSOR_INVALID;
795 ** In this version of BtreeMoveto, pKey is a packed index record
796 ** such as is generated by the OP_MakeRecord opcode. Unpack the
797 ** record and then call BtreeMovetoUnpacked() to do the work.
799 static int btreeMoveto(
800 BtCursor *pCur, /* Cursor open on the btree to be searched */
801 const void *pKey, /* Packed key if the btree is an index */
802 i64 nKey, /* Integer key for tables. Size of pKey for indices */
803 int bias, /* Bias search to the high end */
804 int *pRes /* Write search results here */
806 int rc; /* Status code */
807 UnpackedRecord *pIdxKey; /* Unpacked index key */
809 if( pKey ){
810 KeyInfo *pKeyInfo = pCur->pKeyInfo;
811 assert( nKey==(i64)(int)nKey );
812 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
813 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
814 sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey);
815 if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){
816 rc = SQLITE_CORRUPT_BKPT;
817 goto moveto_done;
819 }else{
820 pIdxKey = 0;
822 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
823 moveto_done:
824 if( pIdxKey ){
825 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
827 return rc;
831 ** Restore the cursor to the position it was in (or as close to as possible)
832 ** when saveCursorPosition() was called. Note that this call deletes the
833 ** saved position info stored by saveCursorPosition(), so there can be
834 ** at most one effective restoreCursorPosition() call after each
835 ** saveCursorPosition().
837 static int btreeRestoreCursorPosition(BtCursor *pCur){
838 int rc;
839 int skipNext = 0;
840 assert( cursorOwnsBtShared(pCur) );
841 assert( pCur->eState>=CURSOR_REQUIRESEEK );
842 if( pCur->eState==CURSOR_FAULT ){
843 return pCur->skipNext;
845 pCur->eState = CURSOR_INVALID;
846 if( sqlite3FaultSim(410) ){
847 rc = SQLITE_IOERR;
848 }else{
849 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
851 if( rc==SQLITE_OK ){
852 sqlite3_free(pCur->pKey);
853 pCur->pKey = 0;
854 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
855 if( skipNext ) pCur->skipNext = skipNext;
856 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
857 pCur->eState = CURSOR_SKIPNEXT;
860 return rc;
863 #define restoreCursorPosition(p) \
864 (p->eState>=CURSOR_REQUIRESEEK ? \
865 btreeRestoreCursorPosition(p) : \
866 SQLITE_OK)
869 ** Determine whether or not a cursor has moved from the position where
870 ** it was last placed, or has been invalidated for any other reason.
871 ** Cursors can move when the row they are pointing at is deleted out
872 ** from under them, for example. Cursor might also move if a btree
873 ** is rebalanced.
875 ** Calling this routine with a NULL cursor pointer returns false.
877 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
878 ** back to where it ought to be if this routine returns true.
880 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
881 assert( EIGHT_BYTE_ALIGNMENT(pCur)
882 || pCur==sqlite3BtreeFakeValidCursor() );
883 assert( offsetof(BtCursor, eState)==0 );
884 assert( sizeof(pCur->eState)==1 );
885 return CURSOR_VALID != *(u8*)pCur;
889 ** Return a pointer to a fake BtCursor object that will always answer
890 ** false to the sqlite3BtreeCursorHasMoved() routine above. The fake
891 ** cursor returned must not be used with any other Btree interface.
893 BtCursor *sqlite3BtreeFakeValidCursor(void){
894 static u8 fakeCursor = CURSOR_VALID;
895 assert( offsetof(BtCursor, eState)==0 );
896 return (BtCursor*)&fakeCursor;
900 ** This routine restores a cursor back to its original position after it
901 ** has been moved by some outside activity (such as a btree rebalance or
902 ** a row having been deleted out from under the cursor).
904 ** On success, the *pDifferentRow parameter is false if the cursor is left
905 ** pointing at exactly the same row. *pDifferntRow is the row the cursor
906 ** was pointing to has been deleted, forcing the cursor to point to some
907 ** nearby row.
909 ** This routine should only be called for a cursor that just returned
910 ** TRUE from sqlite3BtreeCursorHasMoved().
912 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
913 int rc;
915 assert( pCur!=0 );
916 assert( pCur->eState!=CURSOR_VALID );
917 rc = restoreCursorPosition(pCur);
918 if( rc ){
919 *pDifferentRow = 1;
920 return rc;
922 if( pCur->eState!=CURSOR_VALID ){
923 *pDifferentRow = 1;
924 }else{
925 *pDifferentRow = 0;
927 return SQLITE_OK;
930 #ifdef SQLITE_ENABLE_CURSOR_HINTS
932 ** Provide hints to the cursor. The particular hint given (and the type
933 ** and number of the varargs parameters) is determined by the eHintType
934 ** parameter. See the definitions of the BTREE_HINT_* macros for details.
936 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
937 /* Used only by system that substitute their own storage engine */
939 #endif
942 ** Provide flag hints to the cursor.
944 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
945 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
946 pCur->hints = x;
950 #ifndef SQLITE_OMIT_AUTOVACUUM
952 ** Given a page number of a regular database page, return the page
953 ** number for the pointer-map page that contains the entry for the
954 ** input page number.
956 ** Return 0 (not a valid page) for pgno==1 since there is
957 ** no pointer map associated with page 1. The integrity_check logic
958 ** requires that ptrmapPageno(*,1)!=1.
960 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
961 int nPagesPerMapPage;
962 Pgno iPtrMap, ret;
963 assert( sqlite3_mutex_held(pBt->mutex) );
964 if( pgno<2 ) return 0;
965 nPagesPerMapPage = (pBt->usableSize/5)+1;
966 iPtrMap = (pgno-2)/nPagesPerMapPage;
967 ret = (iPtrMap*nPagesPerMapPage) + 2;
968 if( ret==PENDING_BYTE_PAGE(pBt) ){
969 ret++;
971 return ret;
975 ** Write an entry into the pointer map.
977 ** This routine updates the pointer map entry for page number 'key'
978 ** so that it maps to type 'eType' and parent page number 'pgno'.
980 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
981 ** a no-op. If an error occurs, the appropriate error code is written
982 ** into *pRC.
984 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
985 DbPage *pDbPage; /* The pointer map page */
986 u8 *pPtrmap; /* The pointer map data */
987 Pgno iPtrmap; /* The pointer map page number */
988 int offset; /* Offset in pointer map page */
989 int rc; /* Return code from subfunctions */
991 if( *pRC ) return;
993 assert( sqlite3_mutex_held(pBt->mutex) );
994 /* The master-journal page number must never be used as a pointer map page */
995 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
997 assert( pBt->autoVacuum );
998 if( key==0 ){
999 *pRC = SQLITE_CORRUPT_BKPT;
1000 return;
1002 iPtrmap = PTRMAP_PAGENO(pBt, key);
1003 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
1004 if( rc!=SQLITE_OK ){
1005 *pRC = rc;
1006 return;
1008 if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){
1009 /* The first byte of the extra data is the MemPage.isInit byte.
1010 ** If that byte is set, it means this page is also being used
1011 ** as a btree page. */
1012 *pRC = SQLITE_CORRUPT_BKPT;
1013 goto ptrmap_exit;
1015 offset = PTRMAP_PTROFFSET(iPtrmap, key);
1016 if( offset<0 ){
1017 *pRC = SQLITE_CORRUPT_BKPT;
1018 goto ptrmap_exit;
1020 assert( offset <= (int)pBt->usableSize-5 );
1021 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
1023 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
1024 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
1025 *pRC= rc = sqlite3PagerWrite(pDbPage);
1026 if( rc==SQLITE_OK ){
1027 pPtrmap[offset] = eType;
1028 put4byte(&pPtrmap[offset+1], parent);
1032 ptrmap_exit:
1033 sqlite3PagerUnref(pDbPage);
1037 ** Read an entry from the pointer map.
1039 ** This routine retrieves the pointer map entry for page 'key', writing
1040 ** the type and parent page number to *pEType and *pPgno respectively.
1041 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
1043 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
1044 DbPage *pDbPage; /* The pointer map page */
1045 int iPtrmap; /* Pointer map page index */
1046 u8 *pPtrmap; /* Pointer map page data */
1047 int offset; /* Offset of entry in pointer map */
1048 int rc;
1050 assert( sqlite3_mutex_held(pBt->mutex) );
1052 iPtrmap = PTRMAP_PAGENO(pBt, key);
1053 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
1054 if( rc!=0 ){
1055 return rc;
1057 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
1059 offset = PTRMAP_PTROFFSET(iPtrmap, key);
1060 if( offset<0 ){
1061 sqlite3PagerUnref(pDbPage);
1062 return SQLITE_CORRUPT_BKPT;
1064 assert( offset <= (int)pBt->usableSize-5 );
1065 assert( pEType!=0 );
1066 *pEType = pPtrmap[offset];
1067 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
1069 sqlite3PagerUnref(pDbPage);
1070 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
1071 return SQLITE_OK;
1074 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
1075 #define ptrmapPut(w,x,y,z,rc)
1076 #define ptrmapGet(w,x,y,z) SQLITE_OK
1077 #define ptrmapPutOvflPtr(x, y, z, rc)
1078 #endif
1081 ** Given a btree page and a cell index (0 means the first cell on
1082 ** the page, 1 means the second cell, and so forth) return a pointer
1083 ** to the cell content.
1085 ** findCellPastPtr() does the same except it skips past the initial
1086 ** 4-byte child pointer found on interior pages, if there is one.
1088 ** This routine works only for pages that do not contain overflow cells.
1090 #define findCell(P,I) \
1091 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1092 #define findCellPastPtr(P,I) \
1093 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1097 ** This is common tail processing for btreeParseCellPtr() and
1098 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1099 ** on a single B-tree page. Make necessary adjustments to the CellInfo
1100 ** structure.
1102 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1103 MemPage *pPage, /* Page containing the cell */
1104 u8 *pCell, /* Pointer to the cell text. */
1105 CellInfo *pInfo /* Fill in this structure */
1107 /* If the payload will not fit completely on the local page, we have
1108 ** to decide how much to store locally and how much to spill onto
1109 ** overflow pages. The strategy is to minimize the amount of unused
1110 ** space on overflow pages while keeping the amount of local storage
1111 ** in between minLocal and maxLocal.
1113 ** Warning: changing the way overflow payload is distributed in any
1114 ** way will result in an incompatible file format.
1116 int minLocal; /* Minimum amount of payload held locally */
1117 int maxLocal; /* Maximum amount of payload held locally */
1118 int surplus; /* Overflow payload available for local storage */
1120 minLocal = pPage->minLocal;
1121 maxLocal = pPage->maxLocal;
1122 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1123 testcase( surplus==maxLocal );
1124 testcase( surplus==maxLocal+1 );
1125 if( surplus <= maxLocal ){
1126 pInfo->nLocal = (u16)surplus;
1127 }else{
1128 pInfo->nLocal = (u16)minLocal;
1130 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
1134 ** The following routines are implementations of the MemPage.xParseCell()
1135 ** method.
1137 ** Parse a cell content block and fill in the CellInfo structure.
1139 ** btreeParseCellPtr() => table btree leaf nodes
1140 ** btreeParseCellNoPayload() => table btree internal nodes
1141 ** btreeParseCellPtrIndex() => index btree nodes
1143 ** There is also a wrapper function btreeParseCell() that works for
1144 ** all MemPage types and that references the cell by index rather than
1145 ** by pointer.
1147 static void btreeParseCellPtrNoPayload(
1148 MemPage *pPage, /* Page containing the cell */
1149 u8 *pCell, /* Pointer to the cell text. */
1150 CellInfo *pInfo /* Fill in this structure */
1152 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1153 assert( pPage->leaf==0 );
1154 assert( pPage->childPtrSize==4 );
1155 #ifndef SQLITE_DEBUG
1156 UNUSED_PARAMETER(pPage);
1157 #endif
1158 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1159 pInfo->nPayload = 0;
1160 pInfo->nLocal = 0;
1161 pInfo->pPayload = 0;
1162 return;
1164 static void btreeParseCellPtr(
1165 MemPage *pPage, /* Page containing the cell */
1166 u8 *pCell, /* Pointer to the cell text. */
1167 CellInfo *pInfo /* Fill in this structure */
1169 u8 *pIter; /* For scanning through pCell */
1170 u32 nPayload; /* Number of bytes of cell payload */
1171 u64 iKey; /* Extracted Key value */
1173 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1174 assert( pPage->leaf==0 || pPage->leaf==1 );
1175 assert( pPage->intKeyLeaf );
1176 assert( pPage->childPtrSize==0 );
1177 pIter = pCell;
1179 /* The next block of code is equivalent to:
1181 ** pIter += getVarint32(pIter, nPayload);
1183 ** The code is inlined to avoid a function call.
1185 nPayload = *pIter;
1186 if( nPayload>=0x80 ){
1187 u8 *pEnd = &pIter[8];
1188 nPayload &= 0x7f;
1190 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1191 }while( (*pIter)>=0x80 && pIter<pEnd );
1193 pIter++;
1195 /* The next block of code is equivalent to:
1197 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1199 ** The code is inlined to avoid a function call.
1201 iKey = *pIter;
1202 if( iKey>=0x80 ){
1203 u8 *pEnd = &pIter[7];
1204 iKey &= 0x7f;
1205 while(1){
1206 iKey = (iKey<<7) | (*++pIter & 0x7f);
1207 if( (*pIter)<0x80 ) break;
1208 if( pIter>=pEnd ){
1209 iKey = (iKey<<8) | *++pIter;
1210 break;
1214 pIter++;
1216 pInfo->nKey = *(i64*)&iKey;
1217 pInfo->nPayload = nPayload;
1218 pInfo->pPayload = pIter;
1219 testcase( nPayload==pPage->maxLocal );
1220 testcase( nPayload==pPage->maxLocal+1 );
1221 if( nPayload<=pPage->maxLocal ){
1222 /* This is the (easy) common case where the entire payload fits
1223 ** on the local page. No overflow is required.
1225 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1226 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1227 pInfo->nLocal = (u16)nPayload;
1228 }else{
1229 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1232 static void btreeParseCellPtrIndex(
1233 MemPage *pPage, /* Page containing the cell */
1234 u8 *pCell, /* Pointer to the cell text. */
1235 CellInfo *pInfo /* Fill in this structure */
1237 u8 *pIter; /* For scanning through pCell */
1238 u32 nPayload; /* Number of bytes of cell payload */
1240 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1241 assert( pPage->leaf==0 || pPage->leaf==1 );
1242 assert( pPage->intKeyLeaf==0 );
1243 pIter = pCell + pPage->childPtrSize;
1244 nPayload = *pIter;
1245 if( nPayload>=0x80 ){
1246 u8 *pEnd = &pIter[8];
1247 nPayload &= 0x7f;
1249 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1250 }while( *(pIter)>=0x80 && pIter<pEnd );
1252 pIter++;
1253 pInfo->nKey = nPayload;
1254 pInfo->nPayload = nPayload;
1255 pInfo->pPayload = pIter;
1256 testcase( nPayload==pPage->maxLocal );
1257 testcase( nPayload==pPage->maxLocal+1 );
1258 if( nPayload<=pPage->maxLocal ){
1259 /* This is the (easy) common case where the entire payload fits
1260 ** on the local page. No overflow is required.
1262 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1263 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1264 pInfo->nLocal = (u16)nPayload;
1265 }else{
1266 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1269 static void btreeParseCell(
1270 MemPage *pPage, /* Page containing the cell */
1271 int iCell, /* The cell index. First cell is 0 */
1272 CellInfo *pInfo /* Fill in this structure */
1274 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
1278 ** The following routines are implementations of the MemPage.xCellSize
1279 ** method.
1281 ** Compute the total number of bytes that a Cell needs in the cell
1282 ** data area of the btree-page. The return number includes the cell
1283 ** data header and the local payload, but not any overflow page or
1284 ** the space used by the cell pointer.
1286 ** cellSizePtrNoPayload() => table internal nodes
1287 ** cellSizePtr() => all index nodes & table leaf nodes
1289 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
1290 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1291 u8 *pEnd; /* End mark for a varint */
1292 u32 nSize; /* Size value to return */
1294 #ifdef SQLITE_DEBUG
1295 /* The value returned by this function should always be the same as
1296 ** the (CellInfo.nSize) value found by doing a full parse of the
1297 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1298 ** this function verifies that this invariant is not violated. */
1299 CellInfo debuginfo;
1300 pPage->xParseCell(pPage, pCell, &debuginfo);
1301 #endif
1303 nSize = *pIter;
1304 if( nSize>=0x80 ){
1305 pEnd = &pIter[8];
1306 nSize &= 0x7f;
1308 nSize = (nSize<<7) | (*++pIter & 0x7f);
1309 }while( *(pIter)>=0x80 && pIter<pEnd );
1311 pIter++;
1312 if( pPage->intKey ){
1313 /* pIter now points at the 64-bit integer key value, a variable length
1314 ** integer. The following block moves pIter to point at the first byte
1315 ** past the end of the key value. */
1316 pEnd = &pIter[9];
1317 while( (*pIter++)&0x80 && pIter<pEnd );
1319 testcase( nSize==pPage->maxLocal );
1320 testcase( nSize==pPage->maxLocal+1 );
1321 if( nSize<=pPage->maxLocal ){
1322 nSize += (u32)(pIter - pCell);
1323 if( nSize<4 ) nSize = 4;
1324 }else{
1325 int minLocal = pPage->minLocal;
1326 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
1327 testcase( nSize==pPage->maxLocal );
1328 testcase( nSize==pPage->maxLocal+1 );
1329 if( nSize>pPage->maxLocal ){
1330 nSize = minLocal;
1332 nSize += 4 + (u16)(pIter - pCell);
1334 assert( nSize==debuginfo.nSize || CORRUPT_DB );
1335 return (u16)nSize;
1337 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1338 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1339 u8 *pEnd; /* End mark for a varint */
1341 #ifdef SQLITE_DEBUG
1342 /* The value returned by this function should always be the same as
1343 ** the (CellInfo.nSize) value found by doing a full parse of the
1344 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1345 ** this function verifies that this invariant is not violated. */
1346 CellInfo debuginfo;
1347 pPage->xParseCell(pPage, pCell, &debuginfo);
1348 #else
1349 UNUSED_PARAMETER(pPage);
1350 #endif
1352 assert( pPage->childPtrSize==4 );
1353 pEnd = pIter + 9;
1354 while( (*pIter++)&0x80 && pIter<pEnd );
1355 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1356 return (u16)(pIter - pCell);
1360 #ifdef SQLITE_DEBUG
1361 /* This variation on cellSizePtr() is used inside of assert() statements
1362 ** only. */
1363 static u16 cellSize(MemPage *pPage, int iCell){
1364 return pPage->xCellSize(pPage, findCell(pPage, iCell));
1366 #endif
1368 #ifndef SQLITE_OMIT_AUTOVACUUM
1370 ** The cell pCell is currently part of page pSrc but will ultimately be part
1371 ** of pPage. (pSrc and pPager are often the same.) If pCell contains a
1372 ** pointer to an overflow page, insert an entry into the pointer-map for
1373 ** the overflow page that will be valid after pCell has been moved to pPage.
1375 static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){
1376 CellInfo info;
1377 if( *pRC ) return;
1378 assert( pCell!=0 );
1379 pPage->xParseCell(pPage, pCell, &info);
1380 if( info.nLocal<info.nPayload ){
1381 Pgno ovfl;
1382 if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){
1383 testcase( pSrc!=pPage );
1384 *pRC = SQLITE_CORRUPT_BKPT;
1385 return;
1387 ovfl = get4byte(&pCell[info.nSize-4]);
1388 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
1391 #endif
1395 ** Defragment the page given. This routine reorganizes cells within the
1396 ** page so that there are no free-blocks on the free-block list.
1398 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1399 ** present in the page after this routine returns.
1401 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1402 ** b-tree page so that there are no freeblocks or fragment bytes, all
1403 ** unused bytes are contained in the unallocated space region, and all
1404 ** cells are packed tightly at the end of the page.
1406 static int defragmentPage(MemPage *pPage, int nMaxFrag){
1407 int i; /* Loop counter */
1408 int pc; /* Address of the i-th cell */
1409 int hdr; /* Offset to the page header */
1410 int size; /* Size of a cell */
1411 int usableSize; /* Number of usable bytes on a page */
1412 int cellOffset; /* Offset to the cell pointer array */
1413 int cbrk; /* Offset to the cell content area */
1414 int nCell; /* Number of cells on the page */
1415 unsigned char *data; /* The page data */
1416 unsigned char *temp; /* Temp area for cell content */
1417 unsigned char *src; /* Source of content */
1418 int iCellFirst; /* First allowable cell index */
1419 int iCellLast; /* Last possible cell index */
1421 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1422 assert( pPage->pBt!=0 );
1423 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
1424 assert( pPage->nOverflow==0 );
1425 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1426 temp = 0;
1427 src = data = pPage->aData;
1428 hdr = pPage->hdrOffset;
1429 cellOffset = pPage->cellOffset;
1430 nCell = pPage->nCell;
1431 assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB );
1432 iCellFirst = cellOffset + 2*nCell;
1433 usableSize = pPage->pBt->usableSize;
1435 /* This block handles pages with two or fewer free blocks and nMaxFrag
1436 ** or fewer fragmented bytes. In this case it is faster to move the
1437 ** two (or one) blocks of cells using memmove() and add the required
1438 ** offsets to each pointer in the cell-pointer array than it is to
1439 ** reconstruct the entire page. */
1440 if( (int)data[hdr+7]<=nMaxFrag ){
1441 int iFree = get2byte(&data[hdr+1]);
1442 if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
1443 if( iFree ){
1444 int iFree2 = get2byte(&data[iFree]);
1445 if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
1446 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1447 u8 *pEnd = &data[cellOffset + nCell*2];
1448 u8 *pAddr;
1449 int sz2 = 0;
1450 int sz = get2byte(&data[iFree+2]);
1451 int top = get2byte(&data[hdr+5]);
1452 if( NEVER(top>=iFree) ){
1453 return SQLITE_CORRUPT_PAGE(pPage);
1455 if( iFree2 ){
1456 if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage);
1457 sz2 = get2byte(&data[iFree2+2]);
1458 if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage);
1459 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1460 sz += sz2;
1461 }else if( NEVER(iFree+sz>usableSize) ){
1462 return SQLITE_CORRUPT_PAGE(pPage);
1465 cbrk = top+sz;
1466 assert( cbrk+(iFree-top) <= usableSize );
1467 memmove(&data[cbrk], &data[top], iFree-top);
1468 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1469 pc = get2byte(pAddr);
1470 if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1471 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1473 goto defragment_out;
1478 cbrk = usableSize;
1479 iCellLast = usableSize - 4;
1480 for(i=0; i<nCell; i++){
1481 u8 *pAddr; /* The i-th cell pointer */
1482 pAddr = &data[cellOffset + i*2];
1483 pc = get2byte(pAddr);
1484 testcase( pc==iCellFirst );
1485 testcase( pc==iCellLast );
1486 /* These conditions have already been verified in btreeInitPage()
1487 ** if PRAGMA cell_size_check=ON.
1489 if( pc<iCellFirst || pc>iCellLast ){
1490 return SQLITE_CORRUPT_PAGE(pPage);
1492 assert( pc>=iCellFirst && pc<=iCellLast );
1493 size = pPage->xCellSize(pPage, &src[pc]);
1494 cbrk -= size;
1495 if( cbrk<iCellFirst || pc+size>usableSize ){
1496 return SQLITE_CORRUPT_PAGE(pPage);
1498 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
1499 testcase( cbrk+size==usableSize );
1500 testcase( pc+size==usableSize );
1501 put2byte(pAddr, cbrk);
1502 if( temp==0 ){
1503 int x;
1504 if( cbrk==pc ) continue;
1505 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1506 x = get2byte(&data[hdr+5]);
1507 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1508 src = temp;
1510 memcpy(&data[cbrk], &src[pc], size);
1512 data[hdr+7] = 0;
1514 defragment_out:
1515 assert( pPage->nFree>=0 );
1516 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
1517 return SQLITE_CORRUPT_PAGE(pPage);
1519 assert( cbrk>=iCellFirst );
1520 put2byte(&data[hdr+5], cbrk);
1521 data[hdr+1] = 0;
1522 data[hdr+2] = 0;
1523 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
1524 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1525 return SQLITE_OK;
1529 ** Search the free-list on page pPg for space to store a cell nByte bytes in
1530 ** size. If one can be found, return a pointer to the space and remove it
1531 ** from the free-list.
1533 ** If no suitable space can be found on the free-list, return NULL.
1535 ** This function may detect corruption within pPg. If corruption is
1536 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
1538 ** Slots on the free list that are between 1 and 3 bytes larger than nByte
1539 ** will be ignored if adding the extra space to the fragmentation count
1540 ** causes the fragmentation count to exceed 60.
1542 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
1543 const int hdr = pPg->hdrOffset; /* Offset to page header */
1544 u8 * const aData = pPg->aData; /* Page data */
1545 int iAddr = hdr + 1; /* Address of ptr to pc */
1546 int pc = get2byte(&aData[iAddr]); /* Address of a free slot */
1547 int x; /* Excess size of the slot */
1548 int maxPC = pPg->pBt->usableSize - nByte; /* Max address for a usable slot */
1549 int size; /* Size of the free slot */
1551 assert( pc>0 );
1552 while( pc<=maxPC ){
1553 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1554 ** freeblock form a big-endian integer which is the size of the freeblock
1555 ** in bytes, including the 4-byte header. */
1556 size = get2byte(&aData[pc+2]);
1557 if( (x = size - nByte)>=0 ){
1558 testcase( x==4 );
1559 testcase( x==3 );
1560 if( x<4 ){
1561 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1562 ** number of bytes in fragments may not exceed 60. */
1563 if( aData[hdr+7]>57 ) return 0;
1565 /* Remove the slot from the free-list. Update the number of
1566 ** fragmented bytes within the page. */
1567 memcpy(&aData[iAddr], &aData[pc], 2);
1568 aData[hdr+7] += (u8)x;
1569 }else if( x+pc > maxPC ){
1570 /* This slot extends off the end of the usable part of the page */
1571 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1572 return 0;
1573 }else{
1574 /* The slot remains on the free-list. Reduce its size to account
1575 ** for the portion used by the new allocation. */
1576 put2byte(&aData[pc+2], x);
1578 return &aData[pc + x];
1580 iAddr = pc;
1581 pc = get2byte(&aData[pc]);
1582 if( pc<=iAddr+size ){
1583 if( pc ){
1584 /* The next slot in the chain is not past the end of the current slot */
1585 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1587 return 0;
1590 if( pc>maxPC+nByte-4 ){
1591 /* The free slot chain extends off the end of the page */
1592 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1594 return 0;
1598 ** Allocate nByte bytes of space from within the B-Tree page passed
1599 ** as the first argument. Write into *pIdx the index into pPage->aData[]
1600 ** of the first byte of allocated space. Return either SQLITE_OK or
1601 ** an error code (usually SQLITE_CORRUPT).
1603 ** The caller guarantees that there is sufficient space to make the
1604 ** allocation. This routine might need to defragment in order to bring
1605 ** all the space together, however. This routine will avoid using
1606 ** the first two bytes past the cell pointer area since presumably this
1607 ** allocation is being made in order to insert a new cell, so we will
1608 ** also end up needing a new cell pointer.
1610 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
1611 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1612 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1613 int top; /* First byte of cell content area */
1614 int rc = SQLITE_OK; /* Integer return code */
1615 int gap; /* First byte of gap between cell pointers and cell content */
1617 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1618 assert( pPage->pBt );
1619 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1620 assert( nByte>=0 ); /* Minimum cell size is 4 */
1621 assert( pPage->nFree>=nByte );
1622 assert( pPage->nOverflow==0 );
1623 assert( nByte < (int)(pPage->pBt->usableSize-8) );
1625 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1626 gap = pPage->cellOffset + 2*pPage->nCell;
1627 assert( gap<=65536 );
1628 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1629 ** and the reserved space is zero (the usual value for reserved space)
1630 ** then the cell content offset of an empty page wants to be 65536.
1631 ** However, that integer is too large to be stored in a 2-byte unsigned
1632 ** integer, so a value of 0 is used in its place. */
1633 top = get2byte(&data[hdr+5]);
1634 assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */
1635 if( gap>top ){
1636 if( top==0 && pPage->pBt->usableSize==65536 ){
1637 top = 65536;
1638 }else{
1639 return SQLITE_CORRUPT_PAGE(pPage);
1643 /* If there is enough space between gap and top for one more cell pointer,
1644 ** and if the freelist is not empty, then search the
1645 ** freelist looking for a slot big enough to satisfy the request.
1647 testcase( gap+2==top );
1648 testcase( gap+1==top );
1649 testcase( gap==top );
1650 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
1651 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
1652 if( pSpace ){
1653 int g2;
1654 assert( pSpace+nByte<=data+pPage->pBt->usableSize );
1655 *pIdx = g2 = (int)(pSpace-data);
1656 if( NEVER(g2<=gap) ){
1657 return SQLITE_CORRUPT_PAGE(pPage);
1658 }else{
1659 return SQLITE_OK;
1661 }else if( rc ){
1662 return rc;
1666 /* The request could not be fulfilled using a freelist slot. Check
1667 ** to see if defragmentation is necessary.
1669 testcase( gap+2+nByte==top );
1670 if( gap+2+nByte>top ){
1671 assert( pPage->nCell>0 || CORRUPT_DB );
1672 assert( pPage->nFree>=0 );
1673 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
1674 if( rc ) return rc;
1675 top = get2byteNotZero(&data[hdr+5]);
1676 assert( gap+2+nByte<=top );
1680 /* Allocate memory from the gap in between the cell pointer array
1681 ** and the cell content area. The btreeComputeFreeSpace() call has already
1682 ** validated the freelist. Given that the freelist is valid, there
1683 ** is no way that the allocation can extend off the end of the page.
1684 ** The assert() below verifies the previous sentence.
1686 top -= nByte;
1687 put2byte(&data[hdr+5], top);
1688 assert( top+nByte <= (int)pPage->pBt->usableSize );
1689 *pIdx = top;
1690 return SQLITE_OK;
1694 ** Return a section of the pPage->aData to the freelist.
1695 ** The first byte of the new free block is pPage->aData[iStart]
1696 ** and the size of the block is iSize bytes.
1698 ** Adjacent freeblocks are coalesced.
1700 ** Even though the freeblock list was checked by btreeComputeFreeSpace(),
1701 ** that routine will not detect overlap between cells or freeblocks. Nor
1702 ** does it detect cells or freeblocks that encrouch into the reserved bytes
1703 ** at the end of the page. So do additional corruption checks inside this
1704 ** routine and return SQLITE_CORRUPT if any problems are found.
1706 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
1707 u16 iPtr; /* Address of ptr to next freeblock */
1708 u16 iFreeBlk; /* Address of the next freeblock */
1709 u8 hdr; /* Page header size. 0 or 100 */
1710 u8 nFrag = 0; /* Reduction in fragmentation */
1711 u16 iOrigSize = iSize; /* Original value of iSize */
1712 u16 x; /* Offset to cell content area */
1713 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
1714 unsigned char *data = pPage->aData; /* Page content */
1716 assert( pPage->pBt!=0 );
1717 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1718 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
1719 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
1720 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1721 assert( iSize>=4 ); /* Minimum cell size is 4 */
1722 assert( iStart<=pPage->pBt->usableSize-4 );
1724 /* The list of freeblocks must be in ascending order. Find the
1725 ** spot on the list where iStart should be inserted.
1727 hdr = pPage->hdrOffset;
1728 iPtr = hdr + 1;
1729 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1730 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1731 }else{
1732 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1733 if( iFreeBlk<iPtr+4 ){
1734 if( iFreeBlk==0 ) break; /* TH3: corrupt082.100 */
1735 return SQLITE_CORRUPT_PAGE(pPage);
1737 iPtr = iFreeBlk;
1739 if( iFreeBlk>pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */
1740 return SQLITE_CORRUPT_PAGE(pPage);
1742 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1744 /* At this point:
1745 ** iFreeBlk: First freeblock after iStart, or zero if none
1746 ** iPtr: The address of a pointer to iFreeBlk
1748 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1750 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1751 nFrag = iFreeBlk - iEnd;
1752 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
1753 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
1754 if( NEVER(iEnd > pPage->pBt->usableSize) ){
1755 return SQLITE_CORRUPT_PAGE(pPage);
1757 iSize = iEnd - iStart;
1758 iFreeBlk = get2byte(&data[iFreeBlk]);
1761 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1762 ** pointer in the page header) then check to see if iStart should be
1763 ** coalesced onto the end of iPtr.
1765 if( iPtr>hdr+1 ){
1766 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1767 if( iPtrEnd+3>=iStart ){
1768 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
1769 nFrag += iStart - iPtrEnd;
1770 iSize = iEnd - iPtr;
1771 iStart = iPtr;
1774 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
1775 data[hdr+7] -= nFrag;
1777 x = get2byte(&data[hdr+5]);
1778 if( iStart<=x ){
1779 /* The new freeblock is at the beginning of the cell content area,
1780 ** so just extend the cell content area rather than create another
1781 ** freelist entry */
1782 if( iStart<x ) return SQLITE_CORRUPT_PAGE(pPage);
1783 if( NEVER(iPtr!=hdr+1) ) return SQLITE_CORRUPT_PAGE(pPage);
1784 put2byte(&data[hdr+1], iFreeBlk);
1785 put2byte(&data[hdr+5], iEnd);
1786 }else{
1787 /* Insert the new freeblock into the freelist */
1788 put2byte(&data[iPtr], iStart);
1790 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
1791 /* Overwrite deleted information with zeros when the secure_delete
1792 ** option is enabled */
1793 memset(&data[iStart], 0, iSize);
1795 put2byte(&data[iStart], iFreeBlk);
1796 put2byte(&data[iStart+2], iSize);
1797 pPage->nFree += iOrigSize;
1798 return SQLITE_OK;
1802 ** Decode the flags byte (the first byte of the header) for a page
1803 ** and initialize fields of the MemPage structure accordingly.
1805 ** Only the following combinations are supported. Anything different
1806 ** indicates a corrupt database files:
1808 ** PTF_ZERODATA
1809 ** PTF_ZERODATA | PTF_LEAF
1810 ** PTF_LEAFDATA | PTF_INTKEY
1811 ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
1813 static int decodeFlags(MemPage *pPage, int flagByte){
1814 BtShared *pBt; /* A copy of pPage->pBt */
1816 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
1817 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1818 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
1819 flagByte &= ~PTF_LEAF;
1820 pPage->childPtrSize = 4-4*pPage->leaf;
1821 pPage->xCellSize = cellSizePtr;
1822 pBt = pPage->pBt;
1823 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1824 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1825 ** interior table b-tree page. */
1826 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1827 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1828 ** leaf table b-tree page. */
1829 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
1830 pPage->intKey = 1;
1831 if( pPage->leaf ){
1832 pPage->intKeyLeaf = 1;
1833 pPage->xParseCell = btreeParseCellPtr;
1834 }else{
1835 pPage->intKeyLeaf = 0;
1836 pPage->xCellSize = cellSizePtrNoPayload;
1837 pPage->xParseCell = btreeParseCellPtrNoPayload;
1839 pPage->maxLocal = pBt->maxLeaf;
1840 pPage->minLocal = pBt->minLeaf;
1841 }else if( flagByte==PTF_ZERODATA ){
1842 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1843 ** interior index b-tree page. */
1844 assert( (PTF_ZERODATA)==2 );
1845 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1846 ** leaf index b-tree page. */
1847 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
1848 pPage->intKey = 0;
1849 pPage->intKeyLeaf = 0;
1850 pPage->xParseCell = btreeParseCellPtrIndex;
1851 pPage->maxLocal = pBt->maxLocal;
1852 pPage->minLocal = pBt->minLocal;
1853 }else{
1854 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1855 ** an error. */
1856 return SQLITE_CORRUPT_PAGE(pPage);
1858 pPage->max1bytePayload = pBt->max1bytePayload;
1859 return SQLITE_OK;
1863 ** Compute the amount of freespace on the page. In other words, fill
1864 ** in the pPage->nFree field.
1866 static int btreeComputeFreeSpace(MemPage *pPage){
1867 int pc; /* Address of a freeblock within pPage->aData[] */
1868 u8 hdr; /* Offset to beginning of page header */
1869 u8 *data; /* Equal to pPage->aData */
1870 int usableSize; /* Amount of usable space on each page */
1871 int nFree; /* Number of unused bytes on the page */
1872 int top; /* First byte of the cell content area */
1873 int iCellFirst; /* First allowable cell or freeblock offset */
1874 int iCellLast; /* Last possible cell or freeblock offset */
1876 assert( pPage->pBt!=0 );
1877 assert( pPage->pBt->db!=0 );
1878 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1879 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1880 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1881 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
1882 assert( pPage->isInit==1 );
1883 assert( pPage->nFree<0 );
1885 usableSize = pPage->pBt->usableSize;
1886 hdr = pPage->hdrOffset;
1887 data = pPage->aData;
1888 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1889 ** the start of the cell content area. A zero value for this integer is
1890 ** interpreted as 65536. */
1891 top = get2byteNotZero(&data[hdr+5]);
1892 iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell;
1893 iCellLast = usableSize - 4;
1895 /* Compute the total free space on the page
1896 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1897 ** start of the first freeblock on the page, or is zero if there are no
1898 ** freeblocks. */
1899 pc = get2byte(&data[hdr+1]);
1900 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
1901 if( pc>0 ){
1902 u32 next, size;
1903 if( pc<top ){
1904 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1905 ** always be at least one cell before the first freeblock.
1907 return SQLITE_CORRUPT_PAGE(pPage);
1909 while( 1 ){
1910 if( pc>iCellLast ){
1911 /* Freeblock off the end of the page */
1912 return SQLITE_CORRUPT_PAGE(pPage);
1914 next = get2byte(&data[pc]);
1915 size = get2byte(&data[pc+2]);
1916 nFree = nFree + size;
1917 if( next<=pc+size+3 ) break;
1918 pc = next;
1920 if( next>0 ){
1921 /* Freeblock not in ascending order */
1922 return SQLITE_CORRUPT_PAGE(pPage);
1924 if( pc+size>(unsigned int)usableSize ){
1925 /* Last freeblock extends past page end */
1926 return SQLITE_CORRUPT_PAGE(pPage);
1930 /* At this point, nFree contains the sum of the offset to the start
1931 ** of the cell-content area plus the number of free bytes within
1932 ** the cell-content area. If this is greater than the usable-size
1933 ** of the page, then the page must be corrupted. This check also
1934 ** serves to verify that the offset to the start of the cell-content
1935 ** area, according to the page header, lies within the page.
1937 if( nFree>usableSize || nFree<iCellFirst ){
1938 return SQLITE_CORRUPT_PAGE(pPage);
1940 pPage->nFree = (u16)(nFree - iCellFirst);
1941 return SQLITE_OK;
1945 ** Do additional sanity check after btreeInitPage() if
1946 ** PRAGMA cell_size_check=ON
1948 static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){
1949 int iCellFirst; /* First allowable cell or freeblock offset */
1950 int iCellLast; /* Last possible cell or freeblock offset */
1951 int i; /* Index into the cell pointer array */
1952 int sz; /* Size of a cell */
1953 int pc; /* Address of a freeblock within pPage->aData[] */
1954 u8 *data; /* Equal to pPage->aData */
1955 int usableSize; /* Maximum usable space on the page */
1956 int cellOffset; /* Start of cell content area */
1958 iCellFirst = pPage->cellOffset + 2*pPage->nCell;
1959 usableSize = pPage->pBt->usableSize;
1960 iCellLast = usableSize - 4;
1961 data = pPage->aData;
1962 cellOffset = pPage->cellOffset;
1963 if( !pPage->leaf ) iCellLast--;
1964 for(i=0; i<pPage->nCell; i++){
1965 pc = get2byteAligned(&data[cellOffset+i*2]);
1966 testcase( pc==iCellFirst );
1967 testcase( pc==iCellLast );
1968 if( pc<iCellFirst || pc>iCellLast ){
1969 return SQLITE_CORRUPT_PAGE(pPage);
1971 sz = pPage->xCellSize(pPage, &data[pc]);
1972 testcase( pc+sz==usableSize );
1973 if( pc+sz>usableSize ){
1974 return SQLITE_CORRUPT_PAGE(pPage);
1977 return SQLITE_OK;
1981 ** Initialize the auxiliary information for a disk block.
1983 ** Return SQLITE_OK on success. If we see that the page does
1984 ** not contain a well-formed database page, then return
1985 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1986 ** guarantee that the page is well-formed. It only shows that
1987 ** we failed to detect any corruption.
1989 static int btreeInitPage(MemPage *pPage){
1990 u8 *data; /* Equal to pPage->aData */
1991 BtShared *pBt; /* The main btree structure */
1993 assert( pPage->pBt!=0 );
1994 assert( pPage->pBt->db!=0 );
1995 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1996 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1997 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1998 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
1999 assert( pPage->isInit==0 );
2001 pBt = pPage->pBt;
2002 data = pPage->aData + pPage->hdrOffset;
2003 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
2004 ** the b-tree page type. */
2005 if( decodeFlags(pPage, data[0]) ){
2006 return SQLITE_CORRUPT_PAGE(pPage);
2008 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2009 pPage->maskPage = (u16)(pBt->pageSize - 1);
2010 pPage->nOverflow = 0;
2011 pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize;
2012 pPage->aCellIdx = data + pPage->childPtrSize + 8;
2013 pPage->aDataEnd = pPage->aData + pBt->usableSize;
2014 pPage->aDataOfst = pPage->aData + pPage->childPtrSize;
2015 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
2016 ** number of cells on the page. */
2017 pPage->nCell = get2byte(&data[3]);
2018 if( pPage->nCell>MX_CELL(pBt) ){
2019 /* To many cells for a single page. The page must be corrupt */
2020 return SQLITE_CORRUPT_PAGE(pPage);
2022 testcase( pPage->nCell==MX_CELL(pBt) );
2023 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
2024 ** possible for a root page of a table that contains no rows) then the
2025 ** offset to the cell content area will equal the page size minus the
2026 ** bytes of reserved space. */
2027 assert( pPage->nCell>0
2028 || get2byteNotZero(&data[5])==(int)pBt->usableSize
2029 || CORRUPT_DB );
2030 pPage->nFree = -1; /* Indicate that this value is yet uncomputed */
2031 pPage->isInit = 1;
2032 if( pBt->db->flags & SQLITE_CellSizeCk ){
2033 return btreeCellSizeCheck(pPage);
2035 return SQLITE_OK;
2039 ** Set up a raw page so that it looks like a database page holding
2040 ** no entries.
2042 static void zeroPage(MemPage *pPage, int flags){
2043 unsigned char *data = pPage->aData;
2044 BtShared *pBt = pPage->pBt;
2045 u8 hdr = pPage->hdrOffset;
2046 u16 first;
2048 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
2049 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2050 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
2051 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
2052 assert( sqlite3_mutex_held(pBt->mutex) );
2053 if( pBt->btsFlags & BTS_FAST_SECURE ){
2054 memset(&data[hdr], 0, pBt->usableSize - hdr);
2056 data[hdr] = (char)flags;
2057 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
2058 memset(&data[hdr+1], 0, 4);
2059 data[hdr+7] = 0;
2060 put2byte(&data[hdr+5], pBt->usableSize);
2061 pPage->nFree = (u16)(pBt->usableSize - first);
2062 decodeFlags(pPage, flags);
2063 pPage->cellOffset = first;
2064 pPage->aDataEnd = &data[pBt->usableSize];
2065 pPage->aCellIdx = &data[first];
2066 pPage->aDataOfst = &data[pPage->childPtrSize];
2067 pPage->nOverflow = 0;
2068 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2069 pPage->maskPage = (u16)(pBt->pageSize - 1);
2070 pPage->nCell = 0;
2071 pPage->isInit = 1;
2076 ** Convert a DbPage obtained from the pager into a MemPage used by
2077 ** the btree layer.
2079 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
2080 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2081 if( pgno!=pPage->pgno ){
2082 pPage->aData = sqlite3PagerGetData(pDbPage);
2083 pPage->pDbPage = pDbPage;
2084 pPage->pBt = pBt;
2085 pPage->pgno = pgno;
2086 pPage->hdrOffset = pgno==1 ? 100 : 0;
2088 assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
2089 return pPage;
2093 ** Get a page from the pager. Initialize the MemPage.pBt and
2094 ** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
2096 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2097 ** about the content of the page at this time. So do not go to the disk
2098 ** to fetch the content. Just fill in the content with zeros for now.
2099 ** If in the future we call sqlite3PagerWrite() on this page, that
2100 ** means we have started to be concerned about content and the disk
2101 ** read should occur at that point.
2103 static int btreeGetPage(
2104 BtShared *pBt, /* The btree */
2105 Pgno pgno, /* Number of the page to fetch */
2106 MemPage **ppPage, /* Return the page in this parameter */
2107 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2109 int rc;
2110 DbPage *pDbPage;
2112 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
2113 assert( sqlite3_mutex_held(pBt->mutex) );
2114 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
2115 if( rc ) return rc;
2116 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
2117 return SQLITE_OK;
2121 ** Retrieve a page from the pager cache. If the requested page is not
2122 ** already in the pager cache return NULL. Initialize the MemPage.pBt and
2123 ** MemPage.aData elements if needed.
2125 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2126 DbPage *pDbPage;
2127 assert( sqlite3_mutex_held(pBt->mutex) );
2128 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2129 if( pDbPage ){
2130 return btreePageFromDbPage(pDbPage, pgno, pBt);
2132 return 0;
2136 ** Return the size of the database file in pages. If there is any kind of
2137 ** error, return ((unsigned int)-1).
2139 static Pgno btreePagecount(BtShared *pBt){
2140 assert( (pBt->nPage & 0x80000000)==0 || CORRUPT_DB );
2141 return pBt->nPage;
2143 u32 sqlite3BtreeLastPage(Btree *p){
2144 assert( sqlite3BtreeHoldsMutex(p) );
2145 return btreePagecount(p->pBt) & 0x7fffffff;
2149 ** Get a page from the pager and initialize it.
2151 ** If pCur!=0 then the page is being fetched as part of a moveToChild()
2152 ** call. Do additional sanity checking on the page in this case.
2153 ** And if the fetch fails, this routine must decrement pCur->iPage.
2155 ** The page is fetched as read-write unless pCur is not NULL and is
2156 ** a read-only cursor.
2158 ** If an error occurs, then *ppPage is undefined. It
2159 ** may remain unchanged, or it may be set to an invalid value.
2161 static int getAndInitPage(
2162 BtShared *pBt, /* The database file */
2163 Pgno pgno, /* Number of the page to get */
2164 MemPage **ppPage, /* Write the page pointer here */
2165 BtCursor *pCur, /* Cursor to receive the page, or NULL */
2166 int bReadOnly /* True for a read-only page */
2168 int rc;
2169 DbPage *pDbPage;
2170 assert( sqlite3_mutex_held(pBt->mutex) );
2171 assert( pCur==0 || ppPage==&pCur->pPage );
2172 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
2173 assert( pCur==0 || pCur->iPage>0 );
2175 if( pgno>btreePagecount(pBt) ){
2176 rc = SQLITE_CORRUPT_BKPT;
2177 goto getAndInitPage_error1;
2179 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
2180 if( rc ){
2181 goto getAndInitPage_error1;
2183 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2184 if( (*ppPage)->isInit==0 ){
2185 btreePageFromDbPage(pDbPage, pgno, pBt);
2186 rc = btreeInitPage(*ppPage);
2187 if( rc!=SQLITE_OK ){
2188 goto getAndInitPage_error2;
2191 assert( (*ppPage)->pgno==pgno );
2192 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
2194 /* If obtaining a child page for a cursor, we must verify that the page is
2195 ** compatible with the root page. */
2196 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
2197 rc = SQLITE_CORRUPT_PGNO(pgno);
2198 goto getAndInitPage_error2;
2200 return SQLITE_OK;
2202 getAndInitPage_error2:
2203 releasePage(*ppPage);
2204 getAndInitPage_error1:
2205 if( pCur ){
2206 pCur->iPage--;
2207 pCur->pPage = pCur->apPage[pCur->iPage];
2209 testcase( pgno==0 );
2210 assert( pgno!=0 || rc==SQLITE_CORRUPT );
2211 return rc;
2215 ** Release a MemPage. This should be called once for each prior
2216 ** call to btreeGetPage.
2218 ** Page1 is a special case and must be released using releasePageOne().
2220 static void releasePageNotNull(MemPage *pPage){
2221 assert( pPage->aData );
2222 assert( pPage->pBt );
2223 assert( pPage->pDbPage!=0 );
2224 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2225 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2226 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2227 sqlite3PagerUnrefNotNull(pPage->pDbPage);
2229 static void releasePage(MemPage *pPage){
2230 if( pPage ) releasePageNotNull(pPage);
2232 static void releasePageOne(MemPage *pPage){
2233 assert( pPage!=0 );
2234 assert( pPage->aData );
2235 assert( pPage->pBt );
2236 assert( pPage->pDbPage!=0 );
2237 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2238 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2239 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2240 sqlite3PagerUnrefPageOne(pPage->pDbPage);
2244 ** Get an unused page.
2246 ** This works just like btreeGetPage() with the addition:
2248 ** * If the page is already in use for some other purpose, immediately
2249 ** release it and return an SQLITE_CURRUPT error.
2250 ** * Make sure the isInit flag is clear
2252 static int btreeGetUnusedPage(
2253 BtShared *pBt, /* The btree */
2254 Pgno pgno, /* Number of the page to fetch */
2255 MemPage **ppPage, /* Return the page in this parameter */
2256 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2258 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2259 if( rc==SQLITE_OK ){
2260 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2261 releasePage(*ppPage);
2262 *ppPage = 0;
2263 return SQLITE_CORRUPT_BKPT;
2265 (*ppPage)->isInit = 0;
2266 }else{
2267 *ppPage = 0;
2269 return rc;
2274 ** During a rollback, when the pager reloads information into the cache
2275 ** so that the cache is restored to its original state at the start of
2276 ** the transaction, for each page restored this routine is called.
2278 ** This routine needs to reset the extra data section at the end of the
2279 ** page to agree with the restored data.
2281 static void pageReinit(DbPage *pData){
2282 MemPage *pPage;
2283 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
2284 assert( sqlite3PagerPageRefcount(pData)>0 );
2285 if( pPage->isInit ){
2286 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2287 pPage->isInit = 0;
2288 if( sqlite3PagerPageRefcount(pData)>1 ){
2289 /* pPage might not be a btree page; it might be an overflow page
2290 ** or ptrmap page or a free page. In those cases, the following
2291 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
2292 ** But no harm is done by this. And it is very important that
2293 ** btreeInitPage() be called on every btree page so we make
2294 ** the call for every page that comes in for re-initing. */
2295 btreeInitPage(pPage);
2301 ** Invoke the busy handler for a btree.
2303 static int btreeInvokeBusyHandler(void *pArg){
2304 BtShared *pBt = (BtShared*)pArg;
2305 assert( pBt->db );
2306 assert( sqlite3_mutex_held(pBt->db->mutex) );
2307 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler,
2308 sqlite3PagerFile(pBt->pPager));
2312 ** Open a database file.
2314 ** zFilename is the name of the database file. If zFilename is NULL
2315 ** then an ephemeral database is created. The ephemeral database might
2316 ** be exclusively in memory, or it might use a disk-based memory cache.
2317 ** Either way, the ephemeral database will be automatically deleted
2318 ** when sqlite3BtreeClose() is called.
2320 ** If zFilename is ":memory:" then an in-memory database is created
2321 ** that is automatically destroyed when it is closed.
2323 ** The "flags" parameter is a bitmask that might contain bits like
2324 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
2326 ** If the database is already opened in the same database connection
2327 ** and we are in shared cache mode, then the open will fail with an
2328 ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2329 ** objects in the same database connection since doing so will lead
2330 ** to problems with locking.
2332 int sqlite3BtreeOpen(
2333 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
2334 const char *zFilename, /* Name of the file containing the BTree database */
2335 sqlite3 *db, /* Associated database handle */
2336 Btree **ppBtree, /* Pointer to new Btree object written here */
2337 int flags, /* Options */
2338 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
2340 BtShared *pBt = 0; /* Shared part of btree structure */
2341 Btree *p; /* Handle to return */
2342 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2343 int rc = SQLITE_OK; /* Result code from this function */
2344 u8 nReserve; /* Byte of unused space on each page */
2345 unsigned char zDbHeader[100]; /* Database header content */
2347 /* True if opening an ephemeral, temporary database */
2348 const int isTempDb = zFilename==0 || zFilename[0]==0;
2350 /* Set the variable isMemdb to true for an in-memory database, or
2351 ** false for a file-based database.
2353 #ifdef SQLITE_OMIT_MEMORYDB
2354 const int isMemdb = 0;
2355 #else
2356 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
2357 || (isTempDb && sqlite3TempInMemory(db))
2358 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
2359 #endif
2361 assert( db!=0 );
2362 assert( pVfs!=0 );
2363 assert( sqlite3_mutex_held(db->mutex) );
2364 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2366 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2367 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2369 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2370 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
2372 if( isMemdb ){
2373 flags |= BTREE_MEMORY;
2375 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2376 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2378 p = sqlite3MallocZero(sizeof(Btree));
2379 if( !p ){
2380 return SQLITE_NOMEM_BKPT;
2382 p->inTrans = TRANS_NONE;
2383 p->db = db;
2384 #ifndef SQLITE_OMIT_SHARED_CACHE
2385 p->lock.pBtree = p;
2386 p->lock.iTable = 1;
2387 #endif
2389 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2391 ** If this Btree is a candidate for shared cache, try to find an
2392 ** existing BtShared object that we can share with
2394 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
2395 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
2396 int nFilename = sqlite3Strlen30(zFilename)+1;
2397 int nFullPathname = pVfs->mxPathname+1;
2398 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
2399 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2401 p->sharable = 1;
2402 if( !zFullPathname ){
2403 sqlite3_free(p);
2404 return SQLITE_NOMEM_BKPT;
2406 if( isMemdb ){
2407 memcpy(zFullPathname, zFilename, nFilename);
2408 }else{
2409 rc = sqlite3OsFullPathname(pVfs, zFilename,
2410 nFullPathname, zFullPathname);
2411 if( rc ){
2412 if( rc==SQLITE_OK_SYMLINK ){
2413 rc = SQLITE_OK;
2414 }else{
2415 sqlite3_free(zFullPathname);
2416 sqlite3_free(p);
2417 return rc;
2421 #if SQLITE_THREADSAFE
2422 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2423 sqlite3_mutex_enter(mutexOpen);
2424 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
2425 sqlite3_mutex_enter(mutexShared);
2426 #endif
2427 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
2428 assert( pBt->nRef>0 );
2429 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
2430 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
2431 int iDb;
2432 for(iDb=db->nDb-1; iDb>=0; iDb--){
2433 Btree *pExisting = db->aDb[iDb].pBt;
2434 if( pExisting && pExisting->pBt==pBt ){
2435 sqlite3_mutex_leave(mutexShared);
2436 sqlite3_mutex_leave(mutexOpen);
2437 sqlite3_free(zFullPathname);
2438 sqlite3_free(p);
2439 return SQLITE_CONSTRAINT;
2442 p->pBt = pBt;
2443 pBt->nRef++;
2444 break;
2447 sqlite3_mutex_leave(mutexShared);
2448 sqlite3_free(zFullPathname);
2450 #ifdef SQLITE_DEBUG
2451 else{
2452 /* In debug mode, we mark all persistent databases as sharable
2453 ** even when they are not. This exercises the locking code and
2454 ** gives more opportunity for asserts(sqlite3_mutex_held())
2455 ** statements to find locking problems.
2457 p->sharable = 1;
2459 #endif
2461 #endif
2462 if( pBt==0 ){
2464 ** The following asserts make sure that structures used by the btree are
2465 ** the right size. This is to guard against size changes that result
2466 ** when compiling on a different architecture.
2468 assert( sizeof(i64)==8 );
2469 assert( sizeof(u64)==8 );
2470 assert( sizeof(u32)==4 );
2471 assert( sizeof(u16)==2 );
2472 assert( sizeof(Pgno)==4 );
2474 pBt = sqlite3MallocZero( sizeof(*pBt) );
2475 if( pBt==0 ){
2476 rc = SQLITE_NOMEM_BKPT;
2477 goto btree_open_out;
2479 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
2480 sizeof(MemPage), flags, vfsFlags, pageReinit);
2481 if( rc==SQLITE_OK ){
2482 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
2483 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2485 if( rc!=SQLITE_OK ){
2486 goto btree_open_out;
2488 pBt->openFlags = (u8)flags;
2489 pBt->db = db;
2490 sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
2491 p->pBt = pBt;
2493 pBt->pCursor = 0;
2494 pBt->pPage1 = 0;
2495 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
2496 #if defined(SQLITE_SECURE_DELETE)
2497 pBt->btsFlags |= BTS_SECURE_DELETE;
2498 #elif defined(SQLITE_FAST_SECURE_DELETE)
2499 pBt->btsFlags |= BTS_OVERWRITE;
2500 #endif
2501 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2502 ** determined by the 2-byte integer located at an offset of 16 bytes from
2503 ** the beginning of the database file. */
2504 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
2505 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2506 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
2507 pBt->pageSize = 0;
2508 #ifndef SQLITE_OMIT_AUTOVACUUM
2509 /* If the magic name ":memory:" will create an in-memory database, then
2510 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2511 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2512 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2513 ** regular file-name. In this case the auto-vacuum applies as per normal.
2515 if( zFilename && !isMemdb ){
2516 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2517 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2519 #endif
2520 nReserve = 0;
2521 }else{
2522 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2523 ** determined by the one-byte unsigned integer found at an offset of 20
2524 ** into the database file header. */
2525 nReserve = zDbHeader[20];
2526 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2527 #ifndef SQLITE_OMIT_AUTOVACUUM
2528 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2529 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2530 #endif
2532 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2533 if( rc ) goto btree_open_out;
2534 pBt->usableSize = pBt->pageSize - nReserve;
2535 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
2537 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2538 /* Add the new BtShared object to the linked list sharable BtShareds.
2540 pBt->nRef = 1;
2541 if( p->sharable ){
2542 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2543 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
2544 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
2545 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
2546 if( pBt->mutex==0 ){
2547 rc = SQLITE_NOMEM_BKPT;
2548 goto btree_open_out;
2551 sqlite3_mutex_enter(mutexShared);
2552 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2553 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
2554 sqlite3_mutex_leave(mutexShared);
2556 #endif
2559 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2560 /* If the new Btree uses a sharable pBtShared, then link the new
2561 ** Btree into the list of all sharable Btrees for the same connection.
2562 ** The list is kept in ascending order by pBt address.
2564 if( p->sharable ){
2565 int i;
2566 Btree *pSib;
2567 for(i=0; i<db->nDb; i++){
2568 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
2569 while( pSib->pPrev ){ pSib = pSib->pPrev; }
2570 if( (uptr)p->pBt<(uptr)pSib->pBt ){
2571 p->pNext = pSib;
2572 p->pPrev = 0;
2573 pSib->pPrev = p;
2574 }else{
2575 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
2576 pSib = pSib->pNext;
2578 p->pNext = pSib->pNext;
2579 p->pPrev = pSib;
2580 if( p->pNext ){
2581 p->pNext->pPrev = p;
2583 pSib->pNext = p;
2585 break;
2589 #endif
2590 *ppBtree = p;
2592 btree_open_out:
2593 if( rc!=SQLITE_OK ){
2594 if( pBt && pBt->pPager ){
2595 sqlite3PagerClose(pBt->pPager, 0);
2597 sqlite3_free(pBt);
2598 sqlite3_free(p);
2599 *ppBtree = 0;
2600 }else{
2601 sqlite3_file *pFile;
2603 /* If the B-Tree was successfully opened, set the pager-cache size to the
2604 ** default value. Except, when opening on an existing shared pager-cache,
2605 ** do not change the pager-cache size.
2607 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2608 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2611 pFile = sqlite3PagerFile(pBt->pPager);
2612 if( pFile->pMethods ){
2613 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2616 if( mutexOpen ){
2617 assert( sqlite3_mutex_held(mutexOpen) );
2618 sqlite3_mutex_leave(mutexOpen);
2620 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
2621 return rc;
2625 ** Decrement the BtShared.nRef counter. When it reaches zero,
2626 ** remove the BtShared structure from the sharing list. Return
2627 ** true if the BtShared.nRef counter reaches zero and return
2628 ** false if it is still positive.
2630 static int removeFromSharingList(BtShared *pBt){
2631 #ifndef SQLITE_OMIT_SHARED_CACHE
2632 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
2633 BtShared *pList;
2634 int removed = 0;
2636 assert( sqlite3_mutex_notheld(pBt->mutex) );
2637 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
2638 sqlite3_mutex_enter(pMaster);
2639 pBt->nRef--;
2640 if( pBt->nRef<=0 ){
2641 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2642 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
2643 }else{
2644 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
2645 while( ALWAYS(pList) && pList->pNext!=pBt ){
2646 pList=pList->pNext;
2648 if( ALWAYS(pList) ){
2649 pList->pNext = pBt->pNext;
2652 if( SQLITE_THREADSAFE ){
2653 sqlite3_mutex_free(pBt->mutex);
2655 removed = 1;
2657 sqlite3_mutex_leave(pMaster);
2658 return removed;
2659 #else
2660 return 1;
2661 #endif
2665 ** Make sure pBt->pTmpSpace points to an allocation of
2666 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2667 ** pointer.
2669 static void allocateTempSpace(BtShared *pBt){
2670 if( !pBt->pTmpSpace ){
2671 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2673 /* One of the uses of pBt->pTmpSpace is to format cells before
2674 ** inserting them into a leaf page (function fillInCell()). If
2675 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2676 ** by the various routines that manipulate binary cells. Which
2677 ** can mean that fillInCell() only initializes the first 2 or 3
2678 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2679 ** it into a database page. This is not actually a problem, but it
2680 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2681 ** data is passed to system call write(). So to avoid this error,
2682 ** zero the first 4 bytes of temp space here.
2684 ** Also: Provide four bytes of initialized space before the
2685 ** beginning of pTmpSpace as an area available to prepend the
2686 ** left-child pointer to the beginning of a cell.
2688 if( pBt->pTmpSpace ){
2689 memset(pBt->pTmpSpace, 0, 8);
2690 pBt->pTmpSpace += 4;
2696 ** Free the pBt->pTmpSpace allocation
2698 static void freeTempSpace(BtShared *pBt){
2699 if( pBt->pTmpSpace ){
2700 pBt->pTmpSpace -= 4;
2701 sqlite3PageFree(pBt->pTmpSpace);
2702 pBt->pTmpSpace = 0;
2707 ** Close an open database and invalidate all cursors.
2709 int sqlite3BtreeClose(Btree *p){
2710 BtShared *pBt = p->pBt;
2711 BtCursor *pCur;
2713 /* Close all cursors opened via this handle. */
2714 assert( sqlite3_mutex_held(p->db->mutex) );
2715 sqlite3BtreeEnter(p);
2716 pCur = pBt->pCursor;
2717 while( pCur ){
2718 BtCursor *pTmp = pCur;
2719 pCur = pCur->pNext;
2720 if( pTmp->pBtree==p ){
2721 sqlite3BtreeCloseCursor(pTmp);
2725 /* Rollback any active transaction and free the handle structure.
2726 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2727 ** this handle.
2729 sqlite3BtreeRollback(p, SQLITE_OK, 0);
2730 sqlite3BtreeLeave(p);
2732 /* If there are still other outstanding references to the shared-btree
2733 ** structure, return now. The remainder of this procedure cleans
2734 ** up the shared-btree.
2736 assert( p->wantToLock==0 && p->locked==0 );
2737 if( !p->sharable || removeFromSharingList(pBt) ){
2738 /* The pBt is no longer on the sharing list, so we can access
2739 ** it without having to hold the mutex.
2741 ** Clean out and delete the BtShared object.
2743 assert( !pBt->pCursor );
2744 sqlite3PagerClose(pBt->pPager, p->db);
2745 if( pBt->xFreeSchema && pBt->pSchema ){
2746 pBt->xFreeSchema(pBt->pSchema);
2748 sqlite3DbFree(0, pBt->pSchema);
2749 freeTempSpace(pBt);
2750 sqlite3_free(pBt);
2753 #ifndef SQLITE_OMIT_SHARED_CACHE
2754 assert( p->wantToLock==0 );
2755 assert( p->locked==0 );
2756 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2757 if( p->pNext ) p->pNext->pPrev = p->pPrev;
2758 #endif
2760 sqlite3_free(p);
2761 return SQLITE_OK;
2765 ** Change the "soft" limit on the number of pages in the cache.
2766 ** Unused and unmodified pages will be recycled when the number of
2767 ** pages in the cache exceeds this soft limit. But the size of the
2768 ** cache is allowed to grow larger than this limit if it contains
2769 ** dirty pages or pages still in active use.
2771 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2772 BtShared *pBt = p->pBt;
2773 assert( sqlite3_mutex_held(p->db->mutex) );
2774 sqlite3BtreeEnter(p);
2775 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
2776 sqlite3BtreeLeave(p);
2777 return SQLITE_OK;
2781 ** Change the "spill" limit on the number of pages in the cache.
2782 ** If the number of pages exceeds this limit during a write transaction,
2783 ** the pager might attempt to "spill" pages to the journal early in
2784 ** order to free up memory.
2786 ** The value returned is the current spill size. If zero is passed
2787 ** as an argument, no changes are made to the spill size setting, so
2788 ** using mxPage of 0 is a way to query the current spill size.
2790 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2791 BtShared *pBt = p->pBt;
2792 int res;
2793 assert( sqlite3_mutex_held(p->db->mutex) );
2794 sqlite3BtreeEnter(p);
2795 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2796 sqlite3BtreeLeave(p);
2797 return res;
2800 #if SQLITE_MAX_MMAP_SIZE>0
2802 ** Change the limit on the amount of the database file that may be
2803 ** memory mapped.
2805 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
2806 BtShared *pBt = p->pBt;
2807 assert( sqlite3_mutex_held(p->db->mutex) );
2808 sqlite3BtreeEnter(p);
2809 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
2810 sqlite3BtreeLeave(p);
2811 return SQLITE_OK;
2813 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
2816 ** Change the way data is synced to disk in order to increase or decrease
2817 ** how well the database resists damage due to OS crashes and power
2818 ** failures. Level 1 is the same as asynchronous (no syncs() occur and
2819 ** there is a high probability of damage) Level 2 is the default. There
2820 ** is a very low but non-zero probability of damage. Level 3 reduces the
2821 ** probability of damage to near zero but with a write performance reduction.
2823 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
2824 int sqlite3BtreeSetPagerFlags(
2825 Btree *p, /* The btree to set the safety level on */
2826 unsigned pgFlags /* Various PAGER_* flags */
2828 BtShared *pBt = p->pBt;
2829 assert( sqlite3_mutex_held(p->db->mutex) );
2830 sqlite3BtreeEnter(p);
2831 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
2832 sqlite3BtreeLeave(p);
2833 return SQLITE_OK;
2835 #endif
2838 ** Change the default pages size and the number of reserved bytes per page.
2839 ** Or, if the page size has already been fixed, return SQLITE_READONLY
2840 ** without changing anything.
2842 ** The page size must be a power of 2 between 512 and 65536. If the page
2843 ** size supplied does not meet this constraint then the page size is not
2844 ** changed.
2846 ** Page sizes are constrained to be a power of two so that the region
2847 ** of the database file used for locking (beginning at PENDING_BYTE,
2848 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
2849 ** at the beginning of a page.
2851 ** If parameter nReserve is less than zero, then the number of reserved
2852 ** bytes per page is left unchanged.
2854 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
2855 ** and autovacuum mode can no longer be changed.
2857 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
2858 int rc = SQLITE_OK;
2859 BtShared *pBt = p->pBt;
2860 assert( nReserve>=-1 && nReserve<=255 );
2861 sqlite3BtreeEnter(p);
2862 #if SQLITE_HAS_CODEC
2863 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2864 #endif
2865 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
2866 sqlite3BtreeLeave(p);
2867 return SQLITE_READONLY;
2869 if( nReserve<0 ){
2870 nReserve = pBt->pageSize - pBt->usableSize;
2872 assert( nReserve>=0 && nReserve<=255 );
2873 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2874 ((pageSize-1)&pageSize)==0 ){
2875 assert( (pageSize & 7)==0 );
2876 assert( !pBt->pCursor );
2877 pBt->pageSize = (u32)pageSize;
2878 freeTempSpace(pBt);
2880 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2881 pBt->usableSize = pBt->pageSize - (u16)nReserve;
2882 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2883 sqlite3BtreeLeave(p);
2884 return rc;
2888 ** Return the currently defined page size
2890 int sqlite3BtreeGetPageSize(Btree *p){
2891 return p->pBt->pageSize;
2895 ** This function is similar to sqlite3BtreeGetReserve(), except that it
2896 ** may only be called if it is guaranteed that the b-tree mutex is already
2897 ** held.
2899 ** This is useful in one special case in the backup API code where it is
2900 ** known that the shared b-tree mutex is held, but the mutex on the
2901 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2902 ** were to be called, it might collide with some other operation on the
2903 ** database handle that owns *p, causing undefined behavior.
2905 int sqlite3BtreeGetReserveNoMutex(Btree *p){
2906 int n;
2907 assert( sqlite3_mutex_held(p->pBt->mutex) );
2908 n = p->pBt->pageSize - p->pBt->usableSize;
2909 return n;
2913 ** Return the number of bytes of space at the end of every page that
2914 ** are intentually left unused. This is the "reserved" space that is
2915 ** sometimes used by extensions.
2917 ** If SQLITE_HAS_MUTEX is defined then the number returned is the
2918 ** greater of the current reserved space and the maximum requested
2919 ** reserve space.
2921 int sqlite3BtreeGetOptimalReserve(Btree *p){
2922 int n;
2923 sqlite3BtreeEnter(p);
2924 n = sqlite3BtreeGetReserveNoMutex(p);
2925 #ifdef SQLITE_HAS_CODEC
2926 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2927 #endif
2928 sqlite3BtreeLeave(p);
2929 return n;
2934 ** Set the maximum page count for a database if mxPage is positive.
2935 ** No changes are made if mxPage is 0 or negative.
2936 ** Regardless of the value of mxPage, return the maximum page count.
2938 int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
2939 int n;
2940 sqlite3BtreeEnter(p);
2941 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2942 sqlite3BtreeLeave(p);
2943 return n;
2947 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
2949 ** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
2950 ** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
2951 ** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
2952 ** newFlag==(-1) No changes
2954 ** This routine acts as a query if newFlag is less than zero
2956 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
2957 ** freelist leaf pages are not written back to the database. Thus in-page
2958 ** deleted content is cleared, but freelist deleted content is not.
2960 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
2961 ** that freelist leaf pages are written back into the database, increasing
2962 ** the amount of disk I/O.
2964 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2965 int b;
2966 if( p==0 ) return 0;
2967 sqlite3BtreeEnter(p);
2968 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
2969 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
2970 if( newFlag>=0 ){
2971 p->pBt->btsFlags &= ~BTS_FAST_SECURE;
2972 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
2974 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
2975 sqlite3BtreeLeave(p);
2976 return b;
2980 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2981 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2982 ** is disabled. The default value for the auto-vacuum property is
2983 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2985 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
2986 #ifdef SQLITE_OMIT_AUTOVACUUM
2987 return SQLITE_READONLY;
2988 #else
2989 BtShared *pBt = p->pBt;
2990 int rc = SQLITE_OK;
2991 u8 av = (u8)autoVacuum;
2993 sqlite3BtreeEnter(p);
2994 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
2995 rc = SQLITE_READONLY;
2996 }else{
2997 pBt->autoVacuum = av ?1:0;
2998 pBt->incrVacuum = av==2 ?1:0;
3000 sqlite3BtreeLeave(p);
3001 return rc;
3002 #endif
3006 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is
3007 ** enabled 1 is returned. Otherwise 0.
3009 int sqlite3BtreeGetAutoVacuum(Btree *p){
3010 #ifdef SQLITE_OMIT_AUTOVACUUM
3011 return BTREE_AUTOVACUUM_NONE;
3012 #else
3013 int rc;
3014 sqlite3BtreeEnter(p);
3015 rc = (
3016 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
3017 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
3018 BTREE_AUTOVACUUM_INCR
3020 sqlite3BtreeLeave(p);
3021 return rc;
3022 #endif
3026 ** If the user has not set the safety-level for this database connection
3027 ** using "PRAGMA synchronous", and if the safety-level is not already
3028 ** set to the value passed to this function as the second parameter,
3029 ** set it so.
3031 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
3032 && !defined(SQLITE_OMIT_WAL)
3033 static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
3034 sqlite3 *db;
3035 Db *pDb;
3036 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
3037 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
3038 if( pDb->bSyncSet==0
3039 && pDb->safety_level!=safety_level
3040 && pDb!=&db->aDb[1]
3042 pDb->safety_level = safety_level;
3043 sqlite3PagerSetFlags(pBt->pPager,
3044 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
3048 #else
3049 # define setDefaultSyncFlag(pBt,safety_level)
3050 #endif
3052 /* Forward declaration */
3053 static int newDatabase(BtShared*);
3057 ** Get a reference to pPage1 of the database file. This will
3058 ** also acquire a readlock on that file.
3060 ** SQLITE_OK is returned on success. If the file is not a
3061 ** well-formed database file, then SQLITE_CORRUPT is returned.
3062 ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
3063 ** is returned if we run out of memory.
3065 static int lockBtree(BtShared *pBt){
3066 int rc; /* Result code from subfunctions */
3067 MemPage *pPage1; /* Page 1 of the database file */
3068 u32 nPage; /* Number of pages in the database */
3069 u32 nPageFile = 0; /* Number of pages in the database file */
3070 u32 nPageHeader; /* Number of pages in the database according to hdr */
3072 assert( sqlite3_mutex_held(pBt->mutex) );
3073 assert( pBt->pPage1==0 );
3074 rc = sqlite3PagerSharedLock(pBt->pPager);
3075 if( rc!=SQLITE_OK ) return rc;
3076 rc = btreeGetPage(pBt, 1, &pPage1, 0);
3077 if( rc!=SQLITE_OK ) return rc;
3079 /* Do some checking to help insure the file we opened really is
3080 ** a valid database file.
3082 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
3083 sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile);
3084 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
3085 nPage = nPageFile;
3087 if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
3088 nPage = 0;
3090 if( nPage>0 ){
3091 u32 pageSize;
3092 u32 usableSize;
3093 u8 *page1 = pPage1->aData;
3094 rc = SQLITE_NOTADB;
3095 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3096 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3097 ** 61 74 20 33 00. */
3098 if( memcmp(page1, zMagicHeader, 16)!=0 ){
3099 goto page1_init_failed;
3102 #ifdef SQLITE_OMIT_WAL
3103 if( page1[18]>1 ){
3104 pBt->btsFlags |= BTS_READ_ONLY;
3106 if( page1[19]>1 ){
3107 goto page1_init_failed;
3109 #else
3110 if( page1[18]>2 ){
3111 pBt->btsFlags |= BTS_READ_ONLY;
3113 if( page1[19]>2 ){
3114 goto page1_init_failed;
3117 /* If the write version is set to 2, this database should be accessed
3118 ** in WAL mode. If the log is not already open, open it now. Then
3119 ** return SQLITE_OK and return without populating BtShared.pPage1.
3120 ** The caller detects this and calls this function again. This is
3121 ** required as the version of page 1 currently in the page1 buffer
3122 ** may not be the latest version - there may be a newer one in the log
3123 ** file.
3125 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
3126 int isOpen = 0;
3127 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
3128 if( rc!=SQLITE_OK ){
3129 goto page1_init_failed;
3130 }else{
3131 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
3132 if( isOpen==0 ){
3133 releasePageOne(pPage1);
3134 return SQLITE_OK;
3137 rc = SQLITE_NOTADB;
3138 }else{
3139 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
3141 #endif
3143 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3144 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3146 ** The original design allowed these amounts to vary, but as of
3147 ** version 3.6.0, we require them to be fixed.
3149 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3150 goto page1_init_failed;
3152 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3153 ** determined by the 2-byte integer located at an offset of 16 bytes from
3154 ** the beginning of the database file. */
3155 pageSize = (page1[16]<<8) | (page1[17]<<16);
3156 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3157 ** between 512 and 65536 inclusive. */
3158 if( ((pageSize-1)&pageSize)!=0
3159 || pageSize>SQLITE_MAX_PAGE_SIZE
3160 || pageSize<=256
3162 goto page1_init_failed;
3164 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
3165 assert( (pageSize & 7)==0 );
3166 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3167 ** integer at offset 20 is the number of bytes of space at the end of
3168 ** each page to reserve for extensions.
3170 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3171 ** determined by the one-byte unsigned integer found at an offset of 20
3172 ** into the database file header. */
3173 usableSize = pageSize - page1[20];
3174 if( (u32)pageSize!=pBt->pageSize ){
3175 /* After reading the first page of the database assuming a page size
3176 ** of BtShared.pageSize, we have discovered that the page-size is
3177 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3178 ** zero and return SQLITE_OK. The caller will call this function
3179 ** again with the correct page-size.
3181 releasePageOne(pPage1);
3182 pBt->usableSize = usableSize;
3183 pBt->pageSize = pageSize;
3184 freeTempSpace(pBt);
3185 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3186 pageSize-usableSize);
3187 return rc;
3189 if( sqlite3WritableSchema(pBt->db)==0 && nPage>nPageFile ){
3190 rc = SQLITE_CORRUPT_BKPT;
3191 goto page1_init_failed;
3193 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3194 ** be less than 480. In other words, if the page size is 512, then the
3195 ** reserved space size cannot exceed 32. */
3196 if( usableSize<480 ){
3197 goto page1_init_failed;
3199 pBt->pageSize = pageSize;
3200 pBt->usableSize = usableSize;
3201 #ifndef SQLITE_OMIT_AUTOVACUUM
3202 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
3203 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
3204 #endif
3207 /* maxLocal is the maximum amount of payload to store locally for
3208 ** a cell. Make sure it is small enough so that at least minFanout
3209 ** cells can will fit on one page. We assume a 10-byte page header.
3210 ** Besides the payload, the cell must store:
3211 ** 2-byte pointer to the cell
3212 ** 4-byte child pointer
3213 ** 9-byte nKey value
3214 ** 4-byte nData value
3215 ** 4-byte overflow page pointer
3216 ** So a cell consists of a 2-byte pointer, a header which is as much as
3217 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3218 ** page pointer.
3220 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3221 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3222 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3223 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
3224 if( pBt->maxLocal>127 ){
3225 pBt->max1bytePayload = 127;
3226 }else{
3227 pBt->max1bytePayload = (u8)pBt->maxLocal;
3229 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
3230 pBt->pPage1 = pPage1;
3231 pBt->nPage = nPage;
3232 return SQLITE_OK;
3234 page1_init_failed:
3235 releasePageOne(pPage1);
3236 pBt->pPage1 = 0;
3237 return rc;
3240 #ifndef NDEBUG
3242 ** Return the number of cursors open on pBt. This is for use
3243 ** in assert() expressions, so it is only compiled if NDEBUG is not
3244 ** defined.
3246 ** Only write cursors are counted if wrOnly is true. If wrOnly is
3247 ** false then all cursors are counted.
3249 ** For the purposes of this routine, a cursor is any cursor that
3250 ** is capable of reading or writing to the database. Cursors that
3251 ** have been tripped into the CURSOR_FAULT state are not counted.
3253 static int countValidCursors(BtShared *pBt, int wrOnly){
3254 BtCursor *pCur;
3255 int r = 0;
3256 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
3257 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3258 && pCur->eState!=CURSOR_FAULT ) r++;
3260 return r;
3262 #endif
3265 ** If there are no outstanding cursors and we are not in the middle
3266 ** of a transaction but there is a read lock on the database, then
3267 ** this routine unrefs the first page of the database file which
3268 ** has the effect of releasing the read lock.
3270 ** If there is a transaction in progress, this routine is a no-op.
3272 static void unlockBtreeIfUnused(BtShared *pBt){
3273 assert( sqlite3_mutex_held(pBt->mutex) );
3274 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
3275 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
3276 MemPage *pPage1 = pBt->pPage1;
3277 assert( pPage1->aData );
3278 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
3279 pBt->pPage1 = 0;
3280 releasePageOne(pPage1);
3285 ** If pBt points to an empty file then convert that empty file
3286 ** into a new empty database by initializing the first page of
3287 ** the database.
3289 static int newDatabase(BtShared *pBt){
3290 MemPage *pP1;
3291 unsigned char *data;
3292 int rc;
3294 assert( sqlite3_mutex_held(pBt->mutex) );
3295 if( pBt->nPage>0 ){
3296 return SQLITE_OK;
3298 pP1 = pBt->pPage1;
3299 assert( pP1!=0 );
3300 data = pP1->aData;
3301 rc = sqlite3PagerWrite(pP1->pDbPage);
3302 if( rc ) return rc;
3303 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3304 assert( sizeof(zMagicHeader)==16 );
3305 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3306 data[17] = (u8)((pBt->pageSize>>16)&0xff);
3307 data[18] = 1;
3308 data[19] = 1;
3309 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3310 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
3311 data[21] = 64;
3312 data[22] = 32;
3313 data[23] = 32;
3314 memset(&data[24], 0, 100-24);
3315 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
3316 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
3317 #ifndef SQLITE_OMIT_AUTOVACUUM
3318 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
3319 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
3320 put4byte(&data[36 + 4*4], pBt->autoVacuum);
3321 put4byte(&data[36 + 7*4], pBt->incrVacuum);
3322 #endif
3323 pBt->nPage = 1;
3324 data[31] = 1;
3325 return SQLITE_OK;
3329 ** Initialize the first page of the database file (creating a database
3330 ** consisting of a single page and no schema objects). Return SQLITE_OK
3331 ** if successful, or an SQLite error code otherwise.
3333 int sqlite3BtreeNewDb(Btree *p){
3334 int rc;
3335 sqlite3BtreeEnter(p);
3336 p->pBt->nPage = 0;
3337 rc = newDatabase(p->pBt);
3338 sqlite3BtreeLeave(p);
3339 return rc;
3343 ** Attempt to start a new transaction. A write-transaction
3344 ** is started if the second argument is nonzero, otherwise a read-
3345 ** transaction. If the second argument is 2 or more and exclusive
3346 ** transaction is started, meaning that no other process is allowed
3347 ** to access the database. A preexisting transaction may not be
3348 ** upgraded to exclusive by calling this routine a second time - the
3349 ** exclusivity flag only works for a new transaction.
3351 ** A write-transaction must be started before attempting any
3352 ** changes to the database. None of the following routines
3353 ** will work unless a transaction is started first:
3355 ** sqlite3BtreeCreateTable()
3356 ** sqlite3BtreeCreateIndex()
3357 ** sqlite3BtreeClearTable()
3358 ** sqlite3BtreeDropTable()
3359 ** sqlite3BtreeInsert()
3360 ** sqlite3BtreeDelete()
3361 ** sqlite3BtreeUpdateMeta()
3363 ** If an initial attempt to acquire the lock fails because of lock contention
3364 ** and the database was previously unlocked, then invoke the busy handler
3365 ** if there is one. But if there was previously a read-lock, do not
3366 ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3367 ** returned when there is already a read-lock in order to avoid a deadlock.
3369 ** Suppose there are two processes A and B. A has a read lock and B has
3370 ** a reserved lock. B tries to promote to exclusive but is blocked because
3371 ** of A's read lock. A tries to promote to reserved but is blocked by B.
3372 ** One or the other of the two processes must give way or there can be
3373 ** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3374 ** when A already has a read lock, we encourage A to give up and let B
3375 ** proceed.
3377 int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){
3378 BtShared *pBt = p->pBt;
3379 int rc = SQLITE_OK;
3381 sqlite3BtreeEnter(p);
3382 btreeIntegrity(p);
3384 /* If the btree is already in a write-transaction, or it
3385 ** is already in a read-transaction and a read-transaction
3386 ** is requested, this is a no-op.
3388 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
3389 goto trans_begun;
3391 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
3393 if( (p->db->flags & SQLITE_ResetDatabase)
3394 && sqlite3PagerIsreadonly(pBt->pPager)==0
3396 pBt->btsFlags &= ~BTS_READ_ONLY;
3399 /* Write transactions are not possible on a read-only database */
3400 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
3401 rc = SQLITE_READONLY;
3402 goto trans_begun;
3405 #ifndef SQLITE_OMIT_SHARED_CACHE
3407 sqlite3 *pBlock = 0;
3408 /* If another database handle has already opened a write transaction
3409 ** on this shared-btree structure and a second write transaction is
3410 ** requested, return SQLITE_LOCKED.
3412 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3413 || (pBt->btsFlags & BTS_PENDING)!=0
3415 pBlock = pBt->pWriter->db;
3416 }else if( wrflag>1 ){
3417 BtLock *pIter;
3418 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3419 if( pIter->pBtree!=p ){
3420 pBlock = pIter->pBtree->db;
3421 break;
3425 if( pBlock ){
3426 sqlite3ConnectionBlocked(p->db, pBlock);
3427 rc = SQLITE_LOCKED_SHAREDCACHE;
3428 goto trans_begun;
3431 #endif
3433 /* Any read-only or read-write transaction implies a read-lock on
3434 ** page 1. So if some other shared-cache client already has a write-lock
3435 ** on page 1, the transaction cannot be opened. */
3436 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3437 if( SQLITE_OK!=rc ) goto trans_begun;
3439 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3440 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
3441 do {
3442 /* Call lockBtree() until either pBt->pPage1 is populated or
3443 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3444 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3445 ** reading page 1 it discovers that the page-size of the database
3446 ** file is not pBt->pageSize. In this case lockBtree() will update
3447 ** pBt->pageSize to the page-size of the file on disk.
3449 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
3451 if( rc==SQLITE_OK && wrflag ){
3452 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
3453 rc = SQLITE_READONLY;
3454 }else{
3455 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
3456 if( rc==SQLITE_OK ){
3457 rc = newDatabase(pBt);
3458 }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){
3459 /* if there was no transaction opened when this function was
3460 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
3461 ** code to SQLITE_BUSY. */
3462 rc = SQLITE_BUSY;
3467 if( rc!=SQLITE_OK ){
3468 unlockBtreeIfUnused(pBt);
3470 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
3471 btreeInvokeBusyHandler(pBt) );
3472 sqlite3PagerResetLockTimeout(pBt->pPager);
3474 if( rc==SQLITE_OK ){
3475 if( p->inTrans==TRANS_NONE ){
3476 pBt->nTransaction++;
3477 #ifndef SQLITE_OMIT_SHARED_CACHE
3478 if( p->sharable ){
3479 assert( p->lock.pBtree==p && p->lock.iTable==1 );
3480 p->lock.eLock = READ_LOCK;
3481 p->lock.pNext = pBt->pLock;
3482 pBt->pLock = &p->lock;
3484 #endif
3486 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3487 if( p->inTrans>pBt->inTransaction ){
3488 pBt->inTransaction = p->inTrans;
3490 if( wrflag ){
3491 MemPage *pPage1 = pBt->pPage1;
3492 #ifndef SQLITE_OMIT_SHARED_CACHE
3493 assert( !pBt->pWriter );
3494 pBt->pWriter = p;
3495 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3496 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
3497 #endif
3499 /* If the db-size header field is incorrect (as it may be if an old
3500 ** client has been writing the database file), update it now. Doing
3501 ** this sooner rather than later means the database size can safely
3502 ** re-read the database size from page 1 if a savepoint or transaction
3503 ** rollback occurs within the transaction.
3505 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3506 rc = sqlite3PagerWrite(pPage1->pDbPage);
3507 if( rc==SQLITE_OK ){
3508 put4byte(&pPage1->aData[28], pBt->nPage);
3514 trans_begun:
3515 if( rc==SQLITE_OK ){
3516 if( pSchemaVersion ){
3517 *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]);
3519 if( wrflag ){
3520 /* This call makes sure that the pager has the correct number of
3521 ** open savepoints. If the second parameter is greater than 0 and
3522 ** the sub-journal is not already open, then it will be opened here.
3524 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3528 btreeIntegrity(p);
3529 sqlite3BtreeLeave(p);
3530 return rc;
3533 #ifndef SQLITE_OMIT_AUTOVACUUM
3536 ** Set the pointer-map entries for all children of page pPage. Also, if
3537 ** pPage contains cells that point to overflow pages, set the pointer
3538 ** map entries for the overflow pages as well.
3540 static int setChildPtrmaps(MemPage *pPage){
3541 int i; /* Counter variable */
3542 int nCell; /* Number of cells in page pPage */
3543 int rc; /* Return code */
3544 BtShared *pBt = pPage->pBt;
3545 Pgno pgno = pPage->pgno;
3547 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3548 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
3549 if( rc!=SQLITE_OK ) return rc;
3550 nCell = pPage->nCell;
3552 for(i=0; i<nCell; i++){
3553 u8 *pCell = findCell(pPage, i);
3555 ptrmapPutOvflPtr(pPage, pPage, pCell, &rc);
3557 if( !pPage->leaf ){
3558 Pgno childPgno = get4byte(pCell);
3559 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3563 if( !pPage->leaf ){
3564 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
3565 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3568 return rc;
3572 ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3573 ** that it points to iTo. Parameter eType describes the type of pointer to
3574 ** be modified, as follows:
3576 ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3577 ** page of pPage.
3579 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3580 ** page pointed to by one of the cells on pPage.
3582 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3583 ** overflow page in the list.
3585 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
3586 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3587 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
3588 if( eType==PTRMAP_OVERFLOW2 ){
3589 /* The pointer is always the first 4 bytes of the page in this case. */
3590 if( get4byte(pPage->aData)!=iFrom ){
3591 return SQLITE_CORRUPT_PAGE(pPage);
3593 put4byte(pPage->aData, iTo);
3594 }else{
3595 int i;
3596 int nCell;
3597 int rc;
3599 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
3600 if( rc ) return rc;
3601 nCell = pPage->nCell;
3603 for(i=0; i<nCell; i++){
3604 u8 *pCell = findCell(pPage, i);
3605 if( eType==PTRMAP_OVERFLOW1 ){
3606 CellInfo info;
3607 pPage->xParseCell(pPage, pCell, &info);
3608 if( info.nLocal<info.nPayload ){
3609 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
3610 return SQLITE_CORRUPT_PAGE(pPage);
3612 if( iFrom==get4byte(pCell+info.nSize-4) ){
3613 put4byte(pCell+info.nSize-4, iTo);
3614 break;
3617 }else{
3618 if( get4byte(pCell)==iFrom ){
3619 put4byte(pCell, iTo);
3620 break;
3625 if( i==nCell ){
3626 if( eType!=PTRMAP_BTREE ||
3627 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
3628 return SQLITE_CORRUPT_PAGE(pPage);
3630 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3633 return SQLITE_OK;
3638 ** Move the open database page pDbPage to location iFreePage in the
3639 ** database. The pDbPage reference remains valid.
3641 ** The isCommit flag indicates that there is no need to remember that
3642 ** the journal needs to be sync()ed before database page pDbPage->pgno
3643 ** can be written to. The caller has already promised not to write to that
3644 ** page.
3646 static int relocatePage(
3647 BtShared *pBt, /* Btree */
3648 MemPage *pDbPage, /* Open page to move */
3649 u8 eType, /* Pointer map 'type' entry for pDbPage */
3650 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
3651 Pgno iFreePage, /* The location to move pDbPage to */
3652 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
3654 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3655 Pgno iDbPage = pDbPage->pgno;
3656 Pager *pPager = pBt->pPager;
3657 int rc;
3659 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3660 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
3661 assert( sqlite3_mutex_held(pBt->mutex) );
3662 assert( pDbPage->pBt==pBt );
3663 if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT;
3665 /* Move page iDbPage from its current location to page number iFreePage */
3666 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3667 iDbPage, iFreePage, iPtrPage, eType));
3668 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
3669 if( rc!=SQLITE_OK ){
3670 return rc;
3672 pDbPage->pgno = iFreePage;
3674 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3675 ** that point to overflow pages. The pointer map entries for all these
3676 ** pages need to be changed.
3678 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3679 ** pointer to a subsequent overflow page. If this is the case, then
3680 ** the pointer map needs to be updated for the subsequent overflow page.
3682 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
3683 rc = setChildPtrmaps(pDbPage);
3684 if( rc!=SQLITE_OK ){
3685 return rc;
3687 }else{
3688 Pgno nextOvfl = get4byte(pDbPage->aData);
3689 if( nextOvfl!=0 ){
3690 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
3691 if( rc!=SQLITE_OK ){
3692 return rc;
3697 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3698 ** that it points at iFreePage. Also fix the pointer map entry for
3699 ** iPtrPage.
3701 if( eType!=PTRMAP_ROOTPAGE ){
3702 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
3703 if( rc!=SQLITE_OK ){
3704 return rc;
3706 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
3707 if( rc!=SQLITE_OK ){
3708 releasePage(pPtrPage);
3709 return rc;
3711 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
3712 releasePage(pPtrPage);
3713 if( rc==SQLITE_OK ){
3714 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
3717 return rc;
3720 /* Forward declaration required by incrVacuumStep(). */
3721 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
3724 ** Perform a single step of an incremental-vacuum. If successful, return
3725 ** SQLITE_OK. If there is no work to do (and therefore no point in
3726 ** calling this function again), return SQLITE_DONE. Or, if an error
3727 ** occurs, return some other error code.
3729 ** More specifically, this function attempts to re-organize the database so
3730 ** that the last page of the file currently in use is no longer in use.
3732 ** Parameter nFin is the number of pages that this database would contain
3733 ** were this function called until it returns SQLITE_DONE.
3735 ** If the bCommit parameter is non-zero, this function assumes that the
3736 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3737 ** or an error. bCommit is passed true for an auto-vacuum-on-commit
3738 ** operation, or false for an incremental vacuum.
3740 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
3741 Pgno nFreeList; /* Number of pages still on the free-list */
3742 int rc;
3744 assert( sqlite3_mutex_held(pBt->mutex) );
3745 assert( iLastPg>nFin );
3747 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
3748 u8 eType;
3749 Pgno iPtrPage;
3751 nFreeList = get4byte(&pBt->pPage1->aData[36]);
3752 if( nFreeList==0 ){
3753 return SQLITE_DONE;
3756 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3757 if( rc!=SQLITE_OK ){
3758 return rc;
3760 if( eType==PTRMAP_ROOTPAGE ){
3761 return SQLITE_CORRUPT_BKPT;
3764 if( eType==PTRMAP_FREEPAGE ){
3765 if( bCommit==0 ){
3766 /* Remove the page from the files free-list. This is not required
3767 ** if bCommit is non-zero. In that case, the free-list will be
3768 ** truncated to zero after this function returns, so it doesn't
3769 ** matter if it still contains some garbage entries.
3771 Pgno iFreePg;
3772 MemPage *pFreePg;
3773 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
3774 if( rc!=SQLITE_OK ){
3775 return rc;
3777 assert( iFreePg==iLastPg );
3778 releasePage(pFreePg);
3780 } else {
3781 Pgno iFreePg; /* Index of free page to move pLastPg to */
3782 MemPage *pLastPg;
3783 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3784 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
3786 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
3787 if( rc!=SQLITE_OK ){
3788 return rc;
3791 /* If bCommit is zero, this loop runs exactly once and page pLastPg
3792 ** is swapped with the first free page pulled off the free list.
3794 ** On the other hand, if bCommit is greater than zero, then keep
3795 ** looping until a free-page located within the first nFin pages
3796 ** of the file is found.
3798 if( bCommit==0 ){
3799 eMode = BTALLOC_LE;
3800 iNear = nFin;
3802 do {
3803 MemPage *pFreePg;
3804 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
3805 if( rc!=SQLITE_OK ){
3806 releasePage(pLastPg);
3807 return rc;
3809 releasePage(pFreePg);
3810 }while( bCommit && iFreePg>nFin );
3811 assert( iFreePg<iLastPg );
3813 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
3814 releasePage(pLastPg);
3815 if( rc!=SQLITE_OK ){
3816 return rc;
3821 if( bCommit==0 ){
3822 do {
3823 iLastPg--;
3824 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3825 pBt->bDoTruncate = 1;
3826 pBt->nPage = iLastPg;
3828 return SQLITE_OK;
3832 ** The database opened by the first argument is an auto-vacuum database
3833 ** nOrig pages in size containing nFree free pages. Return the expected
3834 ** size of the database in pages following an auto-vacuum operation.
3836 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3837 int nEntry; /* Number of entries on one ptrmap page */
3838 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3839 Pgno nFin; /* Return value */
3841 nEntry = pBt->usableSize/5;
3842 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3843 nFin = nOrig - nFree - nPtrmap;
3844 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3845 nFin--;
3847 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3848 nFin--;
3851 return nFin;
3855 ** A write-transaction must be opened before calling this function.
3856 ** It performs a single unit of work towards an incremental vacuum.
3858 ** If the incremental vacuum is finished after this function has run,
3859 ** SQLITE_DONE is returned. If it is not finished, but no error occurred,
3860 ** SQLITE_OK is returned. Otherwise an SQLite error code.
3862 int sqlite3BtreeIncrVacuum(Btree *p){
3863 int rc;
3864 BtShared *pBt = p->pBt;
3866 sqlite3BtreeEnter(p);
3867 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3868 if( !pBt->autoVacuum ){
3869 rc = SQLITE_DONE;
3870 }else{
3871 Pgno nOrig = btreePagecount(pBt);
3872 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3873 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3875 if( nOrig<nFin ){
3876 rc = SQLITE_CORRUPT_BKPT;
3877 }else if( nFree>0 ){
3878 rc = saveAllCursors(pBt, 0, 0);
3879 if( rc==SQLITE_OK ){
3880 invalidateAllOverflowCache(pBt);
3881 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3883 if( rc==SQLITE_OK ){
3884 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3885 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3887 }else{
3888 rc = SQLITE_DONE;
3891 sqlite3BtreeLeave(p);
3892 return rc;
3896 ** This routine is called prior to sqlite3PagerCommit when a transaction
3897 ** is committed for an auto-vacuum database.
3899 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3900 ** the database file should be truncated to during the commit process.
3901 ** i.e. the database has been reorganized so that only the first *pnTrunc
3902 ** pages are in use.
3904 static int autoVacuumCommit(BtShared *pBt){
3905 int rc = SQLITE_OK;
3906 Pager *pPager = pBt->pPager;
3907 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
3909 assert( sqlite3_mutex_held(pBt->mutex) );
3910 invalidateAllOverflowCache(pBt);
3911 assert(pBt->autoVacuum);
3912 if( !pBt->incrVacuum ){
3913 Pgno nFin; /* Number of pages in database after autovacuuming */
3914 Pgno nFree; /* Number of pages on the freelist initially */
3915 Pgno iFree; /* The next page to be freed */
3916 Pgno nOrig; /* Database size before freeing */
3918 nOrig = btreePagecount(pBt);
3919 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3920 /* It is not possible to create a database for which the final page
3921 ** is either a pointer-map page or the pending-byte page. If one
3922 ** is encountered, this indicates corruption.
3924 return SQLITE_CORRUPT_BKPT;
3927 nFree = get4byte(&pBt->pPage1->aData[36]);
3928 nFin = finalDbSize(pBt, nOrig, nFree);
3929 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
3930 if( nFin<nOrig ){
3931 rc = saveAllCursors(pBt, 0, 0);
3933 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
3934 rc = incrVacuumStep(pBt, nFin, iFree, 1);
3936 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
3937 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3938 put4byte(&pBt->pPage1->aData[32], 0);
3939 put4byte(&pBt->pPage1->aData[36], 0);
3940 put4byte(&pBt->pPage1->aData[28], nFin);
3941 pBt->bDoTruncate = 1;
3942 pBt->nPage = nFin;
3944 if( rc!=SQLITE_OK ){
3945 sqlite3PagerRollback(pPager);
3949 assert( nRef>=sqlite3PagerRefcount(pPager) );
3950 return rc;
3953 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3954 # define setChildPtrmaps(x) SQLITE_OK
3955 #endif
3958 ** This routine does the first phase of a two-phase commit. This routine
3959 ** causes a rollback journal to be created (if it does not already exist)
3960 ** and populated with enough information so that if a power loss occurs
3961 ** the database can be restored to its original state by playing back
3962 ** the journal. Then the contents of the journal are flushed out to
3963 ** the disk. After the journal is safely on oxide, the changes to the
3964 ** database are written into the database file and flushed to oxide.
3965 ** At the end of this call, the rollback journal still exists on the
3966 ** disk and we are still holding all locks, so the transaction has not
3967 ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
3968 ** commit process.
3970 ** This call is a no-op if no write-transaction is currently active on pBt.
3972 ** Otherwise, sync the database file for the btree pBt. zMaster points to
3973 ** the name of a master journal file that should be written into the
3974 ** individual journal file, or is NULL, indicating no master journal file
3975 ** (single database transaction).
3977 ** When this is called, the master journal should already have been
3978 ** created, populated with this journal pointer and synced to disk.
3980 ** Once this is routine has returned, the only thing required to commit
3981 ** the write-transaction for this database file is to delete the journal.
3983 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3984 int rc = SQLITE_OK;
3985 if( p->inTrans==TRANS_WRITE ){
3986 BtShared *pBt = p->pBt;
3987 sqlite3BtreeEnter(p);
3988 #ifndef SQLITE_OMIT_AUTOVACUUM
3989 if( pBt->autoVacuum ){
3990 rc = autoVacuumCommit(pBt);
3991 if( rc!=SQLITE_OK ){
3992 sqlite3BtreeLeave(p);
3993 return rc;
3996 if( pBt->bDoTruncate ){
3997 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3999 #endif
4000 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
4001 sqlite3BtreeLeave(p);
4003 return rc;
4007 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
4008 ** at the conclusion of a transaction.
4010 static void btreeEndTransaction(Btree *p){
4011 BtShared *pBt = p->pBt;
4012 sqlite3 *db = p->db;
4013 assert( sqlite3BtreeHoldsMutex(p) );
4015 #ifndef SQLITE_OMIT_AUTOVACUUM
4016 pBt->bDoTruncate = 0;
4017 #endif
4018 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
4019 /* If there are other active statements that belong to this database
4020 ** handle, downgrade to a read-only transaction. The other statements
4021 ** may still be reading from the database. */
4022 downgradeAllSharedCacheTableLocks(p);
4023 p->inTrans = TRANS_READ;
4024 }else{
4025 /* If the handle had any kind of transaction open, decrement the
4026 ** transaction count of the shared btree. If the transaction count
4027 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
4028 ** call below will unlock the pager. */
4029 if( p->inTrans!=TRANS_NONE ){
4030 clearAllSharedCacheTableLocks(p);
4031 pBt->nTransaction--;
4032 if( 0==pBt->nTransaction ){
4033 pBt->inTransaction = TRANS_NONE;
4037 /* Set the current transaction state to TRANS_NONE and unlock the
4038 ** pager if this call closed the only read or write transaction. */
4039 p->inTrans = TRANS_NONE;
4040 unlockBtreeIfUnused(pBt);
4043 btreeIntegrity(p);
4047 ** Commit the transaction currently in progress.
4049 ** This routine implements the second phase of a 2-phase commit. The
4050 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
4051 ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
4052 ** routine did all the work of writing information out to disk and flushing the
4053 ** contents so that they are written onto the disk platter. All this
4054 ** routine has to do is delete or truncate or zero the header in the
4055 ** the rollback journal (which causes the transaction to commit) and
4056 ** drop locks.
4058 ** Normally, if an error occurs while the pager layer is attempting to
4059 ** finalize the underlying journal file, this function returns an error and
4060 ** the upper layer will attempt a rollback. However, if the second argument
4061 ** is non-zero then this b-tree transaction is part of a multi-file
4062 ** transaction. In this case, the transaction has already been committed
4063 ** (by deleting a master journal file) and the caller will ignore this
4064 ** functions return code. So, even if an error occurs in the pager layer,
4065 ** reset the b-tree objects internal state to indicate that the write
4066 ** transaction has been closed. This is quite safe, as the pager will have
4067 ** transitioned to the error state.
4069 ** This will release the write lock on the database file. If there
4070 ** are no active cursors, it also releases the read lock.
4072 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
4074 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
4075 sqlite3BtreeEnter(p);
4076 btreeIntegrity(p);
4078 /* If the handle has a write-transaction open, commit the shared-btrees
4079 ** transaction and set the shared state to TRANS_READ.
4081 if( p->inTrans==TRANS_WRITE ){
4082 int rc;
4083 BtShared *pBt = p->pBt;
4084 assert( pBt->inTransaction==TRANS_WRITE );
4085 assert( pBt->nTransaction>0 );
4086 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
4087 if( rc!=SQLITE_OK && bCleanup==0 ){
4088 sqlite3BtreeLeave(p);
4089 return rc;
4091 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
4092 pBt->inTransaction = TRANS_READ;
4093 btreeClearHasContent(pBt);
4096 btreeEndTransaction(p);
4097 sqlite3BtreeLeave(p);
4098 return SQLITE_OK;
4102 ** Do both phases of a commit.
4104 int sqlite3BtreeCommit(Btree *p){
4105 int rc;
4106 sqlite3BtreeEnter(p);
4107 rc = sqlite3BtreeCommitPhaseOne(p, 0);
4108 if( rc==SQLITE_OK ){
4109 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
4111 sqlite3BtreeLeave(p);
4112 return rc;
4116 ** This routine sets the state to CURSOR_FAULT and the error
4117 ** code to errCode for every cursor on any BtShared that pBtree
4118 ** references. Or if the writeOnly flag is set to 1, then only
4119 ** trip write cursors and leave read cursors unchanged.
4121 ** Every cursor is a candidate to be tripped, including cursors
4122 ** that belong to other database connections that happen to be
4123 ** sharing the cache with pBtree.
4125 ** This routine gets called when a rollback occurs. If the writeOnly
4126 ** flag is true, then only write-cursors need be tripped - read-only
4127 ** cursors save their current positions so that they may continue
4128 ** following the rollback. Or, if writeOnly is false, all cursors are
4129 ** tripped. In general, writeOnly is false if the transaction being
4130 ** rolled back modified the database schema. In this case b-tree root
4131 ** pages may be moved or deleted from the database altogether, making
4132 ** it unsafe for read cursors to continue.
4134 ** If the writeOnly flag is true and an error is encountered while
4135 ** saving the current position of a read-only cursor, all cursors,
4136 ** including all read-cursors are tripped.
4138 ** SQLITE_OK is returned if successful, or if an error occurs while
4139 ** saving a cursor position, an SQLite error code.
4141 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
4142 BtCursor *p;
4143 int rc = SQLITE_OK;
4145 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
4146 if( pBtree ){
4147 sqlite3BtreeEnter(pBtree);
4148 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
4149 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
4150 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
4151 rc = saveCursorPosition(p);
4152 if( rc!=SQLITE_OK ){
4153 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4154 break;
4157 }else{
4158 sqlite3BtreeClearCursor(p);
4159 p->eState = CURSOR_FAULT;
4160 p->skipNext = errCode;
4162 btreeReleaseAllCursorPages(p);
4164 sqlite3BtreeLeave(pBtree);
4166 return rc;
4170 ** Set the pBt->nPage field correctly, according to the current
4171 ** state of the database. Assume pBt->pPage1 is valid.
4173 static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){
4174 int nPage = get4byte(&pPage1->aData[28]);
4175 testcase( nPage==0 );
4176 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4177 testcase( pBt->nPage!=nPage );
4178 pBt->nPage = nPage;
4182 ** Rollback the transaction in progress.
4184 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4185 ** Only write cursors are tripped if writeOnly is true but all cursors are
4186 ** tripped if writeOnly is false. Any attempt to use
4187 ** a tripped cursor will result in an error.
4189 ** This will release the write lock on the database file. If there
4190 ** are no active cursors, it also releases the read lock.
4192 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
4193 int rc;
4194 BtShared *pBt = p->pBt;
4195 MemPage *pPage1;
4197 assert( writeOnly==1 || writeOnly==0 );
4198 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
4199 sqlite3BtreeEnter(p);
4200 if( tripCode==SQLITE_OK ){
4201 rc = tripCode = saveAllCursors(pBt, 0, 0);
4202 if( rc ) writeOnly = 0;
4203 }else{
4204 rc = SQLITE_OK;
4206 if( tripCode ){
4207 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4208 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4209 if( rc2!=SQLITE_OK ) rc = rc2;
4211 btreeIntegrity(p);
4213 if( p->inTrans==TRANS_WRITE ){
4214 int rc2;
4216 assert( TRANS_WRITE==pBt->inTransaction );
4217 rc2 = sqlite3PagerRollback(pBt->pPager);
4218 if( rc2!=SQLITE_OK ){
4219 rc = rc2;
4222 /* The rollback may have destroyed the pPage1->aData value. So
4223 ** call btreeGetPage() on page 1 again to make
4224 ** sure pPage1->aData is set correctly. */
4225 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
4226 btreeSetNPage(pBt, pPage1);
4227 releasePageOne(pPage1);
4229 assert( countValidCursors(pBt, 1)==0 );
4230 pBt->inTransaction = TRANS_READ;
4231 btreeClearHasContent(pBt);
4234 btreeEndTransaction(p);
4235 sqlite3BtreeLeave(p);
4236 return rc;
4240 ** Start a statement subtransaction. The subtransaction can be rolled
4241 ** back independently of the main transaction. You must start a transaction
4242 ** before starting a subtransaction. The subtransaction is ended automatically
4243 ** if the main transaction commits or rolls back.
4245 ** Statement subtransactions are used around individual SQL statements
4246 ** that are contained within a BEGIN...COMMIT block. If a constraint
4247 ** error occurs within the statement, the effect of that one statement
4248 ** can be rolled back without having to rollback the entire transaction.
4250 ** A statement sub-transaction is implemented as an anonymous savepoint. The
4251 ** value passed as the second parameter is the total number of savepoints,
4252 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4253 ** are no active savepoints and no other statement-transactions open,
4254 ** iStatement is 1. This anonymous savepoint can be released or rolled back
4255 ** using the sqlite3BtreeSavepoint() function.
4257 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
4258 int rc;
4259 BtShared *pBt = p->pBt;
4260 sqlite3BtreeEnter(p);
4261 assert( p->inTrans==TRANS_WRITE );
4262 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
4263 assert( iStatement>0 );
4264 assert( iStatement>p->db->nSavepoint );
4265 assert( pBt->inTransaction==TRANS_WRITE );
4266 /* At the pager level, a statement transaction is a savepoint with
4267 ** an index greater than all savepoints created explicitly using
4268 ** SQL statements. It is illegal to open, release or rollback any
4269 ** such savepoints while the statement transaction savepoint is active.
4271 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
4272 sqlite3BtreeLeave(p);
4273 return rc;
4277 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4278 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the
4279 ** savepoint identified by parameter iSavepoint, depending on the value
4280 ** of op.
4282 ** Normally, iSavepoint is greater than or equal to zero. However, if op is
4283 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4284 ** contents of the entire transaction are rolled back. This is different
4285 ** from a normal transaction rollback, as no locks are released and the
4286 ** transaction remains open.
4288 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4289 int rc = SQLITE_OK;
4290 if( p && p->inTrans==TRANS_WRITE ){
4291 BtShared *pBt = p->pBt;
4292 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4293 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4294 sqlite3BtreeEnter(p);
4295 if( op==SAVEPOINT_ROLLBACK ){
4296 rc = saveAllCursors(pBt, 0, 0);
4298 if( rc==SQLITE_OK ){
4299 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4301 if( rc==SQLITE_OK ){
4302 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4303 pBt->nPage = 0;
4305 rc = newDatabase(pBt);
4306 btreeSetNPage(pBt, pBt->pPage1);
4308 /* pBt->nPage might be zero if the database was corrupt when
4309 ** the transaction was started. Otherwise, it must be at least 1. */
4310 assert( CORRUPT_DB || pBt->nPage>0 );
4312 sqlite3BtreeLeave(p);
4314 return rc;
4318 ** Create a new cursor for the BTree whose root is on the page
4319 ** iTable. If a read-only cursor is requested, it is assumed that
4320 ** the caller already has at least a read-only transaction open
4321 ** on the database already. If a write-cursor is requested, then
4322 ** the caller is assumed to have an open write transaction.
4324 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4325 ** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4326 ** can be used for reading or for writing if other conditions for writing
4327 ** are also met. These are the conditions that must be met in order
4328 ** for writing to be allowed:
4330 ** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
4332 ** 2: Other database connections that share the same pager cache
4333 ** but which are not in the READ_UNCOMMITTED state may not have
4334 ** cursors open with wrFlag==0 on the same table. Otherwise
4335 ** the changes made by this write cursor would be visible to
4336 ** the read cursors in the other database connection.
4338 ** 3: The database must be writable (not on read-only media)
4340 ** 4: There must be an active transaction.
4342 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4343 ** is set. If FORDELETE is set, that is a hint to the implementation that
4344 ** this cursor will only be used to seek to and delete entries of an index
4345 ** as part of a larger DELETE statement. The FORDELETE hint is not used by
4346 ** this implementation. But in a hypothetical alternative storage engine
4347 ** in which index entries are automatically deleted when corresponding table
4348 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4349 ** operations on this cursor can be no-ops and all READ operations can
4350 ** return a null row (2-bytes: 0x01 0x00).
4352 ** No checking is done to make sure that page iTable really is the
4353 ** root page of a b-tree. If it is not, then the cursor acquired
4354 ** will not work correctly.
4356 ** It is assumed that the sqlite3BtreeCursorZero() has been called
4357 ** on pCur to initialize the memory space prior to invoking this routine.
4359 static int btreeCursor(
4360 Btree *p, /* The btree */
4361 int iTable, /* Root page of table to open */
4362 int wrFlag, /* 1 to write. 0 read-only */
4363 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4364 BtCursor *pCur /* Space for new cursor */
4366 BtShared *pBt = p->pBt; /* Shared b-tree handle */
4367 BtCursor *pX; /* Looping over other all cursors */
4369 assert( sqlite3BtreeHoldsMutex(p) );
4370 assert( wrFlag==0
4371 || wrFlag==BTREE_WRCSR
4372 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4375 /* The following assert statements verify that if this is a sharable
4376 ** b-tree database, the connection is holding the required table locks,
4377 ** and that no other connection has any open cursor that conflicts with
4378 ** this lock. The iTable<1 term disables the check for corrupt schemas. */
4379 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1))
4380 || iTable<1 );
4381 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4383 /* Assert that the caller has opened the required transaction. */
4384 assert( p->inTrans>TRANS_NONE );
4385 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4386 assert( pBt->pPage1 && pBt->pPage1->aData );
4387 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
4389 if( wrFlag ){
4390 allocateTempSpace(pBt);
4391 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
4393 if( iTable<=1 ){
4394 if( iTable<1 ){
4395 return SQLITE_CORRUPT_BKPT;
4396 }else if( btreePagecount(pBt)==0 ){
4397 assert( wrFlag==0 );
4398 iTable = 0;
4402 /* Now that no other errors can occur, finish filling in the BtCursor
4403 ** variables and link the cursor into the BtShared list. */
4404 pCur->pgnoRoot = (Pgno)iTable;
4405 pCur->iPage = -1;
4406 pCur->pKeyInfo = pKeyInfo;
4407 pCur->pBtree = p;
4408 pCur->pBt = pBt;
4409 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
4410 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
4411 /* If there are two or more cursors on the same btree, then all such
4412 ** cursors *must* have the BTCF_Multiple flag set. */
4413 for(pX=pBt->pCursor; pX; pX=pX->pNext){
4414 if( pX->pgnoRoot==(Pgno)iTable ){
4415 pX->curFlags |= BTCF_Multiple;
4416 pCur->curFlags |= BTCF_Multiple;
4419 pCur->pNext = pBt->pCursor;
4420 pBt->pCursor = pCur;
4421 pCur->eState = CURSOR_INVALID;
4422 return SQLITE_OK;
4424 static int btreeCursorWithLock(
4425 Btree *p, /* The btree */
4426 int iTable, /* Root page of table to open */
4427 int wrFlag, /* 1 to write. 0 read-only */
4428 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4429 BtCursor *pCur /* Space for new cursor */
4431 int rc;
4432 sqlite3BtreeEnter(p);
4433 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4434 sqlite3BtreeLeave(p);
4435 return rc;
4437 int sqlite3BtreeCursor(
4438 Btree *p, /* The btree */
4439 int iTable, /* Root page of table to open */
4440 int wrFlag, /* 1 to write. 0 read-only */
4441 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4442 BtCursor *pCur /* Write new cursor here */
4444 if( p->sharable ){
4445 return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur);
4446 }else{
4447 return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4452 ** Return the size of a BtCursor object in bytes.
4454 ** This interfaces is needed so that users of cursors can preallocate
4455 ** sufficient storage to hold a cursor. The BtCursor object is opaque
4456 ** to users so they cannot do the sizeof() themselves - they must call
4457 ** this routine.
4459 int sqlite3BtreeCursorSize(void){
4460 return ROUND8(sizeof(BtCursor));
4464 ** Initialize memory that will be converted into a BtCursor object.
4466 ** The simple approach here would be to memset() the entire object
4467 ** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4468 ** do not need to be zeroed and they are large, so we can save a lot
4469 ** of run-time by skipping the initialization of those elements.
4471 void sqlite3BtreeCursorZero(BtCursor *p){
4472 memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
4476 ** Close a cursor. The read lock on the database file is released
4477 ** when the last cursor is closed.
4479 int sqlite3BtreeCloseCursor(BtCursor *pCur){
4480 Btree *pBtree = pCur->pBtree;
4481 if( pBtree ){
4482 BtShared *pBt = pCur->pBt;
4483 sqlite3BtreeEnter(pBtree);
4484 assert( pBt->pCursor!=0 );
4485 if( pBt->pCursor==pCur ){
4486 pBt->pCursor = pCur->pNext;
4487 }else{
4488 BtCursor *pPrev = pBt->pCursor;
4490 if( pPrev->pNext==pCur ){
4491 pPrev->pNext = pCur->pNext;
4492 break;
4494 pPrev = pPrev->pNext;
4495 }while( ALWAYS(pPrev) );
4497 btreeReleaseAllCursorPages(pCur);
4498 unlockBtreeIfUnused(pBt);
4499 sqlite3_free(pCur->aOverflow);
4500 sqlite3_free(pCur->pKey);
4501 sqlite3BtreeLeave(pBtree);
4502 pCur->pBtree = 0;
4504 return SQLITE_OK;
4508 ** Make sure the BtCursor* given in the argument has a valid
4509 ** BtCursor.info structure. If it is not already valid, call
4510 ** btreeParseCell() to fill it in.
4512 ** BtCursor.info is a cache of the information in the current cell.
4513 ** Using this cache reduces the number of calls to btreeParseCell().
4515 #ifndef NDEBUG
4516 static int cellInfoEqual(CellInfo *a, CellInfo *b){
4517 if( a->nKey!=b->nKey ) return 0;
4518 if( a->pPayload!=b->pPayload ) return 0;
4519 if( a->nPayload!=b->nPayload ) return 0;
4520 if( a->nLocal!=b->nLocal ) return 0;
4521 if( a->nSize!=b->nSize ) return 0;
4522 return 1;
4524 static void assertCellInfo(BtCursor *pCur){
4525 CellInfo info;
4526 memset(&info, 0, sizeof(info));
4527 btreeParseCell(pCur->pPage, pCur->ix, &info);
4528 assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
4530 #else
4531 #define assertCellInfo(x)
4532 #endif
4533 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4534 if( pCur->info.nSize==0 ){
4535 pCur->curFlags |= BTCF_ValidNKey;
4536 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
4537 }else{
4538 assertCellInfo(pCur);
4542 #ifndef NDEBUG /* The next routine used only within assert() statements */
4544 ** Return true if the given BtCursor is valid. A valid cursor is one
4545 ** that is currently pointing to a row in a (non-empty) table.
4546 ** This is a verification routine is used only within assert() statements.
4548 int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4549 return pCur && pCur->eState==CURSOR_VALID;
4551 #endif /* NDEBUG */
4552 int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4553 assert( pCur!=0 );
4554 return pCur->eState==CURSOR_VALID;
4558 ** Return the value of the integer key or "rowid" for a table btree.
4559 ** This routine is only valid for a cursor that is pointing into a
4560 ** ordinary table btree. If the cursor points to an index btree or
4561 ** is invalid, the result of this routine is undefined.
4563 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
4564 assert( cursorHoldsMutex(pCur) );
4565 assert( pCur->eState==CURSOR_VALID );
4566 assert( pCur->curIntKey );
4567 getCellInfo(pCur);
4568 return pCur->info.nKey;
4572 ** Pin or unpin a cursor.
4574 void sqlite3BtreeCursorPin(BtCursor *pCur){
4575 assert( (pCur->curFlags & BTCF_Pinned)==0 );
4576 pCur->curFlags |= BTCF_Pinned;
4578 void sqlite3BtreeCursorUnpin(BtCursor *pCur){
4579 assert( (pCur->curFlags & BTCF_Pinned)!=0 );
4580 pCur->curFlags &= ~BTCF_Pinned;
4583 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4585 ** Return the offset into the database file for the start of the
4586 ** payload to which the cursor is pointing.
4588 i64 sqlite3BtreeOffset(BtCursor *pCur){
4589 assert( cursorHoldsMutex(pCur) );
4590 assert( pCur->eState==CURSOR_VALID );
4591 getCellInfo(pCur);
4592 return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
4593 (i64)(pCur->info.pPayload - pCur->pPage->aData);
4595 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
4598 ** Return the number of bytes of payload for the entry that pCur is
4599 ** currently pointing to. For table btrees, this will be the amount
4600 ** of data. For index btrees, this will be the size of the key.
4602 ** The caller must guarantee that the cursor is pointing to a non-NULL
4603 ** valid entry. In other words, the calling procedure must guarantee
4604 ** that the cursor has Cursor.eState==CURSOR_VALID.
4606 u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4607 assert( cursorHoldsMutex(pCur) );
4608 assert( pCur->eState==CURSOR_VALID );
4609 getCellInfo(pCur);
4610 return pCur->info.nPayload;
4614 ** Return an upper bound on the size of any record for the table
4615 ** that the cursor is pointing into.
4617 ** This is an optimization. Everything will still work if this
4618 ** routine always returns 2147483647 (which is the largest record
4619 ** that SQLite can handle) or more. But returning a smaller value might
4620 ** prevent large memory allocations when trying to interpret a
4621 ** corrupt datrabase.
4623 ** The current implementation merely returns the size of the underlying
4624 ** database file.
4626 sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){
4627 assert( cursorHoldsMutex(pCur) );
4628 assert( pCur->eState==CURSOR_VALID );
4629 return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage;
4633 ** Given the page number of an overflow page in the database (parameter
4634 ** ovfl), this function finds the page number of the next page in the
4635 ** linked list of overflow pages. If possible, it uses the auto-vacuum
4636 ** pointer-map data instead of reading the content of page ovfl to do so.
4638 ** If an error occurs an SQLite error code is returned. Otherwise:
4640 ** The page number of the next overflow page in the linked list is
4641 ** written to *pPgnoNext. If page ovfl is the last page in its linked
4642 ** list, *pPgnoNext is set to zero.
4644 ** If ppPage is not NULL, and a reference to the MemPage object corresponding
4645 ** to page number pOvfl was obtained, then *ppPage is set to point to that
4646 ** reference. It is the responsibility of the caller to call releasePage()
4647 ** on *ppPage to free the reference. In no reference was obtained (because
4648 ** the pointer-map was used to obtain the value for *pPgnoNext), then
4649 ** *ppPage is set to zero.
4651 static int getOverflowPage(
4652 BtShared *pBt, /* The database file */
4653 Pgno ovfl, /* Current overflow page number */
4654 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
4655 Pgno *pPgnoNext /* OUT: Next overflow page number */
4657 Pgno next = 0;
4658 MemPage *pPage = 0;
4659 int rc = SQLITE_OK;
4661 assert( sqlite3_mutex_held(pBt->mutex) );
4662 assert(pPgnoNext);
4664 #ifndef SQLITE_OMIT_AUTOVACUUM
4665 /* Try to find the next page in the overflow list using the
4666 ** autovacuum pointer-map pages. Guess that the next page in
4667 ** the overflow list is page number (ovfl+1). If that guess turns
4668 ** out to be wrong, fall back to loading the data of page
4669 ** number ovfl to determine the next page number.
4671 if( pBt->autoVacuum ){
4672 Pgno pgno;
4673 Pgno iGuess = ovfl+1;
4674 u8 eType;
4676 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4677 iGuess++;
4680 if( iGuess<=btreePagecount(pBt) ){
4681 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
4682 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
4683 next = iGuess;
4684 rc = SQLITE_DONE;
4688 #endif
4690 assert( next==0 || rc==SQLITE_DONE );
4691 if( rc==SQLITE_OK ){
4692 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
4693 assert( rc==SQLITE_OK || pPage==0 );
4694 if( rc==SQLITE_OK ){
4695 next = get4byte(pPage->aData);
4699 *pPgnoNext = next;
4700 if( ppPage ){
4701 *ppPage = pPage;
4702 }else{
4703 releasePage(pPage);
4705 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
4709 ** Copy data from a buffer to a page, or from a page to a buffer.
4711 ** pPayload is a pointer to data stored on database page pDbPage.
4712 ** If argument eOp is false, then nByte bytes of data are copied
4713 ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4714 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4715 ** of data are copied from the buffer pBuf to pPayload.
4717 ** SQLITE_OK is returned on success, otherwise an error code.
4719 static int copyPayload(
4720 void *pPayload, /* Pointer to page data */
4721 void *pBuf, /* Pointer to buffer */
4722 int nByte, /* Number of bytes to copy */
4723 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4724 DbPage *pDbPage /* Page containing pPayload */
4726 if( eOp ){
4727 /* Copy data from buffer to page (a write operation) */
4728 int rc = sqlite3PagerWrite(pDbPage);
4729 if( rc!=SQLITE_OK ){
4730 return rc;
4732 memcpy(pPayload, pBuf, nByte);
4733 }else{
4734 /* Copy data from page to buffer (a read operation) */
4735 memcpy(pBuf, pPayload, nByte);
4737 return SQLITE_OK;
4741 ** This function is used to read or overwrite payload information
4742 ** for the entry that the pCur cursor is pointing to. The eOp
4743 ** argument is interpreted as follows:
4745 ** 0: The operation is a read. Populate the overflow cache.
4746 ** 1: The operation is a write. Populate the overflow cache.
4748 ** A total of "amt" bytes are read or written beginning at "offset".
4749 ** Data is read to or from the buffer pBuf.
4751 ** The content being read or written might appear on the main page
4752 ** or be scattered out on multiple overflow pages.
4754 ** If the current cursor entry uses one or more overflow pages
4755 ** this function may allocate space for and lazily populate
4756 ** the overflow page-list cache array (BtCursor.aOverflow).
4757 ** Subsequent calls use this cache to make seeking to the supplied offset
4758 ** more efficient.
4760 ** Once an overflow page-list cache has been allocated, it must be
4761 ** invalidated if some other cursor writes to the same table, or if
4762 ** the cursor is moved to a different row. Additionally, in auto-vacuum
4763 ** mode, the following events may invalidate an overflow page-list cache.
4765 ** * An incremental vacuum,
4766 ** * A commit in auto_vacuum="full" mode,
4767 ** * Creating a table (may require moving an overflow page).
4769 static int accessPayload(
4770 BtCursor *pCur, /* Cursor pointing to entry to read from */
4771 u32 offset, /* Begin reading this far into payload */
4772 u32 amt, /* Read this many bytes */
4773 unsigned char *pBuf, /* Write the bytes into this buffer */
4774 int eOp /* zero to read. non-zero to write. */
4776 unsigned char *aPayload;
4777 int rc = SQLITE_OK;
4778 int iIdx = 0;
4779 MemPage *pPage = pCur->pPage; /* Btree page of current entry */
4780 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
4781 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4782 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */
4783 #endif
4785 assert( pPage );
4786 assert( eOp==0 || eOp==1 );
4787 assert( pCur->eState==CURSOR_VALID );
4788 assert( pCur->ix<pPage->nCell );
4789 assert( cursorHoldsMutex(pCur) );
4791 getCellInfo(pCur);
4792 aPayload = pCur->info.pPayload;
4793 assert( offset+amt <= pCur->info.nPayload );
4795 assert( aPayload > pPage->aData );
4796 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
4797 /* Trying to read or write past the end of the data is an error. The
4798 ** conditional above is really:
4799 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4800 ** but is recast into its current form to avoid integer overflow problems
4802 return SQLITE_CORRUPT_PAGE(pPage);
4805 /* Check if data must be read/written to/from the btree page itself. */
4806 if( offset<pCur->info.nLocal ){
4807 int a = amt;
4808 if( a+offset>pCur->info.nLocal ){
4809 a = pCur->info.nLocal - offset;
4811 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
4812 offset = 0;
4813 pBuf += a;
4814 amt -= a;
4815 }else{
4816 offset -= pCur->info.nLocal;
4820 if( rc==SQLITE_OK && amt>0 ){
4821 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
4822 Pgno nextPage;
4824 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
4826 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4828 ** The aOverflow[] array is sized at one entry for each overflow page
4829 ** in the overflow chain. The page number of the first overflow page is
4830 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4831 ** means "not yet known" (the cache is lazily populated).
4833 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
4834 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
4835 if( pCur->aOverflow==0
4836 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
4838 Pgno *aNew = (Pgno*)sqlite3Realloc(
4839 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
4841 if( aNew==0 ){
4842 return SQLITE_NOMEM_BKPT;
4843 }else{
4844 pCur->aOverflow = aNew;
4847 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4848 pCur->curFlags |= BTCF_ValidOvfl;
4849 }else{
4850 /* If the overflow page-list cache has been allocated and the
4851 ** entry for the first required overflow page is valid, skip
4852 ** directly to it.
4854 if( pCur->aOverflow[offset/ovflSize] ){
4855 iIdx = (offset/ovflSize);
4856 nextPage = pCur->aOverflow[iIdx];
4857 offset = (offset%ovflSize);
4861 assert( rc==SQLITE_OK && amt>0 );
4862 while( nextPage ){
4863 /* If required, populate the overflow page-list cache. */
4864 assert( pCur->aOverflow[iIdx]==0
4865 || pCur->aOverflow[iIdx]==nextPage
4866 || CORRUPT_DB );
4867 pCur->aOverflow[iIdx] = nextPage;
4869 if( offset>=ovflSize ){
4870 /* The only reason to read this page is to obtain the page
4871 ** number for the next page in the overflow chain. The page
4872 ** data is not required. So first try to lookup the overflow
4873 ** page-list cache, if any, then fall back to the getOverflowPage()
4874 ** function.
4876 assert( pCur->curFlags & BTCF_ValidOvfl );
4877 assert( pCur->pBtree->db==pBt->db );
4878 if( pCur->aOverflow[iIdx+1] ){
4879 nextPage = pCur->aOverflow[iIdx+1];
4880 }else{
4881 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
4883 offset -= ovflSize;
4884 }else{
4885 /* Need to read this page properly. It contains some of the
4886 ** range of data that is being read (eOp==0) or written (eOp!=0).
4888 int a = amt;
4889 if( a + offset > ovflSize ){
4890 a = ovflSize - offset;
4893 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4894 /* If all the following are true:
4896 ** 1) this is a read operation, and
4897 ** 2) data is required from the start of this overflow page, and
4898 ** 3) there are no dirty pages in the page-cache
4899 ** 4) the database is file-backed, and
4900 ** 5) the page is not in the WAL file
4901 ** 6) at least 4 bytes have already been read into the output buffer
4903 ** then data can be read directly from the database file into the
4904 ** output buffer, bypassing the page-cache altogether. This speeds
4905 ** up loading large records that span many overflow pages.
4907 if( eOp==0 /* (1) */
4908 && offset==0 /* (2) */
4909 && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */
4910 && &pBuf[-4]>=pBufStart /* (6) */
4912 sqlite3_file *fd = sqlite3PagerFile(pBt->pPager);
4913 u8 aSave[4];
4914 u8 *aWrite = &pBuf[-4];
4915 assert( aWrite>=pBufStart ); /* due to (6) */
4916 memcpy(aSave, aWrite, 4);
4917 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
4918 if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT;
4919 nextPage = get4byte(aWrite);
4920 memcpy(aWrite, aSave, 4);
4921 }else
4922 #endif
4925 DbPage *pDbPage;
4926 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
4927 (eOp==0 ? PAGER_GET_READONLY : 0)
4929 if( rc==SQLITE_OK ){
4930 aPayload = sqlite3PagerGetData(pDbPage);
4931 nextPage = get4byte(aPayload);
4932 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
4933 sqlite3PagerUnref(pDbPage);
4934 offset = 0;
4937 amt -= a;
4938 if( amt==0 ) return rc;
4939 pBuf += a;
4941 if( rc ) break;
4942 iIdx++;
4946 if( rc==SQLITE_OK && amt>0 ){
4947 /* Overflow chain ends prematurely */
4948 return SQLITE_CORRUPT_PAGE(pPage);
4950 return rc;
4954 ** Read part of the payload for the row at which that cursor pCur is currently
4955 ** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
4956 ** begins at "offset".
4958 ** pCur can be pointing to either a table or an index b-tree.
4959 ** If pointing to a table btree, then the content section is read. If
4960 ** pCur is pointing to an index b-tree then the key section is read.
4962 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
4963 ** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
4964 ** cursor might be invalid or might need to be restored before being read.
4966 ** Return SQLITE_OK on success or an error code if anything goes
4967 ** wrong. An error is returned if "offset+amt" is larger than
4968 ** the available payload.
4970 int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4971 assert( cursorHoldsMutex(pCur) );
4972 assert( pCur->eState==CURSOR_VALID );
4973 assert( pCur->iPage>=0 && pCur->pPage );
4974 assert( pCur->ix<pCur->pPage->nCell );
4975 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
4979 ** This variant of sqlite3BtreePayload() works even if the cursor has not
4980 ** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
4981 ** interface.
4983 #ifndef SQLITE_OMIT_INCRBLOB
4984 static SQLITE_NOINLINE int accessPayloadChecked(
4985 BtCursor *pCur,
4986 u32 offset,
4987 u32 amt,
4988 void *pBuf
4990 int rc;
4991 if ( pCur->eState==CURSOR_INVALID ){
4992 return SQLITE_ABORT;
4994 assert( cursorOwnsBtShared(pCur) );
4995 rc = btreeRestoreCursorPosition(pCur);
4996 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
4998 int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4999 if( pCur->eState==CURSOR_VALID ){
5000 assert( cursorOwnsBtShared(pCur) );
5001 return accessPayload(pCur, offset, amt, pBuf, 0);
5002 }else{
5003 return accessPayloadChecked(pCur, offset, amt, pBuf);
5006 #endif /* SQLITE_OMIT_INCRBLOB */
5009 ** Return a pointer to payload information from the entry that the
5010 ** pCur cursor is pointing to. The pointer is to the beginning of
5011 ** the key if index btrees (pPage->intKey==0) and is the data for
5012 ** table btrees (pPage->intKey==1). The number of bytes of available
5013 ** key/data is written into *pAmt. If *pAmt==0, then the value
5014 ** returned will not be a valid pointer.
5016 ** This routine is an optimization. It is common for the entire key
5017 ** and data to fit on the local page and for there to be no overflow
5018 ** pages. When that is so, this routine can be used to access the
5019 ** key and data without making a copy. If the key and/or data spills
5020 ** onto overflow pages, then accessPayload() must be used to reassemble
5021 ** the key/data and copy it into a preallocated buffer.
5023 ** The pointer returned by this routine looks directly into the cached
5024 ** page of the database. The data might change or move the next time
5025 ** any btree routine is called.
5027 static const void *fetchPayload(
5028 BtCursor *pCur, /* Cursor pointing to entry to read from */
5029 u32 *pAmt /* Write the number of available bytes here */
5031 int amt;
5032 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
5033 assert( pCur->eState==CURSOR_VALID );
5034 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5035 assert( cursorOwnsBtShared(pCur) );
5036 assert( pCur->ix<pCur->pPage->nCell );
5037 assert( pCur->info.nSize>0 );
5038 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
5039 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
5040 amt = pCur->info.nLocal;
5041 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
5042 /* There is too little space on the page for the expected amount
5043 ** of local content. Database must be corrupt. */
5044 assert( CORRUPT_DB );
5045 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
5047 *pAmt = (u32)amt;
5048 return (void*)pCur->info.pPayload;
5053 ** For the entry that cursor pCur is point to, return as
5054 ** many bytes of the key or data as are available on the local
5055 ** b-tree page. Write the number of available bytes into *pAmt.
5057 ** The pointer returned is ephemeral. The key/data may move
5058 ** or be destroyed on the next call to any Btree routine,
5059 ** including calls from other threads against the same cache.
5060 ** Hence, a mutex on the BtShared should be held prior to calling
5061 ** this routine.
5063 ** These routines is used to get quick access to key and data
5064 ** in the common case where no overflow pages are used.
5066 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
5067 return fetchPayload(pCur, pAmt);
5072 ** Move the cursor down to a new child page. The newPgno argument is the
5073 ** page number of the child page to move to.
5075 ** This function returns SQLITE_CORRUPT if the page-header flags field of
5076 ** the new child page does not match the flags field of the parent (i.e.
5077 ** if an intkey page appears to be the parent of a non-intkey page, or
5078 ** vice-versa).
5080 static int moveToChild(BtCursor *pCur, u32 newPgno){
5081 BtShared *pBt = pCur->pBt;
5083 assert( cursorOwnsBtShared(pCur) );
5084 assert( pCur->eState==CURSOR_VALID );
5085 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
5086 assert( pCur->iPage>=0 );
5087 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
5088 return SQLITE_CORRUPT_BKPT;
5090 pCur->info.nSize = 0;
5091 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5092 pCur->aiIdx[pCur->iPage] = pCur->ix;
5093 pCur->apPage[pCur->iPage] = pCur->pPage;
5094 pCur->ix = 0;
5095 pCur->iPage++;
5096 return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags);
5099 #ifdef SQLITE_DEBUG
5101 ** Page pParent is an internal (non-leaf) tree page. This function
5102 ** asserts that page number iChild is the left-child if the iIdx'th
5103 ** cell in page pParent. Or, if iIdx is equal to the total number of
5104 ** cells in pParent, that page number iChild is the right-child of
5105 ** the page.
5107 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
5108 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
5109 ** in a corrupt database */
5110 assert( iIdx<=pParent->nCell );
5111 if( iIdx==pParent->nCell ){
5112 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
5113 }else{
5114 assert( get4byte(findCell(pParent, iIdx))==iChild );
5117 #else
5118 # define assertParentIndex(x,y,z)
5119 #endif
5122 ** Move the cursor up to the parent page.
5124 ** pCur->idx is set to the cell index that contains the pointer
5125 ** to the page we are coming from. If we are coming from the
5126 ** right-most child page then pCur->idx is set to one more than
5127 ** the largest cell index.
5129 static void moveToParent(BtCursor *pCur){
5130 MemPage *pLeaf;
5131 assert( cursorOwnsBtShared(pCur) );
5132 assert( pCur->eState==CURSOR_VALID );
5133 assert( pCur->iPage>0 );
5134 assert( pCur->pPage );
5135 assertParentIndex(
5136 pCur->apPage[pCur->iPage-1],
5137 pCur->aiIdx[pCur->iPage-1],
5138 pCur->pPage->pgno
5140 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
5141 pCur->info.nSize = 0;
5142 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5143 pCur->ix = pCur->aiIdx[pCur->iPage-1];
5144 pLeaf = pCur->pPage;
5145 pCur->pPage = pCur->apPage[--pCur->iPage];
5146 releasePageNotNull(pLeaf);
5150 ** Move the cursor to point to the root page of its b-tree structure.
5152 ** If the table has a virtual root page, then the cursor is moved to point
5153 ** to the virtual root page instead of the actual root page. A table has a
5154 ** virtual root page when the actual root page contains no cells and a
5155 ** single child page. This can only happen with the table rooted at page 1.
5157 ** If the b-tree structure is empty, the cursor state is set to
5158 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5159 ** the cursor is set to point to the first cell located on the root
5160 ** (or virtual root) page and the cursor state is set to CURSOR_VALID.
5162 ** If this function returns successfully, it may be assumed that the
5163 ** page-header flags indicate that the [virtual] root-page is the expected
5164 ** kind of b-tree page (i.e. if when opening the cursor the caller did not
5165 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5166 ** indicating a table b-tree, or if the caller did specify a KeyInfo
5167 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5168 ** b-tree).
5170 static int moveToRoot(BtCursor *pCur){
5171 MemPage *pRoot;
5172 int rc = SQLITE_OK;
5174 assert( cursorOwnsBtShared(pCur) );
5175 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
5176 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
5177 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
5178 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
5179 assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
5181 if( pCur->iPage>=0 ){
5182 if( pCur->iPage ){
5183 releasePageNotNull(pCur->pPage);
5184 while( --pCur->iPage ){
5185 releasePageNotNull(pCur->apPage[pCur->iPage]);
5187 pCur->pPage = pCur->apPage[0];
5188 goto skip_init;
5190 }else if( pCur->pgnoRoot==0 ){
5191 pCur->eState = CURSOR_INVALID;
5192 return SQLITE_EMPTY;
5193 }else{
5194 assert( pCur->iPage==(-1) );
5195 if( pCur->eState>=CURSOR_REQUIRESEEK ){
5196 if( pCur->eState==CURSOR_FAULT ){
5197 assert( pCur->skipNext!=SQLITE_OK );
5198 return pCur->skipNext;
5200 sqlite3BtreeClearCursor(pCur);
5202 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage,
5203 0, pCur->curPagerFlags);
5204 if( rc!=SQLITE_OK ){
5205 pCur->eState = CURSOR_INVALID;
5206 return rc;
5208 pCur->iPage = 0;
5209 pCur->curIntKey = pCur->pPage->intKey;
5211 pRoot = pCur->pPage;
5212 assert( pRoot->pgno==pCur->pgnoRoot );
5214 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5215 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5216 ** NULL, the caller expects a table b-tree. If this is not the case,
5217 ** return an SQLITE_CORRUPT error.
5219 ** Earlier versions of SQLite assumed that this test could not fail
5220 ** if the root page was already loaded when this function was called (i.e.
5221 ** if pCur->iPage>=0). But this is not so if the database is corrupted
5222 ** in such a way that page pRoot is linked into a second b-tree table
5223 ** (or the freelist). */
5224 assert( pRoot->intKey==1 || pRoot->intKey==0 );
5225 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
5226 return SQLITE_CORRUPT_PAGE(pCur->pPage);
5229 skip_init:
5230 pCur->ix = 0;
5231 pCur->info.nSize = 0;
5232 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
5234 pRoot = pCur->pPage;
5235 if( pRoot->nCell>0 ){
5236 pCur->eState = CURSOR_VALID;
5237 }else if( !pRoot->leaf ){
5238 Pgno subpage;
5239 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
5240 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
5241 pCur->eState = CURSOR_VALID;
5242 rc = moveToChild(pCur, subpage);
5243 }else{
5244 pCur->eState = CURSOR_INVALID;
5245 rc = SQLITE_EMPTY;
5247 return rc;
5251 ** Move the cursor down to the left-most leaf entry beneath the
5252 ** entry to which it is currently pointing.
5254 ** The left-most leaf is the one with the smallest key - the first
5255 ** in ascending order.
5257 static int moveToLeftmost(BtCursor *pCur){
5258 Pgno pgno;
5259 int rc = SQLITE_OK;
5260 MemPage *pPage;
5262 assert( cursorOwnsBtShared(pCur) );
5263 assert( pCur->eState==CURSOR_VALID );
5264 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
5265 assert( pCur->ix<pPage->nCell );
5266 pgno = get4byte(findCell(pPage, pCur->ix));
5267 rc = moveToChild(pCur, pgno);
5269 return rc;
5273 ** Move the cursor down to the right-most leaf entry beneath the
5274 ** page to which it is currently pointing. Notice the difference
5275 ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
5276 ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5277 ** finds the right-most entry beneath the *page*.
5279 ** The right-most entry is the one with the largest key - the last
5280 ** key in ascending order.
5282 static int moveToRightmost(BtCursor *pCur){
5283 Pgno pgno;
5284 int rc = SQLITE_OK;
5285 MemPage *pPage = 0;
5287 assert( cursorOwnsBtShared(pCur) );
5288 assert( pCur->eState==CURSOR_VALID );
5289 while( !(pPage = pCur->pPage)->leaf ){
5290 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5291 pCur->ix = pPage->nCell;
5292 rc = moveToChild(pCur, pgno);
5293 if( rc ) return rc;
5295 pCur->ix = pPage->nCell-1;
5296 assert( pCur->info.nSize==0 );
5297 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5298 return SQLITE_OK;
5301 /* Move the cursor to the first entry in the table. Return SQLITE_OK
5302 ** on success. Set *pRes to 0 if the cursor actually points to something
5303 ** or set *pRes to 1 if the table is empty.
5305 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
5306 int rc;
5308 assert( cursorOwnsBtShared(pCur) );
5309 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5310 rc = moveToRoot(pCur);
5311 if( rc==SQLITE_OK ){
5312 assert( pCur->pPage->nCell>0 );
5313 *pRes = 0;
5314 rc = moveToLeftmost(pCur);
5315 }else if( rc==SQLITE_EMPTY ){
5316 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5317 *pRes = 1;
5318 rc = SQLITE_OK;
5320 return rc;
5323 /* Move the cursor to the last entry in the table. Return SQLITE_OK
5324 ** on success. Set *pRes to 0 if the cursor actually points to something
5325 ** or set *pRes to 1 if the table is empty.
5327 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
5328 int rc;
5330 assert( cursorOwnsBtShared(pCur) );
5331 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5333 /* If the cursor already points to the last entry, this is a no-op. */
5334 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
5335 #ifdef SQLITE_DEBUG
5336 /* This block serves to assert() that the cursor really does point
5337 ** to the last entry in the b-tree. */
5338 int ii;
5339 for(ii=0; ii<pCur->iPage; ii++){
5340 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5342 assert( pCur->ix==pCur->pPage->nCell-1 );
5343 assert( pCur->pPage->leaf );
5344 #endif
5345 *pRes = 0;
5346 return SQLITE_OK;
5349 rc = moveToRoot(pCur);
5350 if( rc==SQLITE_OK ){
5351 assert( pCur->eState==CURSOR_VALID );
5352 *pRes = 0;
5353 rc = moveToRightmost(pCur);
5354 if( rc==SQLITE_OK ){
5355 pCur->curFlags |= BTCF_AtLast;
5356 }else{
5357 pCur->curFlags &= ~BTCF_AtLast;
5359 }else if( rc==SQLITE_EMPTY ){
5360 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5361 *pRes = 1;
5362 rc = SQLITE_OK;
5364 return rc;
5367 /* Move the cursor so that it points to an entry near the key
5368 ** specified by pIdxKey or intKey. Return a success code.
5370 ** For INTKEY tables, the intKey parameter is used. pIdxKey
5371 ** must be NULL. For index tables, pIdxKey is used and intKey
5372 ** is ignored.
5374 ** If an exact match is not found, then the cursor is always
5375 ** left pointing at a leaf page which would hold the entry if it
5376 ** were present. The cursor might point to an entry that comes
5377 ** before or after the key.
5379 ** An integer is written into *pRes which is the result of
5380 ** comparing the key with the entry to which the cursor is
5381 ** pointing. The meaning of the integer written into
5382 ** *pRes is as follows:
5384 ** *pRes<0 The cursor is left pointing at an entry that
5385 ** is smaller than intKey/pIdxKey or if the table is empty
5386 ** and the cursor is therefore left point to nothing.
5388 ** *pRes==0 The cursor is left pointing at an entry that
5389 ** exactly matches intKey/pIdxKey.
5391 ** *pRes>0 The cursor is left pointing at an entry that
5392 ** is larger than intKey/pIdxKey.
5394 ** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5395 ** exists an entry in the table that exactly matches pIdxKey.
5397 int sqlite3BtreeMovetoUnpacked(
5398 BtCursor *pCur, /* The cursor to be moved */
5399 UnpackedRecord *pIdxKey, /* Unpacked index key */
5400 i64 intKey, /* The table key */
5401 int biasRight, /* If true, bias the search to the high end */
5402 int *pRes /* Write search results here */
5404 int rc;
5405 RecordCompare xRecordCompare;
5407 assert( cursorOwnsBtShared(pCur) );
5408 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5409 assert( pRes );
5410 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
5411 assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) );
5413 /* If the cursor is already positioned at the point we are trying
5414 ** to move to, then just return without doing any work */
5415 if( pIdxKey==0
5416 && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
5418 if( pCur->info.nKey==intKey ){
5419 *pRes = 0;
5420 return SQLITE_OK;
5422 if( pCur->info.nKey<intKey ){
5423 if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5424 *pRes = -1;
5425 return SQLITE_OK;
5427 /* If the requested key is one more than the previous key, then
5428 ** try to get there using sqlite3BtreeNext() rather than a full
5429 ** binary search. This is an optimization only. The correct answer
5430 ** is still obtained without this case, only a little more slowely */
5431 if( pCur->info.nKey+1==intKey ){
5432 *pRes = 0;
5433 rc = sqlite3BtreeNext(pCur, 0);
5434 if( rc==SQLITE_OK ){
5435 getCellInfo(pCur);
5436 if( pCur->info.nKey==intKey ){
5437 return SQLITE_OK;
5439 }else if( rc==SQLITE_DONE ){
5440 rc = SQLITE_OK;
5441 }else{
5442 return rc;
5448 if( pIdxKey ){
5449 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
5450 pIdxKey->errCode = 0;
5451 assert( pIdxKey->default_rc==1
5452 || pIdxKey->default_rc==0
5453 || pIdxKey->default_rc==-1
5455 }else{
5456 xRecordCompare = 0; /* All keys are integers */
5459 rc = moveToRoot(pCur);
5460 if( rc ){
5461 if( rc==SQLITE_EMPTY ){
5462 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5463 *pRes = -1;
5464 return SQLITE_OK;
5466 return rc;
5468 assert( pCur->pPage );
5469 assert( pCur->pPage->isInit );
5470 assert( pCur->eState==CURSOR_VALID );
5471 assert( pCur->pPage->nCell > 0 );
5472 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
5473 assert( pCur->curIntKey || pIdxKey );
5474 for(;;){
5475 int lwr, upr, idx, c;
5476 Pgno chldPg;
5477 MemPage *pPage = pCur->pPage;
5478 u8 *pCell; /* Pointer to current cell in pPage */
5480 /* pPage->nCell must be greater than zero. If this is the root-page
5481 ** the cursor would have been INVALID above and this for(;;) loop
5482 ** not run. If this is not the root-page, then the moveToChild() routine
5483 ** would have already detected db corruption. Similarly, pPage must
5484 ** be the right kind (index or table) of b-tree page. Otherwise
5485 ** a moveToChild() or moveToRoot() call would have detected corruption. */
5486 assert( pPage->nCell>0 );
5487 assert( pPage->intKey==(pIdxKey==0) );
5488 lwr = 0;
5489 upr = pPage->nCell-1;
5490 assert( biasRight==0 || biasRight==1 );
5491 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
5492 pCur->ix = (u16)idx;
5493 if( xRecordCompare==0 ){
5494 for(;;){
5495 i64 nCellKey;
5496 pCell = findCellPastPtr(pPage, idx);
5497 if( pPage->intKeyLeaf ){
5498 while( 0x80 <= *(pCell++) ){
5499 if( pCell>=pPage->aDataEnd ){
5500 return SQLITE_CORRUPT_PAGE(pPage);
5504 getVarint(pCell, (u64*)&nCellKey);
5505 if( nCellKey<intKey ){
5506 lwr = idx+1;
5507 if( lwr>upr ){ c = -1; break; }
5508 }else if( nCellKey>intKey ){
5509 upr = idx-1;
5510 if( lwr>upr ){ c = +1; break; }
5511 }else{
5512 assert( nCellKey==intKey );
5513 pCur->ix = (u16)idx;
5514 if( !pPage->leaf ){
5515 lwr = idx;
5516 goto moveto_next_layer;
5517 }else{
5518 pCur->curFlags |= BTCF_ValidNKey;
5519 pCur->info.nKey = nCellKey;
5520 pCur->info.nSize = 0;
5521 *pRes = 0;
5522 return SQLITE_OK;
5525 assert( lwr+upr>=0 );
5526 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
5528 }else{
5529 for(;;){
5530 int nCell; /* Size of the pCell cell in bytes */
5531 pCell = findCellPastPtr(pPage, idx);
5533 /* The maximum supported page-size is 65536 bytes. This means that
5534 ** the maximum number of record bytes stored on an index B-Tree
5535 ** page is less than 16384 bytes and may be stored as a 2-byte
5536 ** varint. This information is used to attempt to avoid parsing
5537 ** the entire cell by checking for the cases where the record is
5538 ** stored entirely within the b-tree page by inspecting the first
5539 ** 2 bytes of the cell.
5541 nCell = pCell[0];
5542 if( nCell<=pPage->max1bytePayload ){
5543 /* This branch runs if the record-size field of the cell is a
5544 ** single byte varint and the record fits entirely on the main
5545 ** b-tree page. */
5546 testcase( pCell+nCell+1==pPage->aDataEnd );
5547 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
5548 }else if( !(pCell[1] & 0x80)
5549 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5551 /* The record-size field is a 2 byte varint and the record
5552 ** fits entirely on the main b-tree page. */
5553 testcase( pCell+nCell+2==pPage->aDataEnd );
5554 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
5555 }else{
5556 /* The record flows over onto one or more overflow pages. In
5557 ** this case the whole cell needs to be parsed, a buffer allocated
5558 ** and accessPayload() used to retrieve the record into the
5559 ** buffer before VdbeRecordCompare() can be called.
5561 ** If the record is corrupt, the xRecordCompare routine may read
5562 ** up to two varints past the end of the buffer. An extra 18
5563 ** bytes of padding is allocated at the end of the buffer in
5564 ** case this happens. */
5565 void *pCellKey;
5566 u8 * const pCellBody = pCell - pPage->childPtrSize;
5567 const int nOverrun = 18; /* Size of the overrun padding */
5568 pPage->xParseCell(pPage, pCellBody, &pCur->info);
5569 nCell = (int)pCur->info.nKey;
5570 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5571 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5572 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5573 testcase( nCell==2 ); /* Minimum legal index key size */
5574 if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){
5575 rc = SQLITE_CORRUPT_PAGE(pPage);
5576 goto moveto_finish;
5578 pCellKey = sqlite3Malloc( nCell+nOverrun );
5579 if( pCellKey==0 ){
5580 rc = SQLITE_NOMEM_BKPT;
5581 goto moveto_finish;
5583 pCur->ix = (u16)idx;
5584 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
5585 memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */
5586 pCur->curFlags &= ~BTCF_ValidOvfl;
5587 if( rc ){
5588 sqlite3_free(pCellKey);
5589 goto moveto_finish;
5591 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
5592 sqlite3_free(pCellKey);
5594 assert(
5595 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
5596 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
5598 if( c<0 ){
5599 lwr = idx+1;
5600 }else if( c>0 ){
5601 upr = idx-1;
5602 }else{
5603 assert( c==0 );
5604 *pRes = 0;
5605 rc = SQLITE_OK;
5606 pCur->ix = (u16)idx;
5607 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
5608 goto moveto_finish;
5610 if( lwr>upr ) break;
5611 assert( lwr+upr>=0 );
5612 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
5615 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
5616 assert( pPage->isInit );
5617 if( pPage->leaf ){
5618 assert( pCur->ix<pCur->pPage->nCell );
5619 pCur->ix = (u16)idx;
5620 *pRes = c;
5621 rc = SQLITE_OK;
5622 goto moveto_finish;
5624 moveto_next_layer:
5625 if( lwr>=pPage->nCell ){
5626 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5627 }else{
5628 chldPg = get4byte(findCell(pPage, lwr));
5630 pCur->ix = (u16)lwr;
5631 rc = moveToChild(pCur, chldPg);
5632 if( rc ) break;
5634 moveto_finish:
5635 pCur->info.nSize = 0;
5636 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5637 return rc;
5642 ** Return TRUE if the cursor is not pointing at an entry of the table.
5644 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
5645 ** past the last entry in the table or sqlite3BtreePrev() moves past
5646 ** the first entry. TRUE is also returned if the table is empty.
5648 int sqlite3BtreeEof(BtCursor *pCur){
5649 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5650 ** have been deleted? This API will need to change to return an error code
5651 ** as well as the boolean result value.
5653 return (CURSOR_VALID!=pCur->eState);
5657 ** Return an estimate for the number of rows in the table that pCur is
5658 ** pointing to. Return a negative number if no estimate is currently
5659 ** available.
5661 i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
5662 i64 n;
5663 u8 i;
5665 assert( cursorOwnsBtShared(pCur) );
5666 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5668 /* Currently this interface is only called by the OP_IfSmaller
5669 ** opcode, and it that case the cursor will always be valid and
5670 ** will always point to a leaf node. */
5671 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
5672 if( NEVER(pCur->pPage->leaf==0) ) return -1;
5674 n = pCur->pPage->nCell;
5675 for(i=0; i<pCur->iPage; i++){
5676 n *= pCur->apPage[i]->nCell;
5678 return n;
5682 ** Advance the cursor to the next entry in the database.
5683 ** Return value:
5685 ** SQLITE_OK success
5686 ** SQLITE_DONE cursor is already pointing at the last element
5687 ** otherwise some kind of error occurred
5689 ** The main entry point is sqlite3BtreeNext(). That routine is optimized
5690 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5691 ** to the next cell on the current page. The (slower) btreeNext() helper
5692 ** routine is called when it is necessary to move to a different page or
5693 ** to restore the cursor.
5695 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
5696 ** cursor corresponds to an SQL index and this routine could have been
5697 ** skipped if the SQL index had been a unique index. The F argument
5698 ** is a hint to the implement. SQLite btree implementation does not use
5699 ** this hint, but COMDB2 does.
5701 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
5702 int rc;
5703 int idx;
5704 MemPage *pPage;
5706 assert( cursorOwnsBtShared(pCur) );
5707 if( pCur->eState!=CURSOR_VALID ){
5708 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5709 rc = restoreCursorPosition(pCur);
5710 if( rc!=SQLITE_OK ){
5711 return rc;
5713 if( CURSOR_INVALID==pCur->eState ){
5714 return SQLITE_DONE;
5716 if( pCur->eState==CURSOR_SKIPNEXT ){
5717 pCur->eState = CURSOR_VALID;
5718 if( pCur->skipNext>0 ) return SQLITE_OK;
5722 pPage = pCur->pPage;
5723 idx = ++pCur->ix;
5724 if( !pPage->isInit ){
5725 /* The only known way for this to happen is for there to be a
5726 ** recursive SQL function that does a DELETE operation as part of a
5727 ** SELECT which deletes content out from under an active cursor
5728 ** in a corrupt database file where the table being DELETE-ed from
5729 ** has pages in common with the table being queried. See TH3
5730 ** module cov1/btree78.test testcase 220 (2018-06-08) for an
5731 ** example. */
5732 return SQLITE_CORRUPT_BKPT;
5735 /* If the database file is corrupt, it is possible for the value of idx
5736 ** to be invalid here. This can only occur if a second cursor modifies
5737 ** the page while cursor pCur is holding a reference to it. Which can
5738 ** only happen if the database is corrupt in such a way as to link the
5739 ** page into more than one b-tree structure.
5741 ** Update 2019-12-23: appears to long longer be possible after the
5742 ** addition of anotherValidCursor() condition on balance_deeper(). */
5743 harmless( idx>pPage->nCell );
5745 if( idx>=pPage->nCell ){
5746 if( !pPage->leaf ){
5747 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
5748 if( rc ) return rc;
5749 return moveToLeftmost(pCur);
5752 if( pCur->iPage==0 ){
5753 pCur->eState = CURSOR_INVALID;
5754 return SQLITE_DONE;
5756 moveToParent(pCur);
5757 pPage = pCur->pPage;
5758 }while( pCur->ix>=pPage->nCell );
5759 if( pPage->intKey ){
5760 return sqlite3BtreeNext(pCur, 0);
5761 }else{
5762 return SQLITE_OK;
5765 if( pPage->leaf ){
5766 return SQLITE_OK;
5767 }else{
5768 return moveToLeftmost(pCur);
5771 int sqlite3BtreeNext(BtCursor *pCur, int flags){
5772 MemPage *pPage;
5773 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
5774 assert( cursorOwnsBtShared(pCur) );
5775 assert( flags==0 || flags==1 );
5776 pCur->info.nSize = 0;
5777 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5778 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
5779 pPage = pCur->pPage;
5780 if( (++pCur->ix)>=pPage->nCell ){
5781 pCur->ix--;
5782 return btreeNext(pCur);
5784 if( pPage->leaf ){
5785 return SQLITE_OK;
5786 }else{
5787 return moveToLeftmost(pCur);
5792 ** Step the cursor to the back to the previous entry in the database.
5793 ** Return values:
5795 ** SQLITE_OK success
5796 ** SQLITE_DONE the cursor is already on the first element of the table
5797 ** otherwise some kind of error occurred
5799 ** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5800 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx
5801 ** to the previous cell on the current page. The (slower) btreePrevious()
5802 ** helper routine is called when it is necessary to move to a different page
5803 ** or to restore the cursor.
5805 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
5806 ** the cursor corresponds to an SQL index and this routine could have been
5807 ** skipped if the SQL index had been a unique index. The F argument is a
5808 ** hint to the implement. The native SQLite btree implementation does not
5809 ** use this hint, but COMDB2 does.
5811 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
5812 int rc;
5813 MemPage *pPage;
5815 assert( cursorOwnsBtShared(pCur) );
5816 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5817 assert( pCur->info.nSize==0 );
5818 if( pCur->eState!=CURSOR_VALID ){
5819 rc = restoreCursorPosition(pCur);
5820 if( rc!=SQLITE_OK ){
5821 return rc;
5823 if( CURSOR_INVALID==pCur->eState ){
5824 return SQLITE_DONE;
5826 if( CURSOR_SKIPNEXT==pCur->eState ){
5827 pCur->eState = CURSOR_VALID;
5828 if( pCur->skipNext<0 ) return SQLITE_OK;
5832 pPage = pCur->pPage;
5833 assert( pPage->isInit );
5834 if( !pPage->leaf ){
5835 int idx = pCur->ix;
5836 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
5837 if( rc ) return rc;
5838 rc = moveToRightmost(pCur);
5839 }else{
5840 while( pCur->ix==0 ){
5841 if( pCur->iPage==0 ){
5842 pCur->eState = CURSOR_INVALID;
5843 return SQLITE_DONE;
5845 moveToParent(pCur);
5847 assert( pCur->info.nSize==0 );
5848 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
5850 pCur->ix--;
5851 pPage = pCur->pPage;
5852 if( pPage->intKey && !pPage->leaf ){
5853 rc = sqlite3BtreePrevious(pCur, 0);
5854 }else{
5855 rc = SQLITE_OK;
5858 return rc;
5860 int sqlite3BtreePrevious(BtCursor *pCur, int flags){
5861 assert( cursorOwnsBtShared(pCur) );
5862 assert( flags==0 || flags==1 );
5863 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
5864 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5865 pCur->info.nSize = 0;
5866 if( pCur->eState!=CURSOR_VALID
5867 || pCur->ix==0
5868 || pCur->pPage->leaf==0
5870 return btreePrevious(pCur);
5872 pCur->ix--;
5873 return SQLITE_OK;
5877 ** Allocate a new page from the database file.
5879 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
5880 ** has already been called on the new page.) The new page has also
5881 ** been referenced and the calling routine is responsible for calling
5882 ** sqlite3PagerUnref() on the new page when it is done.
5884 ** SQLITE_OK is returned on success. Any other return value indicates
5885 ** an error. *ppPage is set to NULL in the event of an error.
5887 ** If the "nearby" parameter is not 0, then an effort is made to
5888 ** locate a page close to the page number "nearby". This can be used in an
5889 ** attempt to keep related pages close to each other in the database file,
5890 ** which in turn can make database access faster.
5892 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5893 ** anywhere on the free-list, then it is guaranteed to be returned. If
5894 ** eMode is BTALLOC_LT then the page returned will be less than or equal
5895 ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5896 ** are no restrictions on which page is returned.
5898 static int allocateBtreePage(
5899 BtShared *pBt, /* The btree */
5900 MemPage **ppPage, /* Store pointer to the allocated page here */
5901 Pgno *pPgno, /* Store the page number here */
5902 Pgno nearby, /* Search for a page near this one */
5903 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
5905 MemPage *pPage1;
5906 int rc;
5907 u32 n; /* Number of pages on the freelist */
5908 u32 k; /* Number of leaves on the trunk of the freelist */
5909 MemPage *pTrunk = 0;
5910 MemPage *pPrevTrunk = 0;
5911 Pgno mxPage; /* Total size of the database file */
5913 assert( sqlite3_mutex_held(pBt->mutex) );
5914 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
5915 pPage1 = pBt->pPage1;
5916 mxPage = btreePagecount(pBt);
5917 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5918 ** stores stores the total number of pages on the freelist. */
5919 n = get4byte(&pPage1->aData[36]);
5920 testcase( n==mxPage-1 );
5921 if( n>=mxPage ){
5922 return SQLITE_CORRUPT_BKPT;
5924 if( n>0 ){
5925 /* There are pages on the freelist. Reuse one of those pages. */
5926 Pgno iTrunk;
5927 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
5928 u32 nSearch = 0; /* Count of the number of search attempts */
5930 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
5931 ** shows that the page 'nearby' is somewhere on the free-list, then
5932 ** the entire-list will be searched for that page.
5934 #ifndef SQLITE_OMIT_AUTOVACUUM
5935 if( eMode==BTALLOC_EXACT ){
5936 if( nearby<=mxPage ){
5937 u8 eType;
5938 assert( nearby>0 );
5939 assert( pBt->autoVacuum );
5940 rc = ptrmapGet(pBt, nearby, &eType, 0);
5941 if( rc ) return rc;
5942 if( eType==PTRMAP_FREEPAGE ){
5943 searchList = 1;
5946 }else if( eMode==BTALLOC_LE ){
5947 searchList = 1;
5949 #endif
5951 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5952 ** first free-list trunk page. iPrevTrunk is initially 1.
5954 rc = sqlite3PagerWrite(pPage1->pDbPage);
5955 if( rc ) return rc;
5956 put4byte(&pPage1->aData[36], n-1);
5958 /* The code within this loop is run only once if the 'searchList' variable
5959 ** is not true. Otherwise, it runs once for each trunk-page on the
5960 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5961 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
5963 do {
5964 pPrevTrunk = pTrunk;
5965 if( pPrevTrunk ){
5966 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5967 ** is the page number of the next freelist trunk page in the list or
5968 ** zero if this is the last freelist trunk page. */
5969 iTrunk = get4byte(&pPrevTrunk->aData[0]);
5970 }else{
5971 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5972 ** stores the page number of the first page of the freelist, or zero if
5973 ** the freelist is empty. */
5974 iTrunk = get4byte(&pPage1->aData[32]);
5976 testcase( iTrunk==mxPage );
5977 if( iTrunk>mxPage || nSearch++ > n ){
5978 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
5979 }else{
5980 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
5982 if( rc ){
5983 pTrunk = 0;
5984 goto end_allocate_page;
5986 assert( pTrunk!=0 );
5987 assert( pTrunk->aData!=0 );
5988 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5989 ** is the number of leaf page pointers to follow. */
5990 k = get4byte(&pTrunk->aData[4]);
5991 if( k==0 && !searchList ){
5992 /* The trunk has no leaves and the list is not being searched.
5993 ** So extract the trunk page itself and use it as the newly
5994 ** allocated page */
5995 assert( pPrevTrunk==0 );
5996 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5997 if( rc ){
5998 goto end_allocate_page;
6000 *pPgno = iTrunk;
6001 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6002 *ppPage = pTrunk;
6003 pTrunk = 0;
6004 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
6005 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
6006 /* Value of k is out of range. Database corruption */
6007 rc = SQLITE_CORRUPT_PGNO(iTrunk);
6008 goto end_allocate_page;
6009 #ifndef SQLITE_OMIT_AUTOVACUUM
6010 }else if( searchList
6011 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
6013 /* The list is being searched and this trunk page is the page
6014 ** to allocate, regardless of whether it has leaves.
6016 *pPgno = iTrunk;
6017 *ppPage = pTrunk;
6018 searchList = 0;
6019 rc = sqlite3PagerWrite(pTrunk->pDbPage);
6020 if( rc ){
6021 goto end_allocate_page;
6023 if( k==0 ){
6024 if( !pPrevTrunk ){
6025 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6026 }else{
6027 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
6028 if( rc!=SQLITE_OK ){
6029 goto end_allocate_page;
6031 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
6033 }else{
6034 /* The trunk page is required by the caller but it contains
6035 ** pointers to free-list leaves. The first leaf becomes a trunk
6036 ** page in this case.
6038 MemPage *pNewTrunk;
6039 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
6040 if( iNewTrunk>mxPage ){
6041 rc = SQLITE_CORRUPT_PGNO(iTrunk);
6042 goto end_allocate_page;
6044 testcase( iNewTrunk==mxPage );
6045 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
6046 if( rc!=SQLITE_OK ){
6047 goto end_allocate_page;
6049 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
6050 if( rc!=SQLITE_OK ){
6051 releasePage(pNewTrunk);
6052 goto end_allocate_page;
6054 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
6055 put4byte(&pNewTrunk->aData[4], k-1);
6056 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
6057 releasePage(pNewTrunk);
6058 if( !pPrevTrunk ){
6059 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
6060 put4byte(&pPage1->aData[32], iNewTrunk);
6061 }else{
6062 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
6063 if( rc ){
6064 goto end_allocate_page;
6066 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
6069 pTrunk = 0;
6070 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
6071 #endif
6072 }else if( k>0 ){
6073 /* Extract a leaf from the trunk */
6074 u32 closest;
6075 Pgno iPage;
6076 unsigned char *aData = pTrunk->aData;
6077 if( nearby>0 ){
6078 u32 i;
6079 closest = 0;
6080 if( eMode==BTALLOC_LE ){
6081 for(i=0; i<k; i++){
6082 iPage = get4byte(&aData[8+i*4]);
6083 if( iPage<=nearby ){
6084 closest = i;
6085 break;
6088 }else{
6089 int dist;
6090 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
6091 for(i=1; i<k; i++){
6092 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
6093 if( d2<dist ){
6094 closest = i;
6095 dist = d2;
6099 }else{
6100 closest = 0;
6103 iPage = get4byte(&aData[8+closest*4]);
6104 testcase( iPage==mxPage );
6105 if( iPage>mxPage ){
6106 rc = SQLITE_CORRUPT_PGNO(iTrunk);
6107 goto end_allocate_page;
6109 testcase( iPage==mxPage );
6110 if( !searchList
6111 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
6113 int noContent;
6114 *pPgno = iPage;
6115 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
6116 ": %d more free pages\n",
6117 *pPgno, closest+1, k, pTrunk->pgno, n-1));
6118 rc = sqlite3PagerWrite(pTrunk->pDbPage);
6119 if( rc ) goto end_allocate_page;
6120 if( closest<k-1 ){
6121 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
6123 put4byte(&aData[4], k-1);
6124 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
6125 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
6126 if( rc==SQLITE_OK ){
6127 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
6128 if( rc!=SQLITE_OK ){
6129 releasePage(*ppPage);
6130 *ppPage = 0;
6133 searchList = 0;
6136 releasePage(pPrevTrunk);
6137 pPrevTrunk = 0;
6138 }while( searchList );
6139 }else{
6140 /* There are no pages on the freelist, so append a new page to the
6141 ** database image.
6143 ** Normally, new pages allocated by this block can be requested from the
6144 ** pager layer with the 'no-content' flag set. This prevents the pager
6145 ** from trying to read the pages content from disk. However, if the
6146 ** current transaction has already run one or more incremental-vacuum
6147 ** steps, then the page we are about to allocate may contain content
6148 ** that is required in the event of a rollback. In this case, do
6149 ** not set the no-content flag. This causes the pager to load and journal
6150 ** the current page content before overwriting it.
6152 ** Note that the pager will not actually attempt to load or journal
6153 ** content for any page that really does lie past the end of the database
6154 ** file on disk. So the effects of disabling the no-content optimization
6155 ** here are confined to those pages that lie between the end of the
6156 ** database image and the end of the database file.
6158 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
6160 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6161 if( rc ) return rc;
6162 pBt->nPage++;
6163 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
6165 #ifndef SQLITE_OMIT_AUTOVACUUM
6166 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
6167 /* If *pPgno refers to a pointer-map page, allocate two new pages
6168 ** at the end of the file instead of one. The first allocated page
6169 ** becomes a new pointer-map page, the second is used by the caller.
6171 MemPage *pPg = 0;
6172 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
6173 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
6174 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
6175 if( rc==SQLITE_OK ){
6176 rc = sqlite3PagerWrite(pPg->pDbPage);
6177 releasePage(pPg);
6179 if( rc ) return rc;
6180 pBt->nPage++;
6181 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
6183 #endif
6184 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
6185 *pPgno = pBt->nPage;
6187 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
6188 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
6189 if( rc ) return rc;
6190 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
6191 if( rc!=SQLITE_OK ){
6192 releasePage(*ppPage);
6193 *ppPage = 0;
6195 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
6198 assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) );
6200 end_allocate_page:
6201 releasePage(pTrunk);
6202 releasePage(pPrevTrunk);
6203 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
6204 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
6205 return rc;
6209 ** This function is used to add page iPage to the database file free-list.
6210 ** It is assumed that the page is not already a part of the free-list.
6212 ** The value passed as the second argument to this function is optional.
6213 ** If the caller happens to have a pointer to the MemPage object
6214 ** corresponding to page iPage handy, it may pass it as the second value.
6215 ** Otherwise, it may pass NULL.
6217 ** If a pointer to a MemPage object is passed as the second argument,
6218 ** its reference count is not altered by this function.
6220 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6221 MemPage *pTrunk = 0; /* Free-list trunk page */
6222 Pgno iTrunk = 0; /* Page number of free-list trunk page */
6223 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
6224 MemPage *pPage; /* Page being freed. May be NULL. */
6225 int rc; /* Return Code */
6226 u32 nFree; /* Initial number of pages on free-list */
6228 assert( sqlite3_mutex_held(pBt->mutex) );
6229 assert( CORRUPT_DB || iPage>1 );
6230 assert( !pMemPage || pMemPage->pgno==iPage );
6232 if( iPage<2 || iPage>pBt->nPage ){
6233 return SQLITE_CORRUPT_BKPT;
6235 if( pMemPage ){
6236 pPage = pMemPage;
6237 sqlite3PagerRef(pPage->pDbPage);
6238 }else{
6239 pPage = btreePageLookup(pBt, iPage);
6242 /* Increment the free page count on pPage1 */
6243 rc = sqlite3PagerWrite(pPage1->pDbPage);
6244 if( rc ) goto freepage_out;
6245 nFree = get4byte(&pPage1->aData[36]);
6246 put4byte(&pPage1->aData[36], nFree+1);
6248 if( pBt->btsFlags & BTS_SECURE_DELETE ){
6249 /* If the secure_delete option is enabled, then
6250 ** always fully overwrite deleted information with zeros.
6252 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
6253 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
6255 goto freepage_out;
6257 memset(pPage->aData, 0, pPage->pBt->pageSize);
6260 /* If the database supports auto-vacuum, write an entry in the pointer-map
6261 ** to indicate that the page is free.
6263 if( ISAUTOVACUUM ){
6264 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
6265 if( rc ) goto freepage_out;
6268 /* Now manipulate the actual database free-list structure. There are two
6269 ** possibilities. If the free-list is currently empty, or if the first
6270 ** trunk page in the free-list is full, then this page will become a
6271 ** new free-list trunk page. Otherwise, it will become a leaf of the
6272 ** first trunk page in the current free-list. This block tests if it
6273 ** is possible to add the page as a new free-list leaf.
6275 if( nFree!=0 ){
6276 u32 nLeaf; /* Initial number of leaf cells on trunk page */
6278 iTrunk = get4byte(&pPage1->aData[32]);
6279 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
6280 if( rc!=SQLITE_OK ){
6281 goto freepage_out;
6284 nLeaf = get4byte(&pTrunk->aData[4]);
6285 assert( pBt->usableSize>32 );
6286 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
6287 rc = SQLITE_CORRUPT_BKPT;
6288 goto freepage_out;
6290 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
6291 /* In this case there is room on the trunk page to insert the page
6292 ** being freed as a new leaf.
6294 ** Note that the trunk page is not really full until it contains
6295 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6296 ** coded. But due to a coding error in versions of SQLite prior to
6297 ** 3.6.0, databases with freelist trunk pages holding more than
6298 ** usableSize/4 - 8 entries will be reported as corrupt. In order
6299 ** to maintain backwards compatibility with older versions of SQLite,
6300 ** we will continue to restrict the number of entries to usableSize/4 - 8
6301 ** for now. At some point in the future (once everyone has upgraded
6302 ** to 3.6.0 or later) we should consider fixing the conditional above
6303 ** to read "usableSize/4-2" instead of "usableSize/4-8".
6305 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6306 ** avoid using the last six entries in the freelist trunk page array in
6307 ** order that database files created by newer versions of SQLite can be
6308 ** read by older versions of SQLite.
6310 rc = sqlite3PagerWrite(pTrunk->pDbPage);
6311 if( rc==SQLITE_OK ){
6312 put4byte(&pTrunk->aData[4], nLeaf+1);
6313 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
6314 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
6315 sqlite3PagerDontWrite(pPage->pDbPage);
6317 rc = btreeSetHasContent(pBt, iPage);
6319 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
6320 goto freepage_out;
6324 /* If control flows to this point, then it was not possible to add the
6325 ** the page being freed as a leaf page of the first trunk in the free-list.
6326 ** Possibly because the free-list is empty, or possibly because the
6327 ** first trunk in the free-list is full. Either way, the page being freed
6328 ** will become the new first trunk page in the free-list.
6330 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
6331 goto freepage_out;
6333 rc = sqlite3PagerWrite(pPage->pDbPage);
6334 if( rc!=SQLITE_OK ){
6335 goto freepage_out;
6337 put4byte(pPage->aData, iTrunk);
6338 put4byte(&pPage->aData[4], 0);
6339 put4byte(&pPage1->aData[32], iPage);
6340 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6342 freepage_out:
6343 if( pPage ){
6344 pPage->isInit = 0;
6346 releasePage(pPage);
6347 releasePage(pTrunk);
6348 return rc;
6350 static void freePage(MemPage *pPage, int *pRC){
6351 if( (*pRC)==SQLITE_OK ){
6352 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6357 ** Free any overflow pages associated with the given Cell. Store
6358 ** size information about the cell in pInfo.
6360 static int clearCell(
6361 MemPage *pPage, /* The page that contains the Cell */
6362 unsigned char *pCell, /* First byte of the Cell */
6363 CellInfo *pInfo /* Size information about the cell */
6365 BtShared *pBt;
6366 Pgno ovflPgno;
6367 int rc;
6368 int nOvfl;
6369 u32 ovflPageSize;
6371 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6372 pPage->xParseCell(pPage, pCell, pInfo);
6373 if( pInfo->nLocal==pInfo->nPayload ){
6374 return SQLITE_OK; /* No overflow pages. Return without doing anything */
6376 testcase( pCell + pInfo->nSize == pPage->aDataEnd );
6377 testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd );
6378 if( pCell + pInfo->nSize > pPage->aDataEnd ){
6379 /* Cell extends past end of page */
6380 return SQLITE_CORRUPT_PAGE(pPage);
6382 ovflPgno = get4byte(pCell + pInfo->nSize - 4);
6383 pBt = pPage->pBt;
6384 assert( pBt->usableSize > 4 );
6385 ovflPageSize = pBt->usableSize - 4;
6386 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
6387 assert( nOvfl>0 ||
6388 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
6390 while( nOvfl-- ){
6391 Pgno iNext = 0;
6392 MemPage *pOvfl = 0;
6393 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
6394 /* 0 is not a legal page number and page 1 cannot be an
6395 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6396 ** file the database must be corrupt. */
6397 return SQLITE_CORRUPT_BKPT;
6399 if( nOvfl ){
6400 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6401 if( rc ) return rc;
6404 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
6405 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6407 /* There is no reason any cursor should have an outstanding reference
6408 ** to an overflow page belonging to a cell that is being deleted/updated.
6409 ** So if there exists more than one reference to this page, then it
6410 ** must not really be an overflow page and the database must be corrupt.
6411 ** It is helpful to detect this before calling freePage2(), as
6412 ** freePage2() may zero the page contents if secure-delete mode is
6413 ** enabled. If this 'overflow' page happens to be a page that the
6414 ** caller is iterating through or using in some other way, this
6415 ** can be problematic.
6417 rc = SQLITE_CORRUPT_BKPT;
6418 }else{
6419 rc = freePage2(pBt, pOvfl, ovflPgno);
6422 if( pOvfl ){
6423 sqlite3PagerUnref(pOvfl->pDbPage);
6425 if( rc ) return rc;
6426 ovflPgno = iNext;
6428 return SQLITE_OK;
6432 ** Create the byte sequence used to represent a cell on page pPage
6433 ** and write that byte sequence into pCell[]. Overflow pages are
6434 ** allocated and filled in as necessary. The calling procedure
6435 ** is responsible for making sure sufficient space has been allocated
6436 ** for pCell[].
6438 ** Note that pCell does not necessary need to point to the pPage->aData
6439 ** area. pCell might point to some temporary storage. The cell will
6440 ** be constructed in this temporary area then copied into pPage->aData
6441 ** later.
6443 static int fillInCell(
6444 MemPage *pPage, /* The page that contains the cell */
6445 unsigned char *pCell, /* Complete text of the cell */
6446 const BtreePayload *pX, /* Payload with which to construct the cell */
6447 int *pnSize /* Write cell size here */
6449 int nPayload;
6450 const u8 *pSrc;
6451 int nSrc, n, rc, mn;
6452 int spaceLeft;
6453 MemPage *pToRelease;
6454 unsigned char *pPrior;
6455 unsigned char *pPayload;
6456 BtShared *pBt;
6457 Pgno pgnoOvfl;
6458 int nHeader;
6460 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6462 /* pPage is not necessarily writeable since pCell might be auxiliary
6463 ** buffer space that is separate from the pPage buffer area */
6464 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
6465 || sqlite3PagerIswriteable(pPage->pDbPage) );
6467 /* Fill in the header. */
6468 nHeader = pPage->childPtrSize;
6469 if( pPage->intKey ){
6470 nPayload = pX->nData + pX->nZero;
6471 pSrc = pX->pData;
6472 nSrc = pX->nData;
6473 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
6474 nHeader += putVarint32(&pCell[nHeader], nPayload);
6475 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
6476 }else{
6477 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6478 nSrc = nPayload = (int)pX->nKey;
6479 pSrc = pX->pKey;
6480 nHeader += putVarint32(&pCell[nHeader], nPayload);
6483 /* Fill in the payload */
6484 pPayload = &pCell[nHeader];
6485 if( nPayload<=pPage->maxLocal ){
6486 /* This is the common case where everything fits on the btree page
6487 ** and no overflow pages are required. */
6488 n = nHeader + nPayload;
6489 testcase( n==3 );
6490 testcase( n==4 );
6491 if( n<4 ) n = 4;
6492 *pnSize = n;
6493 assert( nSrc<=nPayload );
6494 testcase( nSrc<nPayload );
6495 memcpy(pPayload, pSrc, nSrc);
6496 memset(pPayload+nSrc, 0, nPayload-nSrc);
6497 return SQLITE_OK;
6500 /* If we reach this point, it means that some of the content will need
6501 ** to spill onto overflow pages.
6503 mn = pPage->minLocal;
6504 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6505 testcase( n==pPage->maxLocal );
6506 testcase( n==pPage->maxLocal+1 );
6507 if( n > pPage->maxLocal ) n = mn;
6508 spaceLeft = n;
6509 *pnSize = n + nHeader + 4;
6510 pPrior = &pCell[nHeader+n];
6511 pToRelease = 0;
6512 pgnoOvfl = 0;
6513 pBt = pPage->pBt;
6515 /* At this point variables should be set as follows:
6517 ** nPayload Total payload size in bytes
6518 ** pPayload Begin writing payload here
6519 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6520 ** that means content must spill into overflow pages.
6521 ** *pnSize Size of the local cell (not counting overflow pages)
6522 ** pPrior Where to write the pgno of the first overflow page
6524 ** Use a call to btreeParseCellPtr() to verify that the values above
6525 ** were computed correctly.
6527 #ifdef SQLITE_DEBUG
6529 CellInfo info;
6530 pPage->xParseCell(pPage, pCell, &info);
6531 assert( nHeader==(int)(info.pPayload - pCell) );
6532 assert( info.nKey==pX->nKey );
6533 assert( *pnSize == info.nSize );
6534 assert( spaceLeft == info.nLocal );
6536 #endif
6538 /* Write the payload into the local Cell and any extra into overflow pages */
6539 while( 1 ){
6540 n = nPayload;
6541 if( n>spaceLeft ) n = spaceLeft;
6543 /* If pToRelease is not zero than pPayload points into the data area
6544 ** of pToRelease. Make sure pToRelease is still writeable. */
6545 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6547 /* If pPayload is part of the data area of pPage, then make sure pPage
6548 ** is still writeable */
6549 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6550 || sqlite3PagerIswriteable(pPage->pDbPage) );
6552 if( nSrc>=n ){
6553 memcpy(pPayload, pSrc, n);
6554 }else if( nSrc>0 ){
6555 n = nSrc;
6556 memcpy(pPayload, pSrc, n);
6557 }else{
6558 memset(pPayload, 0, n);
6560 nPayload -= n;
6561 if( nPayload<=0 ) break;
6562 pPayload += n;
6563 pSrc += n;
6564 nSrc -= n;
6565 spaceLeft -= n;
6566 if( spaceLeft==0 ){
6567 MemPage *pOvfl = 0;
6568 #ifndef SQLITE_OMIT_AUTOVACUUM
6569 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
6570 if( pBt->autoVacuum ){
6572 pgnoOvfl++;
6573 } while(
6574 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6577 #endif
6578 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
6579 #ifndef SQLITE_OMIT_AUTOVACUUM
6580 /* If the database supports auto-vacuum, and the second or subsequent
6581 ** overflow page is being allocated, add an entry to the pointer-map
6582 ** for that page now.
6584 ** If this is the first overflow page, then write a partial entry
6585 ** to the pointer-map. If we write nothing to this pointer-map slot,
6586 ** then the optimistic overflow chain processing in clearCell()
6587 ** may misinterpret the uninitialized values and delete the
6588 ** wrong pages from the database.
6590 if( pBt->autoVacuum && rc==SQLITE_OK ){
6591 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
6592 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
6593 if( rc ){
6594 releasePage(pOvfl);
6597 #endif
6598 if( rc ){
6599 releasePage(pToRelease);
6600 return rc;
6603 /* If pToRelease is not zero than pPrior points into the data area
6604 ** of pToRelease. Make sure pToRelease is still writeable. */
6605 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6607 /* If pPrior is part of the data area of pPage, then make sure pPage
6608 ** is still writeable */
6609 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6610 || sqlite3PagerIswriteable(pPage->pDbPage) );
6612 put4byte(pPrior, pgnoOvfl);
6613 releasePage(pToRelease);
6614 pToRelease = pOvfl;
6615 pPrior = pOvfl->aData;
6616 put4byte(pPrior, 0);
6617 pPayload = &pOvfl->aData[4];
6618 spaceLeft = pBt->usableSize - 4;
6621 releasePage(pToRelease);
6622 return SQLITE_OK;
6626 ** Remove the i-th cell from pPage. This routine effects pPage only.
6627 ** The cell content is not freed or deallocated. It is assumed that
6628 ** the cell content has been copied someplace else. This routine just
6629 ** removes the reference to the cell from pPage.
6631 ** "sz" must be the number of bytes in the cell.
6633 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
6634 u32 pc; /* Offset to cell content of cell being deleted */
6635 u8 *data; /* pPage->aData */
6636 u8 *ptr; /* Used to move bytes around within data[] */
6637 int rc; /* The return code */
6638 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
6640 if( *pRC ) return;
6641 assert( idx>=0 && idx<pPage->nCell );
6642 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
6643 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6644 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6645 assert( pPage->nFree>=0 );
6646 data = pPage->aData;
6647 ptr = &pPage->aCellIdx[2*idx];
6648 pc = get2byte(ptr);
6649 hdr = pPage->hdrOffset;
6650 testcase( pc==get2byte(&data[hdr+5]) );
6651 testcase( pc+sz==pPage->pBt->usableSize );
6652 if( pc+sz > pPage->pBt->usableSize ){
6653 *pRC = SQLITE_CORRUPT_BKPT;
6654 return;
6656 rc = freeSpace(pPage, pc, sz);
6657 if( rc ){
6658 *pRC = rc;
6659 return;
6661 pPage->nCell--;
6662 if( pPage->nCell==0 ){
6663 memset(&data[hdr+1], 0, 4);
6664 data[hdr+7] = 0;
6665 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6666 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6667 - pPage->childPtrSize - 8;
6668 }else{
6669 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6670 put2byte(&data[hdr+3], pPage->nCell);
6671 pPage->nFree += 2;
6676 ** Insert a new cell on pPage at cell index "i". pCell points to the
6677 ** content of the cell.
6679 ** If the cell content will fit on the page, then put it there. If it
6680 ** will not fit, then make a copy of the cell content into pTemp if
6681 ** pTemp is not null. Regardless of pTemp, allocate a new entry
6682 ** in pPage->apOvfl[] and make it point to the cell content (either
6683 ** in pTemp or the original pCell) and also record its index.
6684 ** Allocating a new entry in pPage->aCell[] implies that
6685 ** pPage->nOverflow is incremented.
6687 ** *pRC must be SQLITE_OK when this routine is called.
6689 static void insertCell(
6690 MemPage *pPage, /* Page into which we are copying */
6691 int i, /* New cell becomes the i-th cell of the page */
6692 u8 *pCell, /* Content of the new cell */
6693 int sz, /* Bytes of content in pCell */
6694 u8 *pTemp, /* Temp storage space for pCell, if needed */
6695 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6696 int *pRC /* Read and write return code from here */
6698 int idx = 0; /* Where to write new cell content in data[] */
6699 int j; /* Loop counter */
6700 u8 *data; /* The content of the whole page */
6701 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
6703 assert( *pRC==SQLITE_OK );
6704 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
6705 assert( MX_CELL(pPage->pBt)<=10921 );
6706 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
6707 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6708 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
6709 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6710 assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB );
6711 assert( pPage->nFree>=0 );
6712 if( pPage->nOverflow || sz+2>pPage->nFree ){
6713 if( pTemp ){
6714 memcpy(pTemp, pCell, sz);
6715 pCell = pTemp;
6717 if( iChild ){
6718 put4byte(pCell, iChild);
6720 j = pPage->nOverflow++;
6721 /* Comparison against ArraySize-1 since we hold back one extra slot
6722 ** as a contingency. In other words, never need more than 3 overflow
6723 ** slots but 4 are allocated, just to be safe. */
6724 assert( j < ArraySize(pPage->apOvfl)-1 );
6725 pPage->apOvfl[j] = pCell;
6726 pPage->aiOvfl[j] = (u16)i;
6728 /* When multiple overflows occur, they are always sequential and in
6729 ** sorted order. This invariants arise because multiple overflows can
6730 ** only occur when inserting divider cells into the parent page during
6731 ** balancing, and the dividers are adjacent and sorted.
6733 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6734 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
6735 }else{
6736 int rc = sqlite3PagerWrite(pPage->pDbPage);
6737 if( rc!=SQLITE_OK ){
6738 *pRC = rc;
6739 return;
6741 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6742 data = pPage->aData;
6743 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
6744 rc = allocateSpace(pPage, sz, &idx);
6745 if( rc ){ *pRC = rc; return; }
6746 /* The allocateSpace() routine guarantees the following properties
6747 ** if it returns successfully */
6748 assert( idx >= 0 );
6749 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
6750 assert( idx+sz <= (int)pPage->pBt->usableSize );
6751 pPage->nFree -= (u16)(2 + sz);
6752 if( iChild ){
6753 /* In a corrupt database where an entry in the cell index section of
6754 ** a btree page has a value of 3 or less, the pCell value might point
6755 ** as many as 4 bytes in front of the start of the aData buffer for
6756 ** the source page. Make sure this does not cause problems by not
6757 ** reading the first 4 bytes */
6758 memcpy(&data[idx+4], pCell+4, sz-4);
6759 put4byte(&data[idx], iChild);
6760 }else{
6761 memcpy(&data[idx], pCell, sz);
6763 pIns = pPage->aCellIdx + i*2;
6764 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6765 put2byte(pIns, idx);
6766 pPage->nCell++;
6767 /* increment the cell count */
6768 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6769 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB );
6770 #ifndef SQLITE_OMIT_AUTOVACUUM
6771 if( pPage->pBt->autoVacuum ){
6772 /* The cell may contain a pointer to an overflow page. If so, write
6773 ** the entry for the overflow page into the pointer map.
6775 ptrmapPutOvflPtr(pPage, pPage, pCell, pRC);
6777 #endif
6782 ** The following parameters determine how many adjacent pages get involved
6783 ** in a balancing operation. NN is the number of neighbors on either side
6784 ** of the page that participate in the balancing operation. NB is the
6785 ** total number of pages that participate, including the target page and
6786 ** NN neighbors on either side.
6788 ** The minimum value of NN is 1 (of course). Increasing NN above 1
6789 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6790 ** in exchange for a larger degradation in INSERT and UPDATE performance.
6791 ** The value of NN appears to give the best results overall.
6793 ** (Later:) The description above makes it seem as if these values are
6794 ** tunable - as if you could change them and recompile and it would all work.
6795 ** But that is unlikely. NB has been 3 since the inception of SQLite and
6796 ** we have never tested any other value.
6798 #define NN 1 /* Number of neighbors on either side of pPage */
6799 #define NB 3 /* (NN*2+1): Total pages involved in the balance */
6802 ** A CellArray object contains a cache of pointers and sizes for a
6803 ** consecutive sequence of cells that might be held on multiple pages.
6805 ** The cells in this array are the divider cell or cells from the pParent
6806 ** page plus up to three child pages. There are a total of nCell cells.
6808 ** pRef is a pointer to one of the pages that contributes cells. This is
6809 ** used to access information such as MemPage.intKey and MemPage.pBt->pageSize
6810 ** which should be common to all pages that contribute cells to this array.
6812 ** apCell[] and szCell[] hold, respectively, pointers to the start of each
6813 ** cell and the size of each cell. Some of the apCell[] pointers might refer
6814 ** to overflow cells. In other words, some apCel[] pointers might not point
6815 ** to content area of the pages.
6817 ** A szCell[] of zero means the size of that cell has not yet been computed.
6819 ** The cells come from as many as four different pages:
6821 ** -----------
6822 ** | Parent |
6823 ** -----------
6824 ** / | \
6825 ** / | \
6826 ** --------- --------- ---------
6827 ** |Child-1| |Child-2| |Child-3|
6828 ** --------- --------- ---------
6830 ** The order of cells is in the array is for an index btree is:
6832 ** 1. All cells from Child-1 in order
6833 ** 2. The first divider cell from Parent
6834 ** 3. All cells from Child-2 in order
6835 ** 4. The second divider cell from Parent
6836 ** 5. All cells from Child-3 in order
6838 ** For a table-btree (with rowids) the items 2 and 4 are empty because
6839 ** content exists only in leaves and there are no divider cells.
6841 ** For an index btree, the apEnd[] array holds pointer to the end of page
6842 ** for Child-1, the Parent, Child-2, the Parent (again), and Child-3,
6843 ** respectively. The ixNx[] array holds the number of cells contained in
6844 ** each of these 5 stages, and all stages to the left. Hence:
6846 ** ixNx[0] = Number of cells in Child-1.
6847 ** ixNx[1] = Number of cells in Child-1 plus 1 for first divider.
6848 ** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider.
6849 ** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells
6850 ** ixNx[4] = Total number of cells.
6852 ** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2]
6853 ** are used and they point to the leaf pages only, and the ixNx value are:
6855 ** ixNx[0] = Number of cells in Child-1.
6856 ** ixNx[1] = Number of cells in Child-1 and Child-2.
6857 ** ixNx[2] = Total number of cells.
6859 ** Sometimes when deleting, a child page can have zero cells. In those
6860 ** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[]
6861 ** entries, shift down. The end result is that each ixNx[] entry should
6862 ** be larger than the previous
6864 typedef struct CellArray CellArray;
6865 struct CellArray {
6866 int nCell; /* Number of cells in apCell[] */
6867 MemPage *pRef; /* Reference page */
6868 u8 **apCell; /* All cells begin balanced */
6869 u16 *szCell; /* Local size of all cells in apCell[] */
6870 u8 *apEnd[NB*2]; /* MemPage.aDataEnd values */
6871 int ixNx[NB*2]; /* Index of at which we move to the next apEnd[] */
6875 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6876 ** computed.
6878 static void populateCellCache(CellArray *p, int idx, int N){
6879 assert( idx>=0 && idx+N<=p->nCell );
6880 while( N>0 ){
6881 assert( p->apCell[idx]!=0 );
6882 if( p->szCell[idx]==0 ){
6883 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6884 }else{
6885 assert( CORRUPT_DB ||
6886 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6888 idx++;
6889 N--;
6894 ** Return the size of the Nth element of the cell array
6896 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6897 assert( N>=0 && N<p->nCell );
6898 assert( p->szCell[N]==0 );
6899 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6900 return p->szCell[N];
6902 static u16 cachedCellSize(CellArray *p, int N){
6903 assert( N>=0 && N<p->nCell );
6904 if( p->szCell[N] ) return p->szCell[N];
6905 return computeCellSize(p, N);
6909 ** Array apCell[] contains pointers to nCell b-tree page cells. The
6910 ** szCell[] array contains the size in bytes of each cell. This function
6911 ** replaces the current contents of page pPg with the contents of the cell
6912 ** array.
6914 ** Some of the cells in apCell[] may currently be stored in pPg. This
6915 ** function works around problems caused by this by making a copy of any
6916 ** such cells before overwriting the page data.
6918 ** The MemPage.nFree field is invalidated by this function. It is the
6919 ** responsibility of the caller to set it correctly.
6921 static int rebuildPage(
6922 CellArray *pCArray, /* Content to be added to page pPg */
6923 int iFirst, /* First cell in pCArray to use */
6924 int nCell, /* Final number of cells on page */
6925 MemPage *pPg /* The page to be reconstructed */
6927 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6928 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6929 const int usableSize = pPg->pBt->usableSize;
6930 u8 * const pEnd = &aData[usableSize];
6931 int i = iFirst; /* Which cell to copy from pCArray*/
6932 u32 j; /* Start of cell content area */
6933 int iEnd = i+nCell; /* Loop terminator */
6934 u8 *pCellptr = pPg->aCellIdx;
6935 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6936 u8 *pData;
6937 int k; /* Current slot in pCArray->apEnd[] */
6938 u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */
6940 assert( i<iEnd );
6941 j = get2byte(&aData[hdr+5]);
6942 if( NEVER(j>(u32)usableSize) ){ j = 0; }
6943 memcpy(&pTmp[j], &aData[j], usableSize - j);
6945 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
6946 pSrcEnd = pCArray->apEnd[k];
6948 pData = pEnd;
6949 while( 1/*exit by break*/ ){
6950 u8 *pCell = pCArray->apCell[i];
6951 u16 sz = pCArray->szCell[i];
6952 assert( sz>0 );
6953 if( SQLITE_WITHIN(pCell,aData,pEnd) ){
6954 if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT;
6955 pCell = &pTmp[pCell - aData];
6956 }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd
6957 && (uptr)(pCell)<(uptr)pSrcEnd
6959 return SQLITE_CORRUPT_BKPT;
6962 pData -= sz;
6963 put2byte(pCellptr, (pData - aData));
6964 pCellptr += 2;
6965 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6966 memcpy(pData, pCell, sz);
6967 assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
6968 testcase( sz!=pPg->xCellSize(pPg,pCell) )
6969 i++;
6970 if( i>=iEnd ) break;
6971 if( pCArray->ixNx[k]<=i ){
6972 k++;
6973 pSrcEnd = pCArray->apEnd[k];
6977 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
6978 pPg->nCell = nCell;
6979 pPg->nOverflow = 0;
6981 put2byte(&aData[hdr+1], 0);
6982 put2byte(&aData[hdr+3], pPg->nCell);
6983 put2byte(&aData[hdr+5], pData - aData);
6984 aData[hdr+7] = 0x00;
6985 return SQLITE_OK;
6989 ** The pCArray objects contains pointers to b-tree cells and the cell sizes.
6990 ** This function attempts to add the cells stored in the array to page pPg.
6991 ** If it cannot (because the page needs to be defragmented before the cells
6992 ** will fit), non-zero is returned. Otherwise, if the cells are added
6993 ** successfully, zero is returned.
6995 ** Argument pCellptr points to the first entry in the cell-pointer array
6996 ** (part of page pPg) to populate. After cell apCell[0] is written to the
6997 ** page body, a 16-bit offset is written to pCellptr. And so on, for each
6998 ** cell in the array. It is the responsibility of the caller to ensure
6999 ** that it is safe to overwrite this part of the cell-pointer array.
7001 ** When this function is called, *ppData points to the start of the
7002 ** content area on page pPg. If the size of the content area is extended,
7003 ** *ppData is updated to point to the new start of the content area
7004 ** before returning.
7006 ** Finally, argument pBegin points to the byte immediately following the
7007 ** end of the space required by this page for the cell-pointer area (for
7008 ** all cells - not just those inserted by the current call). If the content
7009 ** area must be extended to before this point in order to accomodate all
7010 ** cells in apCell[], then the cells do not fit and non-zero is returned.
7012 static int pageInsertArray(
7013 MemPage *pPg, /* Page to add cells to */
7014 u8 *pBegin, /* End of cell-pointer array */
7015 u8 **ppData, /* IN/OUT: Page content-area pointer */
7016 u8 *pCellptr, /* Pointer to cell-pointer area */
7017 int iFirst, /* Index of first cell to add */
7018 int nCell, /* Number of cells to add to pPg */
7019 CellArray *pCArray /* Array of cells */
7021 int i = iFirst; /* Loop counter - cell index to insert */
7022 u8 *aData = pPg->aData; /* Complete page */
7023 u8 *pData = *ppData; /* Content area. A subset of aData[] */
7024 int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */
7025 int k; /* Current slot in pCArray->apEnd[] */
7026 u8 *pEnd; /* Maximum extent of cell data */
7027 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
7028 if( iEnd<=iFirst ) return 0;
7029 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
7030 pEnd = pCArray->apEnd[k];
7031 while( 1 /*Exit by break*/ ){
7032 int sz, rc;
7033 u8 *pSlot;
7034 assert( pCArray->szCell[i]!=0 );
7035 sz = pCArray->szCell[i];
7036 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
7037 if( (pData - pBegin)<sz ) return 1;
7038 pData -= sz;
7039 pSlot = pData;
7041 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
7042 ** database. But they might for a corrupt database. Hence use memmove()
7043 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
7044 assert( (pSlot+sz)<=pCArray->apCell[i]
7045 || pSlot>=(pCArray->apCell[i]+sz)
7046 || CORRUPT_DB );
7047 if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd
7048 && (uptr)(pCArray->apCell[i])<(uptr)pEnd
7050 assert( CORRUPT_DB );
7051 (void)SQLITE_CORRUPT_BKPT;
7052 return 1;
7054 memmove(pSlot, pCArray->apCell[i], sz);
7055 put2byte(pCellptr, (pSlot - aData));
7056 pCellptr += 2;
7057 i++;
7058 if( i>=iEnd ) break;
7059 if( pCArray->ixNx[k]<=i ){
7060 k++;
7061 pEnd = pCArray->apEnd[k];
7064 *ppData = pData;
7065 return 0;
7069 ** The pCArray object contains pointers to b-tree cells and their sizes.
7071 ** This function adds the space associated with each cell in the array
7072 ** that is currently stored within the body of pPg to the pPg free-list.
7073 ** The cell-pointers and other fields of the page are not updated.
7075 ** This function returns the total number of cells added to the free-list.
7077 static int pageFreeArray(
7078 MemPage *pPg, /* Page to edit */
7079 int iFirst, /* First cell to delete */
7080 int nCell, /* Cells to delete */
7081 CellArray *pCArray /* Array of cells */
7083 u8 * const aData = pPg->aData;
7084 u8 * const pEnd = &aData[pPg->pBt->usableSize];
7085 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
7086 int nRet = 0;
7087 int i;
7088 int iEnd = iFirst + nCell;
7089 u8 *pFree = 0;
7090 int szFree = 0;
7092 for(i=iFirst; i<iEnd; i++){
7093 u8 *pCell = pCArray->apCell[i];
7094 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
7095 int sz;
7096 /* No need to use cachedCellSize() here. The sizes of all cells that
7097 ** are to be freed have already been computing while deciding which
7098 ** cells need freeing */
7099 sz = pCArray->szCell[i]; assert( sz>0 );
7100 if( pFree!=(pCell + sz) ){
7101 if( pFree ){
7102 assert( pFree>aData && (pFree - aData)<65536 );
7103 freeSpace(pPg, (u16)(pFree - aData), szFree);
7105 pFree = pCell;
7106 szFree = sz;
7107 if( pFree+sz>pEnd ) return 0;
7108 }else{
7109 pFree = pCell;
7110 szFree += sz;
7112 nRet++;
7115 if( pFree ){
7116 assert( pFree>aData && (pFree - aData)<65536 );
7117 freeSpace(pPg, (u16)(pFree - aData), szFree);
7119 return nRet;
7123 ** pCArray contains pointers to and sizes of all cells in the page being
7124 ** balanced. The current page, pPg, has pPg->nCell cells starting with
7125 ** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells
7126 ** starting at apCell[iNew].
7128 ** This routine makes the necessary adjustments to pPg so that it contains
7129 ** the correct cells after being balanced.
7131 ** The pPg->nFree field is invalid when this function returns. It is the
7132 ** responsibility of the caller to set it correctly.
7134 static int editPage(
7135 MemPage *pPg, /* Edit this page */
7136 int iOld, /* Index of first cell currently on page */
7137 int iNew, /* Index of new first cell on page */
7138 int nNew, /* Final number of cells on page */
7139 CellArray *pCArray /* Array of cells and sizes */
7141 u8 * const aData = pPg->aData;
7142 const int hdr = pPg->hdrOffset;
7143 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
7144 int nCell = pPg->nCell; /* Cells stored on pPg */
7145 u8 *pData;
7146 u8 *pCellptr;
7147 int i;
7148 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
7149 int iNewEnd = iNew + nNew;
7151 #ifdef SQLITE_DEBUG
7152 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7153 memcpy(pTmp, aData, pPg->pBt->usableSize);
7154 #endif
7156 /* Remove cells from the start and end of the page */
7157 assert( nCell>=0 );
7158 if( iOld<iNew ){
7159 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
7160 if( nShift>nCell ) return SQLITE_CORRUPT_BKPT;
7161 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
7162 nCell -= nShift;
7164 if( iNewEnd < iOldEnd ){
7165 int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
7166 assert( nCell>=nTail );
7167 nCell -= nTail;
7170 pData = &aData[get2byteNotZero(&aData[hdr+5])];
7171 if( pData<pBegin ) goto editpage_fail;
7173 /* Add cells to the start of the page */
7174 if( iNew<iOld ){
7175 int nAdd = MIN(nNew,iOld-iNew);
7176 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
7177 assert( nAdd>=0 );
7178 pCellptr = pPg->aCellIdx;
7179 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
7180 if( pageInsertArray(
7181 pPg, pBegin, &pData, pCellptr,
7182 iNew, nAdd, pCArray
7183 ) ) goto editpage_fail;
7184 nCell += nAdd;
7187 /* Add any overflow cells */
7188 for(i=0; i<pPg->nOverflow; i++){
7189 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
7190 if( iCell>=0 && iCell<nNew ){
7191 pCellptr = &pPg->aCellIdx[iCell * 2];
7192 if( nCell>iCell ){
7193 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
7195 nCell++;
7196 cachedCellSize(pCArray, iCell+iNew);
7197 if( pageInsertArray(
7198 pPg, pBegin, &pData, pCellptr,
7199 iCell+iNew, 1, pCArray
7200 ) ) goto editpage_fail;
7204 /* Append cells to the end of the page */
7205 assert( nCell>=0 );
7206 pCellptr = &pPg->aCellIdx[nCell*2];
7207 if( pageInsertArray(
7208 pPg, pBegin, &pData, pCellptr,
7209 iNew+nCell, nNew-nCell, pCArray
7210 ) ) goto editpage_fail;
7212 pPg->nCell = nNew;
7213 pPg->nOverflow = 0;
7215 put2byte(&aData[hdr+3], pPg->nCell);
7216 put2byte(&aData[hdr+5], pData - aData);
7218 #ifdef SQLITE_DEBUG
7219 for(i=0; i<nNew && !CORRUPT_DB; i++){
7220 u8 *pCell = pCArray->apCell[i+iNew];
7221 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
7222 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
7223 pCell = &pTmp[pCell - aData];
7225 assert( 0==memcmp(pCell, &aData[iOff],
7226 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
7228 #endif
7230 return SQLITE_OK;
7231 editpage_fail:
7232 /* Unable to edit this page. Rebuild it from scratch instead. */
7233 populateCellCache(pCArray, iNew, nNew);
7234 return rebuildPage(pCArray, iNew, nNew, pPg);
7238 #ifndef SQLITE_OMIT_QUICKBALANCE
7240 ** This version of balance() handles the common special case where
7241 ** a new entry is being inserted on the extreme right-end of the
7242 ** tree, in other words, when the new entry will become the largest
7243 ** entry in the tree.
7245 ** Instead of trying to balance the 3 right-most leaf pages, just add
7246 ** a new page to the right-hand side and put the one new entry in
7247 ** that page. This leaves the right side of the tree somewhat
7248 ** unbalanced. But odds are that we will be inserting new entries
7249 ** at the end soon afterwards so the nearly empty page will quickly
7250 ** fill up. On average.
7252 ** pPage is the leaf page which is the right-most page in the tree.
7253 ** pParent is its parent. pPage must have a single overflow entry
7254 ** which is also the right-most entry on the page.
7256 ** The pSpace buffer is used to store a temporary copy of the divider
7257 ** cell that will be inserted into pParent. Such a cell consists of a 4
7258 ** byte page number followed by a variable length integer. In other
7259 ** words, at most 13 bytes. Hence the pSpace buffer must be at
7260 ** least 13 bytes in size.
7262 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
7263 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
7264 MemPage *pNew; /* Newly allocated page */
7265 int rc; /* Return Code */
7266 Pgno pgnoNew; /* Page number of pNew */
7268 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
7269 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7270 assert( pPage->nOverflow==1 );
7272 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */
7273 assert( pPage->nFree>=0 );
7274 assert( pParent->nFree>=0 );
7276 /* Allocate a new page. This page will become the right-sibling of
7277 ** pPage. Make the parent page writable, so that the new divider cell
7278 ** may be inserted. If both these operations are successful, proceed.
7280 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
7282 if( rc==SQLITE_OK ){
7284 u8 *pOut = &pSpace[4];
7285 u8 *pCell = pPage->apOvfl[0];
7286 u16 szCell = pPage->xCellSize(pPage, pCell);
7287 u8 *pStop;
7288 CellArray b;
7290 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
7291 assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
7292 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
7293 b.nCell = 1;
7294 b.pRef = pPage;
7295 b.apCell = &pCell;
7296 b.szCell = &szCell;
7297 b.apEnd[0] = pPage->aDataEnd;
7298 b.ixNx[0] = 2;
7299 rc = rebuildPage(&b, 0, 1, pNew);
7300 if( NEVER(rc) ){
7301 releasePage(pNew);
7302 return rc;
7304 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
7306 /* If this is an auto-vacuum database, update the pointer map
7307 ** with entries for the new page, and any pointer from the
7308 ** cell on the page to an overflow page. If either of these
7309 ** operations fails, the return code is set, but the contents
7310 ** of the parent page are still manipulated by thh code below.
7311 ** That is Ok, at this point the parent page is guaranteed to
7312 ** be marked as dirty. Returning an error code will cause a
7313 ** rollback, undoing any changes made to the parent page.
7315 if( ISAUTOVACUUM ){
7316 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
7317 if( szCell>pNew->minLocal ){
7318 ptrmapPutOvflPtr(pNew, pNew, pCell, &rc);
7322 /* Create a divider cell to insert into pParent. The divider cell
7323 ** consists of a 4-byte page number (the page number of pPage) and
7324 ** a variable length key value (which must be the same value as the
7325 ** largest key on pPage).
7327 ** To find the largest key value on pPage, first find the right-most
7328 ** cell on pPage. The first two fields of this cell are the
7329 ** record-length (a variable length integer at most 32-bits in size)
7330 ** and the key value (a variable length integer, may have any value).
7331 ** The first of the while(...) loops below skips over the record-length
7332 ** field. The second while(...) loop copies the key value from the
7333 ** cell on pPage into the pSpace buffer.
7335 pCell = findCell(pPage, pPage->nCell-1);
7336 pStop = &pCell[9];
7337 while( (*(pCell++)&0x80) && pCell<pStop );
7338 pStop = &pCell[9];
7339 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
7341 /* Insert the new divider cell into pParent. */
7342 if( rc==SQLITE_OK ){
7343 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
7344 0, pPage->pgno, &rc);
7347 /* Set the right-child pointer of pParent to point to the new page. */
7348 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7350 /* Release the reference to the new page. */
7351 releasePage(pNew);
7354 return rc;
7356 #endif /* SQLITE_OMIT_QUICKBALANCE */
7358 #if 0
7360 ** This function does not contribute anything to the operation of SQLite.
7361 ** it is sometimes activated temporarily while debugging code responsible
7362 ** for setting pointer-map entries.
7364 static int ptrmapCheckPages(MemPage **apPage, int nPage){
7365 int i, j;
7366 for(i=0; i<nPage; i++){
7367 Pgno n;
7368 u8 e;
7369 MemPage *pPage = apPage[i];
7370 BtShared *pBt = pPage->pBt;
7371 assert( pPage->isInit );
7373 for(j=0; j<pPage->nCell; j++){
7374 CellInfo info;
7375 u8 *z;
7377 z = findCell(pPage, j);
7378 pPage->xParseCell(pPage, z, &info);
7379 if( info.nLocal<info.nPayload ){
7380 Pgno ovfl = get4byte(&z[info.nSize-4]);
7381 ptrmapGet(pBt, ovfl, &e, &n);
7382 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7384 if( !pPage->leaf ){
7385 Pgno child = get4byte(z);
7386 ptrmapGet(pBt, child, &e, &n);
7387 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7390 if( !pPage->leaf ){
7391 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7392 ptrmapGet(pBt, child, &e, &n);
7393 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7396 return 1;
7398 #endif
7401 ** This function is used to copy the contents of the b-tree node stored
7402 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7403 ** the pointer-map entries for each child page are updated so that the
7404 ** parent page stored in the pointer map is page pTo. If pFrom contained
7405 ** any cells with overflow page pointers, then the corresponding pointer
7406 ** map entries are also updated so that the parent page is page pTo.
7408 ** If pFrom is currently carrying any overflow cells (entries in the
7409 ** MemPage.apOvfl[] array), they are not copied to pTo.
7411 ** Before returning, page pTo is reinitialized using btreeInitPage().
7413 ** The performance of this function is not critical. It is only used by
7414 ** the balance_shallower() and balance_deeper() procedures, neither of
7415 ** which are called often under normal circumstances.
7417 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7418 if( (*pRC)==SQLITE_OK ){
7419 BtShared * const pBt = pFrom->pBt;
7420 u8 * const aFrom = pFrom->aData;
7421 u8 * const aTo = pTo->aData;
7422 int const iFromHdr = pFrom->hdrOffset;
7423 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
7424 int rc;
7425 int iData;
7428 assert( pFrom->isInit );
7429 assert( pFrom->nFree>=iToHdr );
7430 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
7432 /* Copy the b-tree node content from page pFrom to page pTo. */
7433 iData = get2byte(&aFrom[iFromHdr+5]);
7434 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7435 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7437 /* Reinitialize page pTo so that the contents of the MemPage structure
7438 ** match the new data. The initialization of pTo can actually fail under
7439 ** fairly obscure circumstances, even though it is a copy of initialized
7440 ** page pFrom.
7442 pTo->isInit = 0;
7443 rc = btreeInitPage(pTo);
7444 if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo);
7445 if( rc!=SQLITE_OK ){
7446 *pRC = rc;
7447 return;
7450 /* If this is an auto-vacuum database, update the pointer-map entries
7451 ** for any b-tree or overflow pages that pTo now contains the pointers to.
7453 if( ISAUTOVACUUM ){
7454 *pRC = setChildPtrmaps(pTo);
7460 ** This routine redistributes cells on the iParentIdx'th child of pParent
7461 ** (hereafter "the page") and up to 2 siblings so that all pages have about the
7462 ** same amount of free space. Usually a single sibling on either side of the
7463 ** page are used in the balancing, though both siblings might come from one
7464 ** side if the page is the first or last child of its parent. If the page
7465 ** has fewer than 2 siblings (something which can only happen if the page
7466 ** is a root page or a child of a root page) then all available siblings
7467 ** participate in the balancing.
7469 ** The number of siblings of the page might be increased or decreased by
7470 ** one or two in an effort to keep pages nearly full but not over full.
7472 ** Note that when this routine is called, some of the cells on the page
7473 ** might not actually be stored in MemPage.aData[]. This can happen
7474 ** if the page is overfull. This routine ensures that all cells allocated
7475 ** to the page and its siblings fit into MemPage.aData[] before returning.
7477 ** In the course of balancing the page and its siblings, cells may be
7478 ** inserted into or removed from the parent page (pParent). Doing so
7479 ** may cause the parent page to become overfull or underfull. If this
7480 ** happens, it is the responsibility of the caller to invoke the correct
7481 ** balancing routine to fix this problem (see the balance() routine).
7483 ** If this routine fails for any reason, it might leave the database
7484 ** in a corrupted state. So if this routine fails, the database should
7485 ** be rolled back.
7487 ** The third argument to this function, aOvflSpace, is a pointer to a
7488 ** buffer big enough to hold one page. If while inserting cells into the parent
7489 ** page (pParent) the parent page becomes overfull, this buffer is
7490 ** used to store the parent's overflow cells. Because this function inserts
7491 ** a maximum of four divider cells into the parent page, and the maximum
7492 ** size of a cell stored within an internal node is always less than 1/4
7493 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7494 ** enough for all overflow cells.
7496 ** If aOvflSpace is set to a null pointer, this function returns
7497 ** SQLITE_NOMEM.
7499 static int balance_nonroot(
7500 MemPage *pParent, /* Parent page of siblings being balanced */
7501 int iParentIdx, /* Index of "the page" in pParent */
7502 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
7503 int isRoot, /* True if pParent is a root-page */
7504 int bBulk /* True if this call is part of a bulk load */
7506 BtShared *pBt; /* The whole database */
7507 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
7508 int nNew = 0; /* Number of pages in apNew[] */
7509 int nOld; /* Number of pages in apOld[] */
7510 int i, j, k; /* Loop counters */
7511 int nxDiv; /* Next divider slot in pParent->aCell[] */
7512 int rc = SQLITE_OK; /* The return code */
7513 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
7514 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
7515 int usableSpace; /* Bytes in pPage beyond the header */
7516 int pageFlags; /* Value of pPage->aData[0] */
7517 int iSpace1 = 0; /* First unused byte of aSpace1[] */
7518 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
7519 int szScratch; /* Size of scratch memory requested */
7520 MemPage *apOld[NB]; /* pPage and up to two siblings */
7521 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
7522 u8 *pRight; /* Location in parent of right-sibling pointer */
7523 u8 *apDiv[NB-1]; /* Divider cells in pParent */
7524 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
7525 int cntOld[NB+2]; /* Old index in b.apCell[] */
7526 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
7527 u8 *aSpace1; /* Space for copies of dividers cells */
7528 Pgno pgno; /* Temp var to store a page number in */
7529 u8 abDone[NB+2]; /* True after i'th new page is populated */
7530 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
7531 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
7532 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
7533 CellArray b; /* Parsed information on cells being balanced */
7535 memset(abDone, 0, sizeof(abDone));
7536 b.nCell = 0;
7537 b.apCell = 0;
7538 pBt = pParent->pBt;
7539 assert( sqlite3_mutex_held(pBt->mutex) );
7540 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7542 /* At this point pParent may have at most one overflow cell. And if
7543 ** this overflow cell is present, it must be the cell with
7544 ** index iParentIdx. This scenario comes about when this function
7545 ** is called (indirectly) from sqlite3BtreeDelete().
7547 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
7548 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
7550 if( !aOvflSpace ){
7551 return SQLITE_NOMEM_BKPT;
7553 assert( pParent->nFree>=0 );
7555 /* Find the sibling pages to balance. Also locate the cells in pParent
7556 ** that divide the siblings. An attempt is made to find NN siblings on
7557 ** either side of pPage. More siblings are taken from one side, however,
7558 ** if there are fewer than NN siblings on the other side. If pParent
7559 ** has NB or fewer children then all children of pParent are taken.
7561 ** This loop also drops the divider cells from the parent page. This
7562 ** way, the remainder of the function does not have to deal with any
7563 ** overflow cells in the parent page, since if any existed they will
7564 ** have already been removed.
7566 i = pParent->nOverflow + pParent->nCell;
7567 if( i<2 ){
7568 nxDiv = 0;
7569 }else{
7570 assert( bBulk==0 || bBulk==1 );
7571 if( iParentIdx==0 ){
7572 nxDiv = 0;
7573 }else if( iParentIdx==i ){
7574 nxDiv = i-2+bBulk;
7575 }else{
7576 nxDiv = iParentIdx-1;
7578 i = 2-bBulk;
7580 nOld = i+1;
7581 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7582 pRight = &pParent->aData[pParent->hdrOffset+8];
7583 }else{
7584 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7586 pgno = get4byte(pRight);
7587 while( 1 ){
7588 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
7589 if( rc ){
7590 memset(apOld, 0, (i+1)*sizeof(MemPage*));
7591 goto balance_cleanup;
7593 if( apOld[i]->nFree<0 ){
7594 rc = btreeComputeFreeSpace(apOld[i]);
7595 if( rc ){
7596 memset(apOld, 0, (i)*sizeof(MemPage*));
7597 goto balance_cleanup;
7600 if( (i--)==0 ) break;
7602 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
7603 apDiv[i] = pParent->apOvfl[0];
7604 pgno = get4byte(apDiv[i]);
7605 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7606 pParent->nOverflow = 0;
7607 }else{
7608 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7609 pgno = get4byte(apDiv[i]);
7610 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7612 /* Drop the cell from the parent page. apDiv[i] still points to
7613 ** the cell within the parent, even though it has been dropped.
7614 ** This is safe because dropping a cell only overwrites the first
7615 ** four bytes of it, and this function does not need the first
7616 ** four bytes of the divider cell. So the pointer is safe to use
7617 ** later on.
7619 ** But not if we are in secure-delete mode. In secure-delete mode,
7620 ** the dropCell() routine will overwrite the entire cell with zeroes.
7621 ** In this case, temporarily copy the cell into the aOvflSpace[]
7622 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7623 ** is allocated. */
7624 if( pBt->btsFlags & BTS_FAST_SECURE ){
7625 int iOff;
7627 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
7628 if( (iOff+szNew[i])>(int)pBt->usableSize ){
7629 rc = SQLITE_CORRUPT_BKPT;
7630 memset(apOld, 0, (i+1)*sizeof(MemPage*));
7631 goto balance_cleanup;
7632 }else{
7633 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7634 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7637 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
7641 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
7642 ** alignment */
7643 nMaxCells = nOld*(MX_CELL(pBt) + ArraySize(pParent->apOvfl));
7644 nMaxCells = (nMaxCells + 3)&~3;
7647 ** Allocate space for memory structures
7649 szScratch =
7650 nMaxCells*sizeof(u8*) /* b.apCell */
7651 + nMaxCells*sizeof(u16) /* b.szCell */
7652 + pBt->pageSize; /* aSpace1 */
7654 assert( szScratch<=7*(int)pBt->pageSize );
7655 b.apCell = sqlite3StackAllocRaw(0, szScratch );
7656 if( b.apCell==0 ){
7657 rc = SQLITE_NOMEM_BKPT;
7658 goto balance_cleanup;
7660 b.szCell = (u16*)&b.apCell[nMaxCells];
7661 aSpace1 = (u8*)&b.szCell[nMaxCells];
7662 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
7665 ** Load pointers to all cells on sibling pages and the divider cells
7666 ** into the local b.apCell[] array. Make copies of the divider cells
7667 ** into space obtained from aSpace1[]. The divider cells have already
7668 ** been removed from pParent.
7670 ** If the siblings are on leaf pages, then the child pointers of the
7671 ** divider cells are stripped from the cells before they are copied
7672 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
7673 ** child pointers. If siblings are not leaves, then all cell in
7674 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
7675 ** are alike.
7677 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7678 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
7680 b.pRef = apOld[0];
7681 leafCorrection = b.pRef->leaf*4;
7682 leafData = b.pRef->intKeyLeaf;
7683 for(i=0; i<nOld; i++){
7684 MemPage *pOld = apOld[i];
7685 int limit = pOld->nCell;
7686 u8 *aData = pOld->aData;
7687 u16 maskPage = pOld->maskPage;
7688 u8 *piCell = aData + pOld->cellOffset;
7689 u8 *piEnd;
7690 VVA_ONLY( int nCellAtStart = b.nCell; )
7692 /* Verify that all sibling pages are of the same "type" (table-leaf,
7693 ** table-interior, index-leaf, or index-interior).
7695 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7696 rc = SQLITE_CORRUPT_BKPT;
7697 goto balance_cleanup;
7700 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
7701 ** contains overflow cells, include them in the b.apCell[] array
7702 ** in the correct spot.
7704 ** Note that when there are multiple overflow cells, it is always the
7705 ** case that they are sequential and adjacent. This invariant arises
7706 ** because multiple overflows can only occurs when inserting divider
7707 ** cells into a parent on a prior balance, and divider cells are always
7708 ** adjacent and are inserted in order. There is an assert() tagged
7709 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7710 ** invariant.
7712 ** This must be done in advance. Once the balance starts, the cell
7713 ** offset section of the btree page will be overwritten and we will no
7714 ** long be able to find the cells if a pointer to each cell is not saved
7715 ** first.
7717 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
7718 if( pOld->nOverflow>0 ){
7719 if( NEVER(limit<pOld->aiOvfl[0]) ){
7720 rc = SQLITE_CORRUPT_BKPT;
7721 goto balance_cleanup;
7723 limit = pOld->aiOvfl[0];
7724 for(j=0; j<limit; j++){
7725 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7726 piCell += 2;
7727 b.nCell++;
7729 for(k=0; k<pOld->nOverflow; k++){
7730 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
7731 b.apCell[b.nCell] = pOld->apOvfl[k];
7732 b.nCell++;
7735 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7736 while( piCell<piEnd ){
7737 assert( b.nCell<nMaxCells );
7738 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7739 piCell += 2;
7740 b.nCell++;
7742 assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) );
7744 cntOld[i] = b.nCell;
7745 if( i<nOld-1 && !leafData){
7746 u16 sz = (u16)szNew[i];
7747 u8 *pTemp;
7748 assert( b.nCell<nMaxCells );
7749 b.szCell[b.nCell] = sz;
7750 pTemp = &aSpace1[iSpace1];
7751 iSpace1 += sz;
7752 assert( sz<=pBt->maxLocal+23 );
7753 assert( iSpace1 <= (int)pBt->pageSize );
7754 memcpy(pTemp, apDiv[i], sz);
7755 b.apCell[b.nCell] = pTemp+leafCorrection;
7756 assert( leafCorrection==0 || leafCorrection==4 );
7757 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
7758 if( !pOld->leaf ){
7759 assert( leafCorrection==0 );
7760 assert( pOld->hdrOffset==0 );
7761 /* The right pointer of the child page pOld becomes the left
7762 ** pointer of the divider cell */
7763 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
7764 }else{
7765 assert( leafCorrection==4 );
7766 while( b.szCell[b.nCell]<4 ){
7767 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7768 ** does exist, pad it with 0x00 bytes. */
7769 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7770 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
7771 aSpace1[iSpace1++] = 0x00;
7772 b.szCell[b.nCell]++;
7775 b.nCell++;
7780 ** Figure out the number of pages needed to hold all b.nCell cells.
7781 ** Store this number in "k". Also compute szNew[] which is the total
7782 ** size of all cells on the i-th page and cntNew[] which is the index
7783 ** in b.apCell[] of the cell that divides page i from page i+1.
7784 ** cntNew[k] should equal b.nCell.
7786 ** Values computed by this block:
7788 ** k: The total number of sibling pages
7789 ** szNew[i]: Spaced used on the i-th sibling page.
7790 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
7791 ** the right of the i-th sibling page.
7792 ** usableSpace: Number of bytes of space available on each sibling.
7795 usableSpace = pBt->usableSize - 12 + leafCorrection;
7796 for(i=k=0; i<nOld; i++, k++){
7797 MemPage *p = apOld[i];
7798 b.apEnd[k] = p->aDataEnd;
7799 b.ixNx[k] = cntOld[i];
7800 if( k && b.ixNx[k]==b.ixNx[k-1] ){
7801 k--; /* Omit b.ixNx[] entry for child pages with no cells */
7803 if( !leafData ){
7804 k++;
7805 b.apEnd[k] = pParent->aDataEnd;
7806 b.ixNx[k] = cntOld[i]+1;
7808 assert( p->nFree>=0 );
7809 szNew[i] = usableSpace - p->nFree;
7810 for(j=0; j<p->nOverflow; j++){
7811 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7813 cntNew[i] = cntOld[i];
7815 k = nOld;
7816 for(i=0; i<k; i++){
7817 int sz;
7818 while( szNew[i]>usableSpace ){
7819 if( i+1>=k ){
7820 k = i+2;
7821 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7822 szNew[k-1] = 0;
7823 cntNew[k-1] = b.nCell;
7825 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
7826 szNew[i] -= sz;
7827 if( !leafData ){
7828 if( cntNew[i]<b.nCell ){
7829 sz = 2 + cachedCellSize(&b, cntNew[i]);
7830 }else{
7831 sz = 0;
7834 szNew[i+1] += sz;
7835 cntNew[i]--;
7837 while( cntNew[i]<b.nCell ){
7838 sz = 2 + cachedCellSize(&b, cntNew[i]);
7839 if( szNew[i]+sz>usableSpace ) break;
7840 szNew[i] += sz;
7841 cntNew[i]++;
7842 if( !leafData ){
7843 if( cntNew[i]<b.nCell ){
7844 sz = 2 + cachedCellSize(&b, cntNew[i]);
7845 }else{
7846 sz = 0;
7849 szNew[i+1] -= sz;
7851 if( cntNew[i]>=b.nCell ){
7852 k = i+1;
7853 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
7854 rc = SQLITE_CORRUPT_BKPT;
7855 goto balance_cleanup;
7860 ** The packing computed by the previous block is biased toward the siblings
7861 ** on the left side (siblings with smaller keys). The left siblings are
7862 ** always nearly full, while the right-most sibling might be nearly empty.
7863 ** The next block of code attempts to adjust the packing of siblings to
7864 ** get a better balance.
7866 ** This adjustment is more than an optimization. The packing above might
7867 ** be so out of balance as to be illegal. For example, the right-most
7868 ** sibling might be completely empty. This adjustment is not optional.
7870 for(i=k-1; i>0; i--){
7871 int szRight = szNew[i]; /* Size of sibling on the right */
7872 int szLeft = szNew[i-1]; /* Size of sibling on the left */
7873 int r; /* Index of right-most cell in left sibling */
7874 int d; /* Index of first cell to the left of right sibling */
7876 r = cntNew[i-1] - 1;
7877 d = r + 1 - leafData;
7878 (void)cachedCellSize(&b, d);
7880 assert( d<nMaxCells );
7881 assert( r<nMaxCells );
7882 (void)cachedCellSize(&b, r);
7883 if( szRight!=0
7884 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
7885 break;
7887 szRight += b.szCell[d] + 2;
7888 szLeft -= b.szCell[r] + 2;
7889 cntNew[i-1] = r;
7890 r--;
7891 d--;
7892 }while( r>=0 );
7893 szNew[i] = szRight;
7894 szNew[i-1] = szLeft;
7895 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7896 rc = SQLITE_CORRUPT_BKPT;
7897 goto balance_cleanup;
7901 /* Sanity check: For a non-corrupt database file one of the follwing
7902 ** must be true:
7903 ** (1) We found one or more cells (cntNew[0])>0), or
7904 ** (2) pPage is a virtual root page. A virtual root page is when
7905 ** the real root page is page 1 and we are the only child of
7906 ** that page.
7908 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
7909 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7910 apOld[0]->pgno, apOld[0]->nCell,
7911 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7912 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
7916 ** Allocate k new pages. Reuse old pages where possible.
7918 pageFlags = apOld[0]->aData[0];
7919 for(i=0; i<k; i++){
7920 MemPage *pNew;
7921 if( i<nOld ){
7922 pNew = apNew[i] = apOld[i];
7923 apOld[i] = 0;
7924 rc = sqlite3PagerWrite(pNew->pDbPage);
7925 nNew++;
7926 if( rc ) goto balance_cleanup;
7927 }else{
7928 assert( i>0 );
7929 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
7930 if( rc ) goto balance_cleanup;
7931 zeroPage(pNew, pageFlags);
7932 apNew[i] = pNew;
7933 nNew++;
7934 cntOld[i] = b.nCell;
7936 /* Set the pointer-map entry for the new sibling page. */
7937 if( ISAUTOVACUUM ){
7938 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
7939 if( rc!=SQLITE_OK ){
7940 goto balance_cleanup;
7947 ** Reassign page numbers so that the new pages are in ascending order.
7948 ** This helps to keep entries in the disk file in order so that a scan
7949 ** of the table is closer to a linear scan through the file. That in turn
7950 ** helps the operating system to deliver pages from the disk more rapidly.
7952 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7953 ** than (NB+2) (a small constant), that should not be a problem.
7955 ** When NB==3, this one optimization makes the database about 25% faster
7956 ** for large insertions and deletions.
7958 for(i=0; i<nNew; i++){
7959 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
7960 aPgFlags[i] = apNew[i]->pDbPage->flags;
7961 for(j=0; j<i; j++){
7962 if( aPgno[j]==aPgno[i] ){
7963 /* This branch is taken if the set of sibling pages somehow contains
7964 ** duplicate entries. This can happen if the database is corrupt.
7965 ** It would be simpler to detect this as part of the loop below, but
7966 ** we do the detection here in order to avoid populating the pager
7967 ** cache with two separate objects associated with the same
7968 ** page number. */
7969 assert( CORRUPT_DB );
7970 rc = SQLITE_CORRUPT_BKPT;
7971 goto balance_cleanup;
7975 for(i=0; i<nNew; i++){
7976 int iBest = 0; /* aPgno[] index of page number to use */
7977 for(j=1; j<nNew; j++){
7978 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
7980 pgno = aPgOrder[iBest];
7981 aPgOrder[iBest] = 0xffffffff;
7982 if( iBest!=i ){
7983 if( iBest>i ){
7984 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7986 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7987 apNew[i]->pgno = pgno;
7991 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7992 "%d(%d nc=%d) %d(%d nc=%d)\n",
7993 apNew[0]->pgno, szNew[0], cntNew[0],
7994 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
7995 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
7996 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
7997 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
7998 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
7999 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
8000 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
8001 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
8004 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
8005 assert( nNew>=1 && nNew<=ArraySize(apNew) );
8006 assert( apNew[nNew-1]!=0 );
8007 put4byte(pRight, apNew[nNew-1]->pgno);
8009 /* If the sibling pages are not leaves, ensure that the right-child pointer
8010 ** of the right-most new sibling page is set to the value that was
8011 ** originally in the same field of the right-most old sibling page. */
8012 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
8013 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
8014 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
8017 /* Make any required updates to pointer map entries associated with
8018 ** cells stored on sibling pages following the balance operation. Pointer
8019 ** map entries associated with divider cells are set by the insertCell()
8020 ** routine. The associated pointer map entries are:
8022 ** a) if the cell contains a reference to an overflow chain, the
8023 ** entry associated with the first page in the overflow chain, and
8025 ** b) if the sibling pages are not leaves, the child page associated
8026 ** with the cell.
8028 ** If the sibling pages are not leaves, then the pointer map entry
8029 ** associated with the right-child of each sibling may also need to be
8030 ** updated. This happens below, after the sibling pages have been
8031 ** populated, not here.
8033 if( ISAUTOVACUUM ){
8034 MemPage *pOld;
8035 MemPage *pNew = pOld = apNew[0];
8036 int cntOldNext = pNew->nCell + pNew->nOverflow;
8037 int iNew = 0;
8038 int iOld = 0;
8040 for(i=0; i<b.nCell; i++){
8041 u8 *pCell = b.apCell[i];
8042 while( i==cntOldNext ){
8043 iOld++;
8044 assert( iOld<nNew || iOld<nOld );
8045 assert( iOld>=0 && iOld<NB );
8046 pOld = iOld<nNew ? apNew[iOld] : apOld[iOld];
8047 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
8049 if( i==cntNew[iNew] ){
8050 pNew = apNew[++iNew];
8051 if( !leafData ) continue;
8054 /* Cell pCell is destined for new sibling page pNew. Originally, it
8055 ** was either part of sibling page iOld (possibly an overflow cell),
8056 ** or else the divider cell to the left of sibling page iOld. So,
8057 ** if sibling page iOld had the same page number as pNew, and if
8058 ** pCell really was a part of sibling page iOld (not a divider or
8059 ** overflow cell), we can skip updating the pointer map entries. */
8060 if( iOld>=nNew
8061 || pNew->pgno!=aPgno[iOld]
8062 || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd)
8064 if( !leafCorrection ){
8065 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
8067 if( cachedCellSize(&b,i)>pNew->minLocal ){
8068 ptrmapPutOvflPtr(pNew, pOld, pCell, &rc);
8070 if( rc ) goto balance_cleanup;
8075 /* Insert new divider cells into pParent. */
8076 for(i=0; i<nNew-1; i++){
8077 u8 *pCell;
8078 u8 *pTemp;
8079 int sz;
8080 MemPage *pNew = apNew[i];
8081 j = cntNew[i];
8083 assert( j<nMaxCells );
8084 assert( b.apCell[j]!=0 );
8085 pCell = b.apCell[j];
8086 sz = b.szCell[j] + leafCorrection;
8087 pTemp = &aOvflSpace[iOvflSpace];
8088 if( !pNew->leaf ){
8089 memcpy(&pNew->aData[8], pCell, 4);
8090 }else if( leafData ){
8091 /* If the tree is a leaf-data tree, and the siblings are leaves,
8092 ** then there is no divider cell in b.apCell[]. Instead, the divider
8093 ** cell consists of the integer key for the right-most cell of
8094 ** the sibling-page assembled above only.
8096 CellInfo info;
8097 j--;
8098 pNew->xParseCell(pNew, b.apCell[j], &info);
8099 pCell = pTemp;
8100 sz = 4 + putVarint(&pCell[4], info.nKey);
8101 pTemp = 0;
8102 }else{
8103 pCell -= 4;
8104 /* Obscure case for non-leaf-data trees: If the cell at pCell was
8105 ** previously stored on a leaf node, and its reported size was 4
8106 ** bytes, then it may actually be smaller than this
8107 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
8108 ** any cell). But it is important to pass the correct size to
8109 ** insertCell(), so reparse the cell now.
8111 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
8112 ** and WITHOUT ROWID tables with exactly one column which is the
8113 ** primary key.
8115 if( b.szCell[j]==4 ){
8116 assert(leafCorrection==4);
8117 sz = pParent->xCellSize(pParent, pCell);
8120 iOvflSpace += sz;
8121 assert( sz<=pBt->maxLocal+23 );
8122 assert( iOvflSpace <= (int)pBt->pageSize );
8123 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
8124 if( rc!=SQLITE_OK ) goto balance_cleanup;
8125 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
8128 /* Now update the actual sibling pages. The order in which they are updated
8129 ** is important, as this code needs to avoid disrupting any page from which
8130 ** cells may still to be read. In practice, this means:
8132 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
8133 ** then it is not safe to update page apNew[iPg] until after
8134 ** the left-hand sibling apNew[iPg-1] has been updated.
8136 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
8137 ** then it is not safe to update page apNew[iPg] until after
8138 ** the right-hand sibling apNew[iPg+1] has been updated.
8140 ** If neither of the above apply, the page is safe to update.
8142 ** The iPg value in the following loop starts at nNew-1 goes down
8143 ** to 0, then back up to nNew-1 again, thus making two passes over
8144 ** the pages. On the initial downward pass, only condition (1) above
8145 ** needs to be tested because (2) will always be true from the previous
8146 ** step. On the upward pass, both conditions are always true, so the
8147 ** upwards pass simply processes pages that were missed on the downward
8148 ** pass.
8150 for(i=1-nNew; i<nNew; i++){
8151 int iPg = i<0 ? -i : i;
8152 assert( iPg>=0 && iPg<nNew );
8153 if( abDone[iPg] ) continue; /* Skip pages already processed */
8154 if( i>=0 /* On the upwards pass, or... */
8155 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
8157 int iNew;
8158 int iOld;
8159 int nNewCell;
8161 /* Verify condition (1): If cells are moving left, update iPg
8162 ** only after iPg-1 has already been updated. */
8163 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
8165 /* Verify condition (2): If cells are moving right, update iPg
8166 ** only after iPg+1 has already been updated. */
8167 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
8169 if( iPg==0 ){
8170 iNew = iOld = 0;
8171 nNewCell = cntNew[0];
8172 }else{
8173 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
8174 iNew = cntNew[iPg-1] + !leafData;
8175 nNewCell = cntNew[iPg] - iNew;
8178 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
8179 if( rc ) goto balance_cleanup;
8180 abDone[iPg]++;
8181 apNew[iPg]->nFree = usableSpace-szNew[iPg];
8182 assert( apNew[iPg]->nOverflow==0 );
8183 assert( apNew[iPg]->nCell==nNewCell );
8187 /* All pages have been processed exactly once */
8188 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
8190 assert( nOld>0 );
8191 assert( nNew>0 );
8193 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
8194 /* The root page of the b-tree now contains no cells. The only sibling
8195 ** page is the right-child of the parent. Copy the contents of the
8196 ** child page into the parent, decreasing the overall height of the
8197 ** b-tree structure by one. This is described as the "balance-shallower"
8198 ** sub-algorithm in some documentation.
8200 ** If this is an auto-vacuum database, the call to copyNodeContent()
8201 ** sets all pointer-map entries corresponding to database image pages
8202 ** for which the pointer is stored within the content being copied.
8204 ** It is critical that the child page be defragmented before being
8205 ** copied into the parent, because if the parent is page 1 then it will
8206 ** by smaller than the child due to the database header, and so all the
8207 ** free space needs to be up front.
8209 assert( nNew==1 || CORRUPT_DB );
8210 rc = defragmentPage(apNew[0], -1);
8211 testcase( rc!=SQLITE_OK );
8212 assert( apNew[0]->nFree ==
8213 (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset
8214 - apNew[0]->nCell*2)
8215 || rc!=SQLITE_OK
8217 copyNodeContent(apNew[0], pParent, &rc);
8218 freePage(apNew[0], &rc);
8219 }else if( ISAUTOVACUUM && !leafCorrection ){
8220 /* Fix the pointer map entries associated with the right-child of each
8221 ** sibling page. All other pointer map entries have already been taken
8222 ** care of. */
8223 for(i=0; i<nNew; i++){
8224 u32 key = get4byte(&apNew[i]->aData[8]);
8225 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
8229 assert( pParent->isInit );
8230 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
8231 nOld, nNew, b.nCell));
8233 /* Free any old pages that were not reused as new pages.
8235 for(i=nNew; i<nOld; i++){
8236 freePage(apOld[i], &rc);
8239 #if 0
8240 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
8241 /* The ptrmapCheckPages() contains assert() statements that verify that
8242 ** all pointer map pages are set correctly. This is helpful while
8243 ** debugging. This is usually disabled because a corrupt database may
8244 ** cause an assert() statement to fail. */
8245 ptrmapCheckPages(apNew, nNew);
8246 ptrmapCheckPages(&pParent, 1);
8248 #endif
8251 ** Cleanup before returning.
8253 balance_cleanup:
8254 sqlite3StackFree(0, b.apCell);
8255 for(i=0; i<nOld; i++){
8256 releasePage(apOld[i]);
8258 for(i=0; i<nNew; i++){
8259 releasePage(apNew[i]);
8262 return rc;
8267 ** This function is called when the root page of a b-tree structure is
8268 ** overfull (has one or more overflow pages).
8270 ** A new child page is allocated and the contents of the current root
8271 ** page, including overflow cells, are copied into the child. The root
8272 ** page is then overwritten to make it an empty page with the right-child
8273 ** pointer pointing to the new page.
8275 ** Before returning, all pointer-map entries corresponding to pages
8276 ** that the new child-page now contains pointers to are updated. The
8277 ** entry corresponding to the new right-child pointer of the root
8278 ** page is also updated.
8280 ** If successful, *ppChild is set to contain a reference to the child
8281 ** page and SQLITE_OK is returned. In this case the caller is required
8282 ** to call releasePage() on *ppChild exactly once. If an error occurs,
8283 ** an error code is returned and *ppChild is set to 0.
8285 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
8286 int rc; /* Return value from subprocedures */
8287 MemPage *pChild = 0; /* Pointer to a new child page */
8288 Pgno pgnoChild = 0; /* Page number of the new child page */
8289 BtShared *pBt = pRoot->pBt; /* The BTree */
8291 assert( pRoot->nOverflow>0 );
8292 assert( sqlite3_mutex_held(pBt->mutex) );
8294 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8295 ** page that will become the new right-child of pPage. Copy the contents
8296 ** of the node stored on pRoot into the new child page.
8298 rc = sqlite3PagerWrite(pRoot->pDbPage);
8299 if( rc==SQLITE_OK ){
8300 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
8301 copyNodeContent(pRoot, pChild, &rc);
8302 if( ISAUTOVACUUM ){
8303 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
8306 if( rc ){
8307 *ppChild = 0;
8308 releasePage(pChild);
8309 return rc;
8311 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
8312 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
8313 assert( pChild->nCell==pRoot->nCell || CORRUPT_DB );
8315 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
8317 /* Copy the overflow cells from pRoot to pChild */
8318 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
8319 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
8320 memcpy(pChild->apOvfl, pRoot->apOvfl,
8321 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
8322 pChild->nOverflow = pRoot->nOverflow;
8324 /* Zero the contents of pRoot. Then install pChild as the right-child. */
8325 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
8326 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
8328 *ppChild = pChild;
8329 return SQLITE_OK;
8333 ** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid
8334 ** on the same B-tree as pCur.
8336 ** This can if a database is corrupt with two or more SQL tables
8337 ** pointing to the same b-tree. If an insert occurs on one SQL table
8338 ** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL
8339 ** table linked to the same b-tree. If the secondary insert causes a
8340 ** rebalance, that can change content out from under the cursor on the
8341 ** first SQL table, violating invariants on the first insert.
8343 static int anotherValidCursor(BtCursor *pCur){
8344 BtCursor *pOther;
8345 for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){
8346 if( pOther!=pCur
8347 && pOther->eState==CURSOR_VALID
8348 && pOther->pPage==pCur->pPage
8350 return SQLITE_CORRUPT_BKPT;
8353 return SQLITE_OK;
8357 ** The page that pCur currently points to has just been modified in
8358 ** some way. This function figures out if this modification means the
8359 ** tree needs to be balanced, and if so calls the appropriate balancing
8360 ** routine. Balancing routines are:
8362 ** balance_quick()
8363 ** balance_deeper()
8364 ** balance_nonroot()
8366 static int balance(BtCursor *pCur){
8367 int rc = SQLITE_OK;
8368 const int nMin = pCur->pBt->usableSize * 2 / 3;
8369 u8 aBalanceQuickSpace[13];
8370 u8 *pFree = 0;
8372 VVA_ONLY( int balance_quick_called = 0 );
8373 VVA_ONLY( int balance_deeper_called = 0 );
8375 do {
8376 int iPage;
8377 MemPage *pPage = pCur->pPage;
8379 if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break;
8380 if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
8381 break;
8382 }else if( (iPage = pCur->iPage)==0 ){
8383 if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){
8384 /* The root page of the b-tree is overfull. In this case call the
8385 ** balance_deeper() function to create a new child for the root-page
8386 ** and copy the current contents of the root-page to it. The
8387 ** next iteration of the do-loop will balance the child page.
8389 assert( balance_deeper_called==0 );
8390 VVA_ONLY( balance_deeper_called++ );
8391 rc = balance_deeper(pPage, &pCur->apPage[1]);
8392 if( rc==SQLITE_OK ){
8393 pCur->iPage = 1;
8394 pCur->ix = 0;
8395 pCur->aiIdx[0] = 0;
8396 pCur->apPage[0] = pPage;
8397 pCur->pPage = pCur->apPage[1];
8398 assert( pCur->pPage->nOverflow );
8400 }else{
8401 break;
8403 }else{
8404 MemPage * const pParent = pCur->apPage[iPage-1];
8405 int const iIdx = pCur->aiIdx[iPage-1];
8407 rc = sqlite3PagerWrite(pParent->pDbPage);
8408 if( rc==SQLITE_OK && pParent->nFree<0 ){
8409 rc = btreeComputeFreeSpace(pParent);
8411 if( rc==SQLITE_OK ){
8412 #ifndef SQLITE_OMIT_QUICKBALANCE
8413 if( pPage->intKeyLeaf
8414 && pPage->nOverflow==1
8415 && pPage->aiOvfl[0]==pPage->nCell
8416 && pParent->pgno!=1
8417 && pParent->nCell==iIdx
8419 /* Call balance_quick() to create a new sibling of pPage on which
8420 ** to store the overflow cell. balance_quick() inserts a new cell
8421 ** into pParent, which may cause pParent overflow. If this
8422 ** happens, the next iteration of the do-loop will balance pParent
8423 ** use either balance_nonroot() or balance_deeper(). Until this
8424 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8425 ** buffer.
8427 ** The purpose of the following assert() is to check that only a
8428 ** single call to balance_quick() is made for each call to this
8429 ** function. If this were not verified, a subtle bug involving reuse
8430 ** of the aBalanceQuickSpace[] might sneak in.
8432 assert( balance_quick_called==0 );
8433 VVA_ONLY( balance_quick_called++ );
8434 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8435 }else
8436 #endif
8438 /* In this case, call balance_nonroot() to redistribute cells
8439 ** between pPage and up to 2 of its sibling pages. This involves
8440 ** modifying the contents of pParent, which may cause pParent to
8441 ** become overfull or underfull. The next iteration of the do-loop
8442 ** will balance the parent page to correct this.
8444 ** If the parent page becomes overfull, the overflow cell or cells
8445 ** are stored in the pSpace buffer allocated immediately below.
8446 ** A subsequent iteration of the do-loop will deal with this by
8447 ** calling balance_nonroot() (balance_deeper() may be called first,
8448 ** but it doesn't deal with overflow cells - just moves them to a
8449 ** different page). Once this subsequent call to balance_nonroot()
8450 ** has completed, it is safe to release the pSpace buffer used by
8451 ** the previous call, as the overflow cell data will have been
8452 ** copied either into the body of a database page or into the new
8453 ** pSpace buffer passed to the latter call to balance_nonroot().
8455 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
8456 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8457 pCur->hints&BTREE_BULKLOAD);
8458 if( pFree ){
8459 /* If pFree is not NULL, it points to the pSpace buffer used
8460 ** by a previous call to balance_nonroot(). Its contents are
8461 ** now stored either on real database pages or within the
8462 ** new pSpace buffer, so it may be safely freed here. */
8463 sqlite3PageFree(pFree);
8466 /* The pSpace buffer will be freed after the next call to
8467 ** balance_nonroot(), or just before this function returns, whichever
8468 ** comes first. */
8469 pFree = pSpace;
8473 pPage->nOverflow = 0;
8475 /* The next iteration of the do-loop balances the parent page. */
8476 releasePage(pPage);
8477 pCur->iPage--;
8478 assert( pCur->iPage>=0 );
8479 pCur->pPage = pCur->apPage[pCur->iPage];
8481 }while( rc==SQLITE_OK );
8483 if( pFree ){
8484 sqlite3PageFree(pFree);
8486 return rc;
8489 /* Overwrite content from pX into pDest. Only do the write if the
8490 ** content is different from what is already there.
8492 static int btreeOverwriteContent(
8493 MemPage *pPage, /* MemPage on which writing will occur */
8494 u8 *pDest, /* Pointer to the place to start writing */
8495 const BtreePayload *pX, /* Source of data to write */
8496 int iOffset, /* Offset of first byte to write */
8497 int iAmt /* Number of bytes to be written */
8499 int nData = pX->nData - iOffset;
8500 if( nData<=0 ){
8501 /* Overwritting with zeros */
8502 int i;
8503 for(i=0; i<iAmt && pDest[i]==0; i++){}
8504 if( i<iAmt ){
8505 int rc = sqlite3PagerWrite(pPage->pDbPage);
8506 if( rc ) return rc;
8507 memset(pDest + i, 0, iAmt - i);
8509 }else{
8510 if( nData<iAmt ){
8511 /* Mixed read data and zeros at the end. Make a recursive call
8512 ** to write the zeros then fall through to write the real data */
8513 int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData,
8514 iAmt-nData);
8515 if( rc ) return rc;
8516 iAmt = nData;
8518 if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){
8519 int rc = sqlite3PagerWrite(pPage->pDbPage);
8520 if( rc ) return rc;
8521 /* In a corrupt database, it is possible for the source and destination
8522 ** buffers to overlap. This is harmless since the database is already
8523 ** corrupt but it does cause valgrind and ASAN warnings. So use
8524 ** memmove(). */
8525 memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt);
8528 return SQLITE_OK;
8532 ** Overwrite the cell that cursor pCur is pointing to with fresh content
8533 ** contained in pX.
8535 static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
8536 int iOffset; /* Next byte of pX->pData to write */
8537 int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
8538 int rc; /* Return code */
8539 MemPage *pPage = pCur->pPage; /* Page being written */
8540 BtShared *pBt; /* Btree */
8541 Pgno ovflPgno; /* Next overflow page to write */
8542 u32 ovflPageSize; /* Size to write on overflow page */
8544 if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd
8545 || pCur->info.pPayload < pPage->aData + pPage->cellOffset
8547 return SQLITE_CORRUPT_BKPT;
8549 /* Overwrite the local portion first */
8550 rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
8551 0, pCur->info.nLocal);
8552 if( rc ) return rc;
8553 if( pCur->info.nLocal==nTotal ) return SQLITE_OK;
8555 /* Now overwrite the overflow pages */
8556 iOffset = pCur->info.nLocal;
8557 assert( nTotal>=0 );
8558 assert( iOffset>=0 );
8559 ovflPgno = get4byte(pCur->info.pPayload + iOffset);
8560 pBt = pPage->pBt;
8561 ovflPageSize = pBt->usableSize - 4;
8563 rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
8564 if( rc ) return rc;
8565 if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 ){
8566 rc = SQLITE_CORRUPT_BKPT;
8567 }else{
8568 if( iOffset+ovflPageSize<(u32)nTotal ){
8569 ovflPgno = get4byte(pPage->aData);
8570 }else{
8571 ovflPageSize = nTotal - iOffset;
8573 rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
8574 iOffset, ovflPageSize);
8576 sqlite3PagerUnref(pPage->pDbPage);
8577 if( rc ) return rc;
8578 iOffset += ovflPageSize;
8579 }while( iOffset<nTotal );
8580 return SQLITE_OK;
8585 ** Insert a new record into the BTree. The content of the new record
8586 ** is described by the pX object. The pCur cursor is used only to
8587 ** define what table the record should be inserted into, and is left
8588 ** pointing at a random location.
8590 ** For a table btree (used for rowid tables), only the pX.nKey value of
8591 ** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
8592 ** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
8593 ** hold the content of the row.
8595 ** For an index btree (used for indexes and WITHOUT ROWID tables), the
8596 ** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
8597 ** pX.pData,nData,nZero fields must be zero.
8599 ** If the seekResult parameter is non-zero, then a successful call to
8600 ** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8601 ** been performed. In other words, if seekResult!=0 then the cursor
8602 ** is currently pointing to a cell that will be adjacent to the cell
8603 ** to be inserted. If seekResult<0 then pCur points to a cell that is
8604 ** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
8605 ** that is larger than (pKey,nKey).
8607 ** If seekResult==0, that means pCur is pointing at some unknown location.
8608 ** In that case, this routine must seek the cursor to the correct insertion
8609 ** point for (pKey,nKey) before doing the insertion. For index btrees,
8610 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8611 ** key values and pX->aMem can be used instead of pX->pKey to avoid having
8612 ** to decode the key.
8614 int sqlite3BtreeInsert(
8615 BtCursor *pCur, /* Insert data into the table of this cursor */
8616 const BtreePayload *pX, /* Content of the row to be inserted */
8617 int flags, /* True if this is likely an append */
8618 int seekResult /* Result of prior MovetoUnpacked() call */
8620 int rc;
8621 int loc = seekResult; /* -1: before desired location +1: after */
8622 int szNew = 0;
8623 int idx;
8624 MemPage *pPage;
8625 Btree *p = pCur->pBtree;
8626 BtShared *pBt = p->pBt;
8627 unsigned char *oldCell;
8628 unsigned char *newCell = 0;
8630 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags );
8632 if( pCur->eState==CURSOR_FAULT ){
8633 assert( pCur->skipNext!=SQLITE_OK );
8634 return pCur->skipNext;
8637 assert( cursorOwnsBtShared(pCur) );
8638 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8639 && pBt->inTransaction==TRANS_WRITE
8640 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
8641 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8643 /* Assert that the caller has been consistent. If this cursor was opened
8644 ** expecting an index b-tree, then the caller should be inserting blob
8645 ** keys with no associated data. If the cursor was opened expecting an
8646 ** intkey table, the caller should be inserting integer keys with a
8647 ** blob of associated data. */
8648 assert( (pX->pKey==0)==(pCur->pKeyInfo==0) );
8650 /* Save the positions of any other cursors open on this table.
8652 ** In some cases, the call to btreeMoveto() below is a no-op. For
8653 ** example, when inserting data into a table with auto-generated integer
8654 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8655 ** integer key to use. It then calls this function to actually insert the
8656 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
8657 ** that the cursor is already where it needs to be and returns without
8658 ** doing any work. To avoid thwarting these optimizations, it is important
8659 ** not to clear the cursor here.
8661 if( pCur->curFlags & BTCF_Multiple ){
8662 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8663 if( rc ) return rc;
8666 if( pCur->pKeyInfo==0 ){
8667 assert( pX->pKey==0 );
8668 /* If this is an insert into a table b-tree, invalidate any incrblob
8669 ** cursors open on the row being replaced */
8670 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
8672 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8673 ** to a row with the same key as the new entry being inserted.
8675 #ifdef SQLITE_DEBUG
8676 if( flags & BTREE_SAVEPOSITION ){
8677 assert( pCur->curFlags & BTCF_ValidNKey );
8678 assert( pX->nKey==pCur->info.nKey );
8679 assert( loc==0 );
8681 #endif
8683 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
8684 ** that the cursor is not pointing to a row to be overwritten.
8685 ** So do a complete check.
8687 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
8688 /* The cursor is pointing to the entry that is to be
8689 ** overwritten */
8690 assert( pX->nData>=0 && pX->nZero>=0 );
8691 if( pCur->info.nSize!=0
8692 && pCur->info.nPayload==(u32)pX->nData+pX->nZero
8694 /* New entry is the same size as the old. Do an overwrite */
8695 return btreeOverwriteCell(pCur, pX);
8697 assert( loc==0 );
8698 }else if( loc==0 ){
8699 /* The cursor is *not* pointing to the cell to be overwritten, nor
8700 ** to an adjacent cell. Move the cursor so that it is pointing either
8701 ** to the cell to be overwritten or an adjacent cell.
8703 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
8704 if( rc ) return rc;
8706 }else{
8707 /* This is an index or a WITHOUT ROWID table */
8709 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8710 ** to a row with the same key as the new entry being inserted.
8712 assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 );
8714 /* If the cursor is not already pointing either to the cell to be
8715 ** overwritten, or if a new cell is being inserted, if the cursor is
8716 ** not pointing to an immediately adjacent cell, then move the cursor
8717 ** so that it does.
8719 if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
8720 if( pX->nMem ){
8721 UnpackedRecord r;
8722 r.pKeyInfo = pCur->pKeyInfo;
8723 r.aMem = pX->aMem;
8724 r.nField = pX->nMem;
8725 r.default_rc = 0;
8726 r.errCode = 0;
8727 r.r1 = 0;
8728 r.r2 = 0;
8729 r.eqSeen = 0;
8730 rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc);
8731 }else{
8732 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc);
8734 if( rc ) return rc;
8737 /* If the cursor is currently pointing to an entry to be overwritten
8738 ** and the new content is the same as as the old, then use the
8739 ** overwrite optimization.
8741 if( loc==0 ){
8742 getCellInfo(pCur);
8743 if( pCur->info.nKey==pX->nKey ){
8744 BtreePayload x2;
8745 x2.pData = pX->pKey;
8746 x2.nData = pX->nKey;
8747 x2.nZero = 0;
8748 return btreeOverwriteCell(pCur, &x2);
8753 assert( pCur->eState==CURSOR_VALID
8754 || (pCur->eState==CURSOR_INVALID && loc)
8755 || CORRUPT_DB );
8757 pPage = pCur->pPage;
8758 assert( pPage->intKey || pX->nKey>=0 );
8759 assert( pPage->leaf || !pPage->intKey );
8760 if( pPage->nFree<0 ){
8761 rc = btreeComputeFreeSpace(pPage);
8762 if( rc ) return rc;
8765 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
8766 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
8767 loc==0 ? "overwrite" : "new entry"));
8768 assert( pPage->isInit );
8769 newCell = pBt->pTmpSpace;
8770 assert( newCell!=0 );
8771 rc = fillInCell(pPage, newCell, pX, &szNew);
8772 if( rc ) goto end_insert;
8773 assert( szNew==pPage->xCellSize(pPage, newCell) );
8774 assert( szNew <= MX_CELL_SIZE(pBt) );
8775 idx = pCur->ix;
8776 if( loc==0 ){
8777 CellInfo info;
8778 assert( idx<pPage->nCell );
8779 rc = sqlite3PagerWrite(pPage->pDbPage);
8780 if( rc ){
8781 goto end_insert;
8783 oldCell = findCell(pPage, idx);
8784 if( !pPage->leaf ){
8785 memcpy(newCell, oldCell, 4);
8787 rc = clearCell(pPage, oldCell, &info);
8788 testcase( pCur->curFlags & BTCF_ValidOvfl );
8789 invalidateOverflowCache(pCur);
8790 if( info.nSize==szNew && info.nLocal==info.nPayload
8791 && (!ISAUTOVACUUM || szNew<pPage->minLocal)
8793 /* Overwrite the old cell with the new if they are the same size.
8794 ** We could also try to do this if the old cell is smaller, then add
8795 ** the leftover space to the free list. But experiments show that
8796 ** doing that is no faster then skipping this optimization and just
8797 ** calling dropCell() and insertCell().
8799 ** This optimization cannot be used on an autovacuum database if the
8800 ** new entry uses overflow pages, as the insertCell() call below is
8801 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */
8802 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
8803 if( oldCell < pPage->aData+pPage->hdrOffset+10 ){
8804 return SQLITE_CORRUPT_BKPT;
8806 if( oldCell+szNew > pPage->aDataEnd ){
8807 return SQLITE_CORRUPT_BKPT;
8809 memcpy(oldCell, newCell, szNew);
8810 return SQLITE_OK;
8812 dropCell(pPage, idx, info.nSize, &rc);
8813 if( rc ) goto end_insert;
8814 }else if( loc<0 && pPage->nCell>0 ){
8815 assert( pPage->leaf );
8816 idx = ++pCur->ix;
8817 pCur->curFlags &= ~BTCF_ValidNKey;
8818 }else{
8819 assert( pPage->leaf );
8821 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
8822 assert( pPage->nOverflow==0 || rc==SQLITE_OK );
8823 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
8825 /* If no error has occurred and pPage has an overflow cell, call balance()
8826 ** to redistribute the cells within the tree. Since balance() may move
8827 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
8828 ** variables.
8830 ** Previous versions of SQLite called moveToRoot() to move the cursor
8831 ** back to the root page as balance() used to invalidate the contents
8832 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8833 ** set the cursor state to "invalid". This makes common insert operations
8834 ** slightly faster.
8836 ** There is a subtle but important optimization here too. When inserting
8837 ** multiple records into an intkey b-tree using a single cursor (as can
8838 ** happen while processing an "INSERT INTO ... SELECT" statement), it
8839 ** is advantageous to leave the cursor pointing to the last entry in
8840 ** the b-tree if possible. If the cursor is left pointing to the last
8841 ** entry in the table, and the next row inserted has an integer key
8842 ** larger than the largest existing key, it is possible to insert the
8843 ** row without seeking the cursor. This can be a big performance boost.
8845 pCur->info.nSize = 0;
8846 if( pPage->nOverflow ){
8847 assert( rc==SQLITE_OK );
8848 pCur->curFlags &= ~(BTCF_ValidNKey);
8849 rc = balance(pCur);
8851 /* Must make sure nOverflow is reset to zero even if the balance()
8852 ** fails. Internal data structure corruption will result otherwise.
8853 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8854 ** from trying to save the current position of the cursor. */
8855 pCur->pPage->nOverflow = 0;
8856 pCur->eState = CURSOR_INVALID;
8857 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
8858 btreeReleaseAllCursorPages(pCur);
8859 if( pCur->pKeyInfo ){
8860 assert( pCur->pKey==0 );
8861 pCur->pKey = sqlite3Malloc( pX->nKey );
8862 if( pCur->pKey==0 ){
8863 rc = SQLITE_NOMEM;
8864 }else{
8865 memcpy(pCur->pKey, pX->pKey, pX->nKey);
8868 pCur->eState = CURSOR_REQUIRESEEK;
8869 pCur->nKey = pX->nKey;
8872 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
8874 end_insert:
8875 return rc;
8879 ** Delete the entry that the cursor is pointing to.
8881 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
8882 ** the cursor is left pointing at an arbitrary location after the delete.
8883 ** But if that bit is set, then the cursor is left in a state such that
8884 ** the next call to BtreeNext() or BtreePrev() moves it to the same row
8885 ** as it would have been on if the call to BtreeDelete() had been omitted.
8887 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
8888 ** associated with a single table entry and its indexes. Only one of those
8889 ** deletes is considered the "primary" delete. The primary delete occurs
8890 ** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
8891 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
8892 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
8893 ** but which might be used by alternative storage engines.
8895 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
8896 Btree *p = pCur->pBtree;
8897 BtShared *pBt = p->pBt;
8898 int rc; /* Return code */
8899 MemPage *pPage; /* Page to delete cell from */
8900 unsigned char *pCell; /* Pointer to cell to delete */
8901 int iCellIdx; /* Index of cell to delete */
8902 int iCellDepth; /* Depth of node containing pCell */
8903 CellInfo info; /* Size of the cell being deleted */
8904 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */
8905 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */
8907 assert( cursorOwnsBtShared(pCur) );
8908 assert( pBt->inTransaction==TRANS_WRITE );
8909 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
8910 assert( pCur->curFlags & BTCF_WriteFlag );
8911 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8912 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
8913 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
8914 if( pCur->eState==CURSOR_REQUIRESEEK ){
8915 rc = btreeRestoreCursorPosition(pCur);
8916 if( rc ) return rc;
8918 assert( pCur->eState==CURSOR_VALID );
8920 iCellDepth = pCur->iPage;
8921 iCellIdx = pCur->ix;
8922 pPage = pCur->pPage;
8923 pCell = findCell(pPage, iCellIdx);
8924 if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ) return SQLITE_CORRUPT;
8926 /* If the bPreserve flag is set to true, then the cursor position must
8927 ** be preserved following this delete operation. If the current delete
8928 ** will cause a b-tree rebalance, then this is done by saving the cursor
8929 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8930 ** returning.
8932 ** Or, if the current delete will not cause a rebalance, then the cursor
8933 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8934 ** before or after the deleted entry. In this case set bSkipnext to true. */
8935 if( bPreserve ){
8936 if( !pPage->leaf
8937 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
8938 || pPage->nCell==1 /* See dbfuzz001.test for a test case */
8940 /* A b-tree rebalance will be required after deleting this entry.
8941 ** Save the cursor key. */
8942 rc = saveCursorKey(pCur);
8943 if( rc ) return rc;
8944 }else{
8945 bSkipnext = 1;
8949 /* If the page containing the entry to delete is not a leaf page, move
8950 ** the cursor to the largest entry in the tree that is smaller than
8951 ** the entry being deleted. This cell will replace the cell being deleted
8952 ** from the internal node. The 'previous' entry is used for this instead
8953 ** of the 'next' entry, as the previous entry is always a part of the
8954 ** sub-tree headed by the child page of the cell being deleted. This makes
8955 ** balancing the tree following the delete operation easier. */
8956 if( !pPage->leaf ){
8957 rc = sqlite3BtreePrevious(pCur, 0);
8958 assert( rc!=SQLITE_DONE );
8959 if( rc ) return rc;
8962 /* Save the positions of any other cursors open on this table before
8963 ** making any modifications. */
8964 if( pCur->curFlags & BTCF_Multiple ){
8965 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8966 if( rc ) return rc;
8969 /* If this is a delete operation to remove a row from a table b-tree,
8970 ** invalidate any incrblob cursors open on the row being deleted. */
8971 if( pCur->pKeyInfo==0 ){
8972 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
8975 /* Make the page containing the entry to be deleted writable. Then free any
8976 ** overflow pages associated with the entry and finally remove the cell
8977 ** itself from within the page. */
8978 rc = sqlite3PagerWrite(pPage->pDbPage);
8979 if( rc ) return rc;
8980 rc = clearCell(pPage, pCell, &info);
8981 dropCell(pPage, iCellIdx, info.nSize, &rc);
8982 if( rc ) return rc;
8984 /* If the cell deleted was not located on a leaf page, then the cursor
8985 ** is currently pointing to the largest entry in the sub-tree headed
8986 ** by the child-page of the cell that was just deleted from an internal
8987 ** node. The cell from the leaf node needs to be moved to the internal
8988 ** node to replace the deleted cell. */
8989 if( !pPage->leaf ){
8990 MemPage *pLeaf = pCur->pPage;
8991 int nCell;
8992 Pgno n;
8993 unsigned char *pTmp;
8995 if( pLeaf->nFree<0 ){
8996 rc = btreeComputeFreeSpace(pLeaf);
8997 if( rc ) return rc;
8999 if( iCellDepth<pCur->iPage-1 ){
9000 n = pCur->apPage[iCellDepth+1]->pgno;
9001 }else{
9002 n = pCur->pPage->pgno;
9004 pCell = findCell(pLeaf, pLeaf->nCell-1);
9005 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
9006 nCell = pLeaf->xCellSize(pLeaf, pCell);
9007 assert( MX_CELL_SIZE(pBt) >= nCell );
9008 pTmp = pBt->pTmpSpace;
9009 assert( pTmp!=0 );
9010 rc = sqlite3PagerWrite(pLeaf->pDbPage);
9011 if( rc==SQLITE_OK ){
9012 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
9014 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
9015 if( rc ) return rc;
9018 /* Balance the tree. If the entry deleted was located on a leaf page,
9019 ** then the cursor still points to that page. In this case the first
9020 ** call to balance() repairs the tree, and the if(...) condition is
9021 ** never true.
9023 ** Otherwise, if the entry deleted was on an internal node page, then
9024 ** pCur is pointing to the leaf page from which a cell was removed to
9025 ** replace the cell deleted from the internal node. This is slightly
9026 ** tricky as the leaf node may be underfull, and the internal node may
9027 ** be either under or overfull. In this case run the balancing algorithm
9028 ** on the leaf node first. If the balance proceeds far enough up the
9029 ** tree that we can be sure that any problem in the internal node has
9030 ** been corrected, so be it. Otherwise, after balancing the leaf node,
9031 ** walk the cursor up the tree to the internal node and balance it as
9032 ** well. */
9033 rc = balance(pCur);
9034 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
9035 releasePageNotNull(pCur->pPage);
9036 pCur->iPage--;
9037 while( pCur->iPage>iCellDepth ){
9038 releasePage(pCur->apPage[pCur->iPage--]);
9040 pCur->pPage = pCur->apPage[pCur->iPage];
9041 rc = balance(pCur);
9044 if( rc==SQLITE_OK ){
9045 if( bSkipnext ){
9046 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
9047 assert( pPage==pCur->pPage || CORRUPT_DB );
9048 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
9049 pCur->eState = CURSOR_SKIPNEXT;
9050 if( iCellIdx>=pPage->nCell ){
9051 pCur->skipNext = -1;
9052 pCur->ix = pPage->nCell-1;
9053 }else{
9054 pCur->skipNext = 1;
9056 }else{
9057 rc = moveToRoot(pCur);
9058 if( bPreserve ){
9059 btreeReleaseAllCursorPages(pCur);
9060 pCur->eState = CURSOR_REQUIRESEEK;
9062 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
9065 return rc;
9069 ** Create a new BTree table. Write into *piTable the page
9070 ** number for the root page of the new table.
9072 ** The type of type is determined by the flags parameter. Only the
9073 ** following values of flags are currently in use. Other values for
9074 ** flags might not work:
9076 ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
9077 ** BTREE_ZERODATA Used for SQL indices
9079 static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
9080 BtShared *pBt = p->pBt;
9081 MemPage *pRoot;
9082 Pgno pgnoRoot;
9083 int rc;
9084 int ptfFlags; /* Page-type flage for the root page of new table */
9086 assert( sqlite3BtreeHoldsMutex(p) );
9087 assert( pBt->inTransaction==TRANS_WRITE );
9088 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
9090 #ifdef SQLITE_OMIT_AUTOVACUUM
9091 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
9092 if( rc ){
9093 return rc;
9095 #else
9096 if( pBt->autoVacuum ){
9097 Pgno pgnoMove; /* Move a page here to make room for the root-page */
9098 MemPage *pPageMove; /* The page to move to. */
9100 /* Creating a new table may probably require moving an existing database
9101 ** to make room for the new tables root page. In case this page turns
9102 ** out to be an overflow page, delete all overflow page-map caches
9103 ** held by open cursors.
9105 invalidateAllOverflowCache(pBt);
9107 /* Read the value of meta[3] from the database to determine where the
9108 ** root page of the new table should go. meta[3] is the largest root-page
9109 ** created so far, so the new root-page is (meta[3]+1).
9111 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
9112 pgnoRoot++;
9114 /* The new root-page may not be allocated on a pointer-map page, or the
9115 ** PENDING_BYTE page.
9117 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
9118 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
9119 pgnoRoot++;
9121 assert( pgnoRoot>=3 || CORRUPT_DB );
9122 testcase( pgnoRoot<3 );
9124 /* Allocate a page. The page that currently resides at pgnoRoot will
9125 ** be moved to the allocated page (unless the allocated page happens
9126 ** to reside at pgnoRoot).
9128 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
9129 if( rc!=SQLITE_OK ){
9130 return rc;
9133 if( pgnoMove!=pgnoRoot ){
9134 /* pgnoRoot is the page that will be used for the root-page of
9135 ** the new table (assuming an error did not occur). But we were
9136 ** allocated pgnoMove. If required (i.e. if it was not allocated
9137 ** by extending the file), the current page at position pgnoMove
9138 ** is already journaled.
9140 u8 eType = 0;
9141 Pgno iPtrPage = 0;
9143 /* Save the positions of any open cursors. This is required in
9144 ** case they are holding a reference to an xFetch reference
9145 ** corresponding to page pgnoRoot. */
9146 rc = saveAllCursors(pBt, 0, 0);
9147 releasePage(pPageMove);
9148 if( rc!=SQLITE_OK ){
9149 return rc;
9152 /* Move the page currently at pgnoRoot to pgnoMove. */
9153 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
9154 if( rc!=SQLITE_OK ){
9155 return rc;
9157 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
9158 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
9159 rc = SQLITE_CORRUPT_BKPT;
9161 if( rc!=SQLITE_OK ){
9162 releasePage(pRoot);
9163 return rc;
9165 assert( eType!=PTRMAP_ROOTPAGE );
9166 assert( eType!=PTRMAP_FREEPAGE );
9167 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
9168 releasePage(pRoot);
9170 /* Obtain the page at pgnoRoot */
9171 if( rc!=SQLITE_OK ){
9172 return rc;
9174 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
9175 if( rc!=SQLITE_OK ){
9176 return rc;
9178 rc = sqlite3PagerWrite(pRoot->pDbPage);
9179 if( rc!=SQLITE_OK ){
9180 releasePage(pRoot);
9181 return rc;
9183 }else{
9184 pRoot = pPageMove;
9187 /* Update the pointer-map and meta-data with the new root-page number. */
9188 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
9189 if( rc ){
9190 releasePage(pRoot);
9191 return rc;
9194 /* When the new root page was allocated, page 1 was made writable in
9195 ** order either to increase the database filesize, or to decrement the
9196 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
9198 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
9199 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
9200 if( NEVER(rc) ){
9201 releasePage(pRoot);
9202 return rc;
9205 }else{
9206 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
9207 if( rc ) return rc;
9209 #endif
9210 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
9211 if( createTabFlags & BTREE_INTKEY ){
9212 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
9213 }else{
9214 ptfFlags = PTF_ZERODATA | PTF_LEAF;
9216 zeroPage(pRoot, ptfFlags);
9217 sqlite3PagerUnref(pRoot->pDbPage);
9218 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
9219 *piTable = (int)pgnoRoot;
9220 return SQLITE_OK;
9222 int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
9223 int rc;
9224 sqlite3BtreeEnter(p);
9225 rc = btreeCreateTable(p, piTable, flags);
9226 sqlite3BtreeLeave(p);
9227 return rc;
9231 ** Erase the given database page and all its children. Return
9232 ** the page to the freelist.
9234 static int clearDatabasePage(
9235 BtShared *pBt, /* The BTree that contains the table */
9236 Pgno pgno, /* Page number to clear */
9237 int freePageFlag, /* Deallocate page if true */
9238 int *pnChange /* Add number of Cells freed to this counter */
9240 MemPage *pPage;
9241 int rc;
9242 unsigned char *pCell;
9243 int i;
9244 int hdr;
9245 CellInfo info;
9247 assert( sqlite3_mutex_held(pBt->mutex) );
9248 if( pgno>btreePagecount(pBt) ){
9249 return SQLITE_CORRUPT_BKPT;
9251 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
9252 if( rc ) return rc;
9253 if( pPage->bBusy ){
9254 rc = SQLITE_CORRUPT_BKPT;
9255 goto cleardatabasepage_out;
9257 pPage->bBusy = 1;
9258 hdr = pPage->hdrOffset;
9259 for(i=0; i<pPage->nCell; i++){
9260 pCell = findCell(pPage, i);
9261 if( !pPage->leaf ){
9262 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
9263 if( rc ) goto cleardatabasepage_out;
9265 rc = clearCell(pPage, pCell, &info);
9266 if( rc ) goto cleardatabasepage_out;
9268 if( !pPage->leaf ){
9269 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
9270 if( rc ) goto cleardatabasepage_out;
9271 }else if( pnChange ){
9272 assert( pPage->intKey || CORRUPT_DB );
9273 testcase( !pPage->intKey );
9274 *pnChange += pPage->nCell;
9276 if( freePageFlag ){
9277 freePage(pPage, &rc);
9278 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
9279 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
9282 cleardatabasepage_out:
9283 pPage->bBusy = 0;
9284 releasePage(pPage);
9285 return rc;
9289 ** Delete all information from a single table in the database. iTable is
9290 ** the page number of the root of the table. After this routine returns,
9291 ** the root page is empty, but still exists.
9293 ** This routine will fail with SQLITE_LOCKED if there are any open
9294 ** read cursors on the table. Open write cursors are moved to the
9295 ** root of the table.
9297 ** If pnChange is not NULL, then table iTable must be an intkey table. The
9298 ** integer value pointed to by pnChange is incremented by the number of
9299 ** entries in the table.
9301 int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
9302 int rc;
9303 BtShared *pBt = p->pBt;
9304 sqlite3BtreeEnter(p);
9305 assert( p->inTrans==TRANS_WRITE );
9307 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
9309 if( SQLITE_OK==rc ){
9310 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
9311 ** is the root of a table b-tree - if it is not, the following call is
9312 ** a no-op). */
9313 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
9314 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
9316 sqlite3BtreeLeave(p);
9317 return rc;
9321 ** Delete all information from the single table that pCur is open on.
9323 ** This routine only work for pCur on an ephemeral table.
9325 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
9326 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
9330 ** Erase all information in a table and add the root of the table to
9331 ** the freelist. Except, the root of the principle table (the one on
9332 ** page 1) is never added to the freelist.
9334 ** This routine will fail with SQLITE_LOCKED if there are any open
9335 ** cursors on the table.
9337 ** If AUTOVACUUM is enabled and the page at iTable is not the last
9338 ** root page in the database file, then the last root page
9339 ** in the database file is moved into the slot formerly occupied by
9340 ** iTable and that last slot formerly occupied by the last root page
9341 ** is added to the freelist instead of iTable. In this say, all
9342 ** root pages are kept at the beginning of the database file, which
9343 ** is necessary for AUTOVACUUM to work right. *piMoved is set to the
9344 ** page number that used to be the last root page in the file before
9345 ** the move. If no page gets moved, *piMoved is set to 0.
9346 ** The last root page is recorded in meta[3] and the value of
9347 ** meta[3] is updated by this procedure.
9349 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
9350 int rc;
9351 MemPage *pPage = 0;
9352 BtShared *pBt = p->pBt;
9354 assert( sqlite3BtreeHoldsMutex(p) );
9355 assert( p->inTrans==TRANS_WRITE );
9356 assert( iTable>=2 );
9357 if( iTable>btreePagecount(pBt) ){
9358 return SQLITE_CORRUPT_BKPT;
9361 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
9362 if( rc ) return rc;
9363 rc = sqlite3BtreeClearTable(p, iTable, 0);
9364 if( rc ){
9365 releasePage(pPage);
9366 return rc;
9369 *piMoved = 0;
9371 #ifdef SQLITE_OMIT_AUTOVACUUM
9372 freePage(pPage, &rc);
9373 releasePage(pPage);
9374 #else
9375 if( pBt->autoVacuum ){
9376 Pgno maxRootPgno;
9377 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
9379 if( iTable==maxRootPgno ){
9380 /* If the table being dropped is the table with the largest root-page
9381 ** number in the database, put the root page on the free list.
9383 freePage(pPage, &rc);
9384 releasePage(pPage);
9385 if( rc!=SQLITE_OK ){
9386 return rc;
9388 }else{
9389 /* The table being dropped does not have the largest root-page
9390 ** number in the database. So move the page that does into the
9391 ** gap left by the deleted root-page.
9393 MemPage *pMove;
9394 releasePage(pPage);
9395 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9396 if( rc!=SQLITE_OK ){
9397 return rc;
9399 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
9400 releasePage(pMove);
9401 if( rc!=SQLITE_OK ){
9402 return rc;
9404 pMove = 0;
9405 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9406 freePage(pMove, &rc);
9407 releasePage(pMove);
9408 if( rc!=SQLITE_OK ){
9409 return rc;
9411 *piMoved = maxRootPgno;
9414 /* Set the new 'max-root-page' value in the database header. This
9415 ** is the old value less one, less one more if that happens to
9416 ** be a root-page number, less one again if that is the
9417 ** PENDING_BYTE_PAGE.
9419 maxRootPgno--;
9420 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
9421 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
9422 maxRootPgno--;
9424 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
9426 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
9427 }else{
9428 freePage(pPage, &rc);
9429 releasePage(pPage);
9431 #endif
9432 return rc;
9434 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
9435 int rc;
9436 sqlite3BtreeEnter(p);
9437 rc = btreeDropTable(p, iTable, piMoved);
9438 sqlite3BtreeLeave(p);
9439 return rc;
9444 ** This function may only be called if the b-tree connection already
9445 ** has a read or write transaction open on the database.
9447 ** Read the meta-information out of a database file. Meta[0]
9448 ** is the number of free pages currently in the database. Meta[1]
9449 ** through meta[15] are available for use by higher layers. Meta[0]
9450 ** is read-only, the others are read/write.
9452 ** The schema layer numbers meta values differently. At the schema
9453 ** layer (and the SetCookie and ReadCookie opcodes) the number of
9454 ** free pages is not visible. So Cookie[0] is the same as Meta[1].
9456 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
9457 ** of reading the value out of the header, it instead loads the "DataVersion"
9458 ** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
9459 ** database file. It is a number computed by the pager. But its access
9460 ** pattern is the same as header meta values, and so it is convenient to
9461 ** read it from this routine.
9463 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
9464 BtShared *pBt = p->pBt;
9466 sqlite3BtreeEnter(p);
9467 assert( p->inTrans>TRANS_NONE );
9468 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
9469 assert( pBt->pPage1 );
9470 assert( idx>=0 && idx<=15 );
9472 if( idx==BTREE_DATA_VERSION ){
9473 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
9474 }else{
9475 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
9478 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
9479 ** database, mark the database as read-only. */
9480 #ifdef SQLITE_OMIT_AUTOVACUUM
9481 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
9482 pBt->btsFlags |= BTS_READ_ONLY;
9484 #endif
9486 sqlite3BtreeLeave(p);
9490 ** Write meta-information back into the database. Meta[0] is
9491 ** read-only and may not be written.
9493 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
9494 BtShared *pBt = p->pBt;
9495 unsigned char *pP1;
9496 int rc;
9497 assert( idx>=1 && idx<=15 );
9498 sqlite3BtreeEnter(p);
9499 assert( p->inTrans==TRANS_WRITE );
9500 assert( pBt->pPage1!=0 );
9501 pP1 = pBt->pPage1->aData;
9502 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9503 if( rc==SQLITE_OK ){
9504 put4byte(&pP1[36 + idx*4], iMeta);
9505 #ifndef SQLITE_OMIT_AUTOVACUUM
9506 if( idx==BTREE_INCR_VACUUM ){
9507 assert( pBt->autoVacuum || iMeta==0 );
9508 assert( iMeta==0 || iMeta==1 );
9509 pBt->incrVacuum = (u8)iMeta;
9511 #endif
9513 sqlite3BtreeLeave(p);
9514 return rc;
9517 #ifndef SQLITE_OMIT_BTREECOUNT
9519 ** The first argument, pCur, is a cursor opened on some b-tree. Count the
9520 ** number of entries in the b-tree and write the result to *pnEntry.
9522 ** SQLITE_OK is returned if the operation is successfully executed.
9523 ** Otherwise, if an error is encountered (i.e. an IO error or database
9524 ** corruption) an SQLite error code is returned.
9526 int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){
9527 i64 nEntry = 0; /* Value to return in *pnEntry */
9528 int rc; /* Return code */
9530 rc = moveToRoot(pCur);
9531 if( rc==SQLITE_EMPTY ){
9532 *pnEntry = 0;
9533 return SQLITE_OK;
9536 /* Unless an error occurs, the following loop runs one iteration for each
9537 ** page in the B-Tree structure (not including overflow pages).
9539 while( rc==SQLITE_OK && !db->u1.isInterrupted ){
9540 int iIdx; /* Index of child node in parent */
9541 MemPage *pPage; /* Current page of the b-tree */
9543 /* If this is a leaf page or the tree is not an int-key tree, then
9544 ** this page contains countable entries. Increment the entry counter
9545 ** accordingly.
9547 pPage = pCur->pPage;
9548 if( pPage->leaf || !pPage->intKey ){
9549 nEntry += pPage->nCell;
9552 /* pPage is a leaf node. This loop navigates the cursor so that it
9553 ** points to the first interior cell that it points to the parent of
9554 ** the next page in the tree that has not yet been visited. The
9555 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
9556 ** of the page, or to the number of cells in the page if the next page
9557 ** to visit is the right-child of its parent.
9559 ** If all pages in the tree have been visited, return SQLITE_OK to the
9560 ** caller.
9562 if( pPage->leaf ){
9563 do {
9564 if( pCur->iPage==0 ){
9565 /* All pages of the b-tree have been visited. Return successfully. */
9566 *pnEntry = nEntry;
9567 return moveToRoot(pCur);
9569 moveToParent(pCur);
9570 }while ( pCur->ix>=pCur->pPage->nCell );
9572 pCur->ix++;
9573 pPage = pCur->pPage;
9576 /* Descend to the child node of the cell that the cursor currently
9577 ** points at. This is the right-child if (iIdx==pPage->nCell).
9579 iIdx = pCur->ix;
9580 if( iIdx==pPage->nCell ){
9581 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
9582 }else{
9583 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
9587 /* An error has occurred. Return an error code. */
9588 return rc;
9590 #endif
9593 ** Return the pager associated with a BTree. This routine is used for
9594 ** testing and debugging only.
9596 Pager *sqlite3BtreePager(Btree *p){
9597 return p->pBt->pPager;
9600 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9602 ** Append a message to the error message string.
9604 static void checkAppendMsg(
9605 IntegrityCk *pCheck,
9606 const char *zFormat,
9609 va_list ap;
9610 if( !pCheck->mxErr ) return;
9611 pCheck->mxErr--;
9612 pCheck->nErr++;
9613 va_start(ap, zFormat);
9614 if( pCheck->errMsg.nChar ){
9615 sqlite3_str_append(&pCheck->errMsg, "\n", 1);
9617 if( pCheck->zPfx ){
9618 sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
9620 sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap);
9621 va_end(ap);
9622 if( pCheck->errMsg.accError==SQLITE_NOMEM ){
9623 pCheck->mallocFailed = 1;
9626 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9628 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9631 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
9632 ** corresponds to page iPg is already set.
9634 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9635 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9636 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
9640 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
9642 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9643 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9644 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
9649 ** Add 1 to the reference count for page iPage. If this is the second
9650 ** reference to the page, add an error message to pCheck->zErrMsg.
9651 ** Return 1 if there are 2 or more references to the page and 0 if
9652 ** if this is the first reference to the page.
9654 ** Also check that the page number is in bounds.
9656 static int checkRef(IntegrityCk *pCheck, Pgno iPage){
9657 if( iPage>pCheck->nPage || iPage==0 ){
9658 checkAppendMsg(pCheck, "invalid page number %d", iPage);
9659 return 1;
9661 if( getPageReferenced(pCheck, iPage) ){
9662 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
9663 return 1;
9665 if( pCheck->db->u1.isInterrupted ) return 1;
9666 setPageReferenced(pCheck, iPage);
9667 return 0;
9670 #ifndef SQLITE_OMIT_AUTOVACUUM
9672 ** Check that the entry in the pointer-map for page iChild maps to
9673 ** page iParent, pointer type ptrType. If not, append an error message
9674 ** to pCheck.
9676 static void checkPtrmap(
9677 IntegrityCk *pCheck, /* Integrity check context */
9678 Pgno iChild, /* Child page number */
9679 u8 eType, /* Expected pointer map type */
9680 Pgno iParent /* Expected pointer map parent page number */
9682 int rc;
9683 u8 ePtrmapType;
9684 Pgno iPtrmapParent;
9686 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
9687 if( rc!=SQLITE_OK ){
9688 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
9689 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
9690 return;
9693 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
9694 checkAppendMsg(pCheck,
9695 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
9696 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
9699 #endif
9702 ** Check the integrity of the freelist or of an overflow page list.
9703 ** Verify that the number of pages on the list is N.
9705 static void checkList(
9706 IntegrityCk *pCheck, /* Integrity checking context */
9707 int isFreeList, /* True for a freelist. False for overflow page list */
9708 int iPage, /* Page number for first page in the list */
9709 u32 N /* Expected number of pages in the list */
9711 int i;
9712 u32 expected = N;
9713 int nErrAtStart = pCheck->nErr;
9714 while( iPage!=0 && pCheck->mxErr ){
9715 DbPage *pOvflPage;
9716 unsigned char *pOvflData;
9717 if( checkRef(pCheck, iPage) ) break;
9718 N--;
9719 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
9720 checkAppendMsg(pCheck, "failed to get page %d", iPage);
9721 break;
9723 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
9724 if( isFreeList ){
9725 u32 n = (u32)get4byte(&pOvflData[4]);
9726 #ifndef SQLITE_OMIT_AUTOVACUUM
9727 if( pCheck->pBt->autoVacuum ){
9728 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
9730 #endif
9731 if( n>pCheck->pBt->usableSize/4-2 ){
9732 checkAppendMsg(pCheck,
9733 "freelist leaf count too big on page %d", iPage);
9734 N--;
9735 }else{
9736 for(i=0; i<(int)n; i++){
9737 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
9738 #ifndef SQLITE_OMIT_AUTOVACUUM
9739 if( pCheck->pBt->autoVacuum ){
9740 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
9742 #endif
9743 checkRef(pCheck, iFreePage);
9745 N -= n;
9748 #ifndef SQLITE_OMIT_AUTOVACUUM
9749 else{
9750 /* If this database supports auto-vacuum and iPage is not the last
9751 ** page in this overflow list, check that the pointer-map entry for
9752 ** the following page matches iPage.
9754 if( pCheck->pBt->autoVacuum && N>0 ){
9755 i = get4byte(pOvflData);
9756 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
9759 #endif
9760 iPage = get4byte(pOvflData);
9761 sqlite3PagerUnref(pOvflPage);
9763 if( N && nErrAtStart==pCheck->nErr ){
9764 checkAppendMsg(pCheck,
9765 "%s is %d but should be %d",
9766 isFreeList ? "size" : "overflow list length",
9767 expected-N, expected);
9770 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9773 ** An implementation of a min-heap.
9775 ** aHeap[0] is the number of elements on the heap. aHeap[1] is the
9776 ** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
9777 ** and aHeap[N*2+1].
9779 ** The heap property is this: Every node is less than or equal to both
9780 ** of its daughter nodes. A consequence of the heap property is that the
9781 ** root node aHeap[1] is always the minimum value currently in the heap.
9783 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
9784 ** the heap, preserving the heap property. The btreeHeapPull() routine
9785 ** removes the root element from the heap (the minimum value in the heap)
9786 ** and then moves other nodes around as necessary to preserve the heap
9787 ** property.
9789 ** This heap is used for cell overlap and coverage testing. Each u32
9790 ** entry represents the span of a cell or freeblock on a btree page.
9791 ** The upper 16 bits are the index of the first byte of a range and the
9792 ** lower 16 bits are the index of the last byte of that range.
9794 static void btreeHeapInsert(u32 *aHeap, u32 x){
9795 u32 j, i = ++aHeap[0];
9796 aHeap[i] = x;
9797 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
9798 x = aHeap[j];
9799 aHeap[j] = aHeap[i];
9800 aHeap[i] = x;
9801 i = j;
9804 static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9805 u32 j, i, x;
9806 if( (x = aHeap[0])==0 ) return 0;
9807 *pOut = aHeap[1];
9808 aHeap[1] = aHeap[x];
9809 aHeap[x] = 0xffffffff;
9810 aHeap[0]--;
9811 i = 1;
9812 while( (j = i*2)<=aHeap[0] ){
9813 if( aHeap[j]>aHeap[j+1] ) j++;
9814 if( aHeap[i]<aHeap[j] ) break;
9815 x = aHeap[i];
9816 aHeap[i] = aHeap[j];
9817 aHeap[j] = x;
9818 i = j;
9820 return 1;
9823 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9825 ** Do various sanity checks on a single page of a tree. Return
9826 ** the tree depth. Root pages return 0. Parents of root pages
9827 ** return 1, and so forth.
9829 ** These checks are done:
9831 ** 1. Make sure that cells and freeblocks do not overlap
9832 ** but combine to completely cover the page.
9833 ** 2. Make sure integer cell keys are in order.
9834 ** 3. Check the integrity of overflow pages.
9835 ** 4. Recursively call checkTreePage on all children.
9836 ** 5. Verify that the depth of all children is the same.
9838 static int checkTreePage(
9839 IntegrityCk *pCheck, /* Context for the sanity check */
9840 int iPage, /* Page number of the page to check */
9841 i64 *piMinKey, /* Write minimum integer primary key here */
9842 i64 maxKey /* Error if integer primary key greater than this */
9844 MemPage *pPage = 0; /* The page being analyzed */
9845 int i; /* Loop counter */
9846 int rc; /* Result code from subroutine call */
9847 int depth = -1, d2; /* Depth of a subtree */
9848 int pgno; /* Page number */
9849 int nFrag; /* Number of fragmented bytes on the page */
9850 int hdr; /* Offset to the page header */
9851 int cellStart; /* Offset to the start of the cell pointer array */
9852 int nCell; /* Number of cells */
9853 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9854 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
9855 ** False if IPK must be strictly less than maxKey */
9856 u8 *data; /* Page content */
9857 u8 *pCell; /* Cell content */
9858 u8 *pCellIdx; /* Next element of the cell pointer array */
9859 BtShared *pBt; /* The BtShared object that owns pPage */
9860 u32 pc; /* Address of a cell */
9861 u32 usableSize; /* Usable size of the page */
9862 u32 contentOffset; /* Offset to the start of the cell content area */
9863 u32 *heap = 0; /* Min-heap used for checking cell coverage */
9864 u32 x, prev = 0; /* Next and previous entry on the min-heap */
9865 const char *saved_zPfx = pCheck->zPfx;
9866 int saved_v1 = pCheck->v1;
9867 int saved_v2 = pCheck->v2;
9868 u8 savedIsInit = 0;
9870 /* Check that the page exists
9872 pBt = pCheck->pBt;
9873 usableSize = pBt->usableSize;
9874 if( iPage==0 ) return 0;
9875 if( checkRef(pCheck, iPage) ) return 0;
9876 pCheck->zPfx = "Page %d: ";
9877 pCheck->v1 = iPage;
9878 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
9879 checkAppendMsg(pCheck,
9880 "unable to get the page. error code=%d", rc);
9881 goto end_of_check;
9884 /* Clear MemPage.isInit to make sure the corruption detection code in
9885 ** btreeInitPage() is executed. */
9886 savedIsInit = pPage->isInit;
9887 pPage->isInit = 0;
9888 if( (rc = btreeInitPage(pPage))!=0 ){
9889 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
9890 checkAppendMsg(pCheck,
9891 "btreeInitPage() returns error code %d", rc);
9892 goto end_of_check;
9894 if( (rc = btreeComputeFreeSpace(pPage))!=0 ){
9895 assert( rc==SQLITE_CORRUPT );
9896 checkAppendMsg(pCheck, "free space corruption", rc);
9897 goto end_of_check;
9899 data = pPage->aData;
9900 hdr = pPage->hdrOffset;
9902 /* Set up for cell analysis */
9903 pCheck->zPfx = "On tree page %d cell %d: ";
9904 contentOffset = get2byteNotZero(&data[hdr+5]);
9905 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
9907 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9908 ** number of cells on the page. */
9909 nCell = get2byte(&data[hdr+3]);
9910 assert( pPage->nCell==nCell );
9912 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9913 ** immediately follows the b-tree page header. */
9914 cellStart = hdr + 12 - 4*pPage->leaf;
9915 assert( pPage->aCellIdx==&data[cellStart] );
9916 pCellIdx = &data[cellStart + 2*(nCell-1)];
9918 if( !pPage->leaf ){
9919 /* Analyze the right-child page of internal pages */
9920 pgno = get4byte(&data[hdr+8]);
9921 #ifndef SQLITE_OMIT_AUTOVACUUM
9922 if( pBt->autoVacuum ){
9923 pCheck->zPfx = "On page %d at right child: ";
9924 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9926 #endif
9927 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9928 keyCanBeEqual = 0;
9929 }else{
9930 /* For leaf pages, the coverage check will occur in the same loop
9931 ** as the other cell checks, so initialize the heap. */
9932 heap = pCheck->heap;
9933 heap[0] = 0;
9936 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9937 ** integer offsets to the cell contents. */
9938 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
9939 CellInfo info;
9941 /* Check cell size */
9942 pCheck->v2 = i;
9943 assert( pCellIdx==&data[cellStart + i*2] );
9944 pc = get2byteAligned(pCellIdx);
9945 pCellIdx -= 2;
9946 if( pc<contentOffset || pc>usableSize-4 ){
9947 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9948 pc, contentOffset, usableSize-4);
9949 doCoverageCheck = 0;
9950 continue;
9952 pCell = &data[pc];
9953 pPage->xParseCell(pPage, pCell, &info);
9954 if( pc+info.nSize>usableSize ){
9955 checkAppendMsg(pCheck, "Extends off end of page");
9956 doCoverageCheck = 0;
9957 continue;
9960 /* Check for integer primary key out of range */
9961 if( pPage->intKey ){
9962 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9963 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9965 maxKey = info.nKey;
9966 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */
9969 /* Check the content overflow list */
9970 if( info.nPayload>info.nLocal ){
9971 u32 nPage; /* Number of pages on the overflow chain */
9972 Pgno pgnoOvfl; /* First page of the overflow chain */
9973 assert( pc + info.nSize - 4 <= usableSize );
9974 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
9975 pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
9976 #ifndef SQLITE_OMIT_AUTOVACUUM
9977 if( pBt->autoVacuum ){
9978 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
9980 #endif
9981 checkList(pCheck, 0, pgnoOvfl, nPage);
9984 if( !pPage->leaf ){
9985 /* Check sanity of left child page for internal pages */
9986 pgno = get4byte(pCell);
9987 #ifndef SQLITE_OMIT_AUTOVACUUM
9988 if( pBt->autoVacuum ){
9989 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9991 #endif
9992 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9993 keyCanBeEqual = 0;
9994 if( d2!=depth ){
9995 checkAppendMsg(pCheck, "Child page depth differs");
9996 depth = d2;
9998 }else{
9999 /* Populate the coverage-checking heap for leaf pages */
10000 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
10003 *piMinKey = maxKey;
10005 /* Check for complete coverage of the page
10007 pCheck->zPfx = 0;
10008 if( doCoverageCheck && pCheck->mxErr>0 ){
10009 /* For leaf pages, the min-heap has already been initialized and the
10010 ** cells have already been inserted. But for internal pages, that has
10011 ** not yet been done, so do it now */
10012 if( !pPage->leaf ){
10013 heap = pCheck->heap;
10014 heap[0] = 0;
10015 for(i=nCell-1; i>=0; i--){
10016 u32 size;
10017 pc = get2byteAligned(&data[cellStart+i*2]);
10018 size = pPage->xCellSize(pPage, &data[pc]);
10019 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
10022 /* Add the freeblocks to the min-heap
10024 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
10025 ** is the offset of the first freeblock, or zero if there are no
10026 ** freeblocks on the page.
10028 i = get2byte(&data[hdr+1]);
10029 while( i>0 ){
10030 int size, j;
10031 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
10032 size = get2byte(&data[i+2]);
10033 assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */
10034 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
10035 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
10036 ** big-endian integer which is the offset in the b-tree page of the next
10037 ** freeblock in the chain, or zero if the freeblock is the last on the
10038 ** chain. */
10039 j = get2byte(&data[i]);
10040 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
10041 ** increasing offset. */
10042 assert( j==0 || j>i+size ); /* Enforced by btreeComputeFreeSpace() */
10043 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
10044 i = j;
10046 /* Analyze the min-heap looking for overlap between cells and/or
10047 ** freeblocks, and counting the number of untracked bytes in nFrag.
10049 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
10050 ** There is an implied first entry the covers the page header, the cell
10051 ** pointer index, and the gap between the cell pointer index and the start
10052 ** of cell content.
10054 ** The loop below pulls entries from the min-heap in order and compares
10055 ** the start_address against the previous end_address. If there is an
10056 ** overlap, that means bytes are used multiple times. If there is a gap,
10057 ** that gap is added to the fragmentation count.
10059 nFrag = 0;
10060 prev = contentOffset - 1; /* Implied first min-heap entry */
10061 while( btreeHeapPull(heap,&x) ){
10062 if( (prev&0xffff)>=(x>>16) ){
10063 checkAppendMsg(pCheck,
10064 "Multiple uses for byte %u of page %d", x>>16, iPage);
10065 break;
10066 }else{
10067 nFrag += (x>>16) - (prev&0xffff) - 1;
10068 prev = x;
10071 nFrag += usableSize - (prev&0xffff) - 1;
10072 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
10073 ** is stored in the fifth field of the b-tree page header.
10074 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
10075 ** number of fragmented free bytes within the cell content area.
10077 if( heap[0]==0 && nFrag!=data[hdr+7] ){
10078 checkAppendMsg(pCheck,
10079 "Fragmentation of %d bytes reported as %d on page %d",
10080 nFrag, data[hdr+7], iPage);
10084 end_of_check:
10085 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
10086 releasePage(pPage);
10087 pCheck->zPfx = saved_zPfx;
10088 pCheck->v1 = saved_v1;
10089 pCheck->v2 = saved_v2;
10090 return depth+1;
10092 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10094 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10096 ** This routine does a complete check of the given BTree file. aRoot[] is
10097 ** an array of pages numbers were each page number is the root page of
10098 ** a table. nRoot is the number of entries in aRoot.
10100 ** A read-only or read-write transaction must be opened before calling
10101 ** this function.
10103 ** Write the number of error seen in *pnErr. Except for some memory
10104 ** allocation errors, an error message held in memory obtained from
10105 ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
10106 ** returned. If a memory allocation error occurs, NULL is returned.
10108 char *sqlite3BtreeIntegrityCheck(
10109 sqlite3 *db, /* Database connection that is running the check */
10110 Btree *p, /* The btree to be checked */
10111 int *aRoot, /* An array of root pages numbers for individual trees */
10112 int nRoot, /* Number of entries in aRoot[] */
10113 int mxErr, /* Stop reporting errors after this many */
10114 int *pnErr /* Write number of errors seen to this variable */
10116 Pgno i;
10117 IntegrityCk sCheck;
10118 BtShared *pBt = p->pBt;
10119 u64 savedDbFlags = pBt->db->flags;
10120 char zErr[100];
10121 VVA_ONLY( int nRef );
10123 sqlite3BtreeEnter(p);
10124 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
10125 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
10126 assert( nRef>=0 );
10127 sCheck.db = db;
10128 sCheck.pBt = pBt;
10129 sCheck.pPager = pBt->pPager;
10130 sCheck.nPage = btreePagecount(sCheck.pBt);
10131 sCheck.mxErr = mxErr;
10132 sCheck.nErr = 0;
10133 sCheck.mallocFailed = 0;
10134 sCheck.zPfx = 0;
10135 sCheck.v1 = 0;
10136 sCheck.v2 = 0;
10137 sCheck.aPgRef = 0;
10138 sCheck.heap = 0;
10139 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
10140 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
10141 if( sCheck.nPage==0 ){
10142 goto integrity_ck_cleanup;
10145 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
10146 if( !sCheck.aPgRef ){
10147 sCheck.mallocFailed = 1;
10148 goto integrity_ck_cleanup;
10150 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
10151 if( sCheck.heap==0 ){
10152 sCheck.mallocFailed = 1;
10153 goto integrity_ck_cleanup;
10156 i = PENDING_BYTE_PAGE(pBt);
10157 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
10159 /* Check the integrity of the freelist
10161 sCheck.zPfx = "Main freelist: ";
10162 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
10163 get4byte(&pBt->pPage1->aData[36]));
10164 sCheck.zPfx = 0;
10166 /* Check all the tables.
10168 #ifndef SQLITE_OMIT_AUTOVACUUM
10169 if( pBt->autoVacuum ){
10170 int mx = 0;
10171 int mxInHdr;
10172 for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i];
10173 mxInHdr = get4byte(&pBt->pPage1->aData[52]);
10174 if( mx!=mxInHdr ){
10175 checkAppendMsg(&sCheck,
10176 "max rootpage (%d) disagrees with header (%d)",
10177 mx, mxInHdr
10180 }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){
10181 checkAppendMsg(&sCheck,
10182 "incremental_vacuum enabled with a max rootpage of zero"
10185 #endif
10186 testcase( pBt->db->flags & SQLITE_CellSizeCk );
10187 pBt->db->flags &= ~(u64)SQLITE_CellSizeCk;
10188 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
10189 i64 notUsed;
10190 if( aRoot[i]==0 ) continue;
10191 #ifndef SQLITE_OMIT_AUTOVACUUM
10192 if( pBt->autoVacuum && aRoot[i]>1 ){
10193 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
10195 #endif
10196 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
10198 pBt->db->flags = savedDbFlags;
10200 /* Make sure every page in the file is referenced
10202 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
10203 #ifdef SQLITE_OMIT_AUTOVACUUM
10204 if( getPageReferenced(&sCheck, i)==0 ){
10205 checkAppendMsg(&sCheck, "Page %d is never used", i);
10207 #else
10208 /* If the database supports auto-vacuum, make sure no tables contain
10209 ** references to pointer-map pages.
10211 if( getPageReferenced(&sCheck, i)==0 &&
10212 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
10213 checkAppendMsg(&sCheck, "Page %d is never used", i);
10215 if( getPageReferenced(&sCheck, i)!=0 &&
10216 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
10217 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
10219 #endif
10222 /* Clean up and report errors.
10224 integrity_ck_cleanup:
10225 sqlite3PageFree(sCheck.heap);
10226 sqlite3_free(sCheck.aPgRef);
10227 if( sCheck.mallocFailed ){
10228 sqlite3_str_reset(&sCheck.errMsg);
10229 sCheck.nErr++;
10231 *pnErr = sCheck.nErr;
10232 if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg);
10233 /* Make sure this analysis did not leave any unref() pages. */
10234 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
10235 sqlite3BtreeLeave(p);
10236 return sqlite3StrAccumFinish(&sCheck.errMsg);
10238 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10241 ** Return the full pathname of the underlying database file. Return
10242 ** an empty string if the database is in-memory or a TEMP database.
10244 ** The pager filename is invariant as long as the pager is
10245 ** open so it is safe to access without the BtShared mutex.
10247 const char *sqlite3BtreeGetFilename(Btree *p){
10248 assert( p->pBt->pPager!=0 );
10249 return sqlite3PagerFilename(p->pBt->pPager, 1);
10253 ** Return the pathname of the journal file for this database. The return
10254 ** value of this routine is the same regardless of whether the journal file
10255 ** has been created or not.
10257 ** The pager journal filename is invariant as long as the pager is
10258 ** open so it is safe to access without the BtShared mutex.
10260 const char *sqlite3BtreeGetJournalname(Btree *p){
10261 assert( p->pBt->pPager!=0 );
10262 return sqlite3PagerJournalname(p->pBt->pPager);
10266 ** Return non-zero if a transaction is active.
10268 int sqlite3BtreeIsInTrans(Btree *p){
10269 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
10270 return (p && (p->inTrans==TRANS_WRITE));
10273 #ifndef SQLITE_OMIT_WAL
10275 ** Run a checkpoint on the Btree passed as the first argument.
10277 ** Return SQLITE_LOCKED if this or any other connection has an open
10278 ** transaction on the shared-cache the argument Btree is connected to.
10280 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
10282 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
10283 int rc = SQLITE_OK;
10284 if( p ){
10285 BtShared *pBt = p->pBt;
10286 sqlite3BtreeEnter(p);
10287 if( pBt->inTransaction!=TRANS_NONE ){
10288 rc = SQLITE_LOCKED;
10289 }else{
10290 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
10292 sqlite3BtreeLeave(p);
10294 return rc;
10296 #endif
10299 ** Return non-zero if a read (or write) transaction is active.
10301 int sqlite3BtreeIsInReadTrans(Btree *p){
10302 assert( p );
10303 assert( sqlite3_mutex_held(p->db->mutex) );
10304 return p->inTrans!=TRANS_NONE;
10307 int sqlite3BtreeIsInBackup(Btree *p){
10308 assert( p );
10309 assert( sqlite3_mutex_held(p->db->mutex) );
10310 return p->nBackup!=0;
10314 ** This function returns a pointer to a blob of memory associated with
10315 ** a single shared-btree. The memory is used by client code for its own
10316 ** purposes (for example, to store a high-level schema associated with
10317 ** the shared-btree). The btree layer manages reference counting issues.
10319 ** The first time this is called on a shared-btree, nBytes bytes of memory
10320 ** are allocated, zeroed, and returned to the caller. For each subsequent
10321 ** call the nBytes parameter is ignored and a pointer to the same blob
10322 ** of memory returned.
10324 ** If the nBytes parameter is 0 and the blob of memory has not yet been
10325 ** allocated, a null pointer is returned. If the blob has already been
10326 ** allocated, it is returned as normal.
10328 ** Just before the shared-btree is closed, the function passed as the
10329 ** xFree argument when the memory allocation was made is invoked on the
10330 ** blob of allocated memory. The xFree function should not call sqlite3_free()
10331 ** on the memory, the btree layer does that.
10333 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
10334 BtShared *pBt = p->pBt;
10335 sqlite3BtreeEnter(p);
10336 if( !pBt->pSchema && nBytes ){
10337 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
10338 pBt->xFreeSchema = xFree;
10340 sqlite3BtreeLeave(p);
10341 return pBt->pSchema;
10345 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
10346 ** btree as the argument handle holds an exclusive lock on the
10347 ** sqlite_master table. Otherwise SQLITE_OK.
10349 int sqlite3BtreeSchemaLocked(Btree *p){
10350 int rc;
10351 assert( sqlite3_mutex_held(p->db->mutex) );
10352 sqlite3BtreeEnter(p);
10353 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
10354 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
10355 sqlite3BtreeLeave(p);
10356 return rc;
10360 #ifndef SQLITE_OMIT_SHARED_CACHE
10362 ** Obtain a lock on the table whose root page is iTab. The
10363 ** lock is a write lock if isWritelock is true or a read lock
10364 ** if it is false.
10366 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
10367 int rc = SQLITE_OK;
10368 assert( p->inTrans!=TRANS_NONE );
10369 if( p->sharable ){
10370 u8 lockType = READ_LOCK + isWriteLock;
10371 assert( READ_LOCK+1==WRITE_LOCK );
10372 assert( isWriteLock==0 || isWriteLock==1 );
10374 sqlite3BtreeEnter(p);
10375 rc = querySharedCacheTableLock(p, iTab, lockType);
10376 if( rc==SQLITE_OK ){
10377 rc = setSharedCacheTableLock(p, iTab, lockType);
10379 sqlite3BtreeLeave(p);
10381 return rc;
10383 #endif
10385 #ifndef SQLITE_OMIT_INCRBLOB
10387 ** Argument pCsr must be a cursor opened for writing on an
10388 ** INTKEY table currently pointing at a valid table entry.
10389 ** This function modifies the data stored as part of that entry.
10391 ** Only the data content may only be modified, it is not possible to
10392 ** change the length of the data stored. If this function is called with
10393 ** parameters that attempt to write past the end of the existing data,
10394 ** no modifications are made and SQLITE_CORRUPT is returned.
10396 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
10397 int rc;
10398 assert( cursorOwnsBtShared(pCsr) );
10399 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
10400 assert( pCsr->curFlags & BTCF_Incrblob );
10402 rc = restoreCursorPosition(pCsr);
10403 if( rc!=SQLITE_OK ){
10404 return rc;
10406 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
10407 if( pCsr->eState!=CURSOR_VALID ){
10408 return SQLITE_ABORT;
10411 /* Save the positions of all other cursors open on this table. This is
10412 ** required in case any of them are holding references to an xFetch
10413 ** version of the b-tree page modified by the accessPayload call below.
10415 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
10416 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
10417 ** saveAllCursors can only return SQLITE_OK.
10419 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
10420 assert( rc==SQLITE_OK );
10422 /* Check some assumptions:
10423 ** (a) the cursor is open for writing,
10424 ** (b) there is a read/write transaction open,
10425 ** (c) the connection holds a write-lock on the table (if required),
10426 ** (d) there are no conflicting read-locks, and
10427 ** (e) the cursor points at a valid row of an intKey table.
10429 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
10430 return SQLITE_READONLY;
10432 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
10433 && pCsr->pBt->inTransaction==TRANS_WRITE );
10434 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
10435 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
10436 assert( pCsr->pPage->intKey );
10438 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
10442 ** Mark this cursor as an incremental blob cursor.
10444 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
10445 pCur->curFlags |= BTCF_Incrblob;
10446 pCur->pBtree->hasIncrblobCur = 1;
10448 #endif
10451 ** Set both the "read version" (single byte at byte offset 18) and
10452 ** "write version" (single byte at byte offset 19) fields in the database
10453 ** header to iVersion.
10455 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
10456 BtShared *pBt = pBtree->pBt;
10457 int rc; /* Return code */
10459 assert( iVersion==1 || iVersion==2 );
10461 /* If setting the version fields to 1, do not automatically open the
10462 ** WAL connection, even if the version fields are currently set to 2.
10464 pBt->btsFlags &= ~BTS_NO_WAL;
10465 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
10467 rc = sqlite3BtreeBeginTrans(pBtree, 0, 0);
10468 if( rc==SQLITE_OK ){
10469 u8 *aData = pBt->pPage1->aData;
10470 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
10471 rc = sqlite3BtreeBeginTrans(pBtree, 2, 0);
10472 if( rc==SQLITE_OK ){
10473 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
10474 if( rc==SQLITE_OK ){
10475 aData[18] = (u8)iVersion;
10476 aData[19] = (u8)iVersion;
10482 pBt->btsFlags &= ~BTS_NO_WAL;
10483 return rc;
10487 ** Return true if the cursor has a hint specified. This routine is
10488 ** only used from within assert() statements
10490 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
10491 return (pCsr->hints & mask)!=0;
10495 ** Return true if the given Btree is read-only.
10497 int sqlite3BtreeIsReadonly(Btree *p){
10498 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
10502 ** Return the size of the header added to each page by this module.
10504 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
10506 #if !defined(SQLITE_OMIT_SHARED_CACHE)
10508 ** Return true if the Btree passed as the only argument is sharable.
10510 int sqlite3BtreeSharable(Btree *p){
10511 return p->sharable;
10515 ** Return the number of connections to the BtShared object accessed by
10516 ** the Btree handle passed as the only argument. For private caches
10517 ** this is always 1. For shared caches it may be 1 or greater.
10519 int sqlite3BtreeConnectionCount(Btree *p){
10520 testcase( p->sharable );
10521 return p->pBt->nRef;
10523 #endif