Snapshot of upstream SQLite 3.15.2
[sqlcipher.git] / src / vtab.c
blobc54dc65742225127cb1cb7a2364c22dbc03ef4f3
1 /*
2 ** 2006 June 10
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used to help implement virtual tables.
14 #ifndef SQLITE_OMIT_VIRTUALTABLE
15 #include "sqliteInt.h"
18 ** Before a virtual table xCreate() or xConnect() method is invoked, the
19 ** sqlite3.pVtabCtx member variable is set to point to an instance of
20 ** this struct allocated on the stack. It is used by the implementation of
21 ** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which
22 ** are invoked only from within xCreate and xConnect methods.
24 struct VtabCtx {
25 VTable *pVTable; /* The virtual table being constructed */
26 Table *pTab; /* The Table object to which the virtual table belongs */
27 VtabCtx *pPrior; /* Parent context (if any) */
28 int bDeclared; /* True after sqlite3_declare_vtab() is called */
32 ** The actual function that does the work of creating a new module.
33 ** This function implements the sqlite3_create_module() and
34 ** sqlite3_create_module_v2() interfaces.
36 static int createModule(
37 sqlite3 *db, /* Database in which module is registered */
38 const char *zName, /* Name assigned to this module */
39 const sqlite3_module *pModule, /* The definition of the module */
40 void *pAux, /* Context pointer for xCreate/xConnect */
41 void (*xDestroy)(void *) /* Module destructor function */
43 int rc = SQLITE_OK;
44 int nName;
46 sqlite3_mutex_enter(db->mutex);
47 nName = sqlite3Strlen30(zName);
48 if( sqlite3HashFind(&db->aModule, zName) ){
49 rc = SQLITE_MISUSE_BKPT;
50 }else{
51 Module *pMod;
52 pMod = (Module *)sqlite3DbMallocRawNN(db, sizeof(Module) + nName + 1);
53 if( pMod ){
54 Module *pDel;
55 char *zCopy = (char *)(&pMod[1]);
56 memcpy(zCopy, zName, nName+1);
57 pMod->zName = zCopy;
58 pMod->pModule = pModule;
59 pMod->pAux = pAux;
60 pMod->xDestroy = xDestroy;
61 pMod->pEpoTab = 0;
62 pDel = (Module *)sqlite3HashInsert(&db->aModule,zCopy,(void*)pMod);
63 assert( pDel==0 || pDel==pMod );
64 if( pDel ){
65 sqlite3OomFault(db);
66 sqlite3DbFree(db, pDel);
70 rc = sqlite3ApiExit(db, rc);
71 if( rc!=SQLITE_OK && xDestroy ) xDestroy(pAux);
73 sqlite3_mutex_leave(db->mutex);
74 return rc;
79 ** External API function used to create a new virtual-table module.
81 int sqlite3_create_module(
82 sqlite3 *db, /* Database in which module is registered */
83 const char *zName, /* Name assigned to this module */
84 const sqlite3_module *pModule, /* The definition of the module */
85 void *pAux /* Context pointer for xCreate/xConnect */
87 #ifdef SQLITE_ENABLE_API_ARMOR
88 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT;
89 #endif
90 return createModule(db, zName, pModule, pAux, 0);
94 ** External API function used to create a new virtual-table module.
96 int sqlite3_create_module_v2(
97 sqlite3 *db, /* Database in which module is registered */
98 const char *zName, /* Name assigned to this module */
99 const sqlite3_module *pModule, /* The definition of the module */
100 void *pAux, /* Context pointer for xCreate/xConnect */
101 void (*xDestroy)(void *) /* Module destructor function */
103 #ifdef SQLITE_ENABLE_API_ARMOR
104 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT;
105 #endif
106 return createModule(db, zName, pModule, pAux, xDestroy);
110 ** Lock the virtual table so that it cannot be disconnected.
111 ** Locks nest. Every lock should have a corresponding unlock.
112 ** If an unlock is omitted, resources leaks will occur.
114 ** If a disconnect is attempted while a virtual table is locked,
115 ** the disconnect is deferred until all locks have been removed.
117 void sqlite3VtabLock(VTable *pVTab){
118 pVTab->nRef++;
123 ** pTab is a pointer to a Table structure representing a virtual-table.
124 ** Return a pointer to the VTable object used by connection db to access
125 ** this virtual-table, if one has been created, or NULL otherwise.
127 VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){
128 VTable *pVtab;
129 assert( IsVirtual(pTab) );
130 for(pVtab=pTab->pVTable; pVtab && pVtab->db!=db; pVtab=pVtab->pNext);
131 return pVtab;
135 ** Decrement the ref-count on a virtual table object. When the ref-count
136 ** reaches zero, call the xDisconnect() method to delete the object.
138 void sqlite3VtabUnlock(VTable *pVTab){
139 sqlite3 *db = pVTab->db;
141 assert( db );
142 assert( pVTab->nRef>0 );
143 assert( db->magic==SQLITE_MAGIC_OPEN || db->magic==SQLITE_MAGIC_ZOMBIE );
145 pVTab->nRef--;
146 if( pVTab->nRef==0 ){
147 sqlite3_vtab *p = pVTab->pVtab;
148 if( p ){
149 p->pModule->xDisconnect(p);
151 sqlite3DbFree(db, pVTab);
156 ** Table p is a virtual table. This function moves all elements in the
157 ** p->pVTable list to the sqlite3.pDisconnect lists of their associated
158 ** database connections to be disconnected at the next opportunity.
159 ** Except, if argument db is not NULL, then the entry associated with
160 ** connection db is left in the p->pVTable list.
162 static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){
163 VTable *pRet = 0;
164 VTable *pVTable = p->pVTable;
165 p->pVTable = 0;
167 /* Assert that the mutex (if any) associated with the BtShared database
168 ** that contains table p is held by the caller. See header comments
169 ** above function sqlite3VtabUnlockList() for an explanation of why
170 ** this makes it safe to access the sqlite3.pDisconnect list of any
171 ** database connection that may have an entry in the p->pVTable list.
173 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
175 while( pVTable ){
176 sqlite3 *db2 = pVTable->db;
177 VTable *pNext = pVTable->pNext;
178 assert( db2 );
179 if( db2==db ){
180 pRet = pVTable;
181 p->pVTable = pRet;
182 pRet->pNext = 0;
183 }else{
184 pVTable->pNext = db2->pDisconnect;
185 db2->pDisconnect = pVTable;
187 pVTable = pNext;
190 assert( !db || pRet );
191 return pRet;
195 ** Table *p is a virtual table. This function removes the VTable object
196 ** for table *p associated with database connection db from the linked
197 ** list in p->pVTab. It also decrements the VTable ref count. This is
198 ** used when closing database connection db to free all of its VTable
199 ** objects without disturbing the rest of the Schema object (which may
200 ** be being used by other shared-cache connections).
202 void sqlite3VtabDisconnect(sqlite3 *db, Table *p){
203 VTable **ppVTab;
205 assert( IsVirtual(p) );
206 assert( sqlite3BtreeHoldsAllMutexes(db) );
207 assert( sqlite3_mutex_held(db->mutex) );
209 for(ppVTab=&p->pVTable; *ppVTab; ppVTab=&(*ppVTab)->pNext){
210 if( (*ppVTab)->db==db ){
211 VTable *pVTab = *ppVTab;
212 *ppVTab = pVTab->pNext;
213 sqlite3VtabUnlock(pVTab);
214 break;
221 ** Disconnect all the virtual table objects in the sqlite3.pDisconnect list.
223 ** This function may only be called when the mutexes associated with all
224 ** shared b-tree databases opened using connection db are held by the
225 ** caller. This is done to protect the sqlite3.pDisconnect list. The
226 ** sqlite3.pDisconnect list is accessed only as follows:
228 ** 1) By this function. In this case, all BtShared mutexes and the mutex
229 ** associated with the database handle itself must be held.
231 ** 2) By function vtabDisconnectAll(), when it adds a VTable entry to
232 ** the sqlite3.pDisconnect list. In this case either the BtShared mutex
233 ** associated with the database the virtual table is stored in is held
234 ** or, if the virtual table is stored in a non-sharable database, then
235 ** the database handle mutex is held.
237 ** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously
238 ** by multiple threads. It is thread-safe.
240 void sqlite3VtabUnlockList(sqlite3 *db){
241 VTable *p = db->pDisconnect;
242 db->pDisconnect = 0;
244 assert( sqlite3BtreeHoldsAllMutexes(db) );
245 assert( sqlite3_mutex_held(db->mutex) );
247 if( p ){
248 sqlite3ExpirePreparedStatements(db);
249 do {
250 VTable *pNext = p->pNext;
251 sqlite3VtabUnlock(p);
252 p = pNext;
253 }while( p );
258 ** Clear any and all virtual-table information from the Table record.
259 ** This routine is called, for example, just before deleting the Table
260 ** record.
262 ** Since it is a virtual-table, the Table structure contains a pointer
263 ** to the head of a linked list of VTable structures. Each VTable
264 ** structure is associated with a single sqlite3* user of the schema.
265 ** The reference count of the VTable structure associated with database
266 ** connection db is decremented immediately (which may lead to the
267 ** structure being xDisconnected and free). Any other VTable structures
268 ** in the list are moved to the sqlite3.pDisconnect list of the associated
269 ** database connection.
271 void sqlite3VtabClear(sqlite3 *db, Table *p){
272 if( !db || db->pnBytesFreed==0 ) vtabDisconnectAll(0, p);
273 if( p->azModuleArg ){
274 int i;
275 for(i=0; i<p->nModuleArg; i++){
276 if( i!=1 ) sqlite3DbFree(db, p->azModuleArg[i]);
278 sqlite3DbFree(db, p->azModuleArg);
283 ** Add a new module argument to pTable->azModuleArg[].
284 ** The string is not copied - the pointer is stored. The
285 ** string will be freed automatically when the table is
286 ** deleted.
288 static void addModuleArgument(sqlite3 *db, Table *pTable, char *zArg){
289 int nBytes = sizeof(char *)*(2+pTable->nModuleArg);
290 char **azModuleArg;
291 azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes);
292 if( azModuleArg==0 ){
293 sqlite3DbFree(db, zArg);
294 }else{
295 int i = pTable->nModuleArg++;
296 azModuleArg[i] = zArg;
297 azModuleArg[i+1] = 0;
298 pTable->azModuleArg = azModuleArg;
303 ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE
304 ** statement. The module name has been parsed, but the optional list
305 ** of parameters that follow the module name are still pending.
307 void sqlite3VtabBeginParse(
308 Parse *pParse, /* Parsing context */
309 Token *pName1, /* Name of new table, or database name */
310 Token *pName2, /* Name of new table or NULL */
311 Token *pModuleName, /* Name of the module for the virtual table */
312 int ifNotExists /* No error if the table already exists */
314 int iDb; /* The database the table is being created in */
315 Table *pTable; /* The new virtual table */
316 sqlite3 *db; /* Database connection */
318 sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists);
319 pTable = pParse->pNewTable;
320 if( pTable==0 ) return;
321 assert( 0==pTable->pIndex );
323 db = pParse->db;
324 iDb = sqlite3SchemaToIndex(db, pTable->pSchema);
325 assert( iDb>=0 );
327 pTable->tabFlags |= TF_Virtual;
328 pTable->nModuleArg = 0;
329 addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName));
330 addModuleArgument(db, pTable, 0);
331 addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName));
332 assert( (pParse->sNameToken.z==pName2->z && pName2->z!=0)
333 || (pParse->sNameToken.z==pName1->z && pName2->z==0)
335 pParse->sNameToken.n = (int)(
336 &pModuleName->z[pModuleName->n] - pParse->sNameToken.z
339 #ifndef SQLITE_OMIT_AUTHORIZATION
340 /* Creating a virtual table invokes the authorization callback twice.
341 ** The first invocation, to obtain permission to INSERT a row into the
342 ** sqlite_master table, has already been made by sqlite3StartTable().
343 ** The second call, to obtain permission to create the table, is made now.
345 if( pTable->azModuleArg ){
346 sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName,
347 pTable->azModuleArg[0], pParse->db->aDb[iDb].zDbSName);
349 #endif
353 ** This routine takes the module argument that has been accumulating
354 ** in pParse->zArg[] and appends it to the list of arguments on the
355 ** virtual table currently under construction in pParse->pTable.
357 static void addArgumentToVtab(Parse *pParse){
358 if( pParse->sArg.z && pParse->pNewTable ){
359 const char *z = (const char*)pParse->sArg.z;
360 int n = pParse->sArg.n;
361 sqlite3 *db = pParse->db;
362 addModuleArgument(db, pParse->pNewTable, sqlite3DbStrNDup(db, z, n));
367 ** The parser calls this routine after the CREATE VIRTUAL TABLE statement
368 ** has been completely parsed.
370 void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){
371 Table *pTab = pParse->pNewTable; /* The table being constructed */
372 sqlite3 *db = pParse->db; /* The database connection */
374 if( pTab==0 ) return;
375 addArgumentToVtab(pParse);
376 pParse->sArg.z = 0;
377 if( pTab->nModuleArg<1 ) return;
379 /* If the CREATE VIRTUAL TABLE statement is being entered for the
380 ** first time (in other words if the virtual table is actually being
381 ** created now instead of just being read out of sqlite_master) then
382 ** do additional initialization work and store the statement text
383 ** in the sqlite_master table.
385 if( !db->init.busy ){
386 char *zStmt;
387 char *zWhere;
388 int iDb;
389 int iReg;
390 Vdbe *v;
392 /* Compute the complete text of the CREATE VIRTUAL TABLE statement */
393 if( pEnd ){
394 pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n;
396 zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken);
398 /* A slot for the record has already been allocated in the
399 ** SQLITE_MASTER table. We just need to update that slot with all
400 ** the information we've collected.
402 ** The VM register number pParse->regRowid holds the rowid of an
403 ** entry in the sqlite_master table tht was created for this vtab
404 ** by sqlite3StartTable().
406 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
407 sqlite3NestedParse(pParse,
408 "UPDATE %Q.%s "
409 "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q "
410 "WHERE rowid=#%d",
411 db->aDb[iDb].zDbSName, SCHEMA_TABLE(iDb),
412 pTab->zName,
413 pTab->zName,
414 zStmt,
415 pParse->regRowid
417 sqlite3DbFree(db, zStmt);
418 v = sqlite3GetVdbe(pParse);
419 sqlite3ChangeCookie(pParse, iDb);
421 sqlite3VdbeAddOp0(v, OP_Expire);
422 zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName);
423 sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere);
425 iReg = ++pParse->nMem;
426 sqlite3VdbeLoadString(v, iReg, pTab->zName);
427 sqlite3VdbeAddOp2(v, OP_VCreate, iDb, iReg);
430 /* If we are rereading the sqlite_master table create the in-memory
431 ** record of the table. The xConnect() method is not called until
432 ** the first time the virtual table is used in an SQL statement. This
433 ** allows a schema that contains virtual tables to be loaded before
434 ** the required virtual table implementations are registered. */
435 else {
436 Table *pOld;
437 Schema *pSchema = pTab->pSchema;
438 const char *zName = pTab->zName;
439 assert( sqlite3SchemaMutexHeld(db, 0, pSchema) );
440 pOld = sqlite3HashInsert(&pSchema->tblHash, zName, pTab);
441 if( pOld ){
442 sqlite3OomFault(db);
443 assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */
444 return;
446 pParse->pNewTable = 0;
451 ** The parser calls this routine when it sees the first token
452 ** of an argument to the module name in a CREATE VIRTUAL TABLE statement.
454 void sqlite3VtabArgInit(Parse *pParse){
455 addArgumentToVtab(pParse);
456 pParse->sArg.z = 0;
457 pParse->sArg.n = 0;
461 ** The parser calls this routine for each token after the first token
462 ** in an argument to the module name in a CREATE VIRTUAL TABLE statement.
464 void sqlite3VtabArgExtend(Parse *pParse, Token *p){
465 Token *pArg = &pParse->sArg;
466 if( pArg->z==0 ){
467 pArg->z = p->z;
468 pArg->n = p->n;
469 }else{
470 assert(pArg->z <= p->z);
471 pArg->n = (int)(&p->z[p->n] - pArg->z);
476 ** Invoke a virtual table constructor (either xCreate or xConnect). The
477 ** pointer to the function to invoke is passed as the fourth parameter
478 ** to this procedure.
480 static int vtabCallConstructor(
481 sqlite3 *db,
482 Table *pTab,
483 Module *pMod,
484 int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**),
485 char **pzErr
487 VtabCtx sCtx;
488 VTable *pVTable;
489 int rc;
490 const char *const*azArg = (const char *const*)pTab->azModuleArg;
491 int nArg = pTab->nModuleArg;
492 char *zErr = 0;
493 char *zModuleName;
494 int iDb;
495 VtabCtx *pCtx;
497 /* Check that the virtual-table is not already being initialized */
498 for(pCtx=db->pVtabCtx; pCtx; pCtx=pCtx->pPrior){
499 if( pCtx->pTab==pTab ){
500 *pzErr = sqlite3MPrintf(db,
501 "vtable constructor called recursively: %s", pTab->zName
503 return SQLITE_LOCKED;
507 zModuleName = sqlite3MPrintf(db, "%s", pTab->zName);
508 if( !zModuleName ){
509 return SQLITE_NOMEM_BKPT;
512 pVTable = sqlite3DbMallocZero(db, sizeof(VTable));
513 if( !pVTable ){
514 sqlite3DbFree(db, zModuleName);
515 return SQLITE_NOMEM_BKPT;
517 pVTable->db = db;
518 pVTable->pMod = pMod;
520 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
521 pTab->azModuleArg[1] = db->aDb[iDb].zDbSName;
523 /* Invoke the virtual table constructor */
524 assert( &db->pVtabCtx );
525 assert( xConstruct );
526 sCtx.pTab = pTab;
527 sCtx.pVTable = pVTable;
528 sCtx.pPrior = db->pVtabCtx;
529 sCtx.bDeclared = 0;
530 db->pVtabCtx = &sCtx;
531 rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr);
532 db->pVtabCtx = sCtx.pPrior;
533 if( rc==SQLITE_NOMEM ) sqlite3OomFault(db);
534 assert( sCtx.pTab==pTab );
536 if( SQLITE_OK!=rc ){
537 if( zErr==0 ){
538 *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName);
539 }else {
540 *pzErr = sqlite3MPrintf(db, "%s", zErr);
541 sqlite3_free(zErr);
543 sqlite3DbFree(db, pVTable);
544 }else if( ALWAYS(pVTable->pVtab) ){
545 /* Justification of ALWAYS(): A correct vtab constructor must allocate
546 ** the sqlite3_vtab object if successful. */
547 memset(pVTable->pVtab, 0, sizeof(pVTable->pVtab[0]));
548 pVTable->pVtab->pModule = pMod->pModule;
549 pVTable->nRef = 1;
550 if( sCtx.bDeclared==0 ){
551 const char *zFormat = "vtable constructor did not declare schema: %s";
552 *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName);
553 sqlite3VtabUnlock(pVTable);
554 rc = SQLITE_ERROR;
555 }else{
556 int iCol;
557 u8 oooHidden = 0;
558 /* If everything went according to plan, link the new VTable structure
559 ** into the linked list headed by pTab->pVTable. Then loop through the
560 ** columns of the table to see if any of them contain the token "hidden".
561 ** If so, set the Column COLFLAG_HIDDEN flag and remove the token from
562 ** the type string. */
563 pVTable->pNext = pTab->pVTable;
564 pTab->pVTable = pVTable;
566 for(iCol=0; iCol<pTab->nCol; iCol++){
567 char *zType = sqlite3ColumnType(&pTab->aCol[iCol], "");
568 int nType;
569 int i = 0;
570 nType = sqlite3Strlen30(zType);
571 for(i=0; i<nType; i++){
572 if( 0==sqlite3StrNICmp("hidden", &zType[i], 6)
573 && (i==0 || zType[i-1]==' ')
574 && (zType[i+6]=='\0' || zType[i+6]==' ')
576 break;
579 if( i<nType ){
580 int j;
581 int nDel = 6 + (zType[i+6] ? 1 : 0);
582 for(j=i; (j+nDel)<=nType; j++){
583 zType[j] = zType[j+nDel];
585 if( zType[i]=='\0' && i>0 ){
586 assert(zType[i-1]==' ');
587 zType[i-1] = '\0';
589 pTab->aCol[iCol].colFlags |= COLFLAG_HIDDEN;
590 oooHidden = TF_OOOHidden;
591 }else{
592 pTab->tabFlags |= oooHidden;
598 sqlite3DbFree(db, zModuleName);
599 return rc;
603 ** This function is invoked by the parser to call the xConnect() method
604 ** of the virtual table pTab. If an error occurs, an error code is returned
605 ** and an error left in pParse.
607 ** This call is a no-op if table pTab is not a virtual table.
609 int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){
610 sqlite3 *db = pParse->db;
611 const char *zMod;
612 Module *pMod;
613 int rc;
615 assert( pTab );
616 if( (pTab->tabFlags & TF_Virtual)==0 || sqlite3GetVTable(db, pTab) ){
617 return SQLITE_OK;
620 /* Locate the required virtual table module */
621 zMod = pTab->azModuleArg[0];
622 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod);
624 if( !pMod ){
625 const char *zModule = pTab->azModuleArg[0];
626 sqlite3ErrorMsg(pParse, "no such module: %s", zModule);
627 rc = SQLITE_ERROR;
628 }else{
629 char *zErr = 0;
630 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr);
631 if( rc!=SQLITE_OK ){
632 sqlite3ErrorMsg(pParse, "%s", zErr);
634 sqlite3DbFree(db, zErr);
637 return rc;
640 ** Grow the db->aVTrans[] array so that there is room for at least one
641 ** more v-table. Return SQLITE_NOMEM if a malloc fails, or SQLITE_OK otherwise.
643 static int growVTrans(sqlite3 *db){
644 const int ARRAY_INCR = 5;
646 /* Grow the sqlite3.aVTrans array if required */
647 if( (db->nVTrans%ARRAY_INCR)==0 ){
648 VTable **aVTrans;
649 int nBytes = sizeof(sqlite3_vtab *) * (db->nVTrans + ARRAY_INCR);
650 aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes);
651 if( !aVTrans ){
652 return SQLITE_NOMEM_BKPT;
654 memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR);
655 db->aVTrans = aVTrans;
658 return SQLITE_OK;
662 ** Add the virtual table pVTab to the array sqlite3.aVTrans[]. Space should
663 ** have already been reserved using growVTrans().
665 static void addToVTrans(sqlite3 *db, VTable *pVTab){
666 /* Add pVtab to the end of sqlite3.aVTrans */
667 db->aVTrans[db->nVTrans++] = pVTab;
668 sqlite3VtabLock(pVTab);
672 ** This function is invoked by the vdbe to call the xCreate method
673 ** of the virtual table named zTab in database iDb.
675 ** If an error occurs, *pzErr is set to point to an English language
676 ** description of the error and an SQLITE_XXX error code is returned.
677 ** In this case the caller must call sqlite3DbFree(db, ) on *pzErr.
679 int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){
680 int rc = SQLITE_OK;
681 Table *pTab;
682 Module *pMod;
683 const char *zMod;
685 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName);
686 assert( pTab && (pTab->tabFlags & TF_Virtual)!=0 && !pTab->pVTable );
688 /* Locate the required virtual table module */
689 zMod = pTab->azModuleArg[0];
690 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod);
692 /* If the module has been registered and includes a Create method,
693 ** invoke it now. If the module has not been registered, return an
694 ** error. Otherwise, do nothing.
696 if( pMod==0 || pMod->pModule->xCreate==0 || pMod->pModule->xDestroy==0 ){
697 *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod);
698 rc = SQLITE_ERROR;
699 }else{
700 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr);
703 /* Justification of ALWAYS(): The xConstructor method is required to
704 ** create a valid sqlite3_vtab if it returns SQLITE_OK. */
705 if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){
706 rc = growVTrans(db);
707 if( rc==SQLITE_OK ){
708 addToVTrans(db, sqlite3GetVTable(db, pTab));
712 return rc;
716 ** This function is used to set the schema of a virtual table. It is only
717 ** valid to call this function from within the xCreate() or xConnect() of a
718 ** virtual table module.
720 int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){
721 VtabCtx *pCtx;
722 Parse *pParse;
723 int rc = SQLITE_OK;
724 Table *pTab;
725 char *zErr = 0;
727 #ifdef SQLITE_ENABLE_API_ARMOR
728 if( !sqlite3SafetyCheckOk(db) || zCreateTable==0 ){
729 return SQLITE_MISUSE_BKPT;
731 #endif
732 sqlite3_mutex_enter(db->mutex);
733 pCtx = db->pVtabCtx;
734 if( !pCtx || pCtx->bDeclared ){
735 sqlite3Error(db, SQLITE_MISUSE);
736 sqlite3_mutex_leave(db->mutex);
737 return SQLITE_MISUSE_BKPT;
739 pTab = pCtx->pTab;
740 assert( (pTab->tabFlags & TF_Virtual)!=0 );
742 pParse = sqlite3StackAllocZero(db, sizeof(*pParse));
743 if( pParse==0 ){
744 rc = SQLITE_NOMEM_BKPT;
745 }else{
746 pParse->declareVtab = 1;
747 pParse->db = db;
748 pParse->nQueryLoop = 1;
750 if( SQLITE_OK==sqlite3RunParser(pParse, zCreateTable, &zErr)
751 && pParse->pNewTable
752 && !db->mallocFailed
753 && !pParse->pNewTable->pSelect
754 && (pParse->pNewTable->tabFlags & TF_Virtual)==0
756 if( !pTab->aCol ){
757 Table *pNew = pParse->pNewTable;
758 Index *pIdx;
759 pTab->aCol = pNew->aCol;
760 pTab->nCol = pNew->nCol;
761 pTab->tabFlags |= pNew->tabFlags & (TF_WithoutRowid|TF_NoVisibleRowid);
762 pNew->nCol = 0;
763 pNew->aCol = 0;
764 assert( pTab->pIndex==0 );
765 if( !HasRowid(pNew) && pCtx->pVTable->pMod->pModule->xUpdate!=0 ){
766 rc = SQLITE_ERROR;
768 pIdx = pNew->pIndex;
769 if( pIdx ){
770 assert( pIdx->pNext==0 );
771 pTab->pIndex = pIdx;
772 pNew->pIndex = 0;
773 pIdx->pTable = pTab;
776 pCtx->bDeclared = 1;
777 }else{
778 sqlite3ErrorWithMsg(db, SQLITE_ERROR, (zErr ? "%s" : 0), zErr);
779 sqlite3DbFree(db, zErr);
780 rc = SQLITE_ERROR;
782 pParse->declareVtab = 0;
784 if( pParse->pVdbe ){
785 sqlite3VdbeFinalize(pParse->pVdbe);
787 sqlite3DeleteTable(db, pParse->pNewTable);
788 sqlite3ParserReset(pParse);
789 sqlite3StackFree(db, pParse);
792 assert( (rc&0xff)==rc );
793 rc = sqlite3ApiExit(db, rc);
794 sqlite3_mutex_leave(db->mutex);
795 return rc;
799 ** This function is invoked by the vdbe to call the xDestroy method
800 ** of the virtual table named zTab in database iDb. This occurs
801 ** when a DROP TABLE is mentioned.
803 ** This call is a no-op if zTab is not a virtual table.
805 int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){
806 int rc = SQLITE_OK;
807 Table *pTab;
809 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName);
810 if( pTab!=0 && ALWAYS(pTab->pVTable!=0) ){
811 VTable *p;
812 int (*xDestroy)(sqlite3_vtab *);
813 for(p=pTab->pVTable; p; p=p->pNext){
814 assert( p->pVtab );
815 if( p->pVtab->nRef>0 ){
816 return SQLITE_LOCKED;
819 p = vtabDisconnectAll(db, pTab);
820 xDestroy = p->pMod->pModule->xDestroy;
821 assert( xDestroy!=0 ); /* Checked before the virtual table is created */
822 rc = xDestroy(p->pVtab);
823 /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */
824 if( rc==SQLITE_OK ){
825 assert( pTab->pVTable==p && p->pNext==0 );
826 p->pVtab = 0;
827 pTab->pVTable = 0;
828 sqlite3VtabUnlock(p);
832 return rc;
836 ** This function invokes either the xRollback or xCommit method
837 ** of each of the virtual tables in the sqlite3.aVTrans array. The method
838 ** called is identified by the second argument, "offset", which is
839 ** the offset of the method to call in the sqlite3_module structure.
841 ** The array is cleared after invoking the callbacks.
843 static void callFinaliser(sqlite3 *db, int offset){
844 int i;
845 if( db->aVTrans ){
846 VTable **aVTrans = db->aVTrans;
847 db->aVTrans = 0;
848 for(i=0; i<db->nVTrans; i++){
849 VTable *pVTab = aVTrans[i];
850 sqlite3_vtab *p = pVTab->pVtab;
851 if( p ){
852 int (*x)(sqlite3_vtab *);
853 x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset);
854 if( x ) x(p);
856 pVTab->iSavepoint = 0;
857 sqlite3VtabUnlock(pVTab);
859 sqlite3DbFree(db, aVTrans);
860 db->nVTrans = 0;
865 ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans
866 ** array. Return the error code for the first error that occurs, or
867 ** SQLITE_OK if all xSync operations are successful.
869 ** If an error message is available, leave it in p->zErrMsg.
871 int sqlite3VtabSync(sqlite3 *db, Vdbe *p){
872 int i;
873 int rc = SQLITE_OK;
874 VTable **aVTrans = db->aVTrans;
876 db->aVTrans = 0;
877 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
878 int (*x)(sqlite3_vtab *);
879 sqlite3_vtab *pVtab = aVTrans[i]->pVtab;
880 if( pVtab && (x = pVtab->pModule->xSync)!=0 ){
881 rc = x(pVtab);
882 sqlite3VtabImportErrmsg(p, pVtab);
885 db->aVTrans = aVTrans;
886 return rc;
890 ** Invoke the xRollback method of all virtual tables in the
891 ** sqlite3.aVTrans array. Then clear the array itself.
893 int sqlite3VtabRollback(sqlite3 *db){
894 callFinaliser(db, offsetof(sqlite3_module,xRollback));
895 return SQLITE_OK;
899 ** Invoke the xCommit method of all virtual tables in the
900 ** sqlite3.aVTrans array. Then clear the array itself.
902 int sqlite3VtabCommit(sqlite3 *db){
903 callFinaliser(db, offsetof(sqlite3_module,xCommit));
904 return SQLITE_OK;
908 ** If the virtual table pVtab supports the transaction interface
909 ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is
910 ** not currently open, invoke the xBegin method now.
912 ** If the xBegin call is successful, place the sqlite3_vtab pointer
913 ** in the sqlite3.aVTrans array.
915 int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){
916 int rc = SQLITE_OK;
917 const sqlite3_module *pModule;
919 /* Special case: If db->aVTrans is NULL and db->nVTrans is greater
920 ** than zero, then this function is being called from within a
921 ** virtual module xSync() callback. It is illegal to write to
922 ** virtual module tables in this case, so return SQLITE_LOCKED.
924 if( sqlite3VtabInSync(db) ){
925 return SQLITE_LOCKED;
927 if( !pVTab ){
928 return SQLITE_OK;
930 pModule = pVTab->pVtab->pModule;
932 if( pModule->xBegin ){
933 int i;
935 /* If pVtab is already in the aVTrans array, return early */
936 for(i=0; i<db->nVTrans; i++){
937 if( db->aVTrans[i]==pVTab ){
938 return SQLITE_OK;
942 /* Invoke the xBegin method. If successful, add the vtab to the
943 ** sqlite3.aVTrans[] array. */
944 rc = growVTrans(db);
945 if( rc==SQLITE_OK ){
946 rc = pModule->xBegin(pVTab->pVtab);
947 if( rc==SQLITE_OK ){
948 int iSvpt = db->nStatement + db->nSavepoint;
949 addToVTrans(db, pVTab);
950 if( iSvpt && pModule->xSavepoint ){
951 pVTab->iSavepoint = iSvpt;
952 rc = pModule->xSavepoint(pVTab->pVtab, iSvpt-1);
957 return rc;
961 ** Invoke either the xSavepoint, xRollbackTo or xRelease method of all
962 ** virtual tables that currently have an open transaction. Pass iSavepoint
963 ** as the second argument to the virtual table method invoked.
965 ** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is
966 ** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is
967 ** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with
968 ** an open transaction is invoked.
970 ** If any virtual table method returns an error code other than SQLITE_OK,
971 ** processing is abandoned and the error returned to the caller of this
972 ** function immediately. If all calls to virtual table methods are successful,
973 ** SQLITE_OK is returned.
975 int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){
976 int rc = SQLITE_OK;
978 assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN );
979 assert( iSavepoint>=-1 );
980 if( db->aVTrans ){
981 int i;
982 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
983 VTable *pVTab = db->aVTrans[i];
984 const sqlite3_module *pMod = pVTab->pMod->pModule;
985 if( pVTab->pVtab && pMod->iVersion>=2 ){
986 int (*xMethod)(sqlite3_vtab *, int);
987 switch( op ){
988 case SAVEPOINT_BEGIN:
989 xMethod = pMod->xSavepoint;
990 pVTab->iSavepoint = iSavepoint+1;
991 break;
992 case SAVEPOINT_ROLLBACK:
993 xMethod = pMod->xRollbackTo;
994 break;
995 default:
996 xMethod = pMod->xRelease;
997 break;
999 if( xMethod && pVTab->iSavepoint>iSavepoint ){
1000 rc = xMethod(pVTab->pVtab, iSavepoint);
1005 return rc;
1009 ** The first parameter (pDef) is a function implementation. The
1010 ** second parameter (pExpr) is the first argument to this function.
1011 ** If pExpr is a column in a virtual table, then let the virtual
1012 ** table implementation have an opportunity to overload the function.
1014 ** This routine is used to allow virtual table implementations to
1015 ** overload MATCH, LIKE, GLOB, and REGEXP operators.
1017 ** Return either the pDef argument (indicating no change) or a
1018 ** new FuncDef structure that is marked as ephemeral using the
1019 ** SQLITE_FUNC_EPHEM flag.
1021 FuncDef *sqlite3VtabOverloadFunction(
1022 sqlite3 *db, /* Database connection for reporting malloc problems */
1023 FuncDef *pDef, /* Function to possibly overload */
1024 int nArg, /* Number of arguments to the function */
1025 Expr *pExpr /* First argument to the function */
1027 Table *pTab;
1028 sqlite3_vtab *pVtab;
1029 sqlite3_module *pMod;
1030 void (*xSFunc)(sqlite3_context*,int,sqlite3_value**) = 0;
1031 void *pArg = 0;
1032 FuncDef *pNew;
1033 int rc = 0;
1034 char *zLowerName;
1035 unsigned char *z;
1038 /* Check to see the left operand is a column in a virtual table */
1039 if( NEVER(pExpr==0) ) return pDef;
1040 if( pExpr->op!=TK_COLUMN ) return pDef;
1041 pTab = pExpr->pTab;
1042 if( NEVER(pTab==0) ) return pDef;
1043 if( (pTab->tabFlags & TF_Virtual)==0 ) return pDef;
1044 pVtab = sqlite3GetVTable(db, pTab)->pVtab;
1045 assert( pVtab!=0 );
1046 assert( pVtab->pModule!=0 );
1047 pMod = (sqlite3_module *)pVtab->pModule;
1048 if( pMod->xFindFunction==0 ) return pDef;
1050 /* Call the xFindFunction method on the virtual table implementation
1051 ** to see if the implementation wants to overload this function
1053 zLowerName = sqlite3DbStrDup(db, pDef->zName);
1054 if( zLowerName ){
1055 for(z=(unsigned char*)zLowerName; *z; z++){
1056 *z = sqlite3UpperToLower[*z];
1058 rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xSFunc, &pArg);
1059 sqlite3DbFree(db, zLowerName);
1061 if( rc==0 ){
1062 return pDef;
1065 /* Create a new ephemeral function definition for the overloaded
1066 ** function */
1067 pNew = sqlite3DbMallocZero(db, sizeof(*pNew)
1068 + sqlite3Strlen30(pDef->zName) + 1);
1069 if( pNew==0 ){
1070 return pDef;
1072 *pNew = *pDef;
1073 pNew->zName = (const char*)&pNew[1];
1074 memcpy((char*)&pNew[1], pDef->zName, sqlite3Strlen30(pDef->zName)+1);
1075 pNew->xSFunc = xSFunc;
1076 pNew->pUserData = pArg;
1077 pNew->funcFlags |= SQLITE_FUNC_EPHEM;
1078 return pNew;
1082 ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[]
1083 ** array so that an OP_VBegin will get generated for it. Add pTab to the
1084 ** array if it is missing. If pTab is already in the array, this routine
1085 ** is a no-op.
1087 void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){
1088 Parse *pToplevel = sqlite3ParseToplevel(pParse);
1089 int i, n;
1090 Table **apVtabLock;
1092 assert( IsVirtual(pTab) );
1093 for(i=0; i<pToplevel->nVtabLock; i++){
1094 if( pTab==pToplevel->apVtabLock[i] ) return;
1096 n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]);
1097 apVtabLock = sqlite3_realloc64(pToplevel->apVtabLock, n);
1098 if( apVtabLock ){
1099 pToplevel->apVtabLock = apVtabLock;
1100 pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab;
1101 }else{
1102 sqlite3OomFault(pToplevel->db);
1107 ** Check to see if virtual table module pMod can be have an eponymous
1108 ** virtual table instance. If it can, create one if one does not already
1109 ** exist. Return non-zero if the eponymous virtual table instance exists
1110 ** when this routine returns, and return zero if it does not exist.
1112 ** An eponymous virtual table instance is one that is named after its
1113 ** module, and more importantly, does not require a CREATE VIRTUAL TABLE
1114 ** statement in order to come into existance. Eponymous virtual table
1115 ** instances always exist. They cannot be DROP-ed.
1117 ** Any virtual table module for which xConnect and xCreate are the same
1118 ** method can have an eponymous virtual table instance.
1120 int sqlite3VtabEponymousTableInit(Parse *pParse, Module *pMod){
1121 const sqlite3_module *pModule = pMod->pModule;
1122 Table *pTab;
1123 char *zErr = 0;
1124 int rc;
1125 sqlite3 *db = pParse->db;
1126 if( pMod->pEpoTab ) return 1;
1127 if( pModule->xCreate!=0 && pModule->xCreate!=pModule->xConnect ) return 0;
1128 pTab = sqlite3DbMallocZero(db, sizeof(Table));
1129 if( pTab==0 ) return 0;
1130 pTab->zName = sqlite3DbStrDup(db, pMod->zName);
1131 if( pTab->zName==0 ){
1132 sqlite3DbFree(db, pTab);
1133 return 0;
1135 pMod->pEpoTab = pTab;
1136 pTab->nRef = 1;
1137 pTab->pSchema = db->aDb[0].pSchema;
1138 pTab->tabFlags |= TF_Virtual;
1139 pTab->nModuleArg = 0;
1140 pTab->iPKey = -1;
1141 addModuleArgument(db, pTab, sqlite3DbStrDup(db, pTab->zName));
1142 addModuleArgument(db, pTab, 0);
1143 addModuleArgument(db, pTab, sqlite3DbStrDup(db, pTab->zName));
1144 rc = vtabCallConstructor(db, pTab, pMod, pModule->xConnect, &zErr);
1145 if( rc ){
1146 sqlite3ErrorMsg(pParse, "%s", zErr);
1147 sqlite3DbFree(db, zErr);
1148 sqlite3VtabEponymousTableClear(db, pMod);
1149 return 0;
1151 return 1;
1155 ** Erase the eponymous virtual table instance associated with
1156 ** virtual table module pMod, if it exists.
1158 void sqlite3VtabEponymousTableClear(sqlite3 *db, Module *pMod){
1159 Table *pTab = pMod->pEpoTab;
1160 if( pTab!=0 ){
1161 /* Mark the table as Ephemeral prior to deleting it, so that the
1162 ** sqlite3DeleteTable() routine will know that it is not stored in
1163 ** the schema. */
1164 pTab->tabFlags |= TF_Ephemeral;
1165 sqlite3DeleteTable(db, pTab);
1166 pMod->pEpoTab = 0;
1171 ** Return the ON CONFLICT resolution mode in effect for the virtual
1172 ** table update operation currently in progress.
1174 ** The results of this routine are undefined unless it is called from
1175 ** within an xUpdate method.
1177 int sqlite3_vtab_on_conflict(sqlite3 *db){
1178 static const unsigned char aMap[] = {
1179 SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE
1181 #ifdef SQLITE_ENABLE_API_ARMOR
1182 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
1183 #endif
1184 assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 );
1185 assert( OE_Ignore==4 && OE_Replace==5 );
1186 assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 );
1187 return (int)aMap[db->vtabOnConflict-1];
1191 ** Call from within the xCreate() or xConnect() methods to provide
1192 ** the SQLite core with additional information about the behavior
1193 ** of the virtual table being implemented.
1195 int sqlite3_vtab_config(sqlite3 *db, int op, ...){
1196 va_list ap;
1197 int rc = SQLITE_OK;
1199 #ifdef SQLITE_ENABLE_API_ARMOR
1200 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
1201 #endif
1202 sqlite3_mutex_enter(db->mutex);
1203 va_start(ap, op);
1204 switch( op ){
1205 case SQLITE_VTAB_CONSTRAINT_SUPPORT: {
1206 VtabCtx *p = db->pVtabCtx;
1207 if( !p ){
1208 rc = SQLITE_MISUSE_BKPT;
1209 }else{
1210 assert( p->pTab==0 || (p->pTab->tabFlags & TF_Virtual)!=0 );
1211 p->pVTable->bConstraint = (u8)va_arg(ap, int);
1213 break;
1215 default:
1216 rc = SQLITE_MISUSE_BKPT;
1217 break;
1219 va_end(ap);
1221 if( rc!=SQLITE_OK ) sqlite3Error(db, rc);
1222 sqlite3_mutex_leave(db->mutex);
1223 return rc;
1226 #endif /* SQLITE_OMIT_VIRTUALTABLE */