update version and change log for 4.4.2
[sqlcipher.git] / src / vdbeaux.c
blob5f8b8a817b78996dccffd47894c8ce115c4b8dfc
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
15 #include "sqliteInt.h"
16 #include "vdbeInt.h"
18 /* Forward references */
19 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef);
20 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
23 ** Create a new virtual database engine.
25 Vdbe *sqlite3VdbeCreate(Parse *pParse){
26 sqlite3 *db = pParse->db;
27 Vdbe *p;
28 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
29 if( p==0 ) return 0;
30 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
31 p->db = db;
32 if( db->pVdbe ){
33 db->pVdbe->pPrev = p;
35 p->pNext = db->pVdbe;
36 p->pPrev = 0;
37 db->pVdbe = p;
38 p->magic = VDBE_MAGIC_INIT;
39 p->pParse = pParse;
40 pParse->pVdbe = p;
41 assert( pParse->aLabel==0 );
42 assert( pParse->nLabel==0 );
43 assert( p->nOpAlloc==0 );
44 assert( pParse->szOpAlloc==0 );
45 sqlite3VdbeAddOp2(p, OP_Init, 0, 1);
46 return p;
50 ** Return the Parse object that owns a Vdbe object.
52 Parse *sqlite3VdbeParser(Vdbe *p){
53 return p->pParse;
57 ** Change the error string stored in Vdbe.zErrMsg
59 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
60 va_list ap;
61 sqlite3DbFree(p->db, p->zErrMsg);
62 va_start(ap, zFormat);
63 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
64 va_end(ap);
68 ** Remember the SQL string for a prepared statement.
70 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){
71 if( p==0 ) return;
72 p->prepFlags = prepFlags;
73 if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){
74 p->expmask = 0;
76 assert( p->zSql==0 );
77 p->zSql = sqlite3DbStrNDup(p->db, z, n);
80 #ifdef SQLITE_ENABLE_NORMALIZE
82 ** Add a new element to the Vdbe->pDblStr list.
84 void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){
85 if( p ){
86 int n = sqlite3Strlen30(z);
87 DblquoteStr *pStr = sqlite3DbMallocRawNN(db,
88 sizeof(*pStr)+n+1-sizeof(pStr->z));
89 if( pStr ){
90 pStr->pNextStr = p->pDblStr;
91 p->pDblStr = pStr;
92 memcpy(pStr->z, z, n+1);
96 #endif
98 #ifdef SQLITE_ENABLE_NORMALIZE
100 ** zId of length nId is a double-quoted identifier. Check to see if
101 ** that identifier is really used as a string literal.
103 int sqlite3VdbeUsesDoubleQuotedString(
104 Vdbe *pVdbe, /* The prepared statement */
105 const char *zId /* The double-quoted identifier, already dequoted */
107 DblquoteStr *pStr;
108 assert( zId!=0 );
109 if( pVdbe->pDblStr==0 ) return 0;
110 for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){
111 if( strcmp(zId, pStr->z)==0 ) return 1;
113 return 0;
115 #endif
118 ** Swap all content between two VDBE structures.
120 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
121 Vdbe tmp, *pTmp;
122 char *zTmp;
123 assert( pA->db==pB->db );
124 tmp = *pA;
125 *pA = *pB;
126 *pB = tmp;
127 pTmp = pA->pNext;
128 pA->pNext = pB->pNext;
129 pB->pNext = pTmp;
130 pTmp = pA->pPrev;
131 pA->pPrev = pB->pPrev;
132 pB->pPrev = pTmp;
133 zTmp = pA->zSql;
134 pA->zSql = pB->zSql;
135 pB->zSql = zTmp;
136 #ifdef SQLITE_ENABLE_NORMALIZE
137 zTmp = pA->zNormSql;
138 pA->zNormSql = pB->zNormSql;
139 pB->zNormSql = zTmp;
140 #endif
141 pB->expmask = pA->expmask;
142 pB->prepFlags = pA->prepFlags;
143 memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter));
144 pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++;
148 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
149 ** than its current size. nOp is guaranteed to be less than or equal
150 ** to 1024/sizeof(Op).
152 ** If an out-of-memory error occurs while resizing the array, return
153 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
154 ** unchanged (this is so that any opcodes already allocated can be
155 ** correctly deallocated along with the rest of the Vdbe).
157 static int growOpArray(Vdbe *v, int nOp){
158 VdbeOp *pNew;
159 Parse *p = v->pParse;
161 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
162 ** more frequent reallocs and hence provide more opportunities for
163 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
164 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
165 ** by the minimum* amount required until the size reaches 512. Normal
166 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
167 ** size of the op array or add 1KB of space, whichever is smaller. */
168 #ifdef SQLITE_TEST_REALLOC_STRESS
169 sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc
170 : (sqlite3_int64)v->nOpAlloc+nOp);
171 #else
172 sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc
173 : (sqlite3_int64)(1024/sizeof(Op)));
174 UNUSED_PARAMETER(nOp);
175 #endif
177 /* Ensure that the size of a VDBE does not grow too large */
178 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){
179 sqlite3OomFault(p->db);
180 return SQLITE_NOMEM;
183 assert( nOp<=(1024/sizeof(Op)) );
184 assert( nNew>=(v->nOpAlloc+nOp) );
185 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
186 if( pNew ){
187 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
188 v->nOpAlloc = p->szOpAlloc/sizeof(Op);
189 v->aOp = pNew;
191 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
194 #ifdef SQLITE_DEBUG
195 /* This routine is just a convenient place to set a breakpoint that will
196 ** fire after each opcode is inserted and displayed using
197 ** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and
198 ** pOp are available to make the breakpoint conditional.
200 ** Other useful labels for breakpoints include:
201 ** test_trace_breakpoint(pc,pOp)
202 ** sqlite3CorruptError(lineno)
203 ** sqlite3MisuseError(lineno)
204 ** sqlite3CantopenError(lineno)
206 static void test_addop_breakpoint(int pc, Op *pOp){
207 static int n = 0;
208 n++;
210 #endif
213 ** Add a new instruction to the list of instructions current in the
214 ** VDBE. Return the address of the new instruction.
216 ** Parameters:
218 ** p Pointer to the VDBE
220 ** op The opcode for this instruction
222 ** p1, p2, p3 Operands
224 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
225 ** the sqlite3VdbeChangeP4() function to change the value of the P4
226 ** operand.
228 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
229 assert( p->nOpAlloc<=p->nOp );
230 if( growOpArray(p, 1) ) return 1;
231 assert( p->nOpAlloc>p->nOp );
232 return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
234 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
235 int i;
236 VdbeOp *pOp;
238 i = p->nOp;
239 assert( p->magic==VDBE_MAGIC_INIT );
240 assert( op>=0 && op<0xff );
241 if( p->nOpAlloc<=i ){
242 return growOp3(p, op, p1, p2, p3);
244 p->nOp++;
245 pOp = &p->aOp[i];
246 pOp->opcode = (u8)op;
247 pOp->p5 = 0;
248 pOp->p1 = p1;
249 pOp->p2 = p2;
250 pOp->p3 = p3;
251 pOp->p4.p = 0;
252 pOp->p4type = P4_NOTUSED;
253 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
254 pOp->zComment = 0;
255 #endif
256 #ifdef SQLITE_DEBUG
257 if( p->db->flags & SQLITE_VdbeAddopTrace ){
258 sqlite3VdbePrintOp(0, i, &p->aOp[i]);
259 test_addop_breakpoint(i, &p->aOp[i]);
261 #endif
262 #ifdef VDBE_PROFILE
263 pOp->cycles = 0;
264 pOp->cnt = 0;
265 #endif
266 #ifdef SQLITE_VDBE_COVERAGE
267 pOp->iSrcLine = 0;
268 #endif
269 return i;
271 int sqlite3VdbeAddOp0(Vdbe *p, int op){
272 return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
274 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
275 return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
277 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
278 return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
281 /* Generate code for an unconditional jump to instruction iDest
283 int sqlite3VdbeGoto(Vdbe *p, int iDest){
284 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
287 /* Generate code to cause the string zStr to be loaded into
288 ** register iDest
290 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
291 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
295 ** Generate code that initializes multiple registers to string or integer
296 ** constants. The registers begin with iDest and increase consecutively.
297 ** One register is initialized for each characgter in zTypes[]. For each
298 ** "s" character in zTypes[], the register is a string if the argument is
299 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character
300 ** in zTypes[], the register is initialized to an integer.
302 ** If the input string does not end with "X" then an OP_ResultRow instruction
303 ** is generated for the values inserted.
305 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
306 va_list ap;
307 int i;
308 char c;
309 va_start(ap, zTypes);
310 for(i=0; (c = zTypes[i])!=0; i++){
311 if( c=='s' ){
312 const char *z = va_arg(ap, const char*);
313 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0);
314 }else if( c=='i' ){
315 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i);
316 }else{
317 goto skip_op_resultrow;
320 sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i);
321 skip_op_resultrow:
322 va_end(ap);
326 ** Add an opcode that includes the p4 value as a pointer.
328 int sqlite3VdbeAddOp4(
329 Vdbe *p, /* Add the opcode to this VM */
330 int op, /* The new opcode */
331 int p1, /* The P1 operand */
332 int p2, /* The P2 operand */
333 int p3, /* The P3 operand */
334 const char *zP4, /* The P4 operand */
335 int p4type /* P4 operand type */
337 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
338 sqlite3VdbeChangeP4(p, addr, zP4, p4type);
339 return addr;
343 ** Add an OP_Function or OP_PureFunc opcode.
345 ** The eCallCtx argument is information (typically taken from Expr.op2)
346 ** that describes the calling context of the function. 0 means a general
347 ** function call. NC_IsCheck means called by a check constraint,
348 ** NC_IdxExpr means called as part of an index expression. NC_PartIdx
349 ** means in the WHERE clause of a partial index. NC_GenCol means called
350 ** while computing a generated column value. 0 is the usual case.
352 int sqlite3VdbeAddFunctionCall(
353 Parse *pParse, /* Parsing context */
354 int p1, /* Constant argument mask */
355 int p2, /* First argument register */
356 int p3, /* Register into which results are written */
357 int nArg, /* Number of argument */
358 const FuncDef *pFunc, /* The function to be invoked */
359 int eCallCtx /* Calling context */
361 Vdbe *v = pParse->pVdbe;
362 int nByte;
363 int addr;
364 sqlite3_context *pCtx;
365 assert( v );
366 nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*);
367 pCtx = sqlite3DbMallocRawNN(pParse->db, nByte);
368 if( pCtx==0 ){
369 assert( pParse->db->mallocFailed );
370 freeEphemeralFunction(pParse->db, (FuncDef*)pFunc);
371 return 0;
373 pCtx->pOut = 0;
374 pCtx->pFunc = (FuncDef*)pFunc;
375 pCtx->pVdbe = 0;
376 pCtx->isError = 0;
377 pCtx->argc = nArg;
378 pCtx->iOp = sqlite3VdbeCurrentAddr(v);
379 addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function,
380 p1, p2, p3, (char*)pCtx, P4_FUNCCTX);
381 sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef);
382 return addr;
386 ** Add an opcode that includes the p4 value with a P4_INT64 or
387 ** P4_REAL type.
389 int sqlite3VdbeAddOp4Dup8(
390 Vdbe *p, /* Add the opcode to this VM */
391 int op, /* The new opcode */
392 int p1, /* The P1 operand */
393 int p2, /* The P2 operand */
394 int p3, /* The P3 operand */
395 const u8 *zP4, /* The P4 operand */
396 int p4type /* P4 operand type */
398 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
399 if( p4copy ) memcpy(p4copy, zP4, 8);
400 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
403 #ifndef SQLITE_OMIT_EXPLAIN
405 ** Return the address of the current EXPLAIN QUERY PLAN baseline.
406 ** 0 means "none".
408 int sqlite3VdbeExplainParent(Parse *pParse){
409 VdbeOp *pOp;
410 if( pParse->addrExplain==0 ) return 0;
411 pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain);
412 return pOp->p2;
416 ** Set a debugger breakpoint on the following routine in order to
417 ** monitor the EXPLAIN QUERY PLAN code generation.
419 #if defined(SQLITE_DEBUG)
420 void sqlite3ExplainBreakpoint(const char *z1, const char *z2){
421 (void)z1;
422 (void)z2;
424 #endif
427 ** Add a new OP_Explain opcode.
429 ** If the bPush flag is true, then make this opcode the parent for
430 ** subsequent Explains until sqlite3VdbeExplainPop() is called.
432 void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){
433 #ifndef SQLITE_DEBUG
434 /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined.
435 ** But omit them (for performance) during production builds */
436 if( pParse->explain==2 )
437 #endif
439 char *zMsg;
440 Vdbe *v;
441 va_list ap;
442 int iThis;
443 va_start(ap, zFmt);
444 zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap);
445 va_end(ap);
446 v = pParse->pVdbe;
447 iThis = v->nOp;
448 sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0,
449 zMsg, P4_DYNAMIC);
450 sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetOp(v,-1)->p4.z);
451 if( bPush){
452 pParse->addrExplain = iThis;
458 ** Pop the EXPLAIN QUERY PLAN stack one level.
460 void sqlite3VdbeExplainPop(Parse *pParse){
461 sqlite3ExplainBreakpoint("POP", 0);
462 pParse->addrExplain = sqlite3VdbeExplainParent(pParse);
464 #endif /* SQLITE_OMIT_EXPLAIN */
467 ** Add an OP_ParseSchema opcode. This routine is broken out from
468 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
469 ** as having been used.
471 ** The zWhere string must have been obtained from sqlite3_malloc().
472 ** This routine will take ownership of the allocated memory.
474 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
475 int j;
476 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
477 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
481 ** Add an opcode that includes the p4 value as an integer.
483 int sqlite3VdbeAddOp4Int(
484 Vdbe *p, /* Add the opcode to this VM */
485 int op, /* The new opcode */
486 int p1, /* The P1 operand */
487 int p2, /* The P2 operand */
488 int p3, /* The P3 operand */
489 int p4 /* The P4 operand as an integer */
491 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
492 if( p->db->mallocFailed==0 ){
493 VdbeOp *pOp = &p->aOp[addr];
494 pOp->p4type = P4_INT32;
495 pOp->p4.i = p4;
497 return addr;
500 /* Insert the end of a co-routine
502 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
503 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
505 /* Clear the temporary register cache, thereby ensuring that each
506 ** co-routine has its own independent set of registers, because co-routines
507 ** might expect their registers to be preserved across an OP_Yield, and
508 ** that could cause problems if two or more co-routines are using the same
509 ** temporary register.
511 v->pParse->nTempReg = 0;
512 v->pParse->nRangeReg = 0;
516 ** Create a new symbolic label for an instruction that has yet to be
517 ** coded. The symbolic label is really just a negative number. The
518 ** label can be used as the P2 value of an operation. Later, when
519 ** the label is resolved to a specific address, the VDBE will scan
520 ** through its operation list and change all values of P2 which match
521 ** the label into the resolved address.
523 ** The VDBE knows that a P2 value is a label because labels are
524 ** always negative and P2 values are suppose to be non-negative.
525 ** Hence, a negative P2 value is a label that has yet to be resolved.
526 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP
527 ** property.
529 ** Variable usage notes:
531 ** Parse.aLabel[x] Stores the address that the x-th label resolves
532 ** into. For testing (SQLITE_DEBUG), unresolved
533 ** labels stores -1, but that is not required.
534 ** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[]
535 ** Parse.nLabel The *negative* of the number of labels that have
536 ** been issued. The negative is stored because
537 ** that gives a performance improvement over storing
538 ** the equivalent positive value.
540 int sqlite3VdbeMakeLabel(Parse *pParse){
541 return --pParse->nLabel;
545 ** Resolve label "x" to be the address of the next instruction to
546 ** be inserted. The parameter "x" must have been obtained from
547 ** a prior call to sqlite3VdbeMakeLabel().
549 static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){
550 int nNewSize = 10 - p->nLabel;
551 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
552 nNewSize*sizeof(p->aLabel[0]));
553 if( p->aLabel==0 ){
554 p->nLabelAlloc = 0;
555 }else{
556 #ifdef SQLITE_DEBUG
557 int i;
558 for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1;
559 #endif
560 p->nLabelAlloc = nNewSize;
561 p->aLabel[j] = v->nOp;
564 void sqlite3VdbeResolveLabel(Vdbe *v, int x){
565 Parse *p = v->pParse;
566 int j = ADDR(x);
567 assert( v->magic==VDBE_MAGIC_INIT );
568 assert( j<-p->nLabel );
569 assert( j>=0 );
570 #ifdef SQLITE_DEBUG
571 if( p->db->flags & SQLITE_VdbeAddopTrace ){
572 printf("RESOLVE LABEL %d to %d\n", x, v->nOp);
574 #endif
575 if( p->nLabelAlloc + p->nLabel < 0 ){
576 resizeResolveLabel(p,v,j);
577 }else{
578 assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */
579 p->aLabel[j] = v->nOp;
584 ** Mark the VDBE as one that can only be run one time.
586 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
587 p->runOnlyOnce = 1;
591 ** Mark the VDBE as one that can only be run multiple times.
593 void sqlite3VdbeReusable(Vdbe *p){
594 p->runOnlyOnce = 0;
597 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
600 ** The following type and function are used to iterate through all opcodes
601 ** in a Vdbe main program and each of the sub-programs (triggers) it may
602 ** invoke directly or indirectly. It should be used as follows:
604 ** Op *pOp;
605 ** VdbeOpIter sIter;
607 ** memset(&sIter, 0, sizeof(sIter));
608 ** sIter.v = v; // v is of type Vdbe*
609 ** while( (pOp = opIterNext(&sIter)) ){
610 ** // Do something with pOp
611 ** }
612 ** sqlite3DbFree(v->db, sIter.apSub);
615 typedef struct VdbeOpIter VdbeOpIter;
616 struct VdbeOpIter {
617 Vdbe *v; /* Vdbe to iterate through the opcodes of */
618 SubProgram **apSub; /* Array of subprograms */
619 int nSub; /* Number of entries in apSub */
620 int iAddr; /* Address of next instruction to return */
621 int iSub; /* 0 = main program, 1 = first sub-program etc. */
623 static Op *opIterNext(VdbeOpIter *p){
624 Vdbe *v = p->v;
625 Op *pRet = 0;
626 Op *aOp;
627 int nOp;
629 if( p->iSub<=p->nSub ){
631 if( p->iSub==0 ){
632 aOp = v->aOp;
633 nOp = v->nOp;
634 }else{
635 aOp = p->apSub[p->iSub-1]->aOp;
636 nOp = p->apSub[p->iSub-1]->nOp;
638 assert( p->iAddr<nOp );
640 pRet = &aOp[p->iAddr];
641 p->iAddr++;
642 if( p->iAddr==nOp ){
643 p->iSub++;
644 p->iAddr = 0;
647 if( pRet->p4type==P4_SUBPROGRAM ){
648 int nByte = (p->nSub+1)*sizeof(SubProgram*);
649 int j;
650 for(j=0; j<p->nSub; j++){
651 if( p->apSub[j]==pRet->p4.pProgram ) break;
653 if( j==p->nSub ){
654 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
655 if( !p->apSub ){
656 pRet = 0;
657 }else{
658 p->apSub[p->nSub++] = pRet->p4.pProgram;
664 return pRet;
668 ** Check if the program stored in the VM associated with pParse may
669 ** throw an ABORT exception (causing the statement, but not entire transaction
670 ** to be rolled back). This condition is true if the main program or any
671 ** sub-programs contains any of the following:
673 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
674 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
675 ** * OP_Destroy
676 ** * OP_VUpdate
677 ** * OP_VCreate
678 ** * OP_VRename
679 ** * OP_FkCounter with P2==0 (immediate foreign key constraint)
680 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine
681 ** (for CREATE TABLE AS SELECT ...)
683 ** Then check that the value of Parse.mayAbort is true if an
684 ** ABORT may be thrown, or false otherwise. Return true if it does
685 ** match, or false otherwise. This function is intended to be used as
686 ** part of an assert statement in the compiler. Similar to:
688 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
690 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
691 int hasAbort = 0;
692 int hasFkCounter = 0;
693 int hasCreateTable = 0;
694 int hasCreateIndex = 0;
695 int hasInitCoroutine = 0;
696 Op *pOp;
697 VdbeOpIter sIter;
698 memset(&sIter, 0, sizeof(sIter));
699 sIter.v = v;
701 while( (pOp = opIterNext(&sIter))!=0 ){
702 int opcode = pOp->opcode;
703 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
704 || opcode==OP_VDestroy
705 || opcode==OP_VCreate
706 || (opcode==OP_ParseSchema && pOp->p4.z==0)
707 || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
708 && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort))
710 hasAbort = 1;
711 break;
713 if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1;
714 if( mayAbort ){
715 /* hasCreateIndex may also be set for some DELETE statements that use
716 ** OP_Clear. So this routine may end up returning true in the case
717 ** where a "DELETE FROM tbl" has a statement-journal but does not
718 ** require one. This is not so bad - it is an inefficiency, not a bug. */
719 if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1;
720 if( opcode==OP_Clear ) hasCreateIndex = 1;
722 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
723 #ifndef SQLITE_OMIT_FOREIGN_KEY
724 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
725 hasFkCounter = 1;
727 #endif
729 sqlite3DbFree(v->db, sIter.apSub);
731 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
732 ** If malloc failed, then the while() loop above may not have iterated
733 ** through all opcodes and hasAbort may be set incorrectly. Return
734 ** true for this case to prevent the assert() in the callers frame
735 ** from failing. */
736 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
737 || (hasCreateTable && hasInitCoroutine) || hasCreateIndex
740 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
742 #ifdef SQLITE_DEBUG
744 ** Increment the nWrite counter in the VDBE if the cursor is not an
745 ** ephemeral cursor, or if the cursor argument is NULL.
747 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){
748 if( pC==0
749 || (pC->eCurType!=CURTYPE_SORTER
750 && pC->eCurType!=CURTYPE_PSEUDO
751 && !pC->isEphemeral)
753 p->nWrite++;
756 #endif
758 #ifdef SQLITE_DEBUG
760 ** Assert if an Abort at this point in time might result in a corrupt
761 ** database.
763 void sqlite3VdbeAssertAbortable(Vdbe *p){
764 assert( p->nWrite==0 || p->usesStmtJournal );
766 #endif
769 ** This routine is called after all opcodes have been inserted. It loops
770 ** through all the opcodes and fixes up some details.
772 ** (1) For each jump instruction with a negative P2 value (a label)
773 ** resolve the P2 value to an actual address.
775 ** (2) Compute the maximum number of arguments used by any SQL function
776 ** and store that value in *pMaxFuncArgs.
778 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
779 ** indicate what the prepared statement actually does.
781 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it.
783 ** (5) Reclaim the memory allocated for storing labels.
785 ** This routine will only function correctly if the mkopcodeh.tcl generator
786 ** script numbers the opcodes correctly. Changes to this routine must be
787 ** coordinated with changes to mkopcodeh.tcl.
789 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
790 int nMaxArgs = *pMaxFuncArgs;
791 Op *pOp;
792 Parse *pParse = p->pParse;
793 int *aLabel = pParse->aLabel;
794 p->readOnly = 1;
795 p->bIsReader = 0;
796 pOp = &p->aOp[p->nOp-1];
797 while(1){
799 /* Only JUMP opcodes and the short list of special opcodes in the switch
800 ** below need to be considered. The mkopcodeh.tcl generator script groups
801 ** all these opcodes together near the front of the opcode list. Skip
802 ** any opcode that does not need processing by virtual of the fact that
803 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
805 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
806 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
807 ** cases from this switch! */
808 switch( pOp->opcode ){
809 case OP_Transaction: {
810 if( pOp->p2!=0 ) p->readOnly = 0;
811 /* no break */ deliberate_fall_through
813 case OP_AutoCommit:
814 case OP_Savepoint: {
815 p->bIsReader = 1;
816 break;
818 #ifndef SQLITE_OMIT_WAL
819 case OP_Checkpoint:
820 #endif
821 case OP_Vacuum:
822 case OP_JournalMode: {
823 p->readOnly = 0;
824 p->bIsReader = 1;
825 break;
827 case OP_Next:
828 case OP_SorterNext: {
829 pOp->p4.xAdvance = sqlite3BtreeNext;
830 pOp->p4type = P4_ADVANCE;
831 /* The code generator never codes any of these opcodes as a jump
832 ** to a label. They are always coded as a jump backwards to a
833 ** known address */
834 assert( pOp->p2>=0 );
835 break;
837 case OP_Prev: {
838 pOp->p4.xAdvance = sqlite3BtreePrevious;
839 pOp->p4type = P4_ADVANCE;
840 /* The code generator never codes any of these opcodes as a jump
841 ** to a label. They are always coded as a jump backwards to a
842 ** known address */
843 assert( pOp->p2>=0 );
844 break;
846 #ifndef SQLITE_OMIT_VIRTUALTABLE
847 case OP_VUpdate: {
848 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
849 break;
851 case OP_VFilter: {
852 int n;
853 assert( (pOp - p->aOp) >= 3 );
854 assert( pOp[-1].opcode==OP_Integer );
855 n = pOp[-1].p1;
856 if( n>nMaxArgs ) nMaxArgs = n;
857 /* Fall through into the default case */
858 /* no break */ deliberate_fall_through
860 #endif
861 default: {
862 if( pOp->p2<0 ){
863 /* The mkopcodeh.tcl script has so arranged things that the only
864 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
865 ** have non-negative values for P2. */
866 assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 );
867 assert( ADDR(pOp->p2)<-pParse->nLabel );
868 pOp->p2 = aLabel[ADDR(pOp->p2)];
870 break;
873 /* The mkopcodeh.tcl script has so arranged things that the only
874 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
875 ** have non-negative values for P2. */
876 assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0);
878 if( pOp==p->aOp ) break;
879 pOp--;
881 sqlite3DbFree(p->db, pParse->aLabel);
882 pParse->aLabel = 0;
883 pParse->nLabel = 0;
884 *pMaxFuncArgs = nMaxArgs;
885 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
889 ** Return the address of the next instruction to be inserted.
891 int sqlite3VdbeCurrentAddr(Vdbe *p){
892 assert( p->magic==VDBE_MAGIC_INIT );
893 return p->nOp;
897 ** Verify that at least N opcode slots are available in p without
898 ** having to malloc for more space (except when compiled using
899 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing
900 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
901 ** fail due to a OOM fault and hence that the return value from
902 ** sqlite3VdbeAddOpList() will always be non-NULL.
904 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
905 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
906 assert( p->nOp + N <= p->nOpAlloc );
908 #endif
911 ** Verify that the VM passed as the only argument does not contain
912 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used
913 ** by code in pragma.c to ensure that the implementation of certain
914 ** pragmas comports with the flags specified in the mkpragmatab.tcl
915 ** script.
917 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
918 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){
919 int i;
920 for(i=0; i<p->nOp; i++){
921 assert( p->aOp[i].opcode!=OP_ResultRow );
924 #endif
927 ** Generate code (a single OP_Abortable opcode) that will
928 ** verify that the VDBE program can safely call Abort in the current
929 ** context.
931 #if defined(SQLITE_DEBUG)
932 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){
933 if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable);
935 #endif
938 ** This function returns a pointer to the array of opcodes associated with
939 ** the Vdbe passed as the first argument. It is the callers responsibility
940 ** to arrange for the returned array to be eventually freed using the
941 ** vdbeFreeOpArray() function.
943 ** Before returning, *pnOp is set to the number of entries in the returned
944 ** array. Also, *pnMaxArg is set to the larger of its current value and
945 ** the number of entries in the Vdbe.apArg[] array required to execute the
946 ** returned program.
948 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
949 VdbeOp *aOp = p->aOp;
950 assert( aOp && !p->db->mallocFailed );
952 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
953 assert( DbMaskAllZero(p->btreeMask) );
955 resolveP2Values(p, pnMaxArg);
956 *pnOp = p->nOp;
957 p->aOp = 0;
958 return aOp;
962 ** Add a whole list of operations to the operation stack. Return a
963 ** pointer to the first operation inserted.
965 ** Non-zero P2 arguments to jump instructions are automatically adjusted
966 ** so that the jump target is relative to the first operation inserted.
968 VdbeOp *sqlite3VdbeAddOpList(
969 Vdbe *p, /* Add opcodes to the prepared statement */
970 int nOp, /* Number of opcodes to add */
971 VdbeOpList const *aOp, /* The opcodes to be added */
972 int iLineno /* Source-file line number of first opcode */
974 int i;
975 VdbeOp *pOut, *pFirst;
976 assert( nOp>0 );
977 assert( p->magic==VDBE_MAGIC_INIT );
978 if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){
979 return 0;
981 pFirst = pOut = &p->aOp[p->nOp];
982 for(i=0; i<nOp; i++, aOp++, pOut++){
983 pOut->opcode = aOp->opcode;
984 pOut->p1 = aOp->p1;
985 pOut->p2 = aOp->p2;
986 assert( aOp->p2>=0 );
987 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
988 pOut->p2 += p->nOp;
990 pOut->p3 = aOp->p3;
991 pOut->p4type = P4_NOTUSED;
992 pOut->p4.p = 0;
993 pOut->p5 = 0;
994 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
995 pOut->zComment = 0;
996 #endif
997 #ifdef SQLITE_VDBE_COVERAGE
998 pOut->iSrcLine = iLineno+i;
999 #else
1000 (void)iLineno;
1001 #endif
1002 #ifdef SQLITE_DEBUG
1003 if( p->db->flags & SQLITE_VdbeAddopTrace ){
1004 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
1006 #endif
1008 p->nOp += nOp;
1009 return pFirst;
1012 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
1014 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
1016 void sqlite3VdbeScanStatus(
1017 Vdbe *p, /* VM to add scanstatus() to */
1018 int addrExplain, /* Address of OP_Explain (or 0) */
1019 int addrLoop, /* Address of loop counter */
1020 int addrVisit, /* Address of rows visited counter */
1021 LogEst nEst, /* Estimated number of output rows */
1022 const char *zName /* Name of table or index being scanned */
1024 sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus);
1025 ScanStatus *aNew;
1026 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
1027 if( aNew ){
1028 ScanStatus *pNew = &aNew[p->nScan++];
1029 pNew->addrExplain = addrExplain;
1030 pNew->addrLoop = addrLoop;
1031 pNew->addrVisit = addrVisit;
1032 pNew->nEst = nEst;
1033 pNew->zName = sqlite3DbStrDup(p->db, zName);
1034 p->aScan = aNew;
1037 #endif
1041 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
1042 ** for a specific instruction.
1044 void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){
1045 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
1047 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
1048 sqlite3VdbeGetOp(p,addr)->p1 = val;
1050 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
1051 sqlite3VdbeGetOp(p,addr)->p2 = val;
1053 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
1054 sqlite3VdbeGetOp(p,addr)->p3 = val;
1056 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
1057 assert( p->nOp>0 || p->db->mallocFailed );
1058 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
1062 ** Change the P2 operand of instruction addr so that it points to
1063 ** the address of the next instruction to be coded.
1065 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
1066 sqlite3VdbeChangeP2(p, addr, p->nOp);
1070 ** Change the P2 operand of the jump instruction at addr so that
1071 ** the jump lands on the next opcode. Or if the jump instruction was
1072 ** the previous opcode (and is thus a no-op) then simply back up
1073 ** the next instruction counter by one slot so that the jump is
1074 ** overwritten by the next inserted opcode.
1076 ** This routine is an optimization of sqlite3VdbeJumpHere() that
1077 ** strives to omit useless byte-code like this:
1079 ** 7 Once 0 8 0
1080 ** 8 ...
1082 void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){
1083 if( addr==p->nOp-1 ){
1084 assert( p->aOp[addr].opcode==OP_Once
1085 || p->aOp[addr].opcode==OP_If
1086 || p->aOp[addr].opcode==OP_FkIfZero );
1087 assert( p->aOp[addr].p4type==0 );
1088 #ifdef SQLITE_VDBE_COVERAGE
1089 sqlite3VdbeGetOp(p,-1)->iSrcLine = 0; /* Erase VdbeCoverage() macros */
1090 #endif
1091 p->nOp--;
1092 }else{
1093 sqlite3VdbeChangeP2(p, addr, p->nOp);
1099 ** If the input FuncDef structure is ephemeral, then free it. If
1100 ** the FuncDef is not ephermal, then do nothing.
1102 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
1103 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
1104 sqlite3DbFreeNN(db, pDef);
1109 ** Delete a P4 value if necessary.
1111 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
1112 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1113 sqlite3DbFreeNN(db, p);
1115 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
1116 freeEphemeralFunction(db, p->pFunc);
1117 sqlite3DbFreeNN(db, p);
1119 static void freeP4(sqlite3 *db, int p4type, void *p4){
1120 assert( db );
1121 switch( p4type ){
1122 case P4_FUNCCTX: {
1123 freeP4FuncCtx(db, (sqlite3_context*)p4);
1124 break;
1126 case P4_REAL:
1127 case P4_INT64:
1128 case P4_DYNAMIC:
1129 case P4_DYNBLOB:
1130 case P4_INTARRAY: {
1131 sqlite3DbFree(db, p4);
1132 break;
1134 case P4_KEYINFO: {
1135 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
1136 break;
1138 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1139 case P4_EXPR: {
1140 sqlite3ExprDelete(db, (Expr*)p4);
1141 break;
1143 #endif
1144 case P4_FUNCDEF: {
1145 freeEphemeralFunction(db, (FuncDef*)p4);
1146 break;
1148 case P4_MEM: {
1149 if( db->pnBytesFreed==0 ){
1150 sqlite3ValueFree((sqlite3_value*)p4);
1151 }else{
1152 freeP4Mem(db, (Mem*)p4);
1154 break;
1156 case P4_VTAB : {
1157 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
1158 break;
1164 ** Free the space allocated for aOp and any p4 values allocated for the
1165 ** opcodes contained within. If aOp is not NULL it is assumed to contain
1166 ** nOp entries.
1168 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
1169 if( aOp ){
1170 Op *pOp;
1171 for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){
1172 if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p);
1173 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1174 sqlite3DbFree(db, pOp->zComment);
1175 #endif
1177 sqlite3DbFreeNN(db, aOp);
1182 ** Link the SubProgram object passed as the second argument into the linked
1183 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
1184 ** objects when the VM is no longer required.
1186 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
1187 p->pNext = pVdbe->pProgram;
1188 pVdbe->pProgram = p;
1192 ** Return true if the given Vdbe has any SubPrograms.
1194 int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){
1195 return pVdbe->pProgram!=0;
1199 ** Change the opcode at addr into OP_Noop
1201 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
1202 VdbeOp *pOp;
1203 if( p->db->mallocFailed ) return 0;
1204 assert( addr>=0 && addr<p->nOp );
1205 pOp = &p->aOp[addr];
1206 freeP4(p->db, pOp->p4type, pOp->p4.p);
1207 pOp->p4type = P4_NOTUSED;
1208 pOp->p4.z = 0;
1209 pOp->opcode = OP_Noop;
1210 return 1;
1214 ** If the last opcode is "op" and it is not a jump destination,
1215 ** then remove it. Return true if and only if an opcode was removed.
1217 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
1218 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){
1219 return sqlite3VdbeChangeToNoop(p, p->nOp-1);
1220 }else{
1221 return 0;
1225 #ifdef SQLITE_DEBUG
1227 ** Generate an OP_ReleaseReg opcode to indicate that a range of
1228 ** registers, except any identified by mask, are no longer in use.
1230 void sqlite3VdbeReleaseRegisters(
1231 Parse *pParse, /* Parsing context */
1232 int iFirst, /* Index of first register to be released */
1233 int N, /* Number of registers to release */
1234 u32 mask, /* Mask of registers to NOT release */
1235 int bUndefine /* If true, mark registers as undefined */
1237 if( N==0 ) return;
1238 assert( pParse->pVdbe );
1239 assert( iFirst>=1 );
1240 assert( iFirst+N-1<=pParse->nMem );
1241 if( N<=31 && mask!=0 ){
1242 while( N>0 && (mask&1)!=0 ){
1243 mask >>= 1;
1244 iFirst++;
1245 N--;
1247 while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){
1248 mask &= ~MASKBIT32(N-1);
1249 N--;
1252 if( N>0 ){
1253 sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask);
1254 if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1);
1257 #endif /* SQLITE_DEBUG */
1261 ** Change the value of the P4 operand for a specific instruction.
1262 ** This routine is useful when a large program is loaded from a
1263 ** static array using sqlite3VdbeAddOpList but we want to make a
1264 ** few minor changes to the program.
1266 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
1267 ** the string is made into memory obtained from sqlite3_malloc().
1268 ** A value of n==0 means copy bytes of zP4 up to and including the
1269 ** first null byte. If n>0 then copy n+1 bytes of zP4.
1271 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
1272 ** to a string or structure that is guaranteed to exist for the lifetime of
1273 ** the Vdbe. In these cases we can just copy the pointer.
1275 ** If addr<0 then change P4 on the most recently inserted instruction.
1277 static void SQLITE_NOINLINE vdbeChangeP4Full(
1278 Vdbe *p,
1279 Op *pOp,
1280 const char *zP4,
1281 int n
1283 if( pOp->p4type ){
1284 freeP4(p->db, pOp->p4type, pOp->p4.p);
1285 pOp->p4type = 0;
1286 pOp->p4.p = 0;
1288 if( n<0 ){
1289 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
1290 }else{
1291 if( n==0 ) n = sqlite3Strlen30(zP4);
1292 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
1293 pOp->p4type = P4_DYNAMIC;
1296 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
1297 Op *pOp;
1298 sqlite3 *db;
1299 assert( p!=0 );
1300 db = p->db;
1301 assert( p->magic==VDBE_MAGIC_INIT );
1302 assert( p->aOp!=0 || db->mallocFailed );
1303 if( db->mallocFailed ){
1304 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
1305 return;
1307 assert( p->nOp>0 );
1308 assert( addr<p->nOp );
1309 if( addr<0 ){
1310 addr = p->nOp - 1;
1312 pOp = &p->aOp[addr];
1313 if( n>=0 || pOp->p4type ){
1314 vdbeChangeP4Full(p, pOp, zP4, n);
1315 return;
1317 if( n==P4_INT32 ){
1318 /* Note: this cast is safe, because the origin data point was an int
1319 ** that was cast to a (const char *). */
1320 pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
1321 pOp->p4type = P4_INT32;
1322 }else if( zP4!=0 ){
1323 assert( n<0 );
1324 pOp->p4.p = (void*)zP4;
1325 pOp->p4type = (signed char)n;
1326 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
1331 ** Change the P4 operand of the most recently coded instruction
1332 ** to the value defined by the arguments. This is a high-speed
1333 ** version of sqlite3VdbeChangeP4().
1335 ** The P4 operand must not have been previously defined. And the new
1336 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of
1337 ** those cases.
1339 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){
1340 VdbeOp *pOp;
1341 assert( n!=P4_INT32 && n!=P4_VTAB );
1342 assert( n<=0 );
1343 if( p->db->mallocFailed ){
1344 freeP4(p->db, n, pP4);
1345 }else{
1346 assert( pP4!=0 );
1347 assert( p->nOp>0 );
1348 pOp = &p->aOp[p->nOp-1];
1349 assert( pOp->p4type==P4_NOTUSED );
1350 pOp->p4type = n;
1351 pOp->p4.p = pP4;
1356 ** Set the P4 on the most recently added opcode to the KeyInfo for the
1357 ** index given.
1359 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
1360 Vdbe *v = pParse->pVdbe;
1361 KeyInfo *pKeyInfo;
1362 assert( v!=0 );
1363 assert( pIdx!=0 );
1364 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx);
1365 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1368 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1370 ** Change the comment on the most recently coded instruction. Or
1371 ** insert a No-op and add the comment to that new instruction. This
1372 ** makes the code easier to read during debugging. None of this happens
1373 ** in a production build.
1375 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
1376 assert( p->nOp>0 || p->aOp==0 );
1377 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed
1378 || p->pParse->nErr>0 );
1379 if( p->nOp ){
1380 assert( p->aOp );
1381 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
1382 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
1385 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
1386 va_list ap;
1387 if( p ){
1388 va_start(ap, zFormat);
1389 vdbeVComment(p, zFormat, ap);
1390 va_end(ap);
1393 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
1394 va_list ap;
1395 if( p ){
1396 sqlite3VdbeAddOp0(p, OP_Noop);
1397 va_start(ap, zFormat);
1398 vdbeVComment(p, zFormat, ap);
1399 va_end(ap);
1402 #endif /* NDEBUG */
1404 #ifdef SQLITE_VDBE_COVERAGE
1406 ** Set the value if the iSrcLine field for the previously coded instruction.
1408 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
1409 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
1411 #endif /* SQLITE_VDBE_COVERAGE */
1414 ** Return the opcode for a given address. If the address is -1, then
1415 ** return the most recently inserted opcode.
1417 ** If a memory allocation error has occurred prior to the calling of this
1418 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
1419 ** is readable but not writable, though it is cast to a writable value.
1420 ** The return of a dummy opcode allows the call to continue functioning
1421 ** after an OOM fault without having to check to see if the return from
1422 ** this routine is a valid pointer. But because the dummy.opcode is 0,
1423 ** dummy will never be written to. This is verified by code inspection and
1424 ** by running with Valgrind.
1426 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
1427 /* C89 specifies that the constant "dummy" will be initialized to all
1428 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
1429 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
1430 assert( p->magic==VDBE_MAGIC_INIT );
1431 if( addr<0 ){
1432 addr = p->nOp - 1;
1434 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
1435 if( p->db->mallocFailed ){
1436 return (VdbeOp*)&dummy;
1437 }else{
1438 return &p->aOp[addr];
1442 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1444 ** Return an integer value for one of the parameters to the opcode pOp
1445 ** determined by character c.
1447 static int translateP(char c, const Op *pOp){
1448 if( c=='1' ) return pOp->p1;
1449 if( c=='2' ) return pOp->p2;
1450 if( c=='3' ) return pOp->p3;
1451 if( c=='4' ) return pOp->p4.i;
1452 return pOp->p5;
1456 ** Compute a string for the "comment" field of a VDBE opcode listing.
1458 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1459 ** to an extra string that is appended to the sqlite3OpcodeName(). In the
1460 ** absence of other comments, this synopsis becomes the comment on the opcode.
1461 ** Some translation occurs:
1463 ** "PX" -> "r[X]"
1464 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
1465 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
1466 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
1468 char *sqlite3VdbeDisplayComment(
1469 sqlite3 *db, /* Optional - Oom error reporting only */
1470 const Op *pOp, /* The opcode to be commented */
1471 const char *zP4 /* Previously obtained value for P4 */
1473 const char *zOpName;
1474 const char *zSynopsis;
1475 int nOpName;
1476 int ii;
1477 char zAlt[50];
1478 StrAccum x;
1480 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
1481 zOpName = sqlite3OpcodeName(pOp->opcode);
1482 nOpName = sqlite3Strlen30(zOpName);
1483 if( zOpName[nOpName+1] ){
1484 int seenCom = 0;
1485 char c;
1486 zSynopsis = zOpName += nOpName + 1;
1487 if( strncmp(zSynopsis,"IF ",3)==0 ){
1488 if( pOp->p5 & SQLITE_STOREP2 ){
1489 sqlite3_snprintf(sizeof(zAlt), zAlt, "r[P2] = (%s)", zSynopsis+3);
1490 }else{
1491 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
1493 zSynopsis = zAlt;
1495 for(ii=0; (c = zSynopsis[ii])!=0; ii++){
1496 if( c=='P' ){
1497 c = zSynopsis[++ii];
1498 if( c=='4' ){
1499 sqlite3_str_appendall(&x, zP4);
1500 }else if( c=='X' ){
1501 sqlite3_str_appendall(&x, pOp->zComment);
1502 seenCom = 1;
1503 }else{
1504 int v1 = translateP(c, pOp);
1505 int v2;
1506 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1507 ii += 3;
1508 v2 = translateP(zSynopsis[ii], pOp);
1509 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1510 ii += 2;
1511 v2++;
1513 if( v2<2 ){
1514 sqlite3_str_appendf(&x, "%d", v1);
1515 }else{
1516 sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1);
1518 }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){
1519 sqlite3_context *pCtx = pOp->p4.pCtx;
1520 if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){
1521 sqlite3_str_appendf(&x, "%d", v1);
1522 }else if( pCtx->argc>1 ){
1523 sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1);
1524 }else{
1525 assert( x.nChar>2 );
1526 x.nChar -= 2;
1527 ii++;
1529 ii += 3;
1530 }else{
1531 sqlite3_str_appendf(&x, "%d", v1);
1532 if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1533 ii += 4;
1537 }else{
1538 sqlite3_str_appendchar(&x, 1, c);
1541 if( !seenCom && pOp->zComment ){
1542 sqlite3_str_appendf(&x, "; %s", pOp->zComment);
1544 }else if( pOp->zComment ){
1545 sqlite3_str_appendall(&x, pOp->zComment);
1547 if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){
1548 sqlite3OomFault(db);
1550 return sqlite3StrAccumFinish(&x);
1552 #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */
1554 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1556 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1557 ** that can be displayed in the P4 column of EXPLAIN output.
1559 static void displayP4Expr(StrAccum *p, Expr *pExpr){
1560 const char *zOp = 0;
1561 switch( pExpr->op ){
1562 case TK_STRING:
1563 sqlite3_str_appendf(p, "%Q", pExpr->u.zToken);
1564 break;
1565 case TK_INTEGER:
1566 sqlite3_str_appendf(p, "%d", pExpr->u.iValue);
1567 break;
1568 case TK_NULL:
1569 sqlite3_str_appendf(p, "NULL");
1570 break;
1571 case TK_REGISTER: {
1572 sqlite3_str_appendf(p, "r[%d]", pExpr->iTable);
1573 break;
1575 case TK_COLUMN: {
1576 if( pExpr->iColumn<0 ){
1577 sqlite3_str_appendf(p, "rowid");
1578 }else{
1579 sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn);
1581 break;
1583 case TK_LT: zOp = "LT"; break;
1584 case TK_LE: zOp = "LE"; break;
1585 case TK_GT: zOp = "GT"; break;
1586 case TK_GE: zOp = "GE"; break;
1587 case TK_NE: zOp = "NE"; break;
1588 case TK_EQ: zOp = "EQ"; break;
1589 case TK_IS: zOp = "IS"; break;
1590 case TK_ISNOT: zOp = "ISNOT"; break;
1591 case TK_AND: zOp = "AND"; break;
1592 case TK_OR: zOp = "OR"; break;
1593 case TK_PLUS: zOp = "ADD"; break;
1594 case TK_STAR: zOp = "MUL"; break;
1595 case TK_MINUS: zOp = "SUB"; break;
1596 case TK_REM: zOp = "REM"; break;
1597 case TK_BITAND: zOp = "BITAND"; break;
1598 case TK_BITOR: zOp = "BITOR"; break;
1599 case TK_SLASH: zOp = "DIV"; break;
1600 case TK_LSHIFT: zOp = "LSHIFT"; break;
1601 case TK_RSHIFT: zOp = "RSHIFT"; break;
1602 case TK_CONCAT: zOp = "CONCAT"; break;
1603 case TK_UMINUS: zOp = "MINUS"; break;
1604 case TK_UPLUS: zOp = "PLUS"; break;
1605 case TK_BITNOT: zOp = "BITNOT"; break;
1606 case TK_NOT: zOp = "NOT"; break;
1607 case TK_ISNULL: zOp = "ISNULL"; break;
1608 case TK_NOTNULL: zOp = "NOTNULL"; break;
1610 default:
1611 sqlite3_str_appendf(p, "%s", "expr");
1612 break;
1615 if( zOp ){
1616 sqlite3_str_appendf(p, "%s(", zOp);
1617 displayP4Expr(p, pExpr->pLeft);
1618 if( pExpr->pRight ){
1619 sqlite3_str_append(p, ",", 1);
1620 displayP4Expr(p, pExpr->pRight);
1622 sqlite3_str_append(p, ")", 1);
1625 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1628 #if VDBE_DISPLAY_P4
1630 ** Compute a string that describes the P4 parameter for an opcode.
1631 ** Use zTemp for any required temporary buffer space.
1633 char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){
1634 char *zP4 = 0;
1635 StrAccum x;
1637 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
1638 switch( pOp->p4type ){
1639 case P4_KEYINFO: {
1640 int j;
1641 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
1642 assert( pKeyInfo->aSortFlags!=0 );
1643 sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField);
1644 for(j=0; j<pKeyInfo->nKeyField; j++){
1645 CollSeq *pColl = pKeyInfo->aColl[j];
1646 const char *zColl = pColl ? pColl->zName : "";
1647 if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
1648 sqlite3_str_appendf(&x, ",%s%s%s",
1649 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "",
1650 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "",
1651 zColl);
1653 sqlite3_str_append(&x, ")", 1);
1654 break;
1656 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1657 case P4_EXPR: {
1658 displayP4Expr(&x, pOp->p4.pExpr);
1659 break;
1661 #endif
1662 case P4_COLLSEQ: {
1663 static const char *const encnames[] = {"?", "8", "16LE", "16BE"};
1664 CollSeq *pColl = pOp->p4.pColl;
1665 assert( pColl->enc>=0 && pColl->enc<4 );
1666 sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName,
1667 encnames[pColl->enc]);
1668 break;
1670 case P4_FUNCDEF: {
1671 FuncDef *pDef = pOp->p4.pFunc;
1672 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1673 break;
1675 case P4_FUNCCTX: {
1676 FuncDef *pDef = pOp->p4.pCtx->pFunc;
1677 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1678 break;
1680 case P4_INT64: {
1681 sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64);
1682 break;
1684 case P4_INT32: {
1685 sqlite3_str_appendf(&x, "%d", pOp->p4.i);
1686 break;
1688 case P4_REAL: {
1689 sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal);
1690 break;
1692 case P4_MEM: {
1693 Mem *pMem = pOp->p4.pMem;
1694 if( pMem->flags & MEM_Str ){
1695 zP4 = pMem->z;
1696 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
1697 sqlite3_str_appendf(&x, "%lld", pMem->u.i);
1698 }else if( pMem->flags & MEM_Real ){
1699 sqlite3_str_appendf(&x, "%.16g", pMem->u.r);
1700 }else if( pMem->flags & MEM_Null ){
1701 zP4 = "NULL";
1702 }else{
1703 assert( pMem->flags & MEM_Blob );
1704 zP4 = "(blob)";
1706 break;
1708 #ifndef SQLITE_OMIT_VIRTUALTABLE
1709 case P4_VTAB: {
1710 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
1711 sqlite3_str_appendf(&x, "vtab:%p", pVtab);
1712 break;
1714 #endif
1715 case P4_INTARRAY: {
1716 u32 i;
1717 u32 *ai = pOp->p4.ai;
1718 u32 n = ai[0]; /* The first element of an INTARRAY is always the
1719 ** count of the number of elements to follow */
1720 for(i=1; i<=n; i++){
1721 sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]);
1723 sqlite3_str_append(&x, "]", 1);
1724 break;
1726 case P4_SUBPROGRAM: {
1727 zP4 = "program";
1728 break;
1730 case P4_DYNBLOB:
1731 case P4_ADVANCE: {
1732 break;
1734 case P4_TABLE: {
1735 zP4 = pOp->p4.pTab->zName;
1736 break;
1738 default: {
1739 zP4 = pOp->p4.z;
1742 if( zP4 ) sqlite3_str_appendall(&x, zP4);
1743 if( (x.accError & SQLITE_NOMEM)!=0 ){
1744 sqlite3OomFault(db);
1746 return sqlite3StrAccumFinish(&x);
1748 #endif /* VDBE_DISPLAY_P4 */
1751 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
1753 ** The prepared statements need to know in advance the complete set of
1754 ** attached databases that will be use. A mask of these databases
1755 ** is maintained in p->btreeMask. The p->lockMask value is the subset of
1756 ** p->btreeMask of databases that will require a lock.
1758 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
1759 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
1760 assert( i<(int)sizeof(p->btreeMask)*8 );
1761 DbMaskSet(p->btreeMask, i);
1762 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
1763 DbMaskSet(p->lockMask, i);
1767 #if !defined(SQLITE_OMIT_SHARED_CACHE)
1769 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1770 ** this routine obtains the mutex associated with each BtShared structure
1771 ** that may be accessed by the VM passed as an argument. In doing so it also
1772 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1773 ** that the correct busy-handler callback is invoked if required.
1775 ** If SQLite is not threadsafe but does support shared-cache mode, then
1776 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1777 ** of all of BtShared structures accessible via the database handle
1778 ** associated with the VM.
1780 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1781 ** function is a no-op.
1783 ** The p->btreeMask field is a bitmask of all btrees that the prepared
1784 ** statement p will ever use. Let N be the number of bits in p->btreeMask
1785 ** corresponding to btrees that use shared cache. Then the runtime of
1786 ** this routine is N*N. But as N is rarely more than 1, this should not
1787 ** be a problem.
1789 void sqlite3VdbeEnter(Vdbe *p){
1790 int i;
1791 sqlite3 *db;
1792 Db *aDb;
1793 int nDb;
1794 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1795 db = p->db;
1796 aDb = db->aDb;
1797 nDb = db->nDb;
1798 for(i=0; i<nDb; i++){
1799 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1800 sqlite3BtreeEnter(aDb[i].pBt);
1804 #endif
1806 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1808 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1810 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
1811 int i;
1812 sqlite3 *db;
1813 Db *aDb;
1814 int nDb;
1815 db = p->db;
1816 aDb = db->aDb;
1817 nDb = db->nDb;
1818 for(i=0; i<nDb; i++){
1819 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1820 sqlite3BtreeLeave(aDb[i].pBt);
1824 void sqlite3VdbeLeave(Vdbe *p){
1825 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1826 vdbeLeave(p);
1828 #endif
1830 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1832 ** Print a single opcode. This routine is used for debugging only.
1834 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){
1835 char *zP4;
1836 char *zCom;
1837 sqlite3 dummyDb;
1838 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
1839 if( pOut==0 ) pOut = stdout;
1840 sqlite3BeginBenignMalloc();
1841 dummyDb.mallocFailed = 1;
1842 zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp);
1843 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1844 zCom = sqlite3VdbeDisplayComment(0, pOp, zP4);
1845 #else
1846 zCom = 0;
1847 #endif
1848 /* NB: The sqlite3OpcodeName() function is implemented by code created
1849 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1850 ** information from the vdbe.c source text */
1851 fprintf(pOut, zFormat1, pc,
1852 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3,
1853 zP4 ? zP4 : "", pOp->p5,
1854 zCom ? zCom : ""
1856 fflush(pOut);
1857 sqlite3_free(zP4);
1858 sqlite3_free(zCom);
1859 sqlite3EndBenignMalloc();
1861 #endif
1864 ** Initialize an array of N Mem element.
1866 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){
1867 while( (N--)>0 ){
1868 p->db = db;
1869 p->flags = flags;
1870 p->szMalloc = 0;
1871 #ifdef SQLITE_DEBUG
1872 p->pScopyFrom = 0;
1873 #endif
1874 p++;
1879 ** Release an array of N Mem elements
1881 static void releaseMemArray(Mem *p, int N){
1882 if( p && N ){
1883 Mem *pEnd = &p[N];
1884 sqlite3 *db = p->db;
1885 if( db->pnBytesFreed ){
1887 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1888 }while( (++p)<pEnd );
1889 return;
1892 assert( (&p[1])==pEnd || p[0].db==p[1].db );
1893 assert( sqlite3VdbeCheckMemInvariants(p) );
1895 /* This block is really an inlined version of sqlite3VdbeMemRelease()
1896 ** that takes advantage of the fact that the memory cell value is
1897 ** being set to NULL after releasing any dynamic resources.
1899 ** The justification for duplicating code is that according to
1900 ** callgrind, this causes a certain test case to hit the CPU 4.7
1901 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1902 ** sqlite3MemRelease() were called from here. With -O2, this jumps
1903 ** to 6.6 percent. The test case is inserting 1000 rows into a table
1904 ** with no indexes using a single prepared INSERT statement, bind()
1905 ** and reset(). Inserts are grouped into a transaction.
1907 testcase( p->flags & MEM_Agg );
1908 testcase( p->flags & MEM_Dyn );
1909 testcase( p->xDel==sqlite3VdbeFrameMemDel );
1910 if( p->flags&(MEM_Agg|MEM_Dyn) ){
1911 sqlite3VdbeMemRelease(p);
1912 }else if( p->szMalloc ){
1913 sqlite3DbFreeNN(db, p->zMalloc);
1914 p->szMalloc = 0;
1917 p->flags = MEM_Undefined;
1918 }while( (++p)<pEnd );
1922 #ifdef SQLITE_DEBUG
1924 ** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is
1925 ** and false if something is wrong.
1927 ** This routine is intended for use inside of assert() statements only.
1929 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){
1930 if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0;
1931 return 1;
1933 #endif
1937 ** This is a destructor on a Mem object (which is really an sqlite3_value)
1938 ** that deletes the Frame object that is attached to it as a blob.
1940 ** This routine does not delete the Frame right away. It merely adds the
1941 ** frame to a list of frames to be deleted when the Vdbe halts.
1943 void sqlite3VdbeFrameMemDel(void *pArg){
1944 VdbeFrame *pFrame = (VdbeFrame*)pArg;
1945 assert( sqlite3VdbeFrameIsValid(pFrame) );
1946 pFrame->pParent = pFrame->v->pDelFrame;
1947 pFrame->v->pDelFrame = pFrame;
1950 #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN)
1952 ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN
1953 ** QUERY PLAN output.
1955 ** Return SQLITE_ROW on success. Return SQLITE_DONE if there are no
1956 ** more opcodes to be displayed.
1958 int sqlite3VdbeNextOpcode(
1959 Vdbe *p, /* The statement being explained */
1960 Mem *pSub, /* Storage for keeping track of subprogram nesting */
1961 int eMode, /* 0: normal. 1: EQP. 2: TablesUsed */
1962 int *piPc, /* IN/OUT: Current rowid. Overwritten with next rowid */
1963 int *piAddr, /* OUT: Write index into (*paOp)[] here */
1964 Op **paOp /* OUT: Write the opcode array here */
1966 int nRow; /* Stop when row count reaches this */
1967 int nSub = 0; /* Number of sub-vdbes seen so far */
1968 SubProgram **apSub = 0; /* Array of sub-vdbes */
1969 int i; /* Next instruction address */
1970 int rc = SQLITE_OK; /* Result code */
1971 Op *aOp = 0; /* Opcode array */
1972 int iPc; /* Rowid. Copy of value in *piPc */
1974 /* When the number of output rows reaches nRow, that means the
1975 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1976 ** nRow is the sum of the number of rows in the main program, plus
1977 ** the sum of the number of rows in all trigger subprograms encountered
1978 ** so far. The nRow value will increase as new trigger subprograms are
1979 ** encountered, but p->pc will eventually catch up to nRow.
1981 nRow = p->nOp;
1982 if( pSub!=0 ){
1983 if( pSub->flags&MEM_Blob ){
1984 /* pSub is initiallly NULL. It is initialized to a BLOB by
1985 ** the P4_SUBPROGRAM processing logic below */
1986 nSub = pSub->n/sizeof(Vdbe*);
1987 apSub = (SubProgram **)pSub->z;
1989 for(i=0; i<nSub; i++){
1990 nRow += apSub[i]->nOp;
1993 iPc = *piPc;
1994 while(1){ /* Loop exits via break */
1995 i = iPc++;
1996 if( i>=nRow ){
1997 p->rc = SQLITE_OK;
1998 rc = SQLITE_DONE;
1999 break;
2001 if( i<p->nOp ){
2002 /* The rowid is small enough that we are still in the
2003 ** main program. */
2004 aOp = p->aOp;
2005 }else{
2006 /* We are currently listing subprograms. Figure out which one and
2007 ** pick up the appropriate opcode. */
2008 int j;
2009 i -= p->nOp;
2010 assert( apSub!=0 );
2011 assert( nSub>0 );
2012 for(j=0; i>=apSub[j]->nOp; j++){
2013 i -= apSub[j]->nOp;
2014 assert( i<apSub[j]->nOp || j+1<nSub );
2016 aOp = apSub[j]->aOp;
2019 /* When an OP_Program opcode is encounter (the only opcode that has
2020 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
2021 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
2022 ** has not already been seen.
2024 if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){
2025 int nByte = (nSub+1)*sizeof(SubProgram*);
2026 int j;
2027 for(j=0; j<nSub; j++){
2028 if( apSub[j]==aOp[i].p4.pProgram ) break;
2030 if( j==nSub ){
2031 p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0);
2032 if( p->rc!=SQLITE_OK ){
2033 rc = SQLITE_ERROR;
2034 break;
2036 apSub = (SubProgram **)pSub->z;
2037 apSub[nSub++] = aOp[i].p4.pProgram;
2038 MemSetTypeFlag(pSub, MEM_Blob);
2039 pSub->n = nSub*sizeof(SubProgram*);
2040 nRow += aOp[i].p4.pProgram->nOp;
2043 if( eMode==0 ) break;
2044 #ifdef SQLITE_ENABLE_BYTECODE_VTAB
2045 if( eMode==2 ){
2046 Op *pOp = aOp + i;
2047 if( pOp->opcode==OP_OpenRead ) break;
2048 if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break;
2049 if( pOp->opcode==OP_ReopenIdx ) break;
2050 }else
2051 #endif
2053 assert( eMode==1 );
2054 if( aOp[i].opcode==OP_Explain ) break;
2055 if( aOp[i].opcode==OP_Init && iPc>1 ) break;
2058 *piPc = iPc;
2059 *piAddr = i;
2060 *paOp = aOp;
2061 return rc;
2063 #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */
2067 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
2068 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
2070 void sqlite3VdbeFrameDelete(VdbeFrame *p){
2071 int i;
2072 Mem *aMem = VdbeFrameMem(p);
2073 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
2074 assert( sqlite3VdbeFrameIsValid(p) );
2075 for(i=0; i<p->nChildCsr; i++){
2076 sqlite3VdbeFreeCursor(p->v, apCsr[i]);
2078 releaseMemArray(aMem, p->nChildMem);
2079 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
2080 sqlite3DbFree(p->v->db, p);
2083 #ifndef SQLITE_OMIT_EXPLAIN
2085 ** Give a listing of the program in the virtual machine.
2087 ** The interface is the same as sqlite3VdbeExec(). But instead of
2088 ** running the code, it invokes the callback once for each instruction.
2089 ** This feature is used to implement "EXPLAIN".
2091 ** When p->explain==1, each instruction is listed. When
2092 ** p->explain==2, only OP_Explain instructions are listed and these
2093 ** are shown in a different format. p->explain==2 is used to implement
2094 ** EXPLAIN QUERY PLAN.
2095 ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers
2096 ** are also shown, so that the boundaries between the main program and
2097 ** each trigger are clear.
2099 ** When p->explain==1, first the main program is listed, then each of
2100 ** the trigger subprograms are listed one by one.
2102 int sqlite3VdbeList(
2103 Vdbe *p /* The VDBE */
2105 Mem *pSub = 0; /* Memory cell hold array of subprogs */
2106 sqlite3 *db = p->db; /* The database connection */
2107 int i; /* Loop counter */
2108 int rc = SQLITE_OK; /* Return code */
2109 Mem *pMem = &p->aMem[1]; /* First Mem of result set */
2110 int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0);
2111 Op *aOp; /* Array of opcodes */
2112 Op *pOp; /* Current opcode */
2114 assert( p->explain );
2115 assert( p->magic==VDBE_MAGIC_RUN );
2116 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
2118 /* Even though this opcode does not use dynamic strings for
2119 ** the result, result columns may become dynamic if the user calls
2120 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
2122 releaseMemArray(pMem, 8);
2123 p->pResultSet = 0;
2125 if( p->rc==SQLITE_NOMEM ){
2126 /* This happens if a malloc() inside a call to sqlite3_column_text() or
2127 ** sqlite3_column_text16() failed. */
2128 sqlite3OomFault(db);
2129 return SQLITE_ERROR;
2132 if( bListSubprogs ){
2133 /* The first 8 memory cells are used for the result set. So we will
2134 ** commandeer the 9th cell to use as storage for an array of pointers
2135 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
2136 ** cells. */
2137 assert( p->nMem>9 );
2138 pSub = &p->aMem[9];
2139 }else{
2140 pSub = 0;
2143 /* Figure out which opcode is next to display */
2144 rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp);
2146 if( rc==SQLITE_OK ){
2147 pOp = aOp + i;
2148 if( AtomicLoad(&db->u1.isInterrupted) ){
2149 p->rc = SQLITE_INTERRUPT;
2150 rc = SQLITE_ERROR;
2151 sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
2152 }else{
2153 char *zP4 = sqlite3VdbeDisplayP4(db, pOp);
2154 if( p->explain==2 ){
2155 sqlite3VdbeMemSetInt64(pMem, pOp->p1);
2156 sqlite3VdbeMemSetInt64(pMem+1, pOp->p2);
2157 sqlite3VdbeMemSetInt64(pMem+2, pOp->p3);
2158 sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free);
2159 p->nResColumn = 4;
2160 }else{
2161 sqlite3VdbeMemSetInt64(pMem+0, i);
2162 sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode),
2163 -1, SQLITE_UTF8, SQLITE_STATIC);
2164 sqlite3VdbeMemSetInt64(pMem+2, pOp->p1);
2165 sqlite3VdbeMemSetInt64(pMem+3, pOp->p2);
2166 sqlite3VdbeMemSetInt64(pMem+4, pOp->p3);
2167 /* pMem+5 for p4 is done last */
2168 sqlite3VdbeMemSetInt64(pMem+6, pOp->p5);
2169 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2171 char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4);
2172 sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free);
2174 #else
2175 sqlite3VdbeMemSetNull(pMem+7);
2176 #endif
2177 sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free);
2178 p->nResColumn = 8;
2180 p->pResultSet = pMem;
2181 if( db->mallocFailed ){
2182 p->rc = SQLITE_NOMEM;
2183 rc = SQLITE_ERROR;
2184 }else{
2185 p->rc = SQLITE_OK;
2186 rc = SQLITE_ROW;
2190 return rc;
2192 #endif /* SQLITE_OMIT_EXPLAIN */
2194 #ifdef SQLITE_DEBUG
2196 ** Print the SQL that was used to generate a VDBE program.
2198 void sqlite3VdbePrintSql(Vdbe *p){
2199 const char *z = 0;
2200 if( p->zSql ){
2201 z = p->zSql;
2202 }else if( p->nOp>=1 ){
2203 const VdbeOp *pOp = &p->aOp[0];
2204 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2205 z = pOp->p4.z;
2206 while( sqlite3Isspace(*z) ) z++;
2209 if( z ) printf("SQL: [%s]\n", z);
2211 #endif
2213 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
2215 ** Print an IOTRACE message showing SQL content.
2217 void sqlite3VdbeIOTraceSql(Vdbe *p){
2218 int nOp = p->nOp;
2219 VdbeOp *pOp;
2220 if( sqlite3IoTrace==0 ) return;
2221 if( nOp<1 ) return;
2222 pOp = &p->aOp[0];
2223 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2224 int i, j;
2225 char z[1000];
2226 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
2227 for(i=0; sqlite3Isspace(z[i]); i++){}
2228 for(j=0; z[i]; i++){
2229 if( sqlite3Isspace(z[i]) ){
2230 if( z[i-1]!=' ' ){
2231 z[j++] = ' ';
2233 }else{
2234 z[j++] = z[i];
2237 z[j] = 0;
2238 sqlite3IoTrace("SQL %s\n", z);
2241 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
2243 /* An instance of this object describes bulk memory available for use
2244 ** by subcomponents of a prepared statement. Space is allocated out
2245 ** of a ReusableSpace object by the allocSpace() routine below.
2247 struct ReusableSpace {
2248 u8 *pSpace; /* Available memory */
2249 sqlite3_int64 nFree; /* Bytes of available memory */
2250 sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */
2253 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
2254 ** from the ReusableSpace object. Return a pointer to the allocated
2255 ** memory on success. If insufficient memory is available in the
2256 ** ReusableSpace object, increase the ReusableSpace.nNeeded
2257 ** value by the amount needed and return NULL.
2259 ** If pBuf is not initially NULL, that means that the memory has already
2260 ** been allocated by a prior call to this routine, so just return a copy
2261 ** of pBuf and leave ReusableSpace unchanged.
2263 ** This allocator is employed to repurpose unused slots at the end of the
2264 ** opcode array of prepared state for other memory needs of the prepared
2265 ** statement.
2267 static void *allocSpace(
2268 struct ReusableSpace *p, /* Bulk memory available for allocation */
2269 void *pBuf, /* Pointer to a prior allocation */
2270 sqlite3_int64 nByte /* Bytes of memory needed */
2272 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
2273 if( pBuf==0 ){
2274 nByte = ROUND8(nByte);
2275 if( nByte <= p->nFree ){
2276 p->nFree -= nByte;
2277 pBuf = &p->pSpace[p->nFree];
2278 }else{
2279 p->nNeeded += nByte;
2282 assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
2283 return pBuf;
2287 ** Rewind the VDBE back to the beginning in preparation for
2288 ** running it.
2290 void sqlite3VdbeRewind(Vdbe *p){
2291 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
2292 int i;
2293 #endif
2294 assert( p!=0 );
2295 assert( p->magic==VDBE_MAGIC_INIT || p->magic==VDBE_MAGIC_RESET );
2297 /* There should be at least one opcode.
2299 assert( p->nOp>0 );
2301 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
2302 p->magic = VDBE_MAGIC_RUN;
2304 #ifdef SQLITE_DEBUG
2305 for(i=0; i<p->nMem; i++){
2306 assert( p->aMem[i].db==p->db );
2308 #endif
2309 p->pc = -1;
2310 p->rc = SQLITE_OK;
2311 p->errorAction = OE_Abort;
2312 p->nChange = 0;
2313 p->cacheCtr = 1;
2314 p->minWriteFileFormat = 255;
2315 p->iStatement = 0;
2316 p->nFkConstraint = 0;
2317 #ifdef VDBE_PROFILE
2318 for(i=0; i<p->nOp; i++){
2319 p->aOp[i].cnt = 0;
2320 p->aOp[i].cycles = 0;
2322 #endif
2326 ** Prepare a virtual machine for execution for the first time after
2327 ** creating the virtual machine. This involves things such
2328 ** as allocating registers and initializing the program counter.
2329 ** After the VDBE has be prepped, it can be executed by one or more
2330 ** calls to sqlite3VdbeExec().
2332 ** This function may be called exactly once on each virtual machine.
2333 ** After this routine is called the VM has been "packaged" and is ready
2334 ** to run. After this routine is called, further calls to
2335 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
2336 ** the Vdbe from the Parse object that helped generate it so that the
2337 ** the Vdbe becomes an independent entity and the Parse object can be
2338 ** destroyed.
2340 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
2341 ** to its initial state after it has been run.
2343 void sqlite3VdbeMakeReady(
2344 Vdbe *p, /* The VDBE */
2345 Parse *pParse /* Parsing context */
2347 sqlite3 *db; /* The database connection */
2348 int nVar; /* Number of parameters */
2349 int nMem; /* Number of VM memory registers */
2350 int nCursor; /* Number of cursors required */
2351 int nArg; /* Number of arguments in subprograms */
2352 int n; /* Loop counter */
2353 struct ReusableSpace x; /* Reusable bulk memory */
2355 assert( p!=0 );
2356 assert( p->nOp>0 );
2357 assert( pParse!=0 );
2358 assert( p->magic==VDBE_MAGIC_INIT );
2359 assert( pParse==p->pParse );
2360 db = p->db;
2361 assert( db->mallocFailed==0 );
2362 nVar = pParse->nVar;
2363 nMem = pParse->nMem;
2364 nCursor = pParse->nTab;
2365 nArg = pParse->nMaxArg;
2367 /* Each cursor uses a memory cell. The first cursor (cursor 0) can
2368 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate
2369 ** space at the end of aMem[] for cursors 1 and greater.
2370 ** See also: allocateCursor().
2372 nMem += nCursor;
2373 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */
2375 /* Figure out how much reusable memory is available at the end of the
2376 ** opcode array. This extra memory will be reallocated for other elements
2377 ** of the prepared statement.
2379 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */
2380 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */
2381 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
2382 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */
2383 assert( x.nFree>=0 );
2384 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
2386 resolveP2Values(p, &nArg);
2387 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
2388 if( pParse->explain ){
2389 static const char * const azColName[] = {
2390 "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment",
2391 "id", "parent", "notused", "detail"
2393 int iFirst, mx, i;
2394 if( nMem<10 ) nMem = 10;
2395 p->explain = pParse->explain;
2396 if( pParse->explain==2 ){
2397 sqlite3VdbeSetNumCols(p, 4);
2398 iFirst = 8;
2399 mx = 12;
2400 }else{
2401 sqlite3VdbeSetNumCols(p, 8);
2402 iFirst = 0;
2403 mx = 8;
2405 for(i=iFirst; i<mx; i++){
2406 sqlite3VdbeSetColName(p, i-iFirst, COLNAME_NAME,
2407 azColName[i], SQLITE_STATIC);
2410 p->expired = 0;
2412 /* Memory for registers, parameters, cursor, etc, is allocated in one or two
2413 ** passes. On the first pass, we try to reuse unused memory at the
2414 ** end of the opcode array. If we are unable to satisfy all memory
2415 ** requirements by reusing the opcode array tail, then the second
2416 ** pass will fill in the remainder using a fresh memory allocation.
2418 ** This two-pass approach that reuses as much memory as possible from
2419 ** the leftover memory at the end of the opcode array. This can significantly
2420 ** reduce the amount of memory held by a prepared statement.
2422 x.nNeeded = 0;
2423 p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem));
2424 p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem));
2425 p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*));
2426 p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*));
2427 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2428 p->anExec = allocSpace(&x, 0, p->nOp*sizeof(i64));
2429 #endif
2430 if( x.nNeeded ){
2431 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded);
2432 x.nFree = x.nNeeded;
2433 if( !db->mallocFailed ){
2434 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
2435 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
2436 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
2437 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
2438 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2439 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64));
2440 #endif
2444 p->pVList = pParse->pVList;
2445 pParse->pVList = 0;
2446 if( db->mallocFailed ){
2447 p->nVar = 0;
2448 p->nCursor = 0;
2449 p->nMem = 0;
2450 }else{
2451 p->nCursor = nCursor;
2452 p->nVar = (ynVar)nVar;
2453 initMemArray(p->aVar, nVar, db, MEM_Null);
2454 p->nMem = nMem;
2455 initMemArray(p->aMem, nMem, db, MEM_Undefined);
2456 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*));
2457 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2458 memset(p->anExec, 0, p->nOp*sizeof(i64));
2459 #endif
2461 sqlite3VdbeRewind(p);
2465 ** Close a VDBE cursor and release all the resources that cursor
2466 ** happens to hold.
2468 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
2469 if( pCx==0 ){
2470 return;
2472 assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE );
2473 switch( pCx->eCurType ){
2474 case CURTYPE_SORTER: {
2475 sqlite3VdbeSorterClose(p->db, pCx);
2476 break;
2478 case CURTYPE_BTREE: {
2479 if( pCx->isEphemeral ){
2480 if( pCx->pBtx ) sqlite3BtreeClose(pCx->pBtx);
2481 /* The pCx->pCursor will be close automatically, if it exists, by
2482 ** the call above. */
2483 }else{
2484 assert( pCx->uc.pCursor!=0 );
2485 sqlite3BtreeCloseCursor(pCx->uc.pCursor);
2487 break;
2489 #ifndef SQLITE_OMIT_VIRTUALTABLE
2490 case CURTYPE_VTAB: {
2491 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
2492 const sqlite3_module *pModule = pVCur->pVtab->pModule;
2493 assert( pVCur->pVtab->nRef>0 );
2494 pVCur->pVtab->nRef--;
2495 pModule->xClose(pVCur);
2496 break;
2498 #endif
2503 ** Close all cursors in the current frame.
2505 static void closeCursorsInFrame(Vdbe *p){
2506 if( p->apCsr ){
2507 int i;
2508 for(i=0; i<p->nCursor; i++){
2509 VdbeCursor *pC = p->apCsr[i];
2510 if( pC ){
2511 sqlite3VdbeFreeCursor(p, pC);
2512 p->apCsr[i] = 0;
2519 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2520 ** is used, for example, when a trigger sub-program is halted to restore
2521 ** control to the main program.
2523 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
2524 Vdbe *v = pFrame->v;
2525 closeCursorsInFrame(v);
2526 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2527 v->anExec = pFrame->anExec;
2528 #endif
2529 v->aOp = pFrame->aOp;
2530 v->nOp = pFrame->nOp;
2531 v->aMem = pFrame->aMem;
2532 v->nMem = pFrame->nMem;
2533 v->apCsr = pFrame->apCsr;
2534 v->nCursor = pFrame->nCursor;
2535 v->db->lastRowid = pFrame->lastRowid;
2536 v->nChange = pFrame->nChange;
2537 v->db->nChange = pFrame->nDbChange;
2538 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
2539 v->pAuxData = pFrame->pAuxData;
2540 pFrame->pAuxData = 0;
2541 return pFrame->pc;
2545 ** Close all cursors.
2547 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2548 ** cell array. This is necessary as the memory cell array may contain
2549 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2550 ** open cursors.
2552 static void closeAllCursors(Vdbe *p){
2553 if( p->pFrame ){
2554 VdbeFrame *pFrame;
2555 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2556 sqlite3VdbeFrameRestore(pFrame);
2557 p->pFrame = 0;
2558 p->nFrame = 0;
2560 assert( p->nFrame==0 );
2561 closeCursorsInFrame(p);
2562 if( p->aMem ){
2563 releaseMemArray(p->aMem, p->nMem);
2565 while( p->pDelFrame ){
2566 VdbeFrame *pDel = p->pDelFrame;
2567 p->pDelFrame = pDel->pParent;
2568 sqlite3VdbeFrameDelete(pDel);
2571 /* Delete any auxdata allocations made by the VM */
2572 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
2573 assert( p->pAuxData==0 );
2577 ** Set the number of result columns that will be returned by this SQL
2578 ** statement. This is now set at compile time, rather than during
2579 ** execution of the vdbe program so that sqlite3_column_count() can
2580 ** be called on an SQL statement before sqlite3_step().
2582 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
2583 int n;
2584 sqlite3 *db = p->db;
2586 if( p->nResColumn ){
2587 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2588 sqlite3DbFree(db, p->aColName);
2590 n = nResColumn*COLNAME_N;
2591 p->nResColumn = (u16)nResColumn;
2592 p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
2593 if( p->aColName==0 ) return;
2594 initMemArray(p->aColName, n, db, MEM_Null);
2598 ** Set the name of the idx'th column to be returned by the SQL statement.
2599 ** zName must be a pointer to a nul terminated string.
2601 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2603 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2604 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2605 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2607 int sqlite3VdbeSetColName(
2608 Vdbe *p, /* Vdbe being configured */
2609 int idx, /* Index of column zName applies to */
2610 int var, /* One of the COLNAME_* constants */
2611 const char *zName, /* Pointer to buffer containing name */
2612 void (*xDel)(void*) /* Memory management strategy for zName */
2614 int rc;
2615 Mem *pColName;
2616 assert( idx<p->nResColumn );
2617 assert( var<COLNAME_N );
2618 if( p->db->mallocFailed ){
2619 assert( !zName || xDel!=SQLITE_DYNAMIC );
2620 return SQLITE_NOMEM_BKPT;
2622 assert( p->aColName!=0 );
2623 pColName = &(p->aColName[idx+var*p->nResColumn]);
2624 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
2625 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
2626 return rc;
2630 ** A read or write transaction may or may not be active on database handle
2631 ** db. If a transaction is active, commit it. If there is a
2632 ** write-transaction spanning more than one database file, this routine
2633 ** takes care of the super-journal trickery.
2635 static int vdbeCommit(sqlite3 *db, Vdbe *p){
2636 int i;
2637 int nTrans = 0; /* Number of databases with an active write-transaction
2638 ** that are candidates for a two-phase commit using a
2639 ** super-journal */
2640 int rc = SQLITE_OK;
2641 int needXcommit = 0;
2643 #ifdef SQLITE_OMIT_VIRTUALTABLE
2644 /* With this option, sqlite3VtabSync() is defined to be simply
2645 ** SQLITE_OK so p is not used.
2647 UNUSED_PARAMETER(p);
2648 #endif
2650 /* Before doing anything else, call the xSync() callback for any
2651 ** virtual module tables written in this transaction. This has to
2652 ** be done before determining whether a super-journal file is
2653 ** required, as an xSync() callback may add an attached database
2654 ** to the transaction.
2656 rc = sqlite3VtabSync(db, p);
2658 /* This loop determines (a) if the commit hook should be invoked and
2659 ** (b) how many database files have open write transactions, not
2660 ** including the temp database. (b) is important because if more than
2661 ** one database file has an open write transaction, a super-journal
2662 ** file is required for an atomic commit.
2664 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2665 Btree *pBt = db->aDb[i].pBt;
2666 if( sqlite3BtreeIsInTrans(pBt) ){
2667 /* Whether or not a database might need a super-journal depends upon
2668 ** its journal mode (among other things). This matrix determines which
2669 ** journal modes use a super-journal and which do not */
2670 static const u8 aMJNeeded[] = {
2671 /* DELETE */ 1,
2672 /* PERSIST */ 1,
2673 /* OFF */ 0,
2674 /* TRUNCATE */ 1,
2675 /* MEMORY */ 0,
2676 /* WAL */ 0
2678 Pager *pPager; /* Pager associated with pBt */
2679 needXcommit = 1;
2680 sqlite3BtreeEnter(pBt);
2681 pPager = sqlite3BtreePager(pBt);
2682 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
2683 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
2684 && sqlite3PagerIsMemdb(pPager)==0
2686 assert( i!=1 );
2687 nTrans++;
2689 rc = sqlite3PagerExclusiveLock(pPager);
2690 sqlite3BtreeLeave(pBt);
2693 if( rc!=SQLITE_OK ){
2694 return rc;
2697 /* If there are any write-transactions at all, invoke the commit hook */
2698 if( needXcommit && db->xCommitCallback ){
2699 rc = db->xCommitCallback(db->pCommitArg);
2700 if( rc ){
2701 return SQLITE_CONSTRAINT_COMMITHOOK;
2705 /* The simple case - no more than one database file (not counting the
2706 ** TEMP database) has a transaction active. There is no need for the
2707 ** super-journal.
2709 ** If the return value of sqlite3BtreeGetFilename() is a zero length
2710 ** string, it means the main database is :memory: or a temp file. In
2711 ** that case we do not support atomic multi-file commits, so use the
2712 ** simple case then too.
2714 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2715 || nTrans<=1
2717 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2718 Btree *pBt = db->aDb[i].pBt;
2719 if( pBt ){
2720 rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
2724 /* Do the commit only if all databases successfully complete phase 1.
2725 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2726 ** IO error while deleting or truncating a journal file. It is unlikely,
2727 ** but could happen. In this case abandon processing and return the error.
2729 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2730 Btree *pBt = db->aDb[i].pBt;
2731 if( pBt ){
2732 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
2735 if( rc==SQLITE_OK ){
2736 sqlite3VtabCommit(db);
2740 /* The complex case - There is a multi-file write-transaction active.
2741 ** This requires a super-journal file to ensure the transaction is
2742 ** committed atomically.
2744 #ifndef SQLITE_OMIT_DISKIO
2745 else{
2746 sqlite3_vfs *pVfs = db->pVfs;
2747 char *zSuper = 0; /* File-name for the super-journal */
2748 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
2749 sqlite3_file *pSuperJrnl = 0;
2750 i64 offset = 0;
2751 int res;
2752 int retryCount = 0;
2753 int nMainFile;
2755 /* Select a super-journal file name */
2756 nMainFile = sqlite3Strlen30(zMainFile);
2757 zSuper = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0);
2758 if( zSuper==0 ) return SQLITE_NOMEM_BKPT;
2759 zSuper += 4;
2760 do {
2761 u32 iRandom;
2762 if( retryCount ){
2763 if( retryCount>100 ){
2764 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zSuper);
2765 sqlite3OsDelete(pVfs, zSuper, 0);
2766 break;
2767 }else if( retryCount==1 ){
2768 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zSuper);
2771 retryCount++;
2772 sqlite3_randomness(sizeof(iRandom), &iRandom);
2773 sqlite3_snprintf(13, &zSuper[nMainFile], "-mj%06X9%02X",
2774 (iRandom>>8)&0xffffff, iRandom&0xff);
2775 /* The antipenultimate character of the super-journal name must
2776 ** be "9" to avoid name collisions when using 8+3 filenames. */
2777 assert( zSuper[sqlite3Strlen30(zSuper)-3]=='9' );
2778 sqlite3FileSuffix3(zMainFile, zSuper);
2779 rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res);
2780 }while( rc==SQLITE_OK && res );
2781 if( rc==SQLITE_OK ){
2782 /* Open the super-journal. */
2783 rc = sqlite3OsOpenMalloc(pVfs, zSuper, &pSuperJrnl,
2784 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2785 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_SUPER_JOURNAL, 0
2788 if( rc!=SQLITE_OK ){
2789 sqlite3DbFree(db, zSuper-4);
2790 return rc;
2793 /* Write the name of each database file in the transaction into the new
2794 ** super-journal file. If an error occurs at this point close
2795 ** and delete the super-journal file. All the individual journal files
2796 ** still have 'null' as the super-journal pointer, so they will roll
2797 ** back independently if a failure occurs.
2799 for(i=0; i<db->nDb; i++){
2800 Btree *pBt = db->aDb[i].pBt;
2801 if( sqlite3BtreeIsInTrans(pBt) ){
2802 char const *zFile = sqlite3BtreeGetJournalname(pBt);
2803 if( zFile==0 ){
2804 continue; /* Ignore TEMP and :memory: databases */
2806 assert( zFile[0]!=0 );
2807 rc = sqlite3OsWrite(pSuperJrnl, zFile, sqlite3Strlen30(zFile)+1,offset);
2808 offset += sqlite3Strlen30(zFile)+1;
2809 if( rc!=SQLITE_OK ){
2810 sqlite3OsCloseFree(pSuperJrnl);
2811 sqlite3OsDelete(pVfs, zSuper, 0);
2812 sqlite3DbFree(db, zSuper-4);
2813 return rc;
2818 /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device
2819 ** flag is set this is not required.
2821 if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl)&SQLITE_IOCAP_SEQUENTIAL)
2822 && SQLITE_OK!=(rc = sqlite3OsSync(pSuperJrnl, SQLITE_SYNC_NORMAL))
2824 sqlite3OsCloseFree(pSuperJrnl);
2825 sqlite3OsDelete(pVfs, zSuper, 0);
2826 sqlite3DbFree(db, zSuper-4);
2827 return rc;
2830 /* Sync all the db files involved in the transaction. The same call
2831 ** sets the super-journal pointer in each individual journal. If
2832 ** an error occurs here, do not delete the super-journal file.
2834 ** If the error occurs during the first call to
2835 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2836 ** super-journal file will be orphaned. But we cannot delete it,
2837 ** in case the super-journal file name was written into the journal
2838 ** file before the failure occurred.
2840 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2841 Btree *pBt = db->aDb[i].pBt;
2842 if( pBt ){
2843 rc = sqlite3BtreeCommitPhaseOne(pBt, zSuper);
2846 sqlite3OsCloseFree(pSuperJrnl);
2847 assert( rc!=SQLITE_BUSY );
2848 if( rc!=SQLITE_OK ){
2849 sqlite3DbFree(db, zSuper-4);
2850 return rc;
2853 /* Delete the super-journal file. This commits the transaction. After
2854 ** doing this the directory is synced again before any individual
2855 ** transaction files are deleted.
2857 rc = sqlite3OsDelete(pVfs, zSuper, 1);
2858 sqlite3DbFree(db, zSuper-4);
2859 zSuper = 0;
2860 if( rc ){
2861 return rc;
2864 /* All files and directories have already been synced, so the following
2865 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2866 ** deleting or truncating journals. If something goes wrong while
2867 ** this is happening we don't really care. The integrity of the
2868 ** transaction is already guaranteed, but some stray 'cold' journals
2869 ** may be lying around. Returning an error code won't help matters.
2871 disable_simulated_io_errors();
2872 sqlite3BeginBenignMalloc();
2873 for(i=0; i<db->nDb; i++){
2874 Btree *pBt = db->aDb[i].pBt;
2875 if( pBt ){
2876 sqlite3BtreeCommitPhaseTwo(pBt, 1);
2879 sqlite3EndBenignMalloc();
2880 enable_simulated_io_errors();
2882 sqlite3VtabCommit(db);
2884 #endif
2886 return rc;
2890 ** This routine checks that the sqlite3.nVdbeActive count variable
2891 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
2892 ** currently active. An assertion fails if the two counts do not match.
2893 ** This is an internal self-check only - it is not an essential processing
2894 ** step.
2896 ** This is a no-op if NDEBUG is defined.
2898 #ifndef NDEBUG
2899 static void checkActiveVdbeCnt(sqlite3 *db){
2900 Vdbe *p;
2901 int cnt = 0;
2902 int nWrite = 0;
2903 int nRead = 0;
2904 p = db->pVdbe;
2905 while( p ){
2906 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
2907 cnt++;
2908 if( p->readOnly==0 ) nWrite++;
2909 if( p->bIsReader ) nRead++;
2911 p = p->pNext;
2913 assert( cnt==db->nVdbeActive );
2914 assert( nWrite==db->nVdbeWrite );
2915 assert( nRead==db->nVdbeRead );
2917 #else
2918 #define checkActiveVdbeCnt(x)
2919 #endif
2922 ** If the Vdbe passed as the first argument opened a statement-transaction,
2923 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2924 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2925 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
2926 ** statement transaction is committed.
2928 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2929 ** Otherwise SQLITE_OK.
2931 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){
2932 sqlite3 *const db = p->db;
2933 int rc = SQLITE_OK;
2934 int i;
2935 const int iSavepoint = p->iStatement-1;
2937 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2938 assert( db->nStatement>0 );
2939 assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2941 for(i=0; i<db->nDb; i++){
2942 int rc2 = SQLITE_OK;
2943 Btree *pBt = db->aDb[i].pBt;
2944 if( pBt ){
2945 if( eOp==SAVEPOINT_ROLLBACK ){
2946 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2948 if( rc2==SQLITE_OK ){
2949 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2951 if( rc==SQLITE_OK ){
2952 rc = rc2;
2956 db->nStatement--;
2957 p->iStatement = 0;
2959 if( rc==SQLITE_OK ){
2960 if( eOp==SAVEPOINT_ROLLBACK ){
2961 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2963 if( rc==SQLITE_OK ){
2964 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2968 /* If the statement transaction is being rolled back, also restore the
2969 ** database handles deferred constraint counter to the value it had when
2970 ** the statement transaction was opened. */
2971 if( eOp==SAVEPOINT_ROLLBACK ){
2972 db->nDeferredCons = p->nStmtDefCons;
2973 db->nDeferredImmCons = p->nStmtDefImmCons;
2975 return rc;
2977 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
2978 if( p->db->nStatement && p->iStatement ){
2979 return vdbeCloseStatement(p, eOp);
2981 return SQLITE_OK;
2986 ** This function is called when a transaction opened by the database
2987 ** handle associated with the VM passed as an argument is about to be
2988 ** committed. If there are outstanding deferred foreign key constraint
2989 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2991 ** If there are outstanding FK violations and this function returns
2992 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2993 ** and write an error message to it. Then return SQLITE_ERROR.
2995 #ifndef SQLITE_OMIT_FOREIGN_KEY
2996 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
2997 sqlite3 *db = p->db;
2998 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
2999 || (!deferred && p->nFkConstraint>0)
3001 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
3002 p->errorAction = OE_Abort;
3003 sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
3004 return SQLITE_ERROR;
3006 return SQLITE_OK;
3008 #endif
3011 ** This routine is called the when a VDBE tries to halt. If the VDBE
3012 ** has made changes and is in autocommit mode, then commit those
3013 ** changes. If a rollback is needed, then do the rollback.
3015 ** This routine is the only way to move the state of a VM from
3016 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
3017 ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
3019 ** Return an error code. If the commit could not complete because of
3020 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
3021 ** means the close did not happen and needs to be repeated.
3023 int sqlite3VdbeHalt(Vdbe *p){
3024 int rc; /* Used to store transient return codes */
3025 sqlite3 *db = p->db;
3027 /* This function contains the logic that determines if a statement or
3028 ** transaction will be committed or rolled back as a result of the
3029 ** execution of this virtual machine.
3031 ** If any of the following errors occur:
3033 ** SQLITE_NOMEM
3034 ** SQLITE_IOERR
3035 ** SQLITE_FULL
3036 ** SQLITE_INTERRUPT
3038 ** Then the internal cache might have been left in an inconsistent
3039 ** state. We need to rollback the statement transaction, if there is
3040 ** one, or the complete transaction if there is no statement transaction.
3043 if( p->magic!=VDBE_MAGIC_RUN ){
3044 return SQLITE_OK;
3046 if( db->mallocFailed ){
3047 p->rc = SQLITE_NOMEM_BKPT;
3049 closeAllCursors(p);
3050 checkActiveVdbeCnt(db);
3052 /* No commit or rollback needed if the program never started or if the
3053 ** SQL statement does not read or write a database file. */
3054 if( p->pc>=0 && p->bIsReader ){
3055 int mrc; /* Primary error code from p->rc */
3056 int eStatementOp = 0;
3057 int isSpecialError; /* Set to true if a 'special' error */
3059 /* Lock all btrees used by the statement */
3060 sqlite3VdbeEnter(p);
3062 /* Check for one of the special errors */
3063 mrc = p->rc & 0xff;
3064 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
3065 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
3066 if( isSpecialError ){
3067 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
3068 ** no rollback is necessary. Otherwise, at least a savepoint
3069 ** transaction must be rolled back to restore the database to a
3070 ** consistent state.
3072 ** Even if the statement is read-only, it is important to perform
3073 ** a statement or transaction rollback operation. If the error
3074 ** occurred while writing to the journal, sub-journal or database
3075 ** file as part of an effort to free up cache space (see function
3076 ** pagerStress() in pager.c), the rollback is required to restore
3077 ** the pager to a consistent state.
3079 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
3080 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
3081 eStatementOp = SAVEPOINT_ROLLBACK;
3082 }else{
3083 /* We are forced to roll back the active transaction. Before doing
3084 ** so, abort any other statements this handle currently has active.
3086 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3087 sqlite3CloseSavepoints(db);
3088 db->autoCommit = 1;
3089 p->nChange = 0;
3094 /* Check for immediate foreign key violations. */
3095 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3096 sqlite3VdbeCheckFk(p, 0);
3099 /* If the auto-commit flag is set and this is the only active writer
3100 ** VM, then we do either a commit or rollback of the current transaction.
3102 ** Note: This block also runs if one of the special errors handled
3103 ** above has occurred.
3105 if( !sqlite3VtabInSync(db)
3106 && db->autoCommit
3107 && db->nVdbeWrite==(p->readOnly==0)
3109 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3110 rc = sqlite3VdbeCheckFk(p, 1);
3111 if( rc!=SQLITE_OK ){
3112 if( NEVER(p->readOnly) ){
3113 sqlite3VdbeLeave(p);
3114 return SQLITE_ERROR;
3116 rc = SQLITE_CONSTRAINT_FOREIGNKEY;
3117 }else{
3118 /* The auto-commit flag is true, the vdbe program was successful
3119 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
3120 ** key constraints to hold up the transaction. This means a commit
3121 ** is required. */
3122 rc = vdbeCommit(db, p);
3124 if( rc==SQLITE_BUSY && p->readOnly ){
3125 sqlite3VdbeLeave(p);
3126 return SQLITE_BUSY;
3127 }else if( rc!=SQLITE_OK ){
3128 p->rc = rc;
3129 sqlite3RollbackAll(db, SQLITE_OK);
3130 p->nChange = 0;
3131 }else{
3132 db->nDeferredCons = 0;
3133 db->nDeferredImmCons = 0;
3134 db->flags &= ~(u64)SQLITE_DeferFKs;
3135 sqlite3CommitInternalChanges(db);
3137 }else{
3138 sqlite3RollbackAll(db, SQLITE_OK);
3139 p->nChange = 0;
3141 db->nStatement = 0;
3142 }else if( eStatementOp==0 ){
3143 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
3144 eStatementOp = SAVEPOINT_RELEASE;
3145 }else if( p->errorAction==OE_Abort ){
3146 eStatementOp = SAVEPOINT_ROLLBACK;
3147 }else{
3148 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3149 sqlite3CloseSavepoints(db);
3150 db->autoCommit = 1;
3151 p->nChange = 0;
3155 /* If eStatementOp is non-zero, then a statement transaction needs to
3156 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
3157 ** do so. If this operation returns an error, and the current statement
3158 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
3159 ** current statement error code.
3161 if( eStatementOp ){
3162 rc = sqlite3VdbeCloseStatement(p, eStatementOp);
3163 if( rc ){
3164 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
3165 p->rc = rc;
3166 sqlite3DbFree(db, p->zErrMsg);
3167 p->zErrMsg = 0;
3169 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3170 sqlite3CloseSavepoints(db);
3171 db->autoCommit = 1;
3172 p->nChange = 0;
3176 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
3177 ** has been rolled back, update the database connection change-counter.
3179 if( p->changeCntOn ){
3180 if( eStatementOp!=SAVEPOINT_ROLLBACK ){
3181 sqlite3VdbeSetChanges(db, p->nChange);
3182 }else{
3183 sqlite3VdbeSetChanges(db, 0);
3185 p->nChange = 0;
3188 /* Release the locks */
3189 sqlite3VdbeLeave(p);
3192 /* We have successfully halted and closed the VM. Record this fact. */
3193 if( p->pc>=0 ){
3194 db->nVdbeActive--;
3195 if( !p->readOnly ) db->nVdbeWrite--;
3196 if( p->bIsReader ) db->nVdbeRead--;
3197 assert( db->nVdbeActive>=db->nVdbeRead );
3198 assert( db->nVdbeRead>=db->nVdbeWrite );
3199 assert( db->nVdbeWrite>=0 );
3201 p->magic = VDBE_MAGIC_HALT;
3202 checkActiveVdbeCnt(db);
3203 if( db->mallocFailed ){
3204 p->rc = SQLITE_NOMEM_BKPT;
3207 /* If the auto-commit flag is set to true, then any locks that were held
3208 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
3209 ** to invoke any required unlock-notify callbacks.
3211 if( db->autoCommit ){
3212 sqlite3ConnectionUnlocked(db);
3215 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
3216 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
3221 ** Each VDBE holds the result of the most recent sqlite3_step() call
3222 ** in p->rc. This routine sets that result back to SQLITE_OK.
3224 void sqlite3VdbeResetStepResult(Vdbe *p){
3225 p->rc = SQLITE_OK;
3229 ** Copy the error code and error message belonging to the VDBE passed
3230 ** as the first argument to its database handle (so that they will be
3231 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
3233 ** This function does not clear the VDBE error code or message, just
3234 ** copies them to the database handle.
3236 int sqlite3VdbeTransferError(Vdbe *p){
3237 sqlite3 *db = p->db;
3238 int rc = p->rc;
3239 if( p->zErrMsg ){
3240 db->bBenignMalloc++;
3241 sqlite3BeginBenignMalloc();
3242 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
3243 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
3244 sqlite3EndBenignMalloc();
3245 db->bBenignMalloc--;
3246 }else if( db->pErr ){
3247 sqlite3ValueSetNull(db->pErr);
3249 db->errCode = rc;
3250 return rc;
3253 #ifdef SQLITE_ENABLE_SQLLOG
3255 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
3256 ** invoke it.
3258 static void vdbeInvokeSqllog(Vdbe *v){
3259 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
3260 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
3261 assert( v->db->init.busy==0 );
3262 if( zExpanded ){
3263 sqlite3GlobalConfig.xSqllog(
3264 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
3266 sqlite3DbFree(v->db, zExpanded);
3270 #else
3271 # define vdbeInvokeSqllog(x)
3272 #endif
3275 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
3276 ** Write any error messages into *pzErrMsg. Return the result code.
3278 ** After this routine is run, the VDBE should be ready to be executed
3279 ** again.
3281 ** To look at it another way, this routine resets the state of the
3282 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
3283 ** VDBE_MAGIC_INIT.
3285 int sqlite3VdbeReset(Vdbe *p){
3286 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
3287 int i;
3288 #endif
3290 sqlite3 *db;
3291 db = p->db;
3293 /* If the VM did not run to completion or if it encountered an
3294 ** error, then it might not have been halted properly. So halt
3295 ** it now.
3297 sqlite3VdbeHalt(p);
3299 /* If the VDBE has been run even partially, then transfer the error code
3300 ** and error message from the VDBE into the main database structure. But
3301 ** if the VDBE has just been set to run but has not actually executed any
3302 ** instructions yet, leave the main database error information unchanged.
3304 if( p->pc>=0 ){
3305 vdbeInvokeSqllog(p);
3306 if( db->pErr || p->zErrMsg ){
3307 sqlite3VdbeTransferError(p);
3308 }else{
3309 db->errCode = p->rc;
3311 if( p->runOnlyOnce ) p->expired = 1;
3312 }else if( p->rc && p->expired ){
3313 /* The expired flag was set on the VDBE before the first call
3314 ** to sqlite3_step(). For consistency (since sqlite3_step() was
3315 ** called), set the database error in this case as well.
3317 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
3320 /* Reset register contents and reclaim error message memory.
3322 #ifdef SQLITE_DEBUG
3323 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
3324 ** Vdbe.aMem[] arrays have already been cleaned up. */
3325 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
3326 if( p->aMem ){
3327 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
3329 #endif
3330 if( p->zErrMsg ){
3331 sqlite3DbFree(db, p->zErrMsg);
3332 p->zErrMsg = 0;
3334 p->pResultSet = 0;
3335 #ifdef SQLITE_DEBUG
3336 p->nWrite = 0;
3337 #endif
3339 /* Save profiling information from this VDBE run.
3341 #ifdef VDBE_PROFILE
3343 FILE *out = fopen("vdbe_profile.out", "a");
3344 if( out ){
3345 fprintf(out, "---- ");
3346 for(i=0; i<p->nOp; i++){
3347 fprintf(out, "%02x", p->aOp[i].opcode);
3349 fprintf(out, "\n");
3350 if( p->zSql ){
3351 char c, pc = 0;
3352 fprintf(out, "-- ");
3353 for(i=0; (c = p->zSql[i])!=0; i++){
3354 if( pc=='\n' ) fprintf(out, "-- ");
3355 putc(c, out);
3356 pc = c;
3358 if( pc!='\n' ) fprintf(out, "\n");
3360 for(i=0; i<p->nOp; i++){
3361 char zHdr[100];
3362 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
3363 p->aOp[i].cnt,
3364 p->aOp[i].cycles,
3365 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
3367 fprintf(out, "%s", zHdr);
3368 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
3370 fclose(out);
3373 #endif
3374 p->magic = VDBE_MAGIC_RESET;
3375 return p->rc & db->errMask;
3379 ** Clean up and delete a VDBE after execution. Return an integer which is
3380 ** the result code. Write any error message text into *pzErrMsg.
3382 int sqlite3VdbeFinalize(Vdbe *p){
3383 int rc = SQLITE_OK;
3384 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
3385 rc = sqlite3VdbeReset(p);
3386 assert( (rc & p->db->errMask)==rc );
3388 sqlite3VdbeDelete(p);
3389 return rc;
3393 ** If parameter iOp is less than zero, then invoke the destructor for
3394 ** all auxiliary data pointers currently cached by the VM passed as
3395 ** the first argument.
3397 ** Or, if iOp is greater than or equal to zero, then the destructor is
3398 ** only invoked for those auxiliary data pointers created by the user
3399 ** function invoked by the OP_Function opcode at instruction iOp of
3400 ** VM pVdbe, and only then if:
3402 ** * the associated function parameter is the 32nd or later (counting
3403 ** from left to right), or
3405 ** * the corresponding bit in argument mask is clear (where the first
3406 ** function parameter corresponds to bit 0 etc.).
3408 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
3409 while( *pp ){
3410 AuxData *pAux = *pp;
3411 if( (iOp<0)
3412 || (pAux->iAuxOp==iOp
3413 && pAux->iAuxArg>=0
3414 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg))))
3416 testcase( pAux->iAuxArg==31 );
3417 if( pAux->xDeleteAux ){
3418 pAux->xDeleteAux(pAux->pAux);
3420 *pp = pAux->pNextAux;
3421 sqlite3DbFree(db, pAux);
3422 }else{
3423 pp= &pAux->pNextAux;
3429 ** Free all memory associated with the Vdbe passed as the second argument,
3430 ** except for object itself, which is preserved.
3432 ** The difference between this function and sqlite3VdbeDelete() is that
3433 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
3434 ** the database connection and frees the object itself.
3436 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
3437 SubProgram *pSub, *pNext;
3438 assert( p->db==0 || p->db==db );
3439 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
3440 for(pSub=p->pProgram; pSub; pSub=pNext){
3441 pNext = pSub->pNext;
3442 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
3443 sqlite3DbFree(db, pSub);
3445 if( p->magic!=VDBE_MAGIC_INIT ){
3446 releaseMemArray(p->aVar, p->nVar);
3447 sqlite3DbFree(db, p->pVList);
3448 sqlite3DbFree(db, p->pFree);
3450 vdbeFreeOpArray(db, p->aOp, p->nOp);
3451 sqlite3DbFree(db, p->aColName);
3452 sqlite3DbFree(db, p->zSql);
3453 #ifdef SQLITE_ENABLE_NORMALIZE
3454 sqlite3DbFree(db, p->zNormSql);
3456 DblquoteStr *pThis, *pNext;
3457 for(pThis=p->pDblStr; pThis; pThis=pNext){
3458 pNext = pThis->pNextStr;
3459 sqlite3DbFree(db, pThis);
3462 #endif
3463 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3465 int i;
3466 for(i=0; i<p->nScan; i++){
3467 sqlite3DbFree(db, p->aScan[i].zName);
3469 sqlite3DbFree(db, p->aScan);
3471 #endif
3475 ** Delete an entire VDBE.
3477 void sqlite3VdbeDelete(Vdbe *p){
3478 sqlite3 *db;
3480 assert( p!=0 );
3481 db = p->db;
3482 assert( sqlite3_mutex_held(db->mutex) );
3483 sqlite3VdbeClearObject(db, p);
3484 if( p->pPrev ){
3485 p->pPrev->pNext = p->pNext;
3486 }else{
3487 assert( db->pVdbe==p );
3488 db->pVdbe = p->pNext;
3490 if( p->pNext ){
3491 p->pNext->pPrev = p->pPrev;
3493 p->magic = VDBE_MAGIC_DEAD;
3494 p->db = 0;
3495 sqlite3DbFreeNN(db, p);
3499 ** The cursor "p" has a pending seek operation that has not yet been
3500 ** carried out. Seek the cursor now. If an error occurs, return
3501 ** the appropriate error code.
3503 int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){
3504 int res, rc;
3505 #ifdef SQLITE_TEST
3506 extern int sqlite3_search_count;
3507 #endif
3508 assert( p->deferredMoveto );
3509 assert( p->isTable );
3510 assert( p->eCurType==CURTYPE_BTREE );
3511 rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res);
3512 if( rc ) return rc;
3513 if( res!=0 ) return SQLITE_CORRUPT_BKPT;
3514 #ifdef SQLITE_TEST
3515 sqlite3_search_count++;
3516 #endif
3517 p->deferredMoveto = 0;
3518 p->cacheStatus = CACHE_STALE;
3519 return SQLITE_OK;
3523 ** Something has moved cursor "p" out of place. Maybe the row it was
3524 ** pointed to was deleted out from under it. Or maybe the btree was
3525 ** rebalanced. Whatever the cause, try to restore "p" to the place it
3526 ** is supposed to be pointing. If the row was deleted out from under the
3527 ** cursor, set the cursor to point to a NULL row.
3529 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
3530 int isDifferentRow, rc;
3531 assert( p->eCurType==CURTYPE_BTREE );
3532 assert( p->uc.pCursor!=0 );
3533 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
3534 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
3535 p->cacheStatus = CACHE_STALE;
3536 if( isDifferentRow ) p->nullRow = 1;
3537 return rc;
3541 ** Check to ensure that the cursor is valid. Restore the cursor
3542 ** if need be. Return any I/O error from the restore operation.
3544 int sqlite3VdbeCursorRestore(VdbeCursor *p){
3545 assert( p->eCurType==CURTYPE_BTREE );
3546 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3547 return handleMovedCursor(p);
3549 return SQLITE_OK;
3553 ** Make sure the cursor p is ready to read or write the row to which it
3554 ** was last positioned. Return an error code if an OOM fault or I/O error
3555 ** prevents us from positioning the cursor to its correct position.
3557 ** If a MoveTo operation is pending on the given cursor, then do that
3558 ** MoveTo now. If no move is pending, check to see if the row has been
3559 ** deleted out from under the cursor and if it has, mark the row as
3560 ** a NULL row.
3562 ** If the cursor is already pointing to the correct row and that row has
3563 ** not been deleted out from under the cursor, then this routine is a no-op.
3565 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, u32 *piCol){
3566 VdbeCursor *p = *pp;
3567 assert( p->eCurType==CURTYPE_BTREE || p->eCurType==CURTYPE_PSEUDO );
3568 if( p->deferredMoveto ){
3569 u32 iMap;
3570 if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 && !p->nullRow ){
3571 *pp = p->pAltCursor;
3572 *piCol = iMap - 1;
3573 return SQLITE_OK;
3575 return sqlite3VdbeFinishMoveto(p);
3577 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3578 return handleMovedCursor(p);
3580 return SQLITE_OK;
3584 ** The following functions:
3586 ** sqlite3VdbeSerialType()
3587 ** sqlite3VdbeSerialTypeLen()
3588 ** sqlite3VdbeSerialLen()
3589 ** sqlite3VdbeSerialPut()
3590 ** sqlite3VdbeSerialGet()
3592 ** encapsulate the code that serializes values for storage in SQLite
3593 ** data and index records. Each serialized value consists of a
3594 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3595 ** integer, stored as a varint.
3597 ** In an SQLite index record, the serial type is stored directly before
3598 ** the blob of data that it corresponds to. In a table record, all serial
3599 ** types are stored at the start of the record, and the blobs of data at
3600 ** the end. Hence these functions allow the caller to handle the
3601 ** serial-type and data blob separately.
3603 ** The following table describes the various storage classes for data:
3605 ** serial type bytes of data type
3606 ** -------------- --------------- ---------------
3607 ** 0 0 NULL
3608 ** 1 1 signed integer
3609 ** 2 2 signed integer
3610 ** 3 3 signed integer
3611 ** 4 4 signed integer
3612 ** 5 6 signed integer
3613 ** 6 8 signed integer
3614 ** 7 8 IEEE float
3615 ** 8 0 Integer constant 0
3616 ** 9 0 Integer constant 1
3617 ** 10,11 reserved for expansion
3618 ** N>=12 and even (N-12)/2 BLOB
3619 ** N>=13 and odd (N-13)/2 text
3621 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
3622 ** of SQLite will not understand those serial types.
3625 #if 0 /* Inlined into the OP_MakeRecord opcode */
3627 ** Return the serial-type for the value stored in pMem.
3629 ** This routine might convert a large MEM_IntReal value into MEM_Real.
3631 ** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord
3632 ** opcode in the byte-code engine. But by moving this routine in-line, we
3633 ** can omit some redundant tests and make that opcode a lot faster. So
3634 ** this routine is now only used by the STAT3 logic and STAT3 support has
3635 ** ended. The code is kept here for historical reference only.
3637 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
3638 int flags = pMem->flags;
3639 u32 n;
3641 assert( pLen!=0 );
3642 if( flags&MEM_Null ){
3643 *pLen = 0;
3644 return 0;
3646 if( flags&(MEM_Int|MEM_IntReal) ){
3647 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3648 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3649 i64 i = pMem->u.i;
3650 u64 u;
3651 testcase( flags & MEM_Int );
3652 testcase( flags & MEM_IntReal );
3653 if( i<0 ){
3654 u = ~i;
3655 }else{
3656 u = i;
3658 if( u<=127 ){
3659 if( (i&1)==i && file_format>=4 ){
3660 *pLen = 0;
3661 return 8+(u32)u;
3662 }else{
3663 *pLen = 1;
3664 return 1;
3667 if( u<=32767 ){ *pLen = 2; return 2; }
3668 if( u<=8388607 ){ *pLen = 3; return 3; }
3669 if( u<=2147483647 ){ *pLen = 4; return 4; }
3670 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3671 *pLen = 8;
3672 if( flags&MEM_IntReal ){
3673 /* If the value is IntReal and is going to take up 8 bytes to store
3674 ** as an integer, then we might as well make it an 8-byte floating
3675 ** point value */
3676 pMem->u.r = (double)pMem->u.i;
3677 pMem->flags &= ~MEM_IntReal;
3678 pMem->flags |= MEM_Real;
3679 return 7;
3681 return 6;
3683 if( flags&MEM_Real ){
3684 *pLen = 8;
3685 return 7;
3687 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
3688 assert( pMem->n>=0 );
3689 n = (u32)pMem->n;
3690 if( flags & MEM_Zero ){
3691 n += pMem->u.nZero;
3693 *pLen = n;
3694 return ((n*2) + 12 + ((flags&MEM_Str)!=0));
3696 #endif /* inlined into OP_MakeRecord */
3699 ** The sizes for serial types less than 128
3701 static const u8 sqlite3SmallTypeSizes[] = {
3702 /* 0 1 2 3 4 5 6 7 8 9 */
3703 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0,
3704 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
3705 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
3706 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
3707 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3708 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3709 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3710 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3711 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3712 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3713 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3714 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3715 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57
3719 ** Return the length of the data corresponding to the supplied serial-type.
3721 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
3722 if( serial_type>=128 ){
3723 return (serial_type-12)/2;
3724 }else{
3725 assert( serial_type<12
3726 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
3727 return sqlite3SmallTypeSizes[serial_type];
3730 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3731 assert( serial_type<128 );
3732 return sqlite3SmallTypeSizes[serial_type];
3736 ** If we are on an architecture with mixed-endian floating
3737 ** points (ex: ARM7) then swap the lower 4 bytes with the
3738 ** upper 4 bytes. Return the result.
3740 ** For most architectures, this is a no-op.
3742 ** (later): It is reported to me that the mixed-endian problem
3743 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
3744 ** that early versions of GCC stored the two words of a 64-bit
3745 ** float in the wrong order. And that error has been propagated
3746 ** ever since. The blame is not necessarily with GCC, though.
3747 ** GCC might have just copying the problem from a prior compiler.
3748 ** I am also told that newer versions of GCC that follow a different
3749 ** ABI get the byte order right.
3751 ** Developers using SQLite on an ARM7 should compile and run their
3752 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
3753 ** enabled, some asserts below will ensure that the byte order of
3754 ** floating point values is correct.
3756 ** (2007-08-30) Frank van Vugt has studied this problem closely
3757 ** and has send his findings to the SQLite developers. Frank
3758 ** writes that some Linux kernels offer floating point hardware
3759 ** emulation that uses only 32-bit mantissas instead of a full
3760 ** 48-bits as required by the IEEE standard. (This is the
3761 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point
3762 ** byte swapping becomes very complicated. To avoid problems,
3763 ** the necessary byte swapping is carried out using a 64-bit integer
3764 ** rather than a 64-bit float. Frank assures us that the code here
3765 ** works for him. We, the developers, have no way to independently
3766 ** verify this, but Frank seems to know what he is talking about
3767 ** so we trust him.
3769 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
3770 static u64 floatSwap(u64 in){
3771 union {
3772 u64 r;
3773 u32 i[2];
3774 } u;
3775 u32 t;
3777 u.r = in;
3778 t = u.i[0];
3779 u.i[0] = u.i[1];
3780 u.i[1] = t;
3781 return u.r;
3783 # define swapMixedEndianFloat(X) X = floatSwap(X)
3784 #else
3785 # define swapMixedEndianFloat(X)
3786 #endif
3789 ** Write the serialized data blob for the value stored in pMem into
3790 ** buf. It is assumed that the caller has allocated sufficient space.
3791 ** Return the number of bytes written.
3793 ** nBuf is the amount of space left in buf[]. The caller is responsible
3794 ** for allocating enough space to buf[] to hold the entire field, exclusive
3795 ** of the pMem->u.nZero bytes for a MEM_Zero value.
3797 ** Return the number of bytes actually written into buf[]. The number
3798 ** of bytes in the zero-filled tail is included in the return value only
3799 ** if those bytes were zeroed in buf[].
3801 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
3802 u32 len;
3804 /* Integer and Real */
3805 if( serial_type<=7 && serial_type>0 ){
3806 u64 v;
3807 u32 i;
3808 if( serial_type==7 ){
3809 assert( sizeof(v)==sizeof(pMem->u.r) );
3810 memcpy(&v, &pMem->u.r, sizeof(v));
3811 swapMixedEndianFloat(v);
3812 }else{
3813 v = pMem->u.i;
3815 len = i = sqlite3SmallTypeSizes[serial_type];
3816 assert( i>0 );
3818 buf[--i] = (u8)(v&0xFF);
3819 v >>= 8;
3820 }while( i );
3821 return len;
3824 /* String or blob */
3825 if( serial_type>=12 ){
3826 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
3827 == (int)sqlite3VdbeSerialTypeLen(serial_type) );
3828 len = pMem->n;
3829 if( len>0 ) memcpy(buf, pMem->z, len);
3830 return len;
3833 /* NULL or constants 0 or 1 */
3834 return 0;
3837 /* Input "x" is a sequence of unsigned characters that represent a
3838 ** big-endian integer. Return the equivalent native integer
3840 #define ONE_BYTE_INT(x) ((i8)(x)[0])
3841 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
3842 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3843 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3844 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3847 ** Deserialize the data blob pointed to by buf as serial type serial_type
3848 ** and store the result in pMem. Return the number of bytes read.
3850 ** This function is implemented as two separate routines for performance.
3851 ** The few cases that require local variables are broken out into a separate
3852 ** routine so that in most cases the overhead of moving the stack pointer
3853 ** is avoided.
3855 static u32 serialGet(
3856 const unsigned char *buf, /* Buffer to deserialize from */
3857 u32 serial_type, /* Serial type to deserialize */
3858 Mem *pMem /* Memory cell to write value into */
3860 u64 x = FOUR_BYTE_UINT(buf);
3861 u32 y = FOUR_BYTE_UINT(buf+4);
3862 x = (x<<32) + y;
3863 if( serial_type==6 ){
3864 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3865 ** twos-complement integer. */
3866 pMem->u.i = *(i64*)&x;
3867 pMem->flags = MEM_Int;
3868 testcase( pMem->u.i<0 );
3869 }else{
3870 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3871 ** floating point number. */
3872 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3873 /* Verify that integers and floating point values use the same
3874 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3875 ** defined that 64-bit floating point values really are mixed
3876 ** endian.
3878 static const u64 t1 = ((u64)0x3ff00000)<<32;
3879 static const double r1 = 1.0;
3880 u64 t2 = t1;
3881 swapMixedEndianFloat(t2);
3882 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3883 #endif
3884 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
3885 swapMixedEndianFloat(x);
3886 memcpy(&pMem->u.r, &x, sizeof(x));
3887 pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real;
3889 return 8;
3891 u32 sqlite3VdbeSerialGet(
3892 const unsigned char *buf, /* Buffer to deserialize from */
3893 u32 serial_type, /* Serial type to deserialize */
3894 Mem *pMem /* Memory cell to write value into */
3896 switch( serial_type ){
3897 case 10: { /* Internal use only: NULL with virtual table
3898 ** UPDATE no-change flag set */
3899 pMem->flags = MEM_Null|MEM_Zero;
3900 pMem->n = 0;
3901 pMem->u.nZero = 0;
3902 break;
3904 case 11: /* Reserved for future use */
3905 case 0: { /* Null */
3906 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
3907 pMem->flags = MEM_Null;
3908 break;
3910 case 1: {
3911 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3912 ** integer. */
3913 pMem->u.i = ONE_BYTE_INT(buf);
3914 pMem->flags = MEM_Int;
3915 testcase( pMem->u.i<0 );
3916 return 1;
3918 case 2: { /* 2-byte signed integer */
3919 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3920 ** twos-complement integer. */
3921 pMem->u.i = TWO_BYTE_INT(buf);
3922 pMem->flags = MEM_Int;
3923 testcase( pMem->u.i<0 );
3924 return 2;
3926 case 3: { /* 3-byte signed integer */
3927 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3928 ** twos-complement integer. */
3929 pMem->u.i = THREE_BYTE_INT(buf);
3930 pMem->flags = MEM_Int;
3931 testcase( pMem->u.i<0 );
3932 return 3;
3934 case 4: { /* 4-byte signed integer */
3935 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3936 ** twos-complement integer. */
3937 pMem->u.i = FOUR_BYTE_INT(buf);
3938 #ifdef __HP_cc
3939 /* Work around a sign-extension bug in the HP compiler for HP/UX */
3940 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
3941 #endif
3942 pMem->flags = MEM_Int;
3943 testcase( pMem->u.i<0 );
3944 return 4;
3946 case 5: { /* 6-byte signed integer */
3947 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3948 ** twos-complement integer. */
3949 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
3950 pMem->flags = MEM_Int;
3951 testcase( pMem->u.i<0 );
3952 return 6;
3954 case 6: /* 8-byte signed integer */
3955 case 7: { /* IEEE floating point */
3956 /* These use local variables, so do them in a separate routine
3957 ** to avoid having to move the frame pointer in the common case */
3958 return serialGet(buf,serial_type,pMem);
3960 case 8: /* Integer 0 */
3961 case 9: { /* Integer 1 */
3962 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
3963 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
3964 pMem->u.i = serial_type-8;
3965 pMem->flags = MEM_Int;
3966 return 0;
3968 default: {
3969 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
3970 ** length.
3971 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
3972 ** (N-13)/2 bytes in length. */
3973 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
3974 pMem->z = (char *)buf;
3975 pMem->n = (serial_type-12)/2;
3976 pMem->flags = aFlag[serial_type&1];
3977 return pMem->n;
3980 return 0;
3983 ** This routine is used to allocate sufficient space for an UnpackedRecord
3984 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3985 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
3987 ** The space is either allocated using sqlite3DbMallocRaw() or from within
3988 ** the unaligned buffer passed via the second and third arguments (presumably
3989 ** stack space). If the former, then *ppFree is set to a pointer that should
3990 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3991 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3992 ** before returning.
3994 ** If an OOM error occurs, NULL is returned.
3996 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
3997 KeyInfo *pKeyInfo /* Description of the record */
3999 UnpackedRecord *p; /* Unpacked record to return */
4000 int nByte; /* Number of bytes required for *p */
4001 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1);
4002 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
4003 if( !p ) return 0;
4004 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
4005 assert( pKeyInfo->aSortFlags!=0 );
4006 p->pKeyInfo = pKeyInfo;
4007 p->nField = pKeyInfo->nKeyField + 1;
4008 return p;
4012 ** Given the nKey-byte encoding of a record in pKey[], populate the
4013 ** UnpackedRecord structure indicated by the fourth argument with the
4014 ** contents of the decoded record.
4016 void sqlite3VdbeRecordUnpack(
4017 KeyInfo *pKeyInfo, /* Information about the record format */
4018 int nKey, /* Size of the binary record */
4019 const void *pKey, /* The binary record */
4020 UnpackedRecord *p /* Populate this structure before returning. */
4022 const unsigned char *aKey = (const unsigned char *)pKey;
4023 u32 d;
4024 u32 idx; /* Offset in aKey[] to read from */
4025 u16 u; /* Unsigned loop counter */
4026 u32 szHdr;
4027 Mem *pMem = p->aMem;
4029 p->default_rc = 0;
4030 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
4031 idx = getVarint32(aKey, szHdr);
4032 d = szHdr;
4033 u = 0;
4034 while( idx<szHdr && d<=(u32)nKey ){
4035 u32 serial_type;
4037 idx += getVarint32(&aKey[idx], serial_type);
4038 pMem->enc = pKeyInfo->enc;
4039 pMem->db = pKeyInfo->db;
4040 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
4041 pMem->szMalloc = 0;
4042 pMem->z = 0;
4043 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
4044 pMem++;
4045 if( (++u)>=p->nField ) break;
4047 if( d>(u32)nKey && u ){
4048 assert( CORRUPT_DB );
4049 /* In a corrupt record entry, the last pMem might have been set up using
4050 ** uninitialized memory. Overwrite its value with NULL, to prevent
4051 ** warnings from MSAN. */
4052 sqlite3VdbeMemSetNull(pMem-1);
4054 assert( u<=pKeyInfo->nKeyField + 1 );
4055 p->nField = u;
4058 #ifdef SQLITE_DEBUG
4060 ** This function compares two index or table record keys in the same way
4061 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
4062 ** this function deserializes and compares values using the
4063 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
4064 ** in assert() statements to ensure that the optimized code in
4065 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
4067 ** Return true if the result of comparison is equivalent to desiredResult.
4068 ** Return false if there is a disagreement.
4070 static int vdbeRecordCompareDebug(
4071 int nKey1, const void *pKey1, /* Left key */
4072 const UnpackedRecord *pPKey2, /* Right key */
4073 int desiredResult /* Correct answer */
4075 u32 d1; /* Offset into aKey[] of next data element */
4076 u32 idx1; /* Offset into aKey[] of next header element */
4077 u32 szHdr1; /* Number of bytes in header */
4078 int i = 0;
4079 int rc = 0;
4080 const unsigned char *aKey1 = (const unsigned char *)pKey1;
4081 KeyInfo *pKeyInfo;
4082 Mem mem1;
4084 pKeyInfo = pPKey2->pKeyInfo;
4085 if( pKeyInfo->db==0 ) return 1;
4086 mem1.enc = pKeyInfo->enc;
4087 mem1.db = pKeyInfo->db;
4088 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
4089 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4091 /* Compilers may complain that mem1.u.i is potentially uninitialized.
4092 ** We could initialize it, as shown here, to silence those complaints.
4093 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
4094 ** the unnecessary initialization has a measurable negative performance
4095 ** impact, since this routine is a very high runner. And so, we choose
4096 ** to ignore the compiler warnings and leave this variable uninitialized.
4098 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
4100 idx1 = getVarint32(aKey1, szHdr1);
4101 if( szHdr1>98307 ) return SQLITE_CORRUPT;
4102 d1 = szHdr1;
4103 assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB );
4104 assert( pKeyInfo->aSortFlags!=0 );
4105 assert( pKeyInfo->nKeyField>0 );
4106 assert( idx1<=szHdr1 || CORRUPT_DB );
4108 u32 serial_type1;
4110 /* Read the serial types for the next element in each key. */
4111 idx1 += getVarint32( aKey1+idx1, serial_type1 );
4113 /* Verify that there is enough key space remaining to avoid
4114 ** a buffer overread. The "d1+serial_type1+2" subexpression will
4115 ** always be greater than or equal to the amount of required key space.
4116 ** Use that approximation to avoid the more expensive call to
4117 ** sqlite3VdbeSerialTypeLen() in the common case.
4119 if( d1+(u64)serial_type1+2>(u64)nKey1
4120 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1
4122 break;
4125 /* Extract the values to be compared.
4127 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
4129 /* Do the comparison
4131 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
4132 pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0);
4133 if( rc!=0 ){
4134 assert( mem1.szMalloc==0 ); /* See comment below */
4135 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
4136 && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null))
4138 rc = -rc;
4140 if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){
4141 rc = -rc; /* Invert the result for DESC sort order. */
4143 goto debugCompareEnd;
4145 i++;
4146 }while( idx1<szHdr1 && i<pPKey2->nField );
4148 /* No memory allocation is ever used on mem1. Prove this using
4149 ** the following assert(). If the assert() fails, it indicates a
4150 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
4152 assert( mem1.szMalloc==0 );
4154 /* rc==0 here means that one of the keys ran out of fields and
4155 ** all the fields up to that point were equal. Return the default_rc
4156 ** value. */
4157 rc = pPKey2->default_rc;
4159 debugCompareEnd:
4160 if( desiredResult==0 && rc==0 ) return 1;
4161 if( desiredResult<0 && rc<0 ) return 1;
4162 if( desiredResult>0 && rc>0 ) return 1;
4163 if( CORRUPT_DB ) return 1;
4164 if( pKeyInfo->db->mallocFailed ) return 1;
4165 return 0;
4167 #endif
4169 #ifdef SQLITE_DEBUG
4171 ** Count the number of fields (a.k.a. columns) in the record given by
4172 ** pKey,nKey. The verify that this count is less than or equal to the
4173 ** limit given by pKeyInfo->nAllField.
4175 ** If this constraint is not satisfied, it means that the high-speed
4176 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
4177 ** not work correctly. If this assert() ever fires, it probably means
4178 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
4179 ** incorrectly.
4181 static void vdbeAssertFieldCountWithinLimits(
4182 int nKey, const void *pKey, /* The record to verify */
4183 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */
4185 int nField = 0;
4186 u32 szHdr;
4187 u32 idx;
4188 u32 notUsed;
4189 const unsigned char *aKey = (const unsigned char*)pKey;
4191 if( CORRUPT_DB ) return;
4192 idx = getVarint32(aKey, szHdr);
4193 assert( nKey>=0 );
4194 assert( szHdr<=(u32)nKey );
4195 while( idx<szHdr ){
4196 idx += getVarint32(aKey+idx, notUsed);
4197 nField++;
4199 assert( nField <= pKeyInfo->nAllField );
4201 #else
4202 # define vdbeAssertFieldCountWithinLimits(A,B,C)
4203 #endif
4206 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
4207 ** using the collation sequence pColl. As usual, return a negative , zero
4208 ** or positive value if *pMem1 is less than, equal to or greater than
4209 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
4211 static int vdbeCompareMemString(
4212 const Mem *pMem1,
4213 const Mem *pMem2,
4214 const CollSeq *pColl,
4215 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */
4217 if( pMem1->enc==pColl->enc ){
4218 /* The strings are already in the correct encoding. Call the
4219 ** comparison function directly */
4220 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
4221 }else{
4222 int rc;
4223 const void *v1, *v2;
4224 Mem c1;
4225 Mem c2;
4226 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
4227 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
4228 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
4229 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
4230 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
4231 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
4232 if( (v1==0 || v2==0) ){
4233 if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
4234 rc = 0;
4235 }else{
4236 rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2);
4238 sqlite3VdbeMemRelease(&c1);
4239 sqlite3VdbeMemRelease(&c2);
4240 return rc;
4245 ** The input pBlob is guaranteed to be a Blob that is not marked
4246 ** with MEM_Zero. Return true if it could be a zero-blob.
4248 static int isAllZero(const char *z, int n){
4249 int i;
4250 for(i=0; i<n; i++){
4251 if( z[i] ) return 0;
4253 return 1;
4257 ** Compare two blobs. Return negative, zero, or positive if the first
4258 ** is less than, equal to, or greater than the second, respectively.
4259 ** If one blob is a prefix of the other, then the shorter is the lessor.
4261 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
4262 int c;
4263 int n1 = pB1->n;
4264 int n2 = pB2->n;
4266 /* It is possible to have a Blob value that has some non-zero content
4267 ** followed by zero content. But that only comes up for Blobs formed
4268 ** by the OP_MakeRecord opcode, and such Blobs never get passed into
4269 ** sqlite3MemCompare(). */
4270 assert( (pB1->flags & MEM_Zero)==0 || n1==0 );
4271 assert( (pB2->flags & MEM_Zero)==0 || n2==0 );
4273 if( (pB1->flags|pB2->flags) & MEM_Zero ){
4274 if( pB1->flags & pB2->flags & MEM_Zero ){
4275 return pB1->u.nZero - pB2->u.nZero;
4276 }else if( pB1->flags & MEM_Zero ){
4277 if( !isAllZero(pB2->z, pB2->n) ) return -1;
4278 return pB1->u.nZero - n2;
4279 }else{
4280 if( !isAllZero(pB1->z, pB1->n) ) return +1;
4281 return n1 - pB2->u.nZero;
4284 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1);
4285 if( c ) return c;
4286 return n1 - n2;
4290 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
4291 ** number. Return negative, zero, or positive if the first (i64) is less than,
4292 ** equal to, or greater than the second (double).
4294 static int sqlite3IntFloatCompare(i64 i, double r){
4295 if( sizeof(LONGDOUBLE_TYPE)>8 ){
4296 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
4297 if( x<r ) return -1;
4298 if( x>r ) return +1;
4299 return 0;
4300 }else{
4301 i64 y;
4302 double s;
4303 if( r<-9223372036854775808.0 ) return +1;
4304 if( r>=9223372036854775808.0 ) return -1;
4305 y = (i64)r;
4306 if( i<y ) return -1;
4307 if( i>y ) return +1;
4308 s = (double)i;
4309 if( s<r ) return -1;
4310 if( s>r ) return +1;
4311 return 0;
4316 ** Compare the values contained by the two memory cells, returning
4317 ** negative, zero or positive if pMem1 is less than, equal to, or greater
4318 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
4319 ** and reals) sorted numerically, followed by text ordered by the collating
4320 ** sequence pColl and finally blob's ordered by memcmp().
4322 ** Two NULL values are considered equal by this function.
4324 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
4325 int f1, f2;
4326 int combined_flags;
4328 f1 = pMem1->flags;
4329 f2 = pMem2->flags;
4330 combined_flags = f1|f2;
4331 assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) );
4333 /* If one value is NULL, it is less than the other. If both values
4334 ** are NULL, return 0.
4336 if( combined_flags&MEM_Null ){
4337 return (f2&MEM_Null) - (f1&MEM_Null);
4340 /* At least one of the two values is a number
4342 if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){
4343 testcase( combined_flags & MEM_Int );
4344 testcase( combined_flags & MEM_Real );
4345 testcase( combined_flags & MEM_IntReal );
4346 if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){
4347 testcase( f1 & f2 & MEM_Int );
4348 testcase( f1 & f2 & MEM_IntReal );
4349 if( pMem1->u.i < pMem2->u.i ) return -1;
4350 if( pMem1->u.i > pMem2->u.i ) return +1;
4351 return 0;
4353 if( (f1 & f2 & MEM_Real)!=0 ){
4354 if( pMem1->u.r < pMem2->u.r ) return -1;
4355 if( pMem1->u.r > pMem2->u.r ) return +1;
4356 return 0;
4358 if( (f1&(MEM_Int|MEM_IntReal))!=0 ){
4359 testcase( f1 & MEM_Int );
4360 testcase( f1 & MEM_IntReal );
4361 if( (f2&MEM_Real)!=0 ){
4362 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
4363 }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4364 if( pMem1->u.i < pMem2->u.i ) return -1;
4365 if( pMem1->u.i > pMem2->u.i ) return +1;
4366 return 0;
4367 }else{
4368 return -1;
4371 if( (f1&MEM_Real)!=0 ){
4372 if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4373 testcase( f2 & MEM_Int );
4374 testcase( f2 & MEM_IntReal );
4375 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
4376 }else{
4377 return -1;
4380 return +1;
4383 /* If one value is a string and the other is a blob, the string is less.
4384 ** If both are strings, compare using the collating functions.
4386 if( combined_flags&MEM_Str ){
4387 if( (f1 & MEM_Str)==0 ){
4388 return 1;
4390 if( (f2 & MEM_Str)==0 ){
4391 return -1;
4394 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
4395 assert( pMem1->enc==SQLITE_UTF8 ||
4396 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
4398 /* The collation sequence must be defined at this point, even if
4399 ** the user deletes the collation sequence after the vdbe program is
4400 ** compiled (this was not always the case).
4402 assert( !pColl || pColl->xCmp );
4404 if( pColl ){
4405 return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
4407 /* If a NULL pointer was passed as the collate function, fall through
4408 ** to the blob case and use memcmp(). */
4411 /* Both values must be blobs. Compare using memcmp(). */
4412 return sqlite3BlobCompare(pMem1, pMem2);
4417 ** The first argument passed to this function is a serial-type that
4418 ** corresponds to an integer - all values between 1 and 9 inclusive
4419 ** except 7. The second points to a buffer containing an integer value
4420 ** serialized according to serial_type. This function deserializes
4421 ** and returns the value.
4423 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
4424 u32 y;
4425 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
4426 switch( serial_type ){
4427 case 0:
4428 case 1:
4429 testcase( aKey[0]&0x80 );
4430 return ONE_BYTE_INT(aKey);
4431 case 2:
4432 testcase( aKey[0]&0x80 );
4433 return TWO_BYTE_INT(aKey);
4434 case 3:
4435 testcase( aKey[0]&0x80 );
4436 return THREE_BYTE_INT(aKey);
4437 case 4: {
4438 testcase( aKey[0]&0x80 );
4439 y = FOUR_BYTE_UINT(aKey);
4440 return (i64)*(int*)&y;
4442 case 5: {
4443 testcase( aKey[0]&0x80 );
4444 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4446 case 6: {
4447 u64 x = FOUR_BYTE_UINT(aKey);
4448 testcase( aKey[0]&0x80 );
4449 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4450 return (i64)*(i64*)&x;
4454 return (serial_type - 8);
4458 ** This function compares the two table rows or index records
4459 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
4460 ** or positive integer if key1 is less than, equal to or
4461 ** greater than key2. The {nKey1, pKey1} key must be a blob
4462 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
4463 ** key must be a parsed key such as obtained from
4464 ** sqlite3VdbeParseRecord.
4466 ** If argument bSkip is non-zero, it is assumed that the caller has already
4467 ** determined that the first fields of the keys are equal.
4469 ** Key1 and Key2 do not have to contain the same number of fields. If all
4470 ** fields that appear in both keys are equal, then pPKey2->default_rc is
4471 ** returned.
4473 ** If database corruption is discovered, set pPKey2->errCode to
4474 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
4475 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
4476 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
4478 int sqlite3VdbeRecordCompareWithSkip(
4479 int nKey1, const void *pKey1, /* Left key */
4480 UnpackedRecord *pPKey2, /* Right key */
4481 int bSkip /* If true, skip the first field */
4483 u32 d1; /* Offset into aKey[] of next data element */
4484 int i; /* Index of next field to compare */
4485 u32 szHdr1; /* Size of record header in bytes */
4486 u32 idx1; /* Offset of first type in header */
4487 int rc = 0; /* Return value */
4488 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */
4489 KeyInfo *pKeyInfo;
4490 const unsigned char *aKey1 = (const unsigned char *)pKey1;
4491 Mem mem1;
4493 /* If bSkip is true, then the caller has already determined that the first
4494 ** two elements in the keys are equal. Fix the various stack variables so
4495 ** that this routine begins comparing at the second field. */
4496 if( bSkip ){
4497 u32 s1;
4498 idx1 = 1 + getVarint32(&aKey1[1], s1);
4499 szHdr1 = aKey1[0];
4500 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
4501 i = 1;
4502 pRhs++;
4503 }else{
4504 idx1 = getVarint32(aKey1, szHdr1);
4505 d1 = szHdr1;
4506 i = 0;
4508 if( d1>(unsigned)nKey1 ){
4509 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4510 return 0; /* Corruption */
4513 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4514 assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField
4515 || CORRUPT_DB );
4516 assert( pPKey2->pKeyInfo->aSortFlags!=0 );
4517 assert( pPKey2->pKeyInfo->nKeyField>0 );
4518 assert( idx1<=szHdr1 || CORRUPT_DB );
4520 u32 serial_type;
4522 /* RHS is an integer */
4523 if( pRhs->flags & (MEM_Int|MEM_IntReal) ){
4524 testcase( pRhs->flags & MEM_Int );
4525 testcase( pRhs->flags & MEM_IntReal );
4526 serial_type = aKey1[idx1];
4527 testcase( serial_type==12 );
4528 if( serial_type>=10 ){
4529 rc = +1;
4530 }else if( serial_type==0 ){
4531 rc = -1;
4532 }else if( serial_type==7 ){
4533 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4534 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
4535 }else{
4536 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
4537 i64 rhs = pRhs->u.i;
4538 if( lhs<rhs ){
4539 rc = -1;
4540 }else if( lhs>rhs ){
4541 rc = +1;
4546 /* RHS is real */
4547 else if( pRhs->flags & MEM_Real ){
4548 serial_type = aKey1[idx1];
4549 if( serial_type>=10 ){
4550 /* Serial types 12 or greater are strings and blobs (greater than
4551 ** numbers). Types 10 and 11 are currently "reserved for future
4552 ** use", so it doesn't really matter what the results of comparing
4553 ** them to numberic values are. */
4554 rc = +1;
4555 }else if( serial_type==0 ){
4556 rc = -1;
4557 }else{
4558 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4559 if( serial_type==7 ){
4560 if( mem1.u.r<pRhs->u.r ){
4561 rc = -1;
4562 }else if( mem1.u.r>pRhs->u.r ){
4563 rc = +1;
4565 }else{
4566 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
4571 /* RHS is a string */
4572 else if( pRhs->flags & MEM_Str ){
4573 getVarint32NR(&aKey1[idx1], serial_type);
4574 testcase( serial_type==12 );
4575 if( serial_type<12 ){
4576 rc = -1;
4577 }else if( !(serial_type & 0x01) ){
4578 rc = +1;
4579 }else{
4580 mem1.n = (serial_type - 12) / 2;
4581 testcase( (d1+mem1.n)==(unsigned)nKey1 );
4582 testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
4583 if( (d1+mem1.n) > (unsigned)nKey1
4584 || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i
4586 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4587 return 0; /* Corruption */
4588 }else if( pKeyInfo->aColl[i] ){
4589 mem1.enc = pKeyInfo->enc;
4590 mem1.db = pKeyInfo->db;
4591 mem1.flags = MEM_Str;
4592 mem1.z = (char*)&aKey1[d1];
4593 rc = vdbeCompareMemString(
4594 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
4596 }else{
4597 int nCmp = MIN(mem1.n, pRhs->n);
4598 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4599 if( rc==0 ) rc = mem1.n - pRhs->n;
4604 /* RHS is a blob */
4605 else if( pRhs->flags & MEM_Blob ){
4606 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 );
4607 getVarint32NR(&aKey1[idx1], serial_type);
4608 testcase( serial_type==12 );
4609 if( serial_type<12 || (serial_type & 0x01) ){
4610 rc = -1;
4611 }else{
4612 int nStr = (serial_type - 12) / 2;
4613 testcase( (d1+nStr)==(unsigned)nKey1 );
4614 testcase( (d1+nStr+1)==(unsigned)nKey1 );
4615 if( (d1+nStr) > (unsigned)nKey1 ){
4616 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4617 return 0; /* Corruption */
4618 }else if( pRhs->flags & MEM_Zero ){
4619 if( !isAllZero((const char*)&aKey1[d1],nStr) ){
4620 rc = 1;
4621 }else{
4622 rc = nStr - pRhs->u.nZero;
4624 }else{
4625 int nCmp = MIN(nStr, pRhs->n);
4626 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4627 if( rc==0 ) rc = nStr - pRhs->n;
4632 /* RHS is null */
4633 else{
4634 serial_type = aKey1[idx1];
4635 rc = (serial_type!=0);
4638 if( rc!=0 ){
4639 int sortFlags = pPKey2->pKeyInfo->aSortFlags[i];
4640 if( sortFlags ){
4641 if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0
4642 || ((sortFlags & KEYINFO_ORDER_DESC)
4643 !=(serial_type==0 || (pRhs->flags&MEM_Null)))
4645 rc = -rc;
4648 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
4649 assert( mem1.szMalloc==0 ); /* See comment below */
4650 return rc;
4653 i++;
4654 if( i==pPKey2->nField ) break;
4655 pRhs++;
4656 d1 += sqlite3VdbeSerialTypeLen(serial_type);
4657 idx1 += sqlite3VarintLen(serial_type);
4658 }while( idx1<(unsigned)szHdr1 && d1<=(unsigned)nKey1 );
4660 /* No memory allocation is ever used on mem1. Prove this using
4661 ** the following assert(). If the assert() fails, it indicates a
4662 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
4663 assert( mem1.szMalloc==0 );
4665 /* rc==0 here means that one or both of the keys ran out of fields and
4666 ** all the fields up to that point were equal. Return the default_rc
4667 ** value. */
4668 assert( CORRUPT_DB
4669 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
4670 || pPKey2->pKeyInfo->db->mallocFailed
4672 pPKey2->eqSeen = 1;
4673 return pPKey2->default_rc;
4675 int sqlite3VdbeRecordCompare(
4676 int nKey1, const void *pKey1, /* Left key */
4677 UnpackedRecord *pPKey2 /* Right key */
4679 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
4684 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4685 ** that (a) the first field of pPKey2 is an integer, and (b) the
4686 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4687 ** byte (i.e. is less than 128).
4689 ** To avoid concerns about buffer overreads, this routine is only used
4690 ** on schemas where the maximum valid header size is 63 bytes or less.
4692 static int vdbeRecordCompareInt(
4693 int nKey1, const void *pKey1, /* Left key */
4694 UnpackedRecord *pPKey2 /* Right key */
4696 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
4697 int serial_type = ((const u8*)pKey1)[1];
4698 int res;
4699 u32 y;
4700 u64 x;
4701 i64 v;
4702 i64 lhs;
4704 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4705 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
4706 switch( serial_type ){
4707 case 1: { /* 1-byte signed integer */
4708 lhs = ONE_BYTE_INT(aKey);
4709 testcase( lhs<0 );
4710 break;
4712 case 2: { /* 2-byte signed integer */
4713 lhs = TWO_BYTE_INT(aKey);
4714 testcase( lhs<0 );
4715 break;
4717 case 3: { /* 3-byte signed integer */
4718 lhs = THREE_BYTE_INT(aKey);
4719 testcase( lhs<0 );
4720 break;
4722 case 4: { /* 4-byte signed integer */
4723 y = FOUR_BYTE_UINT(aKey);
4724 lhs = (i64)*(int*)&y;
4725 testcase( lhs<0 );
4726 break;
4728 case 5: { /* 6-byte signed integer */
4729 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4730 testcase( lhs<0 );
4731 break;
4733 case 6: { /* 8-byte signed integer */
4734 x = FOUR_BYTE_UINT(aKey);
4735 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4736 lhs = *(i64*)&x;
4737 testcase( lhs<0 );
4738 break;
4740 case 8:
4741 lhs = 0;
4742 break;
4743 case 9:
4744 lhs = 1;
4745 break;
4747 /* This case could be removed without changing the results of running
4748 ** this code. Including it causes gcc to generate a faster switch
4749 ** statement (since the range of switch targets now starts at zero and
4750 ** is contiguous) but does not cause any duplicate code to be generated
4751 ** (as gcc is clever enough to combine the two like cases). Other
4752 ** compilers might be similar. */
4753 case 0: case 7:
4754 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4756 default:
4757 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4760 v = pPKey2->aMem[0].u.i;
4761 if( v>lhs ){
4762 res = pPKey2->r1;
4763 }else if( v<lhs ){
4764 res = pPKey2->r2;
4765 }else if( pPKey2->nField>1 ){
4766 /* The first fields of the two keys are equal. Compare the trailing
4767 ** fields. */
4768 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4769 }else{
4770 /* The first fields of the two keys are equal and there are no trailing
4771 ** fields. Return pPKey2->default_rc in this case. */
4772 res = pPKey2->default_rc;
4773 pPKey2->eqSeen = 1;
4776 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
4777 return res;
4781 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4782 ** that (a) the first field of pPKey2 is a string, that (b) the first field
4783 ** uses the collation sequence BINARY and (c) that the size-of-header varint
4784 ** at the start of (pKey1/nKey1) fits in a single byte.
4786 static int vdbeRecordCompareString(
4787 int nKey1, const void *pKey1, /* Left key */
4788 UnpackedRecord *pPKey2 /* Right key */
4790 const u8 *aKey1 = (const u8*)pKey1;
4791 int serial_type;
4792 int res;
4794 assert( pPKey2->aMem[0].flags & MEM_Str );
4795 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4796 serial_type = (u8)(aKey1[1]);
4797 if( serial_type >= 0x80 ){
4798 sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type);
4800 if( serial_type<12 ){
4801 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */
4802 }else if( !(serial_type & 0x01) ){
4803 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */
4804 }else{
4805 int nCmp;
4806 int nStr;
4807 int szHdr = aKey1[0];
4809 nStr = (serial_type-12) / 2;
4810 if( (szHdr + nStr) > nKey1 ){
4811 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4812 return 0; /* Corruption */
4814 nCmp = MIN( pPKey2->aMem[0].n, nStr );
4815 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
4817 if( res>0 ){
4818 res = pPKey2->r2;
4819 }else if( res<0 ){
4820 res = pPKey2->r1;
4821 }else{
4822 res = nStr - pPKey2->aMem[0].n;
4823 if( res==0 ){
4824 if( pPKey2->nField>1 ){
4825 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4826 }else{
4827 res = pPKey2->default_rc;
4828 pPKey2->eqSeen = 1;
4830 }else if( res>0 ){
4831 res = pPKey2->r2;
4832 }else{
4833 res = pPKey2->r1;
4838 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
4839 || CORRUPT_DB
4840 || pPKey2->pKeyInfo->db->mallocFailed
4842 return res;
4846 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4847 ** suitable for comparing serialized records to the unpacked record passed
4848 ** as the only argument.
4850 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
4851 /* varintRecordCompareInt() and varintRecordCompareString() both assume
4852 ** that the size-of-header varint that occurs at the start of each record
4853 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4854 ** also assumes that it is safe to overread a buffer by at least the
4855 ** maximum possible legal header size plus 8 bytes. Because there is
4856 ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4857 ** buffer passed to varintRecordCompareInt() this makes it convenient to
4858 ** limit the size of the header to 64 bytes in cases where the first field
4859 ** is an integer.
4861 ** The easiest way to enforce this limit is to consider only records with
4862 ** 13 fields or less. If the first field is an integer, the maximum legal
4863 ** header size is (12*5 + 1 + 1) bytes. */
4864 if( p->pKeyInfo->nAllField<=13 ){
4865 int flags = p->aMem[0].flags;
4866 if( p->pKeyInfo->aSortFlags[0] ){
4867 if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){
4868 return sqlite3VdbeRecordCompare;
4870 p->r1 = 1;
4871 p->r2 = -1;
4872 }else{
4873 p->r1 = -1;
4874 p->r2 = 1;
4876 if( (flags & MEM_Int) ){
4877 return vdbeRecordCompareInt;
4879 testcase( flags & MEM_Real );
4880 testcase( flags & MEM_Null );
4881 testcase( flags & MEM_Blob );
4882 if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0
4883 && p->pKeyInfo->aColl[0]==0
4885 assert( flags & MEM_Str );
4886 return vdbeRecordCompareString;
4890 return sqlite3VdbeRecordCompare;
4894 ** pCur points at an index entry created using the OP_MakeRecord opcode.
4895 ** Read the rowid (the last field in the record) and store it in *rowid.
4896 ** Return SQLITE_OK if everything works, or an error code otherwise.
4898 ** pCur might be pointing to text obtained from a corrupt database file.
4899 ** So the content cannot be trusted. Do appropriate checks on the content.
4901 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
4902 i64 nCellKey = 0;
4903 int rc;
4904 u32 szHdr; /* Size of the header */
4905 u32 typeRowid; /* Serial type of the rowid */
4906 u32 lenRowid; /* Size of the rowid */
4907 Mem m, v;
4909 /* Get the size of the index entry. Only indices entries of less
4910 ** than 2GiB are support - anything large must be database corruption.
4911 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
4912 ** this code can safely assume that nCellKey is 32-bits
4914 assert( sqlite3BtreeCursorIsValid(pCur) );
4915 nCellKey = sqlite3BtreePayloadSize(pCur);
4916 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
4918 /* Read in the complete content of the index entry */
4919 sqlite3VdbeMemInit(&m, db, 0);
4920 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
4921 if( rc ){
4922 return rc;
4925 /* The index entry must begin with a header size */
4926 getVarint32NR((u8*)m.z, szHdr);
4927 testcase( szHdr==3 );
4928 testcase( szHdr==m.n );
4929 testcase( szHdr>0x7fffffff );
4930 assert( m.n>=0 );
4931 if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){
4932 goto idx_rowid_corruption;
4935 /* The last field of the index should be an integer - the ROWID.
4936 ** Verify that the last entry really is an integer. */
4937 getVarint32NR((u8*)&m.z[szHdr-1], typeRowid);
4938 testcase( typeRowid==1 );
4939 testcase( typeRowid==2 );
4940 testcase( typeRowid==3 );
4941 testcase( typeRowid==4 );
4942 testcase( typeRowid==5 );
4943 testcase( typeRowid==6 );
4944 testcase( typeRowid==8 );
4945 testcase( typeRowid==9 );
4946 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
4947 goto idx_rowid_corruption;
4949 lenRowid = sqlite3SmallTypeSizes[typeRowid];
4950 testcase( (u32)m.n==szHdr+lenRowid );
4951 if( unlikely((u32)m.n<szHdr+lenRowid) ){
4952 goto idx_rowid_corruption;
4955 /* Fetch the integer off the end of the index record */
4956 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
4957 *rowid = v.u.i;
4958 sqlite3VdbeMemRelease(&m);
4959 return SQLITE_OK;
4961 /* Jump here if database corruption is detected after m has been
4962 ** allocated. Free the m object and return SQLITE_CORRUPT. */
4963 idx_rowid_corruption:
4964 testcase( m.szMalloc!=0 );
4965 sqlite3VdbeMemRelease(&m);
4966 return SQLITE_CORRUPT_BKPT;
4970 ** Compare the key of the index entry that cursor pC is pointing to against
4971 ** the key string in pUnpacked. Write into *pRes a number
4972 ** that is negative, zero, or positive if pC is less than, equal to,
4973 ** or greater than pUnpacked. Return SQLITE_OK on success.
4975 ** pUnpacked is either created without a rowid or is truncated so that it
4976 ** omits the rowid at the end. The rowid at the end of the index entry
4977 ** is ignored as well. Hence, this routine only compares the prefixes
4978 ** of the keys prior to the final rowid, not the entire key.
4980 int sqlite3VdbeIdxKeyCompare(
4981 sqlite3 *db, /* Database connection */
4982 VdbeCursor *pC, /* The cursor to compare against */
4983 UnpackedRecord *pUnpacked, /* Unpacked version of key */
4984 int *res /* Write the comparison result here */
4986 i64 nCellKey = 0;
4987 int rc;
4988 BtCursor *pCur;
4989 Mem m;
4991 assert( pC->eCurType==CURTYPE_BTREE );
4992 pCur = pC->uc.pCursor;
4993 assert( sqlite3BtreeCursorIsValid(pCur) );
4994 nCellKey = sqlite3BtreePayloadSize(pCur);
4995 /* nCellKey will always be between 0 and 0xffffffff because of the way
4996 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
4997 if( nCellKey<=0 || nCellKey>0x7fffffff ){
4998 *res = 0;
4999 return SQLITE_CORRUPT_BKPT;
5001 sqlite3VdbeMemInit(&m, db, 0);
5002 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
5003 if( rc ){
5004 return rc;
5006 *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0);
5007 sqlite3VdbeMemRelease(&m);
5008 return SQLITE_OK;
5012 ** This routine sets the value to be returned by subsequent calls to
5013 ** sqlite3_changes() on the database handle 'db'.
5015 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
5016 assert( sqlite3_mutex_held(db->mutex) );
5017 db->nChange = nChange;
5018 db->nTotalChange += nChange;
5022 ** Set a flag in the vdbe to update the change counter when it is finalised
5023 ** or reset.
5025 void sqlite3VdbeCountChanges(Vdbe *v){
5026 v->changeCntOn = 1;
5030 ** Mark every prepared statement associated with a database connection
5031 ** as expired.
5033 ** An expired statement means that recompilation of the statement is
5034 ** recommend. Statements expire when things happen that make their
5035 ** programs obsolete. Removing user-defined functions or collating
5036 ** sequences, or changing an authorization function are the types of
5037 ** things that make prepared statements obsolete.
5039 ** If iCode is 1, then expiration is advisory. The statement should
5040 ** be reprepared before being restarted, but if it is already running
5041 ** it is allowed to run to completion.
5043 ** Internally, this function just sets the Vdbe.expired flag on all
5044 ** prepared statements. The flag is set to 1 for an immediate expiration
5045 ** and set to 2 for an advisory expiration.
5047 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){
5048 Vdbe *p;
5049 for(p = db->pVdbe; p; p=p->pNext){
5050 p->expired = iCode+1;
5055 ** Return the database associated with the Vdbe.
5057 sqlite3 *sqlite3VdbeDb(Vdbe *v){
5058 return v->db;
5062 ** Return the SQLITE_PREPARE flags for a Vdbe.
5064 u8 sqlite3VdbePrepareFlags(Vdbe *v){
5065 return v->prepFlags;
5069 ** Return a pointer to an sqlite3_value structure containing the value bound
5070 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
5071 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
5072 ** constants) to the value before returning it.
5074 ** The returned value must be freed by the caller using sqlite3ValueFree().
5076 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
5077 assert( iVar>0 );
5078 if( v ){
5079 Mem *pMem = &v->aVar[iVar-1];
5080 assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
5081 if( 0==(pMem->flags & MEM_Null) ){
5082 sqlite3_value *pRet = sqlite3ValueNew(v->db);
5083 if( pRet ){
5084 sqlite3VdbeMemCopy((Mem *)pRet, pMem);
5085 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
5087 return pRet;
5090 return 0;
5094 ** Configure SQL variable iVar so that binding a new value to it signals
5095 ** to sqlite3_reoptimize() that re-preparing the statement may result
5096 ** in a better query plan.
5098 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
5099 assert( iVar>0 );
5100 assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
5101 if( iVar>=32 ){
5102 v->expmask |= 0x80000000;
5103 }else{
5104 v->expmask |= ((u32)1 << (iVar-1));
5109 ** Cause a function to throw an error if it was call from OP_PureFunc
5110 ** rather than OP_Function.
5112 ** OP_PureFunc means that the function must be deterministic, and should
5113 ** throw an error if it is given inputs that would make it non-deterministic.
5114 ** This routine is invoked by date/time functions that use non-deterministic
5115 ** features such as 'now'.
5117 int sqlite3NotPureFunc(sqlite3_context *pCtx){
5118 const VdbeOp *pOp;
5119 #ifdef SQLITE_ENABLE_STAT4
5120 if( pCtx->pVdbe==0 ) return 1;
5121 #endif
5122 pOp = pCtx->pVdbe->aOp + pCtx->iOp;
5123 if( pOp->opcode==OP_PureFunc ){
5124 const char *zContext;
5125 char *zMsg;
5126 if( pOp->p5 & NC_IsCheck ){
5127 zContext = "a CHECK constraint";
5128 }else if( pOp->p5 & NC_GenCol ){
5129 zContext = "a generated column";
5130 }else{
5131 zContext = "an index";
5133 zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s",
5134 pCtx->pFunc->zName, zContext);
5135 sqlite3_result_error(pCtx, zMsg, -1);
5136 sqlite3_free(zMsg);
5137 return 0;
5139 return 1;
5142 #ifndef SQLITE_OMIT_VIRTUALTABLE
5144 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
5145 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
5146 ** in memory obtained from sqlite3DbMalloc).
5148 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
5149 if( pVtab->zErrMsg ){
5150 sqlite3 *db = p->db;
5151 sqlite3DbFree(db, p->zErrMsg);
5152 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
5153 sqlite3_free(pVtab->zErrMsg);
5154 pVtab->zErrMsg = 0;
5157 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5159 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5162 ** If the second argument is not NULL, release any allocations associated
5163 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
5164 ** structure itself, using sqlite3DbFree().
5166 ** This function is used to free UnpackedRecord structures allocated by
5167 ** the vdbeUnpackRecord() function found in vdbeapi.c.
5169 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
5170 if( p ){
5171 int i;
5172 for(i=0; i<nField; i++){
5173 Mem *pMem = &p->aMem[i];
5174 if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem);
5176 sqlite3DbFreeNN(db, p);
5179 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5181 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5183 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
5184 ** then cursor passed as the second argument should point to the row about
5185 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
5186 ** the required value will be read from the row the cursor points to.
5188 void sqlite3VdbePreUpdateHook(
5189 Vdbe *v, /* Vdbe pre-update hook is invoked by */
5190 VdbeCursor *pCsr, /* Cursor to grab old.* values from */
5191 int op, /* SQLITE_INSERT, UPDATE or DELETE */
5192 const char *zDb, /* Database name */
5193 Table *pTab, /* Modified table */
5194 i64 iKey1, /* Initial key value */
5195 int iReg /* Register for new.* record */
5197 sqlite3 *db = v->db;
5198 i64 iKey2;
5199 PreUpdate preupdate;
5200 const char *zTbl = pTab->zName;
5201 static const u8 fakeSortOrder = 0;
5203 assert( db->pPreUpdate==0 );
5204 memset(&preupdate, 0, sizeof(PreUpdate));
5205 if( HasRowid(pTab)==0 ){
5206 iKey1 = iKey2 = 0;
5207 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab);
5208 }else{
5209 if( op==SQLITE_UPDATE ){
5210 iKey2 = v->aMem[iReg].u.i;
5211 }else{
5212 iKey2 = iKey1;
5216 assert( pCsr->nField==pTab->nCol
5217 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1)
5220 preupdate.v = v;
5221 preupdate.pCsr = pCsr;
5222 preupdate.op = op;
5223 preupdate.iNewReg = iReg;
5224 preupdate.keyinfo.db = db;
5225 preupdate.keyinfo.enc = ENC(db);
5226 preupdate.keyinfo.nKeyField = pTab->nCol;
5227 preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder;
5228 preupdate.iKey1 = iKey1;
5229 preupdate.iKey2 = iKey2;
5230 preupdate.pTab = pTab;
5232 db->pPreUpdate = &preupdate;
5233 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
5234 db->pPreUpdate = 0;
5235 sqlite3DbFree(db, preupdate.aRecord);
5236 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked);
5237 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked);
5238 if( preupdate.aNew ){
5239 int i;
5240 for(i=0; i<pCsr->nField; i++){
5241 sqlite3VdbeMemRelease(&preupdate.aNew[i]);
5243 sqlite3DbFreeNN(db, preupdate.aNew);
5246 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */