update version and change log for 4.4.2
[sqlcipher.git] / src / vdbeapi.c
bloba9cbf92fc3b831cb9e1710cf6789e079a9cd529d
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to implement APIs that are part of the
14 ** VDBE.
16 #include "sqliteInt.h"
17 #include "vdbeInt.h"
19 #ifndef SQLITE_OMIT_DEPRECATED
21 ** Return TRUE (non-zero) of the statement supplied as an argument needs
22 ** to be recompiled. A statement needs to be recompiled whenever the
23 ** execution environment changes in a way that would alter the program
24 ** that sqlite3_prepare() generates. For example, if new functions or
25 ** collating sequences are registered or if an authorizer function is
26 ** added or changed.
28 int sqlite3_expired(sqlite3_stmt *pStmt){
29 Vdbe *p = (Vdbe*)pStmt;
30 return p==0 || p->expired;
32 #endif
35 ** Check on a Vdbe to make sure it has not been finalized. Log
36 ** an error and return true if it has been finalized (or is otherwise
37 ** invalid). Return false if it is ok.
39 static int vdbeSafety(Vdbe *p){
40 if( p->db==0 ){
41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement");
42 return 1;
43 }else{
44 return 0;
47 static int vdbeSafetyNotNull(Vdbe *p){
48 if( p==0 ){
49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement");
50 return 1;
51 }else{
52 return vdbeSafety(p);
56 #ifndef SQLITE_OMIT_TRACE
58 ** Invoke the profile callback. This routine is only called if we already
59 ** know that the profile callback is defined and needs to be invoked.
61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){
62 sqlite3_int64 iNow;
63 sqlite3_int64 iElapse;
64 assert( p->startTime>0 );
65 assert( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 );
66 assert( db->init.busy==0 );
67 assert( p->zSql!=0 );
68 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow);
69 iElapse = (iNow - p->startTime)*1000000;
70 #ifndef SQLITE_OMIT_DEPRECATED
71 if( db->xProfile ){
72 db->xProfile(db->pProfileArg, p->zSql, iElapse);
74 #endif
75 if( db->mTrace & SQLITE_TRACE_PROFILE ){
76 db->trace.xV2(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse);
78 p->startTime = 0;
81 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback
82 ** is needed, and it invokes the callback if it is needed.
84 # define checkProfileCallback(DB,P) \
85 if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); }
86 #else
87 # define checkProfileCallback(DB,P) /*no-op*/
88 #endif
91 ** The following routine destroys a virtual machine that is created by
92 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
93 ** success/failure code that describes the result of executing the virtual
94 ** machine.
96 ** This routine sets the error code and string returned by
97 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
99 int sqlite3_finalize(sqlite3_stmt *pStmt){
100 int rc;
101 if( pStmt==0 ){
102 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
103 ** pointer is a harmless no-op. */
104 rc = SQLITE_OK;
105 }else{
106 Vdbe *v = (Vdbe*)pStmt;
107 sqlite3 *db = v->db;
108 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT;
109 sqlite3_mutex_enter(db->mutex);
110 checkProfileCallback(db, v);
111 rc = sqlite3VdbeFinalize(v);
112 rc = sqlite3ApiExit(db, rc);
113 sqlite3LeaveMutexAndCloseZombie(db);
115 return rc;
119 ** Terminate the current execution of an SQL statement and reset it
120 ** back to its starting state so that it can be reused. A success code from
121 ** the prior execution is returned.
123 ** This routine sets the error code and string returned by
124 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
126 int sqlite3_reset(sqlite3_stmt *pStmt){
127 int rc;
128 if( pStmt==0 ){
129 rc = SQLITE_OK;
130 }else{
131 Vdbe *v = (Vdbe*)pStmt;
132 sqlite3 *db = v->db;
133 sqlite3_mutex_enter(db->mutex);
134 checkProfileCallback(db, v);
135 rc = sqlite3VdbeReset(v);
136 sqlite3VdbeRewind(v);
137 assert( (rc & (db->errMask))==rc );
138 rc = sqlite3ApiExit(db, rc);
139 sqlite3_mutex_leave(db->mutex);
141 return rc;
145 ** Set all the parameters in the compiled SQL statement to NULL.
147 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
148 int i;
149 int rc = SQLITE_OK;
150 Vdbe *p = (Vdbe*)pStmt;
151 #if SQLITE_THREADSAFE
152 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
153 #endif
154 sqlite3_mutex_enter(mutex);
155 for(i=0; i<p->nVar; i++){
156 sqlite3VdbeMemRelease(&p->aVar[i]);
157 p->aVar[i].flags = MEM_Null;
159 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
160 if( p->expmask ){
161 p->expired = 1;
163 sqlite3_mutex_leave(mutex);
164 return rc;
168 /**************************** sqlite3_value_ *******************************
169 ** The following routines extract information from a Mem or sqlite3_value
170 ** structure.
172 const void *sqlite3_value_blob(sqlite3_value *pVal){
173 Mem *p = (Mem*)pVal;
174 if( p->flags & (MEM_Blob|MEM_Str) ){
175 if( ExpandBlob(p)!=SQLITE_OK ){
176 assert( p->flags==MEM_Null && p->z==0 );
177 return 0;
179 p->flags |= MEM_Blob;
180 return p->n ? p->z : 0;
181 }else{
182 return sqlite3_value_text(pVal);
185 int sqlite3_value_bytes(sqlite3_value *pVal){
186 return sqlite3ValueBytes(pVal, SQLITE_UTF8);
188 int sqlite3_value_bytes16(sqlite3_value *pVal){
189 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
191 double sqlite3_value_double(sqlite3_value *pVal){
192 return sqlite3VdbeRealValue((Mem*)pVal);
194 int sqlite3_value_int(sqlite3_value *pVal){
195 return (int)sqlite3VdbeIntValue((Mem*)pVal);
197 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
198 return sqlite3VdbeIntValue((Mem*)pVal);
200 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){
201 Mem *pMem = (Mem*)pVal;
202 return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0);
204 void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){
205 Mem *p = (Mem*)pVal;
206 if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) ==
207 (MEM_Null|MEM_Term|MEM_Subtype)
208 && zPType!=0
209 && p->eSubtype=='p'
210 && strcmp(p->u.zPType, zPType)==0
212 return (void*)p->z;
213 }else{
214 return 0;
217 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
218 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
220 #ifndef SQLITE_OMIT_UTF16
221 const void *sqlite3_value_text16(sqlite3_value* pVal){
222 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
224 const void *sqlite3_value_text16be(sqlite3_value *pVal){
225 return sqlite3ValueText(pVal, SQLITE_UTF16BE);
227 const void *sqlite3_value_text16le(sqlite3_value *pVal){
228 return sqlite3ValueText(pVal, SQLITE_UTF16LE);
230 #endif /* SQLITE_OMIT_UTF16 */
231 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five
232 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating
233 ** point number string BLOB NULL
235 int sqlite3_value_type(sqlite3_value* pVal){
236 static const u8 aType[] = {
237 SQLITE_BLOB, /* 0x00 (not possible) */
238 SQLITE_NULL, /* 0x01 NULL */
239 SQLITE_TEXT, /* 0x02 TEXT */
240 SQLITE_NULL, /* 0x03 (not possible) */
241 SQLITE_INTEGER, /* 0x04 INTEGER */
242 SQLITE_NULL, /* 0x05 (not possible) */
243 SQLITE_INTEGER, /* 0x06 INTEGER + TEXT */
244 SQLITE_NULL, /* 0x07 (not possible) */
245 SQLITE_FLOAT, /* 0x08 FLOAT */
246 SQLITE_NULL, /* 0x09 (not possible) */
247 SQLITE_FLOAT, /* 0x0a FLOAT + TEXT */
248 SQLITE_NULL, /* 0x0b (not possible) */
249 SQLITE_INTEGER, /* 0x0c (not possible) */
250 SQLITE_NULL, /* 0x0d (not possible) */
251 SQLITE_INTEGER, /* 0x0e (not possible) */
252 SQLITE_NULL, /* 0x0f (not possible) */
253 SQLITE_BLOB, /* 0x10 BLOB */
254 SQLITE_NULL, /* 0x11 (not possible) */
255 SQLITE_TEXT, /* 0x12 (not possible) */
256 SQLITE_NULL, /* 0x13 (not possible) */
257 SQLITE_INTEGER, /* 0x14 INTEGER + BLOB */
258 SQLITE_NULL, /* 0x15 (not possible) */
259 SQLITE_INTEGER, /* 0x16 (not possible) */
260 SQLITE_NULL, /* 0x17 (not possible) */
261 SQLITE_FLOAT, /* 0x18 FLOAT + BLOB */
262 SQLITE_NULL, /* 0x19 (not possible) */
263 SQLITE_FLOAT, /* 0x1a (not possible) */
264 SQLITE_NULL, /* 0x1b (not possible) */
265 SQLITE_INTEGER, /* 0x1c (not possible) */
266 SQLITE_NULL, /* 0x1d (not possible) */
267 SQLITE_INTEGER, /* 0x1e (not possible) */
268 SQLITE_NULL, /* 0x1f (not possible) */
269 SQLITE_FLOAT, /* 0x20 INTREAL */
270 SQLITE_NULL, /* 0x21 (not possible) */
271 SQLITE_TEXT, /* 0x22 INTREAL + TEXT */
272 SQLITE_NULL, /* 0x23 (not possible) */
273 SQLITE_FLOAT, /* 0x24 (not possible) */
274 SQLITE_NULL, /* 0x25 (not possible) */
275 SQLITE_FLOAT, /* 0x26 (not possible) */
276 SQLITE_NULL, /* 0x27 (not possible) */
277 SQLITE_FLOAT, /* 0x28 (not possible) */
278 SQLITE_NULL, /* 0x29 (not possible) */
279 SQLITE_FLOAT, /* 0x2a (not possible) */
280 SQLITE_NULL, /* 0x2b (not possible) */
281 SQLITE_FLOAT, /* 0x2c (not possible) */
282 SQLITE_NULL, /* 0x2d (not possible) */
283 SQLITE_FLOAT, /* 0x2e (not possible) */
284 SQLITE_NULL, /* 0x2f (not possible) */
285 SQLITE_BLOB, /* 0x30 (not possible) */
286 SQLITE_NULL, /* 0x31 (not possible) */
287 SQLITE_TEXT, /* 0x32 (not possible) */
288 SQLITE_NULL, /* 0x33 (not possible) */
289 SQLITE_FLOAT, /* 0x34 (not possible) */
290 SQLITE_NULL, /* 0x35 (not possible) */
291 SQLITE_FLOAT, /* 0x36 (not possible) */
292 SQLITE_NULL, /* 0x37 (not possible) */
293 SQLITE_FLOAT, /* 0x38 (not possible) */
294 SQLITE_NULL, /* 0x39 (not possible) */
295 SQLITE_FLOAT, /* 0x3a (not possible) */
296 SQLITE_NULL, /* 0x3b (not possible) */
297 SQLITE_FLOAT, /* 0x3c (not possible) */
298 SQLITE_NULL, /* 0x3d (not possible) */
299 SQLITE_FLOAT, /* 0x3e (not possible) */
300 SQLITE_NULL, /* 0x3f (not possible) */
302 #ifdef SQLITE_DEBUG
304 int eType = SQLITE_BLOB;
305 if( pVal->flags & MEM_Null ){
306 eType = SQLITE_NULL;
307 }else if( pVal->flags & (MEM_Real|MEM_IntReal) ){
308 eType = SQLITE_FLOAT;
309 }else if( pVal->flags & MEM_Int ){
310 eType = SQLITE_INTEGER;
311 }else if( pVal->flags & MEM_Str ){
312 eType = SQLITE_TEXT;
314 assert( eType == aType[pVal->flags&MEM_AffMask] );
316 #endif
317 return aType[pVal->flags&MEM_AffMask];
320 /* Return true if a parameter to xUpdate represents an unchanged column */
321 int sqlite3_value_nochange(sqlite3_value *pVal){
322 return (pVal->flags&(MEM_Null|MEM_Zero))==(MEM_Null|MEM_Zero);
325 /* Return true if a parameter value originated from an sqlite3_bind() */
326 int sqlite3_value_frombind(sqlite3_value *pVal){
327 return (pVal->flags&MEM_FromBind)!=0;
330 /* Make a copy of an sqlite3_value object
332 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){
333 sqlite3_value *pNew;
334 if( pOrig==0 ) return 0;
335 pNew = sqlite3_malloc( sizeof(*pNew) );
336 if( pNew==0 ) return 0;
337 memset(pNew, 0, sizeof(*pNew));
338 memcpy(pNew, pOrig, MEMCELLSIZE);
339 pNew->flags &= ~MEM_Dyn;
340 pNew->db = 0;
341 if( pNew->flags&(MEM_Str|MEM_Blob) ){
342 pNew->flags &= ~(MEM_Static|MEM_Dyn);
343 pNew->flags |= MEM_Ephem;
344 if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){
345 sqlite3ValueFree(pNew);
346 pNew = 0;
349 return pNew;
352 /* Destroy an sqlite3_value object previously obtained from
353 ** sqlite3_value_dup().
355 void sqlite3_value_free(sqlite3_value *pOld){
356 sqlite3ValueFree(pOld);
360 /**************************** sqlite3_result_ *******************************
361 ** The following routines are used by user-defined functions to specify
362 ** the function result.
364 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the
365 ** result as a string or blob but if the string or blob is too large, it
366 ** then sets the error code to SQLITE_TOOBIG
368 ** The invokeValueDestructor(P,X) routine invokes destructor function X()
369 ** on value P is not going to be used and need to be destroyed.
371 static void setResultStrOrError(
372 sqlite3_context *pCtx, /* Function context */
373 const char *z, /* String pointer */
374 int n, /* Bytes in string, or negative */
375 u8 enc, /* Encoding of z. 0 for BLOBs */
376 void (*xDel)(void*) /* Destructor function */
378 if( sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel)==SQLITE_TOOBIG ){
379 sqlite3_result_error_toobig(pCtx);
382 static int invokeValueDestructor(
383 const void *p, /* Value to destroy */
384 void (*xDel)(void*), /* The destructor */
385 sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */
387 assert( xDel!=SQLITE_DYNAMIC );
388 if( xDel==0 ){
389 /* noop */
390 }else if( xDel==SQLITE_TRANSIENT ){
391 /* noop */
392 }else{
393 xDel((void*)p);
395 if( pCtx ) sqlite3_result_error_toobig(pCtx);
396 return SQLITE_TOOBIG;
398 void sqlite3_result_blob(
399 sqlite3_context *pCtx,
400 const void *z,
401 int n,
402 void (*xDel)(void *)
404 assert( n>=0 );
405 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
406 setResultStrOrError(pCtx, z, n, 0, xDel);
408 void sqlite3_result_blob64(
409 sqlite3_context *pCtx,
410 const void *z,
411 sqlite3_uint64 n,
412 void (*xDel)(void *)
414 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
415 assert( xDel!=SQLITE_DYNAMIC );
416 if( n>0x7fffffff ){
417 (void)invokeValueDestructor(z, xDel, pCtx);
418 }else{
419 setResultStrOrError(pCtx, z, (int)n, 0, xDel);
422 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
423 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
424 sqlite3VdbeMemSetDouble(pCtx->pOut, rVal);
426 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
427 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
428 pCtx->isError = SQLITE_ERROR;
429 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
431 #ifndef SQLITE_OMIT_UTF16
432 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
433 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
434 pCtx->isError = SQLITE_ERROR;
435 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
437 #endif
438 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
439 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
440 sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal);
442 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
443 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
444 sqlite3VdbeMemSetInt64(pCtx->pOut, iVal);
446 void sqlite3_result_null(sqlite3_context *pCtx){
447 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
448 sqlite3VdbeMemSetNull(pCtx->pOut);
450 void sqlite3_result_pointer(
451 sqlite3_context *pCtx,
452 void *pPtr,
453 const char *zPType,
454 void (*xDestructor)(void*)
456 Mem *pOut = pCtx->pOut;
457 assert( sqlite3_mutex_held(pOut->db->mutex) );
458 sqlite3VdbeMemRelease(pOut);
459 pOut->flags = MEM_Null;
460 sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor);
462 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){
463 Mem *pOut = pCtx->pOut;
464 assert( sqlite3_mutex_held(pOut->db->mutex) );
465 pOut->eSubtype = eSubtype & 0xff;
466 pOut->flags |= MEM_Subtype;
468 void sqlite3_result_text(
469 sqlite3_context *pCtx,
470 const char *z,
471 int n,
472 void (*xDel)(void *)
474 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
475 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
477 void sqlite3_result_text64(
478 sqlite3_context *pCtx,
479 const char *z,
480 sqlite3_uint64 n,
481 void (*xDel)(void *),
482 unsigned char enc
484 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
485 assert( xDel!=SQLITE_DYNAMIC );
486 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
487 if( n>0x7fffffff ){
488 (void)invokeValueDestructor(z, xDel, pCtx);
489 }else{
490 setResultStrOrError(pCtx, z, (int)n, enc, xDel);
493 #ifndef SQLITE_OMIT_UTF16
494 void sqlite3_result_text16(
495 sqlite3_context *pCtx,
496 const void *z,
497 int n,
498 void (*xDel)(void *)
500 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
501 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel);
503 void sqlite3_result_text16be(
504 sqlite3_context *pCtx,
505 const void *z,
506 int n,
507 void (*xDel)(void *)
509 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
510 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel);
512 void sqlite3_result_text16le(
513 sqlite3_context *pCtx,
514 const void *z,
515 int n,
516 void (*xDel)(void *)
518 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
519 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel);
521 #endif /* SQLITE_OMIT_UTF16 */
522 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
523 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
524 sqlite3VdbeMemCopy(pCtx->pOut, pValue);
526 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
527 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
528 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n);
530 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){
531 Mem *pOut = pCtx->pOut;
532 assert( sqlite3_mutex_held(pOut->db->mutex) );
533 if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){
534 return SQLITE_TOOBIG;
536 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n);
537 return SQLITE_OK;
539 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
540 pCtx->isError = errCode ? errCode : -1;
541 #ifdef SQLITE_DEBUG
542 if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode;
543 #endif
544 if( pCtx->pOut->flags & MEM_Null ){
545 sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1,
546 SQLITE_UTF8, SQLITE_STATIC);
550 /* Force an SQLITE_TOOBIG error. */
551 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
552 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
553 pCtx->isError = SQLITE_TOOBIG;
554 sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1,
555 SQLITE_UTF8, SQLITE_STATIC);
558 /* An SQLITE_NOMEM error. */
559 void sqlite3_result_error_nomem(sqlite3_context *pCtx){
560 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
561 sqlite3VdbeMemSetNull(pCtx->pOut);
562 pCtx->isError = SQLITE_NOMEM_BKPT;
563 sqlite3OomFault(pCtx->pOut->db);
566 #ifndef SQLITE_UNTESTABLE
567 /* Force the INT64 value currently stored as the result to be
568 ** a MEM_IntReal value. See the SQLITE_TESTCTRL_RESULT_INTREAL
569 ** test-control.
571 void sqlite3ResultIntReal(sqlite3_context *pCtx){
572 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
573 if( pCtx->pOut->flags & MEM_Int ){
574 pCtx->pOut->flags &= ~MEM_Int;
575 pCtx->pOut->flags |= MEM_IntReal;
578 #endif
582 ** This function is called after a transaction has been committed. It
583 ** invokes callbacks registered with sqlite3_wal_hook() as required.
585 static int doWalCallbacks(sqlite3 *db){
586 int rc = SQLITE_OK;
587 #ifndef SQLITE_OMIT_WAL
588 int i;
589 for(i=0; i<db->nDb; i++){
590 Btree *pBt = db->aDb[i].pBt;
591 if( pBt ){
592 int nEntry;
593 sqlite3BtreeEnter(pBt);
594 nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt));
595 sqlite3BtreeLeave(pBt);
596 if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){
597 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry);
601 #endif
602 return rc;
607 ** Execute the statement pStmt, either until a row of data is ready, the
608 ** statement is completely executed or an error occurs.
610 ** This routine implements the bulk of the logic behind the sqlite_step()
611 ** API. The only thing omitted is the automatic recompile if a
612 ** schema change has occurred. That detail is handled by the
613 ** outer sqlite3_step() wrapper procedure.
615 static int sqlite3Step(Vdbe *p){
616 sqlite3 *db;
617 int rc;
619 assert(p);
620 if( p->magic!=VDBE_MAGIC_RUN ){
621 /* We used to require that sqlite3_reset() be called before retrying
622 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning
623 ** with version 3.7.0, we changed this so that sqlite3_reset() would
624 ** be called automatically instead of throwing the SQLITE_MISUSE error.
625 ** This "automatic-reset" change is not technically an incompatibility,
626 ** since any application that receives an SQLITE_MISUSE is broken by
627 ** definition.
629 ** Nevertheless, some published applications that were originally written
630 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE
631 ** returns, and those were broken by the automatic-reset change. As a
632 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the
633 ** legacy behavior of returning SQLITE_MISUSE for cases where the
634 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED
635 ** or SQLITE_BUSY error.
637 #ifdef SQLITE_OMIT_AUTORESET
638 if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){
639 sqlite3_reset((sqlite3_stmt*)p);
640 }else{
641 return SQLITE_MISUSE_BKPT;
643 #else
644 sqlite3_reset((sqlite3_stmt*)p);
645 #endif
648 /* Check that malloc() has not failed. If it has, return early. */
649 db = p->db;
650 if( db->mallocFailed ){
651 p->rc = SQLITE_NOMEM;
652 return SQLITE_NOMEM_BKPT;
655 if( p->pc<0 && p->expired ){
656 p->rc = SQLITE_SCHEMA;
657 rc = SQLITE_ERROR;
658 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){
659 /* If this statement was prepared using saved SQL and an
660 ** error has occurred, then return the error code in p->rc to the
661 ** caller. Set the error code in the database handle to the same value.
663 rc = sqlite3VdbeTransferError(p);
665 goto end_of_step;
667 if( p->pc<0 ){
668 /* If there are no other statements currently running, then
669 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt
670 ** from interrupting a statement that has not yet started.
672 if( db->nVdbeActive==0 ){
673 AtomicStore(&db->u1.isInterrupted, 0);
676 assert( db->nVdbeWrite>0 || db->autoCommit==0
677 || (db->nDeferredCons==0 && db->nDeferredImmCons==0)
680 #ifndef SQLITE_OMIT_TRACE
681 if( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0
682 && !db->init.busy && p->zSql ){
683 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime);
684 }else{
685 assert( p->startTime==0 );
687 #endif
689 db->nVdbeActive++;
690 if( p->readOnly==0 ) db->nVdbeWrite++;
691 if( p->bIsReader ) db->nVdbeRead++;
692 p->pc = 0;
694 #ifdef SQLITE_DEBUG
695 p->rcApp = SQLITE_OK;
696 #endif
697 #ifndef SQLITE_OMIT_EXPLAIN
698 if( p->explain ){
699 rc = sqlite3VdbeList(p);
700 }else
701 #endif /* SQLITE_OMIT_EXPLAIN */
703 db->nVdbeExec++;
704 rc = sqlite3VdbeExec(p);
705 db->nVdbeExec--;
708 if( rc!=SQLITE_ROW ){
709 #ifndef SQLITE_OMIT_TRACE
710 /* If the statement completed successfully, invoke the profile callback */
711 checkProfileCallback(db, p);
712 #endif
714 if( rc==SQLITE_DONE && db->autoCommit ){
715 assert( p->rc==SQLITE_OK );
716 p->rc = doWalCallbacks(db);
717 if( p->rc!=SQLITE_OK ){
718 rc = SQLITE_ERROR;
720 }else if( rc!=SQLITE_DONE && (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){
721 /* If this statement was prepared using saved SQL and an
722 ** error has occurred, then return the error code in p->rc to the
723 ** caller. Set the error code in the database handle to the same value.
725 rc = sqlite3VdbeTransferError(p);
729 db->errCode = rc;
730 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){
731 p->rc = SQLITE_NOMEM_BKPT;
732 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ) rc = p->rc;
734 end_of_step:
735 /* There are only a limited number of result codes allowed from the
736 ** statements prepared using the legacy sqlite3_prepare() interface */
737 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0
738 || rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR
739 || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE
741 return (rc&db->errMask);
745 ** This is the top-level implementation of sqlite3_step(). Call
746 ** sqlite3Step() to do most of the work. If a schema error occurs,
747 ** call sqlite3Reprepare() and try again.
749 int sqlite3_step(sqlite3_stmt *pStmt){
750 int rc = SQLITE_OK; /* Result from sqlite3Step() */
751 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */
752 int cnt = 0; /* Counter to prevent infinite loop of reprepares */
753 sqlite3 *db; /* The database connection */
755 if( vdbeSafetyNotNull(v) ){
756 return SQLITE_MISUSE_BKPT;
758 db = v->db;
759 sqlite3_mutex_enter(db->mutex);
760 v->doingRerun = 0;
761 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
762 && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){
763 int savedPc = v->pc;
764 rc = sqlite3Reprepare(v);
765 if( rc!=SQLITE_OK ){
766 /* This case occurs after failing to recompile an sql statement.
767 ** The error message from the SQL compiler has already been loaded
768 ** into the database handle. This block copies the error message
769 ** from the database handle into the statement and sets the statement
770 ** program counter to 0 to ensure that when the statement is
771 ** finalized or reset the parser error message is available via
772 ** sqlite3_errmsg() and sqlite3_errcode().
774 const char *zErr = (const char *)sqlite3_value_text(db->pErr);
775 sqlite3DbFree(db, v->zErrMsg);
776 if( !db->mallocFailed ){
777 v->zErrMsg = sqlite3DbStrDup(db, zErr);
778 v->rc = rc = sqlite3ApiExit(db, rc);
779 } else {
780 v->zErrMsg = 0;
781 v->rc = rc = SQLITE_NOMEM_BKPT;
783 break;
785 sqlite3_reset(pStmt);
786 if( savedPc>=0 ) v->doingRerun = 1;
787 assert( v->expired==0 );
789 sqlite3_mutex_leave(db->mutex);
790 return rc;
795 ** Extract the user data from a sqlite3_context structure and return a
796 ** pointer to it.
798 void *sqlite3_user_data(sqlite3_context *p){
799 assert( p && p->pFunc );
800 return p->pFunc->pUserData;
804 ** Extract the user data from a sqlite3_context structure and return a
805 ** pointer to it.
807 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
808 ** returns a copy of the pointer to the database connection (the 1st
809 ** parameter) of the sqlite3_create_function() and
810 ** sqlite3_create_function16() routines that originally registered the
811 ** application defined function.
813 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
814 assert( p && p->pOut );
815 return p->pOut->db;
819 ** If this routine is invoked from within an xColumn method of a virtual
820 ** table, then it returns true if and only if the the call is during an
821 ** UPDATE operation and the value of the column will not be modified
822 ** by the UPDATE.
824 ** If this routine is called from any context other than within the
825 ** xColumn method of a virtual table, then the return value is meaningless
826 ** and arbitrary.
828 ** Virtual table implements might use this routine to optimize their
829 ** performance by substituting a NULL result, or some other light-weight
830 ** value, as a signal to the xUpdate routine that the column is unchanged.
832 int sqlite3_vtab_nochange(sqlite3_context *p){
833 assert( p );
834 return sqlite3_value_nochange(p->pOut);
838 ** Return the current time for a statement. If the current time
839 ** is requested more than once within the same run of a single prepared
840 ** statement, the exact same time is returned for each invocation regardless
841 ** of the amount of time that elapses between invocations. In other words,
842 ** the time returned is always the time of the first call.
844 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){
845 int rc;
846 #ifndef SQLITE_ENABLE_STAT4
847 sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime;
848 assert( p->pVdbe!=0 );
849 #else
850 sqlite3_int64 iTime = 0;
851 sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime;
852 #endif
853 if( *piTime==0 ){
854 rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime);
855 if( rc ) *piTime = 0;
857 return *piTime;
861 ** Create a new aggregate context for p and return a pointer to
862 ** its pMem->z element.
864 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){
865 Mem *pMem = p->pMem;
866 assert( (pMem->flags & MEM_Agg)==0 );
867 if( nByte<=0 ){
868 sqlite3VdbeMemSetNull(pMem);
869 pMem->z = 0;
870 }else{
871 sqlite3VdbeMemClearAndResize(pMem, nByte);
872 pMem->flags = MEM_Agg;
873 pMem->u.pDef = p->pFunc;
874 if( pMem->z ){
875 memset(pMem->z, 0, nByte);
878 return (void*)pMem->z;
882 ** Allocate or return the aggregate context for a user function. A new
883 ** context is allocated on the first call. Subsequent calls return the
884 ** same context that was returned on prior calls.
886 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
887 assert( p && p->pFunc && p->pFunc->xFinalize );
888 assert( sqlite3_mutex_held(p->pOut->db->mutex) );
889 testcase( nByte<0 );
890 if( (p->pMem->flags & MEM_Agg)==0 ){
891 return createAggContext(p, nByte);
892 }else{
893 return (void*)p->pMem->z;
898 ** Return the auxiliary data pointer, if any, for the iArg'th argument to
899 ** the user-function defined by pCtx.
901 ** The left-most argument is 0.
903 ** Undocumented behavior: If iArg is negative then access a cache of
904 ** auxiliary data pointers that is available to all functions within a
905 ** single prepared statement. The iArg values must match.
907 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
908 AuxData *pAuxData;
910 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
911 #if SQLITE_ENABLE_STAT4
912 if( pCtx->pVdbe==0 ) return 0;
913 #else
914 assert( pCtx->pVdbe!=0 );
915 #endif
916 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
917 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
918 return pAuxData->pAux;
921 return 0;
925 ** Set the auxiliary data pointer and delete function, for the iArg'th
926 ** argument to the user-function defined by pCtx. Any previous value is
927 ** deleted by calling the delete function specified when it was set.
929 ** The left-most argument is 0.
931 ** Undocumented behavior: If iArg is negative then make the data available
932 ** to all functions within the current prepared statement using iArg as an
933 ** access code.
935 void sqlite3_set_auxdata(
936 sqlite3_context *pCtx,
937 int iArg,
938 void *pAux,
939 void (*xDelete)(void*)
941 AuxData *pAuxData;
942 Vdbe *pVdbe = pCtx->pVdbe;
944 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
945 #ifdef SQLITE_ENABLE_STAT4
946 if( pVdbe==0 ) goto failed;
947 #else
948 assert( pVdbe!=0 );
949 #endif
951 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
952 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
953 break;
956 if( pAuxData==0 ){
957 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData));
958 if( !pAuxData ) goto failed;
959 pAuxData->iAuxOp = pCtx->iOp;
960 pAuxData->iAuxArg = iArg;
961 pAuxData->pNextAux = pVdbe->pAuxData;
962 pVdbe->pAuxData = pAuxData;
963 if( pCtx->isError==0 ) pCtx->isError = -1;
964 }else if( pAuxData->xDeleteAux ){
965 pAuxData->xDeleteAux(pAuxData->pAux);
968 pAuxData->pAux = pAux;
969 pAuxData->xDeleteAux = xDelete;
970 return;
972 failed:
973 if( xDelete ){
974 xDelete(pAux);
978 #ifndef SQLITE_OMIT_DEPRECATED
980 ** Return the number of times the Step function of an aggregate has been
981 ** called.
983 ** This function is deprecated. Do not use it for new code. It is
984 ** provide only to avoid breaking legacy code. New aggregate function
985 ** implementations should keep their own counts within their aggregate
986 ** context.
988 int sqlite3_aggregate_count(sqlite3_context *p){
989 assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize );
990 return p->pMem->n;
992 #endif
995 ** Return the number of columns in the result set for the statement pStmt.
997 int sqlite3_column_count(sqlite3_stmt *pStmt){
998 Vdbe *pVm = (Vdbe *)pStmt;
999 return pVm ? pVm->nResColumn : 0;
1003 ** Return the number of values available from the current row of the
1004 ** currently executing statement pStmt.
1006 int sqlite3_data_count(sqlite3_stmt *pStmt){
1007 Vdbe *pVm = (Vdbe *)pStmt;
1008 if( pVm==0 || pVm->pResultSet==0 ) return 0;
1009 return pVm->nResColumn;
1013 ** Return a pointer to static memory containing an SQL NULL value.
1015 static const Mem *columnNullValue(void){
1016 /* Even though the Mem structure contains an element
1017 ** of type i64, on certain architectures (x86) with certain compiler
1018 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary
1019 ** instead of an 8-byte one. This all works fine, except that when
1020 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
1021 ** that a Mem structure is located on an 8-byte boundary. To prevent
1022 ** these assert()s from failing, when building with SQLITE_DEBUG defined
1023 ** using gcc, we force nullMem to be 8-byte aligned using the magical
1024 ** __attribute__((aligned(8))) macro. */
1025 static const Mem nullMem
1026 #if defined(SQLITE_DEBUG) && defined(__GNUC__)
1027 __attribute__((aligned(8)))
1028 #endif
1030 /* .u = */ {0},
1031 /* .flags = */ (u16)MEM_Null,
1032 /* .enc = */ (u8)0,
1033 /* .eSubtype = */ (u8)0,
1034 /* .n = */ (int)0,
1035 /* .z = */ (char*)0,
1036 /* .zMalloc = */ (char*)0,
1037 /* .szMalloc = */ (int)0,
1038 /* .uTemp = */ (u32)0,
1039 /* .db = */ (sqlite3*)0,
1040 /* .xDel = */ (void(*)(void*))0,
1041 #ifdef SQLITE_DEBUG
1042 /* .pScopyFrom = */ (Mem*)0,
1043 /* .mScopyFlags= */ 0,
1044 #endif
1046 return &nullMem;
1050 ** Check to see if column iCol of the given statement is valid. If
1051 ** it is, return a pointer to the Mem for the value of that column.
1052 ** If iCol is not valid, return a pointer to a Mem which has a value
1053 ** of NULL.
1055 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
1056 Vdbe *pVm;
1057 Mem *pOut;
1059 pVm = (Vdbe *)pStmt;
1060 if( pVm==0 ) return (Mem*)columnNullValue();
1061 assert( pVm->db );
1062 sqlite3_mutex_enter(pVm->db->mutex);
1063 if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
1064 pOut = &pVm->pResultSet[i];
1065 }else{
1066 sqlite3Error(pVm->db, SQLITE_RANGE);
1067 pOut = (Mem*)columnNullValue();
1069 return pOut;
1073 ** This function is called after invoking an sqlite3_value_XXX function on a
1074 ** column value (i.e. a value returned by evaluating an SQL expression in the
1075 ** select list of a SELECT statement) that may cause a malloc() failure. If
1076 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
1077 ** code of statement pStmt set to SQLITE_NOMEM.
1079 ** Specifically, this is called from within:
1081 ** sqlite3_column_int()
1082 ** sqlite3_column_int64()
1083 ** sqlite3_column_text()
1084 ** sqlite3_column_text16()
1085 ** sqlite3_column_real()
1086 ** sqlite3_column_bytes()
1087 ** sqlite3_column_bytes16()
1088 ** sqiite3_column_blob()
1090 static void columnMallocFailure(sqlite3_stmt *pStmt)
1092 /* If malloc() failed during an encoding conversion within an
1093 ** sqlite3_column_XXX API, then set the return code of the statement to
1094 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
1095 ** and _finalize() will return NOMEM.
1097 Vdbe *p = (Vdbe *)pStmt;
1098 if( p ){
1099 assert( p->db!=0 );
1100 assert( sqlite3_mutex_held(p->db->mutex) );
1101 p->rc = sqlite3ApiExit(p->db, p->rc);
1102 sqlite3_mutex_leave(p->db->mutex);
1106 /**************************** sqlite3_column_ *******************************
1107 ** The following routines are used to access elements of the current row
1108 ** in the result set.
1110 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
1111 const void *val;
1112 val = sqlite3_value_blob( columnMem(pStmt,i) );
1113 /* Even though there is no encoding conversion, value_blob() might
1114 ** need to call malloc() to expand the result of a zeroblob()
1115 ** expression.
1117 columnMallocFailure(pStmt);
1118 return val;
1120 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
1121 int val = sqlite3_value_bytes( columnMem(pStmt,i) );
1122 columnMallocFailure(pStmt);
1123 return val;
1125 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
1126 int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
1127 columnMallocFailure(pStmt);
1128 return val;
1130 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
1131 double val = sqlite3_value_double( columnMem(pStmt,i) );
1132 columnMallocFailure(pStmt);
1133 return val;
1135 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
1136 int val = sqlite3_value_int( columnMem(pStmt,i) );
1137 columnMallocFailure(pStmt);
1138 return val;
1140 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
1141 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
1142 columnMallocFailure(pStmt);
1143 return val;
1145 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
1146 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
1147 columnMallocFailure(pStmt);
1148 return val;
1150 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
1151 Mem *pOut = columnMem(pStmt, i);
1152 if( pOut->flags&MEM_Static ){
1153 pOut->flags &= ~MEM_Static;
1154 pOut->flags |= MEM_Ephem;
1156 columnMallocFailure(pStmt);
1157 return (sqlite3_value *)pOut;
1159 #ifndef SQLITE_OMIT_UTF16
1160 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
1161 const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
1162 columnMallocFailure(pStmt);
1163 return val;
1165 #endif /* SQLITE_OMIT_UTF16 */
1166 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
1167 int iType = sqlite3_value_type( columnMem(pStmt,i) );
1168 columnMallocFailure(pStmt);
1169 return iType;
1173 ** Convert the N-th element of pStmt->pColName[] into a string using
1174 ** xFunc() then return that string. If N is out of range, return 0.
1176 ** There are up to 5 names for each column. useType determines which
1177 ** name is returned. Here are the names:
1179 ** 0 The column name as it should be displayed for output
1180 ** 1 The datatype name for the column
1181 ** 2 The name of the database that the column derives from
1182 ** 3 The name of the table that the column derives from
1183 ** 4 The name of the table column that the result column derives from
1185 ** If the result is not a simple column reference (if it is an expression
1186 ** or a constant) then useTypes 2, 3, and 4 return NULL.
1188 static const void *columnName(
1189 sqlite3_stmt *pStmt, /* The statement */
1190 int N, /* Which column to get the name for */
1191 int useUtf16, /* True to return the name as UTF16 */
1192 int useType /* What type of name */
1194 const void *ret;
1195 Vdbe *p;
1196 int n;
1197 sqlite3 *db;
1198 #ifdef SQLITE_ENABLE_API_ARMOR
1199 if( pStmt==0 ){
1200 (void)SQLITE_MISUSE_BKPT;
1201 return 0;
1203 #endif
1204 ret = 0;
1205 p = (Vdbe *)pStmt;
1206 db = p->db;
1207 assert( db!=0 );
1208 n = sqlite3_column_count(pStmt);
1209 if( N<n && N>=0 ){
1210 N += useType*n;
1211 sqlite3_mutex_enter(db->mutex);
1212 assert( db->mallocFailed==0 );
1213 #ifndef SQLITE_OMIT_UTF16
1214 if( useUtf16 ){
1215 ret = sqlite3_value_text16((sqlite3_value*)&p->aColName[N]);
1216 }else
1217 #endif
1219 ret = sqlite3_value_text((sqlite3_value*)&p->aColName[N]);
1221 /* A malloc may have failed inside of the _text() call. If this
1222 ** is the case, clear the mallocFailed flag and return NULL.
1224 if( db->mallocFailed ){
1225 sqlite3OomClear(db);
1226 ret = 0;
1228 sqlite3_mutex_leave(db->mutex);
1230 return ret;
1234 ** Return the name of the Nth column of the result set returned by SQL
1235 ** statement pStmt.
1237 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
1238 return columnName(pStmt, N, 0, COLNAME_NAME);
1240 #ifndef SQLITE_OMIT_UTF16
1241 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
1242 return columnName(pStmt, N, 1, COLNAME_NAME);
1244 #endif
1247 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must
1248 ** not define OMIT_DECLTYPE.
1250 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
1251 # error "Must not define both SQLITE_OMIT_DECLTYPE \
1252 and SQLITE_ENABLE_COLUMN_METADATA"
1253 #endif
1255 #ifndef SQLITE_OMIT_DECLTYPE
1257 ** Return the column declaration type (if applicable) of the 'i'th column
1258 ** of the result set of SQL statement pStmt.
1260 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
1261 return columnName(pStmt, N, 0, COLNAME_DECLTYPE);
1263 #ifndef SQLITE_OMIT_UTF16
1264 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
1265 return columnName(pStmt, N, 1, COLNAME_DECLTYPE);
1267 #endif /* SQLITE_OMIT_UTF16 */
1268 #endif /* SQLITE_OMIT_DECLTYPE */
1270 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1272 ** Return the name of the database from which a result column derives.
1273 ** NULL is returned if the result column is an expression or constant or
1274 ** anything else which is not an unambiguous reference to a database column.
1276 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
1277 return columnName(pStmt, N, 0, COLNAME_DATABASE);
1279 #ifndef SQLITE_OMIT_UTF16
1280 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
1281 return columnName(pStmt, N, 1, COLNAME_DATABASE);
1283 #endif /* SQLITE_OMIT_UTF16 */
1286 ** Return the name of the table from which a result column derives.
1287 ** NULL is returned if the result column is an expression or constant or
1288 ** anything else which is not an unambiguous reference to a database column.
1290 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
1291 return columnName(pStmt, N, 0, COLNAME_TABLE);
1293 #ifndef SQLITE_OMIT_UTF16
1294 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
1295 return columnName(pStmt, N, 1, COLNAME_TABLE);
1297 #endif /* SQLITE_OMIT_UTF16 */
1300 ** Return the name of the table column from which a result column derives.
1301 ** NULL is returned if the result column is an expression or constant or
1302 ** anything else which is not an unambiguous reference to a database column.
1304 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
1305 return columnName(pStmt, N, 0, COLNAME_COLUMN);
1307 #ifndef SQLITE_OMIT_UTF16
1308 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
1309 return columnName(pStmt, N, 1, COLNAME_COLUMN);
1311 #endif /* SQLITE_OMIT_UTF16 */
1312 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
1315 /******************************* sqlite3_bind_ ***************************
1317 ** Routines used to attach values to wildcards in a compiled SQL statement.
1320 ** Unbind the value bound to variable i in virtual machine p. This is the
1321 ** the same as binding a NULL value to the column. If the "i" parameter is
1322 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
1324 ** A successful evaluation of this routine acquires the mutex on p.
1325 ** the mutex is released if any kind of error occurs.
1327 ** The error code stored in database p->db is overwritten with the return
1328 ** value in any case.
1330 static int vdbeUnbind(Vdbe *p, int i){
1331 Mem *pVar;
1332 if( vdbeSafetyNotNull(p) ){
1333 return SQLITE_MISUSE_BKPT;
1335 sqlite3_mutex_enter(p->db->mutex);
1336 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
1337 sqlite3Error(p->db, SQLITE_MISUSE);
1338 sqlite3_mutex_leave(p->db->mutex);
1339 sqlite3_log(SQLITE_MISUSE,
1340 "bind on a busy prepared statement: [%s]", p->zSql);
1341 return SQLITE_MISUSE_BKPT;
1343 if( i<1 || i>p->nVar ){
1344 sqlite3Error(p->db, SQLITE_RANGE);
1345 sqlite3_mutex_leave(p->db->mutex);
1346 return SQLITE_RANGE;
1348 i--;
1349 pVar = &p->aVar[i];
1350 sqlite3VdbeMemRelease(pVar);
1351 pVar->flags = MEM_Null;
1352 p->db->errCode = SQLITE_OK;
1354 /* If the bit corresponding to this variable in Vdbe.expmask is set, then
1355 ** binding a new value to this variable invalidates the current query plan.
1357 ** IMPLEMENTATION-OF: R-57496-20354 If the specific value bound to a host
1358 ** parameter in the WHERE clause might influence the choice of query plan
1359 ** for a statement, then the statement will be automatically recompiled,
1360 ** as if there had been a schema change, on the first sqlite3_step() call
1361 ** following any change to the bindings of that parameter.
1363 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
1364 if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){
1365 p->expired = 1;
1367 return SQLITE_OK;
1371 ** Bind a text or BLOB value.
1373 static int bindText(
1374 sqlite3_stmt *pStmt, /* The statement to bind against */
1375 int i, /* Index of the parameter to bind */
1376 const void *zData, /* Pointer to the data to be bound */
1377 int nData, /* Number of bytes of data to be bound */
1378 void (*xDel)(void*), /* Destructor for the data */
1379 u8 encoding /* Encoding for the data */
1381 Vdbe *p = (Vdbe *)pStmt;
1382 Mem *pVar;
1383 int rc;
1385 rc = vdbeUnbind(p, i);
1386 if( rc==SQLITE_OK ){
1387 if( zData!=0 ){
1388 pVar = &p->aVar[i-1];
1389 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
1390 if( rc==SQLITE_OK && encoding!=0 ){
1391 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
1393 if( rc ){
1394 sqlite3Error(p->db, rc);
1395 rc = sqlite3ApiExit(p->db, rc);
1398 sqlite3_mutex_leave(p->db->mutex);
1399 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){
1400 xDel((void*)zData);
1402 return rc;
1407 ** Bind a blob value to an SQL statement variable.
1409 int sqlite3_bind_blob(
1410 sqlite3_stmt *pStmt,
1411 int i,
1412 const void *zData,
1413 int nData,
1414 void (*xDel)(void*)
1416 #ifdef SQLITE_ENABLE_API_ARMOR
1417 if( nData<0 ) return SQLITE_MISUSE_BKPT;
1418 #endif
1419 return bindText(pStmt, i, zData, nData, xDel, 0);
1421 int sqlite3_bind_blob64(
1422 sqlite3_stmt *pStmt,
1423 int i,
1424 const void *zData,
1425 sqlite3_uint64 nData,
1426 void (*xDel)(void*)
1428 assert( xDel!=SQLITE_DYNAMIC );
1429 if( nData>0x7fffffff ){
1430 return invokeValueDestructor(zData, xDel, 0);
1431 }else{
1432 return bindText(pStmt, i, zData, (int)nData, xDel, 0);
1435 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
1436 int rc;
1437 Vdbe *p = (Vdbe *)pStmt;
1438 rc = vdbeUnbind(p, i);
1439 if( rc==SQLITE_OK ){
1440 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
1441 sqlite3_mutex_leave(p->db->mutex);
1443 return rc;
1445 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
1446 return sqlite3_bind_int64(p, i, (i64)iValue);
1448 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
1449 int rc;
1450 Vdbe *p = (Vdbe *)pStmt;
1451 rc = vdbeUnbind(p, i);
1452 if( rc==SQLITE_OK ){
1453 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
1454 sqlite3_mutex_leave(p->db->mutex);
1456 return rc;
1458 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
1459 int rc;
1460 Vdbe *p = (Vdbe*)pStmt;
1461 rc = vdbeUnbind(p, i);
1462 if( rc==SQLITE_OK ){
1463 sqlite3_mutex_leave(p->db->mutex);
1465 return rc;
1467 int sqlite3_bind_pointer(
1468 sqlite3_stmt *pStmt,
1469 int i,
1470 void *pPtr,
1471 const char *zPTtype,
1472 void (*xDestructor)(void*)
1474 int rc;
1475 Vdbe *p = (Vdbe*)pStmt;
1476 rc = vdbeUnbind(p, i);
1477 if( rc==SQLITE_OK ){
1478 sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor);
1479 sqlite3_mutex_leave(p->db->mutex);
1480 }else if( xDestructor ){
1481 xDestructor(pPtr);
1483 return rc;
1485 int sqlite3_bind_text(
1486 sqlite3_stmt *pStmt,
1487 int i,
1488 const char *zData,
1489 int nData,
1490 void (*xDel)(void*)
1492 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
1494 int sqlite3_bind_text64(
1495 sqlite3_stmt *pStmt,
1496 int i,
1497 const char *zData,
1498 sqlite3_uint64 nData,
1499 void (*xDel)(void*),
1500 unsigned char enc
1502 assert( xDel!=SQLITE_DYNAMIC );
1503 if( nData>0x7fffffff ){
1504 return invokeValueDestructor(zData, xDel, 0);
1505 }else{
1506 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
1507 return bindText(pStmt, i, zData, (int)nData, xDel, enc);
1510 #ifndef SQLITE_OMIT_UTF16
1511 int sqlite3_bind_text16(
1512 sqlite3_stmt *pStmt,
1513 int i,
1514 const void *zData,
1515 int nData,
1516 void (*xDel)(void*)
1518 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
1520 #endif /* SQLITE_OMIT_UTF16 */
1521 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
1522 int rc;
1523 switch( sqlite3_value_type((sqlite3_value*)pValue) ){
1524 case SQLITE_INTEGER: {
1525 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
1526 break;
1528 case SQLITE_FLOAT: {
1529 rc = sqlite3_bind_double(pStmt, i, pValue->u.r);
1530 break;
1532 case SQLITE_BLOB: {
1533 if( pValue->flags & MEM_Zero ){
1534 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
1535 }else{
1536 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);
1538 break;
1540 case SQLITE_TEXT: {
1541 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT,
1542 pValue->enc);
1543 break;
1545 default: {
1546 rc = sqlite3_bind_null(pStmt, i);
1547 break;
1550 return rc;
1552 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
1553 int rc;
1554 Vdbe *p = (Vdbe *)pStmt;
1555 rc = vdbeUnbind(p, i);
1556 if( rc==SQLITE_OK ){
1557 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1558 sqlite3_mutex_leave(p->db->mutex);
1560 return rc;
1562 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){
1563 int rc;
1564 Vdbe *p = (Vdbe *)pStmt;
1565 sqlite3_mutex_enter(p->db->mutex);
1566 if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){
1567 rc = SQLITE_TOOBIG;
1568 }else{
1569 assert( (n & 0x7FFFFFFF)==n );
1570 rc = sqlite3_bind_zeroblob(pStmt, i, n);
1572 rc = sqlite3ApiExit(p->db, rc);
1573 sqlite3_mutex_leave(p->db->mutex);
1574 return rc;
1578 ** Return the number of wildcards that can be potentially bound to.
1579 ** This routine is added to support DBD::SQLite.
1581 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
1582 Vdbe *p = (Vdbe*)pStmt;
1583 return p ? p->nVar : 0;
1587 ** Return the name of a wildcard parameter. Return NULL if the index
1588 ** is out of range or if the wildcard is unnamed.
1590 ** The result is always UTF-8.
1592 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
1593 Vdbe *p = (Vdbe*)pStmt;
1594 if( p==0 ) return 0;
1595 return sqlite3VListNumToName(p->pVList, i);
1599 ** Given a wildcard parameter name, return the index of the variable
1600 ** with that name. If there is no variable with the given name,
1601 ** return 0.
1603 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){
1604 if( p==0 || zName==0 ) return 0;
1605 return sqlite3VListNameToNum(p->pVList, zName, nName);
1607 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
1608 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName));
1612 ** Transfer all bindings from the first statement over to the second.
1614 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1615 Vdbe *pFrom = (Vdbe*)pFromStmt;
1616 Vdbe *pTo = (Vdbe*)pToStmt;
1617 int i;
1618 assert( pTo->db==pFrom->db );
1619 assert( pTo->nVar==pFrom->nVar );
1620 sqlite3_mutex_enter(pTo->db->mutex);
1621 for(i=0; i<pFrom->nVar; i++){
1622 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
1624 sqlite3_mutex_leave(pTo->db->mutex);
1625 return SQLITE_OK;
1628 #ifndef SQLITE_OMIT_DEPRECATED
1630 ** Deprecated external interface. Internal/core SQLite code
1631 ** should call sqlite3TransferBindings.
1633 ** It is misuse to call this routine with statements from different
1634 ** database connections. But as this is a deprecated interface, we
1635 ** will not bother to check for that condition.
1637 ** If the two statements contain a different number of bindings, then
1638 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise
1639 ** SQLITE_OK is returned.
1641 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1642 Vdbe *pFrom = (Vdbe*)pFromStmt;
1643 Vdbe *pTo = (Vdbe*)pToStmt;
1644 if( pFrom->nVar!=pTo->nVar ){
1645 return SQLITE_ERROR;
1647 assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 );
1648 if( pTo->expmask ){
1649 pTo->expired = 1;
1651 assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 );
1652 if( pFrom->expmask ){
1653 pFrom->expired = 1;
1655 return sqlite3TransferBindings(pFromStmt, pToStmt);
1657 #endif
1660 ** Return the sqlite3* database handle to which the prepared statement given
1661 ** in the argument belongs. This is the same database handle that was
1662 ** the first argument to the sqlite3_prepare() that was used to create
1663 ** the statement in the first place.
1665 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
1666 return pStmt ? ((Vdbe*)pStmt)->db : 0;
1670 ** Return true if the prepared statement is guaranteed to not modify the
1671 ** database.
1673 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){
1674 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1;
1678 ** Return 1 if the statement is an EXPLAIN and return 2 if the
1679 ** statement is an EXPLAIN QUERY PLAN
1681 int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt){
1682 return pStmt ? ((Vdbe*)pStmt)->explain : 0;
1686 ** Return true if the prepared statement is in need of being reset.
1688 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){
1689 Vdbe *v = (Vdbe*)pStmt;
1690 return v!=0 && v->magic==VDBE_MAGIC_RUN && v->pc>=0;
1694 ** Return a pointer to the next prepared statement after pStmt associated
1695 ** with database connection pDb. If pStmt is NULL, return the first
1696 ** prepared statement for the database connection. Return NULL if there
1697 ** are no more.
1699 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
1700 sqlite3_stmt *pNext;
1701 #ifdef SQLITE_ENABLE_API_ARMOR
1702 if( !sqlite3SafetyCheckOk(pDb) ){
1703 (void)SQLITE_MISUSE_BKPT;
1704 return 0;
1706 #endif
1707 sqlite3_mutex_enter(pDb->mutex);
1708 if( pStmt==0 ){
1709 pNext = (sqlite3_stmt*)pDb->pVdbe;
1710 }else{
1711 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
1713 sqlite3_mutex_leave(pDb->mutex);
1714 return pNext;
1718 ** Return the value of a status counter for a prepared statement
1720 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
1721 Vdbe *pVdbe = (Vdbe*)pStmt;
1722 u32 v;
1723 #ifdef SQLITE_ENABLE_API_ARMOR
1724 if( !pStmt
1725 || (op!=SQLITE_STMTSTATUS_MEMUSED && (op<0||op>=ArraySize(pVdbe->aCounter)))
1727 (void)SQLITE_MISUSE_BKPT;
1728 return 0;
1730 #endif
1731 if( op==SQLITE_STMTSTATUS_MEMUSED ){
1732 sqlite3 *db = pVdbe->db;
1733 sqlite3_mutex_enter(db->mutex);
1734 v = 0;
1735 db->pnBytesFreed = (int*)&v;
1736 sqlite3VdbeClearObject(db, pVdbe);
1737 sqlite3DbFree(db, pVdbe);
1738 db->pnBytesFreed = 0;
1739 sqlite3_mutex_leave(db->mutex);
1740 }else{
1741 v = pVdbe->aCounter[op];
1742 if( resetFlag ) pVdbe->aCounter[op] = 0;
1744 return (int)v;
1748 ** Return the SQL associated with a prepared statement
1750 const char *sqlite3_sql(sqlite3_stmt *pStmt){
1751 Vdbe *p = (Vdbe *)pStmt;
1752 return p ? p->zSql : 0;
1756 ** Return the SQL associated with a prepared statement with
1757 ** bound parameters expanded. Space to hold the returned string is
1758 ** obtained from sqlite3_malloc(). The caller is responsible for
1759 ** freeing the returned string by passing it to sqlite3_free().
1761 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of
1762 ** expanded bound parameters.
1764 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){
1765 #ifdef SQLITE_OMIT_TRACE
1766 return 0;
1767 #else
1768 char *z = 0;
1769 const char *zSql = sqlite3_sql(pStmt);
1770 if( zSql ){
1771 Vdbe *p = (Vdbe *)pStmt;
1772 sqlite3_mutex_enter(p->db->mutex);
1773 z = sqlite3VdbeExpandSql(p, zSql);
1774 sqlite3_mutex_leave(p->db->mutex);
1776 return z;
1777 #endif
1780 #ifdef SQLITE_ENABLE_NORMALIZE
1782 ** Return the normalized SQL associated with a prepared statement.
1784 const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt){
1785 Vdbe *p = (Vdbe *)pStmt;
1786 if( p==0 ) return 0;
1787 if( p->zNormSql==0 && ALWAYS(p->zSql!=0) ){
1788 sqlite3_mutex_enter(p->db->mutex);
1789 p->zNormSql = sqlite3Normalize(p, p->zSql);
1790 sqlite3_mutex_leave(p->db->mutex);
1792 return p->zNormSql;
1794 #endif /* SQLITE_ENABLE_NORMALIZE */
1796 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1798 ** Allocate and populate an UnpackedRecord structure based on the serialized
1799 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure
1800 ** if successful, or a NULL pointer if an OOM error is encountered.
1802 static UnpackedRecord *vdbeUnpackRecord(
1803 KeyInfo *pKeyInfo,
1804 int nKey,
1805 const void *pKey
1807 UnpackedRecord *pRet; /* Return value */
1809 pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
1810 if( pRet ){
1811 memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1));
1812 sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet);
1814 return pRet;
1818 ** This function is called from within a pre-update callback to retrieve
1819 ** a field of the row currently being updated or deleted.
1821 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
1822 PreUpdate *p = db->pPreUpdate;
1823 Mem *pMem;
1824 int rc = SQLITE_OK;
1826 /* Test that this call is being made from within an SQLITE_DELETE or
1827 ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */
1828 if( !p || p->op==SQLITE_INSERT ){
1829 rc = SQLITE_MISUSE_BKPT;
1830 goto preupdate_old_out;
1832 if( p->pPk ){
1833 iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx);
1835 if( iIdx>=p->pCsr->nField || iIdx<0 ){
1836 rc = SQLITE_RANGE;
1837 goto preupdate_old_out;
1840 /* If the old.* record has not yet been loaded into memory, do so now. */
1841 if( p->pUnpacked==0 ){
1842 u32 nRec;
1843 u8 *aRec;
1845 nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor);
1846 aRec = sqlite3DbMallocRaw(db, nRec);
1847 if( !aRec ) goto preupdate_old_out;
1848 rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec);
1849 if( rc==SQLITE_OK ){
1850 p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec);
1851 if( !p->pUnpacked ) rc = SQLITE_NOMEM;
1853 if( rc!=SQLITE_OK ){
1854 sqlite3DbFree(db, aRec);
1855 goto preupdate_old_out;
1857 p->aRecord = aRec;
1860 pMem = *ppValue = &p->pUnpacked->aMem[iIdx];
1861 if( iIdx==p->pTab->iPKey ){
1862 sqlite3VdbeMemSetInt64(pMem, p->iKey1);
1863 }else if( iIdx>=p->pUnpacked->nField ){
1864 *ppValue = (sqlite3_value *)columnNullValue();
1865 }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){
1866 if( pMem->flags & (MEM_Int|MEM_IntReal) ){
1867 testcase( pMem->flags & MEM_Int );
1868 testcase( pMem->flags & MEM_IntReal );
1869 sqlite3VdbeMemRealify(pMem);
1873 preupdate_old_out:
1874 sqlite3Error(db, rc);
1875 return sqlite3ApiExit(db, rc);
1877 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1879 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1881 ** This function is called from within a pre-update callback to retrieve
1882 ** the number of columns in the row being updated, deleted or inserted.
1884 int sqlite3_preupdate_count(sqlite3 *db){
1885 PreUpdate *p = db->pPreUpdate;
1886 return (p ? p->keyinfo.nKeyField : 0);
1888 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1890 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1892 ** This function is designed to be called from within a pre-update callback
1893 ** only. It returns zero if the change that caused the callback was made
1894 ** immediately by a user SQL statement. Or, if the change was made by a
1895 ** trigger program, it returns the number of trigger programs currently
1896 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a
1897 ** top-level trigger etc.).
1899 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL
1900 ** or SET DEFAULT action is considered a trigger.
1902 int sqlite3_preupdate_depth(sqlite3 *db){
1903 PreUpdate *p = db->pPreUpdate;
1904 return (p ? p->v->nFrame : 0);
1906 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1908 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1910 ** This function is called from within a pre-update callback to retrieve
1911 ** a field of the row currently being updated or inserted.
1913 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
1914 PreUpdate *p = db->pPreUpdate;
1915 int rc = SQLITE_OK;
1916 Mem *pMem;
1918 if( !p || p->op==SQLITE_DELETE ){
1919 rc = SQLITE_MISUSE_BKPT;
1920 goto preupdate_new_out;
1922 if( p->pPk && p->op!=SQLITE_UPDATE ){
1923 iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx);
1925 if( iIdx>=p->pCsr->nField || iIdx<0 ){
1926 rc = SQLITE_RANGE;
1927 goto preupdate_new_out;
1930 if( p->op==SQLITE_INSERT ){
1931 /* For an INSERT, memory cell p->iNewReg contains the serialized record
1932 ** that is being inserted. Deserialize it. */
1933 UnpackedRecord *pUnpack = p->pNewUnpacked;
1934 if( !pUnpack ){
1935 Mem *pData = &p->v->aMem[p->iNewReg];
1936 rc = ExpandBlob(pData);
1937 if( rc!=SQLITE_OK ) goto preupdate_new_out;
1938 pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z);
1939 if( !pUnpack ){
1940 rc = SQLITE_NOMEM;
1941 goto preupdate_new_out;
1943 p->pNewUnpacked = pUnpack;
1945 pMem = &pUnpack->aMem[iIdx];
1946 if( iIdx==p->pTab->iPKey ){
1947 sqlite3VdbeMemSetInt64(pMem, p->iKey2);
1948 }else if( iIdx>=pUnpack->nField ){
1949 pMem = (sqlite3_value *)columnNullValue();
1951 }else{
1952 /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required
1953 ** value. Make a copy of the cell contents and return a pointer to it.
1954 ** It is not safe to return a pointer to the memory cell itself as the
1955 ** caller may modify the value text encoding.
1957 assert( p->op==SQLITE_UPDATE );
1958 if( !p->aNew ){
1959 p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField);
1960 if( !p->aNew ){
1961 rc = SQLITE_NOMEM;
1962 goto preupdate_new_out;
1965 assert( iIdx>=0 && iIdx<p->pCsr->nField );
1966 pMem = &p->aNew[iIdx];
1967 if( pMem->flags==0 ){
1968 if( iIdx==p->pTab->iPKey ){
1969 sqlite3VdbeMemSetInt64(pMem, p->iKey2);
1970 }else{
1971 rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]);
1972 if( rc!=SQLITE_OK ) goto preupdate_new_out;
1976 *ppValue = pMem;
1978 preupdate_new_out:
1979 sqlite3Error(db, rc);
1980 return sqlite3ApiExit(db, rc);
1982 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1984 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1986 ** Return status data for a single loop within query pStmt.
1988 int sqlite3_stmt_scanstatus(
1989 sqlite3_stmt *pStmt, /* Prepared statement being queried */
1990 int idx, /* Index of loop to report on */
1991 int iScanStatusOp, /* Which metric to return */
1992 void *pOut /* OUT: Write the answer here */
1994 Vdbe *p = (Vdbe*)pStmt;
1995 ScanStatus *pScan;
1996 if( idx<0 || idx>=p->nScan ) return 1;
1997 pScan = &p->aScan[idx];
1998 switch( iScanStatusOp ){
1999 case SQLITE_SCANSTAT_NLOOP: {
2000 *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop];
2001 break;
2003 case SQLITE_SCANSTAT_NVISIT: {
2004 *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit];
2005 break;
2007 case SQLITE_SCANSTAT_EST: {
2008 double r = 1.0;
2009 LogEst x = pScan->nEst;
2010 while( x<100 ){
2011 x += 10;
2012 r *= 0.5;
2014 *(double*)pOut = r*sqlite3LogEstToInt(x);
2015 break;
2017 case SQLITE_SCANSTAT_NAME: {
2018 *(const char**)pOut = pScan->zName;
2019 break;
2021 case SQLITE_SCANSTAT_EXPLAIN: {
2022 if( pScan->addrExplain ){
2023 *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z;
2024 }else{
2025 *(const char**)pOut = 0;
2027 break;
2029 case SQLITE_SCANSTAT_SELECTID: {
2030 if( pScan->addrExplain ){
2031 *(int*)pOut = p->aOp[ pScan->addrExplain ].p1;
2032 }else{
2033 *(int*)pOut = -1;
2035 break;
2037 default: {
2038 return 1;
2041 return 0;
2045 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data.
2047 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){
2048 Vdbe *p = (Vdbe*)pStmt;
2049 memset(p->anExec, 0, p->nOp * sizeof(i64));
2051 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */