update version and change log for 4.4.2
[sqlcipher.git] / src / func.c
blobeef7e900d590bb7a521166042ccce37051b1fef4
1 /*
2 ** 2002 February 23
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains the C-language implementations for many of the SQL
13 ** functions of SQLite. (Some function, and in particular the date and
14 ** time functions, are implemented separately.)
16 #include "sqliteInt.h"
17 #include <stdlib.h>
18 #include <assert.h>
19 #ifndef SQLITE_OMIT_FLOATING_POINT
20 #include <math.h>
21 #endif
22 #include "vdbeInt.h"
25 ** Return the collating function associated with a function.
27 static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){
28 VdbeOp *pOp;
29 assert( context->pVdbe!=0 );
30 pOp = &context->pVdbe->aOp[context->iOp-1];
31 assert( pOp->opcode==OP_CollSeq );
32 assert( pOp->p4type==P4_COLLSEQ );
33 return pOp->p4.pColl;
37 ** Indicate that the accumulator load should be skipped on this
38 ** iteration of the aggregate loop.
40 static void sqlite3SkipAccumulatorLoad(sqlite3_context *context){
41 assert( context->isError<=0 );
42 context->isError = -1;
43 context->skipFlag = 1;
47 ** Implementation of the non-aggregate min() and max() functions
49 static void minmaxFunc(
50 sqlite3_context *context,
51 int argc,
52 sqlite3_value **argv
54 int i;
55 int mask; /* 0 for min() or 0xffffffff for max() */
56 int iBest;
57 CollSeq *pColl;
59 assert( argc>1 );
60 mask = sqlite3_user_data(context)==0 ? 0 : -1;
61 pColl = sqlite3GetFuncCollSeq(context);
62 assert( pColl );
63 assert( mask==-1 || mask==0 );
64 iBest = 0;
65 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
66 for(i=1; i<argc; i++){
67 if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return;
68 if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){
69 testcase( mask==0 );
70 iBest = i;
73 sqlite3_result_value(context, argv[iBest]);
77 ** Return the type of the argument.
79 static void typeofFunc(
80 sqlite3_context *context,
81 int NotUsed,
82 sqlite3_value **argv
84 static const char *azType[] = { "integer", "real", "text", "blob", "null" };
85 int i = sqlite3_value_type(argv[0]) - 1;
86 UNUSED_PARAMETER(NotUsed);
87 assert( i>=0 && i<ArraySize(azType) );
88 assert( SQLITE_INTEGER==1 );
89 assert( SQLITE_FLOAT==2 );
90 assert( SQLITE_TEXT==3 );
91 assert( SQLITE_BLOB==4 );
92 assert( SQLITE_NULL==5 );
93 /* EVIDENCE-OF: R-01470-60482 The sqlite3_value_type(V) interface returns
94 ** the datatype code for the initial datatype of the sqlite3_value object
95 ** V. The returned value is one of SQLITE_INTEGER, SQLITE_FLOAT,
96 ** SQLITE_TEXT, SQLITE_BLOB, or SQLITE_NULL. */
97 sqlite3_result_text(context, azType[i], -1, SQLITE_STATIC);
102 ** Implementation of the length() function
104 static void lengthFunc(
105 sqlite3_context *context,
106 int argc,
107 sqlite3_value **argv
109 assert( argc==1 );
110 UNUSED_PARAMETER(argc);
111 switch( sqlite3_value_type(argv[0]) ){
112 case SQLITE_BLOB:
113 case SQLITE_INTEGER:
114 case SQLITE_FLOAT: {
115 sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
116 break;
118 case SQLITE_TEXT: {
119 const unsigned char *z = sqlite3_value_text(argv[0]);
120 const unsigned char *z0;
121 unsigned char c;
122 if( z==0 ) return;
123 z0 = z;
124 while( (c = *z)!=0 ){
125 z++;
126 if( c>=0xc0 ){
127 while( (*z & 0xc0)==0x80 ){ z++; z0++; }
130 sqlite3_result_int(context, (int)(z-z0));
131 break;
133 default: {
134 sqlite3_result_null(context);
135 break;
141 ** Implementation of the abs() function.
143 ** IMP: R-23979-26855 The abs(X) function returns the absolute value of
144 ** the numeric argument X.
146 static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
147 assert( argc==1 );
148 UNUSED_PARAMETER(argc);
149 switch( sqlite3_value_type(argv[0]) ){
150 case SQLITE_INTEGER: {
151 i64 iVal = sqlite3_value_int64(argv[0]);
152 if( iVal<0 ){
153 if( iVal==SMALLEST_INT64 ){
154 /* IMP: R-31676-45509 If X is the integer -9223372036854775808
155 ** then abs(X) throws an integer overflow error since there is no
156 ** equivalent positive 64-bit two complement value. */
157 sqlite3_result_error(context, "integer overflow", -1);
158 return;
160 iVal = -iVal;
162 sqlite3_result_int64(context, iVal);
163 break;
165 case SQLITE_NULL: {
166 /* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */
167 sqlite3_result_null(context);
168 break;
170 default: {
171 /* Because sqlite3_value_double() returns 0.0 if the argument is not
172 ** something that can be converted into a number, we have:
173 ** IMP: R-01992-00519 Abs(X) returns 0.0 if X is a string or blob
174 ** that cannot be converted to a numeric value.
176 double rVal = sqlite3_value_double(argv[0]);
177 if( rVal<0 ) rVal = -rVal;
178 sqlite3_result_double(context, rVal);
179 break;
185 ** Implementation of the instr() function.
187 ** instr(haystack,needle) finds the first occurrence of needle
188 ** in haystack and returns the number of previous characters plus 1,
189 ** or 0 if needle does not occur within haystack.
191 ** If both haystack and needle are BLOBs, then the result is one more than
192 ** the number of bytes in haystack prior to the first occurrence of needle,
193 ** or 0 if needle never occurs in haystack.
195 static void instrFunc(
196 sqlite3_context *context,
197 int argc,
198 sqlite3_value **argv
200 const unsigned char *zHaystack;
201 const unsigned char *zNeedle;
202 int nHaystack;
203 int nNeedle;
204 int typeHaystack, typeNeedle;
205 int N = 1;
206 int isText;
207 unsigned char firstChar;
208 sqlite3_value *pC1 = 0;
209 sqlite3_value *pC2 = 0;
211 UNUSED_PARAMETER(argc);
212 typeHaystack = sqlite3_value_type(argv[0]);
213 typeNeedle = sqlite3_value_type(argv[1]);
214 if( typeHaystack==SQLITE_NULL || typeNeedle==SQLITE_NULL ) return;
215 nHaystack = sqlite3_value_bytes(argv[0]);
216 nNeedle = sqlite3_value_bytes(argv[1]);
217 if( nNeedle>0 ){
218 if( typeHaystack==SQLITE_BLOB && typeNeedle==SQLITE_BLOB ){
219 zHaystack = sqlite3_value_blob(argv[0]);
220 zNeedle = sqlite3_value_blob(argv[1]);
221 isText = 0;
222 }else if( typeHaystack!=SQLITE_BLOB && typeNeedle!=SQLITE_BLOB ){
223 zHaystack = sqlite3_value_text(argv[0]);
224 zNeedle = sqlite3_value_text(argv[1]);
225 isText = 1;
226 }else{
227 pC1 = sqlite3_value_dup(argv[0]);
228 zHaystack = sqlite3_value_text(pC1);
229 if( zHaystack==0 ) goto endInstrOOM;
230 nHaystack = sqlite3_value_bytes(pC1);
231 pC2 = sqlite3_value_dup(argv[1]);
232 zNeedle = sqlite3_value_text(pC2);
233 if( zNeedle==0 ) goto endInstrOOM;
234 nNeedle = sqlite3_value_bytes(pC2);
235 isText = 1;
237 if( zNeedle==0 || (nHaystack && zHaystack==0) ) goto endInstrOOM;
238 firstChar = zNeedle[0];
239 while( nNeedle<=nHaystack
240 && (zHaystack[0]!=firstChar || memcmp(zHaystack, zNeedle, nNeedle)!=0)
242 N++;
244 nHaystack--;
245 zHaystack++;
246 }while( isText && (zHaystack[0]&0xc0)==0x80 );
248 if( nNeedle>nHaystack ) N = 0;
250 sqlite3_result_int(context, N);
251 endInstr:
252 sqlite3_value_free(pC1);
253 sqlite3_value_free(pC2);
254 return;
255 endInstrOOM:
256 sqlite3_result_error_nomem(context);
257 goto endInstr;
261 ** Implementation of the printf() function.
263 static void printfFunc(
264 sqlite3_context *context,
265 int argc,
266 sqlite3_value **argv
268 PrintfArguments x;
269 StrAccum str;
270 const char *zFormat;
271 int n;
272 sqlite3 *db = sqlite3_context_db_handle(context);
274 if( argc>=1 && (zFormat = (const char*)sqlite3_value_text(argv[0]))!=0 ){
275 x.nArg = argc-1;
276 x.nUsed = 0;
277 x.apArg = argv+1;
278 sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]);
279 str.printfFlags = SQLITE_PRINTF_SQLFUNC;
280 sqlite3_str_appendf(&str, zFormat, &x);
281 n = str.nChar;
282 sqlite3_result_text(context, sqlite3StrAccumFinish(&str), n,
283 SQLITE_DYNAMIC);
288 ** Implementation of the substr() function.
290 ** substr(x,p1,p2) returns p2 characters of x[] beginning with p1.
291 ** p1 is 1-indexed. So substr(x,1,1) returns the first character
292 ** of x. If x is text, then we actually count UTF-8 characters.
293 ** If x is a blob, then we count bytes.
295 ** If p1 is negative, then we begin abs(p1) from the end of x[].
297 ** If p2 is negative, return the p2 characters preceding p1.
299 static void substrFunc(
300 sqlite3_context *context,
301 int argc,
302 sqlite3_value **argv
304 const unsigned char *z;
305 const unsigned char *z2;
306 int len;
307 int p0type;
308 i64 p1, p2;
309 int negP2 = 0;
311 assert( argc==3 || argc==2 );
312 if( sqlite3_value_type(argv[1])==SQLITE_NULL
313 || (argc==3 && sqlite3_value_type(argv[2])==SQLITE_NULL)
315 return;
317 p0type = sqlite3_value_type(argv[0]);
318 p1 = sqlite3_value_int(argv[1]);
319 if( p0type==SQLITE_BLOB ){
320 len = sqlite3_value_bytes(argv[0]);
321 z = sqlite3_value_blob(argv[0]);
322 if( z==0 ) return;
323 assert( len==sqlite3_value_bytes(argv[0]) );
324 }else{
325 z = sqlite3_value_text(argv[0]);
326 if( z==0 ) return;
327 len = 0;
328 if( p1<0 ){
329 for(z2=z; *z2; len++){
330 SQLITE_SKIP_UTF8(z2);
334 #ifdef SQLITE_SUBSTR_COMPATIBILITY
335 /* If SUBSTR_COMPATIBILITY is defined then substr(X,0,N) work the same as
336 ** as substr(X,1,N) - it returns the first N characters of X. This
337 ** is essentially a back-out of the bug-fix in check-in [5fc125d362df4b8]
338 ** from 2009-02-02 for compatibility of applications that exploited the
339 ** old buggy behavior. */
340 if( p1==0 ) p1 = 1; /* <rdar://problem/6778339> */
341 #endif
342 if( argc==3 ){
343 p2 = sqlite3_value_int(argv[2]);
344 if( p2<0 ){
345 p2 = -p2;
346 negP2 = 1;
348 }else{
349 p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH];
351 if( p1<0 ){
352 p1 += len;
353 if( p1<0 ){
354 p2 += p1;
355 if( p2<0 ) p2 = 0;
356 p1 = 0;
358 }else if( p1>0 ){
359 p1--;
360 }else if( p2>0 ){
361 p2--;
363 if( negP2 ){
364 p1 -= p2;
365 if( p1<0 ){
366 p2 += p1;
367 p1 = 0;
370 assert( p1>=0 && p2>=0 );
371 if( p0type!=SQLITE_BLOB ){
372 while( *z && p1 ){
373 SQLITE_SKIP_UTF8(z);
374 p1--;
376 for(z2=z; *z2 && p2; p2--){
377 SQLITE_SKIP_UTF8(z2);
379 sqlite3_result_text64(context, (char*)z, z2-z, SQLITE_TRANSIENT,
380 SQLITE_UTF8);
381 }else{
382 if( p1+p2>len ){
383 p2 = len-p1;
384 if( p2<0 ) p2 = 0;
386 sqlite3_result_blob64(context, (char*)&z[p1], (u64)p2, SQLITE_TRANSIENT);
391 ** Implementation of the round() function
393 #ifndef SQLITE_OMIT_FLOATING_POINT
394 static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
395 int n = 0;
396 double r;
397 char *zBuf;
398 assert( argc==1 || argc==2 );
399 if( argc==2 ){
400 if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return;
401 n = sqlite3_value_int(argv[1]);
402 if( n>30 ) n = 30;
403 if( n<0 ) n = 0;
405 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
406 r = sqlite3_value_double(argv[0]);
407 /* If Y==0 and X will fit in a 64-bit int,
408 ** handle the rounding directly,
409 ** otherwise use printf.
411 if( r<-4503599627370496.0 || r>+4503599627370496.0 ){
412 /* The value has no fractional part so there is nothing to round */
413 }else if( n==0 ){
414 r = (double)((sqlite_int64)(r+(r<0?-0.5:+0.5)));
415 }else{
416 zBuf = sqlite3_mprintf("%.*f",n,r);
417 if( zBuf==0 ){
418 sqlite3_result_error_nomem(context);
419 return;
421 sqlite3AtoF(zBuf, &r, sqlite3Strlen30(zBuf), SQLITE_UTF8);
422 sqlite3_free(zBuf);
424 sqlite3_result_double(context, r);
426 #endif
429 ** Allocate nByte bytes of space using sqlite3Malloc(). If the
430 ** allocation fails, call sqlite3_result_error_nomem() to notify
431 ** the database handle that malloc() has failed and return NULL.
432 ** If nByte is larger than the maximum string or blob length, then
433 ** raise an SQLITE_TOOBIG exception and return NULL.
435 static void *contextMalloc(sqlite3_context *context, i64 nByte){
436 char *z;
437 sqlite3 *db = sqlite3_context_db_handle(context);
438 assert( nByte>0 );
439 testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH] );
440 testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
441 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
442 sqlite3_result_error_toobig(context);
443 z = 0;
444 }else{
445 z = sqlite3Malloc(nByte);
446 if( !z ){
447 sqlite3_result_error_nomem(context);
450 return z;
454 ** Implementation of the upper() and lower() SQL functions.
456 static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
457 char *z1;
458 const char *z2;
459 int i, n;
460 UNUSED_PARAMETER(argc);
461 z2 = (char*)sqlite3_value_text(argv[0]);
462 n = sqlite3_value_bytes(argv[0]);
463 /* Verify that the call to _bytes() does not invalidate the _text() pointer */
464 assert( z2==(char*)sqlite3_value_text(argv[0]) );
465 if( z2 ){
466 z1 = contextMalloc(context, ((i64)n)+1);
467 if( z1 ){
468 for(i=0; i<n; i++){
469 z1[i] = (char)sqlite3Toupper(z2[i]);
471 sqlite3_result_text(context, z1, n, sqlite3_free);
475 static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
476 char *z1;
477 const char *z2;
478 int i, n;
479 UNUSED_PARAMETER(argc);
480 z2 = (char*)sqlite3_value_text(argv[0]);
481 n = sqlite3_value_bytes(argv[0]);
482 /* Verify that the call to _bytes() does not invalidate the _text() pointer */
483 assert( z2==(char*)sqlite3_value_text(argv[0]) );
484 if( z2 ){
485 z1 = contextMalloc(context, ((i64)n)+1);
486 if( z1 ){
487 for(i=0; i<n; i++){
488 z1[i] = sqlite3Tolower(z2[i]);
490 sqlite3_result_text(context, z1, n, sqlite3_free);
496 ** Some functions like COALESCE() and IFNULL() and UNLIKELY() are implemented
497 ** as VDBE code so that unused argument values do not have to be computed.
498 ** However, we still need some kind of function implementation for this
499 ** routines in the function table. The noopFunc macro provides this.
500 ** noopFunc will never be called so it doesn't matter what the implementation
501 ** is. We might as well use the "version()" function as a substitute.
503 #define noopFunc versionFunc /* Substitute function - never called */
506 ** Implementation of random(). Return a random integer.
508 static void randomFunc(
509 sqlite3_context *context,
510 int NotUsed,
511 sqlite3_value **NotUsed2
513 sqlite_int64 r;
514 UNUSED_PARAMETER2(NotUsed, NotUsed2);
515 sqlite3_randomness(sizeof(r), &r);
516 if( r<0 ){
517 /* We need to prevent a random number of 0x8000000000000000
518 ** (or -9223372036854775808) since when you do abs() of that
519 ** number of you get the same value back again. To do this
520 ** in a way that is testable, mask the sign bit off of negative
521 ** values, resulting in a positive value. Then take the
522 ** 2s complement of that positive value. The end result can
523 ** therefore be no less than -9223372036854775807.
525 r = -(r & LARGEST_INT64);
527 sqlite3_result_int64(context, r);
531 ** Implementation of randomblob(N). Return a random blob
532 ** that is N bytes long.
534 static void randomBlob(
535 sqlite3_context *context,
536 int argc,
537 sqlite3_value **argv
539 sqlite3_int64 n;
540 unsigned char *p;
541 assert( argc==1 );
542 UNUSED_PARAMETER(argc);
543 n = sqlite3_value_int64(argv[0]);
544 if( n<1 ){
545 n = 1;
547 p = contextMalloc(context, n);
548 if( p ){
549 sqlite3_randomness(n, p);
550 sqlite3_result_blob(context, (char*)p, n, sqlite3_free);
555 ** Implementation of the last_insert_rowid() SQL function. The return
556 ** value is the same as the sqlite3_last_insert_rowid() API function.
558 static void last_insert_rowid(
559 sqlite3_context *context,
560 int NotUsed,
561 sqlite3_value **NotUsed2
563 sqlite3 *db = sqlite3_context_db_handle(context);
564 UNUSED_PARAMETER2(NotUsed, NotUsed2);
565 /* IMP: R-51513-12026 The last_insert_rowid() SQL function is a
566 ** wrapper around the sqlite3_last_insert_rowid() C/C++ interface
567 ** function. */
568 sqlite3_result_int64(context, sqlite3_last_insert_rowid(db));
572 ** Implementation of the changes() SQL function.
574 ** IMP: R-62073-11209 The changes() SQL function is a wrapper
575 ** around the sqlite3_changes() C/C++ function and hence follows the same
576 ** rules for counting changes.
578 static void changes(
579 sqlite3_context *context,
580 int NotUsed,
581 sqlite3_value **NotUsed2
583 sqlite3 *db = sqlite3_context_db_handle(context);
584 UNUSED_PARAMETER2(NotUsed, NotUsed2);
585 sqlite3_result_int(context, sqlite3_changes(db));
589 ** Implementation of the total_changes() SQL function. The return value is
590 ** the same as the sqlite3_total_changes() API function.
592 static void total_changes(
593 sqlite3_context *context,
594 int NotUsed,
595 sqlite3_value **NotUsed2
597 sqlite3 *db = sqlite3_context_db_handle(context);
598 UNUSED_PARAMETER2(NotUsed, NotUsed2);
599 /* IMP: R-52756-41993 This function is a wrapper around the
600 ** sqlite3_total_changes() C/C++ interface. */
601 sqlite3_result_int(context, sqlite3_total_changes(db));
605 ** A structure defining how to do GLOB-style comparisons.
607 struct compareInfo {
608 u8 matchAll; /* "*" or "%" */
609 u8 matchOne; /* "?" or "_" */
610 u8 matchSet; /* "[" or 0 */
611 u8 noCase; /* true to ignore case differences */
615 ** For LIKE and GLOB matching on EBCDIC machines, assume that every
616 ** character is exactly one byte in size. Also, provde the Utf8Read()
617 ** macro for fast reading of the next character in the common case where
618 ** the next character is ASCII.
620 #if defined(SQLITE_EBCDIC)
621 # define sqlite3Utf8Read(A) (*((*A)++))
622 # define Utf8Read(A) (*(A++))
623 #else
624 # define Utf8Read(A) (A[0]<0x80?*(A++):sqlite3Utf8Read(&A))
625 #endif
627 static const struct compareInfo globInfo = { '*', '?', '[', 0 };
628 /* The correct SQL-92 behavior is for the LIKE operator to ignore
629 ** case. Thus 'a' LIKE 'A' would be true. */
630 static const struct compareInfo likeInfoNorm = { '%', '_', 0, 1 };
631 /* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator
632 ** is case sensitive causing 'a' LIKE 'A' to be false */
633 static const struct compareInfo likeInfoAlt = { '%', '_', 0, 0 };
636 ** Possible error returns from patternMatch()
638 #define SQLITE_MATCH 0
639 #define SQLITE_NOMATCH 1
640 #define SQLITE_NOWILDCARDMATCH 2
643 ** Compare two UTF-8 strings for equality where the first string is
644 ** a GLOB or LIKE expression. Return values:
646 ** SQLITE_MATCH: Match
647 ** SQLITE_NOMATCH: No match
648 ** SQLITE_NOWILDCARDMATCH: No match in spite of having * or % wildcards.
650 ** Globbing rules:
652 ** '*' Matches any sequence of zero or more characters.
654 ** '?' Matches exactly one character.
656 ** [...] Matches one character from the enclosed list of
657 ** characters.
659 ** [^...] Matches one character not in the enclosed list.
661 ** With the [...] and [^...] matching, a ']' character can be included
662 ** in the list by making it the first character after '[' or '^'. A
663 ** range of characters can be specified using '-'. Example:
664 ** "[a-z]" matches any single lower-case letter. To match a '-', make
665 ** it the last character in the list.
667 ** Like matching rules:
669 ** '%' Matches any sequence of zero or more characters
671 *** '_' Matches any one character
673 ** Ec Where E is the "esc" character and c is any other
674 ** character, including '%', '_', and esc, match exactly c.
676 ** The comments within this routine usually assume glob matching.
678 ** This routine is usually quick, but can be N**2 in the worst case.
680 static int patternCompare(
681 const u8 *zPattern, /* The glob pattern */
682 const u8 *zString, /* The string to compare against the glob */
683 const struct compareInfo *pInfo, /* Information about how to do the compare */
684 u32 matchOther /* The escape char (LIKE) or '[' (GLOB) */
686 u32 c, c2; /* Next pattern and input string chars */
687 u32 matchOne = pInfo->matchOne; /* "?" or "_" */
688 u32 matchAll = pInfo->matchAll; /* "*" or "%" */
689 u8 noCase = pInfo->noCase; /* True if uppercase==lowercase */
690 const u8 *zEscaped = 0; /* One past the last escaped input char */
692 while( (c = Utf8Read(zPattern))!=0 ){
693 if( c==matchAll ){ /* Match "*" */
694 /* Skip over multiple "*" characters in the pattern. If there
695 ** are also "?" characters, skip those as well, but consume a
696 ** single character of the input string for each "?" skipped */
697 while( (c=Utf8Read(zPattern)) == matchAll || c == matchOne ){
698 if( c==matchOne && sqlite3Utf8Read(&zString)==0 ){
699 return SQLITE_NOWILDCARDMATCH;
702 if( c==0 ){
703 return SQLITE_MATCH; /* "*" at the end of the pattern matches */
704 }else if( c==matchOther ){
705 if( pInfo->matchSet==0 ){
706 c = sqlite3Utf8Read(&zPattern);
707 if( c==0 ) return SQLITE_NOWILDCARDMATCH;
708 }else{
709 /* "[...]" immediately follows the "*". We have to do a slow
710 ** recursive search in this case, but it is an unusual case. */
711 assert( matchOther<0x80 ); /* '[' is a single-byte character */
712 while( *zString ){
713 int bMatch = patternCompare(&zPattern[-1],zString,pInfo,matchOther);
714 if( bMatch!=SQLITE_NOMATCH ) return bMatch;
715 SQLITE_SKIP_UTF8(zString);
717 return SQLITE_NOWILDCARDMATCH;
721 /* At this point variable c contains the first character of the
722 ** pattern string past the "*". Search in the input string for the
723 ** first matching character and recursively continue the match from
724 ** that point.
726 ** For a case-insensitive search, set variable cx to be the same as
727 ** c but in the other case and search the input string for either
728 ** c or cx.
730 if( c<=0x80 ){
731 char zStop[3];
732 int bMatch;
733 if( noCase ){
734 zStop[0] = sqlite3Toupper(c);
735 zStop[1] = sqlite3Tolower(c);
736 zStop[2] = 0;
737 }else{
738 zStop[0] = c;
739 zStop[1] = 0;
741 while(1){
742 zString += strcspn((const char*)zString, zStop);
743 if( zString[0]==0 ) break;
744 zString++;
745 bMatch = patternCompare(zPattern,zString,pInfo,matchOther);
746 if( bMatch!=SQLITE_NOMATCH ) return bMatch;
748 }else{
749 int bMatch;
750 while( (c2 = Utf8Read(zString))!=0 ){
751 if( c2!=c ) continue;
752 bMatch = patternCompare(zPattern,zString,pInfo,matchOther);
753 if( bMatch!=SQLITE_NOMATCH ) return bMatch;
756 return SQLITE_NOWILDCARDMATCH;
758 if( c==matchOther ){
759 if( pInfo->matchSet==0 ){
760 c = sqlite3Utf8Read(&zPattern);
761 if( c==0 ) return SQLITE_NOMATCH;
762 zEscaped = zPattern;
763 }else{
764 u32 prior_c = 0;
765 int seen = 0;
766 int invert = 0;
767 c = sqlite3Utf8Read(&zString);
768 if( c==0 ) return SQLITE_NOMATCH;
769 c2 = sqlite3Utf8Read(&zPattern);
770 if( c2=='^' ){
771 invert = 1;
772 c2 = sqlite3Utf8Read(&zPattern);
774 if( c2==']' ){
775 if( c==']' ) seen = 1;
776 c2 = sqlite3Utf8Read(&zPattern);
778 while( c2 && c2!=']' ){
779 if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){
780 c2 = sqlite3Utf8Read(&zPattern);
781 if( c>=prior_c && c<=c2 ) seen = 1;
782 prior_c = 0;
783 }else{
784 if( c==c2 ){
785 seen = 1;
787 prior_c = c2;
789 c2 = sqlite3Utf8Read(&zPattern);
791 if( c2==0 || (seen ^ invert)==0 ){
792 return SQLITE_NOMATCH;
794 continue;
797 c2 = Utf8Read(zString);
798 if( c==c2 ) continue;
799 if( noCase && sqlite3Tolower(c)==sqlite3Tolower(c2) && c<0x80 && c2<0x80 ){
800 continue;
802 if( c==matchOne && zPattern!=zEscaped && c2!=0 ) continue;
803 return SQLITE_NOMATCH;
805 return *zString==0 ? SQLITE_MATCH : SQLITE_NOMATCH;
809 ** The sqlite3_strglob() interface. Return 0 on a match (like strcmp()) and
810 ** non-zero if there is no match.
812 int sqlite3_strglob(const char *zGlobPattern, const char *zString){
813 return patternCompare((u8*)zGlobPattern, (u8*)zString, &globInfo, '[');
817 ** The sqlite3_strlike() interface. Return 0 on a match and non-zero for
818 ** a miss - like strcmp().
820 int sqlite3_strlike(const char *zPattern, const char *zStr, unsigned int esc){
821 return patternCompare((u8*)zPattern, (u8*)zStr, &likeInfoNorm, esc);
825 ** Count the number of times that the LIKE operator (or GLOB which is
826 ** just a variation of LIKE) gets called. This is used for testing
827 ** only.
829 #ifdef SQLITE_TEST
830 int sqlite3_like_count = 0;
831 #endif
835 ** Implementation of the like() SQL function. This function implements
836 ** the build-in LIKE operator. The first argument to the function is the
837 ** pattern and the second argument is the string. So, the SQL statements:
839 ** A LIKE B
841 ** is implemented as like(B,A).
843 ** This same function (with a different compareInfo structure) computes
844 ** the GLOB operator.
846 static void likeFunc(
847 sqlite3_context *context,
848 int argc,
849 sqlite3_value **argv
851 const unsigned char *zA, *zB;
852 u32 escape;
853 int nPat;
854 sqlite3 *db = sqlite3_context_db_handle(context);
855 struct compareInfo *pInfo = sqlite3_user_data(context);
856 struct compareInfo backupInfo;
858 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
859 if( sqlite3_value_type(argv[0])==SQLITE_BLOB
860 || sqlite3_value_type(argv[1])==SQLITE_BLOB
862 #ifdef SQLITE_TEST
863 sqlite3_like_count++;
864 #endif
865 sqlite3_result_int(context, 0);
866 return;
868 #endif
870 /* Limit the length of the LIKE or GLOB pattern to avoid problems
871 ** of deep recursion and N*N behavior in patternCompare().
873 nPat = sqlite3_value_bytes(argv[0]);
874 testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] );
875 testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]+1 );
876 if( nPat > db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ){
877 sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
878 return;
880 if( argc==3 ){
881 /* The escape character string must consist of a single UTF-8 character.
882 ** Otherwise, return an error.
884 const unsigned char *zEsc = sqlite3_value_text(argv[2]);
885 if( zEsc==0 ) return;
886 if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){
887 sqlite3_result_error(context,
888 "ESCAPE expression must be a single character", -1);
889 return;
891 escape = sqlite3Utf8Read(&zEsc);
892 if( escape==pInfo->matchAll || escape==pInfo->matchOne ){
893 memcpy(&backupInfo, pInfo, sizeof(backupInfo));
894 pInfo = &backupInfo;
895 if( escape==pInfo->matchAll ) pInfo->matchAll = 0;
896 if( escape==pInfo->matchOne ) pInfo->matchOne = 0;
898 }else{
899 escape = pInfo->matchSet;
901 zB = sqlite3_value_text(argv[0]);
902 zA = sqlite3_value_text(argv[1]);
903 if( zA && zB ){
904 #ifdef SQLITE_TEST
905 sqlite3_like_count++;
906 #endif
907 sqlite3_result_int(context,
908 patternCompare(zB, zA, pInfo, escape)==SQLITE_MATCH);
913 ** Implementation of the NULLIF(x,y) function. The result is the first
914 ** argument if the arguments are different. The result is NULL if the
915 ** arguments are equal to each other.
917 static void nullifFunc(
918 sqlite3_context *context,
919 int NotUsed,
920 sqlite3_value **argv
922 CollSeq *pColl = sqlite3GetFuncCollSeq(context);
923 UNUSED_PARAMETER(NotUsed);
924 if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){
925 sqlite3_result_value(context, argv[0]);
930 ** Implementation of the sqlite_version() function. The result is the version
931 ** of the SQLite library that is running.
933 static void versionFunc(
934 sqlite3_context *context,
935 int NotUsed,
936 sqlite3_value **NotUsed2
938 UNUSED_PARAMETER2(NotUsed, NotUsed2);
939 /* IMP: R-48699-48617 This function is an SQL wrapper around the
940 ** sqlite3_libversion() C-interface. */
941 sqlite3_result_text(context, sqlite3_libversion(), -1, SQLITE_STATIC);
945 ** Implementation of the sqlite_source_id() function. The result is a string
946 ** that identifies the particular version of the source code used to build
947 ** SQLite.
949 static void sourceidFunc(
950 sqlite3_context *context,
951 int NotUsed,
952 sqlite3_value **NotUsed2
954 UNUSED_PARAMETER2(NotUsed, NotUsed2);
955 /* IMP: R-24470-31136 This function is an SQL wrapper around the
956 ** sqlite3_sourceid() C interface. */
957 sqlite3_result_text(context, sqlite3_sourceid(), -1, SQLITE_STATIC);
961 ** Implementation of the sqlite_log() function. This is a wrapper around
962 ** sqlite3_log(). The return value is NULL. The function exists purely for
963 ** its side-effects.
965 static void errlogFunc(
966 sqlite3_context *context,
967 int argc,
968 sqlite3_value **argv
970 UNUSED_PARAMETER(argc);
971 UNUSED_PARAMETER(context);
972 sqlite3_log(sqlite3_value_int(argv[0]), "%s", sqlite3_value_text(argv[1]));
976 ** Implementation of the sqlite_compileoption_used() function.
977 ** The result is an integer that identifies if the compiler option
978 ** was used to build SQLite.
980 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
981 static void compileoptionusedFunc(
982 sqlite3_context *context,
983 int argc,
984 sqlite3_value **argv
986 const char *zOptName;
987 assert( argc==1 );
988 UNUSED_PARAMETER(argc);
989 /* IMP: R-39564-36305 The sqlite_compileoption_used() SQL
990 ** function is a wrapper around the sqlite3_compileoption_used() C/C++
991 ** function.
993 if( (zOptName = (const char*)sqlite3_value_text(argv[0]))!=0 ){
994 sqlite3_result_int(context, sqlite3_compileoption_used(zOptName));
997 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
1000 ** Implementation of the sqlite_compileoption_get() function.
1001 ** The result is a string that identifies the compiler options
1002 ** used to build SQLite.
1004 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
1005 static void compileoptiongetFunc(
1006 sqlite3_context *context,
1007 int argc,
1008 sqlite3_value **argv
1010 int n;
1011 assert( argc==1 );
1012 UNUSED_PARAMETER(argc);
1013 /* IMP: R-04922-24076 The sqlite_compileoption_get() SQL function
1014 ** is a wrapper around the sqlite3_compileoption_get() C/C++ function.
1016 n = sqlite3_value_int(argv[0]);
1017 sqlite3_result_text(context, sqlite3_compileoption_get(n), -1, SQLITE_STATIC);
1019 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
1021 /* Array for converting from half-bytes (nybbles) into ASCII hex
1022 ** digits. */
1023 static const char hexdigits[] = {
1024 '0', '1', '2', '3', '4', '5', '6', '7',
1025 '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
1029 ** Implementation of the QUOTE() function. This function takes a single
1030 ** argument. If the argument is numeric, the return value is the same as
1031 ** the argument. If the argument is NULL, the return value is the string
1032 ** "NULL". Otherwise, the argument is enclosed in single quotes with
1033 ** single-quote escapes.
1035 static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
1036 assert( argc==1 );
1037 UNUSED_PARAMETER(argc);
1038 switch( sqlite3_value_type(argv[0]) ){
1039 case SQLITE_FLOAT: {
1040 double r1, r2;
1041 char zBuf[50];
1042 r1 = sqlite3_value_double(argv[0]);
1043 sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.15g", r1);
1044 sqlite3AtoF(zBuf, &r2, 20, SQLITE_UTF8);
1045 if( r1!=r2 ){
1046 sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.20e", r1);
1048 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
1049 break;
1051 case SQLITE_INTEGER: {
1052 sqlite3_result_value(context, argv[0]);
1053 break;
1055 case SQLITE_BLOB: {
1056 char *zText = 0;
1057 char const *zBlob = sqlite3_value_blob(argv[0]);
1058 int nBlob = sqlite3_value_bytes(argv[0]);
1059 assert( zBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
1060 zText = (char *)contextMalloc(context, (2*(i64)nBlob)+4);
1061 if( zText ){
1062 int i;
1063 for(i=0; i<nBlob; i++){
1064 zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F];
1065 zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F];
1067 zText[(nBlob*2)+2] = '\'';
1068 zText[(nBlob*2)+3] = '\0';
1069 zText[0] = 'X';
1070 zText[1] = '\'';
1071 sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT);
1072 sqlite3_free(zText);
1074 break;
1076 case SQLITE_TEXT: {
1077 int i,j;
1078 u64 n;
1079 const unsigned char *zArg = sqlite3_value_text(argv[0]);
1080 char *z;
1082 if( zArg==0 ) return;
1083 for(i=0, n=0; zArg[i]; i++){ if( zArg[i]=='\'' ) n++; }
1084 z = contextMalloc(context, ((i64)i)+((i64)n)+3);
1085 if( z ){
1086 z[0] = '\'';
1087 for(i=0, j=1; zArg[i]; i++){
1088 z[j++] = zArg[i];
1089 if( zArg[i]=='\'' ){
1090 z[j++] = '\'';
1093 z[j++] = '\'';
1094 z[j] = 0;
1095 sqlite3_result_text(context, z, j, sqlite3_free);
1097 break;
1099 default: {
1100 assert( sqlite3_value_type(argv[0])==SQLITE_NULL );
1101 sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC);
1102 break;
1108 ** The unicode() function. Return the integer unicode code-point value
1109 ** for the first character of the input string.
1111 static void unicodeFunc(
1112 sqlite3_context *context,
1113 int argc,
1114 sqlite3_value **argv
1116 const unsigned char *z = sqlite3_value_text(argv[0]);
1117 (void)argc;
1118 if( z && z[0] ) sqlite3_result_int(context, sqlite3Utf8Read(&z));
1122 ** The char() function takes zero or more arguments, each of which is
1123 ** an integer. It constructs a string where each character of the string
1124 ** is the unicode character for the corresponding integer argument.
1126 static void charFunc(
1127 sqlite3_context *context,
1128 int argc,
1129 sqlite3_value **argv
1131 unsigned char *z, *zOut;
1132 int i;
1133 zOut = z = sqlite3_malloc64( argc*4+1 );
1134 if( z==0 ){
1135 sqlite3_result_error_nomem(context);
1136 return;
1138 for(i=0; i<argc; i++){
1139 sqlite3_int64 x;
1140 unsigned c;
1141 x = sqlite3_value_int64(argv[i]);
1142 if( x<0 || x>0x10ffff ) x = 0xfffd;
1143 c = (unsigned)(x & 0x1fffff);
1144 if( c<0x00080 ){
1145 *zOut++ = (u8)(c&0xFF);
1146 }else if( c<0x00800 ){
1147 *zOut++ = 0xC0 + (u8)((c>>6)&0x1F);
1148 *zOut++ = 0x80 + (u8)(c & 0x3F);
1149 }else if( c<0x10000 ){
1150 *zOut++ = 0xE0 + (u8)((c>>12)&0x0F);
1151 *zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
1152 *zOut++ = 0x80 + (u8)(c & 0x3F);
1153 }else{
1154 *zOut++ = 0xF0 + (u8)((c>>18) & 0x07);
1155 *zOut++ = 0x80 + (u8)((c>>12) & 0x3F);
1156 *zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
1157 *zOut++ = 0x80 + (u8)(c & 0x3F);
1160 sqlite3_result_text64(context, (char*)z, zOut-z, sqlite3_free, SQLITE_UTF8);
1164 ** The hex() function. Interpret the argument as a blob. Return
1165 ** a hexadecimal rendering as text.
1167 static void hexFunc(
1168 sqlite3_context *context,
1169 int argc,
1170 sqlite3_value **argv
1172 int i, n;
1173 const unsigned char *pBlob;
1174 char *zHex, *z;
1175 assert( argc==1 );
1176 UNUSED_PARAMETER(argc);
1177 pBlob = sqlite3_value_blob(argv[0]);
1178 n = sqlite3_value_bytes(argv[0]);
1179 assert( pBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
1180 z = zHex = contextMalloc(context, ((i64)n)*2 + 1);
1181 if( zHex ){
1182 for(i=0; i<n; i++, pBlob++){
1183 unsigned char c = *pBlob;
1184 *(z++) = hexdigits[(c>>4)&0xf];
1185 *(z++) = hexdigits[c&0xf];
1187 *z = 0;
1188 sqlite3_result_text(context, zHex, n*2, sqlite3_free);
1193 ** The zeroblob(N) function returns a zero-filled blob of size N bytes.
1195 static void zeroblobFunc(
1196 sqlite3_context *context,
1197 int argc,
1198 sqlite3_value **argv
1200 i64 n;
1201 int rc;
1202 assert( argc==1 );
1203 UNUSED_PARAMETER(argc);
1204 n = sqlite3_value_int64(argv[0]);
1205 if( n<0 ) n = 0;
1206 rc = sqlite3_result_zeroblob64(context, n); /* IMP: R-00293-64994 */
1207 if( rc ){
1208 sqlite3_result_error_code(context, rc);
1213 ** The replace() function. Three arguments are all strings: call
1214 ** them A, B, and C. The result is also a string which is derived
1215 ** from A by replacing every occurrence of B with C. The match
1216 ** must be exact. Collating sequences are not used.
1218 static void replaceFunc(
1219 sqlite3_context *context,
1220 int argc,
1221 sqlite3_value **argv
1223 const unsigned char *zStr; /* The input string A */
1224 const unsigned char *zPattern; /* The pattern string B */
1225 const unsigned char *zRep; /* The replacement string C */
1226 unsigned char *zOut; /* The output */
1227 int nStr; /* Size of zStr */
1228 int nPattern; /* Size of zPattern */
1229 int nRep; /* Size of zRep */
1230 i64 nOut; /* Maximum size of zOut */
1231 int loopLimit; /* Last zStr[] that might match zPattern[] */
1232 int i, j; /* Loop counters */
1233 unsigned cntExpand; /* Number zOut expansions */
1234 sqlite3 *db = sqlite3_context_db_handle(context);
1236 assert( argc==3 );
1237 UNUSED_PARAMETER(argc);
1238 zStr = sqlite3_value_text(argv[0]);
1239 if( zStr==0 ) return;
1240 nStr = sqlite3_value_bytes(argv[0]);
1241 assert( zStr==sqlite3_value_text(argv[0]) ); /* No encoding change */
1242 zPattern = sqlite3_value_text(argv[1]);
1243 if( zPattern==0 ){
1244 assert( sqlite3_value_type(argv[1])==SQLITE_NULL
1245 || sqlite3_context_db_handle(context)->mallocFailed );
1246 return;
1248 if( zPattern[0]==0 ){
1249 assert( sqlite3_value_type(argv[1])!=SQLITE_NULL );
1250 sqlite3_result_value(context, argv[0]);
1251 return;
1253 nPattern = sqlite3_value_bytes(argv[1]);
1254 assert( zPattern==sqlite3_value_text(argv[1]) ); /* No encoding change */
1255 zRep = sqlite3_value_text(argv[2]);
1256 if( zRep==0 ) return;
1257 nRep = sqlite3_value_bytes(argv[2]);
1258 assert( zRep==sqlite3_value_text(argv[2]) );
1259 nOut = nStr + 1;
1260 assert( nOut<SQLITE_MAX_LENGTH );
1261 zOut = contextMalloc(context, (i64)nOut);
1262 if( zOut==0 ){
1263 return;
1265 loopLimit = nStr - nPattern;
1266 cntExpand = 0;
1267 for(i=j=0; i<=loopLimit; i++){
1268 if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){
1269 zOut[j++] = zStr[i];
1270 }else{
1271 if( nRep>nPattern ){
1272 nOut += nRep - nPattern;
1273 testcase( nOut-1==db->aLimit[SQLITE_LIMIT_LENGTH] );
1274 testcase( nOut-2==db->aLimit[SQLITE_LIMIT_LENGTH] );
1275 if( nOut-1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1276 sqlite3_result_error_toobig(context);
1277 sqlite3_free(zOut);
1278 return;
1280 cntExpand++;
1281 if( (cntExpand&(cntExpand-1))==0 ){
1282 /* Grow the size of the output buffer only on substitutions
1283 ** whose index is a power of two: 1, 2, 4, 8, 16, 32, ... */
1284 u8 *zOld;
1285 zOld = zOut;
1286 zOut = sqlite3Realloc(zOut, (int)nOut + (nOut - nStr - 1));
1287 if( zOut==0 ){
1288 sqlite3_result_error_nomem(context);
1289 sqlite3_free(zOld);
1290 return;
1294 memcpy(&zOut[j], zRep, nRep);
1295 j += nRep;
1296 i += nPattern-1;
1299 assert( j+nStr-i+1<=nOut );
1300 memcpy(&zOut[j], &zStr[i], nStr-i);
1301 j += nStr - i;
1302 assert( j<=nOut );
1303 zOut[j] = 0;
1304 sqlite3_result_text(context, (char*)zOut, j, sqlite3_free);
1308 ** Implementation of the TRIM(), LTRIM(), and RTRIM() functions.
1309 ** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both.
1311 static void trimFunc(
1312 sqlite3_context *context,
1313 int argc,
1314 sqlite3_value **argv
1316 const unsigned char *zIn; /* Input string */
1317 const unsigned char *zCharSet; /* Set of characters to trim */
1318 int nIn; /* Number of bytes in input */
1319 int flags; /* 1: trimleft 2: trimright 3: trim */
1320 int i; /* Loop counter */
1321 unsigned char *aLen = 0; /* Length of each character in zCharSet */
1322 unsigned char **azChar = 0; /* Individual characters in zCharSet */
1323 int nChar; /* Number of characters in zCharSet */
1325 if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
1326 return;
1328 zIn = sqlite3_value_text(argv[0]);
1329 if( zIn==0 ) return;
1330 nIn = sqlite3_value_bytes(argv[0]);
1331 assert( zIn==sqlite3_value_text(argv[0]) );
1332 if( argc==1 ){
1333 static const unsigned char lenOne[] = { 1 };
1334 static unsigned char * const azOne[] = { (u8*)" " };
1335 nChar = 1;
1336 aLen = (u8*)lenOne;
1337 azChar = (unsigned char **)azOne;
1338 zCharSet = 0;
1339 }else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){
1340 return;
1341 }else{
1342 const unsigned char *z;
1343 for(z=zCharSet, nChar=0; *z; nChar++){
1344 SQLITE_SKIP_UTF8(z);
1346 if( nChar>0 ){
1347 azChar = contextMalloc(context, ((i64)nChar)*(sizeof(char*)+1));
1348 if( azChar==0 ){
1349 return;
1351 aLen = (unsigned char*)&azChar[nChar];
1352 for(z=zCharSet, nChar=0; *z; nChar++){
1353 azChar[nChar] = (unsigned char *)z;
1354 SQLITE_SKIP_UTF8(z);
1355 aLen[nChar] = (u8)(z - azChar[nChar]);
1359 if( nChar>0 ){
1360 flags = SQLITE_PTR_TO_INT(sqlite3_user_data(context));
1361 if( flags & 1 ){
1362 while( nIn>0 ){
1363 int len = 0;
1364 for(i=0; i<nChar; i++){
1365 len = aLen[i];
1366 if( len<=nIn && memcmp(zIn, azChar[i], len)==0 ) break;
1368 if( i>=nChar ) break;
1369 zIn += len;
1370 nIn -= len;
1373 if( flags & 2 ){
1374 while( nIn>0 ){
1375 int len = 0;
1376 for(i=0; i<nChar; i++){
1377 len = aLen[i];
1378 if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break;
1380 if( i>=nChar ) break;
1381 nIn -= len;
1384 if( zCharSet ){
1385 sqlite3_free(azChar);
1388 sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT);
1392 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
1394 ** The "unknown" function is automatically substituted in place of
1395 ** any unrecognized function name when doing an EXPLAIN or EXPLAIN QUERY PLAN
1396 ** when the SQLITE_ENABLE_UNKNOWN_FUNCTION compile-time option is used.
1397 ** When the "sqlite3" command-line shell is built using this functionality,
1398 ** that allows an EXPLAIN or EXPLAIN QUERY PLAN for complex queries
1399 ** involving application-defined functions to be examined in a generic
1400 ** sqlite3 shell.
1402 static void unknownFunc(
1403 sqlite3_context *context,
1404 int argc,
1405 sqlite3_value **argv
1407 /* no-op */
1409 #endif /*SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION*/
1412 /* IMP: R-25361-16150 This function is omitted from SQLite by default. It
1413 ** is only available if the SQLITE_SOUNDEX compile-time option is used
1414 ** when SQLite is built.
1416 #ifdef SQLITE_SOUNDEX
1418 ** Compute the soundex encoding of a word.
1420 ** IMP: R-59782-00072 The soundex(X) function returns a string that is the
1421 ** soundex encoding of the string X.
1423 static void soundexFunc(
1424 sqlite3_context *context,
1425 int argc,
1426 sqlite3_value **argv
1428 char zResult[8];
1429 const u8 *zIn;
1430 int i, j;
1431 static const unsigned char iCode[] = {
1432 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1433 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1434 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1435 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1436 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
1437 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
1438 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
1439 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
1441 assert( argc==1 );
1442 zIn = (u8*)sqlite3_value_text(argv[0]);
1443 if( zIn==0 ) zIn = (u8*)"";
1444 for(i=0; zIn[i] && !sqlite3Isalpha(zIn[i]); i++){}
1445 if( zIn[i] ){
1446 u8 prevcode = iCode[zIn[i]&0x7f];
1447 zResult[0] = sqlite3Toupper(zIn[i]);
1448 for(j=1; j<4 && zIn[i]; i++){
1449 int code = iCode[zIn[i]&0x7f];
1450 if( code>0 ){
1451 if( code!=prevcode ){
1452 prevcode = code;
1453 zResult[j++] = code + '0';
1455 }else{
1456 prevcode = 0;
1459 while( j<4 ){
1460 zResult[j++] = '0';
1462 zResult[j] = 0;
1463 sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT);
1464 }else{
1465 /* IMP: R-64894-50321 The string "?000" is returned if the argument
1466 ** is NULL or contains no ASCII alphabetic characters. */
1467 sqlite3_result_text(context, "?000", 4, SQLITE_STATIC);
1470 #endif /* SQLITE_SOUNDEX */
1472 #ifndef SQLITE_OMIT_LOAD_EXTENSION
1474 ** A function that loads a shared-library extension then returns NULL.
1476 static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){
1477 const char *zFile = (const char *)sqlite3_value_text(argv[0]);
1478 const char *zProc;
1479 sqlite3 *db = sqlite3_context_db_handle(context);
1480 char *zErrMsg = 0;
1482 /* Disallow the load_extension() SQL function unless the SQLITE_LoadExtFunc
1483 ** flag is set. See the sqlite3_enable_load_extension() API.
1485 if( (db->flags & SQLITE_LoadExtFunc)==0 ){
1486 sqlite3_result_error(context, "not authorized", -1);
1487 return;
1490 if( argc==2 ){
1491 zProc = (const char *)sqlite3_value_text(argv[1]);
1492 }else{
1493 zProc = 0;
1495 if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){
1496 sqlite3_result_error(context, zErrMsg, -1);
1497 sqlite3_free(zErrMsg);
1500 #endif
1504 ** An instance of the following structure holds the context of a
1505 ** sum() or avg() aggregate computation.
1507 typedef struct SumCtx SumCtx;
1508 struct SumCtx {
1509 double rSum; /* Floating point sum */
1510 i64 iSum; /* Integer sum */
1511 i64 cnt; /* Number of elements summed */
1512 u8 overflow; /* True if integer overflow seen */
1513 u8 approx; /* True if non-integer value was input to the sum */
1517 ** Routines used to compute the sum, average, and total.
1519 ** The SUM() function follows the (broken) SQL standard which means
1520 ** that it returns NULL if it sums over no inputs. TOTAL returns
1521 ** 0.0 in that case. In addition, TOTAL always returns a float where
1522 ** SUM might return an integer if it never encounters a floating point
1523 ** value. TOTAL never fails, but SUM might through an exception if
1524 ** it overflows an integer.
1526 static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){
1527 SumCtx *p;
1528 int type;
1529 assert( argc==1 );
1530 UNUSED_PARAMETER(argc);
1531 p = sqlite3_aggregate_context(context, sizeof(*p));
1532 type = sqlite3_value_numeric_type(argv[0]);
1533 if( p && type!=SQLITE_NULL ){
1534 p->cnt++;
1535 if( type==SQLITE_INTEGER ){
1536 i64 v = sqlite3_value_int64(argv[0]);
1537 p->rSum += v;
1538 if( (p->approx|p->overflow)==0 && sqlite3AddInt64(&p->iSum, v) ){
1539 p->approx = p->overflow = 1;
1541 }else{
1542 p->rSum += sqlite3_value_double(argv[0]);
1543 p->approx = 1;
1547 #ifndef SQLITE_OMIT_WINDOWFUNC
1548 static void sumInverse(sqlite3_context *context, int argc, sqlite3_value**argv){
1549 SumCtx *p;
1550 int type;
1551 assert( argc==1 );
1552 UNUSED_PARAMETER(argc);
1553 p = sqlite3_aggregate_context(context, sizeof(*p));
1554 type = sqlite3_value_numeric_type(argv[0]);
1555 /* p is always non-NULL because sumStep() will have been called first
1556 ** to initialize it */
1557 if( ALWAYS(p) && type!=SQLITE_NULL ){
1558 assert( p->cnt>0 );
1559 p->cnt--;
1560 assert( type==SQLITE_INTEGER || p->approx );
1561 if( type==SQLITE_INTEGER && p->approx==0 ){
1562 i64 v = sqlite3_value_int64(argv[0]);
1563 p->rSum -= v;
1564 p->iSum -= v;
1565 }else{
1566 p->rSum -= sqlite3_value_double(argv[0]);
1570 #else
1571 # define sumInverse 0
1572 #endif /* SQLITE_OMIT_WINDOWFUNC */
1573 static void sumFinalize(sqlite3_context *context){
1574 SumCtx *p;
1575 p = sqlite3_aggregate_context(context, 0);
1576 if( p && p->cnt>0 ){
1577 if( p->overflow ){
1578 sqlite3_result_error(context,"integer overflow",-1);
1579 }else if( p->approx ){
1580 sqlite3_result_double(context, p->rSum);
1581 }else{
1582 sqlite3_result_int64(context, p->iSum);
1586 static void avgFinalize(sqlite3_context *context){
1587 SumCtx *p;
1588 p = sqlite3_aggregate_context(context, 0);
1589 if( p && p->cnt>0 ){
1590 sqlite3_result_double(context, p->rSum/(double)p->cnt);
1593 static void totalFinalize(sqlite3_context *context){
1594 SumCtx *p;
1595 p = sqlite3_aggregate_context(context, 0);
1596 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1597 sqlite3_result_double(context, p ? p->rSum : (double)0);
1601 ** The following structure keeps track of state information for the
1602 ** count() aggregate function.
1604 typedef struct CountCtx CountCtx;
1605 struct CountCtx {
1606 i64 n;
1607 #ifdef SQLITE_DEBUG
1608 int bInverse; /* True if xInverse() ever called */
1609 #endif
1613 ** Routines to implement the count() aggregate function.
1615 static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){
1616 CountCtx *p;
1617 p = sqlite3_aggregate_context(context, sizeof(*p));
1618 if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){
1619 p->n++;
1622 #ifndef SQLITE_OMIT_DEPRECATED
1623 /* The sqlite3_aggregate_count() function is deprecated. But just to make
1624 ** sure it still operates correctly, verify that its count agrees with our
1625 ** internal count when using count(*) and when the total count can be
1626 ** expressed as a 32-bit integer. */
1627 assert( argc==1 || p==0 || p->n>0x7fffffff || p->bInverse
1628 || p->n==sqlite3_aggregate_count(context) );
1629 #endif
1631 static void countFinalize(sqlite3_context *context){
1632 CountCtx *p;
1633 p = sqlite3_aggregate_context(context, 0);
1634 sqlite3_result_int64(context, p ? p->n : 0);
1636 #ifndef SQLITE_OMIT_WINDOWFUNC
1637 static void countInverse(sqlite3_context *ctx, int argc, sqlite3_value **argv){
1638 CountCtx *p;
1639 p = sqlite3_aggregate_context(ctx, sizeof(*p));
1640 /* p is always non-NULL since countStep() will have been called first */
1641 if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && ALWAYS(p) ){
1642 p->n--;
1643 #ifdef SQLITE_DEBUG
1644 p->bInverse = 1;
1645 #endif
1648 #else
1649 # define countInverse 0
1650 #endif /* SQLITE_OMIT_WINDOWFUNC */
1653 ** Routines to implement min() and max() aggregate functions.
1655 static void minmaxStep(
1656 sqlite3_context *context,
1657 int NotUsed,
1658 sqlite3_value **argv
1660 Mem *pArg = (Mem *)argv[0];
1661 Mem *pBest;
1662 UNUSED_PARAMETER(NotUsed);
1664 pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest));
1665 if( !pBest ) return;
1667 if( sqlite3_value_type(pArg)==SQLITE_NULL ){
1668 if( pBest->flags ) sqlite3SkipAccumulatorLoad(context);
1669 }else if( pBest->flags ){
1670 int max;
1671 int cmp;
1672 CollSeq *pColl = sqlite3GetFuncCollSeq(context);
1673 /* This step function is used for both the min() and max() aggregates,
1674 ** the only difference between the two being that the sense of the
1675 ** comparison is inverted. For the max() aggregate, the
1676 ** sqlite3_user_data() function returns (void *)-1. For min() it
1677 ** returns (void *)db, where db is the sqlite3* database pointer.
1678 ** Therefore the next statement sets variable 'max' to 1 for the max()
1679 ** aggregate, or 0 for min().
1681 max = sqlite3_user_data(context)!=0;
1682 cmp = sqlite3MemCompare(pBest, pArg, pColl);
1683 if( (max && cmp<0) || (!max && cmp>0) ){
1684 sqlite3VdbeMemCopy(pBest, pArg);
1685 }else{
1686 sqlite3SkipAccumulatorLoad(context);
1688 }else{
1689 pBest->db = sqlite3_context_db_handle(context);
1690 sqlite3VdbeMemCopy(pBest, pArg);
1693 static void minMaxValueFinalize(sqlite3_context *context, int bValue){
1694 sqlite3_value *pRes;
1695 pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0);
1696 if( pRes ){
1697 if( pRes->flags ){
1698 sqlite3_result_value(context, pRes);
1700 if( bValue==0 ) sqlite3VdbeMemRelease(pRes);
1703 #ifndef SQLITE_OMIT_WINDOWFUNC
1704 static void minMaxValue(sqlite3_context *context){
1705 minMaxValueFinalize(context, 1);
1707 #else
1708 # define minMaxValue 0
1709 #endif /* SQLITE_OMIT_WINDOWFUNC */
1710 static void minMaxFinalize(sqlite3_context *context){
1711 minMaxValueFinalize(context, 0);
1715 ** group_concat(EXPR, ?SEPARATOR?)
1717 static void groupConcatStep(
1718 sqlite3_context *context,
1719 int argc,
1720 sqlite3_value **argv
1722 const char *zVal;
1723 StrAccum *pAccum;
1724 const char *zSep;
1725 int nVal, nSep;
1726 assert( argc==1 || argc==2 );
1727 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
1728 pAccum = (StrAccum*)sqlite3_aggregate_context(context, sizeof(*pAccum));
1730 if( pAccum ){
1731 sqlite3 *db = sqlite3_context_db_handle(context);
1732 int firstTerm = pAccum->mxAlloc==0;
1733 pAccum->mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH];
1734 if( !firstTerm ){
1735 if( argc==2 ){
1736 zSep = (char*)sqlite3_value_text(argv[1]);
1737 nSep = sqlite3_value_bytes(argv[1]);
1738 }else{
1739 zSep = ",";
1740 nSep = 1;
1742 if( zSep ) sqlite3_str_append(pAccum, zSep, nSep);
1744 zVal = (char*)sqlite3_value_text(argv[0]);
1745 nVal = sqlite3_value_bytes(argv[0]);
1746 if( zVal ) sqlite3_str_append(pAccum, zVal, nVal);
1749 #ifndef SQLITE_OMIT_WINDOWFUNC
1750 static void groupConcatInverse(
1751 sqlite3_context *context,
1752 int argc,
1753 sqlite3_value **argv
1755 int n;
1756 StrAccum *pAccum;
1757 assert( argc==1 || argc==2 );
1758 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
1759 pAccum = (StrAccum*)sqlite3_aggregate_context(context, sizeof(*pAccum));
1760 /* pAccum is always non-NULL since groupConcatStep() will have always
1761 ** run frist to initialize it */
1762 if( ALWAYS(pAccum) ){
1763 n = sqlite3_value_bytes(argv[0]);
1764 if( argc==2 ){
1765 n += sqlite3_value_bytes(argv[1]);
1766 }else{
1767 n++;
1769 if( n>=(int)pAccum->nChar ){
1770 pAccum->nChar = 0;
1771 }else{
1772 pAccum->nChar -= n;
1773 memmove(pAccum->zText, &pAccum->zText[n], pAccum->nChar);
1775 if( pAccum->nChar==0 ) pAccum->mxAlloc = 0;
1778 #else
1779 # define groupConcatInverse 0
1780 #endif /* SQLITE_OMIT_WINDOWFUNC */
1781 static void groupConcatFinalize(sqlite3_context *context){
1782 StrAccum *pAccum;
1783 pAccum = sqlite3_aggregate_context(context, 0);
1784 if( pAccum ){
1785 if( pAccum->accError==SQLITE_TOOBIG ){
1786 sqlite3_result_error_toobig(context);
1787 }else if( pAccum->accError==SQLITE_NOMEM ){
1788 sqlite3_result_error_nomem(context);
1789 }else{
1790 sqlite3_result_text(context, sqlite3StrAccumFinish(pAccum), -1,
1791 sqlite3_free);
1795 #ifndef SQLITE_OMIT_WINDOWFUNC
1796 static void groupConcatValue(sqlite3_context *context){
1797 sqlite3_str *pAccum;
1798 pAccum = (sqlite3_str*)sqlite3_aggregate_context(context, 0);
1799 if( pAccum ){
1800 if( pAccum->accError==SQLITE_TOOBIG ){
1801 sqlite3_result_error_toobig(context);
1802 }else if( pAccum->accError==SQLITE_NOMEM ){
1803 sqlite3_result_error_nomem(context);
1804 }else{
1805 const char *zText = sqlite3_str_value(pAccum);
1806 sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT);
1810 #else
1811 # define groupConcatValue 0
1812 #endif /* SQLITE_OMIT_WINDOWFUNC */
1815 ** This routine does per-connection function registration. Most
1816 ** of the built-in functions above are part of the global function set.
1817 ** This routine only deals with those that are not global.
1819 void sqlite3RegisterPerConnectionBuiltinFunctions(sqlite3 *db){
1820 int rc = sqlite3_overload_function(db, "MATCH", 2);
1821 assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
1822 if( rc==SQLITE_NOMEM ){
1823 sqlite3OomFault(db);
1825 /* BEGIN SQLCIPHER */
1826 #ifdef SQLITE_HAS_CODEC
1828 extern void sqlcipher_exportFunc(sqlite3_context *, int, sqlite3_value **);
1829 sqlite3CreateFunc(db, "sqlcipher_export", -1, SQLITE_TEXT, 0, sqlcipher_exportFunc, 0, 0, 0, 0, 0);
1831 #ifdef SQLCIPHER_EXT
1832 #include "sqlcipher_funcs_init.h"
1833 #endif
1834 #endif
1835 /* END SQLCIPHER */
1839 ** Re-register the built-in LIKE functions. The caseSensitive
1840 ** parameter determines whether or not the LIKE operator is case
1841 ** sensitive.
1843 void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){
1844 struct compareInfo *pInfo;
1845 int flags;
1846 if( caseSensitive ){
1847 pInfo = (struct compareInfo*)&likeInfoAlt;
1848 flags = SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE;
1849 }else{
1850 pInfo = (struct compareInfo*)&likeInfoNorm;
1851 flags = SQLITE_FUNC_LIKE;
1853 sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0, 0, 0);
1854 sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0, 0, 0);
1855 sqlite3FindFunction(db, "like", 2, SQLITE_UTF8, 0)->funcFlags |= flags;
1856 sqlite3FindFunction(db, "like", 3, SQLITE_UTF8, 0)->funcFlags |= flags;
1860 ** pExpr points to an expression which implements a function. If
1861 ** it is appropriate to apply the LIKE optimization to that function
1862 ** then set aWc[0] through aWc[2] to the wildcard characters and the
1863 ** escape character and then return TRUE. If the function is not a
1864 ** LIKE-style function then return FALSE.
1866 ** The expression "a LIKE b ESCAPE c" is only considered a valid LIKE
1867 ** operator if c is a string literal that is exactly one byte in length.
1868 ** That one byte is stored in aWc[3]. aWc[3] is set to zero if there is
1869 ** no ESCAPE clause.
1871 ** *pIsNocase is set to true if uppercase and lowercase are equivalent for
1872 ** the function (default for LIKE). If the function makes the distinction
1873 ** between uppercase and lowercase (as does GLOB) then *pIsNocase is set to
1874 ** false.
1876 int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
1877 FuncDef *pDef;
1878 int nExpr;
1879 if( pExpr->op!=TK_FUNCTION || !pExpr->x.pList ){
1880 return 0;
1882 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
1883 nExpr = pExpr->x.pList->nExpr;
1884 pDef = sqlite3FindFunction(db, pExpr->u.zToken, nExpr, SQLITE_UTF8, 0);
1885 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
1886 if( pDef==0 ) return 0;
1887 #endif
1888 if( NEVER(pDef==0) || (pDef->funcFlags & SQLITE_FUNC_LIKE)==0 ){
1889 return 0;
1892 /* The memcpy() statement assumes that the wildcard characters are
1893 ** the first three statements in the compareInfo structure. The
1894 ** asserts() that follow verify that assumption
1896 memcpy(aWc, pDef->pUserData, 3);
1897 assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll );
1898 assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne );
1899 assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet );
1901 if( nExpr<3 ){
1902 aWc[3] = 0;
1903 }else{
1904 Expr *pEscape = pExpr->x.pList->a[2].pExpr;
1905 char *zEscape;
1906 if( pEscape->op!=TK_STRING ) return 0;
1907 zEscape = pEscape->u.zToken;
1908 if( zEscape[0]==0 || zEscape[1]!=0 ) return 0;
1909 if( zEscape[0]==aWc[0] ) return 0;
1910 if( zEscape[0]==aWc[1] ) return 0;
1911 aWc[3] = zEscape[0];
1914 *pIsNocase = (pDef->funcFlags & SQLITE_FUNC_CASE)==0;
1915 return 1;
1919 ** All of the FuncDef structures in the aBuiltinFunc[] array above
1920 ** to the global function hash table. This occurs at start-time (as
1921 ** a consequence of calling sqlite3_initialize()).
1923 ** After this routine runs
1925 void sqlite3RegisterBuiltinFunctions(void){
1927 ** The following array holds FuncDef structures for all of the functions
1928 ** defined in this file.
1930 ** The array cannot be constant since changes are made to the
1931 ** FuncDef.pHash elements at start-time. The elements of this array
1932 ** are read-only after initialization is complete.
1934 ** For peak efficiency, put the most frequently used function last.
1936 static FuncDef aBuiltinFunc[] = {
1937 /***** Functions only available with SQLITE_TESTCTRL_INTERNAL_FUNCTIONS *****/
1938 TEST_FUNC(implies_nonnull_row, 2, INLINEFUNC_implies_nonnull_row, 0),
1939 TEST_FUNC(expr_compare, 2, INLINEFUNC_expr_compare, 0),
1940 TEST_FUNC(expr_implies_expr, 2, INLINEFUNC_expr_implies_expr, 0),
1941 #ifdef SQLITE_DEBUG
1942 TEST_FUNC(affinity, 1, INLINEFUNC_affinity, 0),
1943 #endif
1944 /***** Regular functions *****/
1945 #ifdef SQLITE_SOUNDEX
1946 FUNCTION(soundex, 1, 0, 0, soundexFunc ),
1947 #endif
1948 #ifndef SQLITE_OMIT_LOAD_EXTENSION
1949 SFUNCTION(load_extension, 1, 0, 0, loadExt ),
1950 SFUNCTION(load_extension, 2, 0, 0, loadExt ),
1951 #endif
1952 #if SQLITE_USER_AUTHENTICATION
1953 FUNCTION(sqlite_crypt, 2, 0, 0, sqlite3CryptFunc ),
1954 #endif
1955 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
1956 DFUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc ),
1957 DFUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc ),
1958 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
1959 INLINE_FUNC(unlikely, 1, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY),
1960 INLINE_FUNC(likelihood, 2, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY),
1961 INLINE_FUNC(likely, 1, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY),
1962 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
1963 FUNCTION2(sqlite_offset, 1, 0, 0, noopFunc, SQLITE_FUNC_OFFSET|
1964 SQLITE_FUNC_TYPEOF),
1965 #endif
1966 FUNCTION(ltrim, 1, 1, 0, trimFunc ),
1967 FUNCTION(ltrim, 2, 1, 0, trimFunc ),
1968 FUNCTION(rtrim, 1, 2, 0, trimFunc ),
1969 FUNCTION(rtrim, 2, 2, 0, trimFunc ),
1970 FUNCTION(trim, 1, 3, 0, trimFunc ),
1971 FUNCTION(trim, 2, 3, 0, trimFunc ),
1972 FUNCTION(min, -1, 0, 1, minmaxFunc ),
1973 FUNCTION(min, 0, 0, 1, 0 ),
1974 WAGGREGATE(min, 1, 0, 1, minmaxStep, minMaxFinalize, minMaxValue, 0,
1975 SQLITE_FUNC_MINMAX ),
1976 FUNCTION(max, -1, 1, 1, minmaxFunc ),
1977 FUNCTION(max, 0, 1, 1, 0 ),
1978 WAGGREGATE(max, 1, 1, 1, minmaxStep, minMaxFinalize, minMaxValue, 0,
1979 SQLITE_FUNC_MINMAX ),
1980 FUNCTION2(typeof, 1, 0, 0, typeofFunc, SQLITE_FUNC_TYPEOF),
1981 FUNCTION2(length, 1, 0, 0, lengthFunc, SQLITE_FUNC_LENGTH),
1982 FUNCTION(instr, 2, 0, 0, instrFunc ),
1983 FUNCTION(printf, -1, 0, 0, printfFunc ),
1984 FUNCTION(unicode, 1, 0, 0, unicodeFunc ),
1985 FUNCTION(char, -1, 0, 0, charFunc ),
1986 FUNCTION(abs, 1, 0, 0, absFunc ),
1987 #ifndef SQLITE_OMIT_FLOATING_POINT
1988 FUNCTION(round, 1, 0, 0, roundFunc ),
1989 FUNCTION(round, 2, 0, 0, roundFunc ),
1990 #endif
1991 FUNCTION(upper, 1, 0, 0, upperFunc ),
1992 FUNCTION(lower, 1, 0, 0, lowerFunc ),
1993 FUNCTION(hex, 1, 0, 0, hexFunc ),
1994 INLINE_FUNC(ifnull, 2, INLINEFUNC_coalesce, 0 ),
1995 VFUNCTION(random, 0, 0, 0, randomFunc ),
1996 VFUNCTION(randomblob, 1, 0, 0, randomBlob ),
1997 FUNCTION(nullif, 2, 0, 1, nullifFunc ),
1998 DFUNCTION(sqlite_version, 0, 0, 0, versionFunc ),
1999 DFUNCTION(sqlite_source_id, 0, 0, 0, sourceidFunc ),
2000 FUNCTION(sqlite_log, 2, 0, 0, errlogFunc ),
2001 FUNCTION(quote, 1, 0, 0, quoteFunc ),
2002 VFUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid),
2003 VFUNCTION(changes, 0, 0, 0, changes ),
2004 VFUNCTION(total_changes, 0, 0, 0, total_changes ),
2005 FUNCTION(replace, 3, 0, 0, replaceFunc ),
2006 FUNCTION(zeroblob, 1, 0, 0, zeroblobFunc ),
2007 FUNCTION(substr, 2, 0, 0, substrFunc ),
2008 FUNCTION(substr, 3, 0, 0, substrFunc ),
2009 WAGGREGATE(sum, 1,0,0, sumStep, sumFinalize, sumFinalize, sumInverse, 0),
2010 WAGGREGATE(total, 1,0,0, sumStep,totalFinalize,totalFinalize,sumInverse, 0),
2011 WAGGREGATE(avg, 1,0,0, sumStep, avgFinalize, avgFinalize, sumInverse, 0),
2012 WAGGREGATE(count, 0,0,0, countStep,
2013 countFinalize, countFinalize, countInverse, SQLITE_FUNC_COUNT ),
2014 WAGGREGATE(count, 1,0,0, countStep,
2015 countFinalize, countFinalize, countInverse, 0 ),
2016 WAGGREGATE(group_concat, 1, 0, 0, groupConcatStep,
2017 groupConcatFinalize, groupConcatValue, groupConcatInverse, 0),
2018 WAGGREGATE(group_concat, 2, 0, 0, groupConcatStep,
2019 groupConcatFinalize, groupConcatValue, groupConcatInverse, 0),
2021 LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
2022 #ifdef SQLITE_CASE_SENSITIVE_LIKE
2023 LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
2024 LIKEFUNC(like, 3, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
2025 #else
2026 LIKEFUNC(like, 2, &likeInfoNorm, SQLITE_FUNC_LIKE),
2027 LIKEFUNC(like, 3, &likeInfoNorm, SQLITE_FUNC_LIKE),
2028 #endif
2029 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
2030 FUNCTION(unknown, -1, 0, 0, unknownFunc ),
2031 #endif
2032 FUNCTION(coalesce, 1, 0, 0, 0 ),
2033 FUNCTION(coalesce, 0, 0, 0, 0 ),
2034 INLINE_FUNC(coalesce, -1, INLINEFUNC_coalesce, 0 ),
2035 INLINE_FUNC(iif, 3, INLINEFUNC_iif, 0 ),
2037 #ifndef SQLITE_OMIT_ALTERTABLE
2038 sqlite3AlterFunctions();
2039 #endif
2040 sqlite3WindowFunctions();
2041 sqlite3RegisterDateTimeFunctions();
2042 sqlite3InsertBuiltinFuncs(aBuiltinFunc, ArraySize(aBuiltinFunc));
2044 #if 0 /* Enable to print out how the built-in functions are hashed */
2046 int i;
2047 FuncDef *p;
2048 for(i=0; i<SQLITE_FUNC_HASH_SZ; i++){
2049 printf("FUNC-HASH %02d:", i);
2050 for(p=sqlite3BuiltinFunctions.a[i]; p; p=p->u.pHash){
2051 int n = sqlite3Strlen30(p->zName);
2052 int h = p->zName[0] + n;
2053 printf(" %s(%d)", p->zName, h);
2055 printf("\n");
2058 #endif