Adding test for pragma key on attach
[sqlcipher.git] / parse.y
blobe9c8a15635159189a977b9aea9ffb074818284b1
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains SQLite's grammar for SQL. Process this file
13 ** using the lemon parser generator to generate C code that runs
14 ** the parser. Lemon will also generate a header file containing
15 ** numeric codes for all of the tokens.
18 // All token codes are small integers with #defines that begin with "TK_"
19 %token_prefix TK_
21 // The type of the data attached to each token is Token. This is also the
22 // default type for non-terminals.
24 %token_type {Token}
25 %default_type {Token}
27 // The generated parser function takes a 4th argument as follows:
28 %extra_argument {Parse *pParse}
30 // This code runs whenever there is a syntax error
32 %syntax_error {
33 UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */
34 assert( TOKEN.z[0] ); /* The tokenizer always gives us a token */
35 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
37 %stack_overflow {
38 UNUSED_PARAMETER(yypMinor); /* Silence some compiler warnings */
39 sqlite3ErrorMsg(pParse, "parser stack overflow");
42 // The name of the generated procedure that implements the parser
43 // is as follows:
44 %name sqlite3Parser
46 // The following text is included near the beginning of the C source
47 // code file that implements the parser.
49 %include {
50 #include "sqliteInt.h"
53 ** Disable all error recovery processing in the parser push-down
54 ** automaton.
56 #define YYNOERRORRECOVERY 1
59 ** Make yytestcase() the same as testcase()
61 #define yytestcase(X) testcase(X)
64 ** An instance of this structure holds information about the
65 ** LIMIT clause of a SELECT statement.
67 struct LimitVal {
68 Expr *pLimit; /* The LIMIT expression. NULL if there is no limit */
69 Expr *pOffset; /* The OFFSET expression. NULL if there is none */
73 ** An instance of this structure is used to store the LIKE,
74 ** GLOB, NOT LIKE, and NOT GLOB operators.
76 struct LikeOp {
77 Token eOperator; /* "like" or "glob" or "regexp" */
78 int bNot; /* True if the NOT keyword is present */
82 ** An instance of the following structure describes the event of a
83 ** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT,
84 ** TK_DELETE, or TK_INSTEAD. If the event is of the form
86 ** UPDATE ON (a,b,c)
88 ** Then the "b" IdList records the list "a,b,c".
90 struct TrigEvent { int a; IdList * b; };
93 ** An instance of this structure holds the ATTACH key and the key type.
95 struct AttachKey { int type; Token key; };
98 ** One or more VALUES claues
100 struct ValueList {
101 ExprList *pList;
102 Select *pSelect;
105 } // end %include
107 // Input is a single SQL command
108 input ::= cmdlist.
109 cmdlist ::= cmdlist ecmd.
110 cmdlist ::= ecmd.
111 ecmd ::= SEMI.
112 ecmd ::= explain cmdx SEMI.
113 explain ::= . { sqlite3BeginParse(pParse, 0); }
114 %ifndef SQLITE_OMIT_EXPLAIN
115 explain ::= EXPLAIN. { sqlite3BeginParse(pParse, 1); }
116 explain ::= EXPLAIN QUERY PLAN. { sqlite3BeginParse(pParse, 2); }
117 %endif SQLITE_OMIT_EXPLAIN
118 cmdx ::= cmd. { sqlite3FinishCoding(pParse); }
120 ///////////////////// Begin and end transactions. ////////////////////////////
123 cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);}
124 trans_opt ::= .
125 trans_opt ::= TRANSACTION.
126 trans_opt ::= TRANSACTION nm.
127 %type transtype {int}
128 transtype(A) ::= . {A = TK_DEFERRED;}
129 transtype(A) ::= DEFERRED(X). {A = @X;}
130 transtype(A) ::= IMMEDIATE(X). {A = @X;}
131 transtype(A) ::= EXCLUSIVE(X). {A = @X;}
132 cmd ::= COMMIT trans_opt. {sqlite3CommitTransaction(pParse);}
133 cmd ::= END trans_opt. {sqlite3CommitTransaction(pParse);}
134 cmd ::= ROLLBACK trans_opt. {sqlite3RollbackTransaction(pParse);}
136 savepoint_opt ::= SAVEPOINT.
137 savepoint_opt ::= .
138 cmd ::= SAVEPOINT nm(X). {
139 sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X);
141 cmd ::= RELEASE savepoint_opt nm(X). {
142 sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X);
144 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). {
145 sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X);
148 ///////////////////// The CREATE TABLE statement ////////////////////////////
150 cmd ::= create_table create_table_args.
151 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). {
152 sqlite3StartTable(pParse,&Y,&Z,T,0,0,E);
154 createkw(A) ::= CREATE(X). {
155 pParse->db->lookaside.bEnabled = 0;
156 A = X;
158 %type ifnotexists {int}
159 ifnotexists(A) ::= . {A = 0;}
160 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;}
161 %type temp {int}
162 %ifndef SQLITE_OMIT_TEMPDB
163 temp(A) ::= TEMP. {A = 1;}
164 %endif SQLITE_OMIT_TEMPDB
165 temp(A) ::= . {A = 0;}
166 create_table_args ::= LP columnlist conslist_opt(X) RP(Y). {
167 sqlite3EndTable(pParse,&X,&Y,0);
169 create_table_args ::= AS select(S). {
170 sqlite3EndTable(pParse,0,0,S);
171 sqlite3SelectDelete(pParse->db, S);
173 columnlist ::= columnlist COMMA column.
174 columnlist ::= column.
176 // A "column" is a complete description of a single column in a
177 // CREATE TABLE statement. This includes the column name, its
178 // datatype, and other keywords such as PRIMARY KEY, UNIQUE, REFERENCES,
179 // NOT NULL and so forth.
181 column(A) ::= columnid(X) type carglist. {
182 A.z = X.z;
183 A.n = (int)(pParse->sLastToken.z-X.z) + pParse->sLastToken.n;
185 columnid(A) ::= nm(X). {
186 sqlite3AddColumn(pParse,&X);
187 A = X;
188 pParse->constraintName.n = 0;
192 // An IDENTIFIER can be a generic identifier, or one of several
193 // keywords. Any non-standard keyword can also be an identifier.
195 %type id {Token}
196 id(A) ::= ID(X). {A = X;}
197 id(A) ::= INDEXED(X). {A = X;}
199 // The following directive causes tokens ABORT, AFTER, ASC, etc. to
200 // fallback to ID if they will not parse as their original value.
201 // This obviates the need for the "id" nonterminal.
203 %fallback ID
204 ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW
205 CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR
206 IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN
207 QUERY KEY OF OFFSET PRAGMA RAISE RELEASE REPLACE RESTRICT ROW ROLLBACK
208 SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL
209 %ifdef SQLITE_OMIT_COMPOUND_SELECT
210 EXCEPT INTERSECT UNION
211 %endif SQLITE_OMIT_COMPOUND_SELECT
212 REINDEX RENAME CTIME_KW IF
214 %wildcard ANY.
216 // Define operator precedence early so that this is the first occurrence
217 // of the operator tokens in the grammer. Keeping the operators together
218 // causes them to be assigned integer values that are close together,
219 // which keeps parser tables smaller.
221 // The token values assigned to these symbols is determined by the order
222 // in which lemon first sees them. It must be the case that ISNULL/NOTNULL,
223 // NE/EQ, GT/LE, and GE/LT are separated by only a single value. See
224 // the sqlite3ExprIfFalse() routine for additional information on this
225 // constraint.
227 %left OR.
228 %left AND.
229 %right NOT.
230 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ.
231 %left GT LE LT GE.
232 %right ESCAPE.
233 %left BITAND BITOR LSHIFT RSHIFT.
234 %left PLUS MINUS.
235 %left STAR SLASH REM.
236 %left CONCAT.
237 %left COLLATE.
238 %right BITNOT.
240 // And "ids" is an identifer-or-string.
242 %type ids {Token}
243 ids(A) ::= ID|STRING(X). {A = X;}
245 // The name of a column or table can be any of the following:
247 %type nm {Token}
248 nm(A) ::= id(X). {A = X;}
249 nm(A) ::= STRING(X). {A = X;}
250 nm(A) ::= JOIN_KW(X). {A = X;}
252 // A typetoken is really one or more tokens that form a type name such
253 // as can be found after the column name in a CREATE TABLE statement.
254 // Multiple tokens are concatenated to form the value of the typetoken.
256 %type typetoken {Token}
257 type ::= .
258 type ::= typetoken(X). {sqlite3AddColumnType(pParse,&X);}
259 typetoken(A) ::= typename(X). {A = X;}
260 typetoken(A) ::= typename(X) LP signed RP(Y). {
261 A.z = X.z;
262 A.n = (int)(&Y.z[Y.n] - X.z);
264 typetoken(A) ::= typename(X) LP signed COMMA signed RP(Y). {
265 A.z = X.z;
266 A.n = (int)(&Y.z[Y.n] - X.z);
268 %type typename {Token}
269 typename(A) ::= ids(X). {A = X;}
270 typename(A) ::= typename(X) ids(Y). {A.z=X.z; A.n=Y.n+(int)(Y.z-X.z);}
271 signed ::= plus_num.
272 signed ::= minus_num.
274 // "carglist" is a list of additional constraints that come after the
275 // column name and column type in a CREATE TABLE statement.
277 carglist ::= carglist ccons.
278 carglist ::= .
279 ccons ::= CONSTRAINT nm(X). {pParse->constraintName = X;}
280 ccons ::= DEFAULT term(X). {sqlite3AddDefaultValue(pParse,&X);}
281 ccons ::= DEFAULT LP expr(X) RP. {sqlite3AddDefaultValue(pParse,&X);}
282 ccons ::= DEFAULT PLUS term(X). {sqlite3AddDefaultValue(pParse,&X);}
283 ccons ::= DEFAULT MINUS(A) term(X). {
284 ExprSpan v;
285 v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, X.pExpr, 0, 0);
286 v.zStart = A.z;
287 v.zEnd = X.zEnd;
288 sqlite3AddDefaultValue(pParse,&v);
290 ccons ::= DEFAULT id(X). {
291 ExprSpan v;
292 spanExpr(&v, pParse, TK_STRING, &X);
293 sqlite3AddDefaultValue(pParse,&v);
296 // In addition to the type name, we also care about the primary key and
297 // UNIQUE constraints.
299 ccons ::= NULL onconf.
300 ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);}
301 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I).
302 {sqlite3AddPrimaryKey(pParse,0,R,I,Z);}
303 ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0);}
304 ccons ::= CHECK LP expr(X) RP. {sqlite3AddCheckConstraint(pParse,X.pExpr);}
305 ccons ::= REFERENCES nm(T) idxlist_opt(TA) refargs(R).
306 {sqlite3CreateForeignKey(pParse,0,&T,TA,R);}
307 ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);}
308 ccons ::= COLLATE ids(C). {sqlite3AddCollateType(pParse, &C);}
310 // The optional AUTOINCREMENT keyword
311 %type autoinc {int}
312 autoinc(X) ::= . {X = 0;}
313 autoinc(X) ::= AUTOINCR. {X = 1;}
315 // The next group of rules parses the arguments to a REFERENCES clause
316 // that determine if the referential integrity checking is deferred or
317 // or immediate and which determine what action to take if a ref-integ
318 // check fails.
320 %type refargs {int}
321 refargs(A) ::= . { A = OE_None*0x0101; /* EV: R-19803-45884 */}
322 refargs(A) ::= refargs(X) refarg(Y). { A = (X & ~Y.mask) | Y.value; }
323 %type refarg {struct {int value; int mask;}}
324 refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; }
325 refarg(A) ::= ON INSERT refact. { A.value = 0; A.mask = 0x000000; }
326 refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; }
327 refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; }
328 %type refact {int}
329 refact(A) ::= SET NULL. { A = OE_SetNull; /* EV: R-33326-45252 */}
330 refact(A) ::= SET DEFAULT. { A = OE_SetDflt; /* EV: R-33326-45252 */}
331 refact(A) ::= CASCADE. { A = OE_Cascade; /* EV: R-33326-45252 */}
332 refact(A) ::= RESTRICT. { A = OE_Restrict; /* EV: R-33326-45252 */}
333 refact(A) ::= NO ACTION. { A = OE_None; /* EV: R-33326-45252 */}
334 %type defer_subclause {int}
335 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt. {A = 0;}
336 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;}
337 %type init_deferred_pred_opt {int}
338 init_deferred_pred_opt(A) ::= . {A = 0;}
339 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;}
340 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;}
342 conslist_opt(A) ::= . {A.n = 0; A.z = 0;}
343 conslist_opt(A) ::= COMMA(X) conslist. {A = X;}
344 conslist ::= conslist tconscomma tcons.
345 conslist ::= tcons.
346 tconscomma ::= COMMA. {pParse->constraintName.n = 0;}
347 tconscomma ::= .
348 tcons ::= CONSTRAINT nm(X). {pParse->constraintName = X;}
349 tcons ::= PRIMARY KEY LP idxlist(X) autoinc(I) RP onconf(R).
350 {sqlite3AddPrimaryKey(pParse,X,R,I,0);}
351 tcons ::= UNIQUE LP idxlist(X) RP onconf(R).
352 {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0);}
353 tcons ::= CHECK LP expr(E) RP onconf.
354 {sqlite3AddCheckConstraint(pParse,E.pExpr);}
355 tcons ::= FOREIGN KEY LP idxlist(FA) RP
356 REFERENCES nm(T) idxlist_opt(TA) refargs(R) defer_subclause_opt(D). {
357 sqlite3CreateForeignKey(pParse, FA, &T, TA, R);
358 sqlite3DeferForeignKey(pParse, D);
360 %type defer_subclause_opt {int}
361 defer_subclause_opt(A) ::= . {A = 0;}
362 defer_subclause_opt(A) ::= defer_subclause(X). {A = X;}
364 // The following is a non-standard extension that allows us to declare the
365 // default behavior when there is a constraint conflict.
367 %type onconf {int}
368 %type orconf {u8}
369 %type resolvetype {int}
370 onconf(A) ::= . {A = OE_Default;}
371 onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;}
372 orconf(A) ::= . {A = OE_Default;}
373 orconf(A) ::= OR resolvetype(X). {A = (u8)X;}
374 resolvetype(A) ::= raisetype(X). {A = X;}
375 resolvetype(A) ::= IGNORE. {A = OE_Ignore;}
376 resolvetype(A) ::= REPLACE. {A = OE_Replace;}
378 ////////////////////////// The DROP TABLE /////////////////////////////////////
380 cmd ::= DROP TABLE ifexists(E) fullname(X). {
381 sqlite3DropTable(pParse, X, 0, E);
383 %type ifexists {int}
384 ifexists(A) ::= IF EXISTS. {A = 1;}
385 ifexists(A) ::= . {A = 0;}
387 ///////////////////// The CREATE VIEW statement /////////////////////////////
389 %ifndef SQLITE_OMIT_VIEW
390 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) AS select(S). {
391 sqlite3CreateView(pParse, &X, &Y, &Z, S, T, E);
393 cmd ::= DROP VIEW ifexists(E) fullname(X). {
394 sqlite3DropTable(pParse, X, 1, E);
396 %endif SQLITE_OMIT_VIEW
398 //////////////////////// The SELECT statement /////////////////////////////////
400 cmd ::= select(X). {
401 SelectDest dest = {SRT_Output, 0, 0, 0, 0};
402 sqlite3Select(pParse, X, &dest);
403 sqlite3ExplainBegin(pParse->pVdbe);
404 sqlite3ExplainSelect(pParse->pVdbe, X);
405 sqlite3ExplainFinish(pParse->pVdbe);
406 sqlite3SelectDelete(pParse->db, X);
409 %type select {Select*}
410 %destructor select {sqlite3SelectDelete(pParse->db, $$);}
411 %type oneselect {Select*}
412 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);}
414 select(A) ::= oneselect(X). {A = X;}
415 %ifndef SQLITE_OMIT_COMPOUND_SELECT
416 select(A) ::= select(X) multiselect_op(Y) oneselect(Z). {
417 if( Z ){
418 Z->op = (u8)Y;
419 Z->pPrior = X;
420 if( Y!=TK_ALL ) pParse->hasCompound = 1;
421 }else{
422 sqlite3SelectDelete(pParse->db, X);
424 A = Z;
426 %type multiselect_op {int}
427 multiselect_op(A) ::= UNION(OP). {A = @OP;}
428 multiselect_op(A) ::= UNION ALL. {A = TK_ALL;}
429 multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP;}
430 %endif SQLITE_OMIT_COMPOUND_SELECT
431 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y)
432 groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). {
433 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset);
436 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is
437 // present and false (0) if it is not.
439 %type distinct {u16}
440 distinct(A) ::= DISTINCT. {A = SF_Distinct;}
441 distinct(A) ::= ALL. {A = 0;}
442 distinct(A) ::= . {A = 0;}
444 // selcollist is a list of expressions that are to become the return
445 // values of the SELECT statement. The "*" in statements like
446 // "SELECT * FROM ..." is encoded as a special expression with an
447 // opcode of TK_ALL.
449 %type selcollist {ExprList*}
450 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);}
451 %type sclp {ExprList*}
452 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);}
453 sclp(A) ::= selcollist(X) COMMA. {A = X;}
454 sclp(A) ::= . {A = 0;}
455 selcollist(A) ::= sclp(P) expr(X) as(Y). {
456 A = sqlite3ExprListAppend(pParse, P, X.pExpr);
457 if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1);
458 sqlite3ExprListSetSpan(pParse,A,&X);
460 selcollist(A) ::= sclp(P) STAR. {
461 Expr *p = sqlite3Expr(pParse->db, TK_ALL, 0);
462 A = sqlite3ExprListAppend(pParse, P, p);
464 selcollist(A) ::= sclp(P) nm(X) DOT STAR(Y). {
465 Expr *pRight = sqlite3PExpr(pParse, TK_ALL, 0, 0, &Y);
466 Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &X);
467 Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
468 A = sqlite3ExprListAppend(pParse,P, pDot);
471 // An option "AS <id>" phrase that can follow one of the expressions that
472 // define the result set, or one of the tables in the FROM clause.
474 %type as {Token}
475 as(X) ::= AS nm(Y). {X = Y;}
476 as(X) ::= ids(Y). {X = Y;}
477 as(X) ::= . {X.n = 0;}
480 %type seltablist {SrcList*}
481 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);}
482 %type stl_prefix {SrcList*}
483 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);}
484 %type from {SrcList*}
485 %destructor from {sqlite3SrcListDelete(pParse->db, $$);}
487 // A complete FROM clause.
489 from(A) ::= . {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));}
490 from(A) ::= FROM seltablist(X). {
491 A = X;
492 sqlite3SrcListShiftJoinType(A);
495 // "seltablist" is a "Select Table List" - the content of the FROM clause
496 // in a SELECT statement. "stl_prefix" is a prefix of this list.
498 stl_prefix(A) ::= seltablist(X) joinop(Y). {
499 A = X;
500 if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].jointype = (u8)Y;
502 stl_prefix(A) ::= . {A = 0;}
503 seltablist(A) ::= stl_prefix(X) nm(Y) dbnm(D) as(Z) indexed_opt(I)
504 on_opt(N) using_opt(U). {
505 A = sqlite3SrcListAppendFromTerm(pParse,X,&Y,&D,&Z,0,N,U);
506 sqlite3SrcListIndexedBy(pParse, A, &I);
508 %ifndef SQLITE_OMIT_SUBQUERY
509 seltablist(A) ::= stl_prefix(X) LP select(S) RP
510 as(Z) on_opt(N) using_opt(U). {
511 A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,S,N,U);
513 seltablist(A) ::= stl_prefix(X) LP seltablist(F) RP
514 as(Z) on_opt(N) using_opt(U). {
515 if( X==0 && Z.n==0 && N==0 && U==0 ){
516 A = F;
517 }else if( F->nSrc==1 ){
518 A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,0,N,U);
519 if( A ){
520 struct SrcList_item *pNew = &A->a[A->nSrc-1];
521 struct SrcList_item *pOld = F->a;
522 pNew->zName = pOld->zName;
523 pNew->zDatabase = pOld->zDatabase;
524 pNew->pSelect = pOld->pSelect;
525 pOld->zName = pOld->zDatabase = 0;
526 pOld->pSelect = 0;
528 sqlite3SrcListDelete(pParse->db, F);
529 }else{
530 Select *pSubquery;
531 sqlite3SrcListShiftJoinType(F);
532 pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,SF_NestedFrom,0,0);
533 A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,pSubquery,N,U);
536 %endif SQLITE_OMIT_SUBQUERY
538 %type dbnm {Token}
539 dbnm(A) ::= . {A.z=0; A.n=0;}
540 dbnm(A) ::= DOT nm(X). {A = X;}
542 %type fullname {SrcList*}
543 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);}
544 fullname(A) ::= nm(X) dbnm(Y). {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y);}
546 %type joinop {int}
547 %type joinop2 {int}
548 joinop(X) ::= COMMA|JOIN. { X = JT_INNER; }
549 joinop(X) ::= JOIN_KW(A) JOIN. { X = sqlite3JoinType(pParse,&A,0,0); }
550 joinop(X) ::= JOIN_KW(A) nm(B) JOIN. { X = sqlite3JoinType(pParse,&A,&B,0); }
551 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN.
552 { X = sqlite3JoinType(pParse,&A,&B,&C); }
554 %type on_opt {Expr*}
555 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);}
556 on_opt(N) ::= ON expr(E). {N = E.pExpr;}
557 on_opt(N) ::= . {N = 0;}
559 // Note that this block abuses the Token type just a little. If there is
560 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If
561 // there is an INDEXED BY clause, then the token is populated as per normal,
562 // with z pointing to the token data and n containing the number of bytes
563 // in the token.
565 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is
566 // normally illegal. The sqlite3SrcListIndexedBy() function
567 // recognizes and interprets this as a special case.
569 %type indexed_opt {Token}
570 indexed_opt(A) ::= . {A.z=0; A.n=0;}
571 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;}
572 indexed_opt(A) ::= NOT INDEXED. {A.z=0; A.n=1;}
574 %type using_opt {IdList*}
575 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);}
576 using_opt(U) ::= USING LP inscollist(L) RP. {U = L;}
577 using_opt(U) ::= . {U = 0;}
580 %type orderby_opt {ExprList*}
581 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);}
582 %type sortlist {ExprList*}
583 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);}
585 orderby_opt(A) ::= . {A = 0;}
586 orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;}
587 sortlist(A) ::= sortlist(X) COMMA expr(Y) sortorder(Z). {
588 A = sqlite3ExprListAppend(pParse,X,Y.pExpr);
589 if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z;
591 sortlist(A) ::= expr(Y) sortorder(Z). {
592 A = sqlite3ExprListAppend(pParse,0,Y.pExpr);
593 if( A && ALWAYS(A->a) ) A->a[0].sortOrder = (u8)Z;
596 %type sortorder {int}
598 sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;}
599 sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;}
600 sortorder(A) ::= . {A = SQLITE_SO_ASC;}
602 %type groupby_opt {ExprList*}
603 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);}
604 groupby_opt(A) ::= . {A = 0;}
605 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;}
607 %type having_opt {Expr*}
608 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);}
609 having_opt(A) ::= . {A = 0;}
610 having_opt(A) ::= HAVING expr(X). {A = X.pExpr;}
612 %type limit_opt {struct LimitVal}
614 // The destructor for limit_opt will never fire in the current grammar.
615 // The limit_opt non-terminal only occurs at the end of a single production
616 // rule for SELECT statements. As soon as the rule that create the
617 // limit_opt non-terminal reduces, the SELECT statement rule will also
618 // reduce. So there is never a limit_opt non-terminal on the stack
619 // except as a transient. So there is never anything to destroy.
621 //%destructor limit_opt {
622 // sqlite3ExprDelete(pParse->db, $$.pLimit);
623 // sqlite3ExprDelete(pParse->db, $$.pOffset);
625 limit_opt(A) ::= . {A.pLimit = 0; A.pOffset = 0;}
626 limit_opt(A) ::= LIMIT expr(X). {A.pLimit = X.pExpr; A.pOffset = 0;}
627 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y).
628 {A.pLimit = X.pExpr; A.pOffset = Y.pExpr;}
629 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y).
630 {A.pOffset = X.pExpr; A.pLimit = Y.pExpr;}
632 /////////////////////////// The DELETE statement /////////////////////////////
634 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
635 cmd ::= DELETE FROM fullname(X) indexed_opt(I) where_opt(W)
636 orderby_opt(O) limit_opt(L). {
637 sqlite3SrcListIndexedBy(pParse, X, &I);
638 W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "DELETE");
639 sqlite3DeleteFrom(pParse,X,W);
641 %endif
642 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
643 cmd ::= DELETE FROM fullname(X) indexed_opt(I) where_opt(W). {
644 sqlite3SrcListIndexedBy(pParse, X, &I);
645 sqlite3DeleteFrom(pParse,X,W);
647 %endif
649 %type where_opt {Expr*}
650 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);}
652 where_opt(A) ::= . {A = 0;}
653 where_opt(A) ::= WHERE expr(X). {A = X.pExpr;}
655 ////////////////////////// The UPDATE command ////////////////////////////////
657 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
658 cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) where_opt(W)
659 orderby_opt(O) limit_opt(L). {
660 sqlite3SrcListIndexedBy(pParse, X, &I);
661 sqlite3ExprListCheckLength(pParse,Y,"set list");
662 W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "UPDATE");
663 sqlite3Update(pParse,X,Y,W,R);
665 %endif
666 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
667 cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y)
668 where_opt(W). {
669 sqlite3SrcListIndexedBy(pParse, X, &I);
670 sqlite3ExprListCheckLength(pParse,Y,"set list");
671 sqlite3Update(pParse,X,Y,W,R);
673 %endif
675 %type setlist {ExprList*}
676 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);}
678 setlist(A) ::= setlist(Z) COMMA nm(X) EQ expr(Y). {
679 A = sqlite3ExprListAppend(pParse, Z, Y.pExpr);
680 sqlite3ExprListSetName(pParse, A, &X, 1);
682 setlist(A) ::= nm(X) EQ expr(Y). {
683 A = sqlite3ExprListAppend(pParse, 0, Y.pExpr);
684 sqlite3ExprListSetName(pParse, A, &X, 1);
687 ////////////////////////// The INSERT command /////////////////////////////////
689 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) valuelist(Y).
690 {sqlite3Insert(pParse, X, Y.pList, Y.pSelect, F, R);}
691 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) select(S).
692 {sqlite3Insert(pParse, X, 0, S, F, R);}
693 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) DEFAULT VALUES.
694 {sqlite3Insert(pParse, X, 0, 0, F, R);}
696 %type insert_cmd {u8}
697 insert_cmd(A) ::= INSERT orconf(R). {A = R;}
698 insert_cmd(A) ::= REPLACE. {A = OE_Replace;}
700 // A ValueList is either a single VALUES clause or a comma-separated list
701 // of VALUES clauses. If it is a single VALUES clause then the
702 // ValueList.pList field points to the expression list of that clause.
703 // If it is a list of VALUES clauses, then those clauses are transformed
704 // into a set of SELECT statements without FROM clauses and connected by
705 // UNION ALL and the ValueList.pSelect points to the right-most SELECT in
706 // that compound.
707 %type valuelist {struct ValueList}
708 %destructor valuelist {
709 sqlite3ExprListDelete(pParse->db, $$.pList);
710 sqlite3SelectDelete(pParse->db, $$.pSelect);
712 valuelist(A) ::= VALUES LP nexprlist(X) RP. {
713 A.pList = X;
714 A.pSelect = 0;
717 // Since a list of VALUEs is inplemented as a compound SELECT, we have
718 // to disable the value list option if compound SELECTs are disabled.
719 %ifndef SQLITE_OMIT_COMPOUND_SELECT
720 valuelist(A) ::= valuelist(X) COMMA LP exprlist(Y) RP. {
721 Select *pRight = sqlite3SelectNew(pParse, Y, 0, 0, 0, 0, 0, 0, 0, 0);
722 if( X.pList ){
723 X.pSelect = sqlite3SelectNew(pParse, X.pList, 0, 0, 0, 0, 0, 0, 0, 0);
724 X.pList = 0;
726 A.pList = 0;
727 if( X.pSelect==0 || pRight==0 ){
728 sqlite3SelectDelete(pParse->db, pRight);
729 sqlite3SelectDelete(pParse->db, X.pSelect);
730 A.pSelect = 0;
731 }else{
732 pRight->op = TK_ALL;
733 pRight->pPrior = X.pSelect;
734 pRight->selFlags |= SF_Values;
735 pRight->pPrior->selFlags |= SF_Values;
736 A.pSelect = pRight;
739 %endif SQLITE_OMIT_COMPOUND_SELECT
741 %type inscollist_opt {IdList*}
742 %destructor inscollist_opt {sqlite3IdListDelete(pParse->db, $$);}
743 %type inscollist {IdList*}
744 %destructor inscollist {sqlite3IdListDelete(pParse->db, $$);}
746 inscollist_opt(A) ::= . {A = 0;}
747 inscollist_opt(A) ::= LP inscollist(X) RP. {A = X;}
748 inscollist(A) ::= inscollist(X) COMMA nm(Y).
749 {A = sqlite3IdListAppend(pParse->db,X,&Y);}
750 inscollist(A) ::= nm(Y).
751 {A = sqlite3IdListAppend(pParse->db,0,&Y);}
753 /////////////////////////// Expression Processing /////////////////////////////
756 %type expr {ExprSpan}
757 %destructor expr {sqlite3ExprDelete(pParse->db, $$.pExpr);}
758 %type term {ExprSpan}
759 %destructor term {sqlite3ExprDelete(pParse->db, $$.pExpr);}
761 %include {
762 /* This is a utility routine used to set the ExprSpan.zStart and
763 ** ExprSpan.zEnd values of pOut so that the span covers the complete
764 ** range of text beginning with pStart and going to the end of pEnd.
766 static void spanSet(ExprSpan *pOut, Token *pStart, Token *pEnd){
767 pOut->zStart = pStart->z;
768 pOut->zEnd = &pEnd->z[pEnd->n];
771 /* Construct a new Expr object from a single identifier. Use the
772 ** new Expr to populate pOut. Set the span of pOut to be the identifier
773 ** that created the expression.
775 static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token *pValue){
776 pOut->pExpr = sqlite3PExpr(pParse, op, 0, 0, pValue);
777 pOut->zStart = pValue->z;
778 pOut->zEnd = &pValue->z[pValue->n];
782 expr(A) ::= term(X). {A = X;}
783 expr(A) ::= LP(B) expr(X) RP(E). {A.pExpr = X.pExpr; spanSet(&A,&B,&E);}
784 term(A) ::= NULL(X). {spanExpr(&A, pParse, @X, &X);}
785 expr(A) ::= id(X). {spanExpr(&A, pParse, TK_ID, &X);}
786 expr(A) ::= JOIN_KW(X). {spanExpr(&A, pParse, TK_ID, &X);}
787 expr(A) ::= nm(X) DOT nm(Y). {
788 Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X);
789 Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y);
790 A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0);
791 spanSet(&A,&X,&Y);
793 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). {
794 Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X);
795 Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y);
796 Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Z);
797 Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0);
798 A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0);
799 spanSet(&A,&X,&Z);
801 term(A) ::= INTEGER|FLOAT|BLOB(X). {spanExpr(&A, pParse, @X, &X);}
802 term(A) ::= STRING(X). {spanExpr(&A, pParse, @X, &X);}
803 expr(A) ::= REGISTER(X). {
804 /* When doing a nested parse, one can include terms in an expression
805 ** that look like this: #1 #2 ... These terms refer to registers
806 ** in the virtual machine. #N is the N-th register. */
807 if( pParse->nested==0 ){
808 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &X);
809 A.pExpr = 0;
810 }else{
811 A.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, &X);
812 if( A.pExpr ) sqlite3GetInt32(&X.z[1], &A.pExpr->iTable);
814 spanSet(&A, &X, &X);
816 expr(A) ::= VARIABLE(X). {
817 spanExpr(&A, pParse, TK_VARIABLE, &X);
818 sqlite3ExprAssignVarNumber(pParse, A.pExpr);
819 spanSet(&A, &X, &X);
821 expr(A) ::= expr(E) COLLATE ids(C). {
822 A.pExpr = sqlite3ExprAddCollateToken(pParse, E.pExpr, &C);
823 A.zStart = E.zStart;
824 A.zEnd = &C.z[C.n];
826 %ifndef SQLITE_OMIT_CAST
827 expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). {
828 A.pExpr = sqlite3PExpr(pParse, TK_CAST, E.pExpr, 0, &T);
829 spanSet(&A,&X,&Y);
831 %endif SQLITE_OMIT_CAST
832 expr(A) ::= ID(X) LP distinct(D) exprlist(Y) RP(E). {
833 if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
834 sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X);
836 A.pExpr = sqlite3ExprFunction(pParse, Y, &X);
837 spanSet(&A,&X,&E);
838 if( D && A.pExpr ){
839 A.pExpr->flags |= EP_Distinct;
842 expr(A) ::= ID(X) LP STAR RP(E). {
843 A.pExpr = sqlite3ExprFunction(pParse, 0, &X);
844 spanSet(&A,&X,&E);
846 term(A) ::= CTIME_KW(OP). {
847 /* The CURRENT_TIME, CURRENT_DATE, and CURRENT_TIMESTAMP values are
848 ** treated as functions that return constants */
849 A.pExpr = sqlite3ExprFunction(pParse, 0,&OP);
850 if( A.pExpr ){
851 A.pExpr->op = TK_CONST_FUNC;
853 spanSet(&A, &OP, &OP);
856 %include {
857 /* This routine constructs a binary expression node out of two ExprSpan
858 ** objects and uses the result to populate a new ExprSpan object.
860 static void spanBinaryExpr(
861 ExprSpan *pOut, /* Write the result here */
862 Parse *pParse, /* The parsing context. Errors accumulate here */
863 int op, /* The binary operation */
864 ExprSpan *pLeft, /* The left operand */
865 ExprSpan *pRight /* The right operand */
867 pOut->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr, 0);
868 pOut->zStart = pLeft->zStart;
869 pOut->zEnd = pRight->zEnd;
873 expr(A) ::= expr(X) AND(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
874 expr(A) ::= expr(X) OR(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
875 expr(A) ::= expr(X) LT|GT|GE|LE(OP) expr(Y).
876 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
877 expr(A) ::= expr(X) EQ|NE(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
878 expr(A) ::= expr(X) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y).
879 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
880 expr(A) ::= expr(X) PLUS|MINUS(OP) expr(Y).
881 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
882 expr(A) ::= expr(X) STAR|SLASH|REM(OP) expr(Y).
883 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
884 expr(A) ::= expr(X) CONCAT(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
885 %type likeop {struct LikeOp}
886 likeop(A) ::= LIKE_KW(X). {A.eOperator = X; A.bNot = 0;}
887 likeop(A) ::= NOT LIKE_KW(X). {A.eOperator = X; A.bNot = 1;}
888 likeop(A) ::= MATCH(X). {A.eOperator = X; A.bNot = 0;}
889 likeop(A) ::= NOT MATCH(X). {A.eOperator = X; A.bNot = 1;}
890 expr(A) ::= expr(X) likeop(OP) expr(Y). [LIKE_KW] {
891 ExprList *pList;
892 pList = sqlite3ExprListAppend(pParse,0, Y.pExpr);
893 pList = sqlite3ExprListAppend(pParse,pList, X.pExpr);
894 A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator);
895 if( OP.bNot ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
896 A.zStart = X.zStart;
897 A.zEnd = Y.zEnd;
898 if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc;
900 expr(A) ::= expr(X) likeop(OP) expr(Y) ESCAPE expr(E). [LIKE_KW] {
901 ExprList *pList;
902 pList = sqlite3ExprListAppend(pParse,0, Y.pExpr);
903 pList = sqlite3ExprListAppend(pParse,pList, X.pExpr);
904 pList = sqlite3ExprListAppend(pParse,pList, E.pExpr);
905 A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator);
906 if( OP.bNot ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
907 A.zStart = X.zStart;
908 A.zEnd = E.zEnd;
909 if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc;
912 %include {
913 /* Construct an expression node for a unary postfix operator
915 static void spanUnaryPostfix(
916 ExprSpan *pOut, /* Write the new expression node here */
917 Parse *pParse, /* Parsing context to record errors */
918 int op, /* The operator */
919 ExprSpan *pOperand, /* The operand */
920 Token *pPostOp /* The operand token for setting the span */
922 pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0);
923 pOut->zStart = pOperand->zStart;
924 pOut->zEnd = &pPostOp->z[pPostOp->n];
928 expr(A) ::= expr(X) ISNULL|NOTNULL(E). {spanUnaryPostfix(&A,pParse,@E,&X,&E);}
929 expr(A) ::= expr(X) NOT NULL(E). {spanUnaryPostfix(&A,pParse,TK_NOTNULL,&X,&E);}
931 %include {
932 /* A routine to convert a binary TK_IS or TK_ISNOT expression into a
933 ** unary TK_ISNULL or TK_NOTNULL expression. */
934 static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){
935 sqlite3 *db = pParse->db;
936 if( db->mallocFailed==0 && pY->op==TK_NULL ){
937 pA->op = (u8)op;
938 sqlite3ExprDelete(db, pA->pRight);
939 pA->pRight = 0;
944 // expr1 IS expr2
945 // expr1 IS NOT expr2
947 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL. If expr2
948 // is any other expression, code as TK_IS or TK_ISNOT.
950 expr(A) ::= expr(X) IS expr(Y). {
951 spanBinaryExpr(&A,pParse,TK_IS,&X,&Y);
952 binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_ISNULL);
954 expr(A) ::= expr(X) IS NOT expr(Y). {
955 spanBinaryExpr(&A,pParse,TK_ISNOT,&X,&Y);
956 binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_NOTNULL);
959 %include {
960 /* Construct an expression node for a unary prefix operator
962 static void spanUnaryPrefix(
963 ExprSpan *pOut, /* Write the new expression node here */
964 Parse *pParse, /* Parsing context to record errors */
965 int op, /* The operator */
966 ExprSpan *pOperand, /* The operand */
967 Token *pPreOp /* The operand token for setting the span */
969 pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0);
970 pOut->zStart = pPreOp->z;
971 pOut->zEnd = pOperand->zEnd;
977 expr(A) ::= NOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);}
978 expr(A) ::= BITNOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);}
979 expr(A) ::= MINUS(B) expr(X). [BITNOT]
980 {spanUnaryPrefix(&A,pParse,TK_UMINUS,&X,&B);}
981 expr(A) ::= PLUS(B) expr(X). [BITNOT]
982 {spanUnaryPrefix(&A,pParse,TK_UPLUS,&X,&B);}
984 %type between_op {int}
985 between_op(A) ::= BETWEEN. {A = 0;}
986 between_op(A) ::= NOT BETWEEN. {A = 1;}
987 expr(A) ::= expr(W) between_op(N) expr(X) AND expr(Y). [BETWEEN] {
988 ExprList *pList = sqlite3ExprListAppend(pParse,0, X.pExpr);
989 pList = sqlite3ExprListAppend(pParse,pList, Y.pExpr);
990 A.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, W.pExpr, 0, 0);
991 if( A.pExpr ){
992 A.pExpr->x.pList = pList;
993 }else{
994 sqlite3ExprListDelete(pParse->db, pList);
996 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
997 A.zStart = W.zStart;
998 A.zEnd = Y.zEnd;
1000 %ifndef SQLITE_OMIT_SUBQUERY
1001 %type in_op {int}
1002 in_op(A) ::= IN. {A = 0;}
1003 in_op(A) ::= NOT IN. {A = 1;}
1004 expr(A) ::= expr(X) in_op(N) LP exprlist(Y) RP(E). [IN] {
1005 if( Y==0 ){
1006 /* Expressions of the form
1008 ** expr1 IN ()
1009 ** expr1 NOT IN ()
1011 ** simplify to constants 0 (false) and 1 (true), respectively,
1012 ** regardless of the value of expr1.
1014 A.pExpr = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &sqlite3IntTokens[N]);
1015 sqlite3ExprDelete(pParse->db, X.pExpr);
1016 }else{
1017 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0);
1018 if( A.pExpr ){
1019 A.pExpr->x.pList = Y;
1020 sqlite3ExprSetHeight(pParse, A.pExpr);
1021 }else{
1022 sqlite3ExprListDelete(pParse->db, Y);
1024 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
1026 A.zStart = X.zStart;
1027 A.zEnd = &E.z[E.n];
1029 expr(A) ::= LP(B) select(X) RP(E). {
1030 A.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0);
1031 if( A.pExpr ){
1032 A.pExpr->x.pSelect = X;
1033 ExprSetProperty(A.pExpr, EP_xIsSelect);
1034 sqlite3ExprSetHeight(pParse, A.pExpr);
1035 }else{
1036 sqlite3SelectDelete(pParse->db, X);
1038 A.zStart = B.z;
1039 A.zEnd = &E.z[E.n];
1041 expr(A) ::= expr(X) in_op(N) LP select(Y) RP(E). [IN] {
1042 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0);
1043 if( A.pExpr ){
1044 A.pExpr->x.pSelect = Y;
1045 ExprSetProperty(A.pExpr, EP_xIsSelect);
1046 sqlite3ExprSetHeight(pParse, A.pExpr);
1047 }else{
1048 sqlite3SelectDelete(pParse->db, Y);
1050 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
1051 A.zStart = X.zStart;
1052 A.zEnd = &E.z[E.n];
1054 expr(A) ::= expr(X) in_op(N) nm(Y) dbnm(Z). [IN] {
1055 SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z);
1056 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0);
1057 if( A.pExpr ){
1058 A.pExpr->x.pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0);
1059 ExprSetProperty(A.pExpr, EP_xIsSelect);
1060 sqlite3ExprSetHeight(pParse, A.pExpr);
1061 }else{
1062 sqlite3SrcListDelete(pParse->db, pSrc);
1064 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
1065 A.zStart = X.zStart;
1066 A.zEnd = Z.z ? &Z.z[Z.n] : &Y.z[Y.n];
1068 expr(A) ::= EXISTS(B) LP select(Y) RP(E). {
1069 Expr *p = A.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0);
1070 if( p ){
1071 p->x.pSelect = Y;
1072 ExprSetProperty(p, EP_xIsSelect);
1073 sqlite3ExprSetHeight(pParse, p);
1074 }else{
1075 sqlite3SelectDelete(pParse->db, Y);
1077 A.zStart = B.z;
1078 A.zEnd = &E.z[E.n];
1080 %endif SQLITE_OMIT_SUBQUERY
1082 /* CASE expressions */
1083 expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). {
1084 A.pExpr = sqlite3PExpr(pParse, TK_CASE, X, Z, 0);
1085 if( A.pExpr ){
1086 A.pExpr->x.pList = Y;
1087 sqlite3ExprSetHeight(pParse, A.pExpr);
1088 }else{
1089 sqlite3ExprListDelete(pParse->db, Y);
1091 A.zStart = C.z;
1092 A.zEnd = &E.z[E.n];
1094 %type case_exprlist {ExprList*}
1095 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);}
1096 case_exprlist(A) ::= case_exprlist(X) WHEN expr(Y) THEN expr(Z). {
1097 A = sqlite3ExprListAppend(pParse,X, Y.pExpr);
1098 A = sqlite3ExprListAppend(pParse,A, Z.pExpr);
1100 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). {
1101 A = sqlite3ExprListAppend(pParse,0, Y.pExpr);
1102 A = sqlite3ExprListAppend(pParse,A, Z.pExpr);
1104 %type case_else {Expr*}
1105 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);}
1106 case_else(A) ::= ELSE expr(X). {A = X.pExpr;}
1107 case_else(A) ::= . {A = 0;}
1108 %type case_operand {Expr*}
1109 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);}
1110 case_operand(A) ::= expr(X). {A = X.pExpr;}
1111 case_operand(A) ::= . {A = 0;}
1113 %type exprlist {ExprList*}
1114 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);}
1115 %type nexprlist {ExprList*}
1116 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);}
1118 exprlist(A) ::= nexprlist(X). {A = X;}
1119 exprlist(A) ::= . {A = 0;}
1120 nexprlist(A) ::= nexprlist(X) COMMA expr(Y).
1121 {A = sqlite3ExprListAppend(pParse,X,Y.pExpr);}
1122 nexprlist(A) ::= expr(Y).
1123 {A = sqlite3ExprListAppend(pParse,0,Y.pExpr);}
1126 ///////////////////////////// The CREATE INDEX command ///////////////////////
1128 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D)
1129 ON nm(Y) LP idxlist(Z) RP where_opt(W). {
1130 sqlite3CreateIndex(pParse, &X, &D,
1131 sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U,
1132 &S, W, SQLITE_SO_ASC, NE);
1135 %type uniqueflag {int}
1136 uniqueflag(A) ::= UNIQUE. {A = OE_Abort;}
1137 uniqueflag(A) ::= . {A = OE_None;}
1139 %type idxlist {ExprList*}
1140 %destructor idxlist {sqlite3ExprListDelete(pParse->db, $$);}
1141 %type idxlist_opt {ExprList*}
1142 %destructor idxlist_opt {sqlite3ExprListDelete(pParse->db, $$);}
1144 idxlist_opt(A) ::= . {A = 0;}
1145 idxlist_opt(A) ::= LP idxlist(X) RP. {A = X;}
1146 idxlist(A) ::= idxlist(X) COMMA nm(Y) collate(C) sortorder(Z). {
1147 Expr *p = sqlite3ExprAddCollateToken(pParse, 0, &C);
1148 A = sqlite3ExprListAppend(pParse,X, p);
1149 sqlite3ExprListSetName(pParse,A,&Y,1);
1150 sqlite3ExprListCheckLength(pParse, A, "index");
1151 if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z;
1153 idxlist(A) ::= nm(Y) collate(C) sortorder(Z). {
1154 Expr *p = sqlite3ExprAddCollateToken(pParse, 0, &C);
1155 A = sqlite3ExprListAppend(pParse,0, p);
1156 sqlite3ExprListSetName(pParse, A, &Y, 1);
1157 sqlite3ExprListCheckLength(pParse, A, "index");
1158 if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z;
1161 %type collate {Token}
1162 collate(C) ::= . {C.z = 0; C.n = 0;}
1163 collate(C) ::= COLLATE ids(X). {C = X;}
1166 ///////////////////////////// The DROP INDEX command /////////////////////////
1168 cmd ::= DROP INDEX ifexists(E) fullname(X). {sqlite3DropIndex(pParse, X, E);}
1170 ///////////////////////////// The VACUUM command /////////////////////////////
1172 %ifndef SQLITE_OMIT_VACUUM
1173 %ifndef SQLITE_OMIT_ATTACH
1174 cmd ::= VACUUM. {sqlite3Vacuum(pParse);}
1175 cmd ::= VACUUM nm. {sqlite3Vacuum(pParse);}
1176 %endif SQLITE_OMIT_ATTACH
1177 %endif SQLITE_OMIT_VACUUM
1179 ///////////////////////////// The PRAGMA command /////////////////////////////
1181 %ifndef SQLITE_OMIT_PRAGMA
1182 cmd ::= PRAGMA nm(X) dbnm(Z). {sqlite3Pragma(pParse,&X,&Z,0,0);}
1183 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);}
1184 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);}
1185 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y).
1186 {sqlite3Pragma(pParse,&X,&Z,&Y,1);}
1187 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP.
1188 {sqlite3Pragma(pParse,&X,&Z,&Y,1);}
1190 nmnum(A) ::= plus_num(X). {A = X;}
1191 nmnum(A) ::= nm(X). {A = X;}
1192 nmnum(A) ::= ON(X). {A = X;}
1193 nmnum(A) ::= DELETE(X). {A = X;}
1194 nmnum(A) ::= DEFAULT(X). {A = X;}
1195 %endif SQLITE_OMIT_PRAGMA
1196 plus_num(A) ::= PLUS number(X). {A = X;}
1197 plus_num(A) ::= number(X). {A = X;}
1198 minus_num(A) ::= MINUS number(X). {A = X;}
1199 number(A) ::= INTEGER|FLOAT(X). {A = X;}
1201 //////////////////////////// The CREATE TRIGGER command /////////////////////
1203 %ifndef SQLITE_OMIT_TRIGGER
1205 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). {
1206 Token all;
1207 all.z = A.z;
1208 all.n = (int)(Z.z - A.z) + Z.n;
1209 sqlite3FinishTrigger(pParse, S, &all);
1212 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z)
1213 trigger_time(C) trigger_event(D)
1214 ON fullname(E) foreach_clause when_clause(G). {
1215 sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR);
1216 A = (Z.n==0?B:Z);
1219 %type trigger_time {int}
1220 trigger_time(A) ::= BEFORE. { A = TK_BEFORE; }
1221 trigger_time(A) ::= AFTER. { A = TK_AFTER; }
1222 trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;}
1223 trigger_time(A) ::= . { A = TK_BEFORE; }
1225 %type trigger_event {struct TrigEvent}
1226 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);}
1227 trigger_event(A) ::= DELETE|INSERT(OP). {A.a = @OP; A.b = 0;}
1228 trigger_event(A) ::= UPDATE(OP). {A.a = @OP; A.b = 0;}
1229 trigger_event(A) ::= UPDATE OF inscollist(X). {A.a = TK_UPDATE; A.b = X;}
1231 foreach_clause ::= .
1232 foreach_clause ::= FOR EACH ROW.
1234 %type when_clause {Expr*}
1235 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);}
1236 when_clause(A) ::= . { A = 0; }
1237 when_clause(A) ::= WHEN expr(X). { A = X.pExpr; }
1239 %type trigger_cmd_list {TriggerStep*}
1240 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);}
1241 trigger_cmd_list(A) ::= trigger_cmd_list(Y) trigger_cmd(X) SEMI. {
1242 assert( Y!=0 );
1243 Y->pLast->pNext = X;
1244 Y->pLast = X;
1245 A = Y;
1247 trigger_cmd_list(A) ::= trigger_cmd(X) SEMI. {
1248 assert( X!=0 );
1249 X->pLast = X;
1250 A = X;
1253 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements
1254 // within a trigger. The table to INSERT, UPDATE, or DELETE is always in
1255 // the same database as the table that the trigger fires on.
1257 %type trnm {Token}
1258 trnm(A) ::= nm(X). {A = X;}
1259 trnm(A) ::= nm DOT nm(X). {
1260 A = X;
1261 sqlite3ErrorMsg(pParse,
1262 "qualified table names are not allowed on INSERT, UPDATE, and DELETE "
1263 "statements within triggers");
1266 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE
1267 // statements within triggers. We make a specific error message for this
1268 // since it is an exception to the default grammar rules.
1270 tridxby ::= .
1271 tridxby ::= INDEXED BY nm. {
1272 sqlite3ErrorMsg(pParse,
1273 "the INDEXED BY clause is not allowed on UPDATE or DELETE statements "
1274 "within triggers");
1276 tridxby ::= NOT INDEXED. {
1277 sqlite3ErrorMsg(pParse,
1278 "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements "
1279 "within triggers");
1284 %type trigger_cmd {TriggerStep*}
1285 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);}
1286 // UPDATE
1287 trigger_cmd(A) ::=
1288 UPDATE orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z).
1289 { A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R); }
1291 // INSERT
1292 trigger_cmd(A) ::=
1293 insert_cmd(R) INTO trnm(X) inscollist_opt(F) valuelist(Y).
1294 {A = sqlite3TriggerInsertStep(pParse->db, &X, F, Y.pList, Y.pSelect, R);}
1296 trigger_cmd(A) ::= insert_cmd(R) INTO trnm(X) inscollist_opt(F) select(S).
1297 {A = sqlite3TriggerInsertStep(pParse->db, &X, F, 0, S, R);}
1299 // DELETE
1300 trigger_cmd(A) ::= DELETE FROM trnm(X) tridxby where_opt(Y).
1301 {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y);}
1303 // SELECT
1304 trigger_cmd(A) ::= select(X). {A = sqlite3TriggerSelectStep(pParse->db, X); }
1306 // The special RAISE expression that may occur in trigger programs
1307 expr(A) ::= RAISE(X) LP IGNORE RP(Y). {
1308 A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0);
1309 if( A.pExpr ){
1310 A.pExpr->affinity = OE_Ignore;
1312 A.zStart = X.z;
1313 A.zEnd = &Y.z[Y.n];
1315 expr(A) ::= RAISE(X) LP raisetype(T) COMMA nm(Z) RP(Y). {
1316 A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &Z);
1317 if( A.pExpr ) {
1318 A.pExpr->affinity = (char)T;
1320 A.zStart = X.z;
1321 A.zEnd = &Y.z[Y.n];
1323 %endif !SQLITE_OMIT_TRIGGER
1325 %type raisetype {int}
1326 raisetype(A) ::= ROLLBACK. {A = OE_Rollback;}
1327 raisetype(A) ::= ABORT. {A = OE_Abort;}
1328 raisetype(A) ::= FAIL. {A = OE_Fail;}
1331 //////////////////////// DROP TRIGGER statement //////////////////////////////
1332 %ifndef SQLITE_OMIT_TRIGGER
1333 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). {
1334 sqlite3DropTrigger(pParse,X,NOERR);
1336 %endif !SQLITE_OMIT_TRIGGER
1338 //////////////////////// ATTACH DATABASE file AS name /////////////////////////
1339 %ifndef SQLITE_OMIT_ATTACH
1340 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). {
1341 sqlite3Attach(pParse, F.pExpr, D.pExpr, K);
1343 cmd ::= DETACH database_kw_opt expr(D). {
1344 sqlite3Detach(pParse, D.pExpr);
1347 %type key_opt {Expr*}
1348 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);}
1349 key_opt(A) ::= . { A = 0; }
1350 key_opt(A) ::= KEY expr(X). { A = X.pExpr; }
1352 database_kw_opt ::= DATABASE.
1353 database_kw_opt ::= .
1354 %endif SQLITE_OMIT_ATTACH
1356 ////////////////////////// REINDEX collation //////////////////////////////////
1357 %ifndef SQLITE_OMIT_REINDEX
1358 cmd ::= REINDEX. {sqlite3Reindex(pParse, 0, 0);}
1359 cmd ::= REINDEX nm(X) dbnm(Y). {sqlite3Reindex(pParse, &X, &Y);}
1360 %endif SQLITE_OMIT_REINDEX
1362 /////////////////////////////////// ANALYZE ///////////////////////////////////
1363 %ifndef SQLITE_OMIT_ANALYZE
1364 cmd ::= ANALYZE. {sqlite3Analyze(pParse, 0, 0);}
1365 cmd ::= ANALYZE nm(X) dbnm(Y). {sqlite3Analyze(pParse, &X, &Y);}
1366 %endif
1368 //////////////////////// ALTER TABLE table ... ////////////////////////////////
1369 %ifndef SQLITE_OMIT_ALTERTABLE
1370 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). {
1371 sqlite3AlterRenameTable(pParse,X,&Z);
1373 cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column(Y). {
1374 sqlite3AlterFinishAddColumn(pParse, &Y);
1376 add_column_fullname ::= fullname(X). {
1377 pParse->db->lookaside.bEnabled = 0;
1378 sqlite3AlterBeginAddColumn(pParse, X);
1380 kwcolumn_opt ::= .
1381 kwcolumn_opt ::= COLUMNKW.
1382 %endif SQLITE_OMIT_ALTERTABLE
1384 //////////////////////// CREATE VIRTUAL TABLE ... /////////////////////////////
1385 %ifndef SQLITE_OMIT_VIRTUALTABLE
1386 cmd ::= create_vtab. {sqlite3VtabFinishParse(pParse,0);}
1387 cmd ::= create_vtab LP vtabarglist RP(X). {sqlite3VtabFinishParse(pParse,&X);}
1388 create_vtab ::= createkw VIRTUAL TABLE ifnotexists(E)
1389 nm(X) dbnm(Y) USING nm(Z). {
1390 sqlite3VtabBeginParse(pParse, &X, &Y, &Z, E);
1392 vtabarglist ::= vtabarg.
1393 vtabarglist ::= vtabarglist COMMA vtabarg.
1394 vtabarg ::= . {sqlite3VtabArgInit(pParse);}
1395 vtabarg ::= vtabarg vtabargtoken.
1396 vtabargtoken ::= ANY(X). {sqlite3VtabArgExtend(pParse,&X);}
1397 vtabargtoken ::= lp anylist RP(X). {sqlite3VtabArgExtend(pParse,&X);}
1398 lp ::= LP(X). {sqlite3VtabArgExtend(pParse,&X);}
1399 anylist ::= .
1400 anylist ::= anylist LP anylist RP.
1401 anylist ::= anylist ANY.
1402 %endif SQLITE_OMIT_VIRTUALTABLE