Adjustments due to upstream merging
[sqlcipher.git] / src / vdbesort.c
blobc8709bdafd8e4e18e4e2658661b100b81a2105ab
1 /*
2 ** 2011 July 9
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code for the VdbeSorter object, used in concert with
13 ** a VdbeCursor to sort large numbers of keys (as may be required, for
14 ** example, by CREATE INDEX statements on tables too large to fit in main
15 ** memory).
18 #include "sqliteInt.h"
19 #include "vdbeInt.h"
22 typedef struct VdbeSorterIter VdbeSorterIter;
23 typedef struct SorterRecord SorterRecord;
24 typedef struct FileWriter FileWriter;
27 ** NOTES ON DATA STRUCTURE USED FOR N-WAY MERGES:
29 ** As keys are added to the sorter, they are written to disk in a series
30 ** of sorted packed-memory-arrays (PMAs). The size of each PMA is roughly
31 ** the same as the cache-size allowed for temporary databases. In order
32 ** to allow the caller to extract keys from the sorter in sorted order,
33 ** all PMAs currently stored on disk must be merged together. This comment
34 ** describes the data structure used to do so. The structure supports
35 ** merging any number of arrays in a single pass with no redundant comparison
36 ** operations.
38 ** The aIter[] array contains an iterator for each of the PMAs being merged.
39 ** An aIter[] iterator either points to a valid key or else is at EOF. For
40 ** the purposes of the paragraphs below, we assume that the array is actually
41 ** N elements in size, where N is the smallest power of 2 greater to or equal
42 ** to the number of iterators being merged. The extra aIter[] elements are
43 ** treated as if they are empty (always at EOF).
45 ** The aTree[] array is also N elements in size. The value of N is stored in
46 ** the VdbeSorter.nTree variable.
48 ** The final (N/2) elements of aTree[] contain the results of comparing
49 ** pairs of iterator keys together. Element i contains the result of
50 ** comparing aIter[2*i-N] and aIter[2*i-N+1]. Whichever key is smaller, the
51 ** aTree element is set to the index of it.
53 ** For the purposes of this comparison, EOF is considered greater than any
54 ** other key value. If the keys are equal (only possible with two EOF
55 ** values), it doesn't matter which index is stored.
57 ** The (N/4) elements of aTree[] that precede the final (N/2) described
58 ** above contains the index of the smallest of each block of 4 iterators.
59 ** And so on. So that aTree[1] contains the index of the iterator that
60 ** currently points to the smallest key value. aTree[0] is unused.
62 ** Example:
64 ** aIter[0] -> Banana
65 ** aIter[1] -> Feijoa
66 ** aIter[2] -> Elderberry
67 ** aIter[3] -> Currant
68 ** aIter[4] -> Grapefruit
69 ** aIter[5] -> Apple
70 ** aIter[6] -> Durian
71 ** aIter[7] -> EOF
73 ** aTree[] = { X, 5 0, 5 0, 3, 5, 6 }
75 ** The current element is "Apple" (the value of the key indicated by
76 ** iterator 5). When the Next() operation is invoked, iterator 5 will
77 ** be advanced to the next key in its segment. Say the next key is
78 ** "Eggplant":
80 ** aIter[5] -> Eggplant
82 ** The contents of aTree[] are updated first by comparing the new iterator
83 ** 5 key to the current key of iterator 4 (still "Grapefruit"). The iterator
84 ** 5 value is still smaller, so aTree[6] is set to 5. And so on up the tree.
85 ** The value of iterator 6 - "Durian" - is now smaller than that of iterator
86 ** 5, so aTree[3] is set to 6. Key 0 is smaller than key 6 (Banana<Durian),
87 ** so the value written into element 1 of the array is 0. As follows:
89 ** aTree[] = { X, 0 0, 6 0, 3, 5, 6 }
91 ** In other words, each time we advance to the next sorter element, log2(N)
92 ** key comparison operations are required, where N is the number of segments
93 ** being merged (rounded up to the next power of 2).
95 struct VdbeSorter {
96 i64 iWriteOff; /* Current write offset within file pTemp1 */
97 i64 iReadOff; /* Current read offset within file pTemp1 */
98 int nInMemory; /* Current size of pRecord list as PMA */
99 int nTree; /* Used size of aTree/aIter (power of 2) */
100 int nPMA; /* Number of PMAs stored in pTemp1 */
101 int mnPmaSize; /* Minimum PMA size, in bytes */
102 int mxPmaSize; /* Maximum PMA size, in bytes. 0==no limit */
103 VdbeSorterIter *aIter; /* Array of iterators to merge */
104 int *aTree; /* Current state of incremental merge */
105 sqlite3_file *pTemp1; /* PMA file 1 */
106 SorterRecord *pRecord; /* Head of in-memory record list */
107 UnpackedRecord *pUnpacked; /* Used to unpack keys */
111 ** The following type is an iterator for a PMA. It caches the current key in
112 ** variables nKey/aKey. If the iterator is at EOF, pFile==0.
114 struct VdbeSorterIter {
115 i64 iReadOff; /* Current read offset */
116 i64 iEof; /* 1 byte past EOF for this iterator */
117 int nAlloc; /* Bytes of space at aAlloc */
118 int nKey; /* Number of bytes in key */
119 sqlite3_file *pFile; /* File iterator is reading from */
120 u8 *aAlloc; /* Allocated space */
121 u8 *aKey; /* Pointer to current key */
122 u8 *aBuffer; /* Current read buffer */
123 int nBuffer; /* Size of read buffer in bytes */
127 ** An instance of this structure is used to organize the stream of records
128 ** being written to files by the merge-sort code into aligned, page-sized
129 ** blocks. Doing all I/O in aligned page-sized blocks helps I/O to go
130 ** faster on many operating systems.
132 struct FileWriter {
133 int eFWErr; /* Non-zero if in an error state */
134 u8 *aBuffer; /* Pointer to write buffer */
135 int nBuffer; /* Size of write buffer in bytes */
136 int iBufStart; /* First byte of buffer to write */
137 int iBufEnd; /* Last byte of buffer to write */
138 i64 iWriteOff; /* Offset of start of buffer in file */
139 sqlite3_file *pFile; /* File to write to */
143 ** A structure to store a single record. All in-memory records are connected
144 ** together into a linked list headed at VdbeSorter.pRecord using the
145 ** SorterRecord.pNext pointer.
147 struct SorterRecord {
148 void *pVal;
149 int nVal;
150 SorterRecord *pNext;
153 /* Minimum allowable value for the VdbeSorter.nWorking variable */
154 #define SORTER_MIN_WORKING 10
156 /* Maximum number of segments to merge in a single pass. */
157 #define SORTER_MAX_MERGE_COUNT 16
160 ** Free all memory belonging to the VdbeSorterIter object passed as the second
161 ** argument. All structure fields are set to zero before returning.
163 static void vdbeSorterIterZero(sqlite3 *db, VdbeSorterIter *pIter){
164 sqlite3DbFree(db, pIter->aAlloc);
165 sqlite3DbFree(db, pIter->aBuffer);
166 memset(pIter, 0, sizeof(VdbeSorterIter));
170 ** Read nByte bytes of data from the stream of data iterated by object p.
171 ** If successful, set *ppOut to point to a buffer containing the data
172 ** and return SQLITE_OK. Otherwise, if an error occurs, return an SQLite
173 ** error code.
175 ** The buffer indicated by *ppOut may only be considered valid until the
176 ** next call to this function.
178 static int vdbeSorterIterRead(
179 sqlite3 *db, /* Database handle (for malloc) */
180 VdbeSorterIter *p, /* Iterator */
181 int nByte, /* Bytes of data to read */
182 u8 **ppOut /* OUT: Pointer to buffer containing data */
184 int iBuf; /* Offset within buffer to read from */
185 int nAvail; /* Bytes of data available in buffer */
186 assert( p->aBuffer );
188 /* If there is no more data to be read from the buffer, read the next
189 ** p->nBuffer bytes of data from the file into it. Or, if there are less
190 ** than p->nBuffer bytes remaining in the PMA, read all remaining data. */
191 iBuf = p->iReadOff % p->nBuffer;
192 if( iBuf==0 ){
193 int nRead; /* Bytes to read from disk */
194 int rc; /* sqlite3OsRead() return code */
196 /* Determine how many bytes of data to read. */
197 if( (p->iEof - p->iReadOff) > (i64)p->nBuffer ){
198 nRead = p->nBuffer;
199 }else{
200 nRead = (int)(p->iEof - p->iReadOff);
202 assert( nRead>0 );
204 /* Read data from the file. Return early if an error occurs. */
205 rc = sqlite3OsRead(p->pFile, p->aBuffer, nRead, p->iReadOff);
206 assert( rc!=SQLITE_IOERR_SHORT_READ );
207 if( rc!=SQLITE_OK ) return rc;
209 nAvail = p->nBuffer - iBuf;
211 if( nByte<=nAvail ){
212 /* The requested data is available in the in-memory buffer. In this
213 ** case there is no need to make a copy of the data, just return a
214 ** pointer into the buffer to the caller. */
215 *ppOut = &p->aBuffer[iBuf];
216 p->iReadOff += nByte;
217 }else{
218 /* The requested data is not all available in the in-memory buffer.
219 ** In this case, allocate space at p->aAlloc[] to copy the requested
220 ** range into. Then return a copy of pointer p->aAlloc to the caller. */
221 int nRem; /* Bytes remaining to copy */
223 /* Extend the p->aAlloc[] allocation if required. */
224 if( p->nAlloc<nByte ){
225 int nNew = p->nAlloc*2;
226 while( nByte>nNew ) nNew = nNew*2;
227 p->aAlloc = sqlite3DbReallocOrFree(db, p->aAlloc, nNew);
228 if( !p->aAlloc ) return SQLITE_NOMEM;
229 p->nAlloc = nNew;
232 /* Copy as much data as is available in the buffer into the start of
233 ** p->aAlloc[]. */
234 memcpy(p->aAlloc, &p->aBuffer[iBuf], nAvail);
235 p->iReadOff += nAvail;
236 nRem = nByte - nAvail;
238 /* The following loop copies up to p->nBuffer bytes per iteration into
239 ** the p->aAlloc[] buffer. */
240 while( nRem>0 ){
241 int rc; /* vdbeSorterIterRead() return code */
242 int nCopy; /* Number of bytes to copy */
243 u8 *aNext; /* Pointer to buffer to copy data from */
245 nCopy = nRem;
246 if( nRem>p->nBuffer ) nCopy = p->nBuffer;
247 rc = vdbeSorterIterRead(db, p, nCopy, &aNext);
248 if( rc!=SQLITE_OK ) return rc;
249 assert( aNext!=p->aAlloc );
250 memcpy(&p->aAlloc[nByte - nRem], aNext, nCopy);
251 nRem -= nCopy;
254 *ppOut = p->aAlloc;
257 return SQLITE_OK;
261 ** Read a varint from the stream of data accessed by p. Set *pnOut to
262 ** the value read.
264 static int vdbeSorterIterVarint(sqlite3 *db, VdbeSorterIter *p, u64 *pnOut){
265 int iBuf;
267 iBuf = p->iReadOff % p->nBuffer;
268 if( iBuf && (p->nBuffer-iBuf)>=9 ){
269 p->iReadOff += sqlite3GetVarint(&p->aBuffer[iBuf], pnOut);
270 }else{
271 u8 aVarint[16], *a;
272 int i = 0, rc;
274 rc = vdbeSorterIterRead(db, p, 1, &a);
275 if( rc ) return rc;
276 aVarint[(i++)&0xf] = a[0];
277 }while( (a[0]&0x80)!=0 );
278 sqlite3GetVarint(aVarint, pnOut);
281 return SQLITE_OK;
286 ** Advance iterator pIter to the next key in its PMA. Return SQLITE_OK if
287 ** no error occurs, or an SQLite error code if one does.
289 static int vdbeSorterIterNext(
290 sqlite3 *db, /* Database handle (for sqlite3DbMalloc() ) */
291 VdbeSorterIter *pIter /* Iterator to advance */
293 int rc; /* Return Code */
294 u64 nRec = 0; /* Size of record in bytes */
296 if( pIter->iReadOff>=pIter->iEof ){
297 /* This is an EOF condition */
298 vdbeSorterIterZero(db, pIter);
299 return SQLITE_OK;
302 rc = vdbeSorterIterVarint(db, pIter, &nRec);
303 if( rc==SQLITE_OK ){
304 pIter->nKey = (int)nRec;
305 rc = vdbeSorterIterRead(db, pIter, (int)nRec, &pIter->aKey);
308 return rc;
312 ** Initialize iterator pIter to scan through the PMA stored in file pFile
313 ** starting at offset iStart and ending at offset iEof-1. This function
314 ** leaves the iterator pointing to the first key in the PMA (or EOF if the
315 ** PMA is empty).
317 static int vdbeSorterIterInit(
318 sqlite3 *db, /* Database handle */
319 const VdbeSorter *pSorter, /* Sorter object */
320 i64 iStart, /* Start offset in pFile */
321 VdbeSorterIter *pIter, /* Iterator to populate */
322 i64 *pnByte /* IN/OUT: Increment this value by PMA size */
324 int rc = SQLITE_OK;
325 int nBuf;
327 nBuf = sqlite3BtreeGetPageSize(db->aDb[0].pBt);
329 assert( pSorter->iWriteOff>iStart );
330 assert( pIter->aAlloc==0 );
331 assert( pIter->aBuffer==0 );
332 pIter->pFile = pSorter->pTemp1;
333 pIter->iReadOff = iStart;
334 pIter->nAlloc = 128;
335 pIter->aAlloc = (u8 *)sqlite3DbMallocRaw(db, pIter->nAlloc);
336 pIter->nBuffer = nBuf;
337 pIter->aBuffer = (u8 *)sqlite3DbMallocRaw(db, nBuf);
339 if( !pIter->aBuffer ){
340 rc = SQLITE_NOMEM;
341 }else{
342 int iBuf;
344 iBuf = iStart % nBuf;
345 if( iBuf ){
346 int nRead = nBuf - iBuf;
347 if( (iStart + nRead) > pSorter->iWriteOff ){
348 nRead = (int)(pSorter->iWriteOff - iStart);
350 rc = sqlite3OsRead(
351 pSorter->pTemp1, &pIter->aBuffer[iBuf], nRead, iStart
353 assert( rc!=SQLITE_IOERR_SHORT_READ );
356 if( rc==SQLITE_OK ){
357 u64 nByte; /* Size of PMA in bytes */
358 pIter->iEof = pSorter->iWriteOff;
359 rc = vdbeSorterIterVarint(db, pIter, &nByte);
360 pIter->iEof = pIter->iReadOff + nByte;
361 *pnByte += nByte;
365 if( rc==SQLITE_OK ){
366 rc = vdbeSorterIterNext(db, pIter);
368 return rc;
373 ** Compare key1 (buffer pKey1, size nKey1 bytes) with key2 (buffer pKey2,
374 ** size nKey2 bytes). Argument pKeyInfo supplies the collation functions
375 ** used by the comparison. If an error occurs, return an SQLite error code.
376 ** Otherwise, return SQLITE_OK and set *pRes to a negative, zero or positive
377 ** value, depending on whether key1 is smaller, equal to or larger than key2.
379 ** If the bOmitRowid argument is non-zero, assume both keys end in a rowid
380 ** field. For the purposes of the comparison, ignore it. Also, if bOmitRowid
381 ** is true and key1 contains even a single NULL value, it is considered to
382 ** be less than key2. Even if key2 also contains NULL values.
384 ** If pKey2 is passed a NULL pointer, then it is assumed that the pCsr->aSpace
385 ** has been allocated and contains an unpacked record that is used as key2.
387 static void vdbeSorterCompare(
388 const VdbeCursor *pCsr, /* Cursor object (for pKeyInfo) */
389 int bOmitRowid, /* Ignore rowid field at end of keys */
390 const void *pKey1, int nKey1, /* Left side of comparison */
391 const void *pKey2, int nKey2, /* Right side of comparison */
392 int *pRes /* OUT: Result of comparison */
394 KeyInfo *pKeyInfo = pCsr->pKeyInfo;
395 VdbeSorter *pSorter = pCsr->pSorter;
396 UnpackedRecord *r2 = pSorter->pUnpacked;
397 int i;
399 if( pKey2 ){
400 sqlite3VdbeRecordUnpack(pKeyInfo, nKey2, pKey2, r2);
403 if( bOmitRowid ){
404 r2->nField = pKeyInfo->nField;
405 assert( r2->nField>0 );
406 for(i=0; i<r2->nField; i++){
407 if( r2->aMem[i].flags & MEM_Null ){
408 *pRes = -1;
409 return;
412 r2->flags |= UNPACKED_PREFIX_MATCH;
415 *pRes = sqlite3VdbeRecordCompare(nKey1, pKey1, r2);
419 ** This function is called to compare two iterator keys when merging
420 ** multiple b-tree segments. Parameter iOut is the index of the aTree[]
421 ** value to recalculate.
423 static int vdbeSorterDoCompare(const VdbeCursor *pCsr, int iOut){
424 VdbeSorter *pSorter = pCsr->pSorter;
425 int i1;
426 int i2;
427 int iRes;
428 VdbeSorterIter *p1;
429 VdbeSorterIter *p2;
431 assert( iOut<pSorter->nTree && iOut>0 );
433 if( iOut>=(pSorter->nTree/2) ){
434 i1 = (iOut - pSorter->nTree/2) * 2;
435 i2 = i1 + 1;
436 }else{
437 i1 = pSorter->aTree[iOut*2];
438 i2 = pSorter->aTree[iOut*2+1];
441 p1 = &pSorter->aIter[i1];
442 p2 = &pSorter->aIter[i2];
444 if( p1->pFile==0 ){
445 iRes = i2;
446 }else if( p2->pFile==0 ){
447 iRes = i1;
448 }else{
449 int res;
450 assert( pCsr->pSorter->pUnpacked!=0 ); /* allocated in vdbeSorterMerge() */
451 vdbeSorterCompare(
452 pCsr, 0, p1->aKey, p1->nKey, p2->aKey, p2->nKey, &res
454 if( res<=0 ){
455 iRes = i1;
456 }else{
457 iRes = i2;
461 pSorter->aTree[iOut] = iRes;
462 return SQLITE_OK;
466 ** Initialize the temporary index cursor just opened as a sorter cursor.
468 int sqlite3VdbeSorterInit(sqlite3 *db, VdbeCursor *pCsr){
469 int pgsz; /* Page size of main database */
470 int mxCache; /* Cache size */
471 VdbeSorter *pSorter; /* The new sorter */
472 char *d; /* Dummy */
474 assert( pCsr->pKeyInfo && pCsr->pBt==0 );
475 pCsr->pSorter = pSorter = sqlite3DbMallocZero(db, sizeof(VdbeSorter));
476 if( pSorter==0 ){
477 return SQLITE_NOMEM;
480 pSorter->pUnpacked = sqlite3VdbeAllocUnpackedRecord(pCsr->pKeyInfo, 0, 0, &d);
481 if( pSorter->pUnpacked==0 ) return SQLITE_NOMEM;
482 assert( pSorter->pUnpacked==(UnpackedRecord *)d );
484 if( !sqlite3TempInMemory(db) ){
485 pgsz = sqlite3BtreeGetPageSize(db->aDb[0].pBt);
486 pSorter->mnPmaSize = SORTER_MIN_WORKING * pgsz;
487 mxCache = db->aDb[0].pSchema->cache_size;
488 if( mxCache<SORTER_MIN_WORKING ) mxCache = SORTER_MIN_WORKING;
489 pSorter->mxPmaSize = mxCache * pgsz;
492 return SQLITE_OK;
496 ** Free the list of sorted records starting at pRecord.
498 static void vdbeSorterRecordFree(sqlite3 *db, SorterRecord *pRecord){
499 SorterRecord *p;
500 SorterRecord *pNext;
501 for(p=pRecord; p; p=pNext){
502 pNext = p->pNext;
503 sqlite3DbFree(db, p);
508 ** Free any cursor components allocated by sqlite3VdbeSorterXXX routines.
510 void sqlite3VdbeSorterClose(sqlite3 *db, VdbeCursor *pCsr){
511 VdbeSorter *pSorter = pCsr->pSorter;
512 if( pSorter ){
513 if( pSorter->aIter ){
514 int i;
515 for(i=0; i<pSorter->nTree; i++){
516 vdbeSorterIterZero(db, &pSorter->aIter[i]);
518 sqlite3DbFree(db, pSorter->aIter);
520 if( pSorter->pTemp1 ){
521 sqlite3OsCloseFree(pSorter->pTemp1);
523 vdbeSorterRecordFree(db, pSorter->pRecord);
524 sqlite3DbFree(db, pSorter->pUnpacked);
525 sqlite3DbFree(db, pSorter);
526 pCsr->pSorter = 0;
531 ** Allocate space for a file-handle and open a temporary file. If successful,
532 ** set *ppFile to point to the malloc'd file-handle and return SQLITE_OK.
533 ** Otherwise, set *ppFile to 0 and return an SQLite error code.
535 static int vdbeSorterOpenTempFile(sqlite3 *db, sqlite3_file **ppFile){
536 int dummy;
537 return sqlite3OsOpenMalloc(db->pVfs, 0, ppFile,
538 SQLITE_OPEN_TEMP_JOURNAL |
539 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE |
540 SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE, &dummy
545 ** Merge the two sorted lists p1 and p2 into a single list.
546 ** Set *ppOut to the head of the new list.
548 static void vdbeSorterMerge(
549 const VdbeCursor *pCsr, /* For pKeyInfo */
550 SorterRecord *p1, /* First list to merge */
551 SorterRecord *p2, /* Second list to merge */
552 SorterRecord **ppOut /* OUT: Head of merged list */
554 SorterRecord *pFinal = 0;
555 SorterRecord **pp = &pFinal;
556 void *pVal2 = p2 ? p2->pVal : 0;
558 while( p1 && p2 ){
559 int res;
560 vdbeSorterCompare(pCsr, 0, p1->pVal, p1->nVal, pVal2, p2->nVal, &res);
561 if( res<=0 ){
562 *pp = p1;
563 pp = &p1->pNext;
564 p1 = p1->pNext;
565 pVal2 = 0;
566 }else{
567 *pp = p2;
568 pp = &p2->pNext;
569 p2 = p2->pNext;
570 if( p2==0 ) break;
571 pVal2 = p2->pVal;
574 *pp = p1 ? p1 : p2;
575 *ppOut = pFinal;
579 ** Sort the linked list of records headed at pCsr->pRecord. Return SQLITE_OK
580 ** if successful, or an SQLite error code (i.e. SQLITE_NOMEM) if an error
581 ** occurs.
583 static int vdbeSorterSort(const VdbeCursor *pCsr){
584 int i;
585 SorterRecord **aSlot;
586 SorterRecord *p;
587 VdbeSorter *pSorter = pCsr->pSorter;
589 aSlot = (SorterRecord **)sqlite3MallocZero(64 * sizeof(SorterRecord *));
590 if( !aSlot ){
591 return SQLITE_NOMEM;
594 p = pSorter->pRecord;
595 while( p ){
596 SorterRecord *pNext = p->pNext;
597 p->pNext = 0;
598 for(i=0; aSlot[i]; i++){
599 vdbeSorterMerge(pCsr, p, aSlot[i], &p);
600 aSlot[i] = 0;
602 aSlot[i] = p;
603 p = pNext;
606 p = 0;
607 for(i=0; i<64; i++){
608 vdbeSorterMerge(pCsr, p, aSlot[i], &p);
610 pSorter->pRecord = p;
612 sqlite3_free(aSlot);
613 return SQLITE_OK;
617 ** Initialize a file-writer object.
619 static void fileWriterInit(
620 sqlite3 *db, /* Database (for malloc) */
621 sqlite3_file *pFile, /* File to write to */
622 FileWriter *p, /* Object to populate */
623 i64 iStart /* Offset of pFile to begin writing at */
625 int nBuf = sqlite3BtreeGetPageSize(db->aDb[0].pBt);
627 memset(p, 0, sizeof(FileWriter));
628 p->aBuffer = (u8 *)sqlite3DbMallocRaw(db, nBuf);
629 if( !p->aBuffer ){
630 p->eFWErr = SQLITE_NOMEM;
631 }else{
632 p->iBufEnd = p->iBufStart = (iStart % nBuf);
633 p->iWriteOff = iStart - p->iBufStart;
634 p->nBuffer = nBuf;
635 p->pFile = pFile;
640 ** Write nData bytes of data to the file-write object. Return SQLITE_OK
641 ** if successful, or an SQLite error code if an error occurs.
643 static void fileWriterWrite(FileWriter *p, u8 *pData, int nData){
644 int nRem = nData;
645 while( nRem>0 && p->eFWErr==0 ){
646 int nCopy = nRem;
647 if( nCopy>(p->nBuffer - p->iBufEnd) ){
648 nCopy = p->nBuffer - p->iBufEnd;
651 memcpy(&p->aBuffer[p->iBufEnd], &pData[nData-nRem], nCopy);
652 p->iBufEnd += nCopy;
653 if( p->iBufEnd==p->nBuffer ){
654 p->eFWErr = sqlite3OsWrite(p->pFile,
655 &p->aBuffer[p->iBufStart], p->iBufEnd - p->iBufStart,
656 p->iWriteOff + p->iBufStart
658 p->iBufStart = p->iBufEnd = 0;
659 p->iWriteOff += p->nBuffer;
661 assert( p->iBufEnd<p->nBuffer );
663 nRem -= nCopy;
668 ** Flush any buffered data to disk and clean up the file-writer object.
669 ** The results of using the file-writer after this call are undefined.
670 ** Return SQLITE_OK if flushing the buffered data succeeds or is not
671 ** required. Otherwise, return an SQLite error code.
673 ** Before returning, set *piEof to the offset immediately following the
674 ** last byte written to the file.
676 static int fileWriterFinish(sqlite3 *db, FileWriter *p, i64 *piEof){
677 int rc;
678 if( p->eFWErr==0 && ALWAYS(p->aBuffer) && p->iBufEnd>p->iBufStart ){
679 p->eFWErr = sqlite3OsWrite(p->pFile,
680 &p->aBuffer[p->iBufStart], p->iBufEnd - p->iBufStart,
681 p->iWriteOff + p->iBufStart
684 *piEof = (p->iWriteOff + p->iBufEnd);
685 sqlite3DbFree(db, p->aBuffer);
686 rc = p->eFWErr;
687 memset(p, 0, sizeof(FileWriter));
688 return rc;
692 ** Write value iVal encoded as a varint to the file-write object. Return
693 ** SQLITE_OK if successful, or an SQLite error code if an error occurs.
695 static void fileWriterWriteVarint(FileWriter *p, u64 iVal){
696 int nByte;
697 u8 aByte[10];
698 nByte = sqlite3PutVarint(aByte, iVal);
699 fileWriterWrite(p, aByte, nByte);
703 ** Write the current contents of the in-memory linked-list to a PMA. Return
704 ** SQLITE_OK if successful, or an SQLite error code otherwise.
706 ** The format of a PMA is:
708 ** * A varint. This varint contains the total number of bytes of content
709 ** in the PMA (not including the varint itself).
711 ** * One or more records packed end-to-end in order of ascending keys.
712 ** Each record consists of a varint followed by a blob of data (the
713 ** key). The varint is the number of bytes in the blob of data.
715 static int vdbeSorterListToPMA(sqlite3 *db, const VdbeCursor *pCsr){
716 int rc = SQLITE_OK; /* Return code */
717 VdbeSorter *pSorter = pCsr->pSorter;
718 FileWriter writer;
720 memset(&writer, 0, sizeof(FileWriter));
722 if( pSorter->nInMemory==0 ){
723 assert( pSorter->pRecord==0 );
724 return rc;
727 rc = vdbeSorterSort(pCsr);
729 /* If the first temporary PMA file has not been opened, open it now. */
730 if( rc==SQLITE_OK && pSorter->pTemp1==0 ){
731 rc = vdbeSorterOpenTempFile(db, &pSorter->pTemp1);
732 assert( rc!=SQLITE_OK || pSorter->pTemp1 );
733 assert( pSorter->iWriteOff==0 );
734 assert( pSorter->nPMA==0 );
737 if( rc==SQLITE_OK ){
738 SorterRecord *p;
739 SorterRecord *pNext = 0;
741 fileWriterInit(db, pSorter->pTemp1, &writer, pSorter->iWriteOff);
742 pSorter->nPMA++;
743 fileWriterWriteVarint(&writer, pSorter->nInMemory);
744 for(p=pSorter->pRecord; p; p=pNext){
745 pNext = p->pNext;
746 fileWriterWriteVarint(&writer, p->nVal);
747 fileWriterWrite(&writer, p->pVal, p->nVal);
748 sqlite3DbFree(db, p);
750 pSorter->pRecord = p;
751 rc = fileWriterFinish(db, &writer, &pSorter->iWriteOff);
754 return rc;
758 ** Add a record to the sorter.
760 int sqlite3VdbeSorterWrite(
761 sqlite3 *db, /* Database handle */
762 const VdbeCursor *pCsr, /* Sorter cursor */
763 Mem *pVal /* Memory cell containing record */
765 VdbeSorter *pSorter = pCsr->pSorter;
766 int rc = SQLITE_OK; /* Return Code */
767 SorterRecord *pNew; /* New list element */
769 assert( pSorter );
770 pSorter->nInMemory += sqlite3VarintLen(pVal->n) + pVal->n;
772 pNew = (SorterRecord *)sqlite3DbMallocRaw(db, pVal->n + sizeof(SorterRecord));
773 if( pNew==0 ){
774 rc = SQLITE_NOMEM;
775 }else{
776 pNew->pVal = (void *)&pNew[1];
777 memcpy(pNew->pVal, pVal->z, pVal->n);
778 pNew->nVal = pVal->n;
779 pNew->pNext = pSorter->pRecord;
780 pSorter->pRecord = pNew;
783 /* See if the contents of the sorter should now be written out. They
784 ** are written out when either of the following are true:
786 ** * The total memory allocated for the in-memory list is greater
787 ** than (page-size * cache-size), or
789 ** * The total memory allocated for the in-memory list is greater
790 ** than (page-size * 10) and sqlite3HeapNearlyFull() returns true.
792 if( rc==SQLITE_OK && pSorter->mxPmaSize>0 && (
793 (pSorter->nInMemory>pSorter->mxPmaSize)
794 || (pSorter->nInMemory>pSorter->mnPmaSize && sqlite3HeapNearlyFull())
796 #ifdef SQLITE_DEBUG
797 i64 nExpect = pSorter->iWriteOff
798 + sqlite3VarintLen(pSorter->nInMemory)
799 + pSorter->nInMemory;
800 #endif
801 rc = vdbeSorterListToPMA(db, pCsr);
802 pSorter->nInMemory = 0;
803 assert( rc!=SQLITE_OK || (nExpect==pSorter->iWriteOff) );
806 return rc;
810 ** Helper function for sqlite3VdbeSorterRewind().
812 static int vdbeSorterInitMerge(
813 sqlite3 *db, /* Database handle */
814 const VdbeCursor *pCsr, /* Cursor handle for this sorter */
815 i64 *pnByte /* Sum of bytes in all opened PMAs */
817 VdbeSorter *pSorter = pCsr->pSorter;
818 int rc = SQLITE_OK; /* Return code */
819 int i; /* Used to iterator through aIter[] */
820 i64 nByte = 0; /* Total bytes in all opened PMAs */
822 /* Initialize the iterators. */
823 for(i=0; i<SORTER_MAX_MERGE_COUNT; i++){
824 VdbeSorterIter *pIter = &pSorter->aIter[i];
825 rc = vdbeSorterIterInit(db, pSorter, pSorter->iReadOff, pIter, &nByte);
826 pSorter->iReadOff = pIter->iEof;
827 assert( rc!=SQLITE_OK || pSorter->iReadOff<=pSorter->iWriteOff );
828 if( rc!=SQLITE_OK || pSorter->iReadOff>=pSorter->iWriteOff ) break;
831 /* Initialize the aTree[] array. */
832 for(i=pSorter->nTree-1; rc==SQLITE_OK && i>0; i--){
833 rc = vdbeSorterDoCompare(pCsr, i);
836 *pnByte = nByte;
837 return rc;
841 ** Once the sorter has been populated, this function is called to prepare
842 ** for iterating through its contents in sorted order.
844 int sqlite3VdbeSorterRewind(sqlite3 *db, const VdbeCursor *pCsr, int *pbEof){
845 VdbeSorter *pSorter = pCsr->pSorter;
846 int rc; /* Return code */
847 sqlite3_file *pTemp2 = 0; /* Second temp file to use */
848 i64 iWrite2 = 0; /* Write offset for pTemp2 */
849 int nIter; /* Number of iterators used */
850 int nByte; /* Bytes of space required for aIter/aTree */
851 int N = 2; /* Power of 2 >= nIter */
853 assert( pSorter );
855 /* If no data has been written to disk, then do not do so now. Instead,
856 ** sort the VdbeSorter.pRecord list. The vdbe layer will read data directly
857 ** from the in-memory list. */
858 if( pSorter->nPMA==0 ){
859 *pbEof = !pSorter->pRecord;
860 assert( pSorter->aTree==0 );
861 return vdbeSorterSort(pCsr);
864 /* Write the current in-memory list to a PMA. */
865 rc = vdbeSorterListToPMA(db, pCsr);
866 if( rc!=SQLITE_OK ) return rc;
868 /* Allocate space for aIter[] and aTree[]. */
869 nIter = pSorter->nPMA;
870 if( nIter>SORTER_MAX_MERGE_COUNT ) nIter = SORTER_MAX_MERGE_COUNT;
871 assert( nIter>0 );
872 while( N<nIter ) N += N;
873 nByte = N * (sizeof(int) + sizeof(VdbeSorterIter));
874 pSorter->aIter = (VdbeSorterIter *)sqlite3DbMallocZero(db, nByte);
875 if( !pSorter->aIter ) return SQLITE_NOMEM;
876 pSorter->aTree = (int *)&pSorter->aIter[N];
877 pSorter->nTree = N;
879 do {
880 int iNew; /* Index of new, merged, PMA */
882 for(iNew=0;
883 rc==SQLITE_OK && iNew*SORTER_MAX_MERGE_COUNT<pSorter->nPMA;
884 iNew++
886 int rc2; /* Return code from fileWriterFinish() */
887 FileWriter writer; /* Object used to write to disk */
888 i64 nWrite; /* Number of bytes in new PMA */
890 memset(&writer, 0, sizeof(FileWriter));
892 /* If there are SORTER_MAX_MERGE_COUNT or less PMAs in file pTemp1,
893 ** initialize an iterator for each of them and break out of the loop.
894 ** These iterators will be incrementally merged as the VDBE layer calls
895 ** sqlite3VdbeSorterNext().
897 ** Otherwise, if pTemp1 contains more than SORTER_MAX_MERGE_COUNT PMAs,
898 ** initialize interators for SORTER_MAX_MERGE_COUNT of them. These PMAs
899 ** are merged into a single PMA that is written to file pTemp2.
901 rc = vdbeSorterInitMerge(db, pCsr, &nWrite);
902 assert( rc!=SQLITE_OK || pSorter->aIter[ pSorter->aTree[1] ].pFile );
903 if( rc!=SQLITE_OK || pSorter->nPMA<=SORTER_MAX_MERGE_COUNT ){
904 break;
907 /* Open the second temp file, if it is not already open. */
908 if( pTemp2==0 ){
909 assert( iWrite2==0 );
910 rc = vdbeSorterOpenTempFile(db, &pTemp2);
913 if( rc==SQLITE_OK ){
914 int bEof = 0;
915 fileWriterInit(db, pTemp2, &writer, iWrite2);
916 fileWriterWriteVarint(&writer, nWrite);
917 while( rc==SQLITE_OK && bEof==0 ){
918 VdbeSorterIter *pIter = &pSorter->aIter[ pSorter->aTree[1] ];
919 assert( pIter->pFile );
921 fileWriterWriteVarint(&writer, pIter->nKey);
922 fileWriterWrite(&writer, pIter->aKey, pIter->nKey);
923 rc = sqlite3VdbeSorterNext(db, pCsr, &bEof);
925 rc2 = fileWriterFinish(db, &writer, &iWrite2);
926 if( rc==SQLITE_OK ) rc = rc2;
930 if( pSorter->nPMA<=SORTER_MAX_MERGE_COUNT ){
931 break;
932 }else{
933 sqlite3_file *pTmp = pSorter->pTemp1;
934 pSorter->nPMA = iNew;
935 pSorter->pTemp1 = pTemp2;
936 pTemp2 = pTmp;
937 pSorter->iWriteOff = iWrite2;
938 pSorter->iReadOff = 0;
939 iWrite2 = 0;
941 }while( rc==SQLITE_OK );
943 if( pTemp2 ){
944 sqlite3OsCloseFree(pTemp2);
946 *pbEof = (pSorter->aIter[pSorter->aTree[1]].pFile==0);
947 return rc;
951 ** Advance to the next element in the sorter.
953 int sqlite3VdbeSorterNext(sqlite3 *db, const VdbeCursor *pCsr, int *pbEof){
954 VdbeSorter *pSorter = pCsr->pSorter;
955 int rc; /* Return code */
957 if( pSorter->aTree ){
958 int iPrev = pSorter->aTree[1];/* Index of iterator to advance */
959 int i; /* Index of aTree[] to recalculate */
961 rc = vdbeSorterIterNext(db, &pSorter->aIter[iPrev]);
962 for(i=(pSorter->nTree+iPrev)/2; rc==SQLITE_OK && i>0; i=i/2){
963 rc = vdbeSorterDoCompare(pCsr, i);
966 *pbEof = (pSorter->aIter[pSorter->aTree[1]].pFile==0);
967 }else{
968 SorterRecord *pFree = pSorter->pRecord;
969 pSorter->pRecord = pFree->pNext;
970 pFree->pNext = 0;
971 vdbeSorterRecordFree(db, pFree);
972 *pbEof = !pSorter->pRecord;
973 rc = SQLITE_OK;
975 return rc;
979 ** Return a pointer to a buffer owned by the sorter that contains the
980 ** current key.
982 static void *vdbeSorterRowkey(
983 const VdbeSorter *pSorter, /* Sorter object */
984 int *pnKey /* OUT: Size of current key in bytes */
986 void *pKey;
987 if( pSorter->aTree ){
988 VdbeSorterIter *pIter;
989 pIter = &pSorter->aIter[ pSorter->aTree[1] ];
990 *pnKey = pIter->nKey;
991 pKey = pIter->aKey;
992 }else{
993 *pnKey = pSorter->pRecord->nVal;
994 pKey = pSorter->pRecord->pVal;
996 return pKey;
1000 ** Copy the current sorter key into the memory cell pOut.
1002 int sqlite3VdbeSorterRowkey(const VdbeCursor *pCsr, Mem *pOut){
1003 VdbeSorter *pSorter = pCsr->pSorter;
1004 void *pKey; int nKey; /* Sorter key to copy into pOut */
1006 pKey = vdbeSorterRowkey(pSorter, &nKey);
1007 if( sqlite3VdbeMemGrow(pOut, nKey, 0) ){
1008 return SQLITE_NOMEM;
1010 pOut->n = nKey;
1011 MemSetTypeFlag(pOut, MEM_Blob);
1012 memcpy(pOut->z, pKey, nKey);
1014 return SQLITE_OK;
1018 ** Compare the key in memory cell pVal with the key that the sorter cursor
1019 ** passed as the first argument currently points to. For the purposes of
1020 ** the comparison, ignore the rowid field at the end of each record.
1022 ** If an error occurs, return an SQLite error code (i.e. SQLITE_NOMEM).
1023 ** Otherwise, set *pRes to a negative, zero or positive value if the
1024 ** key in pVal is smaller than, equal to or larger than the current sorter
1025 ** key.
1027 int sqlite3VdbeSorterCompare(
1028 const VdbeCursor *pCsr, /* Sorter cursor */
1029 Mem *pVal, /* Value to compare to current sorter key */
1030 int *pRes /* OUT: Result of comparison */
1032 VdbeSorter *pSorter = pCsr->pSorter;
1033 void *pKey; int nKey; /* Sorter key to compare pVal with */
1035 pKey = vdbeSorterRowkey(pSorter, &nKey);
1036 vdbeSorterCompare(pCsr, 1, pVal->z, pVal->n, pKey, nKey, pRes);
1037 return SQLITE_OK;