Adjustments due to upstream merging
[sqlcipher.git] / src / vdbeaux.c
blobec071606a2e54672f274ab181c37e20112ce7db9
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior
14 ** to version 2.8.7, all this code was combined into the vdbe.c source file.
15 ** But that file was getting too big so this subroutines were split out.
17 #include "sqliteInt.h"
18 #include "vdbeInt.h"
21 ** Create a new virtual database engine.
23 Vdbe *sqlite3VdbeCreate(sqlite3 *db){
24 Vdbe *p;
25 p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
26 if( p==0 ) return 0;
27 p->db = db;
28 if( db->pVdbe ){
29 db->pVdbe->pPrev = p;
31 p->pNext = db->pVdbe;
32 p->pPrev = 0;
33 db->pVdbe = p;
34 p->magic = VDBE_MAGIC_INIT;
35 return p;
39 ** Remember the SQL string for a prepared statement.
41 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){
42 assert( isPrepareV2==1 || isPrepareV2==0 );
43 if( p==0 ) return;
44 #if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG)
45 if( !isPrepareV2 ) return;
46 #endif
47 assert( p->zSql==0 );
48 p->zSql = sqlite3DbStrNDup(p->db, z, n);
49 p->isPrepareV2 = (u8)isPrepareV2;
53 ** Return the SQL associated with a prepared statement
55 const char *sqlite3_sql(sqlite3_stmt *pStmt){
56 Vdbe *p = (Vdbe *)pStmt;
57 return (p && p->isPrepareV2) ? p->zSql : 0;
61 ** Swap all content between two VDBE structures.
63 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
64 Vdbe tmp, *pTmp;
65 char *zTmp;
66 tmp = *pA;
67 *pA = *pB;
68 *pB = tmp;
69 pTmp = pA->pNext;
70 pA->pNext = pB->pNext;
71 pB->pNext = pTmp;
72 pTmp = pA->pPrev;
73 pA->pPrev = pB->pPrev;
74 pB->pPrev = pTmp;
75 zTmp = pA->zSql;
76 pA->zSql = pB->zSql;
77 pB->zSql = zTmp;
78 pB->isPrepareV2 = pA->isPrepareV2;
81 #ifdef SQLITE_DEBUG
83 ** Turn tracing on or off
85 void sqlite3VdbeTrace(Vdbe *p, FILE *trace){
86 p->trace = trace;
88 #endif
91 ** Resize the Vdbe.aOp array so that it is at least one op larger than
92 ** it was.
94 ** If an out-of-memory error occurs while resizing the array, return
95 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
96 ** unchanged (this is so that any opcodes already allocated can be
97 ** correctly deallocated along with the rest of the Vdbe).
99 static int growOpArray(Vdbe *p){
100 VdbeOp *pNew;
101 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
102 pNew = sqlite3DbRealloc(p->db, p->aOp, nNew*sizeof(Op));
103 if( pNew ){
104 p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op);
105 p->aOp = pNew;
107 return (pNew ? SQLITE_OK : SQLITE_NOMEM);
111 ** Add a new instruction to the list of instructions current in the
112 ** VDBE. Return the address of the new instruction.
114 ** Parameters:
116 ** p Pointer to the VDBE
118 ** op The opcode for this instruction
120 ** p1, p2, p3 Operands
122 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
123 ** the sqlite3VdbeChangeP4() function to change the value of the P4
124 ** operand.
126 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
127 int i;
128 VdbeOp *pOp;
130 i = p->nOp;
131 assert( p->magic==VDBE_MAGIC_INIT );
132 assert( op>0 && op<0xff );
133 if( p->nOpAlloc<=i ){
134 if( growOpArray(p) ){
135 return 1;
138 p->nOp++;
139 pOp = &p->aOp[i];
140 pOp->opcode = (u8)op;
141 pOp->p5 = 0;
142 pOp->p1 = p1;
143 pOp->p2 = p2;
144 pOp->p3 = p3;
145 pOp->p4.p = 0;
146 pOp->p4type = P4_NOTUSED;
147 #ifdef SQLITE_DEBUG
148 pOp->zComment = 0;
149 if( p->db->flags & SQLITE_VdbeAddopTrace ){
150 sqlite3VdbePrintOp(0, i, &p->aOp[i]);
152 #endif
153 #ifdef VDBE_PROFILE
154 pOp->cycles = 0;
155 pOp->cnt = 0;
156 #endif
157 return i;
159 int sqlite3VdbeAddOp0(Vdbe *p, int op){
160 return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
162 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
163 return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
165 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
166 return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
171 ** Add an opcode that includes the p4 value as a pointer.
173 int sqlite3VdbeAddOp4(
174 Vdbe *p, /* Add the opcode to this VM */
175 int op, /* The new opcode */
176 int p1, /* The P1 operand */
177 int p2, /* The P2 operand */
178 int p3, /* The P3 operand */
179 const char *zP4, /* The P4 operand */
180 int p4type /* P4 operand type */
182 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
183 sqlite3VdbeChangeP4(p, addr, zP4, p4type);
184 return addr;
188 ** Add an OP_ParseSchema opcode. This routine is broken out from
189 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
190 ** as having been used.
192 ** The zWhere string must have been obtained from sqlite3_malloc().
193 ** This routine will take ownership of the allocated memory.
195 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
196 int j;
197 int addr = sqlite3VdbeAddOp3(p, OP_ParseSchema, iDb, 0, 0);
198 sqlite3VdbeChangeP4(p, addr, zWhere, P4_DYNAMIC);
199 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
203 ** Add an opcode that includes the p4 value as an integer.
205 int sqlite3VdbeAddOp4Int(
206 Vdbe *p, /* Add the opcode to this VM */
207 int op, /* The new opcode */
208 int p1, /* The P1 operand */
209 int p2, /* The P2 operand */
210 int p3, /* The P3 operand */
211 int p4 /* The P4 operand as an integer */
213 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
214 sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32);
215 return addr;
219 ** Create a new symbolic label for an instruction that has yet to be
220 ** coded. The symbolic label is really just a negative number. The
221 ** label can be used as the P2 value of an operation. Later, when
222 ** the label is resolved to a specific address, the VDBE will scan
223 ** through its operation list and change all values of P2 which match
224 ** the label into the resolved address.
226 ** The VDBE knows that a P2 value is a label because labels are
227 ** always negative and P2 values are suppose to be non-negative.
228 ** Hence, a negative P2 value is a label that has yet to be resolved.
230 ** Zero is returned if a malloc() fails.
232 int sqlite3VdbeMakeLabel(Vdbe *p){
233 int i = p->nLabel++;
234 assert( p->magic==VDBE_MAGIC_INIT );
235 if( (i & (i-1))==0 ){
236 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
237 (i*2+1)*sizeof(p->aLabel[0]));
239 if( p->aLabel ){
240 p->aLabel[i] = -1;
242 return -1-i;
246 ** Resolve label "x" to be the address of the next instruction to
247 ** be inserted. The parameter "x" must have been obtained from
248 ** a prior call to sqlite3VdbeMakeLabel().
250 void sqlite3VdbeResolveLabel(Vdbe *p, int x){
251 int j = -1-x;
252 assert( p->magic==VDBE_MAGIC_INIT );
253 assert( j<p->nLabel );
254 if( j>=0 && p->aLabel ){
255 p->aLabel[j] = p->nOp;
260 ** Mark the VDBE as one that can only be run one time.
262 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
263 p->runOnlyOnce = 1;
266 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
269 ** The following type and function are used to iterate through all opcodes
270 ** in a Vdbe main program and each of the sub-programs (triggers) it may
271 ** invoke directly or indirectly. It should be used as follows:
273 ** Op *pOp;
274 ** VdbeOpIter sIter;
276 ** memset(&sIter, 0, sizeof(sIter));
277 ** sIter.v = v; // v is of type Vdbe*
278 ** while( (pOp = opIterNext(&sIter)) ){
279 ** // Do something with pOp
280 ** }
281 ** sqlite3DbFree(v->db, sIter.apSub);
284 typedef struct VdbeOpIter VdbeOpIter;
285 struct VdbeOpIter {
286 Vdbe *v; /* Vdbe to iterate through the opcodes of */
287 SubProgram **apSub; /* Array of subprograms */
288 int nSub; /* Number of entries in apSub */
289 int iAddr; /* Address of next instruction to return */
290 int iSub; /* 0 = main program, 1 = first sub-program etc. */
292 static Op *opIterNext(VdbeOpIter *p){
293 Vdbe *v = p->v;
294 Op *pRet = 0;
295 Op *aOp;
296 int nOp;
298 if( p->iSub<=p->nSub ){
300 if( p->iSub==0 ){
301 aOp = v->aOp;
302 nOp = v->nOp;
303 }else{
304 aOp = p->apSub[p->iSub-1]->aOp;
305 nOp = p->apSub[p->iSub-1]->nOp;
307 assert( p->iAddr<nOp );
309 pRet = &aOp[p->iAddr];
310 p->iAddr++;
311 if( p->iAddr==nOp ){
312 p->iSub++;
313 p->iAddr = 0;
316 if( pRet->p4type==P4_SUBPROGRAM ){
317 int nByte = (p->nSub+1)*sizeof(SubProgram*);
318 int j;
319 for(j=0; j<p->nSub; j++){
320 if( p->apSub[j]==pRet->p4.pProgram ) break;
322 if( j==p->nSub ){
323 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
324 if( !p->apSub ){
325 pRet = 0;
326 }else{
327 p->apSub[p->nSub++] = pRet->p4.pProgram;
333 return pRet;
337 ** Check if the program stored in the VM associated with pParse may
338 ** throw an ABORT exception (causing the statement, but not entire transaction
339 ** to be rolled back). This condition is true if the main program or any
340 ** sub-programs contains any of the following:
342 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
343 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
344 ** * OP_Destroy
345 ** * OP_VUpdate
346 ** * OP_VRename
347 ** * OP_FkCounter with P2==0 (immediate foreign key constraint)
349 ** Then check that the value of Parse.mayAbort is true if an
350 ** ABORT may be thrown, or false otherwise. Return true if it does
351 ** match, or false otherwise. This function is intended to be used as
352 ** part of an assert statement in the compiler. Similar to:
354 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
356 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
357 int hasAbort = 0;
358 Op *pOp;
359 VdbeOpIter sIter;
360 memset(&sIter, 0, sizeof(sIter));
361 sIter.v = v;
363 while( (pOp = opIterNext(&sIter))!=0 ){
364 int opcode = pOp->opcode;
365 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
366 #ifndef SQLITE_OMIT_FOREIGN_KEY
367 || (opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1)
368 #endif
369 || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
370 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
372 hasAbort = 1;
373 break;
376 sqlite3DbFree(v->db, sIter.apSub);
378 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
379 ** If malloc failed, then the while() loop above may not have iterated
380 ** through all opcodes and hasAbort may be set incorrectly. Return
381 ** true for this case to prevent the assert() in the callers frame
382 ** from failing. */
383 return ( v->db->mallocFailed || hasAbort==mayAbort );
385 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
388 ** Loop through the program looking for P2 values that are negative
389 ** on jump instructions. Each such value is a label. Resolve the
390 ** label by setting the P2 value to its correct non-zero value.
392 ** This routine is called once after all opcodes have been inserted.
394 ** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument
395 ** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by
396 ** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
398 ** The Op.opflags field is set on all opcodes.
400 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
401 int i;
402 int nMaxArgs = *pMaxFuncArgs;
403 Op *pOp;
404 int *aLabel = p->aLabel;
405 p->readOnly = 1;
406 p->bIsReader = 0;
407 for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
408 u8 opcode = pOp->opcode;
410 /* NOTE: Be sure to update mkopcodeh.awk when adding or removing
411 ** cases from this switch! */
412 switch( opcode ){
413 case OP_Function:
414 case OP_AggStep: {
415 if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
416 break;
418 case OP_Transaction: {
419 if( pOp->p2!=0 ) p->readOnly = 0;
420 /* fall thru */
422 case OP_AutoCommit:
423 case OP_Savepoint: {
424 p->bIsReader = 1;
425 break;
427 #ifndef SQLITE_OMIT_WAL
428 case OP_Checkpoint:
429 #endif
430 case OP_Vacuum:
431 case OP_JournalMode: {
432 p->readOnly = 0;
433 p->bIsReader = 1;
434 break;
436 #ifndef SQLITE_OMIT_VIRTUALTABLE
437 case OP_VUpdate: {
438 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
439 break;
441 case OP_VFilter: {
442 int n;
443 assert( p->nOp - i >= 3 );
444 assert( pOp[-1].opcode==OP_Integer );
445 n = pOp[-1].p1;
446 if( n>nMaxArgs ) nMaxArgs = n;
447 break;
449 #endif
450 case OP_Next:
451 case OP_SorterNext: {
452 pOp->p4.xAdvance = sqlite3BtreeNext;
453 pOp->p4type = P4_ADVANCE;
454 break;
456 case OP_Prev: {
457 pOp->p4.xAdvance = sqlite3BtreePrevious;
458 pOp->p4type = P4_ADVANCE;
459 break;
463 pOp->opflags = sqlite3OpcodeProperty[opcode];
464 if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
465 assert( -1-pOp->p2<p->nLabel );
466 pOp->p2 = aLabel[-1-pOp->p2];
469 sqlite3DbFree(p->db, p->aLabel);
470 p->aLabel = 0;
471 *pMaxFuncArgs = nMaxArgs;
472 assert( p->bIsReader!=0 || p->btreeMask==0 );
476 ** Return the address of the next instruction to be inserted.
478 int sqlite3VdbeCurrentAddr(Vdbe *p){
479 assert( p->magic==VDBE_MAGIC_INIT );
480 return p->nOp;
484 ** This function returns a pointer to the array of opcodes associated with
485 ** the Vdbe passed as the first argument. It is the callers responsibility
486 ** to arrange for the returned array to be eventually freed using the
487 ** vdbeFreeOpArray() function.
489 ** Before returning, *pnOp is set to the number of entries in the returned
490 ** array. Also, *pnMaxArg is set to the larger of its current value and
491 ** the number of entries in the Vdbe.apArg[] array required to execute the
492 ** returned program.
494 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
495 VdbeOp *aOp = p->aOp;
496 assert( aOp && !p->db->mallocFailed );
498 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
499 assert( p->btreeMask==0 );
501 resolveP2Values(p, pnMaxArg);
502 *pnOp = p->nOp;
503 p->aOp = 0;
504 return aOp;
508 ** Add a whole list of operations to the operation stack. Return the
509 ** address of the first operation added.
511 int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
512 int addr;
513 assert( p->magic==VDBE_MAGIC_INIT );
514 if( p->nOp + nOp > p->nOpAlloc && growOpArray(p) ){
515 return 0;
517 addr = p->nOp;
518 if( ALWAYS(nOp>0) ){
519 int i;
520 VdbeOpList const *pIn = aOp;
521 for(i=0; i<nOp; i++, pIn++){
522 int p2 = pIn->p2;
523 VdbeOp *pOut = &p->aOp[i+addr];
524 pOut->opcode = pIn->opcode;
525 pOut->p1 = pIn->p1;
526 if( p2<0 && (sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP)!=0 ){
527 pOut->p2 = addr + ADDR(p2);
528 }else{
529 pOut->p2 = p2;
531 pOut->p3 = pIn->p3;
532 pOut->p4type = P4_NOTUSED;
533 pOut->p4.p = 0;
534 pOut->p5 = 0;
535 #ifdef SQLITE_DEBUG
536 pOut->zComment = 0;
537 if( p->db->flags & SQLITE_VdbeAddopTrace ){
538 sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
540 #endif
542 p->nOp += nOp;
544 return addr;
548 ** Change the value of the P1 operand for a specific instruction.
549 ** This routine is useful when a large program is loaded from a
550 ** static array using sqlite3VdbeAddOpList but we want to make a
551 ** few minor changes to the program.
553 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){
554 assert( p!=0 );
555 if( ((u32)p->nOp)>addr ){
556 p->aOp[addr].p1 = val;
561 ** Change the value of the P2 operand for a specific instruction.
562 ** This routine is useful for setting a jump destination.
564 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
565 assert( p!=0 );
566 if( ((u32)p->nOp)>addr ){
567 p->aOp[addr].p2 = val;
572 ** Change the value of the P3 operand for a specific instruction.
574 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
575 assert( p!=0 );
576 if( ((u32)p->nOp)>addr ){
577 p->aOp[addr].p3 = val;
582 ** Change the value of the P5 operand for the most recently
583 ** added operation.
585 void sqlite3VdbeChangeP5(Vdbe *p, u8 val){
586 assert( p!=0 );
587 if( p->aOp ){
588 assert( p->nOp>0 );
589 p->aOp[p->nOp-1].p5 = val;
594 ** Change the P2 operand of instruction addr so that it points to
595 ** the address of the next instruction to be coded.
597 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
598 if( ALWAYS(addr>=0) ) sqlite3VdbeChangeP2(p, addr, p->nOp);
603 ** If the input FuncDef structure is ephemeral, then free it. If
604 ** the FuncDef is not ephermal, then do nothing.
606 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
607 if( ALWAYS(pDef) && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){
608 sqlite3DbFree(db, pDef);
612 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
615 ** Delete a P4 value if necessary.
617 static void freeP4(sqlite3 *db, int p4type, void *p4){
618 if( p4 ){
619 assert( db );
620 switch( p4type ){
621 case P4_REAL:
622 case P4_INT64:
623 case P4_DYNAMIC:
624 case P4_KEYINFO:
625 case P4_INTARRAY:
626 case P4_KEYINFO_HANDOFF: {
627 sqlite3DbFree(db, p4);
628 break;
630 case P4_MPRINTF: {
631 if( db->pnBytesFreed==0 ) sqlite3_free(p4);
632 break;
634 case P4_FUNCDEF: {
635 freeEphemeralFunction(db, (FuncDef*)p4);
636 break;
638 case P4_MEM: {
639 if( db->pnBytesFreed==0 ){
640 sqlite3ValueFree((sqlite3_value*)p4);
641 }else{
642 Mem *p = (Mem*)p4;
643 sqlite3DbFree(db, p->zMalloc);
644 sqlite3DbFree(db, p);
646 break;
648 case P4_VTAB : {
649 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
650 break;
657 ** Free the space allocated for aOp and any p4 values allocated for the
658 ** opcodes contained within. If aOp is not NULL it is assumed to contain
659 ** nOp entries.
661 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
662 if( aOp ){
663 Op *pOp;
664 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
665 freeP4(db, pOp->p4type, pOp->p4.p);
666 #ifdef SQLITE_DEBUG
667 sqlite3DbFree(db, pOp->zComment);
668 #endif
671 sqlite3DbFree(db, aOp);
675 ** Link the SubProgram object passed as the second argument into the linked
676 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
677 ** objects when the VM is no longer required.
679 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
680 p->pNext = pVdbe->pProgram;
681 pVdbe->pProgram = p;
685 ** Change the opcode at addr into OP_Noop
687 void sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
688 if( p->aOp ){
689 VdbeOp *pOp = &p->aOp[addr];
690 sqlite3 *db = p->db;
691 freeP4(db, pOp->p4type, pOp->p4.p);
692 memset(pOp, 0, sizeof(pOp[0]));
693 pOp->opcode = OP_Noop;
698 ** Change the value of the P4 operand for a specific instruction.
699 ** This routine is useful when a large program is loaded from a
700 ** static array using sqlite3VdbeAddOpList but we want to make a
701 ** few minor changes to the program.
703 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
704 ** the string is made into memory obtained from sqlite3_malloc().
705 ** A value of n==0 means copy bytes of zP4 up to and including the
706 ** first null byte. If n>0 then copy n+1 bytes of zP4.
708 ** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure.
709 ** A copy is made of the KeyInfo structure into memory obtained from
710 ** sqlite3_malloc, to be freed when the Vdbe is finalized.
711 ** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure
712 ** stored in memory that the caller has obtained from sqlite3_malloc. The
713 ** caller should not free the allocation, it will be freed when the Vdbe is
714 ** finalized.
716 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
717 ** to a string or structure that is guaranteed to exist for the lifetime of
718 ** the Vdbe. In these cases we can just copy the pointer.
720 ** If addr<0 then change P4 on the most recently inserted instruction.
722 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
723 Op *pOp;
724 sqlite3 *db;
725 assert( p!=0 );
726 db = p->db;
727 assert( p->magic==VDBE_MAGIC_INIT );
728 if( p->aOp==0 || db->mallocFailed ){
729 if ( n!=P4_KEYINFO && n!=P4_VTAB ) {
730 freeP4(db, n, (void*)*(char**)&zP4);
732 return;
734 assert( p->nOp>0 );
735 assert( addr<p->nOp );
736 if( addr<0 ){
737 addr = p->nOp - 1;
739 pOp = &p->aOp[addr];
740 assert( pOp->p4type==P4_NOTUSED || pOp->p4type==P4_INT32 );
741 freeP4(db, pOp->p4type, pOp->p4.p);
742 pOp->p4.p = 0;
743 if( n==P4_INT32 ){
744 /* Note: this cast is safe, because the origin data point was an int
745 ** that was cast to a (const char *). */
746 pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
747 pOp->p4type = P4_INT32;
748 }else if( zP4==0 ){
749 pOp->p4.p = 0;
750 pOp->p4type = P4_NOTUSED;
751 }else if( n==P4_KEYINFO ){
752 KeyInfo *pOrig, *pNew;
754 pOrig = (KeyInfo*)zP4;
755 pOp->p4.pKeyInfo = pNew = sqlite3KeyInfoAlloc(db, pOrig->nField);
756 if( pNew ){
757 memcpy(pNew->aColl, pOrig->aColl, pOrig->nField*sizeof(pNew->aColl[0]));
758 memcpy(pNew->aSortOrder, pOrig->aSortOrder, pOrig->nField);
759 pOp->p4type = P4_KEYINFO;
760 }else{
761 p->db->mallocFailed = 1;
762 pOp->p4type = P4_NOTUSED;
764 }else if( n==P4_KEYINFO_HANDOFF ){
765 pOp->p4.p = (void*)zP4;
766 pOp->p4type = P4_KEYINFO;
767 }else if( n==P4_VTAB ){
768 pOp->p4.p = (void*)zP4;
769 pOp->p4type = P4_VTAB;
770 sqlite3VtabLock((VTable *)zP4);
771 assert( ((VTable *)zP4)->db==p->db );
772 }else if( n<0 ){
773 pOp->p4.p = (void*)zP4;
774 pOp->p4type = (signed char)n;
775 }else{
776 if( n==0 ) n = sqlite3Strlen30(zP4);
777 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
778 pOp->p4type = P4_DYNAMIC;
782 #ifndef NDEBUG
784 ** Change the comment on the most recently coded instruction. Or
785 ** insert a No-op and add the comment to that new instruction. This
786 ** makes the code easier to read during debugging. None of this happens
787 ** in a production build.
789 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
790 assert( p->nOp>0 || p->aOp==0 );
791 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
792 if( p->nOp ){
793 assert( p->aOp );
794 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
795 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
798 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
799 va_list ap;
800 if( p ){
801 va_start(ap, zFormat);
802 vdbeVComment(p, zFormat, ap);
803 va_end(ap);
806 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
807 va_list ap;
808 if( p ){
809 sqlite3VdbeAddOp0(p, OP_Noop);
810 va_start(ap, zFormat);
811 vdbeVComment(p, zFormat, ap);
812 va_end(ap);
815 #endif /* NDEBUG */
818 ** Return the opcode for a given address. If the address is -1, then
819 ** return the most recently inserted opcode.
821 ** If a memory allocation error has occurred prior to the calling of this
822 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
823 ** is readable but not writable, though it is cast to a writable value.
824 ** The return of a dummy opcode allows the call to continue functioning
825 ** after a OOM fault without having to check to see if the return from
826 ** this routine is a valid pointer. But because the dummy.opcode is 0,
827 ** dummy will never be written to. This is verified by code inspection and
828 ** by running with Valgrind.
830 ** About the #ifdef SQLITE_OMIT_TRACE: Normally, this routine is never called
831 ** unless p->nOp>0. This is because in the absense of SQLITE_OMIT_TRACE,
832 ** an OP_Trace instruction is always inserted by sqlite3VdbeGet() as soon as
833 ** a new VDBE is created. So we are free to set addr to p->nOp-1 without
834 ** having to double-check to make sure that the result is non-negative. But
835 ** if SQLITE_OMIT_TRACE is defined, the OP_Trace is omitted and we do need to
836 ** check the value of p->nOp-1 before continuing.
838 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
839 /* C89 specifies that the constant "dummy" will be initialized to all
840 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
841 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
842 assert( p->magic==VDBE_MAGIC_INIT );
843 if( addr<0 ){
844 #ifdef SQLITE_OMIT_TRACE
845 if( p->nOp==0 ) return (VdbeOp*)&dummy;
846 #endif
847 addr = p->nOp - 1;
849 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
850 if( p->db->mallocFailed ){
851 return (VdbeOp*)&dummy;
852 }else{
853 return &p->aOp[addr];
857 #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
858 || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
860 ** Compute a string that describes the P4 parameter for an opcode.
861 ** Use zTemp for any required temporary buffer space.
863 static char *displayP4(Op *pOp, char *zTemp, int nTemp){
864 char *zP4 = zTemp;
865 assert( nTemp>=20 );
866 switch( pOp->p4type ){
867 case P4_KEYINFO_STATIC:
868 case P4_KEYINFO: {
869 int i, j;
870 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
871 assert( pKeyInfo->aSortOrder!=0 );
872 sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField);
873 i = sqlite3Strlen30(zTemp);
874 for(j=0; j<pKeyInfo->nField; j++){
875 CollSeq *pColl = pKeyInfo->aColl[j];
876 const char *zColl = pColl ? pColl->zName : "nil";
877 int n = sqlite3Strlen30(zColl);
878 if( i+n>nTemp-6 ){
879 memcpy(&zTemp[i],",...",4);
880 break;
882 zTemp[i++] = ',';
883 if( pKeyInfo->aSortOrder[j] ){
884 zTemp[i++] = '-';
886 memcpy(&zTemp[i], zColl, n+1);
887 i += n;
889 zTemp[i++] = ')';
890 zTemp[i] = 0;
891 assert( i<nTemp );
892 break;
894 case P4_COLLSEQ: {
895 CollSeq *pColl = pOp->p4.pColl;
896 sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName);
897 break;
899 case P4_FUNCDEF: {
900 FuncDef *pDef = pOp->p4.pFunc;
901 sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
902 break;
904 case P4_INT64: {
905 sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
906 break;
908 case P4_INT32: {
909 sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
910 break;
912 case P4_REAL: {
913 sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
914 break;
916 case P4_MEM: {
917 Mem *pMem = pOp->p4.pMem;
918 if( pMem->flags & MEM_Str ){
919 zP4 = pMem->z;
920 }else if( pMem->flags & MEM_Int ){
921 sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
922 }else if( pMem->flags & MEM_Real ){
923 sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r);
924 }else if( pMem->flags & MEM_Null ){
925 sqlite3_snprintf(nTemp, zTemp, "NULL");
926 }else{
927 assert( pMem->flags & MEM_Blob );
928 zP4 = "(blob)";
930 break;
932 #ifndef SQLITE_OMIT_VIRTUALTABLE
933 case P4_VTAB: {
934 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
935 sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
936 break;
938 #endif
939 case P4_INTARRAY: {
940 sqlite3_snprintf(nTemp, zTemp, "intarray");
941 break;
943 case P4_SUBPROGRAM: {
944 sqlite3_snprintf(nTemp, zTemp, "program");
945 break;
947 case P4_ADVANCE: {
948 zTemp[0] = 0;
949 break;
951 default: {
952 zP4 = pOp->p4.z;
953 if( zP4==0 ){
954 zP4 = zTemp;
955 zTemp[0] = 0;
959 assert( zP4!=0 );
960 return zP4;
962 #endif
965 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
967 ** The prepared statements need to know in advance the complete set of
968 ** attached databases that will be use. A mask of these databases
969 ** is maintained in p->btreeMask. The p->lockMask value is the subset of
970 ** p->btreeMask of databases that will require a lock.
972 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
973 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
974 assert( i<(int)sizeof(p->btreeMask)*8 );
975 p->btreeMask |= ((yDbMask)1)<<i;
976 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
977 p->lockMask |= ((yDbMask)1)<<i;
981 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
983 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
984 ** this routine obtains the mutex associated with each BtShared structure
985 ** that may be accessed by the VM passed as an argument. In doing so it also
986 ** sets the BtShared.db member of each of the BtShared structures, ensuring
987 ** that the correct busy-handler callback is invoked if required.
989 ** If SQLite is not threadsafe but does support shared-cache mode, then
990 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
991 ** of all of BtShared structures accessible via the database handle
992 ** associated with the VM.
994 ** If SQLite is not threadsafe and does not support shared-cache mode, this
995 ** function is a no-op.
997 ** The p->btreeMask field is a bitmask of all btrees that the prepared
998 ** statement p will ever use. Let N be the number of bits in p->btreeMask
999 ** corresponding to btrees that use shared cache. Then the runtime of
1000 ** this routine is N*N. But as N is rarely more than 1, this should not
1001 ** be a problem.
1003 void sqlite3VdbeEnter(Vdbe *p){
1004 int i;
1005 yDbMask mask;
1006 sqlite3 *db;
1007 Db *aDb;
1008 int nDb;
1009 if( p->lockMask==0 ) return; /* The common case */
1010 db = p->db;
1011 aDb = db->aDb;
1012 nDb = db->nDb;
1013 for(i=0, mask=1; i<nDb; i++, mask += mask){
1014 if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){
1015 sqlite3BtreeEnter(aDb[i].pBt);
1019 #endif
1021 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1023 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1025 void sqlite3VdbeLeave(Vdbe *p){
1026 int i;
1027 yDbMask mask;
1028 sqlite3 *db;
1029 Db *aDb;
1030 int nDb;
1031 if( p->lockMask==0 ) return; /* The common case */
1032 db = p->db;
1033 aDb = db->aDb;
1034 nDb = db->nDb;
1035 for(i=0, mask=1; i<nDb; i++, mask += mask){
1036 if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){
1037 sqlite3BtreeLeave(aDb[i].pBt);
1041 #endif
1043 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1045 ** Print a single opcode. This routine is used for debugging only.
1047 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
1048 char *zP4;
1049 char zPtr[50];
1050 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n";
1051 if( pOut==0 ) pOut = stdout;
1052 zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
1053 fprintf(pOut, zFormat1, pc,
1054 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
1055 #ifdef SQLITE_DEBUG
1056 pOp->zComment ? pOp->zComment : ""
1057 #else
1059 #endif
1061 fflush(pOut);
1063 #endif
1066 ** Release an array of N Mem elements
1068 static void releaseMemArray(Mem *p, int N){
1069 if( p && N ){
1070 Mem *pEnd;
1071 sqlite3 *db = p->db;
1072 u8 malloc_failed = db->mallocFailed;
1073 if( db->pnBytesFreed ){
1074 for(pEnd=&p[N]; p<pEnd; p++){
1075 sqlite3DbFree(db, p->zMalloc);
1077 return;
1079 for(pEnd=&p[N]; p<pEnd; p++){
1080 assert( (&p[1])==pEnd || p[0].db==p[1].db );
1082 /* This block is really an inlined version of sqlite3VdbeMemRelease()
1083 ** that takes advantage of the fact that the memory cell value is
1084 ** being set to NULL after releasing any dynamic resources.
1086 ** The justification for duplicating code is that according to
1087 ** callgrind, this causes a certain test case to hit the CPU 4.7
1088 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1089 ** sqlite3MemRelease() were called from here. With -O2, this jumps
1090 ** to 6.6 percent. The test case is inserting 1000 rows into a table
1091 ** with no indexes using a single prepared INSERT statement, bind()
1092 ** and reset(). Inserts are grouped into a transaction.
1094 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
1095 sqlite3VdbeMemRelease(p);
1096 }else if( p->zMalloc ){
1097 sqlite3DbFree(db, p->zMalloc);
1098 p->zMalloc = 0;
1101 p->flags = MEM_Invalid;
1103 db->mallocFailed = malloc_failed;
1108 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
1109 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
1111 void sqlite3VdbeFrameDelete(VdbeFrame *p){
1112 int i;
1113 Mem *aMem = VdbeFrameMem(p);
1114 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
1115 for(i=0; i<p->nChildCsr; i++){
1116 sqlite3VdbeFreeCursor(p->v, apCsr[i]);
1118 releaseMemArray(aMem, p->nChildMem);
1119 sqlite3DbFree(p->v->db, p);
1122 #ifndef SQLITE_OMIT_EXPLAIN
1124 ** Give a listing of the program in the virtual machine.
1126 ** The interface is the same as sqlite3VdbeExec(). But instead of
1127 ** running the code, it invokes the callback once for each instruction.
1128 ** This feature is used to implement "EXPLAIN".
1130 ** When p->explain==1, each instruction is listed. When
1131 ** p->explain==2, only OP_Explain instructions are listed and these
1132 ** are shown in a different format. p->explain==2 is used to implement
1133 ** EXPLAIN QUERY PLAN.
1135 ** When p->explain==1, first the main program is listed, then each of
1136 ** the trigger subprograms are listed one by one.
1138 int sqlite3VdbeList(
1139 Vdbe *p /* The VDBE */
1141 int nRow; /* Stop when row count reaches this */
1142 int nSub = 0; /* Number of sub-vdbes seen so far */
1143 SubProgram **apSub = 0; /* Array of sub-vdbes */
1144 Mem *pSub = 0; /* Memory cell hold array of subprogs */
1145 sqlite3 *db = p->db; /* The database connection */
1146 int i; /* Loop counter */
1147 int rc = SQLITE_OK; /* Return code */
1148 Mem *pMem = &p->aMem[1]; /* First Mem of result set */
1150 assert( p->explain );
1151 assert( p->magic==VDBE_MAGIC_RUN );
1152 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
1154 /* Even though this opcode does not use dynamic strings for
1155 ** the result, result columns may become dynamic if the user calls
1156 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
1158 releaseMemArray(pMem, 8);
1159 p->pResultSet = 0;
1161 if( p->rc==SQLITE_NOMEM ){
1162 /* This happens if a malloc() inside a call to sqlite3_column_text() or
1163 ** sqlite3_column_text16() failed. */
1164 db->mallocFailed = 1;
1165 return SQLITE_ERROR;
1168 /* When the number of output rows reaches nRow, that means the
1169 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1170 ** nRow is the sum of the number of rows in the main program, plus
1171 ** the sum of the number of rows in all trigger subprograms encountered
1172 ** so far. The nRow value will increase as new trigger subprograms are
1173 ** encountered, but p->pc will eventually catch up to nRow.
1175 nRow = p->nOp;
1176 if( p->explain==1 ){
1177 /* The first 8 memory cells are used for the result set. So we will
1178 ** commandeer the 9th cell to use as storage for an array of pointers
1179 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
1180 ** cells. */
1181 assert( p->nMem>9 );
1182 pSub = &p->aMem[9];
1183 if( pSub->flags&MEM_Blob ){
1184 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is
1185 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
1186 nSub = pSub->n/sizeof(Vdbe*);
1187 apSub = (SubProgram **)pSub->z;
1189 for(i=0; i<nSub; i++){
1190 nRow += apSub[i]->nOp;
1195 i = p->pc++;
1196 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
1197 if( i>=nRow ){
1198 p->rc = SQLITE_OK;
1199 rc = SQLITE_DONE;
1200 }else if( db->u1.isInterrupted ){
1201 p->rc = SQLITE_INTERRUPT;
1202 rc = SQLITE_ERROR;
1203 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc));
1204 }else{
1205 char *z;
1206 Op *pOp;
1207 if( i<p->nOp ){
1208 /* The output line number is small enough that we are still in the
1209 ** main program. */
1210 pOp = &p->aOp[i];
1211 }else{
1212 /* We are currently listing subprograms. Figure out which one and
1213 ** pick up the appropriate opcode. */
1214 int j;
1215 i -= p->nOp;
1216 for(j=0; i>=apSub[j]->nOp; j++){
1217 i -= apSub[j]->nOp;
1219 pOp = &apSub[j]->aOp[i];
1221 if( p->explain==1 ){
1222 pMem->flags = MEM_Int;
1223 pMem->type = SQLITE_INTEGER;
1224 pMem->u.i = i; /* Program counter */
1225 pMem++;
1227 pMem->flags = MEM_Static|MEM_Str|MEM_Term;
1228 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
1229 assert( pMem->z!=0 );
1230 pMem->n = sqlite3Strlen30(pMem->z);
1231 pMem->type = SQLITE_TEXT;
1232 pMem->enc = SQLITE_UTF8;
1233 pMem++;
1235 /* When an OP_Program opcode is encounter (the only opcode that has
1236 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
1237 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
1238 ** has not already been seen.
1240 if( pOp->p4type==P4_SUBPROGRAM ){
1241 int nByte = (nSub+1)*sizeof(SubProgram*);
1242 int j;
1243 for(j=0; j<nSub; j++){
1244 if( apSub[j]==pOp->p4.pProgram ) break;
1246 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){
1247 apSub = (SubProgram **)pSub->z;
1248 apSub[nSub++] = pOp->p4.pProgram;
1249 pSub->flags |= MEM_Blob;
1250 pSub->n = nSub*sizeof(SubProgram*);
1255 pMem->flags = MEM_Int;
1256 pMem->u.i = pOp->p1; /* P1 */
1257 pMem->type = SQLITE_INTEGER;
1258 pMem++;
1260 pMem->flags = MEM_Int;
1261 pMem->u.i = pOp->p2; /* P2 */
1262 pMem->type = SQLITE_INTEGER;
1263 pMem++;
1265 pMem->flags = MEM_Int;
1266 pMem->u.i = pOp->p3; /* P3 */
1267 pMem->type = SQLITE_INTEGER;
1268 pMem++;
1270 if( sqlite3VdbeMemGrow(pMem, 32, 0) ){ /* P4 */
1271 assert( p->db->mallocFailed );
1272 return SQLITE_ERROR;
1274 pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
1275 z = displayP4(pOp, pMem->z, 32);
1276 if( z!=pMem->z ){
1277 sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0);
1278 }else{
1279 assert( pMem->z!=0 );
1280 pMem->n = sqlite3Strlen30(pMem->z);
1281 pMem->enc = SQLITE_UTF8;
1283 pMem->type = SQLITE_TEXT;
1284 pMem++;
1286 if( p->explain==1 ){
1287 if( sqlite3VdbeMemGrow(pMem, 4, 0) ){
1288 assert( p->db->mallocFailed );
1289 return SQLITE_ERROR;
1291 pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
1292 pMem->n = 2;
1293 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
1294 pMem->type = SQLITE_TEXT;
1295 pMem->enc = SQLITE_UTF8;
1296 pMem++;
1298 #ifdef SQLITE_DEBUG
1299 if( pOp->zComment ){
1300 pMem->flags = MEM_Str|MEM_Term;
1301 pMem->z = pOp->zComment;
1302 pMem->n = sqlite3Strlen30(pMem->z);
1303 pMem->enc = SQLITE_UTF8;
1304 pMem->type = SQLITE_TEXT;
1305 }else
1306 #endif
1308 pMem->flags = MEM_Null; /* Comment */
1309 pMem->type = SQLITE_NULL;
1313 p->nResColumn = 8 - 4*(p->explain-1);
1314 p->pResultSet = &p->aMem[1];
1315 p->rc = SQLITE_OK;
1316 rc = SQLITE_ROW;
1318 return rc;
1320 #endif /* SQLITE_OMIT_EXPLAIN */
1322 #ifdef SQLITE_DEBUG
1324 ** Print the SQL that was used to generate a VDBE program.
1326 void sqlite3VdbePrintSql(Vdbe *p){
1327 int nOp = p->nOp;
1328 VdbeOp *pOp;
1329 if( nOp<1 ) return;
1330 pOp = &p->aOp[0];
1331 if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
1332 const char *z = pOp->p4.z;
1333 while( sqlite3Isspace(*z) ) z++;
1334 printf("SQL: [%s]\n", z);
1337 #endif
1339 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
1341 ** Print an IOTRACE message showing SQL content.
1343 void sqlite3VdbeIOTraceSql(Vdbe *p){
1344 int nOp = p->nOp;
1345 VdbeOp *pOp;
1346 if( sqlite3IoTrace==0 ) return;
1347 if( nOp<1 ) return;
1348 pOp = &p->aOp[0];
1349 if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
1350 int i, j;
1351 char z[1000];
1352 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
1353 for(i=0; sqlite3Isspace(z[i]); i++){}
1354 for(j=0; z[i]; i++){
1355 if( sqlite3Isspace(z[i]) ){
1356 if( z[i-1]!=' ' ){
1357 z[j++] = ' ';
1359 }else{
1360 z[j++] = z[i];
1363 z[j] = 0;
1364 sqlite3IoTrace("SQL %s\n", z);
1367 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
1370 ** Allocate space from a fixed size buffer and return a pointer to
1371 ** that space. If insufficient space is available, return NULL.
1373 ** The pBuf parameter is the initial value of a pointer which will
1374 ** receive the new memory. pBuf is normally NULL. If pBuf is not
1375 ** NULL, it means that memory space has already been allocated and that
1376 ** this routine should not allocate any new memory. When pBuf is not
1377 ** NULL simply return pBuf. Only allocate new memory space when pBuf
1378 ** is NULL.
1380 ** nByte is the number of bytes of space needed.
1382 ** *ppFrom points to available space and pEnd points to the end of the
1383 ** available space. When space is allocated, *ppFrom is advanced past
1384 ** the end of the allocated space.
1386 ** *pnByte is a counter of the number of bytes of space that have failed
1387 ** to allocate. If there is insufficient space in *ppFrom to satisfy the
1388 ** request, then increment *pnByte by the amount of the request.
1390 static void *allocSpace(
1391 void *pBuf, /* Where return pointer will be stored */
1392 int nByte, /* Number of bytes to allocate */
1393 u8 **ppFrom, /* IN/OUT: Allocate from *ppFrom */
1394 u8 *pEnd, /* Pointer to 1 byte past the end of *ppFrom buffer */
1395 int *pnByte /* If allocation cannot be made, increment *pnByte */
1397 assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) );
1398 if( pBuf ) return pBuf;
1399 nByte = ROUND8(nByte);
1400 if( &(*ppFrom)[nByte] <= pEnd ){
1401 pBuf = (void*)*ppFrom;
1402 *ppFrom += nByte;
1403 }else{
1404 *pnByte += nByte;
1406 return pBuf;
1410 ** Rewind the VDBE back to the beginning in preparation for
1411 ** running it.
1413 void sqlite3VdbeRewind(Vdbe *p){
1414 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
1415 int i;
1416 #endif
1417 assert( p!=0 );
1418 assert( p->magic==VDBE_MAGIC_INIT );
1420 /* There should be at least one opcode.
1422 assert( p->nOp>0 );
1424 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
1425 p->magic = VDBE_MAGIC_RUN;
1427 #ifdef SQLITE_DEBUG
1428 for(i=1; i<p->nMem; i++){
1429 assert( p->aMem[i].db==p->db );
1431 #endif
1432 p->pc = -1;
1433 p->rc = SQLITE_OK;
1434 p->errorAction = OE_Abort;
1435 p->magic = VDBE_MAGIC_RUN;
1436 p->nChange = 0;
1437 p->cacheCtr = 1;
1438 p->minWriteFileFormat = 255;
1439 p->iStatement = 0;
1440 p->nFkConstraint = 0;
1441 #ifdef VDBE_PROFILE
1442 for(i=0; i<p->nOp; i++){
1443 p->aOp[i].cnt = 0;
1444 p->aOp[i].cycles = 0;
1446 #endif
1450 ** Prepare a virtual machine for execution for the first time after
1451 ** creating the virtual machine. This involves things such
1452 ** as allocating stack space and initializing the program counter.
1453 ** After the VDBE has be prepped, it can be executed by one or more
1454 ** calls to sqlite3VdbeExec().
1456 ** This function may be called exact once on a each virtual machine.
1457 ** After this routine is called the VM has been "packaged" and is ready
1458 ** to run. After this routine is called, futher calls to
1459 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
1460 ** the Vdbe from the Parse object that helped generate it so that the
1461 ** the Vdbe becomes an independent entity and the Parse object can be
1462 ** destroyed.
1464 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
1465 ** to its initial state after it has been run.
1467 void sqlite3VdbeMakeReady(
1468 Vdbe *p, /* The VDBE */
1469 Parse *pParse /* Parsing context */
1471 sqlite3 *db; /* The database connection */
1472 int nVar; /* Number of parameters */
1473 int nMem; /* Number of VM memory registers */
1474 int nCursor; /* Number of cursors required */
1475 int nArg; /* Number of arguments in subprograms */
1476 int nOnce; /* Number of OP_Once instructions */
1477 int n; /* Loop counter */
1478 u8 *zCsr; /* Memory available for allocation */
1479 u8 *zEnd; /* First byte past allocated memory */
1480 int nByte; /* How much extra memory is needed */
1482 assert( p!=0 );
1483 assert( p->nOp>0 );
1484 assert( pParse!=0 );
1485 assert( p->magic==VDBE_MAGIC_INIT );
1486 db = p->db;
1487 assert( db->mallocFailed==0 );
1488 nVar = pParse->nVar;
1489 nMem = pParse->nMem;
1490 nCursor = pParse->nTab;
1491 nArg = pParse->nMaxArg;
1492 nOnce = pParse->nOnce;
1493 if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */
1495 /* For each cursor required, also allocate a memory cell. Memory
1496 ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
1497 ** the vdbe program. Instead they are used to allocate space for
1498 ** VdbeCursor/BtCursor structures. The blob of memory associated with
1499 ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
1500 ** stores the blob of memory associated with cursor 1, etc.
1502 ** See also: allocateCursor().
1504 nMem += nCursor;
1506 /* Allocate space for memory registers, SQL variables, VDBE cursors and
1507 ** an array to marshal SQL function arguments in.
1509 zCsr = (u8*)&p->aOp[p->nOp]; /* Memory avaliable for allocation */
1510 zEnd = (u8*)&p->aOp[p->nOpAlloc]; /* First byte past end of zCsr[] */
1512 resolveP2Values(p, &nArg);
1513 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
1514 if( pParse->explain && nMem<10 ){
1515 nMem = 10;
1517 memset(zCsr, 0, zEnd-zCsr);
1518 zCsr += (zCsr - (u8*)0)&7;
1519 assert( EIGHT_BYTE_ALIGNMENT(zCsr) );
1520 p->expired = 0;
1522 /* Memory for registers, parameters, cursor, etc, is allocated in two
1523 ** passes. On the first pass, we try to reuse unused space at the
1524 ** end of the opcode array. If we are unable to satisfy all memory
1525 ** requirements by reusing the opcode array tail, then the second
1526 ** pass will fill in the rest using a fresh allocation.
1528 ** This two-pass approach that reuses as much memory as possible from
1529 ** the leftover space at the end of the opcode array can significantly
1530 ** reduce the amount of memory held by a prepared statement.
1532 do {
1533 nByte = 0;
1534 p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
1535 p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
1536 p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
1537 p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
1538 p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
1539 &zCsr, zEnd, &nByte);
1540 p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, &zCsr, zEnd, &nByte);
1541 if( nByte ){
1542 p->pFree = sqlite3DbMallocZero(db, nByte);
1544 zCsr = p->pFree;
1545 zEnd = &zCsr[nByte];
1546 }while( nByte && !db->mallocFailed );
1548 p->nCursor = nCursor;
1549 p->nOnceFlag = nOnce;
1550 if( p->aVar ){
1551 p->nVar = (ynVar)nVar;
1552 for(n=0; n<nVar; n++){
1553 p->aVar[n].flags = MEM_Null;
1554 p->aVar[n].db = db;
1557 if( p->azVar ){
1558 p->nzVar = pParse->nzVar;
1559 memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0]));
1560 memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0]));
1562 if( p->aMem ){
1563 p->aMem--; /* aMem[] goes from 1..nMem */
1564 p->nMem = nMem; /* not from 0..nMem-1 */
1565 for(n=1; n<=nMem; n++){
1566 p->aMem[n].flags = MEM_Invalid;
1567 p->aMem[n].db = db;
1570 p->explain = pParse->explain;
1571 sqlite3VdbeRewind(p);
1575 ** Close a VDBE cursor and release all the resources that cursor
1576 ** happens to hold.
1578 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
1579 if( pCx==0 ){
1580 return;
1582 sqlite3VdbeSorterClose(p->db, pCx);
1583 if( pCx->pBt ){
1584 sqlite3BtreeClose(pCx->pBt);
1585 /* The pCx->pCursor will be close automatically, if it exists, by
1586 ** the call above. */
1587 }else if( pCx->pCursor ){
1588 sqlite3BtreeCloseCursor(pCx->pCursor);
1590 #ifndef SQLITE_OMIT_VIRTUALTABLE
1591 if( pCx->pVtabCursor ){
1592 sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
1593 const sqlite3_module *pModule = pCx->pModule;
1594 p->inVtabMethod = 1;
1595 pModule->xClose(pVtabCursor);
1596 p->inVtabMethod = 0;
1598 #endif
1602 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
1603 ** is used, for example, when a trigger sub-program is halted to restore
1604 ** control to the main program.
1606 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
1607 Vdbe *v = pFrame->v;
1608 v->aOnceFlag = pFrame->aOnceFlag;
1609 v->nOnceFlag = pFrame->nOnceFlag;
1610 v->aOp = pFrame->aOp;
1611 v->nOp = pFrame->nOp;
1612 v->aMem = pFrame->aMem;
1613 v->nMem = pFrame->nMem;
1614 v->apCsr = pFrame->apCsr;
1615 v->nCursor = pFrame->nCursor;
1616 v->db->lastRowid = pFrame->lastRowid;
1617 v->nChange = pFrame->nChange;
1618 return pFrame->pc;
1622 ** Close all cursors.
1624 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
1625 ** cell array. This is necessary as the memory cell array may contain
1626 ** pointers to VdbeFrame objects, which may in turn contain pointers to
1627 ** open cursors.
1629 static void closeAllCursors(Vdbe *p){
1630 if( p->pFrame ){
1631 VdbeFrame *pFrame;
1632 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
1633 sqlite3VdbeFrameRestore(pFrame);
1635 p->pFrame = 0;
1636 p->nFrame = 0;
1638 if( p->apCsr ){
1639 int i;
1640 for(i=0; i<p->nCursor; i++){
1641 VdbeCursor *pC = p->apCsr[i];
1642 if( pC ){
1643 sqlite3VdbeFreeCursor(p, pC);
1644 p->apCsr[i] = 0;
1648 if( p->aMem ){
1649 releaseMemArray(&p->aMem[1], p->nMem);
1651 while( p->pDelFrame ){
1652 VdbeFrame *pDel = p->pDelFrame;
1653 p->pDelFrame = pDel->pParent;
1654 sqlite3VdbeFrameDelete(pDel);
1657 /* Delete any auxdata allocations made by the VM */
1658 sqlite3VdbeDeleteAuxData(p, -1, 0);
1659 assert( p->pAuxData==0 );
1663 ** Clean up the VM after execution.
1665 ** This routine will automatically close any cursors, lists, and/or
1666 ** sorters that were left open. It also deletes the values of
1667 ** variables in the aVar[] array.
1669 static void Cleanup(Vdbe *p){
1670 sqlite3 *db = p->db;
1672 #ifdef SQLITE_DEBUG
1673 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
1674 ** Vdbe.aMem[] arrays have already been cleaned up. */
1675 int i;
1676 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
1677 if( p->aMem ){
1678 for(i=1; i<=p->nMem; i++) assert( p->aMem[i].flags==MEM_Invalid );
1680 #endif
1682 sqlite3DbFree(db, p->zErrMsg);
1683 p->zErrMsg = 0;
1684 p->pResultSet = 0;
1688 ** Set the number of result columns that will be returned by this SQL
1689 ** statement. This is now set at compile time, rather than during
1690 ** execution of the vdbe program so that sqlite3_column_count() can
1691 ** be called on an SQL statement before sqlite3_step().
1693 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
1694 Mem *pColName;
1695 int n;
1696 sqlite3 *db = p->db;
1698 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
1699 sqlite3DbFree(db, p->aColName);
1700 n = nResColumn*COLNAME_N;
1701 p->nResColumn = (u16)nResColumn;
1702 p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
1703 if( p->aColName==0 ) return;
1704 while( n-- > 0 ){
1705 pColName->flags = MEM_Null;
1706 pColName->db = p->db;
1707 pColName++;
1712 ** Set the name of the idx'th column to be returned by the SQL statement.
1713 ** zName must be a pointer to a nul terminated string.
1715 ** This call must be made after a call to sqlite3VdbeSetNumCols().
1717 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
1718 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
1719 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
1721 int sqlite3VdbeSetColName(
1722 Vdbe *p, /* Vdbe being configured */
1723 int idx, /* Index of column zName applies to */
1724 int var, /* One of the COLNAME_* constants */
1725 const char *zName, /* Pointer to buffer containing name */
1726 void (*xDel)(void*) /* Memory management strategy for zName */
1728 int rc;
1729 Mem *pColName;
1730 assert( idx<p->nResColumn );
1731 assert( var<COLNAME_N );
1732 if( p->db->mallocFailed ){
1733 assert( !zName || xDel!=SQLITE_DYNAMIC );
1734 return SQLITE_NOMEM;
1736 assert( p->aColName!=0 );
1737 pColName = &(p->aColName[idx+var*p->nResColumn]);
1738 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
1739 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
1740 return rc;
1744 ** A read or write transaction may or may not be active on database handle
1745 ** db. If a transaction is active, commit it. If there is a
1746 ** write-transaction spanning more than one database file, this routine
1747 ** takes care of the master journal trickery.
1749 static int vdbeCommit(sqlite3 *db, Vdbe *p){
1750 int i;
1751 int nTrans = 0; /* Number of databases with an active write-transaction */
1752 int rc = SQLITE_OK;
1753 int needXcommit = 0;
1755 #ifdef SQLITE_OMIT_VIRTUALTABLE
1756 /* With this option, sqlite3VtabSync() is defined to be simply
1757 ** SQLITE_OK so p is not used.
1759 UNUSED_PARAMETER(p);
1760 #endif
1762 /* Before doing anything else, call the xSync() callback for any
1763 ** virtual module tables written in this transaction. This has to
1764 ** be done before determining whether a master journal file is
1765 ** required, as an xSync() callback may add an attached database
1766 ** to the transaction.
1768 rc = sqlite3VtabSync(db, p);
1770 /* This loop determines (a) if the commit hook should be invoked and
1771 ** (b) how many database files have open write transactions, not
1772 ** including the temp database. (b) is important because if more than
1773 ** one database file has an open write transaction, a master journal
1774 ** file is required for an atomic commit.
1776 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
1777 Btree *pBt = db->aDb[i].pBt;
1778 if( sqlite3BtreeIsInTrans(pBt) ){
1779 needXcommit = 1;
1780 if( i!=1 ) nTrans++;
1781 sqlite3BtreeEnter(pBt);
1782 rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt));
1783 sqlite3BtreeLeave(pBt);
1786 if( rc!=SQLITE_OK ){
1787 return rc;
1790 /* If there are any write-transactions at all, invoke the commit hook */
1791 if( needXcommit && db->xCommitCallback ){
1792 rc = db->xCommitCallback(db->pCommitArg);
1793 if( rc ){
1794 return SQLITE_CONSTRAINT_COMMITHOOK;
1798 /* The simple case - no more than one database file (not counting the
1799 ** TEMP database) has a transaction active. There is no need for the
1800 ** master-journal.
1802 ** If the return value of sqlite3BtreeGetFilename() is a zero length
1803 ** string, it means the main database is :memory: or a temp file. In
1804 ** that case we do not support atomic multi-file commits, so use the
1805 ** simple case then too.
1807 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
1808 || nTrans<=1
1810 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
1811 Btree *pBt = db->aDb[i].pBt;
1812 if( pBt ){
1813 rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
1817 /* Do the commit only if all databases successfully complete phase 1.
1818 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
1819 ** IO error while deleting or truncating a journal file. It is unlikely,
1820 ** but could happen. In this case abandon processing and return the error.
1822 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
1823 Btree *pBt = db->aDb[i].pBt;
1824 if( pBt ){
1825 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
1828 if( rc==SQLITE_OK ){
1829 sqlite3VtabCommit(db);
1833 /* The complex case - There is a multi-file write-transaction active.
1834 ** This requires a master journal file to ensure the transaction is
1835 ** committed atomicly.
1837 #ifndef SQLITE_OMIT_DISKIO
1838 else{
1839 sqlite3_vfs *pVfs = db->pVfs;
1840 int needSync = 0;
1841 char *zMaster = 0; /* File-name for the master journal */
1842 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
1843 sqlite3_file *pMaster = 0;
1844 i64 offset = 0;
1845 int res;
1846 int retryCount = 0;
1847 int nMainFile;
1849 /* Select a master journal file name */
1850 nMainFile = sqlite3Strlen30(zMainFile);
1851 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile);
1852 if( zMaster==0 ) return SQLITE_NOMEM;
1853 do {
1854 u32 iRandom;
1855 if( retryCount ){
1856 if( retryCount>100 ){
1857 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
1858 sqlite3OsDelete(pVfs, zMaster, 0);
1859 break;
1860 }else if( retryCount==1 ){
1861 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
1864 retryCount++;
1865 sqlite3_randomness(sizeof(iRandom), &iRandom);
1866 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
1867 (iRandom>>8)&0xffffff, iRandom&0xff);
1868 /* The antipenultimate character of the master journal name must
1869 ** be "9" to avoid name collisions when using 8+3 filenames. */
1870 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
1871 sqlite3FileSuffix3(zMainFile, zMaster);
1872 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
1873 }while( rc==SQLITE_OK && res );
1874 if( rc==SQLITE_OK ){
1875 /* Open the master journal. */
1876 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
1877 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
1878 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
1881 if( rc!=SQLITE_OK ){
1882 sqlite3DbFree(db, zMaster);
1883 return rc;
1886 /* Write the name of each database file in the transaction into the new
1887 ** master journal file. If an error occurs at this point close
1888 ** and delete the master journal file. All the individual journal files
1889 ** still have 'null' as the master journal pointer, so they will roll
1890 ** back independently if a failure occurs.
1892 for(i=0; i<db->nDb; i++){
1893 Btree *pBt = db->aDb[i].pBt;
1894 if( sqlite3BtreeIsInTrans(pBt) ){
1895 char const *zFile = sqlite3BtreeGetJournalname(pBt);
1896 if( zFile==0 ){
1897 continue; /* Ignore TEMP and :memory: databases */
1899 assert( zFile[0]!=0 );
1900 if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
1901 needSync = 1;
1903 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
1904 offset += sqlite3Strlen30(zFile)+1;
1905 if( rc!=SQLITE_OK ){
1906 sqlite3OsCloseFree(pMaster);
1907 sqlite3OsDelete(pVfs, zMaster, 0);
1908 sqlite3DbFree(db, zMaster);
1909 return rc;
1914 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
1915 ** flag is set this is not required.
1917 if( needSync
1918 && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
1919 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
1921 sqlite3OsCloseFree(pMaster);
1922 sqlite3OsDelete(pVfs, zMaster, 0);
1923 sqlite3DbFree(db, zMaster);
1924 return rc;
1927 /* Sync all the db files involved in the transaction. The same call
1928 ** sets the master journal pointer in each individual journal. If
1929 ** an error occurs here, do not delete the master journal file.
1931 ** If the error occurs during the first call to
1932 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
1933 ** master journal file will be orphaned. But we cannot delete it,
1934 ** in case the master journal file name was written into the journal
1935 ** file before the failure occurred.
1937 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
1938 Btree *pBt = db->aDb[i].pBt;
1939 if( pBt ){
1940 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
1943 sqlite3OsCloseFree(pMaster);
1944 assert( rc!=SQLITE_BUSY );
1945 if( rc!=SQLITE_OK ){
1946 sqlite3DbFree(db, zMaster);
1947 return rc;
1950 /* Delete the master journal file. This commits the transaction. After
1951 ** doing this the directory is synced again before any individual
1952 ** transaction files are deleted.
1954 rc = sqlite3OsDelete(pVfs, zMaster, 1);
1955 sqlite3DbFree(db, zMaster);
1956 zMaster = 0;
1957 if( rc ){
1958 return rc;
1961 /* All files and directories have already been synced, so the following
1962 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
1963 ** deleting or truncating journals. If something goes wrong while
1964 ** this is happening we don't really care. The integrity of the
1965 ** transaction is already guaranteed, but some stray 'cold' journals
1966 ** may be lying around. Returning an error code won't help matters.
1968 disable_simulated_io_errors();
1969 sqlite3BeginBenignMalloc();
1970 for(i=0; i<db->nDb; i++){
1971 Btree *pBt = db->aDb[i].pBt;
1972 if( pBt ){
1973 sqlite3BtreeCommitPhaseTwo(pBt, 1);
1976 sqlite3EndBenignMalloc();
1977 enable_simulated_io_errors();
1979 sqlite3VtabCommit(db);
1981 #endif
1983 return rc;
1987 ** This routine checks that the sqlite3.nVdbeActive count variable
1988 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
1989 ** currently active. An assertion fails if the two counts do not match.
1990 ** This is an internal self-check only - it is not an essential processing
1991 ** step.
1993 ** This is a no-op if NDEBUG is defined.
1995 #ifndef NDEBUG
1996 static void checkActiveVdbeCnt(sqlite3 *db){
1997 Vdbe *p;
1998 int cnt = 0;
1999 int nWrite = 0;
2000 int nRead = 0;
2001 p = db->pVdbe;
2002 while( p ){
2003 if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
2004 cnt++;
2005 if( p->readOnly==0 ) nWrite++;
2006 if( p->bIsReader ) nRead++;
2008 p = p->pNext;
2010 assert( cnt==db->nVdbeActive );
2011 assert( nWrite==db->nVdbeWrite );
2012 assert( nRead==db->nVdbeRead );
2014 #else
2015 #define checkActiveVdbeCnt(x)
2016 #endif
2019 ** If the Vdbe passed as the first argument opened a statement-transaction,
2020 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2021 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2022 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
2023 ** statement transaction is committed.
2025 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2026 ** Otherwise SQLITE_OK.
2028 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
2029 sqlite3 *const db = p->db;
2030 int rc = SQLITE_OK;
2032 /* If p->iStatement is greater than zero, then this Vdbe opened a
2033 ** statement transaction that should be closed here. The only exception
2034 ** is that an IO error may have occurred, causing an emergency rollback.
2035 ** In this case (db->nStatement==0), and there is nothing to do.
2037 if( db->nStatement && p->iStatement ){
2038 int i;
2039 const int iSavepoint = p->iStatement-1;
2041 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2042 assert( db->nStatement>0 );
2043 assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2045 for(i=0; i<db->nDb; i++){
2046 int rc2 = SQLITE_OK;
2047 Btree *pBt = db->aDb[i].pBt;
2048 if( pBt ){
2049 if( eOp==SAVEPOINT_ROLLBACK ){
2050 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2052 if( rc2==SQLITE_OK ){
2053 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2055 if( rc==SQLITE_OK ){
2056 rc = rc2;
2060 db->nStatement--;
2061 p->iStatement = 0;
2063 if( rc==SQLITE_OK ){
2064 if( eOp==SAVEPOINT_ROLLBACK ){
2065 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2067 if( rc==SQLITE_OK ){
2068 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2072 /* If the statement transaction is being rolled back, also restore the
2073 ** database handles deferred constraint counter to the value it had when
2074 ** the statement transaction was opened. */
2075 if( eOp==SAVEPOINT_ROLLBACK ){
2076 db->nDeferredCons = p->nStmtDefCons;
2077 db->nDeferredImmCons = p->nStmtDefImmCons;
2080 return rc;
2084 ** This function is called when a transaction opened by the database
2085 ** handle associated with the VM passed as an argument is about to be
2086 ** committed. If there are outstanding deferred foreign key constraint
2087 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2089 ** If there are outstanding FK violations and this function returns
2090 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2091 ** and write an error message to it. Then return SQLITE_ERROR.
2093 #ifndef SQLITE_OMIT_FOREIGN_KEY
2094 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
2095 sqlite3 *db = p->db;
2096 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
2097 || (!deferred && p->nFkConstraint>0)
2099 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2100 p->errorAction = OE_Abort;
2101 sqlite3SetString(&p->zErrMsg, db, "foreign key constraint failed");
2102 return SQLITE_ERROR;
2104 return SQLITE_OK;
2106 #endif
2109 ** This routine is called the when a VDBE tries to halt. If the VDBE
2110 ** has made changes and is in autocommit mode, then commit those
2111 ** changes. If a rollback is needed, then do the rollback.
2113 ** This routine is the only way to move the state of a VM from
2114 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
2115 ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
2117 ** Return an error code. If the commit could not complete because of
2118 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
2119 ** means the close did not happen and needs to be repeated.
2121 int sqlite3VdbeHalt(Vdbe *p){
2122 int rc; /* Used to store transient return codes */
2123 sqlite3 *db = p->db;
2125 /* This function contains the logic that determines if a statement or
2126 ** transaction will be committed or rolled back as a result of the
2127 ** execution of this virtual machine.
2129 ** If any of the following errors occur:
2131 ** SQLITE_NOMEM
2132 ** SQLITE_IOERR
2133 ** SQLITE_FULL
2134 ** SQLITE_INTERRUPT
2136 ** Then the internal cache might have been left in an inconsistent
2137 ** state. We need to rollback the statement transaction, if there is
2138 ** one, or the complete transaction if there is no statement transaction.
2141 if( p->db->mallocFailed ){
2142 p->rc = SQLITE_NOMEM;
2144 if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag);
2145 closeAllCursors(p);
2146 if( p->magic!=VDBE_MAGIC_RUN ){
2147 return SQLITE_OK;
2149 checkActiveVdbeCnt(db);
2151 /* No commit or rollback needed if the program never started or if the
2152 ** SQL statement does not read or write a database file. */
2153 if( p->pc>=0 && p->bIsReader ){
2154 int mrc; /* Primary error code from p->rc */
2155 int eStatementOp = 0;
2156 int isSpecialError; /* Set to true if a 'special' error */
2158 /* Lock all btrees used by the statement */
2159 sqlite3VdbeEnter(p);
2161 /* Check for one of the special errors */
2162 mrc = p->rc & 0xff;
2163 assert( p->rc!=SQLITE_IOERR_BLOCKED ); /* This error no longer exists */
2164 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
2165 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
2166 if( isSpecialError ){
2167 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
2168 ** no rollback is necessary. Otherwise, at least a savepoint
2169 ** transaction must be rolled back to restore the database to a
2170 ** consistent state.
2172 ** Even if the statement is read-only, it is important to perform
2173 ** a statement or transaction rollback operation. If the error
2174 ** occurred while writing to the journal, sub-journal or database
2175 ** file as part of an effort to free up cache space (see function
2176 ** pagerStress() in pager.c), the rollback is required to restore
2177 ** the pager to a consistent state.
2179 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
2180 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
2181 eStatementOp = SAVEPOINT_ROLLBACK;
2182 }else{
2183 /* We are forced to roll back the active transaction. Before doing
2184 ** so, abort any other statements this handle currently has active.
2186 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2187 sqlite3CloseSavepoints(db);
2188 db->autoCommit = 1;
2193 /* Check for immediate foreign key violations. */
2194 if( p->rc==SQLITE_OK ){
2195 sqlite3VdbeCheckFk(p, 0);
2198 /* If the auto-commit flag is set and this is the only active writer
2199 ** VM, then we do either a commit or rollback of the current transaction.
2201 ** Note: This block also runs if one of the special errors handled
2202 ** above has occurred.
2204 if( !sqlite3VtabInSync(db)
2205 && db->autoCommit
2206 && db->nVdbeWrite==(p->readOnly==0)
2208 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
2209 rc = sqlite3VdbeCheckFk(p, 1);
2210 if( rc!=SQLITE_OK ){
2211 if( NEVER(p->readOnly) ){
2212 sqlite3VdbeLeave(p);
2213 return SQLITE_ERROR;
2215 rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2216 }else{
2217 /* The auto-commit flag is true, the vdbe program was successful
2218 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
2219 ** key constraints to hold up the transaction. This means a commit
2220 ** is required. */
2221 rc = vdbeCommit(db, p);
2223 if( rc==SQLITE_BUSY && p->readOnly ){
2224 sqlite3VdbeLeave(p);
2225 return SQLITE_BUSY;
2226 }else if( rc!=SQLITE_OK ){
2227 p->rc = rc;
2228 sqlite3RollbackAll(db, SQLITE_OK);
2229 }else{
2230 db->nDeferredCons = 0;
2231 db->nDeferredImmCons = 0;
2232 db->flags &= ~SQLITE_DeferFKs;
2233 sqlite3CommitInternalChanges(db);
2235 }else{
2236 sqlite3RollbackAll(db, SQLITE_OK);
2238 db->nStatement = 0;
2239 }else if( eStatementOp==0 ){
2240 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
2241 eStatementOp = SAVEPOINT_RELEASE;
2242 }else if( p->errorAction==OE_Abort ){
2243 eStatementOp = SAVEPOINT_ROLLBACK;
2244 }else{
2245 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2246 sqlite3CloseSavepoints(db);
2247 db->autoCommit = 1;
2251 /* If eStatementOp is non-zero, then a statement transaction needs to
2252 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
2253 ** do so. If this operation returns an error, and the current statement
2254 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
2255 ** current statement error code.
2257 if( eStatementOp ){
2258 rc = sqlite3VdbeCloseStatement(p, eStatementOp);
2259 if( rc ){
2260 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
2261 p->rc = rc;
2262 sqlite3DbFree(db, p->zErrMsg);
2263 p->zErrMsg = 0;
2265 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2266 sqlite3CloseSavepoints(db);
2267 db->autoCommit = 1;
2271 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
2272 ** has been rolled back, update the database connection change-counter.
2274 if( p->changeCntOn ){
2275 if( eStatementOp!=SAVEPOINT_ROLLBACK ){
2276 sqlite3VdbeSetChanges(db, p->nChange);
2277 }else{
2278 sqlite3VdbeSetChanges(db, 0);
2280 p->nChange = 0;
2283 /* Release the locks */
2284 sqlite3VdbeLeave(p);
2287 /* We have successfully halted and closed the VM. Record this fact. */
2288 if( p->pc>=0 ){
2289 db->nVdbeActive--;
2290 if( !p->readOnly ) db->nVdbeWrite--;
2291 if( p->bIsReader ) db->nVdbeRead--;
2292 assert( db->nVdbeActive>=db->nVdbeRead );
2293 assert( db->nVdbeRead>=db->nVdbeWrite );
2294 assert( db->nVdbeWrite>=0 );
2296 p->magic = VDBE_MAGIC_HALT;
2297 checkActiveVdbeCnt(db);
2298 if( p->db->mallocFailed ){
2299 p->rc = SQLITE_NOMEM;
2302 /* If the auto-commit flag is set to true, then any locks that were held
2303 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
2304 ** to invoke any required unlock-notify callbacks.
2306 if( db->autoCommit ){
2307 sqlite3ConnectionUnlocked(db);
2310 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
2311 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
2316 ** Each VDBE holds the result of the most recent sqlite3_step() call
2317 ** in p->rc. This routine sets that result back to SQLITE_OK.
2319 void sqlite3VdbeResetStepResult(Vdbe *p){
2320 p->rc = SQLITE_OK;
2324 ** Copy the error code and error message belonging to the VDBE passed
2325 ** as the first argument to its database handle (so that they will be
2326 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
2328 ** This function does not clear the VDBE error code or message, just
2329 ** copies them to the database handle.
2331 int sqlite3VdbeTransferError(Vdbe *p){
2332 sqlite3 *db = p->db;
2333 int rc = p->rc;
2334 if( p->zErrMsg ){
2335 u8 mallocFailed = db->mallocFailed;
2336 sqlite3BeginBenignMalloc();
2337 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
2338 sqlite3EndBenignMalloc();
2339 db->mallocFailed = mallocFailed;
2340 db->errCode = rc;
2341 }else{
2342 sqlite3Error(db, rc, 0);
2344 return rc;
2347 #ifdef SQLITE_ENABLE_SQLLOG
2349 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
2350 ** invoke it.
2352 static void vdbeInvokeSqllog(Vdbe *v){
2353 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
2354 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
2355 assert( v->db->init.busy==0 );
2356 if( zExpanded ){
2357 sqlite3GlobalConfig.xSqllog(
2358 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
2360 sqlite3DbFree(v->db, zExpanded);
2364 #else
2365 # define vdbeInvokeSqllog(x)
2366 #endif
2369 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
2370 ** Write any error messages into *pzErrMsg. Return the result code.
2372 ** After this routine is run, the VDBE should be ready to be executed
2373 ** again.
2375 ** To look at it another way, this routine resets the state of the
2376 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
2377 ** VDBE_MAGIC_INIT.
2379 int sqlite3VdbeReset(Vdbe *p){
2380 sqlite3 *db;
2381 db = p->db;
2383 /* If the VM did not run to completion or if it encountered an
2384 ** error, then it might not have been halted properly. So halt
2385 ** it now.
2387 sqlite3VdbeHalt(p);
2389 /* If the VDBE has be run even partially, then transfer the error code
2390 ** and error message from the VDBE into the main database structure. But
2391 ** if the VDBE has just been set to run but has not actually executed any
2392 ** instructions yet, leave the main database error information unchanged.
2394 if( p->pc>=0 ){
2395 vdbeInvokeSqllog(p);
2396 sqlite3VdbeTransferError(p);
2397 sqlite3DbFree(db, p->zErrMsg);
2398 p->zErrMsg = 0;
2399 if( p->runOnlyOnce ) p->expired = 1;
2400 }else if( p->rc && p->expired ){
2401 /* The expired flag was set on the VDBE before the first call
2402 ** to sqlite3_step(). For consistency (since sqlite3_step() was
2403 ** called), set the database error in this case as well.
2405 sqlite3Error(db, p->rc, 0);
2406 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
2407 sqlite3DbFree(db, p->zErrMsg);
2408 p->zErrMsg = 0;
2411 /* Reclaim all memory used by the VDBE
2413 Cleanup(p);
2415 /* Save profiling information from this VDBE run.
2417 #ifdef VDBE_PROFILE
2419 FILE *out = fopen("vdbe_profile.out", "a");
2420 if( out ){
2421 int i;
2422 fprintf(out, "---- ");
2423 for(i=0; i<p->nOp; i++){
2424 fprintf(out, "%02x", p->aOp[i].opcode);
2426 fprintf(out, "\n");
2427 for(i=0; i<p->nOp; i++){
2428 fprintf(out, "%6d %10lld %8lld ",
2429 p->aOp[i].cnt,
2430 p->aOp[i].cycles,
2431 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
2433 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
2435 fclose(out);
2438 #endif
2439 p->magic = VDBE_MAGIC_INIT;
2440 return p->rc & db->errMask;
2444 ** Clean up and delete a VDBE after execution. Return an integer which is
2445 ** the result code. Write any error message text into *pzErrMsg.
2447 int sqlite3VdbeFinalize(Vdbe *p){
2448 int rc = SQLITE_OK;
2449 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
2450 rc = sqlite3VdbeReset(p);
2451 assert( (rc & p->db->errMask)==rc );
2453 sqlite3VdbeDelete(p);
2454 return rc;
2458 ** If parameter iOp is less than zero, then invoke the destructor for
2459 ** all auxiliary data pointers currently cached by the VM passed as
2460 ** the first argument.
2462 ** Or, if iOp is greater than or equal to zero, then the destructor is
2463 ** only invoked for those auxiliary data pointers created by the user
2464 ** function invoked by the OP_Function opcode at instruction iOp of
2465 ** VM pVdbe, and only then if:
2467 ** * the associated function parameter is the 32nd or later (counting
2468 ** from left to right), or
2470 ** * the corresponding bit in argument mask is clear (where the first
2471 ** function parameter corrsponds to bit 0 etc.).
2473 void sqlite3VdbeDeleteAuxData(Vdbe *pVdbe, int iOp, int mask){
2474 AuxData **pp = &pVdbe->pAuxData;
2475 while( *pp ){
2476 AuxData *pAux = *pp;
2477 if( (iOp<0)
2478 || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & ((u32)1<<pAux->iArg))))
2480 if( pAux->xDelete ){
2481 pAux->xDelete(pAux->pAux);
2483 *pp = pAux->pNext;
2484 sqlite3DbFree(pVdbe->db, pAux);
2485 }else{
2486 pp= &pAux->pNext;
2492 ** Free all memory associated with the Vdbe passed as the second argument,
2493 ** except for object itself, which is preserved.
2495 ** The difference between this function and sqlite3VdbeDelete() is that
2496 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
2497 ** the database connection and frees the object itself.
2499 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
2500 SubProgram *pSub, *pNext;
2501 int i;
2502 assert( p->db==0 || p->db==db );
2503 releaseMemArray(p->aVar, p->nVar);
2504 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2505 for(pSub=p->pProgram; pSub; pSub=pNext){
2506 pNext = pSub->pNext;
2507 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
2508 sqlite3DbFree(db, pSub);
2510 for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
2511 vdbeFreeOpArray(db, p->aOp, p->nOp);
2512 sqlite3DbFree(db, p->aLabel);
2513 sqlite3DbFree(db, p->aColName);
2514 sqlite3DbFree(db, p->zSql);
2515 sqlite3DbFree(db, p->pFree);
2516 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
2517 sqlite3DbFree(db, p->zExplain);
2518 sqlite3DbFree(db, p->pExplain);
2519 #endif
2523 ** Delete an entire VDBE.
2525 void sqlite3VdbeDelete(Vdbe *p){
2526 sqlite3 *db;
2528 if( NEVER(p==0) ) return;
2529 db = p->db;
2530 assert( sqlite3_mutex_held(db->mutex) );
2531 sqlite3VdbeClearObject(db, p);
2532 if( p->pPrev ){
2533 p->pPrev->pNext = p->pNext;
2534 }else{
2535 assert( db->pVdbe==p );
2536 db->pVdbe = p->pNext;
2538 if( p->pNext ){
2539 p->pNext->pPrev = p->pPrev;
2541 p->magic = VDBE_MAGIC_DEAD;
2542 p->db = 0;
2543 sqlite3DbFree(db, p);
2547 ** Make sure the cursor p is ready to read or write the row to which it
2548 ** was last positioned. Return an error code if an OOM fault or I/O error
2549 ** prevents us from positioning the cursor to its correct position.
2551 ** If a MoveTo operation is pending on the given cursor, then do that
2552 ** MoveTo now. If no move is pending, check to see if the row has been
2553 ** deleted out from under the cursor and if it has, mark the row as
2554 ** a NULL row.
2556 ** If the cursor is already pointing to the correct row and that row has
2557 ** not been deleted out from under the cursor, then this routine is a no-op.
2559 int sqlite3VdbeCursorMoveto(VdbeCursor *p){
2560 if( p->deferredMoveto ){
2561 int res, rc;
2562 #ifdef SQLITE_TEST
2563 extern int sqlite3_search_count;
2564 #endif
2565 assert( p->isTable );
2566 rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
2567 if( rc ) return rc;
2568 p->lastRowid = p->movetoTarget;
2569 if( res!=0 ) return SQLITE_CORRUPT_BKPT;
2570 p->rowidIsValid = 1;
2571 #ifdef SQLITE_TEST
2572 sqlite3_search_count++;
2573 #endif
2574 p->deferredMoveto = 0;
2575 p->cacheStatus = CACHE_STALE;
2576 }else if( ALWAYS(p->pCursor) ){
2577 int hasMoved;
2578 int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved);
2579 if( rc ) return rc;
2580 if( hasMoved ){
2581 p->cacheStatus = CACHE_STALE;
2582 p->nullRow = 1;
2585 return SQLITE_OK;
2589 ** The following functions:
2591 ** sqlite3VdbeSerialType()
2592 ** sqlite3VdbeSerialTypeLen()
2593 ** sqlite3VdbeSerialLen()
2594 ** sqlite3VdbeSerialPut()
2595 ** sqlite3VdbeSerialGet()
2597 ** encapsulate the code that serializes values for storage in SQLite
2598 ** data and index records. Each serialized value consists of a
2599 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
2600 ** integer, stored as a varint.
2602 ** In an SQLite index record, the serial type is stored directly before
2603 ** the blob of data that it corresponds to. In a table record, all serial
2604 ** types are stored at the start of the record, and the blobs of data at
2605 ** the end. Hence these functions allow the caller to handle the
2606 ** serial-type and data blob separately.
2608 ** The following table describes the various storage classes for data:
2610 ** serial type bytes of data type
2611 ** -------------- --------------- ---------------
2612 ** 0 0 NULL
2613 ** 1 1 signed integer
2614 ** 2 2 signed integer
2615 ** 3 3 signed integer
2616 ** 4 4 signed integer
2617 ** 5 6 signed integer
2618 ** 6 8 signed integer
2619 ** 7 8 IEEE float
2620 ** 8 0 Integer constant 0
2621 ** 9 0 Integer constant 1
2622 ** 10,11 reserved for expansion
2623 ** N>=12 and even (N-12)/2 BLOB
2624 ** N>=13 and odd (N-13)/2 text
2626 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
2627 ** of SQLite will not understand those serial types.
2631 ** Return the serial-type for the value stored in pMem.
2633 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
2634 int flags = pMem->flags;
2635 int n;
2637 if( flags&MEM_Null ){
2638 return 0;
2640 if( flags&MEM_Int ){
2641 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
2642 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
2643 i64 i = pMem->u.i;
2644 u64 u;
2645 if( i<0 ){
2646 if( i<(-MAX_6BYTE) ) return 6;
2647 /* Previous test prevents: u = -(-9223372036854775808) */
2648 u = -i;
2649 }else{
2650 u = i;
2652 if( u<=127 ){
2653 return ((i&1)==i && file_format>=4) ? 8+(u32)u : 1;
2655 if( u<=32767 ) return 2;
2656 if( u<=8388607 ) return 3;
2657 if( u<=2147483647 ) return 4;
2658 if( u<=MAX_6BYTE ) return 5;
2659 return 6;
2661 if( flags&MEM_Real ){
2662 return 7;
2664 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
2665 n = pMem->n;
2666 if( flags & MEM_Zero ){
2667 n += pMem->u.nZero;
2669 assert( n>=0 );
2670 return ((n*2) + 12 + ((flags&MEM_Str)!=0));
2674 ** Return the length of the data corresponding to the supplied serial-type.
2676 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
2677 if( serial_type>=12 ){
2678 return (serial_type-12)/2;
2679 }else{
2680 static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
2681 return aSize[serial_type];
2686 ** If we are on an architecture with mixed-endian floating
2687 ** points (ex: ARM7) then swap the lower 4 bytes with the
2688 ** upper 4 bytes. Return the result.
2690 ** For most architectures, this is a no-op.
2692 ** (later): It is reported to me that the mixed-endian problem
2693 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
2694 ** that early versions of GCC stored the two words of a 64-bit
2695 ** float in the wrong order. And that error has been propagated
2696 ** ever since. The blame is not necessarily with GCC, though.
2697 ** GCC might have just copying the problem from a prior compiler.
2698 ** I am also told that newer versions of GCC that follow a different
2699 ** ABI get the byte order right.
2701 ** Developers using SQLite on an ARM7 should compile and run their
2702 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
2703 ** enabled, some asserts below will ensure that the byte order of
2704 ** floating point values is correct.
2706 ** (2007-08-30) Frank van Vugt has studied this problem closely
2707 ** and has send his findings to the SQLite developers. Frank
2708 ** writes that some Linux kernels offer floating point hardware
2709 ** emulation that uses only 32-bit mantissas instead of a full
2710 ** 48-bits as required by the IEEE standard. (This is the
2711 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point
2712 ** byte swapping becomes very complicated. To avoid problems,
2713 ** the necessary byte swapping is carried out using a 64-bit integer
2714 ** rather than a 64-bit float. Frank assures us that the code here
2715 ** works for him. We, the developers, have no way to independently
2716 ** verify this, but Frank seems to know what he is talking about
2717 ** so we trust him.
2719 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
2720 static u64 floatSwap(u64 in){
2721 union {
2722 u64 r;
2723 u32 i[2];
2724 } u;
2725 u32 t;
2727 u.r = in;
2728 t = u.i[0];
2729 u.i[0] = u.i[1];
2730 u.i[1] = t;
2731 return u.r;
2733 # define swapMixedEndianFloat(X) X = floatSwap(X)
2734 #else
2735 # define swapMixedEndianFloat(X)
2736 #endif
2739 ** Write the serialized data blob for the value stored in pMem into
2740 ** buf. It is assumed that the caller has allocated sufficient space.
2741 ** Return the number of bytes written.
2743 ** nBuf is the amount of space left in buf[]. nBuf must always be
2744 ** large enough to hold the entire field. Except, if the field is
2745 ** a blob with a zero-filled tail, then buf[] might be just the right
2746 ** size to hold everything except for the zero-filled tail. If buf[]
2747 ** is only big enough to hold the non-zero prefix, then only write that
2748 ** prefix into buf[]. But if buf[] is large enough to hold both the
2749 ** prefix and the tail then write the prefix and set the tail to all
2750 ** zeros.
2752 ** Return the number of bytes actually written into buf[]. The number
2753 ** of bytes in the zero-filled tail is included in the return value only
2754 ** if those bytes were zeroed in buf[].
2756 u32 sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){
2757 u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
2758 u32 len;
2760 /* Integer and Real */
2761 if( serial_type<=7 && serial_type>0 ){
2762 u64 v;
2763 u32 i;
2764 if( serial_type==7 ){
2765 assert( sizeof(v)==sizeof(pMem->r) );
2766 memcpy(&v, &pMem->r, sizeof(v));
2767 swapMixedEndianFloat(v);
2768 }else{
2769 v = pMem->u.i;
2771 len = i = sqlite3VdbeSerialTypeLen(serial_type);
2772 assert( len<=(u32)nBuf );
2773 while( i-- ){
2774 buf[i] = (u8)(v&0xFF);
2775 v >>= 8;
2777 return len;
2780 /* String or blob */
2781 if( serial_type>=12 ){
2782 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
2783 == (int)sqlite3VdbeSerialTypeLen(serial_type) );
2784 assert( pMem->n<=nBuf );
2785 len = pMem->n;
2786 memcpy(buf, pMem->z, len);
2787 if( pMem->flags & MEM_Zero ){
2788 len += pMem->u.nZero;
2789 assert( nBuf>=0 );
2790 if( len > (u32)nBuf ){
2791 len = (u32)nBuf;
2793 memset(&buf[pMem->n], 0, len-pMem->n);
2795 return len;
2798 /* NULL or constants 0 or 1 */
2799 return 0;
2803 ** Deserialize the data blob pointed to by buf as serial type serial_type
2804 ** and store the result in pMem. Return the number of bytes read.
2806 u32 sqlite3VdbeSerialGet(
2807 const unsigned char *buf, /* Buffer to deserialize from */
2808 u32 serial_type, /* Serial type to deserialize */
2809 Mem *pMem /* Memory cell to write value into */
2811 switch( serial_type ){
2812 case 10: /* Reserved for future use */
2813 case 11: /* Reserved for future use */
2814 case 0: { /* NULL */
2815 pMem->flags = MEM_Null;
2816 break;
2818 case 1: { /* 1-byte signed integer */
2819 pMem->u.i = (signed char)buf[0];
2820 pMem->flags = MEM_Int;
2821 return 1;
2823 case 2: { /* 2-byte signed integer */
2824 pMem->u.i = (((signed char)buf[0])<<8) | buf[1];
2825 pMem->flags = MEM_Int;
2826 return 2;
2828 case 3: { /* 3-byte signed integer */
2829 pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2];
2830 pMem->flags = MEM_Int;
2831 return 3;
2833 case 4: { /* 4-byte signed integer */
2834 pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
2835 pMem->flags = MEM_Int;
2836 return 4;
2838 case 5: { /* 6-byte signed integer */
2839 u64 x = (((signed char)buf[0])<<8) | buf[1];
2840 u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
2841 x = (x<<32) | y;
2842 pMem->u.i = *(i64*)&x;
2843 pMem->flags = MEM_Int;
2844 return 6;
2846 case 6: /* 8-byte signed integer */
2847 case 7: { /* IEEE floating point */
2848 u64 x;
2849 u32 y;
2850 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
2851 /* Verify that integers and floating point values use the same
2852 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
2853 ** defined that 64-bit floating point values really are mixed
2854 ** endian.
2856 static const u64 t1 = ((u64)0x3ff00000)<<32;
2857 static const double r1 = 1.0;
2858 u64 t2 = t1;
2859 swapMixedEndianFloat(t2);
2860 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
2861 #endif
2863 x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
2864 y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
2865 x = (x<<32) | y;
2866 if( serial_type==6 ){
2867 pMem->u.i = *(i64*)&x;
2868 pMem->flags = MEM_Int;
2869 }else{
2870 assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
2871 swapMixedEndianFloat(x);
2872 memcpy(&pMem->r, &x, sizeof(x));
2873 pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real;
2875 return 8;
2877 case 8: /* Integer 0 */
2878 case 9: { /* Integer 1 */
2879 pMem->u.i = serial_type-8;
2880 pMem->flags = MEM_Int;
2881 return 0;
2883 default: {
2884 u32 len = (serial_type-12)/2;
2885 pMem->z = (char *)buf;
2886 pMem->n = len;
2887 pMem->xDel = 0;
2888 if( serial_type&0x01 ){
2889 pMem->flags = MEM_Str | MEM_Ephem;
2890 }else{
2891 pMem->flags = MEM_Blob | MEM_Ephem;
2893 return len;
2896 return 0;
2900 ** This routine is used to allocate sufficient space for an UnpackedRecord
2901 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
2902 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
2904 ** The space is either allocated using sqlite3DbMallocRaw() or from within
2905 ** the unaligned buffer passed via the second and third arguments (presumably
2906 ** stack space). If the former, then *ppFree is set to a pointer that should
2907 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
2908 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
2909 ** before returning.
2911 ** If an OOM error occurs, NULL is returned.
2913 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
2914 KeyInfo *pKeyInfo, /* Description of the record */
2915 char *pSpace, /* Unaligned space available */
2916 int szSpace, /* Size of pSpace[] in bytes */
2917 char **ppFree /* OUT: Caller should free this pointer */
2919 UnpackedRecord *p; /* Unpacked record to return */
2920 int nOff; /* Increment pSpace by nOff to align it */
2921 int nByte; /* Number of bytes required for *p */
2923 /* We want to shift the pointer pSpace up such that it is 8-byte aligned.
2924 ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift
2925 ** it by. If pSpace is already 8-byte aligned, nOff should be zero.
2927 nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7;
2928 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
2929 if( nByte>szSpace+nOff ){
2930 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
2931 *ppFree = (char *)p;
2932 if( !p ) return 0;
2933 }else{
2934 p = (UnpackedRecord*)&pSpace[nOff];
2935 *ppFree = 0;
2938 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
2939 assert( pKeyInfo->aSortOrder!=0 );
2940 p->pKeyInfo = pKeyInfo;
2941 p->nField = pKeyInfo->nField + 1;
2942 return p;
2946 ** Given the nKey-byte encoding of a record in pKey[], populate the
2947 ** UnpackedRecord structure indicated by the fourth argument with the
2948 ** contents of the decoded record.
2950 void sqlite3VdbeRecordUnpack(
2951 KeyInfo *pKeyInfo, /* Information about the record format */
2952 int nKey, /* Size of the binary record */
2953 const void *pKey, /* The binary record */
2954 UnpackedRecord *p /* Populate this structure before returning. */
2956 const unsigned char *aKey = (const unsigned char *)pKey;
2957 int d;
2958 u32 idx; /* Offset in aKey[] to read from */
2959 u16 u; /* Unsigned loop counter */
2960 u32 szHdr;
2961 Mem *pMem = p->aMem;
2963 p->flags = 0;
2964 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
2965 idx = getVarint32(aKey, szHdr);
2966 d = szHdr;
2967 u = 0;
2968 while( idx<szHdr && u<p->nField && d<=nKey ){
2969 u32 serial_type;
2971 idx += getVarint32(&aKey[idx], serial_type);
2972 pMem->enc = pKeyInfo->enc;
2973 pMem->db = pKeyInfo->db;
2974 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
2975 pMem->zMalloc = 0;
2976 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
2977 pMem++;
2978 u++;
2980 assert( u<=pKeyInfo->nField + 1 );
2981 p->nField = u;
2985 ** This function compares the two table rows or index records
2986 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
2987 ** or positive integer if key1 is less than, equal to or
2988 ** greater than key2. The {nKey1, pKey1} key must be a blob
2989 ** created by th OP_MakeRecord opcode of the VDBE. The pPKey2
2990 ** key must be a parsed key such as obtained from
2991 ** sqlite3VdbeParseRecord.
2993 ** Key1 and Key2 do not have to contain the same number of fields.
2994 ** The key with fewer fields is usually compares less than the
2995 ** longer key. However if the UNPACKED_INCRKEY flags in pPKey2 is set
2996 ** and the common prefixes are equal, then key1 is less than key2.
2997 ** Or if the UNPACKED_MATCH_PREFIX flag is set and the prefixes are
2998 ** equal, then the keys are considered to be equal and
2999 ** the parts beyond the common prefix are ignored.
3001 int sqlite3VdbeRecordCompare(
3002 int nKey1, const void *pKey1, /* Left key */
3003 UnpackedRecord *pPKey2 /* Right key */
3005 u32 d1; /* Offset into aKey[] of next data element */
3006 u32 idx1; /* Offset into aKey[] of next header element */
3007 u32 szHdr1; /* Number of bytes in header */
3008 int i = 0;
3009 int rc = 0;
3010 const unsigned char *aKey1 = (const unsigned char *)pKey1;
3011 KeyInfo *pKeyInfo;
3012 Mem mem1;
3014 pKeyInfo = pPKey2->pKeyInfo;
3015 mem1.enc = pKeyInfo->enc;
3016 mem1.db = pKeyInfo->db;
3017 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
3018 VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by assert() statements */
3020 /* Compilers may complain that mem1.u.i is potentially uninitialized.
3021 ** We could initialize it, as shown here, to silence those complaints.
3022 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
3023 ** the unnecessary initialization has a measurable negative performance
3024 ** impact, since this routine is a very high runner. And so, we choose
3025 ** to ignore the compiler warnings and leave this variable uninitialized.
3027 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
3029 idx1 = getVarint32(aKey1, szHdr1);
3030 d1 = szHdr1;
3031 assert( pKeyInfo->nField+1>=pPKey2->nField );
3032 assert( pKeyInfo->aSortOrder!=0 );
3033 while( idx1<szHdr1 && i<pPKey2->nField ){
3034 u32 serial_type1;
3036 /* Read the serial types for the next element in each key. */
3037 idx1 += getVarint32( aKey1+idx1, serial_type1 );
3039 /* Verify that there is enough key space remaining to avoid
3040 ** a buffer overread. The "d1+serial_type1+2" subexpression will
3041 ** always be greater than or equal to the amount of required key space.
3042 ** Use that approximation to avoid the more expensive call to
3043 ** sqlite3VdbeSerialTypeLen() in the common case.
3045 if( d1+serial_type1+2>(u32)nKey1
3046 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1
3048 break;
3051 /* Extract the values to be compared.
3053 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
3055 /* Do the comparison
3057 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);
3058 if( rc!=0 ){
3059 assert( mem1.zMalloc==0 ); /* See comment below */
3061 /* Invert the result if we are using DESC sort order. */
3062 if( pKeyInfo->aSortOrder[i] ){
3063 rc = -rc;
3066 /* If the PREFIX_SEARCH flag is set and all fields except the final
3067 ** rowid field were equal, then clear the PREFIX_SEARCH flag and set
3068 ** pPKey2->rowid to the value of the rowid field in (pKey1, nKey1).
3069 ** This is used by the OP_IsUnique opcode.
3071 if( (pPKey2->flags & UNPACKED_PREFIX_SEARCH) && i==(pPKey2->nField-1) ){
3072 assert( idx1==szHdr1 && rc );
3073 assert( mem1.flags & MEM_Int );
3074 pPKey2->flags &= ~UNPACKED_PREFIX_SEARCH;
3075 pPKey2->rowid = mem1.u.i;
3078 return rc;
3080 i++;
3083 /* No memory allocation is ever used on mem1. Prove this using
3084 ** the following assert(). If the assert() fails, it indicates a
3085 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
3087 assert( mem1.zMalloc==0 );
3089 /* rc==0 here means that one of the keys ran out of fields and
3090 ** all the fields up to that point were equal. If the UNPACKED_INCRKEY
3091 ** flag is set, then break the tie by treating key2 as larger.
3092 ** If the UPACKED_PREFIX_MATCH flag is set, then keys with common prefixes
3093 ** are considered to be equal. Otherwise, the longer key is the
3094 ** larger. As it happens, the pPKey2 will always be the longer
3095 ** if there is a difference.
3097 assert( rc==0 );
3098 if( pPKey2->flags & UNPACKED_INCRKEY ){
3099 rc = -1;
3100 }else if( pPKey2->flags & UNPACKED_PREFIX_MATCH ){
3101 /* Leave rc==0 */
3102 }else if( idx1<szHdr1 ){
3103 rc = 1;
3105 return rc;
3110 ** pCur points at an index entry created using the OP_MakeRecord opcode.
3111 ** Read the rowid (the last field in the record) and store it in *rowid.
3112 ** Return SQLITE_OK if everything works, or an error code otherwise.
3114 ** pCur might be pointing to text obtained from a corrupt database file.
3115 ** So the content cannot be trusted. Do appropriate checks on the content.
3117 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
3118 i64 nCellKey = 0;
3119 int rc;
3120 u32 szHdr; /* Size of the header */
3121 u32 typeRowid; /* Serial type of the rowid */
3122 u32 lenRowid; /* Size of the rowid */
3123 Mem m, v;
3125 UNUSED_PARAMETER(db);
3127 /* Get the size of the index entry. Only indices entries of less
3128 ** than 2GiB are support - anything large must be database corruption.
3129 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
3130 ** this code can safely assume that nCellKey is 32-bits
3132 assert( sqlite3BtreeCursorIsValid(pCur) );
3133 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
3134 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
3135 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
3137 /* Read in the complete content of the index entry */
3138 memset(&m, 0, sizeof(m));
3139 rc = sqlite3VdbeMemFromBtree(pCur, 0, (int)nCellKey, 1, &m);
3140 if( rc ){
3141 return rc;
3144 /* The index entry must begin with a header size */
3145 (void)getVarint32((u8*)m.z, szHdr);
3146 testcase( szHdr==3 );
3147 testcase( szHdr==m.n );
3148 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
3149 goto idx_rowid_corruption;
3152 /* The last field of the index should be an integer - the ROWID.
3153 ** Verify that the last entry really is an integer. */
3154 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
3155 testcase( typeRowid==1 );
3156 testcase( typeRowid==2 );
3157 testcase( typeRowid==3 );
3158 testcase( typeRowid==4 );
3159 testcase( typeRowid==5 );
3160 testcase( typeRowid==6 );
3161 testcase( typeRowid==8 );
3162 testcase( typeRowid==9 );
3163 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
3164 goto idx_rowid_corruption;
3166 lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
3167 testcase( (u32)m.n==szHdr+lenRowid );
3168 if( unlikely((u32)m.n<szHdr+lenRowid) ){
3169 goto idx_rowid_corruption;
3172 /* Fetch the integer off the end of the index record */
3173 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
3174 *rowid = v.u.i;
3175 sqlite3VdbeMemRelease(&m);
3176 return SQLITE_OK;
3178 /* Jump here if database corruption is detected after m has been
3179 ** allocated. Free the m object and return SQLITE_CORRUPT. */
3180 idx_rowid_corruption:
3181 testcase( m.zMalloc!=0 );
3182 sqlite3VdbeMemRelease(&m);
3183 return SQLITE_CORRUPT_BKPT;
3187 ** Compare the key of the index entry that cursor pC is pointing to against
3188 ** the key string in pUnpacked. Write into *pRes a number
3189 ** that is negative, zero, or positive if pC is less than, equal to,
3190 ** or greater than pUnpacked. Return SQLITE_OK on success.
3192 ** pUnpacked is either created without a rowid or is truncated so that it
3193 ** omits the rowid at the end. The rowid at the end of the index entry
3194 ** is ignored as well. Hence, this routine only compares the prefixes
3195 ** of the keys prior to the final rowid, not the entire key.
3197 int sqlite3VdbeIdxKeyCompare(
3198 VdbeCursor *pC, /* The cursor to compare against */
3199 UnpackedRecord *pUnpacked, /* Unpacked version of key to compare against */
3200 int *res /* Write the comparison result here */
3202 i64 nCellKey = 0;
3203 int rc;
3204 BtCursor *pCur = pC->pCursor;
3205 Mem m;
3207 assert( sqlite3BtreeCursorIsValid(pCur) );
3208 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
3209 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
3210 /* nCellKey will always be between 0 and 0xffffffff because of the say
3211 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
3212 if( nCellKey<=0 || nCellKey>0x7fffffff ){
3213 *res = 0;
3214 return SQLITE_CORRUPT_BKPT;
3216 memset(&m, 0, sizeof(m));
3217 rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (int)nCellKey, 1, &m);
3218 if( rc ){
3219 return rc;
3221 assert( pUnpacked->flags & UNPACKED_PREFIX_MATCH );
3222 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
3223 sqlite3VdbeMemRelease(&m);
3224 return SQLITE_OK;
3228 ** This routine sets the value to be returned by subsequent calls to
3229 ** sqlite3_changes() on the database handle 'db'.
3231 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
3232 assert( sqlite3_mutex_held(db->mutex) );
3233 db->nChange = nChange;
3234 db->nTotalChange += nChange;
3238 ** Set a flag in the vdbe to update the change counter when it is finalised
3239 ** or reset.
3241 void sqlite3VdbeCountChanges(Vdbe *v){
3242 v->changeCntOn = 1;
3246 ** Mark every prepared statement associated with a database connection
3247 ** as expired.
3249 ** An expired statement means that recompilation of the statement is
3250 ** recommend. Statements expire when things happen that make their
3251 ** programs obsolete. Removing user-defined functions or collating
3252 ** sequences, or changing an authorization function are the types of
3253 ** things that make prepared statements obsolete.
3255 void sqlite3ExpirePreparedStatements(sqlite3 *db){
3256 Vdbe *p;
3257 for(p = db->pVdbe; p; p=p->pNext){
3258 p->expired = 1;
3263 ** Return the database associated with the Vdbe.
3265 sqlite3 *sqlite3VdbeDb(Vdbe *v){
3266 return v->db;
3270 ** Return a pointer to an sqlite3_value structure containing the value bound
3271 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
3272 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
3273 ** constants) to the value before returning it.
3275 ** The returned value must be freed by the caller using sqlite3ValueFree().
3277 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
3278 assert( iVar>0 );
3279 if( v ){
3280 Mem *pMem = &v->aVar[iVar-1];
3281 if( 0==(pMem->flags & MEM_Null) ){
3282 sqlite3_value *pRet = sqlite3ValueNew(v->db);
3283 if( pRet ){
3284 sqlite3VdbeMemCopy((Mem *)pRet, pMem);
3285 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
3286 sqlite3VdbeMemStoreType((Mem *)pRet);
3288 return pRet;
3291 return 0;
3295 ** Configure SQL variable iVar so that binding a new value to it signals
3296 ** to sqlite3_reoptimize() that re-preparing the statement may result
3297 ** in a better query plan.
3299 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
3300 assert( iVar>0 );
3301 if( iVar>32 ){
3302 v->expmask = 0xffffffff;
3303 }else{
3304 v->expmask |= ((u32)1 << (iVar-1));
3308 #ifndef SQLITE_OMIT_VIRTUALTABLE
3310 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
3311 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
3312 ** in memory obtained from sqlite3DbMalloc).
3314 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
3315 sqlite3 *db = p->db;
3316 sqlite3DbFree(db, p->zErrMsg);
3317 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
3318 sqlite3_free(pVtab->zErrMsg);
3319 pVtab->zErrMsg = 0;
3321 #endif /* SQLITE_OMIT_VIRTUALTABLE */