fix output of integrity check on big endian platforms
[sqlcipher.git] / src / vdbemem.c
blobaf6d41a3824b87eda55dd8819178143c9cadadba
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to manipulate "Mem" structure. A "Mem"
14 ** stores a single value in the VDBE. Mem is an opaque structure visible
15 ** only within the VDBE. Interface routines refer to a Mem using the
16 ** name sqlite_value
18 #include "sqliteInt.h"
19 #include "vdbeInt.h"
21 /* True if X is a power of two. 0 is considered a power of two here.
22 ** In other words, return true if X has at most one bit set.
24 #define ISPOWEROF2(X) (((X)&((X)-1))==0)
26 #ifdef SQLITE_DEBUG
28 ** Check invariants on a Mem object.
30 ** This routine is intended for use inside of assert() statements, like
31 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) );
33 int sqlite3VdbeCheckMemInvariants(Mem *p){
34 /* If MEM_Dyn is set then Mem.xDel!=0.
35 ** Mem.xDel might not be initialized if MEM_Dyn is clear.
37 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );
39 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we
40 ** ensure that if Mem.szMalloc>0 then it is safe to do
41 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
42 ** That saves a few cycles in inner loops. */
43 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );
45 /* Cannot have more than one of MEM_Int, MEM_Real, or MEM_IntReal */
46 assert( ISPOWEROF2(p->flags & (MEM_Int|MEM_Real|MEM_IntReal)) );
48 if( p->flags & MEM_Null ){
49 /* Cannot be both MEM_Null and some other type */
50 assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob|MEM_Agg))==0 );
52 /* If MEM_Null is set, then either the value is a pure NULL (the usual
53 ** case) or it is a pointer set using sqlite3_bind_pointer() or
54 ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be
55 ** set.
57 if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){
58 /* This is a pointer type. There may be a flag to indicate what to
59 ** do with the pointer. */
60 assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
61 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
62 ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 );
64 /* No other bits set */
65 assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype|MEM_FromBind
66 |MEM_Dyn|MEM_Ephem|MEM_Static))==0 );
67 }else{
68 /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn,
69 ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */
71 }else{
72 /* The MEM_Cleared bit is only allowed on NULLs */
73 assert( (p->flags & MEM_Cleared)==0 );
76 /* The szMalloc field holds the correct memory allocation size */
77 assert( p->szMalloc==0
78 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) );
80 /* If p holds a string or blob, the Mem.z must point to exactly
81 ** one of the following:
83 ** (1) Memory in Mem.zMalloc and managed by the Mem object
84 ** (2) Memory to be freed using Mem.xDel
85 ** (3) An ephemeral string or blob
86 ** (4) A static string or blob
88 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){
89 assert(
90 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) +
91 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
92 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
93 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
96 return 1;
98 #endif
101 ** Render a Mem object which is one of MEM_Int, MEM_Real, or MEM_IntReal
102 ** into a buffer.
104 static void vdbeMemRenderNum(int sz, char *zBuf, Mem *p){
105 StrAccum acc;
106 assert( p->flags & (MEM_Int|MEM_Real|MEM_IntReal) );
107 sqlite3StrAccumInit(&acc, 0, zBuf, sz, 0);
108 if( p->flags & MEM_Int ){
109 sqlite3_str_appendf(&acc, "%lld", p->u.i);
110 }else if( p->flags & MEM_IntReal ){
111 sqlite3_str_appendf(&acc, "%!.15g", (double)p->u.i);
112 }else{
113 sqlite3_str_appendf(&acc, "%!.15g", p->u.r);
115 assert( acc.zText==zBuf && acc.mxAlloc<=0 );
116 zBuf[acc.nChar] = 0; /* Fast version of sqlite3StrAccumFinish(&acc) */
119 #ifdef SQLITE_DEBUG
121 ** Validity checks on pMem. pMem holds a string.
123 ** (1) Check that string value of pMem agrees with its integer or real value.
124 ** (2) Check that the string is correctly zero terminated
126 ** A single int or real value always converts to the same strings. But
127 ** many different strings can be converted into the same int or real.
128 ** If a table contains a numeric value and an index is based on the
129 ** corresponding string value, then it is important that the string be
130 ** derived from the numeric value, not the other way around, to ensure
131 ** that the index and table are consistent. See ticket
132 ** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for
133 ** an example.
135 ** This routine looks at pMem to verify that if it has both a numeric
136 ** representation and a string representation then the string rep has
137 ** been derived from the numeric and not the other way around. It returns
138 ** true if everything is ok and false if there is a problem.
140 ** This routine is for use inside of assert() statements only.
142 int sqlite3VdbeMemValidStrRep(Mem *p){
143 char zBuf[100];
144 char *z;
145 int i, j, incr;
146 if( (p->flags & MEM_Str)==0 ) return 1;
147 if( p->flags & MEM_Term ){
148 /* Insure that the string is properly zero-terminated. Pay particular
149 ** attention to the case where p->n is odd */
150 if( p->szMalloc>0 && p->z==p->zMalloc ){
151 assert( p->enc==SQLITE_UTF8 || p->szMalloc >= ((p->n+1)&~1)+2 );
152 assert( p->enc!=SQLITE_UTF8 || p->szMalloc >= p->n+1 );
154 assert( p->z[p->n]==0 );
155 assert( p->enc==SQLITE_UTF8 || p->z[(p->n+1)&~1]==0 );
156 assert( p->enc==SQLITE_UTF8 || p->z[((p->n+1)&~1)+1]==0 );
158 if( (p->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ) return 1;
159 vdbeMemRenderNum(sizeof(zBuf), zBuf, p);
160 z = p->z;
161 i = j = 0;
162 incr = 1;
163 if( p->enc!=SQLITE_UTF8 ){
164 incr = 2;
165 if( p->enc==SQLITE_UTF16BE ) z++;
167 while( zBuf[j] ){
168 if( zBuf[j++]!=z[i] ) return 0;
169 i += incr;
171 return 1;
173 #endif /* SQLITE_DEBUG */
176 ** If pMem is an object with a valid string representation, this routine
177 ** ensures the internal encoding for the string representation is
178 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
180 ** If pMem is not a string object, or the encoding of the string
181 ** representation is already stored using the requested encoding, then this
182 ** routine is a no-op.
184 ** SQLITE_OK is returned if the conversion is successful (or not required).
185 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
186 ** between formats.
188 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
189 #ifndef SQLITE_OMIT_UTF16
190 int rc;
191 #endif
192 assert( !sqlite3VdbeMemIsRowSet(pMem) );
193 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
194 || desiredEnc==SQLITE_UTF16BE );
195 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
196 return SQLITE_OK;
198 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
199 #ifdef SQLITE_OMIT_UTF16
200 return SQLITE_ERROR;
201 #else
203 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
204 ** then the encoding of the value may not have changed.
206 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
207 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
208 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
209 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
210 return rc;
211 #endif
215 ** Make sure pMem->z points to a writable allocation of at least n bytes.
217 ** If the bPreserve argument is true, then copy of the content of
218 ** pMem->z into the new allocation. pMem must be either a string or
219 ** blob if bPreserve is true. If bPreserve is false, any prior content
220 ** in pMem->z is discarded.
222 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
223 assert( sqlite3VdbeCheckMemInvariants(pMem) );
224 assert( !sqlite3VdbeMemIsRowSet(pMem) );
225 testcase( pMem->db==0 );
227 /* If the bPreserve flag is set to true, then the memory cell must already
228 ** contain a valid string or blob value. */
229 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
230 testcase( bPreserve && pMem->z==0 );
232 assert( pMem->szMalloc==0
233 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) );
234 if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){
235 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
236 bPreserve = 0;
237 }else{
238 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
239 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
241 if( pMem->zMalloc==0 ){
242 sqlite3VdbeMemSetNull(pMem);
243 pMem->z = 0;
244 pMem->szMalloc = 0;
245 return SQLITE_NOMEM_BKPT;
246 }else{
247 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
250 if( bPreserve && pMem->z ){
251 assert( pMem->z!=pMem->zMalloc );
252 memcpy(pMem->zMalloc, pMem->z, pMem->n);
254 if( (pMem->flags&MEM_Dyn)!=0 ){
255 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
256 pMem->xDel((void *)(pMem->z));
259 pMem->z = pMem->zMalloc;
260 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
261 return SQLITE_OK;
265 ** Change the pMem->zMalloc allocation to be at least szNew bytes.
266 ** If pMem->zMalloc already meets or exceeds the requested size, this
267 ** routine is a no-op.
269 ** Any prior string or blob content in the pMem object may be discarded.
270 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str
271 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, MEM_IntReal,
272 ** and MEM_Null values are preserved.
274 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
275 ** if unable to complete the resizing.
277 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){
278 assert( CORRUPT_DB || szNew>0 );
279 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 );
280 if( pMem->szMalloc<szNew ){
281 return sqlite3VdbeMemGrow(pMem, szNew, 0);
283 assert( (pMem->flags & MEM_Dyn)==0 );
284 pMem->z = pMem->zMalloc;
285 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real|MEM_IntReal);
286 return SQLITE_OK;
290 ** It is already known that pMem contains an unterminated string.
291 ** Add the zero terminator.
293 ** Three bytes of zero are added. In this way, there is guaranteed
294 ** to be a double-zero byte at an even byte boundary in order to
295 ** terminate a UTF16 string, even if the initial size of the buffer
296 ** is an odd number of bytes.
298 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){
299 if( sqlite3VdbeMemGrow(pMem, pMem->n+3, 1) ){
300 return SQLITE_NOMEM_BKPT;
302 pMem->z[pMem->n] = 0;
303 pMem->z[pMem->n+1] = 0;
304 pMem->z[pMem->n+2] = 0;
305 pMem->flags |= MEM_Term;
306 return SQLITE_OK;
310 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in
311 ** MEM.zMalloc, where it can be safely written.
313 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
315 int sqlite3VdbeMemMakeWriteable(Mem *pMem){
316 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
317 assert( !sqlite3VdbeMemIsRowSet(pMem) );
318 if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){
319 if( ExpandBlob(pMem) ) return SQLITE_NOMEM;
320 if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){
321 int rc = vdbeMemAddTerminator(pMem);
322 if( rc ) return rc;
325 pMem->flags &= ~MEM_Ephem;
326 #ifdef SQLITE_DEBUG
327 pMem->pScopyFrom = 0;
328 #endif
330 return SQLITE_OK;
334 ** If the given Mem* has a zero-filled tail, turn it into an ordinary
335 ** blob stored in dynamically allocated space.
337 #ifndef SQLITE_OMIT_INCRBLOB
338 int sqlite3VdbeMemExpandBlob(Mem *pMem){
339 int nByte;
340 assert( pMem->flags & MEM_Zero );
341 assert( (pMem->flags&MEM_Blob)!=0 || MemNullNochng(pMem) );
342 testcase( sqlite3_value_nochange(pMem) );
343 assert( !sqlite3VdbeMemIsRowSet(pMem) );
344 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
346 /* Set nByte to the number of bytes required to store the expanded blob. */
347 nByte = pMem->n + pMem->u.nZero;
348 if( nByte<=0 ){
349 if( (pMem->flags & MEM_Blob)==0 ) return SQLITE_OK;
350 nByte = 1;
352 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
353 return SQLITE_NOMEM_BKPT;
356 memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
357 pMem->n += pMem->u.nZero;
358 pMem->flags &= ~(MEM_Zero|MEM_Term);
359 return SQLITE_OK;
361 #endif
364 ** Make sure the given Mem is \u0000 terminated.
366 int sqlite3VdbeMemNulTerminate(Mem *pMem){
367 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
368 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) );
369 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 );
370 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){
371 return SQLITE_OK; /* Nothing to do */
372 }else{
373 return vdbeMemAddTerminator(pMem);
378 ** Add MEM_Str to the set of representations for the given Mem. This
379 ** routine is only called if pMem is a number of some kind, not a NULL
380 ** or a BLOB.
382 ** Existing representations MEM_Int, MEM_Real, or MEM_IntReal are invalidated
383 ** if bForce is true but are retained if bForce is false.
385 ** A MEM_Null value will never be passed to this function. This function is
386 ** used for converting values to text for returning to the user (i.e. via
387 ** sqlite3_value_text()), or for ensuring that values to be used as btree
388 ** keys are strings. In the former case a NULL pointer is returned the
389 ** user and the latter is an internal programming error.
391 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){
392 const int nByte = 32;
394 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
395 assert( !(pMem->flags&MEM_Zero) );
396 assert( !(pMem->flags&(MEM_Str|MEM_Blob)) );
397 assert( pMem->flags&(MEM_Int|MEM_Real|MEM_IntReal) );
398 assert( !sqlite3VdbeMemIsRowSet(pMem) );
399 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
402 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){
403 pMem->enc = 0;
404 return SQLITE_NOMEM_BKPT;
407 vdbeMemRenderNum(nByte, pMem->z, pMem);
408 assert( pMem->z!=0 );
409 pMem->n = sqlite3Strlen30NN(pMem->z);
410 pMem->enc = SQLITE_UTF8;
411 pMem->flags |= MEM_Str|MEM_Term;
412 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal);
413 sqlite3VdbeChangeEncoding(pMem, enc);
414 return SQLITE_OK;
418 ** Memory cell pMem contains the context of an aggregate function.
419 ** This routine calls the finalize method for that function. The
420 ** result of the aggregate is stored back into pMem.
422 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
423 ** otherwise.
425 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
426 sqlite3_context ctx;
427 Mem t;
428 assert( pFunc!=0 );
429 assert( pFunc->xFinalize!=0 );
430 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
431 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
432 memset(&ctx, 0, sizeof(ctx));
433 memset(&t, 0, sizeof(t));
434 t.flags = MEM_Null;
435 t.db = pMem->db;
436 ctx.pOut = &t;
437 ctx.pMem = pMem;
438 ctx.pFunc = pFunc;
439 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
440 assert( (pMem->flags & MEM_Dyn)==0 );
441 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
442 memcpy(pMem, &t, sizeof(t));
443 return ctx.isError;
447 ** Memory cell pAccum contains the context of an aggregate function.
448 ** This routine calls the xValue method for that function and stores
449 ** the results in memory cell pMem.
451 ** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK
452 ** otherwise.
454 #ifndef SQLITE_OMIT_WINDOWFUNC
455 int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){
456 sqlite3_context ctx;
457 Mem t;
458 assert( pFunc!=0 );
459 assert( pFunc->xValue!=0 );
460 assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef );
461 assert( pAccum->db==0 || sqlite3_mutex_held(pAccum->db->mutex) );
462 memset(&ctx, 0, sizeof(ctx));
463 memset(&t, 0, sizeof(t));
464 t.flags = MEM_Null;
465 t.db = pAccum->db;
466 sqlite3VdbeMemSetNull(pOut);
467 ctx.pOut = pOut;
468 ctx.pMem = pAccum;
469 ctx.pFunc = pFunc;
470 pFunc->xValue(&ctx);
471 return ctx.isError;
473 #endif /* SQLITE_OMIT_WINDOWFUNC */
476 ** If the memory cell contains a value that must be freed by
477 ** invoking the external callback in Mem.xDel, then this routine
478 ** will free that value. It also sets Mem.flags to MEM_Null.
480 ** This is a helper routine for sqlite3VdbeMemSetNull() and
481 ** for sqlite3VdbeMemRelease(). Use those other routines as the
482 ** entry point for releasing Mem resources.
484 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){
485 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
486 assert( VdbeMemDynamic(p) );
487 if( p->flags&MEM_Agg ){
488 sqlite3VdbeMemFinalize(p, p->u.pDef);
489 assert( (p->flags & MEM_Agg)==0 );
490 testcase( p->flags & MEM_Dyn );
492 if( p->flags&MEM_Dyn ){
493 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
494 p->xDel((void *)p->z);
496 p->flags = MEM_Null;
500 ** Release memory held by the Mem p, both external memory cleared
501 ** by p->xDel and memory in p->zMalloc.
503 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in
504 ** the unusual case where there really is memory in p that needs
505 ** to be freed.
507 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
508 if( VdbeMemDynamic(p) ){
509 vdbeMemClearExternAndSetNull(p);
511 if( p->szMalloc ){
512 sqlite3DbFreeNN(p->db, p->zMalloc);
513 p->szMalloc = 0;
515 p->z = 0;
519 ** Release any memory resources held by the Mem. Both the memory that is
520 ** free by Mem.xDel and the Mem.zMalloc allocation are freed.
522 ** Use this routine prior to clean up prior to abandoning a Mem, or to
523 ** reset a Mem back to its minimum memory utilization.
525 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
526 ** prior to inserting new content into the Mem.
528 void sqlite3VdbeMemRelease(Mem *p){
529 assert( sqlite3VdbeCheckMemInvariants(p) );
530 if( VdbeMemDynamic(p) || p->szMalloc ){
531 vdbeMemClear(p);
536 ** Convert a 64-bit IEEE double into a 64-bit signed integer.
537 ** If the double is out of range of a 64-bit signed integer then
538 ** return the closest available 64-bit signed integer.
540 static SQLITE_NOINLINE i64 doubleToInt64(double r){
541 #ifdef SQLITE_OMIT_FLOATING_POINT
542 /* When floating-point is omitted, double and int64 are the same thing */
543 return r;
544 #else
546 ** Many compilers we encounter do not define constants for the
547 ** minimum and maximum 64-bit integers, or they define them
548 ** inconsistently. And many do not understand the "LL" notation.
549 ** So we define our own static constants here using nothing
550 ** larger than a 32-bit integer constant.
552 static const i64 maxInt = LARGEST_INT64;
553 static const i64 minInt = SMALLEST_INT64;
555 if( r<=(double)minInt ){
556 return minInt;
557 }else if( r>=(double)maxInt ){
558 return maxInt;
559 }else{
560 return (i64)r;
562 #endif
566 ** Return some kind of integer value which is the best we can do
567 ** at representing the value that *pMem describes as an integer.
568 ** If pMem is an integer, then the value is exact. If pMem is
569 ** a floating-point then the value returned is the integer part.
570 ** If pMem is a string or blob, then we make an attempt to convert
571 ** it into an integer and return that. If pMem represents an
572 ** an SQL-NULL value, return 0.
574 ** If pMem represents a string value, its encoding might be changed.
576 static SQLITE_NOINLINE i64 memIntValue(Mem *pMem){
577 i64 value = 0;
578 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
579 return value;
581 i64 sqlite3VdbeIntValue(Mem *pMem){
582 int flags;
583 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
584 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
585 flags = pMem->flags;
586 if( flags & (MEM_Int|MEM_IntReal) ){
587 testcase( flags & MEM_IntReal );
588 return pMem->u.i;
589 }else if( flags & MEM_Real ){
590 return doubleToInt64(pMem->u.r);
591 }else if( flags & (MEM_Str|MEM_Blob) ){
592 assert( pMem->z || pMem->n==0 );
593 return memIntValue(pMem);
594 }else{
595 return 0;
600 ** Return the best representation of pMem that we can get into a
601 ** double. If pMem is already a double or an integer, return its
602 ** value. If it is a string or blob, try to convert it to a double.
603 ** If it is a NULL, return 0.0.
605 static SQLITE_NOINLINE double memRealValue(Mem *pMem){
606 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
607 double val = (double)0;
608 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
609 return val;
611 double sqlite3VdbeRealValue(Mem *pMem){
612 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
613 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
614 if( pMem->flags & MEM_Real ){
615 return pMem->u.r;
616 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
617 testcase( pMem->flags & MEM_IntReal );
618 return (double)pMem->u.i;
619 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
620 return memRealValue(pMem);
621 }else{
622 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
623 return (double)0;
628 ** Return 1 if pMem represents true, and return 0 if pMem represents false.
629 ** Return the value ifNull if pMem is NULL.
631 int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){
632 testcase( pMem->flags & MEM_IntReal );
633 if( pMem->flags & (MEM_Int|MEM_IntReal) ) return pMem->u.i!=0;
634 if( pMem->flags & MEM_Null ) return ifNull;
635 return sqlite3VdbeRealValue(pMem)!=0.0;
639 ** The MEM structure is already a MEM_Real. Try to also make it a
640 ** MEM_Int if we can.
642 void sqlite3VdbeIntegerAffinity(Mem *pMem){
643 i64 ix;
644 assert( pMem->flags & MEM_Real );
645 assert( !sqlite3VdbeMemIsRowSet(pMem) );
646 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
647 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
649 ix = doubleToInt64(pMem->u.r);
651 /* Only mark the value as an integer if
653 ** (1) the round-trip conversion real->int->real is a no-op, and
654 ** (2) The integer is neither the largest nor the smallest
655 ** possible integer (ticket #3922)
657 ** The second and third terms in the following conditional enforces
658 ** the second condition under the assumption that addition overflow causes
659 ** values to wrap around.
661 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){
662 pMem->u.i = ix;
663 MemSetTypeFlag(pMem, MEM_Int);
668 ** Convert pMem to type integer. Invalidate any prior representations.
670 int sqlite3VdbeMemIntegerify(Mem *pMem){
671 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
672 assert( !sqlite3VdbeMemIsRowSet(pMem) );
673 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
675 pMem->u.i = sqlite3VdbeIntValue(pMem);
676 MemSetTypeFlag(pMem, MEM_Int);
677 return SQLITE_OK;
681 ** Convert pMem so that it is of type MEM_Real.
682 ** Invalidate any prior representations.
684 int sqlite3VdbeMemRealify(Mem *pMem){
685 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
686 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
688 pMem->u.r = sqlite3VdbeRealValue(pMem);
689 MemSetTypeFlag(pMem, MEM_Real);
690 return SQLITE_OK;
693 /* Compare a floating point value to an integer. Return true if the two
694 ** values are the same within the precision of the floating point value.
696 ** This function assumes that i was obtained by assignment from r1.
698 ** For some versions of GCC on 32-bit machines, if you do the more obvious
699 ** comparison of "r1==(double)i" you sometimes get an answer of false even
700 ** though the r1 and (double)i values are bit-for-bit the same.
702 int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){
703 double r2 = (double)i;
704 return r1==0.0
705 || (memcmp(&r1, &r2, sizeof(r1))==0
706 && i >= -2251799813685248LL && i < 2251799813685248LL);
710 ** Convert pMem so that it has type MEM_Real or MEM_Int.
711 ** Invalidate any prior representations.
713 ** Every effort is made to force the conversion, even if the input
714 ** is a string that does not look completely like a number. Convert
715 ** as much of the string as we can and ignore the rest.
717 int sqlite3VdbeMemNumerify(Mem *pMem){
718 testcase( pMem->flags & MEM_Int );
719 testcase( pMem->flags & MEM_Real );
720 testcase( pMem->flags & MEM_IntReal );
721 testcase( pMem->flags & MEM_Null );
722 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))==0 ){
723 int rc;
724 sqlite3_int64 ix;
725 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
726 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
727 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
728 if( ((rc==0 || rc==1) && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1)
729 || sqlite3RealSameAsInt(pMem->u.r, (ix = (i64)pMem->u.r))
731 pMem->u.i = ix;
732 MemSetTypeFlag(pMem, MEM_Int);
733 }else{
734 MemSetTypeFlag(pMem, MEM_Real);
737 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))!=0 );
738 pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero);
739 return SQLITE_OK;
743 ** Cast the datatype of the value in pMem according to the affinity
744 ** "aff". Casting is different from applying affinity in that a cast
745 ** is forced. In other words, the value is converted into the desired
746 ** affinity even if that results in loss of data. This routine is
747 ** used (for example) to implement the SQL "cast()" operator.
749 void sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){
750 if( pMem->flags & MEM_Null ) return;
751 switch( aff ){
752 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */
753 if( (pMem->flags & MEM_Blob)==0 ){
754 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
755 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
756 if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob);
757 }else{
758 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob);
760 break;
762 case SQLITE_AFF_NUMERIC: {
763 sqlite3VdbeMemNumerify(pMem);
764 break;
766 case SQLITE_AFF_INTEGER: {
767 sqlite3VdbeMemIntegerify(pMem);
768 break;
770 case SQLITE_AFF_REAL: {
771 sqlite3VdbeMemRealify(pMem);
772 break;
774 default: {
775 assert( aff==SQLITE_AFF_TEXT );
776 assert( MEM_Str==(MEM_Blob>>3) );
777 pMem->flags |= (pMem->flags&MEM_Blob)>>3;
778 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
779 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
780 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal|MEM_Blob|MEM_Zero);
781 break;
787 ** Initialize bulk memory to be a consistent Mem object.
789 ** The minimum amount of initialization feasible is performed.
791 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
792 assert( (flags & ~MEM_TypeMask)==0 );
793 pMem->flags = flags;
794 pMem->db = db;
795 pMem->szMalloc = 0;
800 ** Delete any previous value and set the value stored in *pMem to NULL.
802 ** This routine calls the Mem.xDel destructor to dispose of values that
803 ** require the destructor. But it preserves the Mem.zMalloc memory allocation.
804 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
805 ** routine to invoke the destructor and deallocates Mem.zMalloc.
807 ** Use this routine to reset the Mem prior to insert a new value.
809 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
811 void sqlite3VdbeMemSetNull(Mem *pMem){
812 if( VdbeMemDynamic(pMem) ){
813 vdbeMemClearExternAndSetNull(pMem);
814 }else{
815 pMem->flags = MEM_Null;
818 void sqlite3ValueSetNull(sqlite3_value *p){
819 sqlite3VdbeMemSetNull((Mem*)p);
823 ** Delete any previous value and set the value to be a BLOB of length
824 ** n containing all zeros.
826 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
827 sqlite3VdbeMemRelease(pMem);
828 pMem->flags = MEM_Blob|MEM_Zero;
829 pMem->n = 0;
830 if( n<0 ) n = 0;
831 pMem->u.nZero = n;
832 pMem->enc = SQLITE_UTF8;
833 pMem->z = 0;
837 ** The pMem is known to contain content that needs to be destroyed prior
838 ** to a value change. So invoke the destructor, then set the value to
839 ** a 64-bit integer.
841 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){
842 sqlite3VdbeMemSetNull(pMem);
843 pMem->u.i = val;
844 pMem->flags = MEM_Int;
848 ** Delete any previous value and set the value stored in *pMem to val,
849 ** manifest type INTEGER.
851 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
852 if( VdbeMemDynamic(pMem) ){
853 vdbeReleaseAndSetInt64(pMem, val);
854 }else{
855 pMem->u.i = val;
856 pMem->flags = MEM_Int;
860 /* A no-op destructor */
861 void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); }
864 ** Set the value stored in *pMem should already be a NULL.
865 ** Also store a pointer to go with it.
867 void sqlite3VdbeMemSetPointer(
868 Mem *pMem,
869 void *pPtr,
870 const char *zPType,
871 void (*xDestructor)(void*)
873 assert( pMem->flags==MEM_Null );
874 pMem->u.zPType = zPType ? zPType : "";
875 pMem->z = pPtr;
876 pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term;
877 pMem->eSubtype = 'p';
878 pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor;
881 #ifndef SQLITE_OMIT_FLOATING_POINT
883 ** Delete any previous value and set the value stored in *pMem to val,
884 ** manifest type REAL.
886 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
887 sqlite3VdbeMemSetNull(pMem);
888 if( !sqlite3IsNaN(val) ){
889 pMem->u.r = val;
890 pMem->flags = MEM_Real;
893 #endif
895 #ifdef SQLITE_DEBUG
897 ** Return true if the Mem holds a RowSet object. This routine is intended
898 ** for use inside of assert() statements.
900 int sqlite3VdbeMemIsRowSet(const Mem *pMem){
901 return (pMem->flags&(MEM_Blob|MEM_Dyn))==(MEM_Blob|MEM_Dyn)
902 && pMem->xDel==sqlite3RowSetDelete;
904 #endif
907 ** Delete any previous value and set the value of pMem to be an
908 ** empty boolean index.
910 ** Return SQLITE_OK on success and SQLITE_NOMEM if a memory allocation
911 ** error occurs.
913 int sqlite3VdbeMemSetRowSet(Mem *pMem){
914 sqlite3 *db = pMem->db;
915 RowSet *p;
916 assert( db!=0 );
917 assert( !sqlite3VdbeMemIsRowSet(pMem) );
918 sqlite3VdbeMemRelease(pMem);
919 p = sqlite3RowSetInit(db);
920 if( p==0 ) return SQLITE_NOMEM;
921 pMem->z = (char*)p;
922 pMem->flags = MEM_Blob|MEM_Dyn;
923 pMem->xDel = sqlite3RowSetDelete;
924 return SQLITE_OK;
928 ** Return true if the Mem object contains a TEXT or BLOB that is
929 ** too large - whose size exceeds SQLITE_MAX_LENGTH.
931 int sqlite3VdbeMemTooBig(Mem *p){
932 assert( p->db!=0 );
933 if( p->flags & (MEM_Str|MEM_Blob) ){
934 int n = p->n;
935 if( p->flags & MEM_Zero ){
936 n += p->u.nZero;
938 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
940 return 0;
943 #ifdef SQLITE_DEBUG
945 ** This routine prepares a memory cell for modification by breaking
946 ** its link to a shallow copy and by marking any current shallow
947 ** copies of this cell as invalid.
949 ** This is used for testing and debugging only - to make sure shallow
950 ** copies are not misused.
952 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){
953 int i;
954 Mem *pX;
955 for(i=0, pX=pVdbe->aMem; i<pVdbe->nMem; i++, pX++){
956 if( pX->pScopyFrom==pMem ){
957 /* If pX is marked as a shallow copy of pMem, then verify that
958 ** no significant changes have been made to pX since the OP_SCopy.
959 ** A significant change would indicated a missed call to this
960 ** function for pX. Minor changes, such as adding or removing a
961 ** dual type, are allowed, as long as the underlying value is the
962 ** same. */
963 u16 mFlags = pMem->flags & pX->flags & pX->mScopyFlags;
964 assert( (mFlags&(MEM_Int|MEM_IntReal))==0 || pMem->u.i==pX->u.i );
965 assert( (mFlags&MEM_Real)==0 || pMem->u.r==pX->u.r );
966 assert( (mFlags&MEM_Str)==0 || (pMem->n==pX->n && pMem->z==pX->z) );
967 assert( (mFlags&MEM_Blob)==0 || sqlite3BlobCompare(pMem,pX)==0 );
969 /* pMem is the register that is changing. But also mark pX as
970 ** undefined so that we can quickly detect the shallow-copy error */
971 pX->flags = MEM_Undefined;
972 pX->pScopyFrom = 0;
975 pMem->pScopyFrom = 0;
977 #endif /* SQLITE_DEBUG */
981 ** Make an shallow copy of pFrom into pTo. Prior contents of
982 ** pTo are freed. The pFrom->z field is not duplicated. If
983 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
984 ** and flags gets srcType (either MEM_Ephem or MEM_Static).
986 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){
987 vdbeMemClearExternAndSetNull(pTo);
988 assert( !VdbeMemDynamic(pTo) );
989 sqlite3VdbeMemShallowCopy(pTo, pFrom, eType);
991 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
992 assert( !sqlite3VdbeMemIsRowSet(pFrom) );
993 assert( pTo->db==pFrom->db );
994 if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; }
995 memcpy(pTo, pFrom, MEMCELLSIZE);
996 if( (pFrom->flags&MEM_Static)==0 ){
997 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
998 assert( srcType==MEM_Ephem || srcType==MEM_Static );
999 pTo->flags |= srcType;
1004 ** Make a full copy of pFrom into pTo. Prior contents of pTo are
1005 ** freed before the copy is made.
1007 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
1008 int rc = SQLITE_OK;
1010 assert( !sqlite3VdbeMemIsRowSet(pFrom) );
1011 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
1012 memcpy(pTo, pFrom, MEMCELLSIZE);
1013 pTo->flags &= ~MEM_Dyn;
1014 if( pTo->flags&(MEM_Str|MEM_Blob) ){
1015 if( 0==(pFrom->flags&MEM_Static) ){
1016 pTo->flags |= MEM_Ephem;
1017 rc = sqlite3VdbeMemMakeWriteable(pTo);
1021 return rc;
1025 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
1026 ** freed. If pFrom contains ephemeral data, a copy is made.
1028 ** pFrom contains an SQL NULL when this routine returns.
1030 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
1031 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
1032 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
1033 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
1035 sqlite3VdbeMemRelease(pTo);
1036 memcpy(pTo, pFrom, sizeof(Mem));
1037 pFrom->flags = MEM_Null;
1038 pFrom->szMalloc = 0;
1042 ** Change the value of a Mem to be a string or a BLOB.
1044 ** The memory management strategy depends on the value of the xDel
1045 ** parameter. If the value passed is SQLITE_TRANSIENT, then the
1046 ** string is copied into a (possibly existing) buffer managed by the
1047 ** Mem structure. Otherwise, any existing buffer is freed and the
1048 ** pointer copied.
1050 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
1051 ** size limit) then no memory allocation occurs. If the string can be
1052 ** stored without allocating memory, then it is. If a memory allocation
1053 ** is required to store the string, then value of pMem is unchanged. In
1054 ** either case, SQLITE_TOOBIG is returned.
1056 int sqlite3VdbeMemSetStr(
1057 Mem *pMem, /* Memory cell to set to string value */
1058 const char *z, /* String pointer */
1059 int n, /* Bytes in string, or negative */
1060 u8 enc, /* Encoding of z. 0 for BLOBs */
1061 void (*xDel)(void*) /* Destructor function */
1063 int nByte = n; /* New value for pMem->n */
1064 int iLimit; /* Maximum allowed string or blob size */
1065 u16 flags = 0; /* New value for pMem->flags */
1067 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
1068 assert( !sqlite3VdbeMemIsRowSet(pMem) );
1070 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
1071 if( !z ){
1072 sqlite3VdbeMemSetNull(pMem);
1073 return SQLITE_OK;
1076 if( pMem->db ){
1077 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
1078 }else{
1079 iLimit = SQLITE_MAX_LENGTH;
1081 flags = (enc==0?MEM_Blob:MEM_Str);
1082 if( nByte<0 ){
1083 assert( enc!=0 );
1084 if( enc==SQLITE_UTF8 ){
1085 nByte = 0x7fffffff & (int)strlen(z);
1086 }else{
1087 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
1089 flags |= MEM_Term;
1092 /* The following block sets the new values of Mem.z and Mem.xDel. It
1093 ** also sets a flag in local variable "flags" to indicate the memory
1094 ** management (one of MEM_Dyn or MEM_Static).
1096 if( xDel==SQLITE_TRANSIENT ){
1097 u32 nAlloc = nByte;
1098 if( flags&MEM_Term ){
1099 nAlloc += (enc==SQLITE_UTF8?1:2);
1101 if( nByte>iLimit ){
1102 return sqlite3ErrorToParser(pMem->db, SQLITE_TOOBIG);
1104 testcase( nAlloc==0 );
1105 testcase( nAlloc==31 );
1106 testcase( nAlloc==32 );
1107 if( sqlite3VdbeMemClearAndResize(pMem, (int)MAX(nAlloc,32)) ){
1108 return SQLITE_NOMEM_BKPT;
1110 memcpy(pMem->z, z, nAlloc);
1111 }else{
1112 sqlite3VdbeMemRelease(pMem);
1113 pMem->z = (char *)z;
1114 if( xDel==SQLITE_DYNAMIC ){
1115 pMem->zMalloc = pMem->z;
1116 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
1117 }else{
1118 pMem->xDel = xDel;
1119 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
1123 pMem->n = nByte;
1124 pMem->flags = flags;
1125 pMem->enc = (enc==0 ? SQLITE_UTF8 : enc);
1127 #ifndef SQLITE_OMIT_UTF16
1128 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
1129 return SQLITE_NOMEM_BKPT;
1131 #endif
1133 if( nByte>iLimit ){
1134 return SQLITE_TOOBIG;
1137 return SQLITE_OK;
1141 ** Move data out of a btree key or data field and into a Mem structure.
1142 ** The data is payload from the entry that pCur is currently pointing
1143 ** to. offset and amt determine what portion of the data or key to retrieve.
1144 ** The result is written into the pMem element.
1146 ** The pMem object must have been initialized. This routine will use
1147 ** pMem->zMalloc to hold the content from the btree, if possible. New
1148 ** pMem->zMalloc space will be allocated if necessary. The calling routine
1149 ** is responsible for making sure that the pMem object is eventually
1150 ** destroyed.
1152 ** If this routine fails for any reason (malloc returns NULL or unable
1153 ** to read from the disk) then the pMem is left in an inconsistent state.
1155 static SQLITE_NOINLINE int vdbeMemFromBtreeResize(
1156 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
1157 u32 offset, /* Offset from the start of data to return bytes from. */
1158 u32 amt, /* Number of bytes to return. */
1159 Mem *pMem /* OUT: Return data in this Mem structure. */
1161 int rc;
1162 pMem->flags = MEM_Null;
1163 if( sqlite3BtreeMaxRecordSize(pCur)<offset+amt ){
1164 return SQLITE_CORRUPT_BKPT;
1166 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){
1167 rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z);
1168 if( rc==SQLITE_OK ){
1169 pMem->z[amt] = 0; /* Overrun area used when reading malformed records */
1170 pMem->flags = MEM_Blob;
1171 pMem->n = (int)amt;
1172 }else{
1173 sqlite3VdbeMemRelease(pMem);
1176 return rc;
1178 int sqlite3VdbeMemFromBtree(
1179 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
1180 u32 offset, /* Offset from the start of data to return bytes from. */
1181 u32 amt, /* Number of bytes to return. */
1182 Mem *pMem /* OUT: Return data in this Mem structure. */
1184 char *zData; /* Data from the btree layer */
1185 u32 available = 0; /* Number of bytes available on the local btree page */
1186 int rc = SQLITE_OK; /* Return code */
1188 assert( sqlite3BtreeCursorIsValid(pCur) );
1189 assert( !VdbeMemDynamic(pMem) );
1191 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
1192 ** that both the BtShared and database handle mutexes are held. */
1193 assert( !sqlite3VdbeMemIsRowSet(pMem) );
1194 zData = (char *)sqlite3BtreePayloadFetch(pCur, &available);
1195 assert( zData!=0 );
1197 if( offset+amt<=available ){
1198 pMem->z = &zData[offset];
1199 pMem->flags = MEM_Blob|MEM_Ephem;
1200 pMem->n = (int)amt;
1201 }else{
1202 rc = vdbeMemFromBtreeResize(pCur, offset, amt, pMem);
1205 return rc;
1209 ** The pVal argument is known to be a value other than NULL.
1210 ** Convert it into a string with encoding enc and return a pointer
1211 ** to a zero-terminated version of that string.
1213 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){
1214 assert( pVal!=0 );
1215 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1216 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1217 assert( !sqlite3VdbeMemIsRowSet(pVal) );
1218 assert( (pVal->flags & (MEM_Null))==0 );
1219 if( pVal->flags & (MEM_Blob|MEM_Str) ){
1220 if( ExpandBlob(pVal) ) return 0;
1221 pVal->flags |= MEM_Str;
1222 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){
1223 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
1225 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
1226 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
1227 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
1228 return 0;
1231 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */
1232 }else{
1233 sqlite3VdbeMemStringify(pVal, enc, 0);
1234 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
1236 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
1237 || pVal->db->mallocFailed );
1238 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
1239 assert( sqlite3VdbeMemValidStrRep(pVal) );
1240 return pVal->z;
1241 }else{
1242 return 0;
1246 /* This function is only available internally, it is not part of the
1247 ** external API. It works in a similar way to sqlite3_value_text(),
1248 ** except the data returned is in the encoding specified by the second
1249 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
1250 ** SQLITE_UTF8.
1252 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
1253 ** If that is the case, then the result must be aligned on an even byte
1254 ** boundary.
1256 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
1257 if( !pVal ) return 0;
1258 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1259 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1260 assert( !sqlite3VdbeMemIsRowSet(pVal) );
1261 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){
1262 assert( sqlite3VdbeMemValidStrRep(pVal) );
1263 return pVal->z;
1265 if( pVal->flags&MEM_Null ){
1266 return 0;
1268 return valueToText(pVal, enc);
1272 ** Create a new sqlite3_value object.
1274 sqlite3_value *sqlite3ValueNew(sqlite3 *db){
1275 Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
1276 if( p ){
1277 p->flags = MEM_Null;
1278 p->db = db;
1280 return p;
1284 ** Context object passed by sqlite3Stat4ProbeSetValue() through to
1285 ** valueNew(). See comments above valueNew() for details.
1287 struct ValueNewStat4Ctx {
1288 Parse *pParse;
1289 Index *pIdx;
1290 UnpackedRecord **ppRec;
1291 int iVal;
1295 ** Allocate and return a pointer to a new sqlite3_value object. If
1296 ** the second argument to this function is NULL, the object is allocated
1297 ** by calling sqlite3ValueNew().
1299 ** Otherwise, if the second argument is non-zero, then this function is
1300 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
1301 ** already been allocated, allocate the UnpackedRecord structure that
1302 ** that function will return to its caller here. Then return a pointer to
1303 ** an sqlite3_value within the UnpackedRecord.a[] array.
1305 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){
1306 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1307 if( p ){
1308 UnpackedRecord *pRec = p->ppRec[0];
1310 if( pRec==0 ){
1311 Index *pIdx = p->pIdx; /* Index being probed */
1312 int nByte; /* Bytes of space to allocate */
1313 int i; /* Counter variable */
1314 int nCol = pIdx->nColumn; /* Number of index columns including rowid */
1316 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord));
1317 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
1318 if( pRec ){
1319 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx);
1320 if( pRec->pKeyInfo ){
1321 assert( pRec->pKeyInfo->nAllField==nCol );
1322 assert( pRec->pKeyInfo->enc==ENC(db) );
1323 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
1324 for(i=0; i<nCol; i++){
1325 pRec->aMem[i].flags = MEM_Null;
1326 pRec->aMem[i].db = db;
1328 }else{
1329 sqlite3DbFreeNN(db, pRec);
1330 pRec = 0;
1333 if( pRec==0 ) return 0;
1334 p->ppRec[0] = pRec;
1337 pRec->nField = p->iVal+1;
1338 return &pRec->aMem[p->iVal];
1340 #else
1341 UNUSED_PARAMETER(p);
1342 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1343 return sqlite3ValueNew(db);
1347 ** The expression object indicated by the second argument is guaranteed
1348 ** to be a scalar SQL function. If
1350 ** * all function arguments are SQL literals,
1351 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and
1352 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set,
1354 ** then this routine attempts to invoke the SQL function. Assuming no
1355 ** error occurs, output parameter (*ppVal) is set to point to a value
1356 ** object containing the result before returning SQLITE_OK.
1358 ** Affinity aff is applied to the result of the function before returning.
1359 ** If the result is a text value, the sqlite3_value object uses encoding
1360 ** enc.
1362 ** If the conditions above are not met, this function returns SQLITE_OK
1363 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
1364 ** NULL and an SQLite error code returned.
1366 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1367 static int valueFromFunction(
1368 sqlite3 *db, /* The database connection */
1369 Expr *p, /* The expression to evaluate */
1370 u8 enc, /* Encoding to use */
1371 u8 aff, /* Affinity to use */
1372 sqlite3_value **ppVal, /* Write the new value here */
1373 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
1375 sqlite3_context ctx; /* Context object for function invocation */
1376 sqlite3_value **apVal = 0; /* Function arguments */
1377 int nVal = 0; /* Size of apVal[] array */
1378 FuncDef *pFunc = 0; /* Function definition */
1379 sqlite3_value *pVal = 0; /* New value */
1380 int rc = SQLITE_OK; /* Return code */
1381 ExprList *pList = 0; /* Function arguments */
1382 int i; /* Iterator variable */
1384 assert( pCtx!=0 );
1385 assert( (p->flags & EP_TokenOnly)==0 );
1386 pList = p->x.pList;
1387 if( pList ) nVal = pList->nExpr;
1388 pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0);
1389 assert( pFunc );
1390 if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0
1391 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
1393 return SQLITE_OK;
1396 if( pList ){
1397 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal);
1398 if( apVal==0 ){
1399 rc = SQLITE_NOMEM_BKPT;
1400 goto value_from_function_out;
1402 for(i=0; i<nVal; i++){
1403 rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]);
1404 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out;
1408 pVal = valueNew(db, pCtx);
1409 if( pVal==0 ){
1410 rc = SQLITE_NOMEM_BKPT;
1411 goto value_from_function_out;
1414 assert( pCtx->pParse->rc==SQLITE_OK );
1415 memset(&ctx, 0, sizeof(ctx));
1416 ctx.pOut = pVal;
1417 ctx.pFunc = pFunc;
1418 pFunc->xSFunc(&ctx, nVal, apVal);
1419 if( ctx.isError ){
1420 rc = ctx.isError;
1421 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal));
1422 }else{
1423 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8);
1424 assert( rc==SQLITE_OK );
1425 rc = sqlite3VdbeChangeEncoding(pVal, enc);
1426 if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){
1427 rc = SQLITE_TOOBIG;
1428 pCtx->pParse->nErr++;
1431 pCtx->pParse->rc = rc;
1433 value_from_function_out:
1434 if( rc!=SQLITE_OK ){
1435 pVal = 0;
1437 if( apVal ){
1438 for(i=0; i<nVal; i++){
1439 sqlite3ValueFree(apVal[i]);
1441 sqlite3DbFreeNN(db, apVal);
1444 *ppVal = pVal;
1445 return rc;
1447 #else
1448 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
1449 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1452 ** Extract a value from the supplied expression in the manner described
1453 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
1454 ** using valueNew().
1456 ** If pCtx is NULL and an error occurs after the sqlite3_value object
1457 ** has been allocated, it is freed before returning. Or, if pCtx is not
1458 ** NULL, it is assumed that the caller will free any allocated object
1459 ** in all cases.
1461 static int valueFromExpr(
1462 sqlite3 *db, /* The database connection */
1463 Expr *pExpr, /* The expression to evaluate */
1464 u8 enc, /* Encoding to use */
1465 u8 affinity, /* Affinity to use */
1466 sqlite3_value **ppVal, /* Write the new value here */
1467 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
1469 int op;
1470 char *zVal = 0;
1471 sqlite3_value *pVal = 0;
1472 int negInt = 1;
1473 const char *zNeg = "";
1474 int rc = SQLITE_OK;
1476 assert( pExpr!=0 );
1477 while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft;
1478 #if defined(SQLITE_ENABLE_STAT3_OR_STAT4)
1479 if( op==TK_REGISTER ) op = pExpr->op2;
1480 #else
1481 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
1482 #endif
1484 /* Compressed expressions only appear when parsing the DEFAULT clause
1485 ** on a table column definition, and hence only when pCtx==0. This
1486 ** check ensures that an EP_TokenOnly expression is never passed down
1487 ** into valueFromFunction(). */
1488 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 );
1490 if( op==TK_CAST ){
1491 u8 aff = sqlite3AffinityType(pExpr->u.zToken,0);
1492 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx);
1493 testcase( rc!=SQLITE_OK );
1494 if( *ppVal ){
1495 sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8);
1496 sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8);
1498 return rc;
1501 /* Handle negative integers in a single step. This is needed in the
1502 ** case when the value is -9223372036854775808.
1504 if( op==TK_UMINUS
1505 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
1506 pExpr = pExpr->pLeft;
1507 op = pExpr->op;
1508 negInt = -1;
1509 zNeg = "-";
1512 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
1513 pVal = valueNew(db, pCtx);
1514 if( pVal==0 ) goto no_mem;
1515 if( ExprHasProperty(pExpr, EP_IntValue) ){
1516 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
1517 }else{
1518 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
1519 if( zVal==0 ) goto no_mem;
1520 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
1522 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){
1523 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
1524 }else{
1525 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
1527 assert( (pVal->flags & MEM_IntReal)==0 );
1528 if( pVal->flags & (MEM_Int|MEM_IntReal|MEM_Real) ){
1529 testcase( pVal->flags & MEM_Int );
1530 testcase( pVal->flags & MEM_Real );
1531 pVal->flags &= ~MEM_Str;
1533 if( enc!=SQLITE_UTF8 ){
1534 rc = sqlite3VdbeChangeEncoding(pVal, enc);
1536 }else if( op==TK_UMINUS ) {
1537 /* This branch happens for multiple negative signs. Ex: -(-5) */
1538 if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx)
1539 && pVal!=0
1541 sqlite3VdbeMemNumerify(pVal);
1542 if( pVal->flags & MEM_Real ){
1543 pVal->u.r = -pVal->u.r;
1544 }else if( pVal->u.i==SMALLEST_INT64 ){
1545 pVal->u.r = -(double)SMALLEST_INT64;
1546 MemSetTypeFlag(pVal, MEM_Real);
1547 }else{
1548 pVal->u.i = -pVal->u.i;
1550 sqlite3ValueApplyAffinity(pVal, affinity, enc);
1552 }else if( op==TK_NULL ){
1553 pVal = valueNew(db, pCtx);
1554 if( pVal==0 ) goto no_mem;
1555 sqlite3VdbeMemSetNull(pVal);
1557 #ifndef SQLITE_OMIT_BLOB_LITERAL
1558 else if( op==TK_BLOB ){
1559 int nVal;
1560 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
1561 assert( pExpr->u.zToken[1]=='\'' );
1562 pVal = valueNew(db, pCtx);
1563 if( !pVal ) goto no_mem;
1564 zVal = &pExpr->u.zToken[2];
1565 nVal = sqlite3Strlen30(zVal)-1;
1566 assert( zVal[nVal]=='\'' );
1567 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
1568 0, SQLITE_DYNAMIC);
1570 #endif
1571 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1572 else if( op==TK_FUNCTION && pCtx!=0 ){
1573 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx);
1575 #endif
1576 else if( op==TK_TRUEFALSE ){
1577 pVal = valueNew(db, pCtx);
1578 if( pVal ){
1579 pVal->flags = MEM_Int;
1580 pVal->u.i = pExpr->u.zToken[4]==0;
1584 *ppVal = pVal;
1585 return rc;
1587 no_mem:
1588 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1589 if( pCtx==0 || pCtx->pParse->nErr==0 )
1590 #endif
1591 sqlite3OomFault(db);
1592 sqlite3DbFree(db, zVal);
1593 assert( *ppVal==0 );
1594 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1595 if( pCtx==0 ) sqlite3ValueFree(pVal);
1596 #else
1597 assert( pCtx==0 ); sqlite3ValueFree(pVal);
1598 #endif
1599 return SQLITE_NOMEM_BKPT;
1603 ** Create a new sqlite3_value object, containing the value of pExpr.
1605 ** This only works for very simple expressions that consist of one constant
1606 ** token (i.e. "5", "5.1", "'a string'"). If the expression can
1607 ** be converted directly into a value, then the value is allocated and
1608 ** a pointer written to *ppVal. The caller is responsible for deallocating
1609 ** the value by passing it to sqlite3ValueFree() later on. If the expression
1610 ** cannot be converted to a value, then *ppVal is set to NULL.
1612 int sqlite3ValueFromExpr(
1613 sqlite3 *db, /* The database connection */
1614 Expr *pExpr, /* The expression to evaluate */
1615 u8 enc, /* Encoding to use */
1616 u8 affinity, /* Affinity to use */
1617 sqlite3_value **ppVal /* Write the new value here */
1619 return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0;
1622 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1624 ** The implementation of the sqlite_record() function. This function accepts
1625 ** a single argument of any type. The return value is a formatted database
1626 ** record (a blob) containing the argument value.
1628 ** This is used to convert the value stored in the 'sample' column of the
1629 ** sqlite_stat3 table to the record format SQLite uses internally.
1631 static void recordFunc(
1632 sqlite3_context *context,
1633 int argc,
1634 sqlite3_value **argv
1636 const int file_format = 1;
1637 u32 iSerial; /* Serial type */
1638 int nSerial; /* Bytes of space for iSerial as varint */
1639 u32 nVal; /* Bytes of space required for argv[0] */
1640 int nRet;
1641 sqlite3 *db;
1642 u8 *aRet;
1644 UNUSED_PARAMETER( argc );
1645 iSerial = sqlite3VdbeSerialType(argv[0], file_format, &nVal);
1646 nSerial = sqlite3VarintLen(iSerial);
1647 db = sqlite3_context_db_handle(context);
1649 nRet = 1 + nSerial + nVal;
1650 aRet = sqlite3DbMallocRawNN(db, nRet);
1651 if( aRet==0 ){
1652 sqlite3_result_error_nomem(context);
1653 }else{
1654 aRet[0] = nSerial+1;
1655 putVarint32(&aRet[1], iSerial);
1656 sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], iSerial);
1657 sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT);
1658 sqlite3DbFreeNN(db, aRet);
1663 ** Register built-in functions used to help read ANALYZE data.
1665 void sqlite3AnalyzeFunctions(void){
1666 static FuncDef aAnalyzeTableFuncs[] = {
1667 FUNCTION(sqlite_record, 1, 0, 0, recordFunc),
1669 sqlite3InsertBuiltinFuncs(aAnalyzeTableFuncs, ArraySize(aAnalyzeTableFuncs));
1673 ** Attempt to extract a value from pExpr and use it to construct *ppVal.
1675 ** If pAlloc is not NULL, then an UnpackedRecord object is created for
1676 ** pAlloc if one does not exist and the new value is added to the
1677 ** UnpackedRecord object.
1679 ** A value is extracted in the following cases:
1681 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1683 ** * The expression is a bound variable, and this is a reprepare, or
1685 ** * The expression is a literal value.
1687 ** On success, *ppVal is made to point to the extracted value. The caller
1688 ** is responsible for ensuring that the value is eventually freed.
1690 static int stat4ValueFromExpr(
1691 Parse *pParse, /* Parse context */
1692 Expr *pExpr, /* The expression to extract a value from */
1693 u8 affinity, /* Affinity to use */
1694 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */
1695 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1697 int rc = SQLITE_OK;
1698 sqlite3_value *pVal = 0;
1699 sqlite3 *db = pParse->db;
1701 /* Skip over any TK_COLLATE nodes */
1702 pExpr = sqlite3ExprSkipCollate(pExpr);
1704 assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE );
1705 if( !pExpr ){
1706 pVal = valueNew(db, pAlloc);
1707 if( pVal ){
1708 sqlite3VdbeMemSetNull((Mem*)pVal);
1710 }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){
1711 Vdbe *v;
1712 int iBindVar = pExpr->iColumn;
1713 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar);
1714 if( (v = pParse->pReprepare)!=0 ){
1715 pVal = valueNew(db, pAlloc);
1716 if( pVal ){
1717 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
1718 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db));
1719 pVal->db = pParse->db;
1722 }else{
1723 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc);
1726 assert( pVal==0 || pVal->db==db );
1727 *ppVal = pVal;
1728 return rc;
1732 ** This function is used to allocate and populate UnpackedRecord
1733 ** structures intended to be compared against sample index keys stored
1734 ** in the sqlite_stat4 table.
1736 ** A single call to this function populates zero or more fields of the
1737 ** record starting with field iVal (fields are numbered from left to
1738 ** right starting with 0). A single field is populated if:
1740 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1742 ** * The expression is a bound variable, and this is a reprepare, or
1744 ** * The sqlite3ValueFromExpr() function is able to extract a value
1745 ** from the expression (i.e. the expression is a literal value).
1747 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the
1748 ** vector components that match either of the two latter criteria listed
1749 ** above.
1751 ** Before any value is appended to the record, the affinity of the
1752 ** corresponding column within index pIdx is applied to it. Before
1753 ** this function returns, output parameter *pnExtract is set to the
1754 ** number of values appended to the record.
1756 ** When this function is called, *ppRec must either point to an object
1757 ** allocated by an earlier call to this function, or must be NULL. If it
1758 ** is NULL and a value can be successfully extracted, a new UnpackedRecord
1759 ** is allocated (and *ppRec set to point to it) before returning.
1761 ** Unless an error is encountered, SQLITE_OK is returned. It is not an
1762 ** error if a value cannot be extracted from pExpr. If an error does
1763 ** occur, an SQLite error code is returned.
1765 int sqlite3Stat4ProbeSetValue(
1766 Parse *pParse, /* Parse context */
1767 Index *pIdx, /* Index being probed */
1768 UnpackedRecord **ppRec, /* IN/OUT: Probe record */
1769 Expr *pExpr, /* The expression to extract a value from */
1770 int nElem, /* Maximum number of values to append */
1771 int iVal, /* Array element to populate */
1772 int *pnExtract /* OUT: Values appended to the record */
1774 int rc = SQLITE_OK;
1775 int nExtract = 0;
1777 if( pExpr==0 || pExpr->op!=TK_SELECT ){
1778 int i;
1779 struct ValueNewStat4Ctx alloc;
1781 alloc.pParse = pParse;
1782 alloc.pIdx = pIdx;
1783 alloc.ppRec = ppRec;
1785 for(i=0; i<nElem; i++){
1786 sqlite3_value *pVal = 0;
1787 Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0);
1788 u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i);
1789 alloc.iVal = iVal+i;
1790 rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal);
1791 if( !pVal ) break;
1792 nExtract++;
1796 *pnExtract = nExtract;
1797 return rc;
1801 ** Attempt to extract a value from expression pExpr using the methods
1802 ** as described for sqlite3Stat4ProbeSetValue() above.
1804 ** If successful, set *ppVal to point to a new value object and return
1805 ** SQLITE_OK. If no value can be extracted, but no other error occurs
1806 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
1807 ** does occur, return an SQLite error code. The final value of *ppVal
1808 ** is undefined in this case.
1810 int sqlite3Stat4ValueFromExpr(
1811 Parse *pParse, /* Parse context */
1812 Expr *pExpr, /* The expression to extract a value from */
1813 u8 affinity, /* Affinity to use */
1814 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1816 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal);
1820 ** Extract the iCol-th column from the nRec-byte record in pRec. Write
1821 ** the column value into *ppVal. If *ppVal is initially NULL then a new
1822 ** sqlite3_value object is allocated.
1824 ** If *ppVal is initially NULL then the caller is responsible for
1825 ** ensuring that the value written into *ppVal is eventually freed.
1827 int sqlite3Stat4Column(
1828 sqlite3 *db, /* Database handle */
1829 const void *pRec, /* Pointer to buffer containing record */
1830 int nRec, /* Size of buffer pRec in bytes */
1831 int iCol, /* Column to extract */
1832 sqlite3_value **ppVal /* OUT: Extracted value */
1834 u32 t = 0; /* a column type code */
1835 int nHdr; /* Size of the header in the record */
1836 int iHdr; /* Next unread header byte */
1837 int iField; /* Next unread data byte */
1838 int szField = 0; /* Size of the current data field */
1839 int i; /* Column index */
1840 u8 *a = (u8*)pRec; /* Typecast byte array */
1841 Mem *pMem = *ppVal; /* Write result into this Mem object */
1843 assert( iCol>0 );
1844 iHdr = getVarint32(a, nHdr);
1845 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT;
1846 iField = nHdr;
1847 for(i=0; i<=iCol; i++){
1848 iHdr += getVarint32(&a[iHdr], t);
1849 testcase( iHdr==nHdr );
1850 testcase( iHdr==nHdr+1 );
1851 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT;
1852 szField = sqlite3VdbeSerialTypeLen(t);
1853 iField += szField;
1855 testcase( iField==nRec );
1856 testcase( iField==nRec+1 );
1857 if( iField>nRec ) return SQLITE_CORRUPT_BKPT;
1858 if( pMem==0 ){
1859 pMem = *ppVal = sqlite3ValueNew(db);
1860 if( pMem==0 ) return SQLITE_NOMEM_BKPT;
1862 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem);
1863 pMem->enc = ENC(db);
1864 return SQLITE_OK;
1868 ** Unless it is NULL, the argument must be an UnpackedRecord object returned
1869 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
1870 ** the object.
1872 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
1873 if( pRec ){
1874 int i;
1875 int nCol = pRec->pKeyInfo->nAllField;
1876 Mem *aMem = pRec->aMem;
1877 sqlite3 *db = aMem[0].db;
1878 for(i=0; i<nCol; i++){
1879 sqlite3VdbeMemRelease(&aMem[i]);
1881 sqlite3KeyInfoUnref(pRec->pKeyInfo);
1882 sqlite3DbFreeNN(db, pRec);
1885 #endif /* ifdef SQLITE_ENABLE_STAT4 */
1888 ** Change the string value of an sqlite3_value object
1890 void sqlite3ValueSetStr(
1891 sqlite3_value *v, /* Value to be set */
1892 int n, /* Length of string z */
1893 const void *z, /* Text of the new string */
1894 u8 enc, /* Encoding to use */
1895 void (*xDel)(void*) /* Destructor for the string */
1897 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
1901 ** Free an sqlite3_value object
1903 void sqlite3ValueFree(sqlite3_value *v){
1904 if( !v ) return;
1905 sqlite3VdbeMemRelease((Mem *)v);
1906 sqlite3DbFreeNN(((Mem*)v)->db, v);
1910 ** The sqlite3ValueBytes() routine returns the number of bytes in the
1911 ** sqlite3_value object assuming that it uses the encoding "enc".
1912 ** The valueBytes() routine is a helper function.
1914 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){
1915 return valueToText(pVal, enc)!=0 ? pVal->n : 0;
1917 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
1918 Mem *p = (Mem*)pVal;
1919 assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 );
1920 if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){
1921 return p->n;
1923 if( (p->flags & MEM_Blob)!=0 ){
1924 if( p->flags & MEM_Zero ){
1925 return p->n + p->u.nZero;
1926 }else{
1927 return p->n;
1930 if( p->flags & MEM_Null ) return 0;
1931 return valueBytes(pVal, enc);