Merge sqlite-release(3.33.0) into prerelease-integration
[sqlcipher.git] / src / whereexpr.c
blob3c91fc3539dd74d06daf28701d7479c590d03076
1 /*
2 ** 2015-06-08
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
15 ** This file was originally part of where.c but was split out to improve
16 ** readability and editabiliity. This file contains utility routines for
17 ** analyzing Expr objects in the WHERE clause.
19 #include "sqliteInt.h"
20 #include "whereInt.h"
22 /* Forward declarations */
23 static void exprAnalyze(SrcList*, WhereClause*, int);
26 ** Deallocate all memory associated with a WhereOrInfo object.
28 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){
29 sqlite3WhereClauseClear(&p->wc);
30 sqlite3DbFree(db, p);
34 ** Deallocate all memory associated with a WhereAndInfo object.
36 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){
37 sqlite3WhereClauseClear(&p->wc);
38 sqlite3DbFree(db, p);
42 ** Add a single new WhereTerm entry to the WhereClause object pWC.
43 ** The new WhereTerm object is constructed from Expr p and with wtFlags.
44 ** The index in pWC->a[] of the new WhereTerm is returned on success.
45 ** 0 is returned if the new WhereTerm could not be added due to a memory
46 ** allocation error. The memory allocation failure will be recorded in
47 ** the db->mallocFailed flag so that higher-level functions can detect it.
49 ** This routine will increase the size of the pWC->a[] array as necessary.
51 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility
52 ** for freeing the expression p is assumed by the WhereClause object pWC.
53 ** This is true even if this routine fails to allocate a new WhereTerm.
55 ** WARNING: This routine might reallocate the space used to store
56 ** WhereTerms. All pointers to WhereTerms should be invalidated after
57 ** calling this routine. Such pointers may be reinitialized by referencing
58 ** the pWC->a[] array.
60 static int whereClauseInsert(WhereClause *pWC, Expr *p, u16 wtFlags){
61 WhereTerm *pTerm;
62 int idx;
63 testcase( wtFlags & TERM_VIRTUAL );
64 if( pWC->nTerm>=pWC->nSlot ){
65 WhereTerm *pOld = pWC->a;
66 sqlite3 *db = pWC->pWInfo->pParse->db;
67 pWC->a = sqlite3DbMallocRawNN(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
68 if( pWC->a==0 ){
69 if( wtFlags & TERM_DYNAMIC ){
70 sqlite3ExprDelete(db, p);
72 pWC->a = pOld;
73 return 0;
75 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
76 if( pOld!=pWC->aStatic ){
77 sqlite3DbFree(db, pOld);
79 pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]);
81 pTerm = &pWC->a[idx = pWC->nTerm++];
82 if( p && ExprHasProperty(p, EP_Unlikely) ){
83 pTerm->truthProb = sqlite3LogEst(p->iTable) - 270;
84 }else{
85 pTerm->truthProb = 1;
87 pTerm->pExpr = sqlite3ExprSkipCollateAndLikely(p);
88 pTerm->wtFlags = wtFlags;
89 pTerm->pWC = pWC;
90 pTerm->iParent = -1;
91 memset(&pTerm->eOperator, 0,
92 sizeof(WhereTerm) - offsetof(WhereTerm,eOperator));
93 return idx;
97 ** Return TRUE if the given operator is one of the operators that is
98 ** allowed for an indexable WHERE clause term. The allowed operators are
99 ** "=", "<", ">", "<=", ">=", "IN", "IS", and "IS NULL"
101 static int allowedOp(int op){
102 assert( TK_GT>TK_EQ && TK_GT<TK_GE );
103 assert( TK_LT>TK_EQ && TK_LT<TK_GE );
104 assert( TK_LE>TK_EQ && TK_LE<TK_GE );
105 assert( TK_GE==TK_EQ+4 );
106 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL || op==TK_IS;
110 ** Commute a comparison operator. Expressions of the form "X op Y"
111 ** are converted into "Y op X".
113 static u16 exprCommute(Parse *pParse, Expr *pExpr){
114 if( pExpr->pLeft->op==TK_VECTOR
115 || pExpr->pRight->op==TK_VECTOR
116 || sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pRight) !=
117 sqlite3BinaryCompareCollSeq(pParse, pExpr->pRight, pExpr->pLeft)
119 pExpr->flags ^= EP_Commuted;
121 SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
122 if( pExpr->op>=TK_GT ){
123 assert( TK_LT==TK_GT+2 );
124 assert( TK_GE==TK_LE+2 );
125 assert( TK_GT>TK_EQ );
126 assert( TK_GT<TK_LE );
127 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
128 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
130 return 0;
134 ** Translate from TK_xx operator to WO_xx bitmask.
136 static u16 operatorMask(int op){
137 u16 c;
138 assert( allowedOp(op) );
139 if( op==TK_IN ){
140 c = WO_IN;
141 }else if( op==TK_ISNULL ){
142 c = WO_ISNULL;
143 }else if( op==TK_IS ){
144 c = WO_IS;
145 }else{
146 assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff );
147 c = (u16)(WO_EQ<<(op-TK_EQ));
149 assert( op!=TK_ISNULL || c==WO_ISNULL );
150 assert( op!=TK_IN || c==WO_IN );
151 assert( op!=TK_EQ || c==WO_EQ );
152 assert( op!=TK_LT || c==WO_LT );
153 assert( op!=TK_LE || c==WO_LE );
154 assert( op!=TK_GT || c==WO_GT );
155 assert( op!=TK_GE || c==WO_GE );
156 assert( op!=TK_IS || c==WO_IS );
157 return c;
161 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
163 ** Check to see if the given expression is a LIKE or GLOB operator that
164 ** can be optimized using inequality constraints. Return TRUE if it is
165 ** so and false if not.
167 ** In order for the operator to be optimizible, the RHS must be a string
168 ** literal that does not begin with a wildcard. The LHS must be a column
169 ** that may only be NULL, a string, or a BLOB, never a number. (This means
170 ** that virtual tables cannot participate in the LIKE optimization.) The
171 ** collating sequence for the column on the LHS must be appropriate for
172 ** the operator.
174 static int isLikeOrGlob(
175 Parse *pParse, /* Parsing and code generating context */
176 Expr *pExpr, /* Test this expression */
177 Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */
178 int *pisComplete, /* True if the only wildcard is % in the last character */
179 int *pnoCase /* True if uppercase is equivalent to lowercase */
181 const u8 *z = 0; /* String on RHS of LIKE operator */
182 Expr *pRight, *pLeft; /* Right and left size of LIKE operator */
183 ExprList *pList; /* List of operands to the LIKE operator */
184 u8 c; /* One character in z[] */
185 int cnt; /* Number of non-wildcard prefix characters */
186 u8 wc[4]; /* Wildcard characters */
187 sqlite3 *db = pParse->db; /* Database connection */
188 sqlite3_value *pVal = 0;
189 int op; /* Opcode of pRight */
190 int rc; /* Result code to return */
192 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, (char*)wc) ){
193 return 0;
195 #ifdef SQLITE_EBCDIC
196 if( *pnoCase ) return 0;
197 #endif
198 pList = pExpr->x.pList;
199 pLeft = pList->a[1].pExpr;
201 pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr);
202 op = pRight->op;
203 if( op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){
204 Vdbe *pReprepare = pParse->pReprepare;
205 int iCol = pRight->iColumn;
206 pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_BLOB);
207 if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){
208 z = sqlite3_value_text(pVal);
210 sqlite3VdbeSetVarmask(pParse->pVdbe, iCol);
211 assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER );
212 }else if( op==TK_STRING ){
213 z = (u8*)pRight->u.zToken;
215 if( z ){
217 /* Count the number of prefix characters prior to the first wildcard */
218 cnt = 0;
219 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){
220 cnt++;
221 if( c==wc[3] && z[cnt]!=0 ) cnt++;
224 /* The optimization is possible only if (1) the pattern does not begin
225 ** with a wildcard and if (2) the non-wildcard prefix does not end with
226 ** an (illegal 0xff) character, or (3) the pattern does not consist of
227 ** a single escape character. The second condition is necessary so
228 ** that we can increment the prefix key to find an upper bound for the
229 ** range search. The third is because the caller assumes that the pattern
230 ** consists of at least one character after all escapes have been
231 ** removed. */
232 if( cnt!=0 && 255!=(u8)z[cnt-1] && (cnt>1 || z[0]!=wc[3]) ){
233 Expr *pPrefix;
235 /* A "complete" match if the pattern ends with "*" or "%" */
236 *pisComplete = c==wc[0] && z[cnt+1]==0;
238 /* Get the pattern prefix. Remove all escapes from the prefix. */
239 pPrefix = sqlite3Expr(db, TK_STRING, (char*)z);
240 if( pPrefix ){
241 int iFrom, iTo;
242 char *zNew = pPrefix->u.zToken;
243 zNew[cnt] = 0;
244 for(iFrom=iTo=0; iFrom<cnt; iFrom++){
245 if( zNew[iFrom]==wc[3] ) iFrom++;
246 zNew[iTo++] = zNew[iFrom];
248 zNew[iTo] = 0;
249 assert( iTo>0 );
251 /* If the LHS is not an ordinary column with TEXT affinity, then the
252 ** pattern prefix boundaries (both the start and end boundaries) must
253 ** not look like a number. Otherwise the pattern might be treated as
254 ** a number, which will invalidate the LIKE optimization.
256 ** Getting this right has been a persistent source of bugs in the
257 ** LIKE optimization. See, for example:
258 ** 2018-09-10 https://sqlite.org/src/info/c94369cae9b561b1
259 ** 2019-05-02 https://sqlite.org/src/info/b043a54c3de54b28
260 ** 2019-06-10 https://sqlite.org/src/info/fd76310a5e843e07
261 ** 2019-06-14 https://sqlite.org/src/info/ce8717f0885af975
262 ** 2019-09-03 https://sqlite.org/src/info/0f0428096f17252a
264 if( pLeft->op!=TK_COLUMN
265 || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT
266 || IsVirtual(pLeft->y.pTab) /* Value might be numeric */
268 int isNum;
269 double rDummy;
270 isNum = sqlite3AtoF(zNew, &rDummy, iTo, SQLITE_UTF8);
271 if( isNum<=0 ){
272 if( iTo==1 && zNew[0]=='-' ){
273 isNum = +1;
274 }else{
275 zNew[iTo-1]++;
276 isNum = sqlite3AtoF(zNew, &rDummy, iTo, SQLITE_UTF8);
277 zNew[iTo-1]--;
280 if( isNum>0 ){
281 sqlite3ExprDelete(db, pPrefix);
282 sqlite3ValueFree(pVal);
283 return 0;
287 *ppPrefix = pPrefix;
289 /* If the RHS pattern is a bound parameter, make arrangements to
290 ** reprepare the statement when that parameter is rebound */
291 if( op==TK_VARIABLE ){
292 Vdbe *v = pParse->pVdbe;
293 sqlite3VdbeSetVarmask(v, pRight->iColumn);
294 if( *pisComplete && pRight->u.zToken[1] ){
295 /* If the rhs of the LIKE expression is a variable, and the current
296 ** value of the variable means there is no need to invoke the LIKE
297 ** function, then no OP_Variable will be added to the program.
298 ** This causes problems for the sqlite3_bind_parameter_name()
299 ** API. To work around them, add a dummy OP_Variable here.
301 int r1 = sqlite3GetTempReg(pParse);
302 sqlite3ExprCodeTarget(pParse, pRight, r1);
303 sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0);
304 sqlite3ReleaseTempReg(pParse, r1);
307 }else{
308 z = 0;
312 rc = (z!=0);
313 sqlite3ValueFree(pVal);
314 return rc;
316 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
319 #ifndef SQLITE_OMIT_VIRTUALTABLE
321 ** Check to see if the pExpr expression is a form that needs to be passed
322 ** to the xBestIndex method of virtual tables. Forms of interest include:
324 ** Expression Virtual Table Operator
325 ** ----------------------- ---------------------------------
326 ** 1. column MATCH expr SQLITE_INDEX_CONSTRAINT_MATCH
327 ** 2. column GLOB expr SQLITE_INDEX_CONSTRAINT_GLOB
328 ** 3. column LIKE expr SQLITE_INDEX_CONSTRAINT_LIKE
329 ** 4. column REGEXP expr SQLITE_INDEX_CONSTRAINT_REGEXP
330 ** 5. column != expr SQLITE_INDEX_CONSTRAINT_NE
331 ** 6. expr != column SQLITE_INDEX_CONSTRAINT_NE
332 ** 7. column IS NOT expr SQLITE_INDEX_CONSTRAINT_ISNOT
333 ** 8. expr IS NOT column SQLITE_INDEX_CONSTRAINT_ISNOT
334 ** 9. column IS NOT NULL SQLITE_INDEX_CONSTRAINT_ISNOTNULL
336 ** In every case, "column" must be a column of a virtual table. If there
337 ** is a match, set *ppLeft to the "column" expression, set *ppRight to the
338 ** "expr" expression (even though in forms (6) and (8) the column is on the
339 ** right and the expression is on the left). Also set *peOp2 to the
340 ** appropriate virtual table operator. The return value is 1 or 2 if there
341 ** is a match. The usual return is 1, but if the RHS is also a column
342 ** of virtual table in forms (5) or (7) then return 2.
344 ** If the expression matches none of the patterns above, return 0.
346 static int isAuxiliaryVtabOperator(
347 sqlite3 *db, /* Parsing context */
348 Expr *pExpr, /* Test this expression */
349 unsigned char *peOp2, /* OUT: 0 for MATCH, or else an op2 value */
350 Expr **ppLeft, /* Column expression to left of MATCH/op2 */
351 Expr **ppRight /* Expression to left of MATCH/op2 */
353 if( pExpr->op==TK_FUNCTION ){
354 static const struct Op2 {
355 const char *zOp;
356 unsigned char eOp2;
357 } aOp[] = {
358 { "match", SQLITE_INDEX_CONSTRAINT_MATCH },
359 { "glob", SQLITE_INDEX_CONSTRAINT_GLOB },
360 { "like", SQLITE_INDEX_CONSTRAINT_LIKE },
361 { "regexp", SQLITE_INDEX_CONSTRAINT_REGEXP }
363 ExprList *pList;
364 Expr *pCol; /* Column reference */
365 int i;
367 pList = pExpr->x.pList;
368 if( pList==0 || pList->nExpr!=2 ){
369 return 0;
372 /* Built-in operators MATCH, GLOB, LIKE, and REGEXP attach to a
373 ** virtual table on their second argument, which is the same as
374 ** the left-hand side operand in their in-fix form.
376 ** vtab_column MATCH expression
377 ** MATCH(expression,vtab_column)
379 pCol = pList->a[1].pExpr;
380 testcase( pCol->op==TK_COLUMN && pCol->y.pTab==0 );
381 if( ExprIsVtab(pCol) ){
382 for(i=0; i<ArraySize(aOp); i++){
383 if( sqlite3StrICmp(pExpr->u.zToken, aOp[i].zOp)==0 ){
384 *peOp2 = aOp[i].eOp2;
385 *ppRight = pList->a[0].pExpr;
386 *ppLeft = pCol;
387 return 1;
392 /* We can also match against the first column of overloaded
393 ** functions where xFindFunction returns a value of at least
394 ** SQLITE_INDEX_CONSTRAINT_FUNCTION.
396 ** OVERLOADED(vtab_column,expression)
398 ** Historically, xFindFunction expected to see lower-case function
399 ** names. But for this use case, xFindFunction is expected to deal
400 ** with function names in an arbitrary case.
402 pCol = pList->a[0].pExpr;
403 testcase( pCol->op==TK_COLUMN && pCol->y.pTab==0 );
404 if( ExprIsVtab(pCol) ){
405 sqlite3_vtab *pVtab;
406 sqlite3_module *pMod;
407 void (*xNotUsed)(sqlite3_context*,int,sqlite3_value**);
408 void *pNotUsed;
409 pVtab = sqlite3GetVTable(db, pCol->y.pTab)->pVtab;
410 assert( pVtab!=0 );
411 assert( pVtab->pModule!=0 );
412 pMod = (sqlite3_module *)pVtab->pModule;
413 if( pMod->xFindFunction!=0 ){
414 i = pMod->xFindFunction(pVtab,2, pExpr->u.zToken, &xNotUsed, &pNotUsed);
415 if( i>=SQLITE_INDEX_CONSTRAINT_FUNCTION ){
416 *peOp2 = i;
417 *ppRight = pList->a[1].pExpr;
418 *ppLeft = pCol;
419 return 1;
423 }else if( pExpr->op==TK_NE || pExpr->op==TK_ISNOT || pExpr->op==TK_NOTNULL ){
424 int res = 0;
425 Expr *pLeft = pExpr->pLeft;
426 Expr *pRight = pExpr->pRight;
427 testcase( pLeft->op==TK_COLUMN && pLeft->y.pTab==0 );
428 if( ExprIsVtab(pLeft) ){
429 res++;
431 testcase( pRight && pRight->op==TK_COLUMN && pRight->y.pTab==0 );
432 if( pRight && ExprIsVtab(pRight) ){
433 res++;
434 SWAP(Expr*, pLeft, pRight);
436 *ppLeft = pLeft;
437 *ppRight = pRight;
438 if( pExpr->op==TK_NE ) *peOp2 = SQLITE_INDEX_CONSTRAINT_NE;
439 if( pExpr->op==TK_ISNOT ) *peOp2 = SQLITE_INDEX_CONSTRAINT_ISNOT;
440 if( pExpr->op==TK_NOTNULL ) *peOp2 = SQLITE_INDEX_CONSTRAINT_ISNOTNULL;
441 return res;
443 return 0;
445 #endif /* SQLITE_OMIT_VIRTUALTABLE */
448 ** If the pBase expression originated in the ON or USING clause of
449 ** a join, then transfer the appropriate markings over to derived.
451 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
452 if( pDerived ){
453 pDerived->flags |= pBase->flags & EP_FromJoin;
454 pDerived->iRightJoinTable = pBase->iRightJoinTable;
459 ** Mark term iChild as being a child of term iParent
461 static void markTermAsChild(WhereClause *pWC, int iChild, int iParent){
462 pWC->a[iChild].iParent = iParent;
463 pWC->a[iChild].truthProb = pWC->a[iParent].truthProb;
464 pWC->a[iParent].nChild++;
468 ** Return the N-th AND-connected subterm of pTerm. Or if pTerm is not
469 ** a conjunction, then return just pTerm when N==0. If N is exceeds
470 ** the number of available subterms, return NULL.
472 static WhereTerm *whereNthSubterm(WhereTerm *pTerm, int N){
473 if( pTerm->eOperator!=WO_AND ){
474 return N==0 ? pTerm : 0;
476 if( N<pTerm->u.pAndInfo->wc.nTerm ){
477 return &pTerm->u.pAndInfo->wc.a[N];
479 return 0;
483 ** Subterms pOne and pTwo are contained within WHERE clause pWC. The
484 ** two subterms are in disjunction - they are OR-ed together.
486 ** If these two terms are both of the form: "A op B" with the same
487 ** A and B values but different operators and if the operators are
488 ** compatible (if one is = and the other is <, for example) then
489 ** add a new virtual AND term to pWC that is the combination of the
490 ** two.
492 ** Some examples:
494 ** x<y OR x=y --> x<=y
495 ** x=y OR x=y --> x=y
496 ** x<=y OR x<y --> x<=y
498 ** The following is NOT generated:
500 ** x<y OR x>y --> x!=y
502 static void whereCombineDisjuncts(
503 SrcList *pSrc, /* the FROM clause */
504 WhereClause *pWC, /* The complete WHERE clause */
505 WhereTerm *pOne, /* First disjunct */
506 WhereTerm *pTwo /* Second disjunct */
508 u16 eOp = pOne->eOperator | pTwo->eOperator;
509 sqlite3 *db; /* Database connection (for malloc) */
510 Expr *pNew; /* New virtual expression */
511 int op; /* Operator for the combined expression */
512 int idxNew; /* Index in pWC of the next virtual term */
514 if( (pOne->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return;
515 if( (pTwo->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return;
516 if( (eOp & (WO_EQ|WO_LT|WO_LE))!=eOp
517 && (eOp & (WO_EQ|WO_GT|WO_GE))!=eOp ) return;
518 assert( pOne->pExpr->pLeft!=0 && pOne->pExpr->pRight!=0 );
519 assert( pTwo->pExpr->pLeft!=0 && pTwo->pExpr->pRight!=0 );
520 if( sqlite3ExprCompare(0,pOne->pExpr->pLeft, pTwo->pExpr->pLeft, -1) ) return;
521 if( sqlite3ExprCompare(0,pOne->pExpr->pRight, pTwo->pExpr->pRight,-1) )return;
522 /* If we reach this point, it means the two subterms can be combined */
523 if( (eOp & (eOp-1))!=0 ){
524 if( eOp & (WO_LT|WO_LE) ){
525 eOp = WO_LE;
526 }else{
527 assert( eOp & (WO_GT|WO_GE) );
528 eOp = WO_GE;
531 db = pWC->pWInfo->pParse->db;
532 pNew = sqlite3ExprDup(db, pOne->pExpr, 0);
533 if( pNew==0 ) return;
534 for(op=TK_EQ; eOp!=(WO_EQ<<(op-TK_EQ)); op++){ assert( op<TK_GE ); }
535 pNew->op = op;
536 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
537 exprAnalyze(pSrc, pWC, idxNew);
540 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
542 ** Analyze a term that consists of two or more OR-connected
543 ** subterms. So in:
545 ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
546 ** ^^^^^^^^^^^^^^^^^^^^
548 ** This routine analyzes terms such as the middle term in the above example.
549 ** A WhereOrTerm object is computed and attached to the term under
550 ** analysis, regardless of the outcome of the analysis. Hence:
552 ** WhereTerm.wtFlags |= TERM_ORINFO
553 ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object
555 ** The term being analyzed must have two or more of OR-connected subterms.
556 ** A single subterm might be a set of AND-connected sub-subterms.
557 ** Examples of terms under analysis:
559 ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
560 ** (B) x=expr1 OR expr2=x OR x=expr3
561 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
562 ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
563 ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
564 ** (F) x>A OR (x=A AND y>=B)
566 ** CASE 1:
568 ** If all subterms are of the form T.C=expr for some single column of C and
569 ** a single table T (as shown in example B above) then create a new virtual
570 ** term that is an equivalent IN expression. In other words, if the term
571 ** being analyzed is:
573 ** x = expr1 OR expr2 = x OR x = expr3
575 ** then create a new virtual term like this:
577 ** x IN (expr1,expr2,expr3)
579 ** CASE 2:
581 ** If there are exactly two disjuncts and one side has x>A and the other side
582 ** has x=A (for the same x and A) then add a new virtual conjunct term to the
583 ** WHERE clause of the form "x>=A". Example:
585 ** x>A OR (x=A AND y>B) adds: x>=A
587 ** The added conjunct can sometimes be helpful in query planning.
589 ** CASE 3:
591 ** If all subterms are indexable by a single table T, then set
593 ** WhereTerm.eOperator = WO_OR
594 ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T
596 ** A subterm is "indexable" if it is of the form
597 ** "T.C <op> <expr>" where C is any column of table T and
598 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN".
599 ** A subterm is also indexable if it is an AND of two or more
600 ** subsubterms at least one of which is indexable. Indexable AND
601 ** subterms have their eOperator set to WO_AND and they have
602 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
604 ** From another point of view, "indexable" means that the subterm could
605 ** potentially be used with an index if an appropriate index exists.
606 ** This analysis does not consider whether or not the index exists; that
607 ** is decided elsewhere. This analysis only looks at whether subterms
608 ** appropriate for indexing exist.
610 ** All examples A through E above satisfy case 3. But if a term
611 ** also satisfies case 1 (such as B) we know that the optimizer will
612 ** always prefer case 1, so in that case we pretend that case 3 is not
613 ** satisfied.
615 ** It might be the case that multiple tables are indexable. For example,
616 ** (E) above is indexable on tables P, Q, and R.
618 ** Terms that satisfy case 3 are candidates for lookup by using
619 ** separate indices to find rowids for each subterm and composing
620 ** the union of all rowids using a RowSet object. This is similar
621 ** to "bitmap indices" in other database engines.
623 ** OTHERWISE:
625 ** If none of cases 1, 2, or 3 apply, then leave the eOperator set to
626 ** zero. This term is not useful for search.
628 static void exprAnalyzeOrTerm(
629 SrcList *pSrc, /* the FROM clause */
630 WhereClause *pWC, /* the complete WHERE clause */
631 int idxTerm /* Index of the OR-term to be analyzed */
633 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */
634 Parse *pParse = pWInfo->pParse; /* Parser context */
635 sqlite3 *db = pParse->db; /* Database connection */
636 WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */
637 Expr *pExpr = pTerm->pExpr; /* The expression of the term */
638 int i; /* Loop counters */
639 WhereClause *pOrWc; /* Breakup of pTerm into subterms */
640 WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */
641 WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */
642 Bitmask chngToIN; /* Tables that might satisfy case 1 */
643 Bitmask indexable; /* Tables that are indexable, satisfying case 2 */
646 ** Break the OR clause into its separate subterms. The subterms are
647 ** stored in a WhereClause structure containing within the WhereOrInfo
648 ** object that is attached to the original OR clause term.
650 assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 );
651 assert( pExpr->op==TK_OR );
652 pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo));
653 if( pOrInfo==0 ) return;
654 pTerm->wtFlags |= TERM_ORINFO;
655 pOrWc = &pOrInfo->wc;
656 memset(pOrWc->aStatic, 0, sizeof(pOrWc->aStatic));
657 sqlite3WhereClauseInit(pOrWc, pWInfo);
658 sqlite3WhereSplit(pOrWc, pExpr, TK_OR);
659 sqlite3WhereExprAnalyze(pSrc, pOrWc);
660 if( db->mallocFailed ) return;
661 assert( pOrWc->nTerm>=2 );
664 ** Compute the set of tables that might satisfy cases 1 or 3.
666 indexable = ~(Bitmask)0;
667 chngToIN = ~(Bitmask)0;
668 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
669 if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
670 WhereAndInfo *pAndInfo;
671 assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
672 chngToIN = 0;
673 pAndInfo = sqlite3DbMallocRawNN(db, sizeof(*pAndInfo));
674 if( pAndInfo ){
675 WhereClause *pAndWC;
676 WhereTerm *pAndTerm;
677 int j;
678 Bitmask b = 0;
679 pOrTerm->u.pAndInfo = pAndInfo;
680 pOrTerm->wtFlags |= TERM_ANDINFO;
681 pOrTerm->eOperator = WO_AND;
682 pAndWC = &pAndInfo->wc;
683 memset(pAndWC->aStatic, 0, sizeof(pAndWC->aStatic));
684 sqlite3WhereClauseInit(pAndWC, pWC->pWInfo);
685 sqlite3WhereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
686 sqlite3WhereExprAnalyze(pSrc, pAndWC);
687 pAndWC->pOuter = pWC;
688 if( !db->mallocFailed ){
689 for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
690 assert( pAndTerm->pExpr );
691 if( allowedOp(pAndTerm->pExpr->op)
692 || pAndTerm->eOperator==WO_AUX
694 b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pAndTerm->leftCursor);
698 indexable &= b;
700 }else if( pOrTerm->wtFlags & TERM_COPIED ){
701 /* Skip this term for now. We revisit it when we process the
702 ** corresponding TERM_VIRTUAL term */
703 }else{
704 Bitmask b;
705 b = sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor);
706 if( pOrTerm->wtFlags & TERM_VIRTUAL ){
707 WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
708 b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pOther->leftCursor);
710 indexable &= b;
711 if( (pOrTerm->eOperator & WO_EQ)==0 ){
712 chngToIN = 0;
713 }else{
714 chngToIN &= b;
720 ** Record the set of tables that satisfy case 3. The set might be
721 ** empty.
723 pOrInfo->indexable = indexable;
724 if( indexable ){
725 pTerm->eOperator = WO_OR;
726 pWC->hasOr = 1;
727 }else{
728 pTerm->eOperator = WO_OR;
731 /* For a two-way OR, attempt to implementation case 2.
733 if( indexable && pOrWc->nTerm==2 ){
734 int iOne = 0;
735 WhereTerm *pOne;
736 while( (pOne = whereNthSubterm(&pOrWc->a[0],iOne++))!=0 ){
737 int iTwo = 0;
738 WhereTerm *pTwo;
739 while( (pTwo = whereNthSubterm(&pOrWc->a[1],iTwo++))!=0 ){
740 whereCombineDisjuncts(pSrc, pWC, pOne, pTwo);
746 ** chngToIN holds a set of tables that *might* satisfy case 1. But
747 ** we have to do some additional checking to see if case 1 really
748 ** is satisfied.
750 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means
751 ** that there is no possibility of transforming the OR clause into an
752 ** IN operator because one or more terms in the OR clause contain
753 ** something other than == on a column in the single table. The 1-bit
754 ** case means that every term of the OR clause is of the form
755 ** "table.column=expr" for some single table. The one bit that is set
756 ** will correspond to the common table. We still need to check to make
757 ** sure the same column is used on all terms. The 2-bit case is when
758 ** the all terms are of the form "table1.column=table2.column". It
759 ** might be possible to form an IN operator with either table1.column
760 ** or table2.column as the LHS if either is common to every term of
761 ** the OR clause.
763 ** Note that terms of the form "table.column1=table.column2" (the
764 ** same table on both sizes of the ==) cannot be optimized.
766 if( chngToIN ){
767 int okToChngToIN = 0; /* True if the conversion to IN is valid */
768 int iColumn = -1; /* Column index on lhs of IN operator */
769 int iCursor = -1; /* Table cursor common to all terms */
770 int j = 0; /* Loop counter */
772 /* Search for a table and column that appears on one side or the
773 ** other of the == operator in every subterm. That table and column
774 ** will be recorded in iCursor and iColumn. There might not be any
775 ** such table and column. Set okToChngToIN if an appropriate table
776 ** and column is found but leave okToChngToIN false if not found.
778 for(j=0; j<2 && !okToChngToIN; j++){
779 Expr *pLeft = 0;
780 pOrTerm = pOrWc->a;
781 for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){
782 assert( pOrTerm->eOperator & WO_EQ );
783 pOrTerm->wtFlags &= ~TERM_OR_OK;
784 if( pOrTerm->leftCursor==iCursor ){
785 /* This is the 2-bit case and we are on the second iteration and
786 ** current term is from the first iteration. So skip this term. */
787 assert( j==1 );
788 continue;
790 if( (chngToIN & sqlite3WhereGetMask(&pWInfo->sMaskSet,
791 pOrTerm->leftCursor))==0 ){
792 /* This term must be of the form t1.a==t2.b where t2 is in the
793 ** chngToIN set but t1 is not. This term will be either preceded
794 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term
795 ** and use its inversion. */
796 testcase( pOrTerm->wtFlags & TERM_COPIED );
797 testcase( pOrTerm->wtFlags & TERM_VIRTUAL );
798 assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) );
799 continue;
801 iColumn = pOrTerm->u.leftColumn;
802 iCursor = pOrTerm->leftCursor;
803 pLeft = pOrTerm->pExpr->pLeft;
804 break;
806 if( i<0 ){
807 /* No candidate table+column was found. This can only occur
808 ** on the second iteration */
809 assert( j==1 );
810 assert( IsPowerOfTwo(chngToIN) );
811 assert( chngToIN==sqlite3WhereGetMask(&pWInfo->sMaskSet, iCursor) );
812 break;
814 testcase( j==1 );
816 /* We have found a candidate table and column. Check to see if that
817 ** table and column is common to every term in the OR clause */
818 okToChngToIN = 1;
819 for(; i>=0 && okToChngToIN; i--, pOrTerm++){
820 assert( pOrTerm->eOperator & WO_EQ );
821 if( pOrTerm->leftCursor!=iCursor ){
822 pOrTerm->wtFlags &= ~TERM_OR_OK;
823 }else if( pOrTerm->u.leftColumn!=iColumn || (iColumn==XN_EXPR
824 && sqlite3ExprCompare(pParse, pOrTerm->pExpr->pLeft, pLeft, -1)
826 okToChngToIN = 0;
827 }else{
828 int affLeft, affRight;
829 /* If the right-hand side is also a column, then the affinities
830 ** of both right and left sides must be such that no type
831 ** conversions are required on the right. (Ticket #2249)
833 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
834 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
835 if( affRight!=0 && affRight!=affLeft ){
836 okToChngToIN = 0;
837 }else{
838 pOrTerm->wtFlags |= TERM_OR_OK;
844 /* At this point, okToChngToIN is true if original pTerm satisfies
845 ** case 1. In that case, construct a new virtual term that is
846 ** pTerm converted into an IN operator.
848 if( okToChngToIN ){
849 Expr *pDup; /* A transient duplicate expression */
850 ExprList *pList = 0; /* The RHS of the IN operator */
851 Expr *pLeft = 0; /* The LHS of the IN operator */
852 Expr *pNew; /* The complete IN operator */
854 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
855 if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue;
856 assert( pOrTerm->eOperator & WO_EQ );
857 assert( pOrTerm->leftCursor==iCursor );
858 assert( pOrTerm->u.leftColumn==iColumn );
859 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
860 pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup);
861 pLeft = pOrTerm->pExpr->pLeft;
863 assert( pLeft!=0 );
864 pDup = sqlite3ExprDup(db, pLeft, 0);
865 pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0);
866 if( pNew ){
867 int idxNew;
868 transferJoinMarkings(pNew, pExpr);
869 assert( !ExprHasProperty(pNew, EP_xIsSelect) );
870 pNew->x.pList = pList;
871 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
872 testcase( idxNew==0 );
873 exprAnalyze(pSrc, pWC, idxNew);
874 /* pTerm = &pWC->a[idxTerm]; // would be needed if pTerm where used again */
875 markTermAsChild(pWC, idxNew, idxTerm);
876 }else{
877 sqlite3ExprListDelete(db, pList);
882 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
885 ** We already know that pExpr is a binary operator where both operands are
886 ** column references. This routine checks to see if pExpr is an equivalence
887 ** relation:
888 ** 1. The SQLITE_Transitive optimization must be enabled
889 ** 2. Must be either an == or an IS operator
890 ** 3. Not originating in the ON clause of an OUTER JOIN
891 ** 4. The affinities of A and B must be compatible
892 ** 5a. Both operands use the same collating sequence OR
893 ** 5b. The overall collating sequence is BINARY
894 ** If this routine returns TRUE, that means that the RHS can be substituted
895 ** for the LHS anyplace else in the WHERE clause where the LHS column occurs.
896 ** This is an optimization. No harm comes from returning 0. But if 1 is
897 ** returned when it should not be, then incorrect answers might result.
899 static int termIsEquivalence(Parse *pParse, Expr *pExpr){
900 char aff1, aff2;
901 CollSeq *pColl;
902 if( !OptimizationEnabled(pParse->db, SQLITE_Transitive) ) return 0;
903 if( pExpr->op!=TK_EQ && pExpr->op!=TK_IS ) return 0;
904 if( ExprHasProperty(pExpr, EP_FromJoin) ) return 0;
905 aff1 = sqlite3ExprAffinity(pExpr->pLeft);
906 aff2 = sqlite3ExprAffinity(pExpr->pRight);
907 if( aff1!=aff2
908 && (!sqlite3IsNumericAffinity(aff1) || !sqlite3IsNumericAffinity(aff2))
910 return 0;
912 pColl = sqlite3ExprCompareCollSeq(pParse, pExpr);
913 if( sqlite3IsBinary(pColl) ) return 1;
914 return sqlite3ExprCollSeqMatch(pParse, pExpr->pLeft, pExpr->pRight);
918 ** Recursively walk the expressions of a SELECT statement and generate
919 ** a bitmask indicating which tables are used in that expression
920 ** tree.
922 static Bitmask exprSelectUsage(WhereMaskSet *pMaskSet, Select *pS){
923 Bitmask mask = 0;
924 while( pS ){
925 SrcList *pSrc = pS->pSrc;
926 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pEList);
927 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pGroupBy);
928 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pOrderBy);
929 mask |= sqlite3WhereExprUsage(pMaskSet, pS->pWhere);
930 mask |= sqlite3WhereExprUsage(pMaskSet, pS->pHaving);
931 if( ALWAYS(pSrc!=0) ){
932 int i;
933 for(i=0; i<pSrc->nSrc; i++){
934 mask |= exprSelectUsage(pMaskSet, pSrc->a[i].pSelect);
935 mask |= sqlite3WhereExprUsage(pMaskSet, pSrc->a[i].pOn);
936 if( pSrc->a[i].fg.isTabFunc ){
937 mask |= sqlite3WhereExprListUsage(pMaskSet, pSrc->a[i].u1.pFuncArg);
941 pS = pS->pPrior;
943 return mask;
947 ** Expression pExpr is one operand of a comparison operator that might
948 ** be useful for indexing. This routine checks to see if pExpr appears
949 ** in any index. Return TRUE (1) if pExpr is an indexed term and return
950 ** FALSE (0) if not. If TRUE is returned, also set aiCurCol[0] to the cursor
951 ** number of the table that is indexed and aiCurCol[1] to the column number
952 ** of the column that is indexed, or XN_EXPR (-2) if an expression is being
953 ** indexed.
955 ** If pExpr is a TK_COLUMN column reference, then this routine always returns
956 ** true even if that particular column is not indexed, because the column
957 ** might be added to an automatic index later.
959 static SQLITE_NOINLINE int exprMightBeIndexed2(
960 SrcList *pFrom, /* The FROM clause */
961 Bitmask mPrereq, /* Bitmask of FROM clause terms referenced by pExpr */
962 int *aiCurCol, /* Write the referenced table cursor and column here */
963 Expr *pExpr /* An operand of a comparison operator */
965 Index *pIdx;
966 int i;
967 int iCur;
968 for(i=0; mPrereq>1; i++, mPrereq>>=1){}
969 iCur = pFrom->a[i].iCursor;
970 for(pIdx=pFrom->a[i].pTab->pIndex; pIdx; pIdx=pIdx->pNext){
971 if( pIdx->aColExpr==0 ) continue;
972 for(i=0; i<pIdx->nKeyCol; i++){
973 if( pIdx->aiColumn[i]!=XN_EXPR ) continue;
974 if( sqlite3ExprCompareSkip(pExpr, pIdx->aColExpr->a[i].pExpr, iCur)==0 ){
975 aiCurCol[0] = iCur;
976 aiCurCol[1] = XN_EXPR;
977 return 1;
981 return 0;
983 static int exprMightBeIndexed(
984 SrcList *pFrom, /* The FROM clause */
985 Bitmask mPrereq, /* Bitmask of FROM clause terms referenced by pExpr */
986 int *aiCurCol, /* Write the referenced table cursor & column here */
987 Expr *pExpr, /* An operand of a comparison operator */
988 int op /* The specific comparison operator */
990 /* If this expression is a vector to the left or right of a
991 ** inequality constraint (>, <, >= or <=), perform the processing
992 ** on the first element of the vector. */
993 assert( TK_GT+1==TK_LE && TK_GT+2==TK_LT && TK_GT+3==TK_GE );
994 assert( TK_IS<TK_GE && TK_ISNULL<TK_GE && TK_IN<TK_GE );
995 assert( op<=TK_GE );
996 if( pExpr->op==TK_VECTOR && (op>=TK_GT && ALWAYS(op<=TK_GE)) ){
997 pExpr = pExpr->x.pList->a[0].pExpr;
1000 if( pExpr->op==TK_COLUMN ){
1001 aiCurCol[0] = pExpr->iTable;
1002 aiCurCol[1] = pExpr->iColumn;
1003 return 1;
1005 if( mPrereq==0 ) return 0; /* No table references */
1006 if( (mPrereq&(mPrereq-1))!=0 ) return 0; /* Refs more than one table */
1007 return exprMightBeIndexed2(pFrom,mPrereq,aiCurCol,pExpr);
1011 ** The input to this routine is an WhereTerm structure with only the
1012 ** "pExpr" field filled in. The job of this routine is to analyze the
1013 ** subexpression and populate all the other fields of the WhereTerm
1014 ** structure.
1016 ** If the expression is of the form "<expr> <op> X" it gets commuted
1017 ** to the standard form of "X <op> <expr>".
1019 ** If the expression is of the form "X <op> Y" where both X and Y are
1020 ** columns, then the original expression is unchanged and a new virtual
1021 ** term of the form "Y <op> X" is added to the WHERE clause and
1022 ** analyzed separately. The original term is marked with TERM_COPIED
1023 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr
1024 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
1025 ** is a commuted copy of a prior term.) The original term has nChild=1
1026 ** and the copy has idxParent set to the index of the original term.
1028 static void exprAnalyze(
1029 SrcList *pSrc, /* the FROM clause */
1030 WhereClause *pWC, /* the WHERE clause */
1031 int idxTerm /* Index of the term to be analyzed */
1033 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */
1034 WhereTerm *pTerm; /* The term to be analyzed */
1035 WhereMaskSet *pMaskSet; /* Set of table index masks */
1036 Expr *pExpr; /* The expression to be analyzed */
1037 Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */
1038 Bitmask prereqAll; /* Prerequesites of pExpr */
1039 Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */
1040 Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */
1041 int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */
1042 int noCase = 0; /* uppercase equivalent to lowercase */
1043 int op; /* Top-level operator. pExpr->op */
1044 Parse *pParse = pWInfo->pParse; /* Parsing context */
1045 sqlite3 *db = pParse->db; /* Database connection */
1046 unsigned char eOp2 = 0; /* op2 value for LIKE/REGEXP/GLOB */
1047 int nLeft; /* Number of elements on left side vector */
1049 if( db->mallocFailed ){
1050 return;
1052 pTerm = &pWC->a[idxTerm];
1053 pMaskSet = &pWInfo->sMaskSet;
1054 pExpr = pTerm->pExpr;
1055 assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE );
1056 prereqLeft = sqlite3WhereExprUsage(pMaskSet, pExpr->pLeft);
1057 op = pExpr->op;
1058 if( op==TK_IN ){
1059 assert( pExpr->pRight==0 );
1060 if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
1061 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1062 pTerm->prereqRight = exprSelectUsage(pMaskSet, pExpr->x.pSelect);
1063 }else{
1064 pTerm->prereqRight = sqlite3WhereExprListUsage(pMaskSet, pExpr->x.pList);
1066 }else if( op==TK_ISNULL ){
1067 pTerm->prereqRight = 0;
1068 }else{
1069 pTerm->prereqRight = sqlite3WhereExprUsage(pMaskSet, pExpr->pRight);
1071 pMaskSet->bVarSelect = 0;
1072 prereqAll = sqlite3WhereExprUsageNN(pMaskSet, pExpr);
1073 if( pMaskSet->bVarSelect ) pTerm->wtFlags |= TERM_VARSELECT;
1074 if( ExprHasProperty(pExpr, EP_FromJoin) ){
1075 Bitmask x = sqlite3WhereGetMask(pMaskSet, pExpr->iRightJoinTable);
1076 prereqAll |= x;
1077 extraRight = x-1; /* ON clause terms may not be used with an index
1078 ** on left table of a LEFT JOIN. Ticket #3015 */
1079 if( (prereqAll>>1)>=x ){
1080 sqlite3ErrorMsg(pParse, "ON clause references tables to its right");
1081 return;
1084 pTerm->prereqAll = prereqAll;
1085 pTerm->leftCursor = -1;
1086 pTerm->iParent = -1;
1087 pTerm->eOperator = 0;
1088 if( allowedOp(op) ){
1089 int aiCurCol[2];
1090 Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft);
1091 Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight);
1092 u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV;
1094 if( pTerm->iField>0 ){
1095 assert( op==TK_IN );
1096 assert( pLeft->op==TK_VECTOR );
1097 pLeft = pLeft->x.pList->a[pTerm->iField-1].pExpr;
1100 if( exprMightBeIndexed(pSrc, prereqLeft, aiCurCol, pLeft, op) ){
1101 pTerm->leftCursor = aiCurCol[0];
1102 pTerm->u.leftColumn = aiCurCol[1];
1103 pTerm->eOperator = operatorMask(op) & opMask;
1105 if( op==TK_IS ) pTerm->wtFlags |= TERM_IS;
1106 if( pRight
1107 && exprMightBeIndexed(pSrc, pTerm->prereqRight, aiCurCol, pRight, op)
1109 WhereTerm *pNew;
1110 Expr *pDup;
1111 u16 eExtraOp = 0; /* Extra bits for pNew->eOperator */
1112 assert( pTerm->iField==0 );
1113 if( pTerm->leftCursor>=0 ){
1114 int idxNew;
1115 pDup = sqlite3ExprDup(db, pExpr, 0);
1116 if( db->mallocFailed ){
1117 sqlite3ExprDelete(db, pDup);
1118 return;
1120 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
1121 if( idxNew==0 ) return;
1122 pNew = &pWC->a[idxNew];
1123 markTermAsChild(pWC, idxNew, idxTerm);
1124 if( op==TK_IS ) pNew->wtFlags |= TERM_IS;
1125 pTerm = &pWC->a[idxTerm];
1126 pTerm->wtFlags |= TERM_COPIED;
1128 if( termIsEquivalence(pParse, pDup) ){
1129 pTerm->eOperator |= WO_EQUIV;
1130 eExtraOp = WO_EQUIV;
1132 }else{
1133 pDup = pExpr;
1134 pNew = pTerm;
1136 pNew->wtFlags |= exprCommute(pParse, pDup);
1137 pNew->leftCursor = aiCurCol[0];
1138 pNew->u.leftColumn = aiCurCol[1];
1139 testcase( (prereqLeft | extraRight) != prereqLeft );
1140 pNew->prereqRight = prereqLeft | extraRight;
1141 pNew->prereqAll = prereqAll;
1142 pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask;
1146 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
1147 /* If a term is the BETWEEN operator, create two new virtual terms
1148 ** that define the range that the BETWEEN implements. For example:
1150 ** a BETWEEN b AND c
1152 ** is converted into:
1154 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
1156 ** The two new terms are added onto the end of the WhereClause object.
1157 ** The new terms are "dynamic" and are children of the original BETWEEN
1158 ** term. That means that if the BETWEEN term is coded, the children are
1159 ** skipped. Or, if the children are satisfied by an index, the original
1160 ** BETWEEN term is skipped.
1162 else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){
1163 ExprList *pList = pExpr->x.pList;
1164 int i;
1165 static const u8 ops[] = {TK_GE, TK_LE};
1166 assert( pList!=0 );
1167 assert( pList->nExpr==2 );
1168 for(i=0; i<2; i++){
1169 Expr *pNewExpr;
1170 int idxNew;
1171 pNewExpr = sqlite3PExpr(pParse, ops[i],
1172 sqlite3ExprDup(db, pExpr->pLeft, 0),
1173 sqlite3ExprDup(db, pList->a[i].pExpr, 0));
1174 transferJoinMarkings(pNewExpr, pExpr);
1175 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
1176 testcase( idxNew==0 );
1177 exprAnalyze(pSrc, pWC, idxNew);
1178 pTerm = &pWC->a[idxTerm];
1179 markTermAsChild(pWC, idxNew, idxTerm);
1182 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
1184 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
1185 /* Analyze a term that is composed of two or more subterms connected by
1186 ** an OR operator.
1188 else if( pExpr->op==TK_OR ){
1189 assert( pWC->op==TK_AND );
1190 exprAnalyzeOrTerm(pSrc, pWC, idxTerm);
1191 pTerm = &pWC->a[idxTerm];
1193 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1195 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
1196 /* Add constraints to reduce the search space on a LIKE or GLOB
1197 ** operator.
1199 ** A like pattern of the form "x LIKE 'aBc%'" is changed into constraints
1201 ** x>='ABC' AND x<'abd' AND x LIKE 'aBc%'
1203 ** The last character of the prefix "abc" is incremented to form the
1204 ** termination condition "abd". If case is not significant (the default
1205 ** for LIKE) then the lower-bound is made all uppercase and the upper-
1206 ** bound is made all lowercase so that the bounds also work when comparing
1207 ** BLOBs.
1209 if( pWC->op==TK_AND
1210 && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase)
1212 Expr *pLeft; /* LHS of LIKE/GLOB operator */
1213 Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */
1214 Expr *pNewExpr1;
1215 Expr *pNewExpr2;
1216 int idxNew1;
1217 int idxNew2;
1218 const char *zCollSeqName; /* Name of collating sequence */
1219 const u16 wtFlags = TERM_LIKEOPT | TERM_VIRTUAL | TERM_DYNAMIC;
1221 pLeft = pExpr->x.pList->a[1].pExpr;
1222 pStr2 = sqlite3ExprDup(db, pStr1, 0);
1224 /* Convert the lower bound to upper-case and the upper bound to
1225 ** lower-case (upper-case is less than lower-case in ASCII) so that
1226 ** the range constraints also work for BLOBs
1228 if( noCase && !pParse->db->mallocFailed ){
1229 int i;
1230 char c;
1231 pTerm->wtFlags |= TERM_LIKE;
1232 for(i=0; (c = pStr1->u.zToken[i])!=0; i++){
1233 pStr1->u.zToken[i] = sqlite3Toupper(c);
1234 pStr2->u.zToken[i] = sqlite3Tolower(c);
1238 if( !db->mallocFailed ){
1239 u8 c, *pC; /* Last character before the first wildcard */
1240 pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1];
1241 c = *pC;
1242 if( noCase ){
1243 /* The point is to increment the last character before the first
1244 ** wildcard. But if we increment '@', that will push it into the
1245 ** alphabetic range where case conversions will mess up the
1246 ** inequality. To avoid this, make sure to also run the full
1247 ** LIKE on all candidate expressions by clearing the isComplete flag
1249 if( c=='A'-1 ) isComplete = 0;
1250 c = sqlite3UpperToLower[c];
1252 *pC = c + 1;
1254 zCollSeqName = noCase ? "NOCASE" : sqlite3StrBINARY;
1255 pNewExpr1 = sqlite3ExprDup(db, pLeft, 0);
1256 pNewExpr1 = sqlite3PExpr(pParse, TK_GE,
1257 sqlite3ExprAddCollateString(pParse,pNewExpr1,zCollSeqName),
1258 pStr1);
1259 transferJoinMarkings(pNewExpr1, pExpr);
1260 idxNew1 = whereClauseInsert(pWC, pNewExpr1, wtFlags);
1261 testcase( idxNew1==0 );
1262 exprAnalyze(pSrc, pWC, idxNew1);
1263 pNewExpr2 = sqlite3ExprDup(db, pLeft, 0);
1264 pNewExpr2 = sqlite3PExpr(pParse, TK_LT,
1265 sqlite3ExprAddCollateString(pParse,pNewExpr2,zCollSeqName),
1266 pStr2);
1267 transferJoinMarkings(pNewExpr2, pExpr);
1268 idxNew2 = whereClauseInsert(pWC, pNewExpr2, wtFlags);
1269 testcase( idxNew2==0 );
1270 exprAnalyze(pSrc, pWC, idxNew2);
1271 pTerm = &pWC->a[idxTerm];
1272 if( isComplete ){
1273 markTermAsChild(pWC, idxNew1, idxTerm);
1274 markTermAsChild(pWC, idxNew2, idxTerm);
1277 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
1279 #ifndef SQLITE_OMIT_VIRTUALTABLE
1280 /* Add a WO_AUX auxiliary term to the constraint set if the
1281 ** current expression is of the form "column OP expr" where OP
1282 ** is an operator that gets passed into virtual tables but which is
1283 ** not normally optimized for ordinary tables. In other words, OP
1284 ** is one of MATCH, LIKE, GLOB, REGEXP, !=, IS, IS NOT, or NOT NULL.
1285 ** This information is used by the xBestIndex methods of
1286 ** virtual tables. The native query optimizer does not attempt
1287 ** to do anything with MATCH functions.
1289 if( pWC->op==TK_AND ){
1290 Expr *pRight = 0, *pLeft = 0;
1291 int res = isAuxiliaryVtabOperator(db, pExpr, &eOp2, &pLeft, &pRight);
1292 while( res-- > 0 ){
1293 int idxNew;
1294 WhereTerm *pNewTerm;
1295 Bitmask prereqColumn, prereqExpr;
1297 prereqExpr = sqlite3WhereExprUsage(pMaskSet, pRight);
1298 prereqColumn = sqlite3WhereExprUsage(pMaskSet, pLeft);
1299 if( (prereqExpr & prereqColumn)==0 ){
1300 Expr *pNewExpr;
1301 pNewExpr = sqlite3PExpr(pParse, TK_MATCH,
1302 0, sqlite3ExprDup(db, pRight, 0));
1303 if( ExprHasProperty(pExpr, EP_FromJoin) && pNewExpr ){
1304 ExprSetProperty(pNewExpr, EP_FromJoin);
1305 pNewExpr->iRightJoinTable = pExpr->iRightJoinTable;
1307 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
1308 testcase( idxNew==0 );
1309 pNewTerm = &pWC->a[idxNew];
1310 pNewTerm->prereqRight = prereqExpr;
1311 pNewTerm->leftCursor = pLeft->iTable;
1312 pNewTerm->u.leftColumn = pLeft->iColumn;
1313 pNewTerm->eOperator = WO_AUX;
1314 pNewTerm->eMatchOp = eOp2;
1315 markTermAsChild(pWC, idxNew, idxTerm);
1316 pTerm = &pWC->a[idxTerm];
1317 pTerm->wtFlags |= TERM_COPIED;
1318 pNewTerm->prereqAll = pTerm->prereqAll;
1320 SWAP(Expr*, pLeft, pRight);
1323 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1325 /* If there is a vector == or IS term - e.g. "(a, b) == (?, ?)" - create
1326 ** new terms for each component comparison - "a = ?" and "b = ?". The
1327 ** new terms completely replace the original vector comparison, which is
1328 ** no longer used.
1330 ** This is only required if at least one side of the comparison operation
1331 ** is not a sub-select. */
1332 if( pWC->op==TK_AND
1333 && (pExpr->op==TK_EQ || pExpr->op==TK_IS)
1334 && (nLeft = sqlite3ExprVectorSize(pExpr->pLeft))>1
1335 && sqlite3ExprVectorSize(pExpr->pRight)==nLeft
1336 && ( (pExpr->pLeft->flags & EP_xIsSelect)==0
1337 || (pExpr->pRight->flags & EP_xIsSelect)==0)
1339 int i;
1340 for(i=0; i<nLeft; i++){
1341 int idxNew;
1342 Expr *pNew;
1343 Expr *pLeft = sqlite3ExprForVectorField(pParse, pExpr->pLeft, i);
1344 Expr *pRight = sqlite3ExprForVectorField(pParse, pExpr->pRight, i);
1346 pNew = sqlite3PExpr(pParse, pExpr->op, pLeft, pRight);
1347 transferJoinMarkings(pNew, pExpr);
1348 idxNew = whereClauseInsert(pWC, pNew, TERM_DYNAMIC);
1349 exprAnalyze(pSrc, pWC, idxNew);
1351 pTerm = &pWC->a[idxTerm];
1352 pTerm->wtFlags |= TERM_CODED|TERM_VIRTUAL; /* Disable the original */
1353 pTerm->eOperator = 0;
1356 /* If there is a vector IN term - e.g. "(a, b) IN (SELECT ...)" - create
1357 ** a virtual term for each vector component. The expression object
1358 ** used by each such virtual term is pExpr (the full vector IN(...)
1359 ** expression). The WhereTerm.iField variable identifies the index within
1360 ** the vector on the LHS that the virtual term represents.
1362 ** This only works if the RHS is a simple SELECT (not a compound) that does
1363 ** not use window functions.
1365 if( pWC->op==TK_AND && pExpr->op==TK_IN && pTerm->iField==0
1366 && pExpr->pLeft->op==TK_VECTOR
1367 && pExpr->x.pSelect->pPrior==0
1368 #ifndef SQLITE_OMIT_WINDOWFUNC
1369 && pExpr->x.pSelect->pWin==0
1370 #endif
1372 int i;
1373 for(i=0; i<sqlite3ExprVectorSize(pExpr->pLeft); i++){
1374 int idxNew;
1375 idxNew = whereClauseInsert(pWC, pExpr, TERM_VIRTUAL);
1376 pWC->a[idxNew].iField = i+1;
1377 exprAnalyze(pSrc, pWC, idxNew);
1378 markTermAsChild(pWC, idxNew, idxTerm);
1382 #ifdef SQLITE_ENABLE_STAT4
1383 /* When sqlite_stat4 histogram data is available an operator of the
1384 ** form "x IS NOT NULL" can sometimes be evaluated more efficiently
1385 ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a
1386 ** virtual term of that form.
1388 ** Note that the virtual term must be tagged with TERM_VNULL.
1390 if( pExpr->op==TK_NOTNULL
1391 && pExpr->pLeft->op==TK_COLUMN
1392 && pExpr->pLeft->iColumn>=0
1393 && !ExprHasProperty(pExpr, EP_FromJoin)
1394 && OptimizationEnabled(db, SQLITE_Stat4)
1396 Expr *pNewExpr;
1397 Expr *pLeft = pExpr->pLeft;
1398 int idxNew;
1399 WhereTerm *pNewTerm;
1401 pNewExpr = sqlite3PExpr(pParse, TK_GT,
1402 sqlite3ExprDup(db, pLeft, 0),
1403 sqlite3ExprAlloc(db, TK_NULL, 0, 0));
1405 idxNew = whereClauseInsert(pWC, pNewExpr,
1406 TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL);
1407 if( idxNew ){
1408 pNewTerm = &pWC->a[idxNew];
1409 pNewTerm->prereqRight = 0;
1410 pNewTerm->leftCursor = pLeft->iTable;
1411 pNewTerm->u.leftColumn = pLeft->iColumn;
1412 pNewTerm->eOperator = WO_GT;
1413 markTermAsChild(pWC, idxNew, idxTerm);
1414 pTerm = &pWC->a[idxTerm];
1415 pTerm->wtFlags |= TERM_COPIED;
1416 pNewTerm->prereqAll = pTerm->prereqAll;
1419 #endif /* SQLITE_ENABLE_STAT4 */
1421 /* Prevent ON clause terms of a LEFT JOIN from being used to drive
1422 ** an index for tables to the left of the join.
1424 testcase( pTerm!=&pWC->a[idxTerm] );
1425 pTerm = &pWC->a[idxTerm];
1426 pTerm->prereqRight |= extraRight;
1429 /***************************************************************************
1430 ** Routines with file scope above. Interface to the rest of the where.c
1431 ** subsystem follows.
1432 ***************************************************************************/
1435 ** This routine identifies subexpressions in the WHERE clause where
1436 ** each subexpression is separated by the AND operator or some other
1437 ** operator specified in the op parameter. The WhereClause structure
1438 ** is filled with pointers to subexpressions. For example:
1440 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
1441 ** \________/ \_______________/ \________________/
1442 ** slot[0] slot[1] slot[2]
1444 ** The original WHERE clause in pExpr is unaltered. All this routine
1445 ** does is make slot[] entries point to substructure within pExpr.
1447 ** In the previous sentence and in the diagram, "slot[]" refers to
1448 ** the WhereClause.a[] array. The slot[] array grows as needed to contain
1449 ** all terms of the WHERE clause.
1451 void sqlite3WhereSplit(WhereClause *pWC, Expr *pExpr, u8 op){
1452 Expr *pE2 = sqlite3ExprSkipCollateAndLikely(pExpr);
1453 pWC->op = op;
1454 if( pE2==0 ) return;
1455 if( pE2->op!=op ){
1456 whereClauseInsert(pWC, pExpr, 0);
1457 }else{
1458 sqlite3WhereSplit(pWC, pE2->pLeft, op);
1459 sqlite3WhereSplit(pWC, pE2->pRight, op);
1464 ** Initialize a preallocated WhereClause structure.
1466 void sqlite3WhereClauseInit(
1467 WhereClause *pWC, /* The WhereClause to be initialized */
1468 WhereInfo *pWInfo /* The WHERE processing context */
1470 pWC->pWInfo = pWInfo;
1471 pWC->hasOr = 0;
1472 pWC->pOuter = 0;
1473 pWC->nTerm = 0;
1474 pWC->nSlot = ArraySize(pWC->aStatic);
1475 pWC->a = pWC->aStatic;
1479 ** Deallocate a WhereClause structure. The WhereClause structure
1480 ** itself is not freed. This routine is the inverse of
1481 ** sqlite3WhereClauseInit().
1483 void sqlite3WhereClauseClear(WhereClause *pWC){
1484 int i;
1485 WhereTerm *a;
1486 sqlite3 *db = pWC->pWInfo->pParse->db;
1487 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
1488 if( a->wtFlags & TERM_DYNAMIC ){
1489 sqlite3ExprDelete(db, a->pExpr);
1491 if( a->wtFlags & TERM_ORINFO ){
1492 whereOrInfoDelete(db, a->u.pOrInfo);
1493 }else if( a->wtFlags & TERM_ANDINFO ){
1494 whereAndInfoDelete(db, a->u.pAndInfo);
1497 if( pWC->a!=pWC->aStatic ){
1498 sqlite3DbFree(db, pWC->a);
1504 ** These routines walk (recursively) an expression tree and generate
1505 ** a bitmask indicating which tables are used in that expression
1506 ** tree.
1508 Bitmask sqlite3WhereExprUsageNN(WhereMaskSet *pMaskSet, Expr *p){
1509 Bitmask mask;
1510 if( p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){
1511 return sqlite3WhereGetMask(pMaskSet, p->iTable);
1512 }else if( ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1513 assert( p->op!=TK_IF_NULL_ROW );
1514 return 0;
1516 mask = (p->op==TK_IF_NULL_ROW) ? sqlite3WhereGetMask(pMaskSet, p->iTable) : 0;
1517 if( p->pLeft ) mask |= sqlite3WhereExprUsageNN(pMaskSet, p->pLeft);
1518 if( p->pRight ){
1519 mask |= sqlite3WhereExprUsageNN(pMaskSet, p->pRight);
1520 assert( p->x.pList==0 );
1521 }else if( ExprHasProperty(p, EP_xIsSelect) ){
1522 if( ExprHasProperty(p, EP_VarSelect) ) pMaskSet->bVarSelect = 1;
1523 mask |= exprSelectUsage(pMaskSet, p->x.pSelect);
1524 }else if( p->x.pList ){
1525 mask |= sqlite3WhereExprListUsage(pMaskSet, p->x.pList);
1527 #ifndef SQLITE_OMIT_WINDOWFUNC
1528 if( (p->op==TK_FUNCTION || p->op==TK_AGG_FUNCTION) && p->y.pWin ){
1529 mask |= sqlite3WhereExprListUsage(pMaskSet, p->y.pWin->pPartition);
1530 mask |= sqlite3WhereExprListUsage(pMaskSet, p->y.pWin->pOrderBy);
1531 mask |= sqlite3WhereExprUsage(pMaskSet, p->y.pWin->pFilter);
1533 #endif
1534 return mask;
1536 Bitmask sqlite3WhereExprUsage(WhereMaskSet *pMaskSet, Expr *p){
1537 return p ? sqlite3WhereExprUsageNN(pMaskSet,p) : 0;
1539 Bitmask sqlite3WhereExprListUsage(WhereMaskSet *pMaskSet, ExprList *pList){
1540 int i;
1541 Bitmask mask = 0;
1542 if( pList ){
1543 for(i=0; i<pList->nExpr; i++){
1544 mask |= sqlite3WhereExprUsage(pMaskSet, pList->a[i].pExpr);
1547 return mask;
1552 ** Call exprAnalyze on all terms in a WHERE clause.
1554 ** Note that exprAnalyze() might add new virtual terms onto the
1555 ** end of the WHERE clause. We do not want to analyze these new
1556 ** virtual terms, so start analyzing at the end and work forward
1557 ** so that the added virtual terms are never processed.
1559 void sqlite3WhereExprAnalyze(
1560 SrcList *pTabList, /* the FROM clause */
1561 WhereClause *pWC /* the WHERE clause to be analyzed */
1563 int i;
1564 for(i=pWC->nTerm-1; i>=0; i--){
1565 exprAnalyze(pTabList, pWC, i);
1570 ** For table-valued-functions, transform the function arguments into
1571 ** new WHERE clause terms.
1573 ** Each function argument translates into an equality constraint against
1574 ** a HIDDEN column in the table.
1576 void sqlite3WhereTabFuncArgs(
1577 Parse *pParse, /* Parsing context */
1578 struct SrcList_item *pItem, /* The FROM clause term to process */
1579 WhereClause *pWC /* Xfer function arguments to here */
1581 Table *pTab;
1582 int j, k;
1583 ExprList *pArgs;
1584 Expr *pColRef;
1585 Expr *pTerm;
1586 if( pItem->fg.isTabFunc==0 ) return;
1587 pTab = pItem->pTab;
1588 assert( pTab!=0 );
1589 pArgs = pItem->u1.pFuncArg;
1590 if( pArgs==0 ) return;
1591 for(j=k=0; j<pArgs->nExpr; j++){
1592 Expr *pRhs;
1593 while( k<pTab->nCol && (pTab->aCol[k].colFlags & COLFLAG_HIDDEN)==0 ){k++;}
1594 if( k>=pTab->nCol ){
1595 sqlite3ErrorMsg(pParse, "too many arguments on %s() - max %d",
1596 pTab->zName, j);
1597 return;
1599 pColRef = sqlite3ExprAlloc(pParse->db, TK_COLUMN, 0, 0);
1600 if( pColRef==0 ) return;
1601 pColRef->iTable = pItem->iCursor;
1602 pColRef->iColumn = k++;
1603 pColRef->y.pTab = pTab;
1604 pRhs = sqlite3PExpr(pParse, TK_UPLUS,
1605 sqlite3ExprDup(pParse->db, pArgs->a[j].pExpr, 0), 0);
1606 pTerm = sqlite3PExpr(pParse, TK_EQ, pColRef, pRhs);
1607 if( pItem->fg.jointype & JT_LEFT ){
1608 sqlite3SetJoinExpr(pTerm, pItem->iCursor);
1610 whereClauseInsert(pWC, pTerm, TERM_DYNAMIC);