Merge sqlite-release(3.33.0) into prerelease-integration
[sqlcipher.git] / src / vtab.c
blobb2c01f2fadce774f481f1008aa92ffeb836bc590
1 /*
2 ** 2006 June 10
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used to help implement virtual tables.
14 #ifndef SQLITE_OMIT_VIRTUALTABLE
15 #include "sqliteInt.h"
18 ** Before a virtual table xCreate() or xConnect() method is invoked, the
19 ** sqlite3.pVtabCtx member variable is set to point to an instance of
20 ** this struct allocated on the stack. It is used by the implementation of
21 ** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which
22 ** are invoked only from within xCreate and xConnect methods.
24 struct VtabCtx {
25 VTable *pVTable; /* The virtual table being constructed */
26 Table *pTab; /* The Table object to which the virtual table belongs */
27 VtabCtx *pPrior; /* Parent context (if any) */
28 int bDeclared; /* True after sqlite3_declare_vtab() is called */
32 ** Construct and install a Module object for a virtual table. When this
33 ** routine is called, it is guaranteed that all appropriate locks are held
34 ** and the module is not already part of the connection.
36 ** If there already exists a module with zName, replace it with the new one.
37 ** If pModule==0, then delete the module zName if it exists.
39 Module *sqlite3VtabCreateModule(
40 sqlite3 *db, /* Database in which module is registered */
41 const char *zName, /* Name assigned to this module */
42 const sqlite3_module *pModule, /* The definition of the module */
43 void *pAux, /* Context pointer for xCreate/xConnect */
44 void (*xDestroy)(void *) /* Module destructor function */
46 Module *pMod;
47 Module *pDel;
48 char *zCopy;
49 if( pModule==0 ){
50 zCopy = (char*)zName;
51 pMod = 0;
52 }else{
53 int nName = sqlite3Strlen30(zName);
54 pMod = (Module *)sqlite3Malloc(sizeof(Module) + nName + 1);
55 if( pMod==0 ){
56 sqlite3OomFault(db);
57 return 0;
59 zCopy = (char *)(&pMod[1]);
60 memcpy(zCopy, zName, nName+1);
61 pMod->zName = zCopy;
62 pMod->pModule = pModule;
63 pMod->pAux = pAux;
64 pMod->xDestroy = xDestroy;
65 pMod->pEpoTab = 0;
66 pMod->nRefModule = 1;
68 pDel = (Module *)sqlite3HashInsert(&db->aModule,zCopy,(void*)pMod);
69 if( pDel ){
70 if( pDel==pMod ){
71 sqlite3OomFault(db);
72 sqlite3DbFree(db, pDel);
73 pMod = 0;
74 }else{
75 sqlite3VtabEponymousTableClear(db, pDel);
76 sqlite3VtabModuleUnref(db, pDel);
79 return pMod;
83 ** The actual function that does the work of creating a new module.
84 ** This function implements the sqlite3_create_module() and
85 ** sqlite3_create_module_v2() interfaces.
87 static int createModule(
88 sqlite3 *db, /* Database in which module is registered */
89 const char *zName, /* Name assigned to this module */
90 const sqlite3_module *pModule, /* The definition of the module */
91 void *pAux, /* Context pointer for xCreate/xConnect */
92 void (*xDestroy)(void *) /* Module destructor function */
94 int rc = SQLITE_OK;
96 sqlite3_mutex_enter(db->mutex);
97 (void)sqlite3VtabCreateModule(db, zName, pModule, pAux, xDestroy);
98 rc = sqlite3ApiExit(db, rc);
99 if( rc!=SQLITE_OK && xDestroy ) xDestroy(pAux);
100 sqlite3_mutex_leave(db->mutex);
101 return rc;
106 ** External API function used to create a new virtual-table module.
108 int sqlite3_create_module(
109 sqlite3 *db, /* Database in which module is registered */
110 const char *zName, /* Name assigned to this module */
111 const sqlite3_module *pModule, /* The definition of the module */
112 void *pAux /* Context pointer for xCreate/xConnect */
114 #ifdef SQLITE_ENABLE_API_ARMOR
115 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT;
116 #endif
117 return createModule(db, zName, pModule, pAux, 0);
121 ** External API function used to create a new virtual-table module.
123 int sqlite3_create_module_v2(
124 sqlite3 *db, /* Database in which module is registered */
125 const char *zName, /* Name assigned to this module */
126 const sqlite3_module *pModule, /* The definition of the module */
127 void *pAux, /* Context pointer for xCreate/xConnect */
128 void (*xDestroy)(void *) /* Module destructor function */
130 #ifdef SQLITE_ENABLE_API_ARMOR
131 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT;
132 #endif
133 return createModule(db, zName, pModule, pAux, xDestroy);
137 ** External API to drop all virtual-table modules, except those named
138 ** on the azNames list.
140 int sqlite3_drop_modules(sqlite3 *db, const char** azNames){
141 HashElem *pThis, *pNext;
142 #ifdef SQLITE_ENABLE_API_ARMOR
143 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
144 #endif
145 for(pThis=sqliteHashFirst(&db->aModule); pThis; pThis=pNext){
146 Module *pMod = (Module*)sqliteHashData(pThis);
147 pNext = sqliteHashNext(pThis);
148 if( azNames ){
149 int ii;
150 for(ii=0; azNames[ii]!=0 && strcmp(azNames[ii],pMod->zName)!=0; ii++){}
151 if( azNames[ii]!=0 ) continue;
153 createModule(db, pMod->zName, 0, 0, 0);
155 return SQLITE_OK;
159 ** Decrement the reference count on a Module object. Destroy the
160 ** module when the reference count reaches zero.
162 void sqlite3VtabModuleUnref(sqlite3 *db, Module *pMod){
163 assert( pMod->nRefModule>0 );
164 pMod->nRefModule--;
165 if( pMod->nRefModule==0 ){
166 if( pMod->xDestroy ){
167 pMod->xDestroy(pMod->pAux);
169 assert( pMod->pEpoTab==0 );
170 sqlite3DbFree(db, pMod);
175 ** Lock the virtual table so that it cannot be disconnected.
176 ** Locks nest. Every lock should have a corresponding unlock.
177 ** If an unlock is omitted, resources leaks will occur.
179 ** If a disconnect is attempted while a virtual table is locked,
180 ** the disconnect is deferred until all locks have been removed.
182 void sqlite3VtabLock(VTable *pVTab){
183 pVTab->nRef++;
188 ** pTab is a pointer to a Table structure representing a virtual-table.
189 ** Return a pointer to the VTable object used by connection db to access
190 ** this virtual-table, if one has been created, or NULL otherwise.
192 VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){
193 VTable *pVtab;
194 assert( IsVirtual(pTab) );
195 for(pVtab=pTab->pVTable; pVtab && pVtab->db!=db; pVtab=pVtab->pNext);
196 return pVtab;
200 ** Decrement the ref-count on a virtual table object. When the ref-count
201 ** reaches zero, call the xDisconnect() method to delete the object.
203 void sqlite3VtabUnlock(VTable *pVTab){
204 sqlite3 *db = pVTab->db;
206 assert( db );
207 assert( pVTab->nRef>0 );
208 assert( db->magic==SQLITE_MAGIC_OPEN || db->magic==SQLITE_MAGIC_ZOMBIE );
210 pVTab->nRef--;
211 if( pVTab->nRef==0 ){
212 sqlite3_vtab *p = pVTab->pVtab;
213 sqlite3VtabModuleUnref(pVTab->db, pVTab->pMod);
214 if( p ){
215 p->pModule->xDisconnect(p);
217 sqlite3DbFree(db, pVTab);
222 ** Table p is a virtual table. This function moves all elements in the
223 ** p->pVTable list to the sqlite3.pDisconnect lists of their associated
224 ** database connections to be disconnected at the next opportunity.
225 ** Except, if argument db is not NULL, then the entry associated with
226 ** connection db is left in the p->pVTable list.
228 static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){
229 VTable *pRet = 0;
230 VTable *pVTable = p->pVTable;
231 p->pVTable = 0;
233 /* Assert that the mutex (if any) associated with the BtShared database
234 ** that contains table p is held by the caller. See header comments
235 ** above function sqlite3VtabUnlockList() for an explanation of why
236 ** this makes it safe to access the sqlite3.pDisconnect list of any
237 ** database connection that may have an entry in the p->pVTable list.
239 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
241 while( pVTable ){
242 sqlite3 *db2 = pVTable->db;
243 VTable *pNext = pVTable->pNext;
244 assert( db2 );
245 if( db2==db ){
246 pRet = pVTable;
247 p->pVTable = pRet;
248 pRet->pNext = 0;
249 }else{
250 pVTable->pNext = db2->pDisconnect;
251 db2->pDisconnect = pVTable;
253 pVTable = pNext;
256 assert( !db || pRet );
257 return pRet;
261 ** Table *p is a virtual table. This function removes the VTable object
262 ** for table *p associated with database connection db from the linked
263 ** list in p->pVTab. It also decrements the VTable ref count. This is
264 ** used when closing database connection db to free all of its VTable
265 ** objects without disturbing the rest of the Schema object (which may
266 ** be being used by other shared-cache connections).
268 void sqlite3VtabDisconnect(sqlite3 *db, Table *p){
269 VTable **ppVTab;
271 assert( IsVirtual(p) );
272 assert( sqlite3BtreeHoldsAllMutexes(db) );
273 assert( sqlite3_mutex_held(db->mutex) );
275 for(ppVTab=&p->pVTable; *ppVTab; ppVTab=&(*ppVTab)->pNext){
276 if( (*ppVTab)->db==db ){
277 VTable *pVTab = *ppVTab;
278 *ppVTab = pVTab->pNext;
279 sqlite3VtabUnlock(pVTab);
280 break;
287 ** Disconnect all the virtual table objects in the sqlite3.pDisconnect list.
289 ** This function may only be called when the mutexes associated with all
290 ** shared b-tree databases opened using connection db are held by the
291 ** caller. This is done to protect the sqlite3.pDisconnect list. The
292 ** sqlite3.pDisconnect list is accessed only as follows:
294 ** 1) By this function. In this case, all BtShared mutexes and the mutex
295 ** associated with the database handle itself must be held.
297 ** 2) By function vtabDisconnectAll(), when it adds a VTable entry to
298 ** the sqlite3.pDisconnect list. In this case either the BtShared mutex
299 ** associated with the database the virtual table is stored in is held
300 ** or, if the virtual table is stored in a non-sharable database, then
301 ** the database handle mutex is held.
303 ** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously
304 ** by multiple threads. It is thread-safe.
306 void sqlite3VtabUnlockList(sqlite3 *db){
307 VTable *p = db->pDisconnect;
309 assert( sqlite3BtreeHoldsAllMutexes(db) );
310 assert( sqlite3_mutex_held(db->mutex) );
312 if( p ){
313 db->pDisconnect = 0;
314 sqlite3ExpirePreparedStatements(db, 0);
315 do {
316 VTable *pNext = p->pNext;
317 sqlite3VtabUnlock(p);
318 p = pNext;
319 }while( p );
324 ** Clear any and all virtual-table information from the Table record.
325 ** This routine is called, for example, just before deleting the Table
326 ** record.
328 ** Since it is a virtual-table, the Table structure contains a pointer
329 ** to the head of a linked list of VTable structures. Each VTable
330 ** structure is associated with a single sqlite3* user of the schema.
331 ** The reference count of the VTable structure associated with database
332 ** connection db is decremented immediately (which may lead to the
333 ** structure being xDisconnected and free). Any other VTable structures
334 ** in the list are moved to the sqlite3.pDisconnect list of the associated
335 ** database connection.
337 void sqlite3VtabClear(sqlite3 *db, Table *p){
338 if( !db || db->pnBytesFreed==0 ) vtabDisconnectAll(0, p);
339 if( p->azModuleArg ){
340 int i;
341 for(i=0; i<p->nModuleArg; i++){
342 if( i!=1 ) sqlite3DbFree(db, p->azModuleArg[i]);
344 sqlite3DbFree(db, p->azModuleArg);
349 ** Add a new module argument to pTable->azModuleArg[].
350 ** The string is not copied - the pointer is stored. The
351 ** string will be freed automatically when the table is
352 ** deleted.
354 static void addModuleArgument(Parse *pParse, Table *pTable, char *zArg){
355 sqlite3_int64 nBytes = sizeof(char *)*(2+pTable->nModuleArg);
356 char **azModuleArg;
357 sqlite3 *db = pParse->db;
358 if( pTable->nModuleArg+3>=db->aLimit[SQLITE_LIMIT_COLUMN] ){
359 sqlite3ErrorMsg(pParse, "too many columns on %s", pTable->zName);
361 azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes);
362 if( azModuleArg==0 ){
363 sqlite3DbFree(db, zArg);
364 }else{
365 int i = pTable->nModuleArg++;
366 azModuleArg[i] = zArg;
367 azModuleArg[i+1] = 0;
368 pTable->azModuleArg = azModuleArg;
373 ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE
374 ** statement. The module name has been parsed, but the optional list
375 ** of parameters that follow the module name are still pending.
377 void sqlite3VtabBeginParse(
378 Parse *pParse, /* Parsing context */
379 Token *pName1, /* Name of new table, or database name */
380 Token *pName2, /* Name of new table or NULL */
381 Token *pModuleName, /* Name of the module for the virtual table */
382 int ifNotExists /* No error if the table already exists */
384 Table *pTable; /* The new virtual table */
385 sqlite3 *db; /* Database connection */
387 sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists);
388 pTable = pParse->pNewTable;
389 if( pTable==0 ) return;
390 assert( 0==pTable->pIndex );
392 db = pParse->db;
394 assert( pTable->nModuleArg==0 );
395 addModuleArgument(pParse, pTable, sqlite3NameFromToken(db, pModuleName));
396 addModuleArgument(pParse, pTable, 0);
397 addModuleArgument(pParse, pTable, sqlite3DbStrDup(db, pTable->zName));
398 assert( (pParse->sNameToken.z==pName2->z && pName2->z!=0)
399 || (pParse->sNameToken.z==pName1->z && pName2->z==0)
401 pParse->sNameToken.n = (int)(
402 &pModuleName->z[pModuleName->n] - pParse->sNameToken.z
405 #ifndef SQLITE_OMIT_AUTHORIZATION
406 /* Creating a virtual table invokes the authorization callback twice.
407 ** The first invocation, to obtain permission to INSERT a row into the
408 ** sqlite_schema table, has already been made by sqlite3StartTable().
409 ** The second call, to obtain permission to create the table, is made now.
411 if( pTable->azModuleArg ){
412 int iDb = sqlite3SchemaToIndex(db, pTable->pSchema);
413 assert( iDb>=0 ); /* The database the table is being created in */
414 sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName,
415 pTable->azModuleArg[0], pParse->db->aDb[iDb].zDbSName);
417 #endif
421 ** This routine takes the module argument that has been accumulating
422 ** in pParse->zArg[] and appends it to the list of arguments on the
423 ** virtual table currently under construction in pParse->pTable.
425 static void addArgumentToVtab(Parse *pParse){
426 if( pParse->sArg.z && pParse->pNewTable ){
427 const char *z = (const char*)pParse->sArg.z;
428 int n = pParse->sArg.n;
429 sqlite3 *db = pParse->db;
430 addModuleArgument(pParse, pParse->pNewTable, sqlite3DbStrNDup(db, z, n));
435 ** The parser calls this routine after the CREATE VIRTUAL TABLE statement
436 ** has been completely parsed.
438 void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){
439 Table *pTab = pParse->pNewTable; /* The table being constructed */
440 sqlite3 *db = pParse->db; /* The database connection */
442 if( pTab==0 ) return;
443 addArgumentToVtab(pParse);
444 pParse->sArg.z = 0;
445 if( pTab->nModuleArg<1 ) return;
447 /* If the CREATE VIRTUAL TABLE statement is being entered for the
448 ** first time (in other words if the virtual table is actually being
449 ** created now instead of just being read out of sqlite_schema) then
450 ** do additional initialization work and store the statement text
451 ** in the sqlite_schema table.
453 if( !db->init.busy ){
454 char *zStmt;
455 char *zWhere;
456 int iDb;
457 int iReg;
458 Vdbe *v;
460 sqlite3MayAbort(pParse);
462 /* Compute the complete text of the CREATE VIRTUAL TABLE statement */
463 if( pEnd ){
464 pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n;
466 zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken);
468 /* A slot for the record has already been allocated in the
469 ** schema table. We just need to update that slot with all
470 ** the information we've collected.
472 ** The VM register number pParse->regRowid holds the rowid of an
473 ** entry in the sqlite_schema table tht was created for this vtab
474 ** by sqlite3StartTable().
476 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
477 sqlite3NestedParse(pParse,
478 "UPDATE %Q." DFLT_SCHEMA_TABLE " "
479 "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q "
480 "WHERE rowid=#%d",
481 db->aDb[iDb].zDbSName,
482 pTab->zName,
483 pTab->zName,
484 zStmt,
485 pParse->regRowid
487 v = sqlite3GetVdbe(pParse);
488 sqlite3ChangeCookie(pParse, iDb);
490 sqlite3VdbeAddOp0(v, OP_Expire);
491 zWhere = sqlite3MPrintf(db, "name=%Q AND sql=%Q", pTab->zName, zStmt);
492 sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere);
493 sqlite3DbFree(db, zStmt);
495 iReg = ++pParse->nMem;
496 sqlite3VdbeLoadString(v, iReg, pTab->zName);
497 sqlite3VdbeAddOp2(v, OP_VCreate, iDb, iReg);
500 /* If we are rereading the sqlite_schema table create the in-memory
501 ** record of the table. The xConnect() method is not called until
502 ** the first time the virtual table is used in an SQL statement. This
503 ** allows a schema that contains virtual tables to be loaded before
504 ** the required virtual table implementations are registered. */
505 else {
506 Table *pOld;
507 Schema *pSchema = pTab->pSchema;
508 const char *zName = pTab->zName;
509 assert( sqlite3SchemaMutexHeld(db, 0, pSchema) );
510 pOld = sqlite3HashInsert(&pSchema->tblHash, zName, pTab);
511 if( pOld ){
512 sqlite3OomFault(db);
513 assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */
514 return;
516 pParse->pNewTable = 0;
521 ** The parser calls this routine when it sees the first token
522 ** of an argument to the module name in a CREATE VIRTUAL TABLE statement.
524 void sqlite3VtabArgInit(Parse *pParse){
525 addArgumentToVtab(pParse);
526 pParse->sArg.z = 0;
527 pParse->sArg.n = 0;
531 ** The parser calls this routine for each token after the first token
532 ** in an argument to the module name in a CREATE VIRTUAL TABLE statement.
534 void sqlite3VtabArgExtend(Parse *pParse, Token *p){
535 Token *pArg = &pParse->sArg;
536 if( pArg->z==0 ){
537 pArg->z = p->z;
538 pArg->n = p->n;
539 }else{
540 assert(pArg->z <= p->z);
541 pArg->n = (int)(&p->z[p->n] - pArg->z);
546 ** Invoke a virtual table constructor (either xCreate or xConnect). The
547 ** pointer to the function to invoke is passed as the fourth parameter
548 ** to this procedure.
550 static int vtabCallConstructor(
551 sqlite3 *db,
552 Table *pTab,
553 Module *pMod,
554 int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**),
555 char **pzErr
557 VtabCtx sCtx;
558 VTable *pVTable;
559 int rc;
560 const char *const*azArg = (const char *const*)pTab->azModuleArg;
561 int nArg = pTab->nModuleArg;
562 char *zErr = 0;
563 char *zModuleName;
564 int iDb;
565 VtabCtx *pCtx;
567 /* Check that the virtual-table is not already being initialized */
568 for(pCtx=db->pVtabCtx; pCtx; pCtx=pCtx->pPrior){
569 if( pCtx->pTab==pTab ){
570 *pzErr = sqlite3MPrintf(db,
571 "vtable constructor called recursively: %s", pTab->zName
573 return SQLITE_LOCKED;
577 zModuleName = sqlite3DbStrDup(db, pTab->zName);
578 if( !zModuleName ){
579 return SQLITE_NOMEM_BKPT;
582 pVTable = sqlite3MallocZero(sizeof(VTable));
583 if( !pVTable ){
584 sqlite3OomFault(db);
585 sqlite3DbFree(db, zModuleName);
586 return SQLITE_NOMEM_BKPT;
588 pVTable->db = db;
589 pVTable->pMod = pMod;
590 pVTable->eVtabRisk = SQLITE_VTABRISK_Normal;
592 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
593 pTab->azModuleArg[1] = db->aDb[iDb].zDbSName;
595 /* Invoke the virtual table constructor */
596 assert( &db->pVtabCtx );
597 assert( xConstruct );
598 sCtx.pTab = pTab;
599 sCtx.pVTable = pVTable;
600 sCtx.pPrior = db->pVtabCtx;
601 sCtx.bDeclared = 0;
602 db->pVtabCtx = &sCtx;
603 rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr);
604 db->pVtabCtx = sCtx.pPrior;
605 if( rc==SQLITE_NOMEM ) sqlite3OomFault(db);
606 assert( sCtx.pTab==pTab );
608 if( SQLITE_OK!=rc ){
609 if( zErr==0 ){
610 *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName);
611 }else {
612 *pzErr = sqlite3MPrintf(db, "%s", zErr);
613 sqlite3_free(zErr);
615 sqlite3DbFree(db, pVTable);
616 }else if( ALWAYS(pVTable->pVtab) ){
617 /* Justification of ALWAYS(): A correct vtab constructor must allocate
618 ** the sqlite3_vtab object if successful. */
619 memset(pVTable->pVtab, 0, sizeof(pVTable->pVtab[0]));
620 pVTable->pVtab->pModule = pMod->pModule;
621 pMod->nRefModule++;
622 pVTable->nRef = 1;
623 if( sCtx.bDeclared==0 ){
624 const char *zFormat = "vtable constructor did not declare schema: %s";
625 *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName);
626 sqlite3VtabUnlock(pVTable);
627 rc = SQLITE_ERROR;
628 }else{
629 int iCol;
630 u16 oooHidden = 0;
631 /* If everything went according to plan, link the new VTable structure
632 ** into the linked list headed by pTab->pVTable. Then loop through the
633 ** columns of the table to see if any of them contain the token "hidden".
634 ** If so, set the Column COLFLAG_HIDDEN flag and remove the token from
635 ** the type string. */
636 pVTable->pNext = pTab->pVTable;
637 pTab->pVTable = pVTable;
639 for(iCol=0; iCol<pTab->nCol; iCol++){
640 char *zType = sqlite3ColumnType(&pTab->aCol[iCol], "");
641 int nType;
642 int i = 0;
643 nType = sqlite3Strlen30(zType);
644 for(i=0; i<nType; i++){
645 if( 0==sqlite3StrNICmp("hidden", &zType[i], 6)
646 && (i==0 || zType[i-1]==' ')
647 && (zType[i+6]=='\0' || zType[i+6]==' ')
649 break;
652 if( i<nType ){
653 int j;
654 int nDel = 6 + (zType[i+6] ? 1 : 0);
655 for(j=i; (j+nDel)<=nType; j++){
656 zType[j] = zType[j+nDel];
658 if( zType[i]=='\0' && i>0 ){
659 assert(zType[i-1]==' ');
660 zType[i-1] = '\0';
662 pTab->aCol[iCol].colFlags |= COLFLAG_HIDDEN;
663 oooHidden = TF_OOOHidden;
664 }else{
665 pTab->tabFlags |= oooHidden;
671 sqlite3DbFree(db, zModuleName);
672 return rc;
676 ** This function is invoked by the parser to call the xConnect() method
677 ** of the virtual table pTab. If an error occurs, an error code is returned
678 ** and an error left in pParse.
680 ** This call is a no-op if table pTab is not a virtual table.
682 int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){
683 sqlite3 *db = pParse->db;
684 const char *zMod;
685 Module *pMod;
686 int rc;
688 assert( pTab );
689 if( !IsVirtual(pTab) || sqlite3GetVTable(db, pTab) ){
690 return SQLITE_OK;
693 /* Locate the required virtual table module */
694 zMod = pTab->azModuleArg[0];
695 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod);
697 if( !pMod ){
698 const char *zModule = pTab->azModuleArg[0];
699 sqlite3ErrorMsg(pParse, "no such module: %s", zModule);
700 rc = SQLITE_ERROR;
701 }else{
702 char *zErr = 0;
703 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr);
704 if( rc!=SQLITE_OK ){
705 sqlite3ErrorMsg(pParse, "%s", zErr);
706 pParse->rc = rc;
708 sqlite3DbFree(db, zErr);
711 return rc;
714 ** Grow the db->aVTrans[] array so that there is room for at least one
715 ** more v-table. Return SQLITE_NOMEM if a malloc fails, or SQLITE_OK otherwise.
717 static int growVTrans(sqlite3 *db){
718 const int ARRAY_INCR = 5;
720 /* Grow the sqlite3.aVTrans array if required */
721 if( (db->nVTrans%ARRAY_INCR)==0 ){
722 VTable **aVTrans;
723 sqlite3_int64 nBytes = sizeof(sqlite3_vtab*)*
724 ((sqlite3_int64)db->nVTrans + ARRAY_INCR);
725 aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes);
726 if( !aVTrans ){
727 return SQLITE_NOMEM_BKPT;
729 memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR);
730 db->aVTrans = aVTrans;
733 return SQLITE_OK;
737 ** Add the virtual table pVTab to the array sqlite3.aVTrans[]. Space should
738 ** have already been reserved using growVTrans().
740 static void addToVTrans(sqlite3 *db, VTable *pVTab){
741 /* Add pVtab to the end of sqlite3.aVTrans */
742 db->aVTrans[db->nVTrans++] = pVTab;
743 sqlite3VtabLock(pVTab);
747 ** This function is invoked by the vdbe to call the xCreate method
748 ** of the virtual table named zTab in database iDb.
750 ** If an error occurs, *pzErr is set to point to an English language
751 ** description of the error and an SQLITE_XXX error code is returned.
752 ** In this case the caller must call sqlite3DbFree(db, ) on *pzErr.
754 int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){
755 int rc = SQLITE_OK;
756 Table *pTab;
757 Module *pMod;
758 const char *zMod;
760 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName);
761 assert( pTab && IsVirtual(pTab) && !pTab->pVTable );
763 /* Locate the required virtual table module */
764 zMod = pTab->azModuleArg[0];
765 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod);
767 /* If the module has been registered and includes a Create method,
768 ** invoke it now. If the module has not been registered, return an
769 ** error. Otherwise, do nothing.
771 if( pMod==0 || pMod->pModule->xCreate==0 || pMod->pModule->xDestroy==0 ){
772 *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod);
773 rc = SQLITE_ERROR;
774 }else{
775 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr);
778 /* Justification of ALWAYS(): The xConstructor method is required to
779 ** create a valid sqlite3_vtab if it returns SQLITE_OK. */
780 if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){
781 rc = growVTrans(db);
782 if( rc==SQLITE_OK ){
783 addToVTrans(db, sqlite3GetVTable(db, pTab));
787 return rc;
791 ** This function is used to set the schema of a virtual table. It is only
792 ** valid to call this function from within the xCreate() or xConnect() of a
793 ** virtual table module.
795 int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){
796 VtabCtx *pCtx;
797 int rc = SQLITE_OK;
798 Table *pTab;
799 char *zErr = 0;
800 Parse sParse;
802 #ifdef SQLITE_ENABLE_API_ARMOR
803 if( !sqlite3SafetyCheckOk(db) || zCreateTable==0 ){
804 return SQLITE_MISUSE_BKPT;
806 #endif
807 sqlite3_mutex_enter(db->mutex);
808 pCtx = db->pVtabCtx;
809 if( !pCtx || pCtx->bDeclared ){
810 sqlite3Error(db, SQLITE_MISUSE);
811 sqlite3_mutex_leave(db->mutex);
812 return SQLITE_MISUSE_BKPT;
814 pTab = pCtx->pTab;
815 assert( IsVirtual(pTab) );
817 memset(&sParse, 0, sizeof(sParse));
818 sParse.eParseMode = PARSE_MODE_DECLARE_VTAB;
819 sParse.db = db;
820 sParse.nQueryLoop = 1;
821 if( SQLITE_OK==sqlite3RunParser(&sParse, zCreateTable, &zErr)
822 && sParse.pNewTable
823 && !db->mallocFailed
824 && !sParse.pNewTable->pSelect
825 && !IsVirtual(sParse.pNewTable)
827 if( !pTab->aCol ){
828 Table *pNew = sParse.pNewTable;
829 Index *pIdx;
830 pTab->aCol = pNew->aCol;
831 pTab->nCol = pNew->nCol;
832 pTab->tabFlags |= pNew->tabFlags & (TF_WithoutRowid|TF_NoVisibleRowid);
833 pNew->nCol = 0;
834 pNew->aCol = 0;
835 assert( pTab->pIndex==0 );
836 assert( HasRowid(pNew) || sqlite3PrimaryKeyIndex(pNew)!=0 );
837 if( !HasRowid(pNew)
838 && pCtx->pVTable->pMod->pModule->xUpdate!=0
839 && sqlite3PrimaryKeyIndex(pNew)->nKeyCol!=1
841 /* WITHOUT ROWID virtual tables must either be read-only (xUpdate==0)
842 ** or else must have a single-column PRIMARY KEY */
843 rc = SQLITE_ERROR;
845 pIdx = pNew->pIndex;
846 if( pIdx ){
847 assert( pIdx->pNext==0 );
848 pTab->pIndex = pIdx;
849 pNew->pIndex = 0;
850 pIdx->pTable = pTab;
853 pCtx->bDeclared = 1;
854 }else{
855 sqlite3ErrorWithMsg(db, SQLITE_ERROR, (zErr ? "%s" : 0), zErr);
856 sqlite3DbFree(db, zErr);
857 rc = SQLITE_ERROR;
859 sParse.eParseMode = PARSE_MODE_NORMAL;
861 if( sParse.pVdbe ){
862 sqlite3VdbeFinalize(sParse.pVdbe);
864 sqlite3DeleteTable(db, sParse.pNewTable);
865 sqlite3ParserReset(&sParse);
867 assert( (rc&0xff)==rc );
868 rc = sqlite3ApiExit(db, rc);
869 sqlite3_mutex_leave(db->mutex);
870 return rc;
874 ** This function is invoked by the vdbe to call the xDestroy method
875 ** of the virtual table named zTab in database iDb. This occurs
876 ** when a DROP TABLE is mentioned.
878 ** This call is a no-op if zTab is not a virtual table.
880 int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){
881 int rc = SQLITE_OK;
882 Table *pTab;
884 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName);
885 if( pTab!=0 && ALWAYS(pTab->pVTable!=0) ){
886 VTable *p;
887 int (*xDestroy)(sqlite3_vtab *);
888 for(p=pTab->pVTable; p; p=p->pNext){
889 assert( p->pVtab );
890 if( p->pVtab->nRef>0 ){
891 return SQLITE_LOCKED;
894 p = vtabDisconnectAll(db, pTab);
895 xDestroy = p->pMod->pModule->xDestroy;
896 if( xDestroy==0 ) xDestroy = p->pMod->pModule->xDisconnect;
897 assert( xDestroy!=0 );
898 pTab->nTabRef++;
899 rc = xDestroy(p->pVtab);
900 /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */
901 if( rc==SQLITE_OK ){
902 assert( pTab->pVTable==p && p->pNext==0 );
903 p->pVtab = 0;
904 pTab->pVTable = 0;
905 sqlite3VtabUnlock(p);
907 sqlite3DeleteTable(db, pTab);
910 return rc;
914 ** This function invokes either the xRollback or xCommit method
915 ** of each of the virtual tables in the sqlite3.aVTrans array. The method
916 ** called is identified by the second argument, "offset", which is
917 ** the offset of the method to call in the sqlite3_module structure.
919 ** The array is cleared after invoking the callbacks.
921 static void callFinaliser(sqlite3 *db, int offset){
922 int i;
923 if( db->aVTrans ){
924 VTable **aVTrans = db->aVTrans;
925 db->aVTrans = 0;
926 for(i=0; i<db->nVTrans; i++){
927 VTable *pVTab = aVTrans[i];
928 sqlite3_vtab *p = pVTab->pVtab;
929 if( p ){
930 int (*x)(sqlite3_vtab *);
931 x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset);
932 if( x ) x(p);
934 pVTab->iSavepoint = 0;
935 sqlite3VtabUnlock(pVTab);
937 sqlite3DbFree(db, aVTrans);
938 db->nVTrans = 0;
943 ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans
944 ** array. Return the error code for the first error that occurs, or
945 ** SQLITE_OK if all xSync operations are successful.
947 ** If an error message is available, leave it in p->zErrMsg.
949 int sqlite3VtabSync(sqlite3 *db, Vdbe *p){
950 int i;
951 int rc = SQLITE_OK;
952 VTable **aVTrans = db->aVTrans;
954 db->aVTrans = 0;
955 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
956 int (*x)(sqlite3_vtab *);
957 sqlite3_vtab *pVtab = aVTrans[i]->pVtab;
958 if( pVtab && (x = pVtab->pModule->xSync)!=0 ){
959 rc = x(pVtab);
960 sqlite3VtabImportErrmsg(p, pVtab);
963 db->aVTrans = aVTrans;
964 return rc;
968 ** Invoke the xRollback method of all virtual tables in the
969 ** sqlite3.aVTrans array. Then clear the array itself.
971 int sqlite3VtabRollback(sqlite3 *db){
972 callFinaliser(db, offsetof(sqlite3_module,xRollback));
973 return SQLITE_OK;
977 ** Invoke the xCommit method of all virtual tables in the
978 ** sqlite3.aVTrans array. Then clear the array itself.
980 int sqlite3VtabCommit(sqlite3 *db){
981 callFinaliser(db, offsetof(sqlite3_module,xCommit));
982 return SQLITE_OK;
986 ** If the virtual table pVtab supports the transaction interface
987 ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is
988 ** not currently open, invoke the xBegin method now.
990 ** If the xBegin call is successful, place the sqlite3_vtab pointer
991 ** in the sqlite3.aVTrans array.
993 int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){
994 int rc = SQLITE_OK;
995 const sqlite3_module *pModule;
997 /* Special case: If db->aVTrans is NULL and db->nVTrans is greater
998 ** than zero, then this function is being called from within a
999 ** virtual module xSync() callback. It is illegal to write to
1000 ** virtual module tables in this case, so return SQLITE_LOCKED.
1002 if( sqlite3VtabInSync(db) ){
1003 return SQLITE_LOCKED;
1005 if( !pVTab ){
1006 return SQLITE_OK;
1008 pModule = pVTab->pVtab->pModule;
1010 if( pModule->xBegin ){
1011 int i;
1013 /* If pVtab is already in the aVTrans array, return early */
1014 for(i=0; i<db->nVTrans; i++){
1015 if( db->aVTrans[i]==pVTab ){
1016 return SQLITE_OK;
1020 /* Invoke the xBegin method. If successful, add the vtab to the
1021 ** sqlite3.aVTrans[] array. */
1022 rc = growVTrans(db);
1023 if( rc==SQLITE_OK ){
1024 rc = pModule->xBegin(pVTab->pVtab);
1025 if( rc==SQLITE_OK ){
1026 int iSvpt = db->nStatement + db->nSavepoint;
1027 addToVTrans(db, pVTab);
1028 if( iSvpt && pModule->xSavepoint ){
1029 pVTab->iSavepoint = iSvpt;
1030 rc = pModule->xSavepoint(pVTab->pVtab, iSvpt-1);
1035 return rc;
1039 ** Invoke either the xSavepoint, xRollbackTo or xRelease method of all
1040 ** virtual tables that currently have an open transaction. Pass iSavepoint
1041 ** as the second argument to the virtual table method invoked.
1043 ** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is
1044 ** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is
1045 ** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with
1046 ** an open transaction is invoked.
1048 ** If any virtual table method returns an error code other than SQLITE_OK,
1049 ** processing is abandoned and the error returned to the caller of this
1050 ** function immediately. If all calls to virtual table methods are successful,
1051 ** SQLITE_OK is returned.
1053 int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){
1054 int rc = SQLITE_OK;
1056 assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN );
1057 assert( iSavepoint>=-1 );
1058 if( db->aVTrans ){
1059 int i;
1060 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
1061 VTable *pVTab = db->aVTrans[i];
1062 const sqlite3_module *pMod = pVTab->pMod->pModule;
1063 if( pVTab->pVtab && pMod->iVersion>=2 ){
1064 int (*xMethod)(sqlite3_vtab *, int);
1065 sqlite3VtabLock(pVTab);
1066 switch( op ){
1067 case SAVEPOINT_BEGIN:
1068 xMethod = pMod->xSavepoint;
1069 pVTab->iSavepoint = iSavepoint+1;
1070 break;
1071 case SAVEPOINT_ROLLBACK:
1072 xMethod = pMod->xRollbackTo;
1073 break;
1074 default:
1075 xMethod = pMod->xRelease;
1076 break;
1078 if( xMethod && pVTab->iSavepoint>iSavepoint ){
1079 rc = xMethod(pVTab->pVtab, iSavepoint);
1081 sqlite3VtabUnlock(pVTab);
1085 return rc;
1089 ** The first parameter (pDef) is a function implementation. The
1090 ** second parameter (pExpr) is the first argument to this function.
1091 ** If pExpr is a column in a virtual table, then let the virtual
1092 ** table implementation have an opportunity to overload the function.
1094 ** This routine is used to allow virtual table implementations to
1095 ** overload MATCH, LIKE, GLOB, and REGEXP operators.
1097 ** Return either the pDef argument (indicating no change) or a
1098 ** new FuncDef structure that is marked as ephemeral using the
1099 ** SQLITE_FUNC_EPHEM flag.
1101 FuncDef *sqlite3VtabOverloadFunction(
1102 sqlite3 *db, /* Database connection for reporting malloc problems */
1103 FuncDef *pDef, /* Function to possibly overload */
1104 int nArg, /* Number of arguments to the function */
1105 Expr *pExpr /* First argument to the function */
1107 Table *pTab;
1108 sqlite3_vtab *pVtab;
1109 sqlite3_module *pMod;
1110 void (*xSFunc)(sqlite3_context*,int,sqlite3_value**) = 0;
1111 void *pArg = 0;
1112 FuncDef *pNew;
1113 int rc = 0;
1115 /* Check to see the left operand is a column in a virtual table */
1116 if( NEVER(pExpr==0) ) return pDef;
1117 if( pExpr->op!=TK_COLUMN ) return pDef;
1118 pTab = pExpr->y.pTab;
1119 if( pTab==0 ) return pDef;
1120 if( !IsVirtual(pTab) ) return pDef;
1121 pVtab = sqlite3GetVTable(db, pTab)->pVtab;
1122 assert( pVtab!=0 );
1123 assert( pVtab->pModule!=0 );
1124 pMod = (sqlite3_module *)pVtab->pModule;
1125 if( pMod->xFindFunction==0 ) return pDef;
1127 /* Call the xFindFunction method on the virtual table implementation
1128 ** to see if the implementation wants to overload this function.
1130 ** Though undocumented, we have historically always invoked xFindFunction
1131 ** with an all lower-case function name. Continue in this tradition to
1132 ** avoid any chance of an incompatibility.
1134 #ifdef SQLITE_DEBUG
1136 int i;
1137 for(i=0; pDef->zName[i]; i++){
1138 unsigned char x = (unsigned char)pDef->zName[i];
1139 assert( x==sqlite3UpperToLower[x] );
1142 #endif
1143 rc = pMod->xFindFunction(pVtab, nArg, pDef->zName, &xSFunc, &pArg);
1144 if( rc==0 ){
1145 return pDef;
1148 /* Create a new ephemeral function definition for the overloaded
1149 ** function */
1150 pNew = sqlite3DbMallocZero(db, sizeof(*pNew)
1151 + sqlite3Strlen30(pDef->zName) + 1);
1152 if( pNew==0 ){
1153 return pDef;
1155 *pNew = *pDef;
1156 pNew->zName = (const char*)&pNew[1];
1157 memcpy((char*)&pNew[1], pDef->zName, sqlite3Strlen30(pDef->zName)+1);
1158 pNew->xSFunc = xSFunc;
1159 pNew->pUserData = pArg;
1160 pNew->funcFlags |= SQLITE_FUNC_EPHEM;
1161 return pNew;
1165 ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[]
1166 ** array so that an OP_VBegin will get generated for it. Add pTab to the
1167 ** array if it is missing. If pTab is already in the array, this routine
1168 ** is a no-op.
1170 void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){
1171 Parse *pToplevel = sqlite3ParseToplevel(pParse);
1172 int i, n;
1173 Table **apVtabLock;
1175 assert( IsVirtual(pTab) );
1176 for(i=0; i<pToplevel->nVtabLock; i++){
1177 if( pTab==pToplevel->apVtabLock[i] ) return;
1179 n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]);
1180 apVtabLock = sqlite3Realloc(pToplevel->apVtabLock, n);
1181 if( apVtabLock ){
1182 pToplevel->apVtabLock = apVtabLock;
1183 pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab;
1184 }else{
1185 sqlite3OomFault(pToplevel->db);
1190 ** Check to see if virtual table module pMod can be have an eponymous
1191 ** virtual table instance. If it can, create one if one does not already
1192 ** exist. Return non-zero if the eponymous virtual table instance exists
1193 ** when this routine returns, and return zero if it does not exist.
1195 ** An eponymous virtual table instance is one that is named after its
1196 ** module, and more importantly, does not require a CREATE VIRTUAL TABLE
1197 ** statement in order to come into existance. Eponymous virtual table
1198 ** instances always exist. They cannot be DROP-ed.
1200 ** Any virtual table module for which xConnect and xCreate are the same
1201 ** method can have an eponymous virtual table instance.
1203 int sqlite3VtabEponymousTableInit(Parse *pParse, Module *pMod){
1204 const sqlite3_module *pModule = pMod->pModule;
1205 Table *pTab;
1206 char *zErr = 0;
1207 int rc;
1208 sqlite3 *db = pParse->db;
1209 if( pMod->pEpoTab ) return 1;
1210 if( pModule->xCreate!=0 && pModule->xCreate!=pModule->xConnect ) return 0;
1211 pTab = sqlite3DbMallocZero(db, sizeof(Table));
1212 if( pTab==0 ) return 0;
1213 pTab->zName = sqlite3DbStrDup(db, pMod->zName);
1214 if( pTab->zName==0 ){
1215 sqlite3DbFree(db, pTab);
1216 return 0;
1218 pMod->pEpoTab = pTab;
1219 pTab->nTabRef = 1;
1220 pTab->pSchema = db->aDb[0].pSchema;
1221 assert( pTab->nModuleArg==0 );
1222 pTab->iPKey = -1;
1223 addModuleArgument(pParse, pTab, sqlite3DbStrDup(db, pTab->zName));
1224 addModuleArgument(pParse, pTab, 0);
1225 addModuleArgument(pParse, pTab, sqlite3DbStrDup(db, pTab->zName));
1226 rc = vtabCallConstructor(db, pTab, pMod, pModule->xConnect, &zErr);
1227 if( rc ){
1228 sqlite3ErrorMsg(pParse, "%s", zErr);
1229 sqlite3DbFree(db, zErr);
1230 sqlite3VtabEponymousTableClear(db, pMod);
1231 return 0;
1233 return 1;
1237 ** Erase the eponymous virtual table instance associated with
1238 ** virtual table module pMod, if it exists.
1240 void sqlite3VtabEponymousTableClear(sqlite3 *db, Module *pMod){
1241 Table *pTab = pMod->pEpoTab;
1242 if( pTab!=0 ){
1243 /* Mark the table as Ephemeral prior to deleting it, so that the
1244 ** sqlite3DeleteTable() routine will know that it is not stored in
1245 ** the schema. */
1246 pTab->tabFlags |= TF_Ephemeral;
1247 sqlite3DeleteTable(db, pTab);
1248 pMod->pEpoTab = 0;
1253 ** Return the ON CONFLICT resolution mode in effect for the virtual
1254 ** table update operation currently in progress.
1256 ** The results of this routine are undefined unless it is called from
1257 ** within an xUpdate method.
1259 int sqlite3_vtab_on_conflict(sqlite3 *db){
1260 static const unsigned char aMap[] = {
1261 SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE
1263 #ifdef SQLITE_ENABLE_API_ARMOR
1264 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
1265 #endif
1266 assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 );
1267 assert( OE_Ignore==4 && OE_Replace==5 );
1268 assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 );
1269 return (int)aMap[db->vtabOnConflict-1];
1273 ** Call from within the xCreate() or xConnect() methods to provide
1274 ** the SQLite core with additional information about the behavior
1275 ** of the virtual table being implemented.
1277 int sqlite3_vtab_config(sqlite3 *db, int op, ...){
1278 va_list ap;
1279 int rc = SQLITE_OK;
1280 VtabCtx *p;
1282 #ifdef SQLITE_ENABLE_API_ARMOR
1283 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
1284 #endif
1285 sqlite3_mutex_enter(db->mutex);
1286 p = db->pVtabCtx;
1287 if( !p ){
1288 rc = SQLITE_MISUSE_BKPT;
1289 }else{
1290 assert( p->pTab==0 || IsVirtual(p->pTab) );
1291 va_start(ap, op);
1292 switch( op ){
1293 case SQLITE_VTAB_CONSTRAINT_SUPPORT: {
1294 p->pVTable->bConstraint = (u8)va_arg(ap, int);
1295 break;
1297 case SQLITE_VTAB_INNOCUOUS: {
1298 p->pVTable->eVtabRisk = SQLITE_VTABRISK_Low;
1299 break;
1301 case SQLITE_VTAB_DIRECTONLY: {
1302 p->pVTable->eVtabRisk = SQLITE_VTABRISK_High;
1303 break;
1305 default: {
1306 rc = SQLITE_MISUSE_BKPT;
1307 break;
1310 va_end(ap);
1313 if( rc!=SQLITE_OK ) sqlite3Error(db, rc);
1314 sqlite3_mutex_leave(db->mutex);
1315 return rc;
1318 #endif /* SQLITE_OMIT_VIRTUALTABLE */