remove unused functions from provider interface
[sqlcipher.git] / src / wal.c
blob845ac5679264f26f832e6dc6327de1a8194a9a3e
1 /*
2 ** 2010 February 1
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains the implementation of a write-ahead log (WAL) used in
14 ** "journal_mode=WAL" mode.
16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT
18 ** A WAL file consists of a header followed by zero or more "frames".
19 ** Each frame records the revised content of a single page from the
20 ** database file. All changes to the database are recorded by writing
21 ** frames into the WAL. Transactions commit when a frame is written that
22 ** contains a commit marker. A single WAL can and usually does record
23 ** multiple transactions. Periodically, the content of the WAL is
24 ** transferred back into the database file in an operation called a
25 ** "checkpoint".
27 ** A single WAL file can be used multiple times. In other words, the
28 ** WAL can fill up with frames and then be checkpointed and then new
29 ** frames can overwrite the old ones. A WAL always grows from beginning
30 ** toward the end. Checksums and counters attached to each frame are
31 ** used to determine which frames within the WAL are valid and which
32 ** are leftovers from prior checkpoints.
34 ** The WAL header is 32 bytes in size and consists of the following eight
35 ** big-endian 32-bit unsigned integer values:
37 ** 0: Magic number. 0x377f0682 or 0x377f0683
38 ** 4: File format version. Currently 3007000
39 ** 8: Database page size. Example: 1024
40 ** 12: Checkpoint sequence number
41 ** 16: Salt-1, random integer incremented with each checkpoint
42 ** 20: Salt-2, a different random integer changing with each ckpt
43 ** 24: Checksum-1 (first part of checksum for first 24 bytes of header).
44 ** 28: Checksum-2 (second part of checksum for first 24 bytes of header).
46 ** Immediately following the wal-header are zero or more frames. Each
47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes
48 ** of page data. The frame-header is six big-endian 32-bit unsigned
49 ** integer values, as follows:
51 ** 0: Page number.
52 ** 4: For commit records, the size of the database image in pages
53 ** after the commit. For all other records, zero.
54 ** 8: Salt-1 (copied from the header)
55 ** 12: Salt-2 (copied from the header)
56 ** 16: Checksum-1.
57 ** 20: Checksum-2.
59 ** A frame is considered valid if and only if the following conditions are
60 ** true:
62 ** (1) The salt-1 and salt-2 values in the frame-header match
63 ** salt values in the wal-header
65 ** (2) The checksum values in the final 8 bytes of the frame-header
66 ** exactly match the checksum computed consecutively on the
67 ** WAL header and the first 8 bytes and the content of all frames
68 ** up to and including the current frame.
70 ** The checksum is computed using 32-bit big-endian integers if the
71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72 ** is computed using little-endian if the magic number is 0x377f0682.
73 ** The checksum values are always stored in the frame header in a
74 ** big-endian format regardless of which byte order is used to compute
75 ** the checksum. The checksum is computed by interpreting the input as
76 ** an even number of unsigned 32-bit integers: x[0] through x[N]. The
77 ** algorithm used for the checksum is as follows:
78 **
79 ** for i from 0 to n-1 step 2:
80 ** s0 += x[i] + s1;
81 ** s1 += x[i+1] + s0;
82 ** endfor
84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights
85 ** in reverse order (the largest fibonacci weight occurs on the first element
86 ** of the sequence being summed.) The s1 value spans all 32-bit
87 ** terms of the sequence whereas s0 omits the final term.
89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90 ** WAL is transferred into the database, then the database is VFS.xSync-ed.
91 ** The VFS.xSync operations serve as write barriers - all writes launched
92 ** before the xSync must complete before any write that launches after the
93 ** xSync begins.
95 ** After each checkpoint, the salt-1 value is incremented and the salt-2
96 ** value is randomized. This prevents old and new frames in the WAL from
97 ** being considered valid at the same time and being checkpointing together
98 ** following a crash.
100 ** READER ALGORITHM
102 ** To read a page from the database (call it page number P), a reader
103 ** first checks the WAL to see if it contains page P. If so, then the
104 ** last valid instance of page P that is a followed by a commit frame
105 ** or is a commit frame itself becomes the value read. If the WAL
106 ** contains no copies of page P that are valid and which are a commit
107 ** frame or are followed by a commit frame, then page P is read from
108 ** the database file.
110 ** To start a read transaction, the reader records the index of the last
111 ** valid frame in the WAL. The reader uses this recorded "mxFrame" value
112 ** for all subsequent read operations. New transactions can be appended
113 ** to the WAL, but as long as the reader uses its original mxFrame value
114 ** and ignores the newly appended content, it will see a consistent snapshot
115 ** of the database from a single point in time. This technique allows
116 ** multiple concurrent readers to view different versions of the database
117 ** content simultaneously.
119 ** The reader algorithm in the previous paragraphs works correctly, but
120 ** because frames for page P can appear anywhere within the WAL, the
121 ** reader has to scan the entire WAL looking for page P frames. If the
122 ** WAL is large (multiple megabytes is typical) that scan can be slow,
123 ** and read performance suffers. To overcome this problem, a separate
124 ** data structure called the wal-index is maintained to expedite the
125 ** search for frames of a particular page.
127 ** WAL-INDEX FORMAT
129 ** Conceptually, the wal-index is shared memory, though VFS implementations
130 ** might choose to implement the wal-index using a mmapped file. Because
131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132 ** on a network filesystem. All users of the database must be able to
133 ** share memory.
135 ** In the default unix and windows implementation, the wal-index is a mmapped
136 ** file whose name is the database name with a "-shm" suffix added. For that
137 ** reason, the wal-index is sometimes called the "shm" file.
139 ** The wal-index is transient. After a crash, the wal-index can (and should
140 ** be) reconstructed from the original WAL file. In fact, the VFS is required
141 ** to either truncate or zero the header of the wal-index when the last
142 ** connection to it closes. Because the wal-index is transient, it can
143 ** use an architecture-specific format; it does not have to be cross-platform.
144 ** Hence, unlike the database and WAL file formats which store all values
145 ** as big endian, the wal-index can store multi-byte values in the native
146 ** byte order of the host computer.
148 ** The purpose of the wal-index is to answer this question quickly: Given
149 ** a page number P and a maximum frame index M, return the index of the
150 ** last frame in the wal before frame M for page P in the WAL, or return
151 ** NULL if there are no frames for page P in the WAL prior to M.
153 ** The wal-index consists of a header region, followed by an one or
154 ** more index blocks.
156 ** The wal-index header contains the total number of frames within the WAL
157 ** in the mxFrame field.
159 ** Each index block except for the first contains information on
160 ** HASHTABLE_NPAGE frames. The first index block contains information on
161 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
162 ** HASHTABLE_NPAGE are selected so that together the wal-index header and
163 ** first index block are the same size as all other index blocks in the
164 ** wal-index.
166 ** Each index block contains two sections, a page-mapping that contains the
167 ** database page number associated with each wal frame, and a hash-table
168 ** that allows readers to query an index block for a specific page number.
169 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
170 ** for the first index block) 32-bit page numbers. The first entry in the
171 ** first index-block contains the database page number corresponding to the
172 ** first frame in the WAL file. The first entry in the second index block
173 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
174 ** the log, and so on.
176 ** The last index block in a wal-index usually contains less than the full
177 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
178 ** depending on the contents of the WAL file. This does not change the
179 ** allocated size of the page-mapping array - the page-mapping array merely
180 ** contains unused entries.
182 ** Even without using the hash table, the last frame for page P
183 ** can be found by scanning the page-mapping sections of each index block
184 ** starting with the last index block and moving toward the first, and
185 ** within each index block, starting at the end and moving toward the
186 ** beginning. The first entry that equals P corresponds to the frame
187 ** holding the content for that page.
189 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
190 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
191 ** hash table for each page number in the mapping section, so the hash
192 ** table is never more than half full. The expected number of collisions
193 ** prior to finding a match is 1. Each entry of the hash table is an
194 ** 1-based index of an entry in the mapping section of the same
195 ** index block. Let K be the 1-based index of the largest entry in
196 ** the mapping section. (For index blocks other than the last, K will
197 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
198 ** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
199 ** contain a value of 0.
201 ** To look for page P in the hash table, first compute a hash iKey on
202 ** P as follows:
204 ** iKey = (P * 383) % HASHTABLE_NSLOT
206 ** Then start scanning entries of the hash table, starting with iKey
207 ** (wrapping around to the beginning when the end of the hash table is
208 ** reached) until an unused hash slot is found. Let the first unused slot
209 ** be at index iUnused. (iUnused might be less than iKey if there was
210 ** wrap-around.) Because the hash table is never more than half full,
211 ** the search is guaranteed to eventually hit an unused entry. Let
212 ** iMax be the value between iKey and iUnused, closest to iUnused,
213 ** where aHash[iMax]==P. If there is no iMax entry (if there exists
214 ** no hash slot such that aHash[i]==p) then page P is not in the
215 ** current index block. Otherwise the iMax-th mapping entry of the
216 ** current index block corresponds to the last entry that references
217 ** page P.
219 ** A hash search begins with the last index block and moves toward the
220 ** first index block, looking for entries corresponding to page P. On
221 ** average, only two or three slots in each index block need to be
222 ** examined in order to either find the last entry for page P, or to
223 ** establish that no such entry exists in the block. Each index block
224 ** holds over 4000 entries. So two or three index blocks are sufficient
225 ** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
226 ** comparisons (on average) suffice to either locate a frame in the
227 ** WAL or to establish that the frame does not exist in the WAL. This
228 ** is much faster than scanning the entire 10MB WAL.
230 ** Note that entries are added in order of increasing K. Hence, one
231 ** reader might be using some value K0 and a second reader that started
232 ** at a later time (after additional transactions were added to the WAL
233 ** and to the wal-index) might be using a different value K1, where K1>K0.
234 ** Both readers can use the same hash table and mapping section to get
235 ** the correct result. There may be entries in the hash table with
236 ** K>K0 but to the first reader, those entries will appear to be unused
237 ** slots in the hash table and so the first reader will get an answer as
238 ** if no values greater than K0 had ever been inserted into the hash table
239 ** in the first place - which is what reader one wants. Meanwhile, the
240 ** second reader using K1 will see additional values that were inserted
241 ** later, which is exactly what reader two wants.
243 ** When a rollback occurs, the value of K is decreased. Hash table entries
244 ** that correspond to frames greater than the new K value are removed
245 ** from the hash table at this point.
247 #ifndef SQLITE_OMIT_WAL
249 #include "wal.h"
252 ** Trace output macros
254 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
255 int sqlite3WalTrace = 0;
256 # define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X
257 #else
258 # define WALTRACE(X)
259 #endif
262 ** WAL mode depends on atomic aligned 32-bit loads and stores in a few
263 ** places. The following macros try to make this explicit.
265 #if GCC_VESRION>=5004000
266 # define AtomicLoad(PTR) __atomic_load_n((PTR),__ATOMIC_RELAXED)
267 # define AtomicStore(PTR,VAL) __atomic_store_n((PTR),(VAL),__ATOMIC_RELAXED)
268 #else
269 # define AtomicLoad(PTR) (*(PTR))
270 # define AtomicStore(PTR,VAL) (*(PTR) = (VAL))
271 #endif
274 ** The maximum (and only) versions of the wal and wal-index formats
275 ** that may be interpreted by this version of SQLite.
277 ** If a client begins recovering a WAL file and finds that (a) the checksum
278 ** values in the wal-header are correct and (b) the version field is not
279 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
281 ** Similarly, if a client successfully reads a wal-index header (i.e. the
282 ** checksum test is successful) and finds that the version field is not
283 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
284 ** returns SQLITE_CANTOPEN.
286 #define WAL_MAX_VERSION 3007000
287 #define WALINDEX_MAX_VERSION 3007000
290 ** Index numbers for various locking bytes. WAL_NREADER is the number
291 ** of available reader locks and should be at least 3. The default
292 ** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5.
294 ** Technically, the various VFSes are free to implement these locks however
295 ** they see fit. However, compatibility is encouraged so that VFSes can
296 ** interoperate. The standard implemention used on both unix and windows
297 ** is for the index number to indicate a byte offset into the
298 ** WalCkptInfo.aLock[] array in the wal-index header. In other words, all
299 ** locks are on the shm file. The WALINDEX_LOCK_OFFSET constant (which
300 ** should be 120) is the location in the shm file for the first locking
301 ** byte.
303 #define WAL_WRITE_LOCK 0
304 #define WAL_ALL_BUT_WRITE 1
305 #define WAL_CKPT_LOCK 1
306 #define WAL_RECOVER_LOCK 2
307 #define WAL_READ_LOCK(I) (3+(I))
308 #define WAL_NREADER (SQLITE_SHM_NLOCK-3)
311 /* Object declarations */
312 typedef struct WalIndexHdr WalIndexHdr;
313 typedef struct WalIterator WalIterator;
314 typedef struct WalCkptInfo WalCkptInfo;
318 ** The following object holds a copy of the wal-index header content.
320 ** The actual header in the wal-index consists of two copies of this
321 ** object followed by one instance of the WalCkptInfo object.
322 ** For all versions of SQLite through 3.10.0 and probably beyond,
323 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and
324 ** the total header size is 136 bytes.
326 ** The szPage value can be any power of 2 between 512 and 32768, inclusive.
327 ** Or it can be 1 to represent a 65536-byte page. The latter case was
328 ** added in 3.7.1 when support for 64K pages was added.
330 struct WalIndexHdr {
331 u32 iVersion; /* Wal-index version */
332 u32 unused; /* Unused (padding) field */
333 u32 iChange; /* Counter incremented each transaction */
334 u8 isInit; /* 1 when initialized */
335 u8 bigEndCksum; /* True if checksums in WAL are big-endian */
336 u16 szPage; /* Database page size in bytes. 1==64K */
337 u32 mxFrame; /* Index of last valid frame in the WAL */
338 u32 nPage; /* Size of database in pages */
339 u32 aFrameCksum[2]; /* Checksum of last frame in log */
340 u32 aSalt[2]; /* Two salt values copied from WAL header */
341 u32 aCksum[2]; /* Checksum over all prior fields */
345 ** A copy of the following object occurs in the wal-index immediately
346 ** following the second copy of the WalIndexHdr. This object stores
347 ** information used by checkpoint.
349 ** nBackfill is the number of frames in the WAL that have been written
350 ** back into the database. (We call the act of moving content from WAL to
351 ** database "backfilling".) The nBackfill number is never greater than
352 ** WalIndexHdr.mxFrame. nBackfill can only be increased by threads
353 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
354 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
355 ** mxFrame back to zero when the WAL is reset.
357 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint
358 ** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however
359 ** the nBackfillAttempted is set before any backfilling is done and the
360 ** nBackfill is only set after all backfilling completes. So if a checkpoint
361 ** crashes, nBackfillAttempted might be larger than nBackfill. The
362 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
364 ** The aLock[] field is a set of bytes used for locking. These bytes should
365 ** never be read or written.
367 ** There is one entry in aReadMark[] for each reader lock. If a reader
368 ** holds read-lock K, then the value in aReadMark[K] is no greater than
369 ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff)
370 ** for any aReadMark[] means that entry is unused. aReadMark[0] is
371 ** a special case; its value is never used and it exists as a place-holder
372 ** to avoid having to offset aReadMark[] indexs by one. Readers holding
373 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
374 ** directly from the database.
376 ** The value of aReadMark[K] may only be changed by a thread that
377 ** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of
378 ** aReadMark[K] cannot changed while there is a reader is using that mark
379 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
381 ** The checkpointer may only transfer frames from WAL to database where
382 ** the frame numbers are less than or equal to every aReadMark[] that is
383 ** in use (that is, every aReadMark[j] for which there is a corresponding
384 ** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the
385 ** largest value and will increase an unused aReadMark[] to mxFrame if there
386 ** is not already an aReadMark[] equal to mxFrame. The exception to the
387 ** previous sentence is when nBackfill equals mxFrame (meaning that everything
388 ** in the WAL has been backfilled into the database) then new readers
389 ** will choose aReadMark[0] which has value 0 and hence such reader will
390 ** get all their all content directly from the database file and ignore
391 ** the WAL.
393 ** Writers normally append new frames to the end of the WAL. However,
394 ** if nBackfill equals mxFrame (meaning that all WAL content has been
395 ** written back into the database) and if no readers are using the WAL
396 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
397 ** the writer will first "reset" the WAL back to the beginning and start
398 ** writing new content beginning at frame 1.
400 ** We assume that 32-bit loads are atomic and so no locks are needed in
401 ** order to read from any aReadMark[] entries.
403 struct WalCkptInfo {
404 u32 nBackfill; /* Number of WAL frames backfilled into DB */
405 u32 aReadMark[WAL_NREADER]; /* Reader marks */
406 u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */
407 u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */
408 u32 notUsed0; /* Available for future enhancements */
410 #define READMARK_NOT_USED 0xffffffff
413 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at
414 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
415 ** only support mandatory file-locks, we do not read or write data
416 ** from the region of the file on which locks are applied.
418 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
419 #define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))
421 /* Size of header before each frame in wal */
422 #define WAL_FRAME_HDRSIZE 24
424 /* Size of write ahead log header, including checksum. */
425 #define WAL_HDRSIZE 32
427 /* WAL magic value. Either this value, or the same value with the least
428 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
429 ** big-endian format in the first 4 bytes of a WAL file.
431 ** If the LSB is set, then the checksums for each frame within the WAL
432 ** file are calculated by treating all data as an array of 32-bit
433 ** big-endian words. Otherwise, they are calculated by interpreting
434 ** all data as 32-bit little-endian words.
436 #define WAL_MAGIC 0x377f0682
439 ** Return the offset of frame iFrame in the write-ahead log file,
440 ** assuming a database page size of szPage bytes. The offset returned
441 ** is to the start of the write-ahead log frame-header.
443 #define walFrameOffset(iFrame, szPage) ( \
444 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \
448 ** An open write-ahead log file is represented by an instance of the
449 ** following object.
451 struct Wal {
452 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */
453 sqlite3_file *pDbFd; /* File handle for the database file */
454 sqlite3_file *pWalFd; /* File handle for WAL file */
455 u32 iCallback; /* Value to pass to log callback (or 0) */
456 i64 mxWalSize; /* Truncate WAL to this size upon reset */
457 int nWiData; /* Size of array apWiData */
458 int szFirstBlock; /* Size of first block written to WAL file */
459 volatile u32 **apWiData; /* Pointer to wal-index content in memory */
460 u32 szPage; /* Database page size */
461 i16 readLock; /* Which read lock is being held. -1 for none */
462 u8 syncFlags; /* Flags to use to sync header writes */
463 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
464 u8 writeLock; /* True if in a write transaction */
465 u8 ckptLock; /* True if holding a checkpoint lock */
466 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
467 u8 truncateOnCommit; /* True to truncate WAL file on commit */
468 u8 syncHeader; /* Fsync the WAL header if true */
469 u8 padToSectorBoundary; /* Pad transactions out to the next sector */
470 u8 bShmUnreliable; /* SHM content is read-only and unreliable */
471 WalIndexHdr hdr; /* Wal-index header for current transaction */
472 u32 minFrame; /* Ignore wal frames before this one */
473 u32 iReCksum; /* On commit, recalculate checksums from here */
474 const char *zWalName; /* Name of WAL file */
475 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */
476 #ifdef SQLITE_DEBUG
477 u8 lockError; /* True if a locking error has occurred */
478 #endif
479 #ifdef SQLITE_ENABLE_SNAPSHOT
480 WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */
481 #endif
485 ** Candidate values for Wal.exclusiveMode.
487 #define WAL_NORMAL_MODE 0
488 #define WAL_EXCLUSIVE_MODE 1
489 #define WAL_HEAPMEMORY_MODE 2
492 ** Possible values for WAL.readOnly
494 #define WAL_RDWR 0 /* Normal read/write connection */
495 #define WAL_RDONLY 1 /* The WAL file is readonly */
496 #define WAL_SHM_RDONLY 2 /* The SHM file is readonly */
499 ** Each page of the wal-index mapping contains a hash-table made up of
500 ** an array of HASHTABLE_NSLOT elements of the following type.
502 typedef u16 ht_slot;
505 ** This structure is used to implement an iterator that loops through
506 ** all frames in the WAL in database page order. Where two or more frames
507 ** correspond to the same database page, the iterator visits only the
508 ** frame most recently written to the WAL (in other words, the frame with
509 ** the largest index).
511 ** The internals of this structure are only accessed by:
513 ** walIteratorInit() - Create a new iterator,
514 ** walIteratorNext() - Step an iterator,
515 ** walIteratorFree() - Free an iterator.
517 ** This functionality is used by the checkpoint code (see walCheckpoint()).
519 struct WalIterator {
520 int iPrior; /* Last result returned from the iterator */
521 int nSegment; /* Number of entries in aSegment[] */
522 struct WalSegment {
523 int iNext; /* Next slot in aIndex[] not yet returned */
524 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */
525 u32 *aPgno; /* Array of page numbers. */
526 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */
527 int iZero; /* Frame number associated with aPgno[0] */
528 } aSegment[1]; /* One for every 32KB page in the wal-index */
532 ** Define the parameters of the hash tables in the wal-index file. There
533 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the
534 ** wal-index.
536 ** Changing any of these constants will alter the wal-index format and
537 ** create incompatibilities.
539 #define HASHTABLE_NPAGE 4096 /* Must be power of 2 */
540 #define HASHTABLE_HASH_1 383 /* Should be prime */
541 #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
544 ** The block of page numbers associated with the first hash-table in a
545 ** wal-index is smaller than usual. This is so that there is a complete
546 ** hash-table on each aligned 32KB page of the wal-index.
548 #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
550 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
551 #define WALINDEX_PGSZ ( \
552 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
556 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
557 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
558 ** numbered from zero.
560 ** If the wal-index is currently smaller the iPage pages then the size
561 ** of the wal-index might be increased, but only if it is safe to do
562 ** so. It is safe to enlarge the wal-index if pWal->writeLock is true
563 ** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE.
565 ** If this call is successful, *ppPage is set to point to the wal-index
566 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
567 ** then an SQLite error code is returned and *ppPage is set to 0.
569 static SQLITE_NOINLINE int walIndexPageRealloc(
570 Wal *pWal, /* The WAL context */
571 int iPage, /* The page we seek */
572 volatile u32 **ppPage /* Write the page pointer here */
574 int rc = SQLITE_OK;
576 /* Enlarge the pWal->apWiData[] array if required */
577 if( pWal->nWiData<=iPage ){
578 sqlite3_int64 nByte = sizeof(u32*)*(iPage+1);
579 volatile u32 **apNew;
580 apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte);
581 if( !apNew ){
582 *ppPage = 0;
583 return SQLITE_NOMEM_BKPT;
585 memset((void*)&apNew[pWal->nWiData], 0,
586 sizeof(u32*)*(iPage+1-pWal->nWiData));
587 pWal->apWiData = apNew;
588 pWal->nWiData = iPage+1;
591 /* Request a pointer to the required page from the VFS */
592 assert( pWal->apWiData[iPage]==0 );
593 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
594 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
595 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT;
596 }else{
597 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
598 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
600 assert( pWal->apWiData[iPage]!=0 || rc!=SQLITE_OK || pWal->writeLock==0 );
601 testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK );
602 if( (rc&0xff)==SQLITE_READONLY ){
603 pWal->readOnly |= WAL_SHM_RDONLY;
604 if( rc==SQLITE_READONLY ){
605 rc = SQLITE_OK;
610 *ppPage = pWal->apWiData[iPage];
611 assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
612 return rc;
614 static int walIndexPage(
615 Wal *pWal, /* The WAL context */
616 int iPage, /* The page we seek */
617 volatile u32 **ppPage /* Write the page pointer here */
619 if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){
620 return walIndexPageRealloc(pWal, iPage, ppPage);
622 return SQLITE_OK;
626 ** Return a pointer to the WalCkptInfo structure in the wal-index.
628 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
629 assert( pWal->nWiData>0 && pWal->apWiData[0] );
630 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
634 ** Return a pointer to the WalIndexHdr structure in the wal-index.
636 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
637 assert( pWal->nWiData>0 && pWal->apWiData[0] );
638 return (volatile WalIndexHdr*)pWal->apWiData[0];
642 ** The argument to this macro must be of type u32. On a little-endian
643 ** architecture, it returns the u32 value that results from interpreting
644 ** the 4 bytes as a big-endian value. On a big-endian architecture, it
645 ** returns the value that would be produced by interpreting the 4 bytes
646 ** of the input value as a little-endian integer.
648 #define BYTESWAP32(x) ( \
649 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
650 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
654 ** Generate or extend an 8 byte checksum based on the data in
655 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or
656 ** initial values of 0 and 0 if aIn==NULL).
658 ** The checksum is written back into aOut[] before returning.
660 ** nByte must be a positive multiple of 8.
662 static void walChecksumBytes(
663 int nativeCksum, /* True for native byte-order, false for non-native */
664 u8 *a, /* Content to be checksummed */
665 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
666 const u32 *aIn, /* Initial checksum value input */
667 u32 *aOut /* OUT: Final checksum value output */
669 u32 s1, s2;
670 u32 *aData = (u32 *)a;
671 u32 *aEnd = (u32 *)&a[nByte];
673 if( aIn ){
674 s1 = aIn[0];
675 s2 = aIn[1];
676 }else{
677 s1 = s2 = 0;
680 assert( nByte>=8 );
681 assert( (nByte&0x00000007)==0 );
682 assert( nByte<=65536 );
684 if( nativeCksum ){
685 do {
686 s1 += *aData++ + s2;
687 s2 += *aData++ + s1;
688 }while( aData<aEnd );
689 }else{
690 do {
691 s1 += BYTESWAP32(aData[0]) + s2;
692 s2 += BYTESWAP32(aData[1]) + s1;
693 aData += 2;
694 }while( aData<aEnd );
697 aOut[0] = s1;
698 aOut[1] = s2;
701 static void walShmBarrier(Wal *pWal){
702 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
703 sqlite3OsShmBarrier(pWal->pDbFd);
708 ** Write the header information in pWal->hdr into the wal-index.
710 ** The checksum on pWal->hdr is updated before it is written.
712 static void walIndexWriteHdr(Wal *pWal){
713 volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
714 const int nCksum = offsetof(WalIndexHdr, aCksum);
716 assert( pWal->writeLock );
717 pWal->hdr.isInit = 1;
718 pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
719 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
720 memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
721 walShmBarrier(pWal);
722 memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
726 ** This function encodes a single frame header and writes it to a buffer
727 ** supplied by the caller. A frame-header is made up of a series of
728 ** 4-byte big-endian integers, as follows:
730 ** 0: Page number.
731 ** 4: For commit records, the size of the database image in pages
732 ** after the commit. For all other records, zero.
733 ** 8: Salt-1 (copied from the wal-header)
734 ** 12: Salt-2 (copied from the wal-header)
735 ** 16: Checksum-1.
736 ** 20: Checksum-2.
738 static void walEncodeFrame(
739 Wal *pWal, /* The write-ahead log */
740 u32 iPage, /* Database page number for frame */
741 u32 nTruncate, /* New db size (or 0 for non-commit frames) */
742 u8 *aData, /* Pointer to page data */
743 u8 *aFrame /* OUT: Write encoded frame here */
745 int nativeCksum; /* True for native byte-order checksums */
746 u32 *aCksum = pWal->hdr.aFrameCksum;
747 assert( WAL_FRAME_HDRSIZE==24 );
748 sqlite3Put4byte(&aFrame[0], iPage);
749 sqlite3Put4byte(&aFrame[4], nTruncate);
750 if( pWal->iReCksum==0 ){
751 memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
753 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
754 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
755 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
757 sqlite3Put4byte(&aFrame[16], aCksum[0]);
758 sqlite3Put4byte(&aFrame[20], aCksum[1]);
759 }else{
760 memset(&aFrame[8], 0, 16);
765 ** Check to see if the frame with header in aFrame[] and content
766 ** in aData[] is valid. If it is a valid frame, fill *piPage and
767 ** *pnTruncate and return true. Return if the frame is not valid.
769 static int walDecodeFrame(
770 Wal *pWal, /* The write-ahead log */
771 u32 *piPage, /* OUT: Database page number for frame */
772 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
773 u8 *aData, /* Pointer to page data (for checksum) */
774 u8 *aFrame /* Frame data */
776 int nativeCksum; /* True for native byte-order checksums */
777 u32 *aCksum = pWal->hdr.aFrameCksum;
778 u32 pgno; /* Page number of the frame */
779 assert( WAL_FRAME_HDRSIZE==24 );
781 /* A frame is only valid if the salt values in the frame-header
782 ** match the salt values in the wal-header.
784 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
785 return 0;
788 /* A frame is only valid if the page number is creater than zero.
790 pgno = sqlite3Get4byte(&aFrame[0]);
791 if( pgno==0 ){
792 return 0;
795 /* A frame is only valid if a checksum of the WAL header,
796 ** all prior frams, the first 16 bytes of this frame-header,
797 ** and the frame-data matches the checksum in the last 8
798 ** bytes of this frame-header.
800 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
801 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
802 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
803 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
804 || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
806 /* Checksum failed. */
807 return 0;
810 /* If we reach this point, the frame is valid. Return the page number
811 ** and the new database size.
813 *piPage = pgno;
814 *pnTruncate = sqlite3Get4byte(&aFrame[4]);
815 return 1;
819 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
821 ** Names of locks. This routine is used to provide debugging output and is not
822 ** a part of an ordinary build.
824 static const char *walLockName(int lockIdx){
825 if( lockIdx==WAL_WRITE_LOCK ){
826 return "WRITE-LOCK";
827 }else if( lockIdx==WAL_CKPT_LOCK ){
828 return "CKPT-LOCK";
829 }else if( lockIdx==WAL_RECOVER_LOCK ){
830 return "RECOVER-LOCK";
831 }else{
832 static char zName[15];
833 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
834 lockIdx-WAL_READ_LOCK(0));
835 return zName;
838 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
842 ** Set or release locks on the WAL. Locks are either shared or exclusive.
843 ** A lock cannot be moved directly between shared and exclusive - it must go
844 ** through the unlocked state first.
846 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
848 static int walLockShared(Wal *pWal, int lockIdx){
849 int rc;
850 if( pWal->exclusiveMode ) return SQLITE_OK;
851 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
852 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
853 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
854 walLockName(lockIdx), rc ? "failed" : "ok"));
855 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
856 return rc;
858 static void walUnlockShared(Wal *pWal, int lockIdx){
859 if( pWal->exclusiveMode ) return;
860 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
861 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
862 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
864 static int walLockExclusive(Wal *pWal, int lockIdx, int n){
865 int rc;
866 if( pWal->exclusiveMode ) return SQLITE_OK;
867 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
868 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
869 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
870 walLockName(lockIdx), n, rc ? "failed" : "ok"));
871 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
872 return rc;
874 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
875 if( pWal->exclusiveMode ) return;
876 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
877 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
878 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
879 walLockName(lockIdx), n));
883 ** Compute a hash on a page number. The resulting hash value must land
884 ** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances
885 ** the hash to the next value in the event of a collision.
887 static int walHash(u32 iPage){
888 assert( iPage>0 );
889 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
890 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
892 static int walNextHash(int iPriorHash){
893 return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
897 ** An instance of the WalHashLoc object is used to describe the location
898 ** of a page hash table in the wal-index. This becomes the return value
899 ** from walHashGet().
901 typedef struct WalHashLoc WalHashLoc;
902 struct WalHashLoc {
903 volatile ht_slot *aHash; /* Start of the wal-index hash table */
904 volatile u32 *aPgno; /* aPgno[1] is the page of first frame indexed */
905 u32 iZero; /* One less than the frame number of first indexed*/
909 ** Return pointers to the hash table and page number array stored on
910 ** page iHash of the wal-index. The wal-index is broken into 32KB pages
911 ** numbered starting from 0.
913 ** Set output variable pLoc->aHash to point to the start of the hash table
914 ** in the wal-index file. Set pLoc->iZero to one less than the frame
915 ** number of the first frame indexed by this hash table. If a
916 ** slot in the hash table is set to N, it refers to frame number
917 ** (pLoc->iZero+N) in the log.
919 ** Finally, set pLoc->aPgno so that pLoc->aPgno[1] is the page number of the
920 ** first frame indexed by the hash table, frame (pLoc->iZero+1).
922 static int walHashGet(
923 Wal *pWal, /* WAL handle */
924 int iHash, /* Find the iHash'th table */
925 WalHashLoc *pLoc /* OUT: Hash table location */
927 int rc; /* Return code */
929 rc = walIndexPage(pWal, iHash, &pLoc->aPgno);
930 assert( rc==SQLITE_OK || iHash>0 );
932 if( rc==SQLITE_OK ){
933 pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE];
934 if( iHash==0 ){
935 pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
936 pLoc->iZero = 0;
937 }else{
938 pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
940 pLoc->aPgno = &pLoc->aPgno[-1];
942 return rc;
946 ** Return the number of the wal-index page that contains the hash-table
947 ** and page-number array that contain entries corresponding to WAL frame
948 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
949 ** are numbered starting from 0.
951 static int walFramePage(u32 iFrame){
952 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
953 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
954 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
955 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
956 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
957 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
959 return iHash;
963 ** Return the page number associated with frame iFrame in this WAL.
965 static u32 walFramePgno(Wal *pWal, u32 iFrame){
966 int iHash = walFramePage(iFrame);
967 if( iHash==0 ){
968 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
970 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
974 ** Remove entries from the hash table that point to WAL slots greater
975 ** than pWal->hdr.mxFrame.
977 ** This function is called whenever pWal->hdr.mxFrame is decreased due
978 ** to a rollback or savepoint.
980 ** At most only the hash table containing pWal->hdr.mxFrame needs to be
981 ** updated. Any later hash tables will be automatically cleared when
982 ** pWal->hdr.mxFrame advances to the point where those hash tables are
983 ** actually needed.
985 static void walCleanupHash(Wal *pWal){
986 WalHashLoc sLoc; /* Hash table location */
987 int iLimit = 0; /* Zero values greater than this */
988 int nByte; /* Number of bytes to zero in aPgno[] */
989 int i; /* Used to iterate through aHash[] */
990 int rc; /* Return code form walHashGet() */
992 assert( pWal->writeLock );
993 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
994 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
995 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
997 if( pWal->hdr.mxFrame==0 ) return;
999 /* Obtain pointers to the hash-table and page-number array containing
1000 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
1001 ** that the page said hash-table and array reside on is already mapped.(1)
1003 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
1004 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
1005 rc = walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc);
1006 if( NEVER(rc) ) return; /* Defense-in-depth, in case (1) above is wrong */
1008 /* Zero all hash-table entries that correspond to frame numbers greater
1009 ** than pWal->hdr.mxFrame.
1011 iLimit = pWal->hdr.mxFrame - sLoc.iZero;
1012 assert( iLimit>0 );
1013 for(i=0; i<HASHTABLE_NSLOT; i++){
1014 if( sLoc.aHash[i]>iLimit ){
1015 sLoc.aHash[i] = 0;
1019 /* Zero the entries in the aPgno array that correspond to frames with
1020 ** frame numbers greater than pWal->hdr.mxFrame.
1022 nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit+1]);
1023 memset((void *)&sLoc.aPgno[iLimit+1], 0, nByte);
1025 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1026 /* Verify that the every entry in the mapping region is still reachable
1027 ** via the hash table even after the cleanup.
1029 if( iLimit ){
1030 int j; /* Loop counter */
1031 int iKey; /* Hash key */
1032 for(j=1; j<=iLimit; j++){
1033 for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){
1034 if( sLoc.aHash[iKey]==j ) break;
1036 assert( sLoc.aHash[iKey]==j );
1039 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1044 ** Set an entry in the wal-index that will map database page number
1045 ** pPage into WAL frame iFrame.
1047 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
1048 int rc; /* Return code */
1049 WalHashLoc sLoc; /* Wal-index hash table location */
1051 rc = walHashGet(pWal, walFramePage(iFrame), &sLoc);
1053 /* Assuming the wal-index file was successfully mapped, populate the
1054 ** page number array and hash table entry.
1056 if( rc==SQLITE_OK ){
1057 int iKey; /* Hash table key */
1058 int idx; /* Value to write to hash-table slot */
1059 int nCollide; /* Number of hash collisions */
1061 idx = iFrame - sLoc.iZero;
1062 assert( idx <= HASHTABLE_NSLOT/2 + 1 );
1064 /* If this is the first entry to be added to this hash-table, zero the
1065 ** entire hash table and aPgno[] array before proceeding.
1067 if( idx==1 ){
1068 int nByte = (int)((u8 *)&sLoc.aHash[HASHTABLE_NSLOT]
1069 - (u8 *)&sLoc.aPgno[1]);
1070 memset((void*)&sLoc.aPgno[1], 0, nByte);
1073 /* If the entry in aPgno[] is already set, then the previous writer
1074 ** must have exited unexpectedly in the middle of a transaction (after
1075 ** writing one or more dirty pages to the WAL to free up memory).
1076 ** Remove the remnants of that writers uncommitted transaction from
1077 ** the hash-table before writing any new entries.
1079 if( sLoc.aPgno[idx] ){
1080 walCleanupHash(pWal);
1081 assert( !sLoc.aPgno[idx] );
1084 /* Write the aPgno[] array entry and the hash-table slot. */
1085 nCollide = idx;
1086 for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){
1087 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
1089 sLoc.aPgno[idx] = iPage;
1090 sLoc.aHash[iKey] = (ht_slot)idx;
1092 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1093 /* Verify that the number of entries in the hash table exactly equals
1094 ** the number of entries in the mapping region.
1097 int i; /* Loop counter */
1098 int nEntry = 0; /* Number of entries in the hash table */
1099 for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; }
1100 assert( nEntry==idx );
1103 /* Verify that the every entry in the mapping region is reachable
1104 ** via the hash table. This turns out to be a really, really expensive
1105 ** thing to check, so only do this occasionally - not on every
1106 ** iteration.
1108 if( (idx&0x3ff)==0 ){
1109 int i; /* Loop counter */
1110 for(i=1; i<=idx; i++){
1111 for(iKey=walHash(sLoc.aPgno[i]);
1112 sLoc.aHash[iKey];
1113 iKey=walNextHash(iKey)){
1114 if( sLoc.aHash[iKey]==i ) break;
1116 assert( sLoc.aHash[iKey]==i );
1119 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1123 return rc;
1128 ** Recover the wal-index by reading the write-ahead log file.
1130 ** This routine first tries to establish an exclusive lock on the
1131 ** wal-index to prevent other threads/processes from doing anything
1132 ** with the WAL or wal-index while recovery is running. The
1133 ** WAL_RECOVER_LOCK is also held so that other threads will know
1134 ** that this thread is running recovery. If unable to establish
1135 ** the necessary locks, this routine returns SQLITE_BUSY.
1137 static int walIndexRecover(Wal *pWal){
1138 int rc; /* Return Code */
1139 i64 nSize; /* Size of log file */
1140 u32 aFrameCksum[2] = {0, 0};
1141 int iLock; /* Lock offset to lock for checkpoint */
1143 /* Obtain an exclusive lock on all byte in the locking range not already
1144 ** locked by the caller. The caller is guaranteed to have locked the
1145 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1146 ** If successful, the same bytes that are locked here are unlocked before
1147 ** this function returns.
1149 assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1150 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1151 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1152 assert( pWal->writeLock );
1153 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1154 rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1155 if( rc==SQLITE_OK ){
1156 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1157 if( rc!=SQLITE_OK ){
1158 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1161 if( rc ){
1162 return rc;
1165 WALTRACE(("WAL%p: recovery begin...\n", pWal));
1167 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
1169 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
1170 if( rc!=SQLITE_OK ){
1171 goto recovery_error;
1174 if( nSize>WAL_HDRSIZE ){
1175 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
1176 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
1177 int szFrame; /* Number of bytes in buffer aFrame[] */
1178 u8 *aData; /* Pointer to data part of aFrame buffer */
1179 int iFrame; /* Index of last frame read */
1180 i64 iOffset; /* Next offset to read from log file */
1181 int szPage; /* Page size according to the log */
1182 u32 magic; /* Magic value read from WAL header */
1183 u32 version; /* Magic value read from WAL header */
1184 int isValid; /* True if this frame is valid */
1186 /* Read in the WAL header. */
1187 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
1188 if( rc!=SQLITE_OK ){
1189 goto recovery_error;
1192 /* If the database page size is not a power of two, or is greater than
1193 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1194 ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1195 ** WAL file.
1197 magic = sqlite3Get4byte(&aBuf[0]);
1198 szPage = sqlite3Get4byte(&aBuf[8]);
1199 if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1200 || szPage&(szPage-1)
1201 || szPage>SQLITE_MAX_PAGE_SIZE
1202 || szPage<512
1204 goto finished;
1206 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
1207 pWal->szPage = szPage;
1208 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
1209 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
1211 /* Verify that the WAL header checksum is correct */
1212 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
1213 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
1215 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1216 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1218 goto finished;
1221 /* Verify that the version number on the WAL format is one that
1222 ** are able to understand */
1223 version = sqlite3Get4byte(&aBuf[4]);
1224 if( version!=WAL_MAX_VERSION ){
1225 rc = SQLITE_CANTOPEN_BKPT;
1226 goto finished;
1229 /* Malloc a buffer to read frames into. */
1230 szFrame = szPage + WAL_FRAME_HDRSIZE;
1231 aFrame = (u8 *)sqlite3_malloc64(szFrame);
1232 if( !aFrame ){
1233 rc = SQLITE_NOMEM_BKPT;
1234 goto recovery_error;
1236 aData = &aFrame[WAL_FRAME_HDRSIZE];
1238 /* Read all frames from the log file. */
1239 iFrame = 0;
1240 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
1241 u32 pgno; /* Database page number for frame */
1242 u32 nTruncate; /* dbsize field from frame header */
1244 /* Read and decode the next log frame. */
1245 iFrame++;
1246 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
1247 if( rc!=SQLITE_OK ) break;
1248 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
1249 if( !isValid ) break;
1250 rc = walIndexAppend(pWal, iFrame, pgno);
1251 if( rc!=SQLITE_OK ) break;
1253 /* If nTruncate is non-zero, this is a commit record. */
1254 if( nTruncate ){
1255 pWal->hdr.mxFrame = iFrame;
1256 pWal->hdr.nPage = nTruncate;
1257 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
1258 testcase( szPage<=32768 );
1259 testcase( szPage>=65536 );
1260 aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1261 aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
1265 sqlite3_free(aFrame);
1268 finished:
1269 if( rc==SQLITE_OK ){
1270 volatile WalCkptInfo *pInfo;
1271 int i;
1272 pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1273 pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
1274 walIndexWriteHdr(pWal);
1276 /* Reset the checkpoint-header. This is safe because this thread is
1277 ** currently holding locks that exclude all other readers, writers and
1278 ** checkpointers.
1280 pInfo = walCkptInfo(pWal);
1281 pInfo->nBackfill = 0;
1282 pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
1283 pInfo->aReadMark[0] = 0;
1284 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1285 if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame;
1287 /* If more than one frame was recovered from the log file, report an
1288 ** event via sqlite3_log(). This is to help with identifying performance
1289 ** problems caused by applications routinely shutting down without
1290 ** checkpointing the log file.
1292 if( pWal->hdr.nPage ){
1293 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
1294 "recovered %d frames from WAL file %s",
1295 pWal->hdr.mxFrame, pWal->zWalName
1300 recovery_error:
1301 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
1302 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1303 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1304 return rc;
1308 ** Close an open wal-index.
1310 static void walIndexClose(Wal *pWal, int isDelete){
1311 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){
1312 int i;
1313 for(i=0; i<pWal->nWiData; i++){
1314 sqlite3_free((void *)pWal->apWiData[i]);
1315 pWal->apWiData[i] = 0;
1318 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
1319 sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1324 ** Open a connection to the WAL file zWalName. The database file must
1325 ** already be opened on connection pDbFd. The buffer that zWalName points
1326 ** to must remain valid for the lifetime of the returned Wal* handle.
1328 ** A SHARED lock should be held on the database file when this function
1329 ** is called. The purpose of this SHARED lock is to prevent any other
1330 ** client from unlinking the WAL or wal-index file. If another process
1331 ** were to do this just after this client opened one of these files, the
1332 ** system would be badly broken.
1334 ** If the log file is successfully opened, SQLITE_OK is returned and
1335 ** *ppWal is set to point to a new WAL handle. If an error occurs,
1336 ** an SQLite error code is returned and *ppWal is left unmodified.
1338 int sqlite3WalOpen(
1339 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
1340 sqlite3_file *pDbFd, /* The open database file */
1341 const char *zWalName, /* Name of the WAL file */
1342 int bNoShm, /* True to run in heap-memory mode */
1343 i64 mxWalSize, /* Truncate WAL to this size on reset */
1344 Wal **ppWal /* OUT: Allocated Wal handle */
1346 int rc; /* Return Code */
1347 Wal *pRet; /* Object to allocate and return */
1348 int flags; /* Flags passed to OsOpen() */
1350 assert( zWalName && zWalName[0] );
1351 assert( pDbFd );
1353 /* In the amalgamation, the os_unix.c and os_win.c source files come before
1354 ** this source file. Verify that the #defines of the locking byte offsets
1355 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1356 ** For that matter, if the lock offset ever changes from its initial design
1357 ** value of 120, we need to know that so there is an assert() to check it.
1359 assert( 120==WALINDEX_LOCK_OFFSET );
1360 assert( 136==WALINDEX_HDR_SIZE );
1361 #ifdef WIN_SHM_BASE
1362 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1363 #endif
1364 #ifdef UNIX_SHM_BASE
1365 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1366 #endif
1369 /* Allocate an instance of struct Wal to return. */
1370 *ppWal = 0;
1371 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
1372 if( !pRet ){
1373 return SQLITE_NOMEM_BKPT;
1376 pRet->pVfs = pVfs;
1377 pRet->pWalFd = (sqlite3_file *)&pRet[1];
1378 pRet->pDbFd = pDbFd;
1379 pRet->readLock = -1;
1380 pRet->mxWalSize = mxWalSize;
1381 pRet->zWalName = zWalName;
1382 pRet->syncHeader = 1;
1383 pRet->padToSectorBoundary = 1;
1384 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
1386 /* Open file handle on the write-ahead log file. */
1387 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
1388 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
1389 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
1390 pRet->readOnly = WAL_RDONLY;
1393 if( rc!=SQLITE_OK ){
1394 walIndexClose(pRet, 0);
1395 sqlite3OsClose(pRet->pWalFd);
1396 sqlite3_free(pRet);
1397 }else{
1398 int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
1399 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
1400 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1401 pRet->padToSectorBoundary = 0;
1403 *ppWal = pRet;
1404 WALTRACE(("WAL%d: opened\n", pRet));
1406 return rc;
1410 ** Change the size to which the WAL file is trucated on each reset.
1412 void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1413 if( pWal ) pWal->mxWalSize = iLimit;
1417 ** Find the smallest page number out of all pages held in the WAL that
1418 ** has not been returned by any prior invocation of this method on the
1419 ** same WalIterator object. Write into *piFrame the frame index where
1420 ** that page was last written into the WAL. Write into *piPage the page
1421 ** number.
1423 ** Return 0 on success. If there are no pages in the WAL with a page
1424 ** number larger than *piPage, then return 1.
1426 static int walIteratorNext(
1427 WalIterator *p, /* Iterator */
1428 u32 *piPage, /* OUT: The page number of the next page */
1429 u32 *piFrame /* OUT: Wal frame index of next page */
1431 u32 iMin; /* Result pgno must be greater than iMin */
1432 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
1433 int i; /* For looping through segments */
1435 iMin = p->iPrior;
1436 assert( iMin<0xffffffff );
1437 for(i=p->nSegment-1; i>=0; i--){
1438 struct WalSegment *pSegment = &p->aSegment[i];
1439 while( pSegment->iNext<pSegment->nEntry ){
1440 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
1441 if( iPg>iMin ){
1442 if( iPg<iRet ){
1443 iRet = iPg;
1444 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
1446 break;
1448 pSegment->iNext++;
1452 *piPage = p->iPrior = iRet;
1453 return (iRet==0xFFFFFFFF);
1457 ** This function merges two sorted lists into a single sorted list.
1459 ** aLeft[] and aRight[] are arrays of indices. The sort key is
1460 ** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following
1461 ** is guaranteed for all J<K:
1463 ** aContent[aLeft[J]] < aContent[aLeft[K]]
1464 ** aContent[aRight[J]] < aContent[aRight[K]]
1466 ** This routine overwrites aRight[] with a new (probably longer) sequence
1467 ** of indices such that the aRight[] contains every index that appears in
1468 ** either aLeft[] or the old aRight[] and such that the second condition
1469 ** above is still met.
1471 ** The aContent[aLeft[X]] values will be unique for all X. And the
1472 ** aContent[aRight[X]] values will be unique too. But there might be
1473 ** one or more combinations of X and Y such that
1475 ** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]]
1477 ** When that happens, omit the aLeft[X] and use the aRight[Y] index.
1479 static void walMerge(
1480 const u32 *aContent, /* Pages in wal - keys for the sort */
1481 ht_slot *aLeft, /* IN: Left hand input list */
1482 int nLeft, /* IN: Elements in array *paLeft */
1483 ht_slot **paRight, /* IN/OUT: Right hand input list */
1484 int *pnRight, /* IN/OUT: Elements in *paRight */
1485 ht_slot *aTmp /* Temporary buffer */
1487 int iLeft = 0; /* Current index in aLeft */
1488 int iRight = 0; /* Current index in aRight */
1489 int iOut = 0; /* Current index in output buffer */
1490 int nRight = *pnRight;
1491 ht_slot *aRight = *paRight;
1493 assert( nLeft>0 && nRight>0 );
1494 while( iRight<nRight || iLeft<nLeft ){
1495 ht_slot logpage;
1496 Pgno dbpage;
1498 if( (iLeft<nLeft)
1499 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1501 logpage = aLeft[iLeft++];
1502 }else{
1503 logpage = aRight[iRight++];
1505 dbpage = aContent[logpage];
1507 aTmp[iOut++] = logpage;
1508 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1510 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1511 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1514 *paRight = aLeft;
1515 *pnRight = iOut;
1516 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1520 ** Sort the elements in list aList using aContent[] as the sort key.
1521 ** Remove elements with duplicate keys, preferring to keep the
1522 ** larger aList[] values.
1524 ** The aList[] entries are indices into aContent[]. The values in
1525 ** aList[] are to be sorted so that for all J<K:
1527 ** aContent[aList[J]] < aContent[aList[K]]
1529 ** For any X and Y such that
1531 ** aContent[aList[X]] == aContent[aList[Y]]
1533 ** Keep the larger of the two values aList[X] and aList[Y] and discard
1534 ** the smaller.
1536 static void walMergesort(
1537 const u32 *aContent, /* Pages in wal */
1538 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */
1539 ht_slot *aList, /* IN/OUT: List to sort */
1540 int *pnList /* IN/OUT: Number of elements in aList[] */
1542 struct Sublist {
1543 int nList; /* Number of elements in aList */
1544 ht_slot *aList; /* Pointer to sub-list content */
1547 const int nList = *pnList; /* Size of input list */
1548 int nMerge = 0; /* Number of elements in list aMerge */
1549 ht_slot *aMerge = 0; /* List to be merged */
1550 int iList; /* Index into input list */
1551 u32 iSub = 0; /* Index into aSub array */
1552 struct Sublist aSub[13]; /* Array of sub-lists */
1554 memset(aSub, 0, sizeof(aSub));
1555 assert( nList<=HASHTABLE_NPAGE && nList>0 );
1556 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
1558 for(iList=0; iList<nList; iList++){
1559 nMerge = 1;
1560 aMerge = &aList[iList];
1561 for(iSub=0; iList & (1<<iSub); iSub++){
1562 struct Sublist *p;
1563 assert( iSub<ArraySize(aSub) );
1564 p = &aSub[iSub];
1565 assert( p->aList && p->nList<=(1<<iSub) );
1566 assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
1567 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1569 aSub[iSub].aList = aMerge;
1570 aSub[iSub].nList = nMerge;
1573 for(iSub++; iSub<ArraySize(aSub); iSub++){
1574 if( nList & (1<<iSub) ){
1575 struct Sublist *p;
1576 assert( iSub<ArraySize(aSub) );
1577 p = &aSub[iSub];
1578 assert( p->nList<=(1<<iSub) );
1579 assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
1580 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1583 assert( aMerge==aList );
1584 *pnList = nMerge;
1586 #ifdef SQLITE_DEBUG
1588 int i;
1589 for(i=1; i<*pnList; i++){
1590 assert( aContent[aList[i]] > aContent[aList[i-1]] );
1593 #endif
1597 ** Free an iterator allocated by walIteratorInit().
1599 static void walIteratorFree(WalIterator *p){
1600 sqlite3_free(p);
1604 ** Construct a WalInterator object that can be used to loop over all
1605 ** pages in the WAL following frame nBackfill in ascending order. Frames
1606 ** nBackfill or earlier may be included - excluding them is an optimization
1607 ** only. The caller must hold the checkpoint lock.
1609 ** On success, make *pp point to the newly allocated WalInterator object
1610 ** return SQLITE_OK. Otherwise, return an error code. If this routine
1611 ** returns an error, the value of *pp is undefined.
1613 ** The calling routine should invoke walIteratorFree() to destroy the
1614 ** WalIterator object when it has finished with it.
1616 static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){
1617 WalIterator *p; /* Return value */
1618 int nSegment; /* Number of segments to merge */
1619 u32 iLast; /* Last frame in log */
1620 sqlite3_int64 nByte; /* Number of bytes to allocate */
1621 int i; /* Iterator variable */
1622 ht_slot *aTmp; /* Temp space used by merge-sort */
1623 int rc = SQLITE_OK; /* Return Code */
1625 /* This routine only runs while holding the checkpoint lock. And
1626 ** it only runs if there is actually content in the log (mxFrame>0).
1628 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
1629 iLast = pWal->hdr.mxFrame;
1631 /* Allocate space for the WalIterator object. */
1632 nSegment = walFramePage(iLast) + 1;
1633 nByte = sizeof(WalIterator)
1634 + (nSegment-1)*sizeof(struct WalSegment)
1635 + iLast*sizeof(ht_slot);
1636 p = (WalIterator *)sqlite3_malloc64(nByte);
1637 if( !p ){
1638 return SQLITE_NOMEM_BKPT;
1640 memset(p, 0, nByte);
1641 p->nSegment = nSegment;
1643 /* Allocate temporary space used by the merge-sort routine. This block
1644 ** of memory will be freed before this function returns.
1646 aTmp = (ht_slot *)sqlite3_malloc64(
1647 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1649 if( !aTmp ){
1650 rc = SQLITE_NOMEM_BKPT;
1653 for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){
1654 WalHashLoc sLoc;
1656 rc = walHashGet(pWal, i, &sLoc);
1657 if( rc==SQLITE_OK ){
1658 int j; /* Counter variable */
1659 int nEntry; /* Number of entries in this segment */
1660 ht_slot *aIndex; /* Sorted index for this segment */
1662 sLoc.aPgno++;
1663 if( (i+1)==nSegment ){
1664 nEntry = (int)(iLast - sLoc.iZero);
1665 }else{
1666 nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno);
1668 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero];
1669 sLoc.iZero++;
1671 for(j=0; j<nEntry; j++){
1672 aIndex[j] = (ht_slot)j;
1674 walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry);
1675 p->aSegment[i].iZero = sLoc.iZero;
1676 p->aSegment[i].nEntry = nEntry;
1677 p->aSegment[i].aIndex = aIndex;
1678 p->aSegment[i].aPgno = (u32 *)sLoc.aPgno;
1681 sqlite3_free(aTmp);
1683 if( rc!=SQLITE_OK ){
1684 walIteratorFree(p);
1685 p = 0;
1687 *pp = p;
1688 return rc;
1692 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1693 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1694 ** busy-handler function. Invoke it and retry the lock until either the
1695 ** lock is successfully obtained or the busy-handler returns 0.
1697 static int walBusyLock(
1698 Wal *pWal, /* WAL connection */
1699 int (*xBusy)(void*), /* Function to call when busy */
1700 void *pBusyArg, /* Context argument for xBusyHandler */
1701 int lockIdx, /* Offset of first byte to lock */
1702 int n /* Number of bytes to lock */
1704 int rc;
1705 do {
1706 rc = walLockExclusive(pWal, lockIdx, n);
1707 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1708 return rc;
1712 ** The cache of the wal-index header must be valid to call this function.
1713 ** Return the page-size in bytes used by the database.
1715 static int walPagesize(Wal *pWal){
1716 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1720 ** The following is guaranteed when this function is called:
1722 ** a) the WRITER lock is held,
1723 ** b) the entire log file has been checkpointed, and
1724 ** c) any existing readers are reading exclusively from the database
1725 ** file - there are no readers that may attempt to read a frame from
1726 ** the log file.
1728 ** This function updates the shared-memory structures so that the next
1729 ** client to write to the database (which may be this one) does so by
1730 ** writing frames into the start of the log file.
1732 ** The value of parameter salt1 is used as the aSalt[1] value in the
1733 ** new wal-index header. It should be passed a pseudo-random value (i.e.
1734 ** one obtained from sqlite3_randomness()).
1736 static void walRestartHdr(Wal *pWal, u32 salt1){
1737 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
1738 int i; /* Loop counter */
1739 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */
1740 pWal->nCkpt++;
1741 pWal->hdr.mxFrame = 0;
1742 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
1743 memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
1744 walIndexWriteHdr(pWal);
1745 pInfo->nBackfill = 0;
1746 pInfo->nBackfillAttempted = 0;
1747 pInfo->aReadMark[1] = 0;
1748 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1749 assert( pInfo->aReadMark[0]==0 );
1753 ** Copy as much content as we can from the WAL back into the database file
1754 ** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1756 ** The amount of information copies from WAL to database might be limited
1757 ** by active readers. This routine will never overwrite a database page
1758 ** that a concurrent reader might be using.
1760 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1761 ** SQLite is in WAL-mode in synchronous=NORMAL. That means that if
1762 ** checkpoints are always run by a background thread or background
1763 ** process, foreground threads will never block on a lengthy fsync call.
1765 ** Fsync is called on the WAL before writing content out of the WAL and
1766 ** into the database. This ensures that if the new content is persistent
1767 ** in the WAL and can be recovered following a power-loss or hard reset.
1769 ** Fsync is also called on the database file if (and only if) the entire
1770 ** WAL content is copied into the database file. This second fsync makes
1771 ** it safe to delete the WAL since the new content will persist in the
1772 ** database file.
1774 ** This routine uses and updates the nBackfill field of the wal-index header.
1775 ** This is the only routine that will increase the value of nBackfill.
1776 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1777 ** its value.)
1779 ** The caller must be holding sufficient locks to ensure that no other
1780 ** checkpoint is running (in any other thread or process) at the same
1781 ** time.
1783 static int walCheckpoint(
1784 Wal *pWal, /* Wal connection */
1785 sqlite3 *db, /* Check for interrupts on this handle */
1786 int eMode, /* One of PASSIVE, FULL or RESTART */
1787 int (*xBusy)(void*), /* Function to call when busy */
1788 void *pBusyArg, /* Context argument for xBusyHandler */
1789 int sync_flags, /* Flags for OsSync() (or 0) */
1790 u8 *zBuf /* Temporary buffer to use */
1792 int rc = SQLITE_OK; /* Return code */
1793 int szPage; /* Database page-size */
1794 WalIterator *pIter = 0; /* Wal iterator context */
1795 u32 iDbpage = 0; /* Next database page to write */
1796 u32 iFrame = 0; /* Wal frame containing data for iDbpage */
1797 u32 mxSafeFrame; /* Max frame that can be backfilled */
1798 u32 mxPage; /* Max database page to write */
1799 int i; /* Loop counter */
1800 volatile WalCkptInfo *pInfo; /* The checkpoint status information */
1802 szPage = walPagesize(pWal);
1803 testcase( szPage<=32768 );
1804 testcase( szPage>=65536 );
1805 pInfo = walCkptInfo(pWal);
1806 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1808 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
1809 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
1810 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
1812 /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1813 ** safe to write into the database. Frames beyond mxSafeFrame might
1814 ** overwrite database pages that are in use by active readers and thus
1815 ** cannot be backfilled from the WAL.
1817 mxSafeFrame = pWal->hdr.mxFrame;
1818 mxPage = pWal->hdr.nPage;
1819 for(i=1; i<WAL_NREADER; i++){
1820 /* Thread-sanitizer reports that the following is an unsafe read,
1821 ** as some other thread may be in the process of updating the value
1822 ** of the aReadMark[] slot. The assumption here is that if that is
1823 ** happening, the other client may only be increasing the value,
1824 ** not decreasing it. So assuming either that either the "old" or
1825 ** "new" version of the value is read, and not some arbitrary value
1826 ** that would never be written by a real client, things are still
1827 ** safe. */
1828 u32 y = pInfo->aReadMark[i];
1829 if( mxSafeFrame>y ){
1830 assert( y<=pWal->hdr.mxFrame );
1831 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
1832 if( rc==SQLITE_OK ){
1833 pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
1834 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1835 }else if( rc==SQLITE_BUSY ){
1836 mxSafeFrame = y;
1837 xBusy = 0;
1838 }else{
1839 goto walcheckpoint_out;
1844 /* Allocate the iterator */
1845 if( pInfo->nBackfill<mxSafeFrame ){
1846 rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter);
1847 assert( rc==SQLITE_OK || pIter==0 );
1850 if( pIter
1851 && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK
1853 u32 nBackfill = pInfo->nBackfill;
1855 pInfo->nBackfillAttempted = mxSafeFrame;
1857 /* Sync the WAL to disk */
1858 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
1860 /* If the database may grow as a result of this checkpoint, hint
1861 ** about the eventual size of the db file to the VFS layer.
1863 if( rc==SQLITE_OK ){
1864 i64 nReq = ((i64)mxPage * szPage);
1865 i64 nSize; /* Current size of database file */
1866 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
1867 if( rc==SQLITE_OK && nSize<nReq ){
1868 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
1873 /* Iterate through the contents of the WAL, copying data to the db file */
1874 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
1875 i64 iOffset;
1876 assert( walFramePgno(pWal, iFrame)==iDbpage );
1877 if( db->u1.isInterrupted ){
1878 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
1879 break;
1881 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
1882 continue;
1884 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
1885 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
1886 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
1887 if( rc!=SQLITE_OK ) break;
1888 iOffset = (iDbpage-1)*(i64)szPage;
1889 testcase( IS_BIG_INT(iOffset) );
1890 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
1891 if( rc!=SQLITE_OK ) break;
1894 /* If work was actually accomplished... */
1895 if( rc==SQLITE_OK ){
1896 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
1897 i64 szDb = pWal->hdr.nPage*(i64)szPage;
1898 testcase( IS_BIG_INT(szDb) );
1899 rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
1900 if( rc==SQLITE_OK ){
1901 rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags));
1904 if( rc==SQLITE_OK ){
1905 pInfo->nBackfill = mxSafeFrame;
1909 /* Release the reader lock held while backfilling */
1910 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
1913 if( rc==SQLITE_BUSY ){
1914 /* Reset the return code so as not to report a checkpoint failure
1915 ** just because there are active readers. */
1916 rc = SQLITE_OK;
1920 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
1921 ** entire wal file has been copied into the database file, then block
1922 ** until all readers have finished using the wal file. This ensures that
1923 ** the next process to write to the database restarts the wal file.
1925 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
1926 assert( pWal->writeLock );
1927 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1928 rc = SQLITE_BUSY;
1929 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
1930 u32 salt1;
1931 sqlite3_randomness(4, &salt1);
1932 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
1933 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
1934 if( rc==SQLITE_OK ){
1935 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
1936 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
1937 ** SQLITE_CHECKPOINT_RESTART with the addition that it also
1938 ** truncates the log file to zero bytes just prior to a
1939 ** successful return.
1941 ** In theory, it might be safe to do this without updating the
1942 ** wal-index header in shared memory, as all subsequent reader or
1943 ** writer clients should see that the entire log file has been
1944 ** checkpointed and behave accordingly. This seems unsafe though,
1945 ** as it would leave the system in a state where the contents of
1946 ** the wal-index header do not match the contents of the
1947 ** file-system. To avoid this, update the wal-index header to
1948 ** indicate that the log file contains zero valid frames. */
1949 walRestartHdr(pWal, salt1);
1950 rc = sqlite3OsTruncate(pWal->pWalFd, 0);
1952 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1957 walcheckpoint_out:
1958 walIteratorFree(pIter);
1959 return rc;
1963 ** If the WAL file is currently larger than nMax bytes in size, truncate
1964 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
1966 static void walLimitSize(Wal *pWal, i64 nMax){
1967 i64 sz;
1968 int rx;
1969 sqlite3BeginBenignMalloc();
1970 rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
1971 if( rx==SQLITE_OK && (sz > nMax ) ){
1972 rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
1974 sqlite3EndBenignMalloc();
1975 if( rx ){
1976 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
1981 ** Close a connection to a log file.
1983 int sqlite3WalClose(
1984 Wal *pWal, /* Wal to close */
1985 sqlite3 *db, /* For interrupt flag */
1986 int sync_flags, /* Flags to pass to OsSync() (or 0) */
1987 int nBuf,
1988 u8 *zBuf /* Buffer of at least nBuf bytes */
1990 int rc = SQLITE_OK;
1991 if( pWal ){
1992 int isDelete = 0; /* True to unlink wal and wal-index files */
1994 /* If an EXCLUSIVE lock can be obtained on the database file (using the
1995 ** ordinary, rollback-mode locking methods, this guarantees that the
1996 ** connection associated with this log file is the only connection to
1997 ** the database. In this case checkpoint the database and unlink both
1998 ** the wal and wal-index files.
2000 ** The EXCLUSIVE lock is not released before returning.
2002 if( zBuf!=0
2003 && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE))
2005 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
2006 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
2008 rc = sqlite3WalCheckpoint(pWal, db,
2009 SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
2011 if( rc==SQLITE_OK ){
2012 int bPersist = -1;
2013 sqlite3OsFileControlHint(
2014 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
2016 if( bPersist!=1 ){
2017 /* Try to delete the WAL file if the checkpoint completed and
2018 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
2019 ** mode (!bPersist) */
2020 isDelete = 1;
2021 }else if( pWal->mxWalSize>=0 ){
2022 /* Try to truncate the WAL file to zero bytes if the checkpoint
2023 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
2024 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
2025 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate
2026 ** to zero bytes as truncating to the journal_size_limit might
2027 ** leave a corrupt WAL file on disk. */
2028 walLimitSize(pWal, 0);
2033 walIndexClose(pWal, isDelete);
2034 sqlite3OsClose(pWal->pWalFd);
2035 if( isDelete ){
2036 sqlite3BeginBenignMalloc();
2037 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
2038 sqlite3EndBenignMalloc();
2040 WALTRACE(("WAL%p: closed\n", pWal));
2041 sqlite3_free((void *)pWal->apWiData);
2042 sqlite3_free(pWal);
2044 return rc;
2048 ** Try to read the wal-index header. Return 0 on success and 1 if
2049 ** there is a problem.
2051 ** The wal-index is in shared memory. Another thread or process might
2052 ** be writing the header at the same time this procedure is trying to
2053 ** read it, which might result in inconsistency. A dirty read is detected
2054 ** by verifying that both copies of the header are the same and also by
2055 ** a checksum on the header.
2057 ** If and only if the read is consistent and the header is different from
2058 ** pWal->hdr, then pWal->hdr is updated to the content of the new header
2059 ** and *pChanged is set to 1.
2061 ** If the checksum cannot be verified return non-zero. If the header
2062 ** is read successfully and the checksum verified, return zero.
2064 static int walIndexTryHdr(Wal *pWal, int *pChanged){
2065 u32 aCksum[2]; /* Checksum on the header content */
2066 WalIndexHdr h1, h2; /* Two copies of the header content */
2067 WalIndexHdr volatile *aHdr; /* Header in shared memory */
2069 /* The first page of the wal-index must be mapped at this point. */
2070 assert( pWal->nWiData>0 && pWal->apWiData[0] );
2072 /* Read the header. This might happen concurrently with a write to the
2073 ** same area of shared memory on a different CPU in a SMP,
2074 ** meaning it is possible that an inconsistent snapshot is read
2075 ** from the file. If this happens, return non-zero.
2077 ** There are two copies of the header at the beginning of the wal-index.
2078 ** When reading, read [0] first then [1]. Writes are in the reverse order.
2079 ** Memory barriers are used to prevent the compiler or the hardware from
2080 ** reordering the reads and writes.
2082 aHdr = walIndexHdr(pWal);
2083 memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
2084 walShmBarrier(pWal);
2085 memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
2087 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
2088 return 1; /* Dirty read */
2090 if( h1.isInit==0 ){
2091 return 1; /* Malformed header - probably all zeros */
2093 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
2094 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
2095 return 1; /* Checksum does not match */
2098 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
2099 *pChanged = 1;
2100 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
2101 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2102 testcase( pWal->szPage<=32768 );
2103 testcase( pWal->szPage>=65536 );
2106 /* The header was successfully read. Return zero. */
2107 return 0;
2111 ** This is the value that walTryBeginRead returns when it needs to
2112 ** be retried.
2114 #define WAL_RETRY (-1)
2117 ** Read the wal-index header from the wal-index and into pWal->hdr.
2118 ** If the wal-header appears to be corrupt, try to reconstruct the
2119 ** wal-index from the WAL before returning.
2121 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
2122 ** changed by this operation. If pWal->hdr is unchanged, set *pChanged
2123 ** to 0.
2125 ** If the wal-index header is successfully read, return SQLITE_OK.
2126 ** Otherwise an SQLite error code.
2128 static int walIndexReadHdr(Wal *pWal, int *pChanged){
2129 int rc; /* Return code */
2130 int badHdr; /* True if a header read failed */
2131 volatile u32 *page0; /* Chunk of wal-index containing header */
2133 /* Ensure that page 0 of the wal-index (the page that contains the
2134 ** wal-index header) is mapped. Return early if an error occurs here.
2136 assert( pChanged );
2137 rc = walIndexPage(pWal, 0, &page0);
2138 if( rc!=SQLITE_OK ){
2139 assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */
2140 if( rc==SQLITE_READONLY_CANTINIT ){
2141 /* The SQLITE_READONLY_CANTINIT return means that the shared-memory
2142 ** was openable but is not writable, and this thread is unable to
2143 ** confirm that another write-capable connection has the shared-memory
2144 ** open, and hence the content of the shared-memory is unreliable,
2145 ** since the shared-memory might be inconsistent with the WAL file
2146 ** and there is no writer on hand to fix it. */
2147 assert( page0==0 );
2148 assert( pWal->writeLock==0 );
2149 assert( pWal->readOnly & WAL_SHM_RDONLY );
2150 pWal->bShmUnreliable = 1;
2151 pWal->exclusiveMode = WAL_HEAPMEMORY_MODE;
2152 *pChanged = 1;
2153 }else{
2154 return rc; /* Any other non-OK return is just an error */
2156 }else{
2157 /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock
2158 ** is zero, which prevents the SHM from growing */
2159 testcase( page0!=0 );
2161 assert( page0!=0 || pWal->writeLock==0 );
2163 /* If the first page of the wal-index has been mapped, try to read the
2164 ** wal-index header immediately, without holding any lock. This usually
2165 ** works, but may fail if the wal-index header is corrupt or currently
2166 ** being modified by another thread or process.
2168 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
2170 /* If the first attempt failed, it might have been due to a race
2171 ** with a writer. So get a WRITE lock and try again.
2173 assert( badHdr==0 || pWal->writeLock==0 );
2174 if( badHdr ){
2175 if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){
2176 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
2177 walUnlockShared(pWal, WAL_WRITE_LOCK);
2178 rc = SQLITE_READONLY_RECOVERY;
2180 }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
2181 pWal->writeLock = 1;
2182 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
2183 badHdr = walIndexTryHdr(pWal, pChanged);
2184 if( badHdr ){
2185 /* If the wal-index header is still malformed even while holding
2186 ** a WRITE lock, it can only mean that the header is corrupted and
2187 ** needs to be reconstructed. So run recovery to do exactly that.
2189 rc = walIndexRecover(pWal);
2190 *pChanged = 1;
2193 pWal->writeLock = 0;
2194 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2198 /* If the header is read successfully, check the version number to make
2199 ** sure the wal-index was not constructed with some future format that
2200 ** this version of SQLite cannot understand.
2202 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2203 rc = SQLITE_CANTOPEN_BKPT;
2205 if( pWal->bShmUnreliable ){
2206 if( rc!=SQLITE_OK ){
2207 walIndexClose(pWal, 0);
2208 pWal->bShmUnreliable = 0;
2209 assert( pWal->nWiData>0 && pWal->apWiData[0]==0 );
2210 /* walIndexRecover() might have returned SHORT_READ if a concurrent
2211 ** writer truncated the WAL out from under it. If that happens, it
2212 ** indicates that a writer has fixed the SHM file for us, so retry */
2213 if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY;
2215 pWal->exclusiveMode = WAL_NORMAL_MODE;
2218 return rc;
2222 ** Open a transaction in a connection where the shared-memory is read-only
2223 ** and where we cannot verify that there is a separate write-capable connection
2224 ** on hand to keep the shared-memory up-to-date with the WAL file.
2226 ** This can happen, for example, when the shared-memory is implemented by
2227 ** memory-mapping a *-shm file, where a prior writer has shut down and
2228 ** left the *-shm file on disk, and now the present connection is trying
2229 ** to use that database but lacks write permission on the *-shm file.
2230 ** Other scenarios are also possible, depending on the VFS implementation.
2232 ** Precondition:
2234 ** The *-wal file has been read and an appropriate wal-index has been
2235 ** constructed in pWal->apWiData[] using heap memory instead of shared
2236 ** memory.
2238 ** If this function returns SQLITE_OK, then the read transaction has
2239 ** been successfully opened. In this case output variable (*pChanged)
2240 ** is set to true before returning if the caller should discard the
2241 ** contents of the page cache before proceeding. Or, if it returns
2242 ** WAL_RETRY, then the heap memory wal-index has been discarded and
2243 ** the caller should retry opening the read transaction from the
2244 ** beginning (including attempting to map the *-shm file).
2246 ** If an error occurs, an SQLite error code is returned.
2248 static int walBeginShmUnreliable(Wal *pWal, int *pChanged){
2249 i64 szWal; /* Size of wal file on disk in bytes */
2250 i64 iOffset; /* Current offset when reading wal file */
2251 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
2252 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
2253 int szFrame; /* Number of bytes in buffer aFrame[] */
2254 u8 *aData; /* Pointer to data part of aFrame buffer */
2255 volatile void *pDummy; /* Dummy argument for xShmMap */
2256 int rc; /* Return code */
2257 u32 aSaveCksum[2]; /* Saved copy of pWal->hdr.aFrameCksum */
2259 assert( pWal->bShmUnreliable );
2260 assert( pWal->readOnly & WAL_SHM_RDONLY );
2261 assert( pWal->nWiData>0 && pWal->apWiData[0] );
2263 /* Take WAL_READ_LOCK(0). This has the effect of preventing any
2264 ** writers from running a checkpoint, but does not stop them
2265 ** from running recovery. */
2266 rc = walLockShared(pWal, WAL_READ_LOCK(0));
2267 if( rc!=SQLITE_OK ){
2268 if( rc==SQLITE_BUSY ) rc = WAL_RETRY;
2269 goto begin_unreliable_shm_out;
2271 pWal->readLock = 0;
2273 /* Check to see if a separate writer has attached to the shared-memory area,
2274 ** thus making the shared-memory "reliable" again. Do this by invoking
2275 ** the xShmMap() routine of the VFS and looking to see if the return
2276 ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT.
2278 ** If the shared-memory is now "reliable" return WAL_RETRY, which will
2279 ** cause the heap-memory WAL-index to be discarded and the actual
2280 ** shared memory to be used in its place.
2282 ** This step is important because, even though this connection is holding
2283 ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might
2284 ** have already checkpointed the WAL file and, while the current
2285 ** is active, wrap the WAL and start overwriting frames that this
2286 ** process wants to use.
2288 ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has
2289 ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY
2290 ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations,
2291 ** even if some external agent does a "chmod" to make the shared-memory
2292 ** writable by us, until sqlite3OsShmUnmap() has been called.
2293 ** This is a requirement on the VFS implementation.
2295 rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy);
2296 assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */
2297 if( rc!=SQLITE_READONLY_CANTINIT ){
2298 rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc);
2299 goto begin_unreliable_shm_out;
2302 /* We reach this point only if the real shared-memory is still unreliable.
2303 ** Assume the in-memory WAL-index substitute is correct and load it
2304 ** into pWal->hdr.
2306 memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr));
2308 /* Make sure some writer hasn't come in and changed the WAL file out
2309 ** from under us, then disconnected, while we were not looking.
2311 rc = sqlite3OsFileSize(pWal->pWalFd, &szWal);
2312 if( rc!=SQLITE_OK ){
2313 goto begin_unreliable_shm_out;
2315 if( szWal<WAL_HDRSIZE ){
2316 /* If the wal file is too small to contain a wal-header and the
2317 ** wal-index header has mxFrame==0, then it must be safe to proceed
2318 ** reading the database file only. However, the page cache cannot
2319 ** be trusted, as a read/write connection may have connected, written
2320 ** the db, run a checkpoint, truncated the wal file and disconnected
2321 ** since this client's last read transaction. */
2322 *pChanged = 1;
2323 rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY);
2324 goto begin_unreliable_shm_out;
2327 /* Check the salt keys at the start of the wal file still match. */
2328 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
2329 if( rc!=SQLITE_OK ){
2330 goto begin_unreliable_shm_out;
2332 if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){
2333 /* Some writer has wrapped the WAL file while we were not looking.
2334 ** Return WAL_RETRY which will cause the in-memory WAL-index to be
2335 ** rebuilt. */
2336 rc = WAL_RETRY;
2337 goto begin_unreliable_shm_out;
2340 /* Allocate a buffer to read frames into */
2341 szFrame = pWal->hdr.szPage + WAL_FRAME_HDRSIZE;
2342 aFrame = (u8 *)sqlite3_malloc64(szFrame);
2343 if( aFrame==0 ){
2344 rc = SQLITE_NOMEM_BKPT;
2345 goto begin_unreliable_shm_out;
2347 aData = &aFrame[WAL_FRAME_HDRSIZE];
2349 /* Check to see if a complete transaction has been appended to the
2350 ** wal file since the heap-memory wal-index was created. If so, the
2351 ** heap-memory wal-index is discarded and WAL_RETRY returned to
2352 ** the caller. */
2353 aSaveCksum[0] = pWal->hdr.aFrameCksum[0];
2354 aSaveCksum[1] = pWal->hdr.aFrameCksum[1];
2355 for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->hdr.szPage);
2356 iOffset+szFrame<=szWal;
2357 iOffset+=szFrame
2359 u32 pgno; /* Database page number for frame */
2360 u32 nTruncate; /* dbsize field from frame header */
2362 /* Read and decode the next log frame. */
2363 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
2364 if( rc!=SQLITE_OK ) break;
2365 if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break;
2367 /* If nTruncate is non-zero, then a complete transaction has been
2368 ** appended to this wal file. Set rc to WAL_RETRY and break out of
2369 ** the loop. */
2370 if( nTruncate ){
2371 rc = WAL_RETRY;
2372 break;
2375 pWal->hdr.aFrameCksum[0] = aSaveCksum[0];
2376 pWal->hdr.aFrameCksum[1] = aSaveCksum[1];
2378 begin_unreliable_shm_out:
2379 sqlite3_free(aFrame);
2380 if( rc!=SQLITE_OK ){
2381 int i;
2382 for(i=0; i<pWal->nWiData; i++){
2383 sqlite3_free((void*)pWal->apWiData[i]);
2384 pWal->apWiData[i] = 0;
2386 pWal->bShmUnreliable = 0;
2387 sqlite3WalEndReadTransaction(pWal);
2388 *pChanged = 1;
2390 return rc;
2394 ** Attempt to start a read transaction. This might fail due to a race or
2395 ** other transient condition. When that happens, it returns WAL_RETRY to
2396 ** indicate to the caller that it is safe to retry immediately.
2398 ** On success return SQLITE_OK. On a permanent failure (such an
2399 ** I/O error or an SQLITE_BUSY because another process is running
2400 ** recovery) return a positive error code.
2402 ** The useWal parameter is true to force the use of the WAL and disable
2403 ** the case where the WAL is bypassed because it has been completely
2404 ** checkpointed. If useWal==0 then this routine calls walIndexReadHdr()
2405 ** to make a copy of the wal-index header into pWal->hdr. If the
2406 ** wal-index header has changed, *pChanged is set to 1 (as an indication
2407 ** to the caller that the local page cache is obsolete and needs to be
2408 ** flushed.) When useWal==1, the wal-index header is assumed to already
2409 ** be loaded and the pChanged parameter is unused.
2411 ** The caller must set the cnt parameter to the number of prior calls to
2412 ** this routine during the current read attempt that returned WAL_RETRY.
2413 ** This routine will start taking more aggressive measures to clear the
2414 ** race conditions after multiple WAL_RETRY returns, and after an excessive
2415 ** number of errors will ultimately return SQLITE_PROTOCOL. The
2416 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2417 ** and is not honoring the locking protocol. There is a vanishingly small
2418 ** chance that SQLITE_PROTOCOL could be returned because of a run of really
2419 ** bad luck when there is lots of contention for the wal-index, but that
2420 ** possibility is so small that it can be safely neglected, we believe.
2422 ** On success, this routine obtains a read lock on
2423 ** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is
2424 ** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1)
2425 ** that means the Wal does not hold any read lock. The reader must not
2426 ** access any database page that is modified by a WAL frame up to and
2427 ** including frame number aReadMark[pWal->readLock]. The reader will
2428 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2429 ** Or if pWal->readLock==0, then the reader will ignore the WAL
2430 ** completely and get all content directly from the database file.
2431 ** If the useWal parameter is 1 then the WAL will never be ignored and
2432 ** this routine will always set pWal->readLock>0 on success.
2433 ** When the read transaction is completed, the caller must release the
2434 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2436 ** This routine uses the nBackfill and aReadMark[] fields of the header
2437 ** to select a particular WAL_READ_LOCK() that strives to let the
2438 ** checkpoint process do as much work as possible. This routine might
2439 ** update values of the aReadMark[] array in the header, but if it does
2440 ** so it takes care to hold an exclusive lock on the corresponding
2441 ** WAL_READ_LOCK() while changing values.
2443 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
2444 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */
2445 u32 mxReadMark; /* Largest aReadMark[] value */
2446 int mxI; /* Index of largest aReadMark[] value */
2447 int i; /* Loop counter */
2448 int rc = SQLITE_OK; /* Return code */
2449 u32 mxFrame; /* Wal frame to lock to */
2451 assert( pWal->readLock<0 ); /* Not currently locked */
2453 /* useWal may only be set for read/write connections */
2454 assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 );
2456 /* Take steps to avoid spinning forever if there is a protocol error.
2458 ** Circumstances that cause a RETRY should only last for the briefest
2459 ** instances of time. No I/O or other system calls are done while the
2460 ** locks are held, so the locks should not be held for very long. But
2461 ** if we are unlucky, another process that is holding a lock might get
2462 ** paged out or take a page-fault that is time-consuming to resolve,
2463 ** during the few nanoseconds that it is holding the lock. In that case,
2464 ** it might take longer than normal for the lock to free.
2466 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few
2467 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this
2468 ** is more of a scheduler yield than an actual delay. But on the 10th
2469 ** an subsequent retries, the delays start becoming longer and longer,
2470 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
2471 ** The total delay time before giving up is less than 10 seconds.
2473 if( cnt>5 ){
2474 int nDelay = 1; /* Pause time in microseconds */
2475 if( cnt>100 ){
2476 VVA_ONLY( pWal->lockError = 1; )
2477 return SQLITE_PROTOCOL;
2479 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
2480 sqlite3OsSleep(pWal->pVfs, nDelay);
2483 if( !useWal ){
2484 assert( rc==SQLITE_OK );
2485 if( pWal->bShmUnreliable==0 ){
2486 rc = walIndexReadHdr(pWal, pChanged);
2488 if( rc==SQLITE_BUSY ){
2489 /* If there is not a recovery running in another thread or process
2490 ** then convert BUSY errors to WAL_RETRY. If recovery is known to
2491 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here
2492 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2493 ** would be technically correct. But the race is benign since with
2494 ** WAL_RETRY this routine will be called again and will probably be
2495 ** right on the second iteration.
2497 if( pWal->apWiData[0]==0 ){
2498 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2499 ** We assume this is a transient condition, so return WAL_RETRY. The
2500 ** xShmMap() implementation used by the default unix and win32 VFS
2501 ** modules may return SQLITE_BUSY due to a race condition in the
2502 ** code that determines whether or not the shared-memory region
2503 ** must be zeroed before the requested page is returned.
2505 rc = WAL_RETRY;
2506 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
2507 walUnlockShared(pWal, WAL_RECOVER_LOCK);
2508 rc = WAL_RETRY;
2509 }else if( rc==SQLITE_BUSY ){
2510 rc = SQLITE_BUSY_RECOVERY;
2513 if( rc!=SQLITE_OK ){
2514 return rc;
2516 else if( pWal->bShmUnreliable ){
2517 return walBeginShmUnreliable(pWal, pChanged);
2521 assert( pWal->nWiData>0 );
2522 assert( pWal->apWiData[0]!=0 );
2523 pInfo = walCkptInfo(pWal);
2524 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame
2525 #ifdef SQLITE_ENABLE_SNAPSHOT
2526 && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0)
2527 #endif
2529 /* The WAL has been completely backfilled (or it is empty).
2530 ** and can be safely ignored.
2532 rc = walLockShared(pWal, WAL_READ_LOCK(0));
2533 walShmBarrier(pWal);
2534 if( rc==SQLITE_OK ){
2535 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
2536 /* It is not safe to allow the reader to continue here if frames
2537 ** may have been appended to the log before READ_LOCK(0) was obtained.
2538 ** When holding READ_LOCK(0), the reader ignores the entire log file,
2539 ** which implies that the database file contains a trustworthy
2540 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
2541 ** happening, this is usually correct.
2543 ** However, if frames have been appended to the log (or if the log
2544 ** is wrapped and written for that matter) before the READ_LOCK(0)
2545 ** is obtained, that is not necessarily true. A checkpointer may
2546 ** have started to backfill the appended frames but crashed before
2547 ** it finished. Leaving a corrupt image in the database file.
2549 walUnlockShared(pWal, WAL_READ_LOCK(0));
2550 return WAL_RETRY;
2552 pWal->readLock = 0;
2553 return SQLITE_OK;
2554 }else if( rc!=SQLITE_BUSY ){
2555 return rc;
2559 /* If we get this far, it means that the reader will want to use
2560 ** the WAL to get at content from recent commits. The job now is
2561 ** to select one of the aReadMark[] entries that is closest to
2562 ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2564 mxReadMark = 0;
2565 mxI = 0;
2566 mxFrame = pWal->hdr.mxFrame;
2567 #ifdef SQLITE_ENABLE_SNAPSHOT
2568 if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
2569 mxFrame = pWal->pSnapshot->mxFrame;
2571 #endif
2572 for(i=1; i<WAL_NREADER; i++){
2573 u32 thisMark = AtomicLoad(pInfo->aReadMark+i);
2574 if( mxReadMark<=thisMark && thisMark<=mxFrame ){
2575 assert( thisMark!=READMARK_NOT_USED );
2576 mxReadMark = thisMark;
2577 mxI = i;
2580 if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2581 && (mxReadMark<mxFrame || mxI==0)
2583 for(i=1; i<WAL_NREADER; i++){
2584 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2585 if( rc==SQLITE_OK ){
2586 mxReadMark = AtomicStore(pInfo->aReadMark+i,mxFrame);
2587 mxI = i;
2588 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2589 break;
2590 }else if( rc!=SQLITE_BUSY ){
2591 return rc;
2595 if( mxI==0 ){
2596 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
2597 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT;
2600 rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2601 if( rc ){
2602 return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2604 /* Now that the read-lock has been obtained, check that neither the
2605 ** value in the aReadMark[] array or the contents of the wal-index
2606 ** header have changed.
2608 ** It is necessary to check that the wal-index header did not change
2609 ** between the time it was read and when the shared-lock was obtained
2610 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2611 ** that the log file may have been wrapped by a writer, or that frames
2612 ** that occur later in the log than pWal->hdr.mxFrame may have been
2613 ** copied into the database by a checkpointer. If either of these things
2614 ** happened, then reading the database with the current value of
2615 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2616 ** instead.
2618 ** Before checking that the live wal-index header has not changed
2619 ** since it was read, set Wal.minFrame to the first frame in the wal
2620 ** file that has not yet been checkpointed. This client will not need
2621 ** to read any frames earlier than minFrame from the wal file - they
2622 ** can be safely read directly from the database file.
2624 ** Because a ShmBarrier() call is made between taking the copy of
2625 ** nBackfill and checking that the wal-header in shared-memory still
2626 ** matches the one cached in pWal->hdr, it is guaranteed that the
2627 ** checkpointer that set nBackfill was not working with a wal-index
2628 ** header newer than that cached in pWal->hdr. If it were, that could
2629 ** cause a problem. The checkpointer could omit to checkpoint
2630 ** a version of page X that lies before pWal->minFrame (call that version
2631 ** A) on the basis that there is a newer version (version B) of the same
2632 ** page later in the wal file. But if version B happens to like past
2633 ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
2634 ** that it can read version A from the database file. However, since
2635 ** we can guarantee that the checkpointer that set nBackfill could not
2636 ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
2638 pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1;
2639 walShmBarrier(pWal);
2640 if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark
2641 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
2643 walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2644 return WAL_RETRY;
2645 }else{
2646 assert( mxReadMark<=pWal->hdr.mxFrame );
2647 pWal->readLock = (i16)mxI;
2649 return rc;
2652 #ifdef SQLITE_ENABLE_SNAPSHOT
2654 ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted
2655 ** variable so that older snapshots can be accessed. To do this, loop
2656 ** through all wal frames from nBackfillAttempted to (nBackfill+1),
2657 ** comparing their content to the corresponding page with the database
2658 ** file, if any. Set nBackfillAttempted to the frame number of the
2659 ** first frame for which the wal file content matches the db file.
2661 ** This is only really safe if the file-system is such that any page
2662 ** writes made by earlier checkpointers were atomic operations, which
2663 ** is not always true. It is also possible that nBackfillAttempted
2664 ** may be left set to a value larger than expected, if a wal frame
2665 ** contains content that duplicate of an earlier version of the same
2666 ** page.
2668 ** SQLITE_OK is returned if successful, or an SQLite error code if an
2669 ** error occurs. It is not an error if nBackfillAttempted cannot be
2670 ** decreased at all.
2672 int sqlite3WalSnapshotRecover(Wal *pWal){
2673 int rc;
2675 assert( pWal->readLock>=0 );
2676 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2677 if( rc==SQLITE_OK ){
2678 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2679 int szPage = (int)pWal->szPage;
2680 i64 szDb; /* Size of db file in bytes */
2682 rc = sqlite3OsFileSize(pWal->pDbFd, &szDb);
2683 if( rc==SQLITE_OK ){
2684 void *pBuf1 = sqlite3_malloc(szPage);
2685 void *pBuf2 = sqlite3_malloc(szPage);
2686 if( pBuf1==0 || pBuf2==0 ){
2687 rc = SQLITE_NOMEM;
2688 }else{
2689 u32 i = pInfo->nBackfillAttempted;
2690 for(i=pInfo->nBackfillAttempted; i>pInfo->nBackfill; i--){
2691 WalHashLoc sLoc; /* Hash table location */
2692 u32 pgno; /* Page number in db file */
2693 i64 iDbOff; /* Offset of db file entry */
2694 i64 iWalOff; /* Offset of wal file entry */
2696 rc = walHashGet(pWal, walFramePage(i), &sLoc);
2697 if( rc!=SQLITE_OK ) break;
2698 pgno = sLoc.aPgno[i-sLoc.iZero];
2699 iDbOff = (i64)(pgno-1) * szPage;
2701 if( iDbOff+szPage<=szDb ){
2702 iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE;
2703 rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff);
2705 if( rc==SQLITE_OK ){
2706 rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff);
2709 if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){
2710 break;
2714 pInfo->nBackfillAttempted = i-1;
2718 sqlite3_free(pBuf1);
2719 sqlite3_free(pBuf2);
2721 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
2724 return rc;
2726 #endif /* SQLITE_ENABLE_SNAPSHOT */
2729 ** Begin a read transaction on the database.
2731 ** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2732 ** it takes a snapshot of the state of the WAL and wal-index for the current
2733 ** instant in time. The current thread will continue to use this snapshot.
2734 ** Other threads might append new content to the WAL and wal-index but
2735 ** that extra content is ignored by the current thread.
2737 ** If the database contents have changes since the previous read
2738 ** transaction, then *pChanged is set to 1 before returning. The
2739 ** Pager layer will use this to know that its cache is stale and
2740 ** needs to be flushed.
2742 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
2743 int rc; /* Return code */
2744 int cnt = 0; /* Number of TryBeginRead attempts */
2746 #ifdef SQLITE_ENABLE_SNAPSHOT
2747 int bChanged = 0;
2748 WalIndexHdr *pSnapshot = pWal->pSnapshot;
2749 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2750 bChanged = 1;
2752 #endif
2755 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
2756 }while( rc==WAL_RETRY );
2757 testcase( (rc&0xff)==SQLITE_BUSY );
2758 testcase( (rc&0xff)==SQLITE_IOERR );
2759 testcase( rc==SQLITE_PROTOCOL );
2760 testcase( rc==SQLITE_OK );
2762 #ifdef SQLITE_ENABLE_SNAPSHOT
2763 if( rc==SQLITE_OK ){
2764 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2765 /* At this point the client has a lock on an aReadMark[] slot holding
2766 ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
2767 ** is populated with the wal-index header corresponding to the head
2768 ** of the wal file. Verify that pSnapshot is still valid before
2769 ** continuing. Reasons why pSnapshot might no longer be valid:
2771 ** (1) The WAL file has been reset since the snapshot was taken.
2772 ** In this case, the salt will have changed.
2774 ** (2) A checkpoint as been attempted that wrote frames past
2775 ** pSnapshot->mxFrame into the database file. Note that the
2776 ** checkpoint need not have completed for this to cause problems.
2778 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2780 assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
2781 assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );
2783 /* It is possible that there is a checkpointer thread running
2784 ** concurrent with this code. If this is the case, it may be that the
2785 ** checkpointer has already determined that it will checkpoint
2786 ** snapshot X, where X is later in the wal file than pSnapshot, but
2787 ** has not yet set the pInfo->nBackfillAttempted variable to indicate
2788 ** its intent. To avoid the race condition this leads to, ensure that
2789 ** there is no checkpointer process by taking a shared CKPT lock
2790 ** before checking pInfo->nBackfillAttempted.
2792 ** TODO: Does the aReadMark[] lock prevent a checkpointer from doing
2793 ** this already?
2795 rc = walLockShared(pWal, WAL_CKPT_LOCK);
2797 if( rc==SQLITE_OK ){
2798 /* Check that the wal file has not been wrapped. Assuming that it has
2799 ** not, also check that no checkpointer has attempted to checkpoint any
2800 ** frames beyond pSnapshot->mxFrame. If either of these conditions are
2801 ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr
2802 ** with *pSnapshot and set *pChanged as appropriate for opening the
2803 ** snapshot. */
2804 if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
2805 && pSnapshot->mxFrame>=pInfo->nBackfillAttempted
2807 assert( pWal->readLock>0 );
2808 memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
2809 *pChanged = bChanged;
2810 }else{
2811 rc = SQLITE_ERROR_SNAPSHOT;
2814 /* Release the shared CKPT lock obtained above. */
2815 walUnlockShared(pWal, WAL_CKPT_LOCK);
2816 pWal->minFrame = 1;
2820 if( rc!=SQLITE_OK ){
2821 sqlite3WalEndReadTransaction(pWal);
2825 #endif
2826 return rc;
2830 ** Finish with a read transaction. All this does is release the
2831 ** read-lock.
2833 void sqlite3WalEndReadTransaction(Wal *pWal){
2834 sqlite3WalEndWriteTransaction(pWal);
2835 if( pWal->readLock>=0 ){
2836 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2837 pWal->readLock = -1;
2842 ** Search the wal file for page pgno. If found, set *piRead to the frame that
2843 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
2844 ** to zero.
2846 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an
2847 ** error does occur, the final value of *piRead is undefined.
2849 int sqlite3WalFindFrame(
2850 Wal *pWal, /* WAL handle */
2851 Pgno pgno, /* Database page number to read data for */
2852 u32 *piRead /* OUT: Frame number (or zero) */
2854 u32 iRead = 0; /* If !=0, WAL frame to return data from */
2855 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */
2856 int iHash; /* Used to loop through N hash tables */
2857 int iMinHash;
2859 /* This routine is only be called from within a read transaction. */
2860 assert( pWal->readLock>=0 || pWal->lockError );
2862 /* If the "last page" field of the wal-index header snapshot is 0, then
2863 ** no data will be read from the wal under any circumstances. Return early
2864 ** in this case as an optimization. Likewise, if pWal->readLock==0,
2865 ** then the WAL is ignored by the reader so return early, as if the
2866 ** WAL were empty.
2868 if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){
2869 *piRead = 0;
2870 return SQLITE_OK;
2873 /* Search the hash table or tables for an entry matching page number
2874 ** pgno. Each iteration of the following for() loop searches one
2875 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
2877 ** This code might run concurrently to the code in walIndexAppend()
2878 ** that adds entries to the wal-index (and possibly to this hash
2879 ** table). This means the value just read from the hash
2880 ** slot (aHash[iKey]) may have been added before or after the
2881 ** current read transaction was opened. Values added after the
2882 ** read transaction was opened may have been written incorrectly -
2883 ** i.e. these slots may contain garbage data. However, we assume
2884 ** that any slots written before the current read transaction was
2885 ** opened remain unmodified.
2887 ** For the reasons above, the if(...) condition featured in the inner
2888 ** loop of the following block is more stringent that would be required
2889 ** if we had exclusive access to the hash-table:
2891 ** (aPgno[iFrame]==pgno):
2892 ** This condition filters out normal hash-table collisions.
2894 ** (iFrame<=iLast):
2895 ** This condition filters out entries that were added to the hash
2896 ** table after the current read-transaction had started.
2898 iMinHash = walFramePage(pWal->minFrame);
2899 for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){
2900 WalHashLoc sLoc; /* Hash table location */
2901 int iKey; /* Hash slot index */
2902 int nCollide; /* Number of hash collisions remaining */
2903 int rc; /* Error code */
2905 rc = walHashGet(pWal, iHash, &sLoc);
2906 if( rc!=SQLITE_OK ){
2907 return rc;
2909 nCollide = HASHTABLE_NSLOT;
2910 for(iKey=walHash(pgno); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){
2911 u32 iFrame = sLoc.aHash[iKey] + sLoc.iZero;
2912 if( iFrame<=iLast && iFrame>=pWal->minFrame
2913 && sLoc.aPgno[sLoc.aHash[iKey]]==pgno ){
2914 assert( iFrame>iRead || CORRUPT_DB );
2915 iRead = iFrame;
2917 if( (nCollide--)==0 ){
2918 return SQLITE_CORRUPT_BKPT;
2921 if( iRead ) break;
2924 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
2925 /* If expensive assert() statements are available, do a linear search
2926 ** of the wal-index file content. Make sure the results agree with the
2927 ** result obtained using the hash indexes above. */
2929 u32 iRead2 = 0;
2930 u32 iTest;
2931 assert( pWal->bShmUnreliable || pWal->minFrame>0 );
2932 for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){
2933 if( walFramePgno(pWal, iTest)==pgno ){
2934 iRead2 = iTest;
2935 break;
2938 assert( iRead==iRead2 );
2940 #endif
2942 *piRead = iRead;
2943 return SQLITE_OK;
2947 ** Read the contents of frame iRead from the wal file into buffer pOut
2948 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
2949 ** error code otherwise.
2951 int sqlite3WalReadFrame(
2952 Wal *pWal, /* WAL handle */
2953 u32 iRead, /* Frame to read */
2954 int nOut, /* Size of buffer pOut in bytes */
2955 u8 *pOut /* Buffer to write page data to */
2957 int sz;
2958 i64 iOffset;
2959 sz = pWal->hdr.szPage;
2960 sz = (sz&0xfe00) + ((sz&0x0001)<<16);
2961 testcase( sz<=32768 );
2962 testcase( sz>=65536 );
2963 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
2964 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
2965 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
2969 ** Return the size of the database in pages (or zero, if unknown).
2971 Pgno sqlite3WalDbsize(Wal *pWal){
2972 if( pWal && ALWAYS(pWal->readLock>=0) ){
2973 return pWal->hdr.nPage;
2975 return 0;
2980 ** This function starts a write transaction on the WAL.
2982 ** A read transaction must have already been started by a prior call
2983 ** to sqlite3WalBeginReadTransaction().
2985 ** If another thread or process has written into the database since
2986 ** the read transaction was started, then it is not possible for this
2987 ** thread to write as doing so would cause a fork. So this routine
2988 ** returns SQLITE_BUSY in that case and no write transaction is started.
2990 ** There can only be a single writer active at a time.
2992 int sqlite3WalBeginWriteTransaction(Wal *pWal){
2993 int rc;
2995 /* Cannot start a write transaction without first holding a read
2996 ** transaction. */
2997 assert( pWal->readLock>=0 );
2998 assert( pWal->writeLock==0 && pWal->iReCksum==0 );
3000 if( pWal->readOnly ){
3001 return SQLITE_READONLY;
3004 /* Only one writer allowed at a time. Get the write lock. Return
3005 ** SQLITE_BUSY if unable.
3007 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
3008 if( rc ){
3009 return rc;
3011 pWal->writeLock = 1;
3013 /* If another connection has written to the database file since the
3014 ** time the read transaction on this connection was started, then
3015 ** the write is disallowed.
3017 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
3018 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3019 pWal->writeLock = 0;
3020 rc = SQLITE_BUSY_SNAPSHOT;
3023 return rc;
3027 ** End a write transaction. The commit has already been done. This
3028 ** routine merely releases the lock.
3030 int sqlite3WalEndWriteTransaction(Wal *pWal){
3031 if( pWal->writeLock ){
3032 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3033 pWal->writeLock = 0;
3034 pWal->iReCksum = 0;
3035 pWal->truncateOnCommit = 0;
3037 return SQLITE_OK;
3041 ** If any data has been written (but not committed) to the log file, this
3042 ** function moves the write-pointer back to the start of the transaction.
3044 ** Additionally, the callback function is invoked for each frame written
3045 ** to the WAL since the start of the transaction. If the callback returns
3046 ** other than SQLITE_OK, it is not invoked again and the error code is
3047 ** returned to the caller.
3049 ** Otherwise, if the callback function does not return an error, this
3050 ** function returns SQLITE_OK.
3052 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
3053 int rc = SQLITE_OK;
3054 if( ALWAYS(pWal->writeLock) ){
3055 Pgno iMax = pWal->hdr.mxFrame;
3056 Pgno iFrame;
3058 /* Restore the clients cache of the wal-index header to the state it
3059 ** was in before the client began writing to the database.
3061 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
3063 for(iFrame=pWal->hdr.mxFrame+1;
3064 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
3065 iFrame++
3067 /* This call cannot fail. Unless the page for which the page number
3068 ** is passed as the second argument is (a) in the cache and
3069 ** (b) has an outstanding reference, then xUndo is either a no-op
3070 ** (if (a) is false) or simply expels the page from the cache (if (b)
3071 ** is false).
3073 ** If the upper layer is doing a rollback, it is guaranteed that there
3074 ** are no outstanding references to any page other than page 1. And
3075 ** page 1 is never written to the log until the transaction is
3076 ** committed. As a result, the call to xUndo may not fail.
3078 assert( walFramePgno(pWal, iFrame)!=1 );
3079 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
3081 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
3083 return rc;
3087 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
3088 ** values. This function populates the array with values required to
3089 ** "rollback" the write position of the WAL handle back to the current
3090 ** point in the event of a savepoint rollback (via WalSavepointUndo()).
3092 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
3093 assert( pWal->writeLock );
3094 aWalData[0] = pWal->hdr.mxFrame;
3095 aWalData[1] = pWal->hdr.aFrameCksum[0];
3096 aWalData[2] = pWal->hdr.aFrameCksum[1];
3097 aWalData[3] = pWal->nCkpt;
3101 ** Move the write position of the WAL back to the point identified by
3102 ** the values in the aWalData[] array. aWalData must point to an array
3103 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
3104 ** by a call to WalSavepoint().
3106 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
3107 int rc = SQLITE_OK;
3109 assert( pWal->writeLock );
3110 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
3112 if( aWalData[3]!=pWal->nCkpt ){
3113 /* This savepoint was opened immediately after the write-transaction
3114 ** was started. Right after that, the writer decided to wrap around
3115 ** to the start of the log. Update the savepoint values to match.
3117 aWalData[0] = 0;
3118 aWalData[3] = pWal->nCkpt;
3121 if( aWalData[0]<pWal->hdr.mxFrame ){
3122 pWal->hdr.mxFrame = aWalData[0];
3123 pWal->hdr.aFrameCksum[0] = aWalData[1];
3124 pWal->hdr.aFrameCksum[1] = aWalData[2];
3125 walCleanupHash(pWal);
3128 return rc;
3132 ** This function is called just before writing a set of frames to the log
3133 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending
3134 ** to the current log file, it is possible to overwrite the start of the
3135 ** existing log file with the new frames (i.e. "reset" the log). If so,
3136 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
3137 ** unchanged.
3139 ** SQLITE_OK is returned if no error is encountered (regardless of whether
3140 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
3141 ** if an error occurs.
3143 static int walRestartLog(Wal *pWal){
3144 int rc = SQLITE_OK;
3145 int cnt;
3147 if( pWal->readLock==0 ){
3148 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
3149 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
3150 if( pInfo->nBackfill>0 ){
3151 u32 salt1;
3152 sqlite3_randomness(4, &salt1);
3153 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
3154 if( rc==SQLITE_OK ){
3155 /* If all readers are using WAL_READ_LOCK(0) (in other words if no
3156 ** readers are currently using the WAL), then the transactions
3157 ** frames will overwrite the start of the existing log. Update the
3158 ** wal-index header to reflect this.
3160 ** In theory it would be Ok to update the cache of the header only
3161 ** at this point. But updating the actual wal-index header is also
3162 ** safe and means there is no special case for sqlite3WalUndo()
3163 ** to handle if this transaction is rolled back. */
3164 walRestartHdr(pWal, salt1);
3165 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
3166 }else if( rc!=SQLITE_BUSY ){
3167 return rc;
3170 walUnlockShared(pWal, WAL_READ_LOCK(0));
3171 pWal->readLock = -1;
3172 cnt = 0;
3174 int notUsed;
3175 rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
3176 }while( rc==WAL_RETRY );
3177 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
3178 testcase( (rc&0xff)==SQLITE_IOERR );
3179 testcase( rc==SQLITE_PROTOCOL );
3180 testcase( rc==SQLITE_OK );
3182 return rc;
3186 ** Information about the current state of the WAL file and where
3187 ** the next fsync should occur - passed from sqlite3WalFrames() into
3188 ** walWriteToLog().
3190 typedef struct WalWriter {
3191 Wal *pWal; /* The complete WAL information */
3192 sqlite3_file *pFd; /* The WAL file to which we write */
3193 sqlite3_int64 iSyncPoint; /* Fsync at this offset */
3194 int syncFlags; /* Flags for the fsync */
3195 int szPage; /* Size of one page */
3196 } WalWriter;
3199 ** Write iAmt bytes of content into the WAL file beginning at iOffset.
3200 ** Do a sync when crossing the p->iSyncPoint boundary.
3202 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
3203 ** first write the part before iSyncPoint, then sync, then write the
3204 ** rest.
3206 static int walWriteToLog(
3207 WalWriter *p, /* WAL to write to */
3208 void *pContent, /* Content to be written */
3209 int iAmt, /* Number of bytes to write */
3210 sqlite3_int64 iOffset /* Start writing at this offset */
3212 int rc;
3213 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
3214 int iFirstAmt = (int)(p->iSyncPoint - iOffset);
3215 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
3216 if( rc ) return rc;
3217 iOffset += iFirstAmt;
3218 iAmt -= iFirstAmt;
3219 pContent = (void*)(iFirstAmt + (char*)pContent);
3220 assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 );
3221 rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags));
3222 if( iAmt==0 || rc ) return rc;
3224 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
3225 return rc;
3229 ** Write out a single frame of the WAL
3231 static int walWriteOneFrame(
3232 WalWriter *p, /* Where to write the frame */
3233 PgHdr *pPage, /* The page of the frame to be written */
3234 int nTruncate, /* The commit flag. Usually 0. >0 for commit */
3235 sqlite3_int64 iOffset /* Byte offset at which to write */
3237 int rc; /* Result code from subfunctions */
3238 void *pData; /* Data actually written */
3239 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
3240 #if defined(SQLITE_HAS_CODEC)
3241 if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM_BKPT;
3242 #else
3243 pData = pPage->pData;
3244 #endif
3245 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
3246 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
3247 if( rc ) return rc;
3248 /* Write the page data */
3249 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
3250 return rc;
3254 ** This function is called as part of committing a transaction within which
3255 ** one or more frames have been overwritten. It updates the checksums for
3256 ** all frames written to the wal file by the current transaction starting
3257 ** with the earliest to have been overwritten.
3259 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
3261 static int walRewriteChecksums(Wal *pWal, u32 iLast){
3262 const int szPage = pWal->szPage;/* Database page size */
3263 int rc = SQLITE_OK; /* Return code */
3264 u8 *aBuf; /* Buffer to load data from wal file into */
3265 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */
3266 u32 iRead; /* Next frame to read from wal file */
3267 i64 iCksumOff;
3269 aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE);
3270 if( aBuf==0 ) return SQLITE_NOMEM_BKPT;
3272 /* Find the checksum values to use as input for the recalculating the
3273 ** first checksum. If the first frame is frame 1 (implying that the current
3274 ** transaction restarted the wal file), these values must be read from the
3275 ** wal-file header. Otherwise, read them from the frame header of the
3276 ** previous frame. */
3277 assert( pWal->iReCksum>0 );
3278 if( pWal->iReCksum==1 ){
3279 iCksumOff = 24;
3280 }else{
3281 iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16;
3283 rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff);
3284 pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf);
3285 pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]);
3287 iRead = pWal->iReCksum;
3288 pWal->iReCksum = 0;
3289 for(; rc==SQLITE_OK && iRead<=iLast; iRead++){
3290 i64 iOff = walFrameOffset(iRead, szPage);
3291 rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff);
3292 if( rc==SQLITE_OK ){
3293 u32 iPgno, nDbSize;
3294 iPgno = sqlite3Get4byte(aBuf);
3295 nDbSize = sqlite3Get4byte(&aBuf[4]);
3297 walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame);
3298 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff);
3302 sqlite3_free(aBuf);
3303 return rc;
3307 ** Write a set of frames to the log. The caller must hold the write-lock
3308 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
3310 int sqlite3WalFrames(
3311 Wal *pWal, /* Wal handle to write to */
3312 int szPage, /* Database page-size in bytes */
3313 PgHdr *pList, /* List of dirty pages to write */
3314 Pgno nTruncate, /* Database size after this commit */
3315 int isCommit, /* True if this is a commit */
3316 int sync_flags /* Flags to pass to OsSync() (or 0) */
3318 int rc; /* Used to catch return codes */
3319 u32 iFrame; /* Next frame address */
3320 PgHdr *p; /* Iterator to run through pList with. */
3321 PgHdr *pLast = 0; /* Last frame in list */
3322 int nExtra = 0; /* Number of extra copies of last page */
3323 int szFrame; /* The size of a single frame */
3324 i64 iOffset; /* Next byte to write in WAL file */
3325 WalWriter w; /* The writer */
3326 u32 iFirst = 0; /* First frame that may be overwritten */
3327 WalIndexHdr *pLive; /* Pointer to shared header */
3329 assert( pList );
3330 assert( pWal->writeLock );
3332 /* If this frame set completes a transaction, then nTruncate>0. If
3333 ** nTruncate==0 then this frame set does not complete the transaction. */
3334 assert( (isCommit!=0)==(nTruncate!=0) );
3336 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
3337 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
3338 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
3339 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
3341 #endif
3343 pLive = (WalIndexHdr*)walIndexHdr(pWal);
3344 if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){
3345 iFirst = pLive->mxFrame+1;
3348 /* See if it is possible to write these frames into the start of the
3349 ** log file, instead of appending to it at pWal->hdr.mxFrame.
3351 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
3352 return rc;
3355 /* If this is the first frame written into the log, write the WAL
3356 ** header to the start of the WAL file. See comments at the top of
3357 ** this source file for a description of the WAL header format.
3359 iFrame = pWal->hdr.mxFrame;
3360 if( iFrame==0 ){
3361 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */
3362 u32 aCksum[2]; /* Checksum for wal-header */
3364 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
3365 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
3366 sqlite3Put4byte(&aWalHdr[8], szPage);
3367 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
3368 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
3369 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
3370 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
3371 sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
3372 sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
3374 pWal->szPage = szPage;
3375 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
3376 pWal->hdr.aFrameCksum[0] = aCksum[0];
3377 pWal->hdr.aFrameCksum[1] = aCksum[1];
3378 pWal->truncateOnCommit = 1;
3380 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
3381 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
3382 if( rc!=SQLITE_OK ){
3383 return rc;
3386 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
3387 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise
3388 ** an out-of-order write following a WAL restart could result in
3389 ** database corruption. See the ticket:
3391 ** https://sqlite.org/src/info/ff5be73dee
3393 if( pWal->syncHeader ){
3394 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
3395 if( rc ) return rc;
3398 assert( (int)pWal->szPage==szPage );
3400 /* Setup information needed to write frames into the WAL */
3401 w.pWal = pWal;
3402 w.pFd = pWal->pWalFd;
3403 w.iSyncPoint = 0;
3404 w.syncFlags = sync_flags;
3405 w.szPage = szPage;
3406 iOffset = walFrameOffset(iFrame+1, szPage);
3407 szFrame = szPage + WAL_FRAME_HDRSIZE;
3409 /* Write all frames into the log file exactly once */
3410 for(p=pList; p; p=p->pDirty){
3411 int nDbSize; /* 0 normally. Positive == commit flag */
3413 /* Check if this page has already been written into the wal file by
3414 ** the current transaction. If so, overwrite the existing frame and
3415 ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that
3416 ** checksums must be recomputed when the transaction is committed. */
3417 if( iFirst && (p->pDirty || isCommit==0) ){
3418 u32 iWrite = 0;
3419 VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite);
3420 assert( rc==SQLITE_OK || iWrite==0 );
3421 if( iWrite>=iFirst ){
3422 i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE;
3423 void *pData;
3424 if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){
3425 pWal->iReCksum = iWrite;
3427 #if defined(SQLITE_HAS_CODEC)
3428 if( (pData = sqlite3PagerCodec(p))==0 ) return SQLITE_NOMEM;
3429 #else
3430 pData = p->pData;
3431 #endif
3432 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff);
3433 if( rc ) return rc;
3434 p->flags &= ~PGHDR_WAL_APPEND;
3435 continue;
3439 iFrame++;
3440 assert( iOffset==walFrameOffset(iFrame, szPage) );
3441 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
3442 rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
3443 if( rc ) return rc;
3444 pLast = p;
3445 iOffset += szFrame;
3446 p->flags |= PGHDR_WAL_APPEND;
3449 /* Recalculate checksums within the wal file if required. */
3450 if( isCommit && pWal->iReCksum ){
3451 rc = walRewriteChecksums(pWal, iFrame);
3452 if( rc ) return rc;
3455 /* If this is the end of a transaction, then we might need to pad
3456 ** the transaction and/or sync the WAL file.
3458 ** Padding and syncing only occur if this set of frames complete a
3459 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL
3460 ** or synchronous==OFF, then no padding or syncing are needed.
3462 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
3463 ** needed and only the sync is done. If padding is needed, then the
3464 ** final frame is repeated (with its commit mark) until the next sector
3465 ** boundary is crossed. Only the part of the WAL prior to the last
3466 ** sector boundary is synced; the part of the last frame that extends
3467 ** past the sector boundary is written after the sync.
3469 if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){
3470 int bSync = 1;
3471 if( pWal->padToSectorBoundary ){
3472 int sectorSize = sqlite3SectorSize(pWal->pWalFd);
3473 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
3474 bSync = (w.iSyncPoint==iOffset);
3475 testcase( bSync );
3476 while( iOffset<w.iSyncPoint ){
3477 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
3478 if( rc ) return rc;
3479 iOffset += szFrame;
3480 nExtra++;
3483 if( bSync ){
3484 assert( rc==SQLITE_OK );
3485 rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags));
3489 /* If this frame set completes the first transaction in the WAL and
3490 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
3491 ** journal size limit, if possible.
3493 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
3494 i64 sz = pWal->mxWalSize;
3495 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
3496 sz = walFrameOffset(iFrame+nExtra+1, szPage);
3498 walLimitSize(pWal, sz);
3499 pWal->truncateOnCommit = 0;
3502 /* Append data to the wal-index. It is not necessary to lock the
3503 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
3504 ** guarantees that there are no other writers, and no data that may
3505 ** be in use by existing readers is being overwritten.
3507 iFrame = pWal->hdr.mxFrame;
3508 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
3509 if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue;
3510 iFrame++;
3511 rc = walIndexAppend(pWal, iFrame, p->pgno);
3513 while( rc==SQLITE_OK && nExtra>0 ){
3514 iFrame++;
3515 nExtra--;
3516 rc = walIndexAppend(pWal, iFrame, pLast->pgno);
3519 if( rc==SQLITE_OK ){
3520 /* Update the private copy of the header. */
3521 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
3522 testcase( szPage<=32768 );
3523 testcase( szPage>=65536 );
3524 pWal->hdr.mxFrame = iFrame;
3525 if( isCommit ){
3526 pWal->hdr.iChange++;
3527 pWal->hdr.nPage = nTruncate;
3529 /* If this is a commit, update the wal-index header too. */
3530 if( isCommit ){
3531 walIndexWriteHdr(pWal);
3532 pWal->iCallback = iFrame;
3536 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
3537 return rc;
3541 ** This routine is called to implement sqlite3_wal_checkpoint() and
3542 ** related interfaces.
3544 ** Obtain a CHECKPOINT lock and then backfill as much information as
3545 ** we can from WAL into the database.
3547 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler
3548 ** callback. In this case this function runs a blocking checkpoint.
3550 int sqlite3WalCheckpoint(
3551 Wal *pWal, /* Wal connection */
3552 sqlite3 *db, /* Check this handle's interrupt flag */
3553 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */
3554 int (*xBusy)(void*), /* Function to call when busy */
3555 void *pBusyArg, /* Context argument for xBusyHandler */
3556 int sync_flags, /* Flags to sync db file with (or 0) */
3557 int nBuf, /* Size of temporary buffer */
3558 u8 *zBuf, /* Temporary buffer to use */
3559 int *pnLog, /* OUT: Number of frames in WAL */
3560 int *pnCkpt /* OUT: Number of backfilled frames in WAL */
3562 int rc; /* Return code */
3563 int isChanged = 0; /* True if a new wal-index header is loaded */
3564 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */
3565 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */
3567 assert( pWal->ckptLock==0 );
3568 assert( pWal->writeLock==0 );
3570 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
3571 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
3572 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
3574 if( pWal->readOnly ) return SQLITE_READONLY;
3575 WALTRACE(("WAL%p: checkpoint begins\n", pWal));
3577 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
3578 ** "checkpoint" lock on the database file. */
3579 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
3580 if( rc ){
3581 /* EVIDENCE-OF: R-10421-19736 If any other process is running a
3582 ** checkpoint operation at the same time, the lock cannot be obtained and
3583 ** SQLITE_BUSY is returned.
3584 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
3585 ** it will not be invoked in this case.
3587 testcase( rc==SQLITE_BUSY );
3588 testcase( xBusy!=0 );
3589 return rc;
3591 pWal->ckptLock = 1;
3593 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
3594 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
3595 ** file.
3597 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
3598 ** immediately, and a busy-handler is configured, it is invoked and the
3599 ** writer lock retried until either the busy-handler returns 0 or the
3600 ** lock is successfully obtained.
3602 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
3603 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
3604 if( rc==SQLITE_OK ){
3605 pWal->writeLock = 1;
3606 }else if( rc==SQLITE_BUSY ){
3607 eMode2 = SQLITE_CHECKPOINT_PASSIVE;
3608 xBusy2 = 0;
3609 rc = SQLITE_OK;
3613 /* Read the wal-index header. */
3614 if( rc==SQLITE_OK ){
3615 rc = walIndexReadHdr(pWal, &isChanged);
3616 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
3617 sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
3621 /* Copy data from the log to the database file. */
3622 if( rc==SQLITE_OK ){
3624 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
3625 rc = SQLITE_CORRUPT_BKPT;
3626 }else{
3627 rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
3630 /* If no error occurred, set the output variables. */
3631 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
3632 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
3633 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
3637 if( isChanged ){
3638 /* If a new wal-index header was loaded before the checkpoint was
3639 ** performed, then the pager-cache associated with pWal is now
3640 ** out of date. So zero the cached wal-index header to ensure that
3641 ** next time the pager opens a snapshot on this database it knows that
3642 ** the cache needs to be reset.
3644 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
3647 /* Release the locks. */
3648 sqlite3WalEndWriteTransaction(pWal);
3649 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
3650 pWal->ckptLock = 0;
3651 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
3652 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
3655 /* Return the value to pass to a sqlite3_wal_hook callback, the
3656 ** number of frames in the WAL at the point of the last commit since
3657 ** sqlite3WalCallback() was called. If no commits have occurred since
3658 ** the last call, then return 0.
3660 int sqlite3WalCallback(Wal *pWal){
3661 u32 ret = 0;
3662 if( pWal ){
3663 ret = pWal->iCallback;
3664 pWal->iCallback = 0;
3666 return (int)ret;
3670 ** This function is called to change the WAL subsystem into or out
3671 ** of locking_mode=EXCLUSIVE.
3673 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3674 ** into locking_mode=NORMAL. This means that we must acquire a lock
3675 ** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL
3676 ** or if the acquisition of the lock fails, then return 0. If the
3677 ** transition out of exclusive-mode is successful, return 1. This
3678 ** operation must occur while the pager is still holding the exclusive
3679 ** lock on the main database file.
3681 ** If op is one, then change from locking_mode=NORMAL into
3682 ** locking_mode=EXCLUSIVE. This means that the pWal->readLock must
3683 ** be released. Return 1 if the transition is made and 0 if the
3684 ** WAL is already in exclusive-locking mode - meaning that this
3685 ** routine is a no-op. The pager must already hold the exclusive lock
3686 ** on the main database file before invoking this operation.
3688 ** If op is negative, then do a dry-run of the op==1 case but do
3689 ** not actually change anything. The pager uses this to see if it
3690 ** should acquire the database exclusive lock prior to invoking
3691 ** the op==1 case.
3693 int sqlite3WalExclusiveMode(Wal *pWal, int op){
3694 int rc;
3695 assert( pWal->writeLock==0 );
3696 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
3698 /* pWal->readLock is usually set, but might be -1 if there was a
3699 ** prior error while attempting to acquire are read-lock. This cannot
3700 ** happen if the connection is actually in exclusive mode (as no xShmLock
3701 ** locks are taken in this case). Nor should the pager attempt to
3702 ** upgrade to exclusive-mode following such an error.
3704 assert( pWal->readLock>=0 || pWal->lockError );
3705 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
3707 if( op==0 ){
3708 if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){
3709 pWal->exclusiveMode = WAL_NORMAL_MODE;
3710 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
3711 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
3713 rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
3714 }else{
3715 /* Already in locking_mode=NORMAL */
3716 rc = 0;
3718 }else if( op>0 ){
3719 assert( pWal->exclusiveMode==WAL_NORMAL_MODE );
3720 assert( pWal->readLock>=0 );
3721 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3722 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
3723 rc = 1;
3724 }else{
3725 rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
3727 return rc;
3731 ** Return true if the argument is non-NULL and the WAL module is using
3732 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
3733 ** WAL module is using shared-memory, return false.
3735 int sqlite3WalHeapMemory(Wal *pWal){
3736 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
3739 #ifdef SQLITE_ENABLE_SNAPSHOT
3740 /* Create a snapshot object. The content of a snapshot is opaque to
3741 ** every other subsystem, so the WAL module can put whatever it needs
3742 ** in the object.
3744 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
3745 int rc = SQLITE_OK;
3746 WalIndexHdr *pRet;
3747 static const u32 aZero[4] = { 0, 0, 0, 0 };
3749 assert( pWal->readLock>=0 && pWal->writeLock==0 );
3751 if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){
3752 *ppSnapshot = 0;
3753 return SQLITE_ERROR;
3755 pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
3756 if( pRet==0 ){
3757 rc = SQLITE_NOMEM_BKPT;
3758 }else{
3759 memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
3760 *ppSnapshot = (sqlite3_snapshot*)pRet;
3763 return rc;
3766 /* Try to open on pSnapshot when the next read-transaction starts
3768 void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot){
3769 pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
3773 ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if
3774 ** p1 is older than p2 and zero if p1 and p2 are the same snapshot.
3776 int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){
3777 WalIndexHdr *pHdr1 = (WalIndexHdr*)p1;
3778 WalIndexHdr *pHdr2 = (WalIndexHdr*)p2;
3780 /* aSalt[0] is a copy of the value stored in the wal file header. It
3781 ** is incremented each time the wal file is restarted. */
3782 if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1;
3783 if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1;
3784 if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1;
3785 if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1;
3786 return 0;
3790 ** The caller currently has a read transaction open on the database.
3791 ** This function takes a SHARED lock on the CHECKPOINTER slot and then
3792 ** checks if the snapshot passed as the second argument is still
3793 ** available. If so, SQLITE_OK is returned.
3795 ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if
3796 ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error
3797 ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER
3798 ** lock is released before returning.
3800 int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){
3801 int rc;
3802 rc = walLockShared(pWal, WAL_CKPT_LOCK);
3803 if( rc==SQLITE_OK ){
3804 WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot;
3805 if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
3806 || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted
3808 rc = SQLITE_ERROR_SNAPSHOT;
3809 walUnlockShared(pWal, WAL_CKPT_LOCK);
3812 return rc;
3816 ** Release a lock obtained by an earlier successful call to
3817 ** sqlite3WalSnapshotCheck().
3819 void sqlite3WalSnapshotUnlock(Wal *pWal){
3820 assert( pWal );
3821 walUnlockShared(pWal, WAL_CKPT_LOCK);
3825 #endif /* SQLITE_ENABLE_SNAPSHOT */
3827 #ifdef SQLITE_ENABLE_ZIPVFS
3829 ** If the argument is not NULL, it points to a Wal object that holds a
3830 ** read-lock. This function returns the database page-size if it is known,
3831 ** or zero if it is not (or if pWal is NULL).
3833 int sqlite3WalFramesize(Wal *pWal){
3834 assert( pWal==0 || pWal->readLock>=0 );
3835 return (pWal ? pWal->szPage : 0);
3837 #endif
3839 /* Return the sqlite3_file object for the WAL file
3841 sqlite3_file *sqlite3WalFile(Wal *pWal){
3842 return pWal->pWalFd;
3845 #endif /* #ifndef SQLITE_OMIT_WAL */