Adjust path to test databases for tests
[sqlcipher.git] / src / pcache1.c
blob110d7ec656ae272f777badc74a76b35fd2764408
1 /*
2 ** 2008 November 05
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file implements the default page cache implementation (the
14 ** sqlite3_pcache interface). It also contains part of the implementation
15 ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features.
16 ** If the default page cache implementation is overridden, then neither of
17 ** these two features are available.
19 ** A Page cache line looks like this:
21 ** -------------------------------------------------------------
22 ** | database page content | PgHdr1 | MemPage | PgHdr |
23 ** -------------------------------------------------------------
25 ** The database page content is up front (so that buffer overreads tend to
26 ** flow harmlessly into the PgHdr1, MemPage, and PgHdr extensions). MemPage
27 ** is the extension added by the btree.c module containing information such
28 ** as the database page number and how that database page is used. PgHdr
29 ** is added by the pcache.c layer and contains information used to keep track
30 ** of which pages are "dirty". PgHdr1 is an extension added by this
31 ** module (pcache1.c). The PgHdr1 header is a subclass of sqlite3_pcache_page.
32 ** PgHdr1 contains information needed to look up a page by its page number.
33 ** The superclass sqlite3_pcache_page.pBuf points to the start of the
34 ** database page content and sqlite3_pcache_page.pExtra points to PgHdr.
36 ** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at
37 ** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size). The
38 ** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this
39 ** size can vary according to architecture, compile-time options, and
40 ** SQLite library version number.
42 ** If SQLITE_PCACHE_SEPARATE_HEADER is defined, then the extension is obtained
43 ** using a separate memory allocation from the database page content. This
44 ** seeks to overcome the "clownshoe" problem (also called "internal
45 ** fragmentation" in academic literature) of allocating a few bytes more
46 ** than a power of two with the memory allocator rounding up to the next
47 ** power of two, and leaving the rounded-up space unused.
49 ** This module tracks pointers to PgHdr1 objects. Only pcache.c communicates
50 ** with this module. Information is passed back and forth as PgHdr1 pointers.
52 ** The pcache.c and pager.c modules deal pointers to PgHdr objects.
53 ** The btree.c module deals with pointers to MemPage objects.
55 ** SOURCE OF PAGE CACHE MEMORY:
57 ** Memory for a page might come from any of three sources:
59 ** (1) The general-purpose memory allocator - sqlite3Malloc()
60 ** (2) Global page-cache memory provided using sqlite3_config() with
61 ** SQLITE_CONFIG_PAGECACHE.
62 ** (3) PCache-local bulk allocation.
64 ** The third case is a chunk of heap memory (defaulting to 100 pages worth)
65 ** that is allocated when the page cache is created. The size of the local
66 ** bulk allocation can be adjusted using
68 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, (void*)0, 0, N).
70 ** If N is positive, then N pages worth of memory are allocated using a single
71 ** sqlite3Malloc() call and that memory is used for the first N pages allocated.
72 ** Or if N is negative, then -1024*N bytes of memory are allocated and used
73 ** for as many pages as can be accomodated.
75 ** Only one of (2) or (3) can be used. Once the memory available to (2) or
76 ** (3) is exhausted, subsequent allocations fail over to the general-purpose
77 ** memory allocator (1).
79 ** Earlier versions of SQLite used only methods (1) and (2). But experiments
80 ** show that method (3) with N==100 provides about a 5% performance boost for
81 ** common workloads.
83 #include "sqliteInt.h"
85 typedef struct PCache1 PCache1;
86 typedef struct PgHdr1 PgHdr1;
87 typedef struct PgFreeslot PgFreeslot;
88 typedef struct PGroup PGroup;
91 ** Each cache entry is represented by an instance of the following
92 ** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of
93 ** PgHdr1.pCache->szPage bytes is allocated directly before this structure
94 ** in memory.
96 struct PgHdr1 {
97 sqlite3_pcache_page page; /* Base class. Must be first. pBuf & pExtra */
98 unsigned int iKey; /* Key value (page number) */
99 u8 isPinned; /* Page in use, not on the LRU list */
100 u8 isBulkLocal; /* This page from bulk local storage */
101 u8 isAnchor; /* This is the PGroup.lru element */
102 PgHdr1 *pNext; /* Next in hash table chain */
103 PCache1 *pCache; /* Cache that currently owns this page */
104 PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */
105 PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */
108 /* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set
109 ** of one or more PCaches that are able to recycle each other's unpinned
110 ** pages when they are under memory pressure. A PGroup is an instance of
111 ** the following object.
113 ** This page cache implementation works in one of two modes:
115 ** (1) Every PCache is the sole member of its own PGroup. There is
116 ** one PGroup per PCache.
118 ** (2) There is a single global PGroup that all PCaches are a member
119 ** of.
121 ** Mode 1 uses more memory (since PCache instances are not able to rob
122 ** unused pages from other PCaches) but it also operates without a mutex,
123 ** and is therefore often faster. Mode 2 requires a mutex in order to be
124 ** threadsafe, but recycles pages more efficiently.
126 ** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single
127 ** PGroup which is the pcache1.grp global variable and its mutex is
128 ** SQLITE_MUTEX_STATIC_LRU.
130 struct PGroup {
131 sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */
132 unsigned int nMaxPage; /* Sum of nMax for purgeable caches */
133 unsigned int nMinPage; /* Sum of nMin for purgeable caches */
134 unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */
135 unsigned int nCurrentPage; /* Number of purgeable pages allocated */
136 PgHdr1 lru; /* The beginning and end of the LRU list */
139 /* Each page cache is an instance of the following object. Every
140 ** open database file (including each in-memory database and each
141 ** temporary or transient database) has a single page cache which
142 ** is an instance of this object.
144 ** Pointers to structures of this type are cast and returned as
145 ** opaque sqlite3_pcache* handles.
147 struct PCache1 {
148 /* Cache configuration parameters. Page size (szPage) and the purgeable
149 ** flag (bPurgeable) are set when the cache is created. nMax may be
150 ** modified at any time by a call to the pcache1Cachesize() method.
151 ** The PGroup mutex must be held when accessing nMax.
153 PGroup *pGroup; /* PGroup this cache belongs to */
154 int szPage; /* Size of database content section */
155 int szExtra; /* sizeof(MemPage)+sizeof(PgHdr) */
156 int szAlloc; /* Total size of one pcache line */
157 int bPurgeable; /* True if cache is purgeable */
158 unsigned int nMin; /* Minimum number of pages reserved */
159 unsigned int nMax; /* Configured "cache_size" value */
160 unsigned int n90pct; /* nMax*9/10 */
161 unsigned int iMaxKey; /* Largest key seen since xTruncate() */
163 /* Hash table of all pages. The following variables may only be accessed
164 ** when the accessor is holding the PGroup mutex.
166 unsigned int nRecyclable; /* Number of pages in the LRU list */
167 unsigned int nPage; /* Total number of pages in apHash */
168 unsigned int nHash; /* Number of slots in apHash[] */
169 PgHdr1 **apHash; /* Hash table for fast lookup by key */
170 PgHdr1 *pFree; /* List of unused pcache-local pages */
171 void *pBulk; /* Bulk memory used by pcache-local */
175 ** Free slots in the allocator used to divide up the global page cache
176 ** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism.
178 struct PgFreeslot {
179 PgFreeslot *pNext; /* Next free slot */
183 ** Global data used by this cache.
185 static SQLITE_WSD struct PCacheGlobal {
186 PGroup grp; /* The global PGroup for mode (2) */
188 /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The
189 ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all
190 ** fixed at sqlite3_initialize() time and do not require mutex protection.
191 ** The nFreeSlot and pFree values do require mutex protection.
193 int isInit; /* True if initialized */
194 int separateCache; /* Use a new PGroup for each PCache */
195 int nInitPage; /* Initial bulk allocation size */
196 int szSlot; /* Size of each free slot */
197 int nSlot; /* The number of pcache slots */
198 int nReserve; /* Try to keep nFreeSlot above this */
199 void *pStart, *pEnd; /* Bounds of global page cache memory */
200 /* Above requires no mutex. Use mutex below for variable that follow. */
201 sqlite3_mutex *mutex; /* Mutex for accessing the following: */
202 PgFreeslot *pFree; /* Free page blocks */
203 int nFreeSlot; /* Number of unused pcache slots */
204 /* The following value requires a mutex to change. We skip the mutex on
205 ** reading because (1) most platforms read a 32-bit integer atomically and
206 ** (2) even if an incorrect value is read, no great harm is done since this
207 ** is really just an optimization. */
208 int bUnderPressure; /* True if low on PAGECACHE memory */
209 } pcache1_g;
212 ** All code in this file should access the global structure above via the
213 ** alias "pcache1". This ensures that the WSD emulation is used when
214 ** compiling for systems that do not support real WSD.
216 #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g))
219 ** Macros to enter and leave the PCache LRU mutex.
221 #if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0
222 # define pcache1EnterMutex(X) assert((X)->mutex==0)
223 # define pcache1LeaveMutex(X) assert((X)->mutex==0)
224 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 0
225 #else
226 # define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex)
227 # define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex)
228 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 1
229 #endif
231 /******************************************************************************/
232 /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/
236 ** This function is called during initialization if a static buffer is
237 ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
238 ** verb to sqlite3_config(). Parameter pBuf points to an allocation large
239 ** enough to contain 'n' buffers of 'sz' bytes each.
241 ** This routine is called from sqlite3_initialize() and so it is guaranteed
242 ** to be serialized already. There is no need for further mutexing.
244 void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
245 if( pcache1.isInit ){
246 PgFreeslot *p;
247 if( pBuf==0 ) sz = n = 0;
248 sz = ROUNDDOWN8(sz);
249 pcache1.szSlot = sz;
250 pcache1.nSlot = pcache1.nFreeSlot = n;
251 pcache1.nReserve = n>90 ? 10 : (n/10 + 1);
252 pcache1.pStart = pBuf;
253 pcache1.pFree = 0;
254 pcache1.bUnderPressure = 0;
255 while( n-- ){
256 p = (PgFreeslot*)pBuf;
257 p->pNext = pcache1.pFree;
258 pcache1.pFree = p;
259 pBuf = (void*)&((char*)pBuf)[sz];
261 pcache1.pEnd = pBuf;
266 ** Try to initialize the pCache->pFree and pCache->pBulk fields. Return
267 ** true if pCache->pFree ends up containing one or more free pages.
269 static int pcache1InitBulk(PCache1 *pCache){
270 i64 szBulk;
271 char *zBulk;
272 if( pcache1.nInitPage==0 ) return 0;
273 /* Do not bother with a bulk allocation if the cache size very small */
274 if( pCache->nMax<3 ) return 0;
275 sqlite3BeginBenignMalloc();
276 if( pcache1.nInitPage>0 ){
277 szBulk = pCache->szAlloc * (i64)pcache1.nInitPage;
278 }else{
279 szBulk = -1024 * (i64)pcache1.nInitPage;
281 if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){
282 szBulk = pCache->szAlloc*(i64)pCache->nMax;
284 zBulk = pCache->pBulk = sqlite3Malloc( szBulk );
285 sqlite3EndBenignMalloc();
286 if( zBulk ){
287 int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc;
288 int i;
289 for(i=0; i<nBulk; i++){
290 PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage];
291 pX->page.pBuf = zBulk;
292 pX->page.pExtra = &pX[1];
293 pX->isBulkLocal = 1;
294 pX->isAnchor = 0;
295 pX->pNext = pCache->pFree;
296 pCache->pFree = pX;
297 zBulk += pCache->szAlloc;
300 return pCache->pFree!=0;
304 ** Malloc function used within this file to allocate space from the buffer
305 ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no
306 ** such buffer exists or there is no space left in it, this function falls
307 ** back to sqlite3Malloc().
309 ** Multiple threads can run this routine at the same time. Global variables
310 ** in pcache1 need to be protected via mutex.
312 static void *pcache1Alloc(int nByte){
313 void *p = 0;
314 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
315 if( nByte<=pcache1.szSlot ){
316 sqlite3_mutex_enter(pcache1.mutex);
317 p = (PgHdr1 *)pcache1.pFree;
318 if( p ){
319 pcache1.pFree = pcache1.pFree->pNext;
320 pcache1.nFreeSlot--;
321 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
322 assert( pcache1.nFreeSlot>=0 );
323 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
324 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1);
326 sqlite3_mutex_leave(pcache1.mutex);
328 if( p==0 ){
329 /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get
330 ** it from sqlite3Malloc instead.
332 p = sqlite3Malloc(nByte);
333 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
334 if( p ){
335 int sz = sqlite3MallocSize(p);
336 sqlite3_mutex_enter(pcache1.mutex);
337 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
338 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
339 sqlite3_mutex_leave(pcache1.mutex);
341 #endif
342 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
344 return p;
348 ** Free an allocated buffer obtained from pcache1Alloc().
350 static void pcache1Free(void *p){
351 if( p==0 ) return;
352 if( SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd) ){
353 PgFreeslot *pSlot;
354 sqlite3_mutex_enter(pcache1.mutex);
355 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1);
356 pSlot = (PgFreeslot*)p;
357 pSlot->pNext = pcache1.pFree;
358 pcache1.pFree = pSlot;
359 pcache1.nFreeSlot++;
360 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
361 assert( pcache1.nFreeSlot<=pcache1.nSlot );
362 sqlite3_mutex_leave(pcache1.mutex);
363 }else{
364 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
365 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
366 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
368 int nFreed = 0;
369 nFreed = sqlite3MallocSize(p);
370 sqlite3_mutex_enter(pcache1.mutex);
371 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed);
372 sqlite3_mutex_leave(pcache1.mutex);
374 #endif
375 sqlite3_free(p);
379 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
381 ** Return the size of a pcache allocation
383 static int pcache1MemSize(void *p){
384 if( p>=pcache1.pStart && p<pcache1.pEnd ){
385 return pcache1.szSlot;
386 }else{
387 int iSize;
388 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
389 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
390 iSize = sqlite3MallocSize(p);
391 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
392 return iSize;
395 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
398 ** Allocate a new page object initially associated with cache pCache.
400 static PgHdr1 *pcache1AllocPage(PCache1 *pCache, int benignMalloc){
401 PgHdr1 *p = 0;
402 void *pPg;
404 assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
405 if( pCache->pFree || (pCache->nPage==0 && pcache1InitBulk(pCache)) ){
406 p = pCache->pFree;
407 pCache->pFree = p->pNext;
408 p->pNext = 0;
409 }else{
410 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
411 /* The group mutex must be released before pcache1Alloc() is called. This
412 ** is because it might call sqlite3_release_memory(), which assumes that
413 ** this mutex is not held. */
414 assert( pcache1.separateCache==0 );
415 assert( pCache->pGroup==&pcache1.grp );
416 pcache1LeaveMutex(pCache->pGroup);
417 #endif
418 if( benignMalloc ){ sqlite3BeginBenignMalloc(); }
419 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
420 pPg = pcache1Alloc(pCache->szPage);
421 p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra);
422 if( !pPg || !p ){
423 pcache1Free(pPg);
424 sqlite3_free(p);
425 pPg = 0;
427 #else
428 pPg = pcache1Alloc(pCache->szAlloc);
429 p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage];
430 #endif
431 if( benignMalloc ){ sqlite3EndBenignMalloc(); }
432 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
433 pcache1EnterMutex(pCache->pGroup);
434 #endif
435 if( pPg==0 ) return 0;
436 p->page.pBuf = pPg;
437 p->page.pExtra = &p[1];
438 p->isBulkLocal = 0;
439 p->isAnchor = 0;
441 if( pCache->bPurgeable ){
442 pCache->pGroup->nCurrentPage++;
444 return p;
448 ** Free a page object allocated by pcache1AllocPage().
450 static void pcache1FreePage(PgHdr1 *p){
451 PCache1 *pCache;
452 assert( p!=0 );
453 pCache = p->pCache;
454 assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) );
455 if( p->isBulkLocal ){
456 p->pNext = pCache->pFree;
457 pCache->pFree = p;
458 }else{
459 pcache1Free(p->page.pBuf);
460 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
461 sqlite3_free(p);
462 #endif
464 if( pCache->bPurgeable ){
465 pCache->pGroup->nCurrentPage--;
470 ** Malloc function used by SQLite to obtain space from the buffer configured
471 ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer
472 ** exists, this function falls back to sqlite3Malloc().
474 void *sqlite3PageMalloc(int sz){
475 return pcache1Alloc(sz);
479 ** Free an allocated buffer obtained from sqlite3PageMalloc().
481 void sqlite3PageFree(void *p){
482 pcache1Free(p);
487 ** Return true if it desirable to avoid allocating a new page cache
488 ** entry.
490 ** If memory was allocated specifically to the page cache using
491 ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then
492 ** it is desirable to avoid allocating a new page cache entry because
493 ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient
494 ** for all page cache needs and we should not need to spill the
495 ** allocation onto the heap.
497 ** Or, the heap is used for all page cache memory but the heap is
498 ** under memory pressure, then again it is desirable to avoid
499 ** allocating a new page cache entry in order to avoid stressing
500 ** the heap even further.
502 static int pcache1UnderMemoryPressure(PCache1 *pCache){
503 if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){
504 return pcache1.bUnderPressure;
505 }else{
506 return sqlite3HeapNearlyFull();
510 /******************************************************************************/
511 /******** General Implementation Functions ************************************/
514 ** This function is used to resize the hash table used by the cache passed
515 ** as the first argument.
517 ** The PCache mutex must be held when this function is called.
519 static void pcache1ResizeHash(PCache1 *p){
520 PgHdr1 **apNew;
521 unsigned int nNew;
522 unsigned int i;
524 assert( sqlite3_mutex_held(p->pGroup->mutex) );
526 nNew = p->nHash*2;
527 if( nNew<256 ){
528 nNew = 256;
531 pcache1LeaveMutex(p->pGroup);
532 if( p->nHash ){ sqlite3BeginBenignMalloc(); }
533 apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew);
534 if( p->nHash ){ sqlite3EndBenignMalloc(); }
535 pcache1EnterMutex(p->pGroup);
536 if( apNew ){
537 for(i=0; i<p->nHash; i++){
538 PgHdr1 *pPage;
539 PgHdr1 *pNext = p->apHash[i];
540 while( (pPage = pNext)!=0 ){
541 unsigned int h = pPage->iKey % nNew;
542 pNext = pPage->pNext;
543 pPage->pNext = apNew[h];
544 apNew[h] = pPage;
547 sqlite3_free(p->apHash);
548 p->apHash = apNew;
549 p->nHash = nNew;
554 ** This function is used internally to remove the page pPage from the
555 ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup
556 ** LRU list, then this function is a no-op.
558 ** The PGroup mutex must be held when this function is called.
560 static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){
561 PCache1 *pCache;
563 assert( pPage!=0 );
564 assert( pPage->isPinned==0 );
565 pCache = pPage->pCache;
566 assert( pPage->pLruNext );
567 assert( pPage->pLruPrev );
568 assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
569 pPage->pLruPrev->pLruNext = pPage->pLruNext;
570 pPage->pLruNext->pLruPrev = pPage->pLruPrev;
571 pPage->pLruNext = 0;
572 pPage->pLruPrev = 0;
573 pPage->isPinned = 1;
574 assert( pPage->isAnchor==0 );
575 assert( pCache->pGroup->lru.isAnchor==1 );
576 pCache->nRecyclable--;
577 return pPage;
582 ** Remove the page supplied as an argument from the hash table
583 ** (PCache1.apHash structure) that it is currently stored in.
584 ** Also free the page if freePage is true.
586 ** The PGroup mutex must be held when this function is called.
588 static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){
589 unsigned int h;
590 PCache1 *pCache = pPage->pCache;
591 PgHdr1 **pp;
593 assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
594 h = pPage->iKey % pCache->nHash;
595 for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
596 *pp = (*pp)->pNext;
598 pCache->nPage--;
599 if( freeFlag ) pcache1FreePage(pPage);
603 ** If there are currently more than nMaxPage pages allocated, try
604 ** to recycle pages to reduce the number allocated to nMaxPage.
606 static void pcache1EnforceMaxPage(PCache1 *pCache){
607 PGroup *pGroup = pCache->pGroup;
608 PgHdr1 *p;
609 assert( sqlite3_mutex_held(pGroup->mutex) );
610 while( pGroup->nCurrentPage>pGroup->nMaxPage
611 && (p=pGroup->lru.pLruPrev)->isAnchor==0
613 assert( p->pCache->pGroup==pGroup );
614 assert( p->isPinned==0 );
615 pcache1PinPage(p);
616 pcache1RemoveFromHash(p, 1);
618 if( pCache->nPage==0 && pCache->pBulk ){
619 sqlite3_free(pCache->pBulk);
620 pCache->pBulk = pCache->pFree = 0;
625 ** Discard all pages from cache pCache with a page number (key value)
626 ** greater than or equal to iLimit. Any pinned pages that meet this
627 ** criteria are unpinned before they are discarded.
629 ** The PCache mutex must be held when this function is called.
631 static void pcache1TruncateUnsafe(
632 PCache1 *pCache, /* The cache to truncate */
633 unsigned int iLimit /* Drop pages with this pgno or larger */
635 TESTONLY( int nPage = 0; ) /* To assert pCache->nPage is correct */
636 unsigned int h, iStop;
637 assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
638 assert( pCache->iMaxKey >= iLimit );
639 assert( pCache->nHash > 0 );
640 if( pCache->iMaxKey - iLimit < pCache->nHash ){
641 /* If we are just shaving the last few pages off the end of the
642 ** cache, then there is no point in scanning the entire hash table.
643 ** Only scan those hash slots that might contain pages that need to
644 ** be removed. */
645 h = iLimit % pCache->nHash;
646 iStop = pCache->iMaxKey % pCache->nHash;
647 TESTONLY( nPage = -10; ) /* Disable the pCache->nPage validity check */
648 }else{
649 /* This is the general case where many pages are being removed.
650 ** It is necessary to scan the entire hash table */
651 h = pCache->nHash/2;
652 iStop = h - 1;
654 for(;;){
655 PgHdr1 **pp;
656 PgHdr1 *pPage;
657 assert( h<pCache->nHash );
658 pp = &pCache->apHash[h];
659 while( (pPage = *pp)!=0 ){
660 if( pPage->iKey>=iLimit ){
661 pCache->nPage--;
662 *pp = pPage->pNext;
663 if( !pPage->isPinned ) pcache1PinPage(pPage);
664 pcache1FreePage(pPage);
665 }else{
666 pp = &pPage->pNext;
667 TESTONLY( if( nPage>=0 ) nPage++; )
670 if( h==iStop ) break;
671 h = (h+1) % pCache->nHash;
673 assert( nPage<0 || pCache->nPage==(unsigned)nPage );
676 /******************************************************************************/
677 /******** sqlite3_pcache Methods **********************************************/
680 ** Implementation of the sqlite3_pcache.xInit method.
682 static int pcache1Init(void *NotUsed){
683 UNUSED_PARAMETER(NotUsed);
684 assert( pcache1.isInit==0 );
685 memset(&pcache1, 0, sizeof(pcache1));
689 ** The pcache1.separateCache variable is true if each PCache has its own
690 ** private PGroup (mode-1). pcache1.separateCache is false if the single
691 ** PGroup in pcache1.grp is used for all page caches (mode-2).
693 ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT
695 ** * Use a unified cache in single-threaded applications that have
696 ** configured a start-time buffer for use as page-cache memory using
697 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL
698 ** pBuf argument.
700 ** * Otherwise use separate caches (mode-1)
702 #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT)
703 pcache1.separateCache = 0;
704 #elif SQLITE_THREADSAFE
705 pcache1.separateCache = sqlite3GlobalConfig.pPage==0
706 || sqlite3GlobalConfig.bCoreMutex>0;
707 #else
708 pcache1.separateCache = sqlite3GlobalConfig.pPage==0;
709 #endif
711 #if SQLITE_THREADSAFE
712 if( sqlite3GlobalConfig.bCoreMutex ){
713 pcache1.grp.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU);
714 pcache1.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PMEM);
716 #endif
717 if( pcache1.separateCache
718 && sqlite3GlobalConfig.nPage!=0
719 && sqlite3GlobalConfig.pPage==0
721 pcache1.nInitPage = sqlite3GlobalConfig.nPage;
722 }else{
723 pcache1.nInitPage = 0;
725 pcache1.grp.mxPinned = 10;
726 pcache1.isInit = 1;
727 return SQLITE_OK;
731 ** Implementation of the sqlite3_pcache.xShutdown method.
732 ** Note that the static mutex allocated in xInit does
733 ** not need to be freed.
735 static void pcache1Shutdown(void *NotUsed){
736 UNUSED_PARAMETER(NotUsed);
737 assert( pcache1.isInit!=0 );
738 memset(&pcache1, 0, sizeof(pcache1));
741 /* forward declaration */
742 static void pcache1Destroy(sqlite3_pcache *p);
745 ** Implementation of the sqlite3_pcache.xCreate method.
747 ** Allocate a new cache.
749 static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){
750 PCache1 *pCache; /* The newly created page cache */
751 PGroup *pGroup; /* The group the new page cache will belong to */
752 int sz; /* Bytes of memory required to allocate the new cache */
754 assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 );
755 assert( szExtra < 300 );
757 sz = sizeof(PCache1) + sizeof(PGroup)*pcache1.separateCache;
758 pCache = (PCache1 *)sqlite3MallocZero(sz);
759 if( pCache ){
760 if( pcache1.separateCache ){
761 pGroup = (PGroup*)&pCache[1];
762 pGroup->mxPinned = 10;
763 }else{
764 pGroup = &pcache1.grp;
766 if( pGroup->lru.isAnchor==0 ){
767 pGroup->lru.isAnchor = 1;
768 pGroup->lru.pLruPrev = pGroup->lru.pLruNext = &pGroup->lru;
770 pCache->pGroup = pGroup;
771 pCache->szPage = szPage;
772 pCache->szExtra = szExtra;
773 pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1));
774 pCache->bPurgeable = (bPurgeable ? 1 : 0);
775 pcache1EnterMutex(pGroup);
776 pcache1ResizeHash(pCache);
777 if( bPurgeable ){
778 pCache->nMin = 10;
779 pGroup->nMinPage += pCache->nMin;
780 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
782 pcache1LeaveMutex(pGroup);
783 if( pCache->nHash==0 ){
784 pcache1Destroy((sqlite3_pcache*)pCache);
785 pCache = 0;
788 return (sqlite3_pcache *)pCache;
792 ** Implementation of the sqlite3_pcache.xCachesize method.
794 ** Configure the cache_size limit for a cache.
796 static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
797 PCache1 *pCache = (PCache1 *)p;
798 if( pCache->bPurgeable ){
799 PGroup *pGroup = pCache->pGroup;
800 pcache1EnterMutex(pGroup);
801 pGroup->nMaxPage += (nMax - pCache->nMax);
802 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
803 pCache->nMax = nMax;
804 pCache->n90pct = pCache->nMax*9/10;
805 pcache1EnforceMaxPage(pCache);
806 pcache1LeaveMutex(pGroup);
811 ** Implementation of the sqlite3_pcache.xShrink method.
813 ** Free up as much memory as possible.
815 static void pcache1Shrink(sqlite3_pcache *p){
816 PCache1 *pCache = (PCache1*)p;
817 if( pCache->bPurgeable ){
818 PGroup *pGroup = pCache->pGroup;
819 int savedMaxPage;
820 pcache1EnterMutex(pGroup);
821 savedMaxPage = pGroup->nMaxPage;
822 pGroup->nMaxPage = 0;
823 pcache1EnforceMaxPage(pCache);
824 pGroup->nMaxPage = savedMaxPage;
825 pcache1LeaveMutex(pGroup);
830 ** Implementation of the sqlite3_pcache.xPagecount method.
832 static int pcache1Pagecount(sqlite3_pcache *p){
833 int n;
834 PCache1 *pCache = (PCache1*)p;
835 pcache1EnterMutex(pCache->pGroup);
836 n = pCache->nPage;
837 pcache1LeaveMutex(pCache->pGroup);
838 return n;
843 ** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described
844 ** in the header of the pcache1Fetch() procedure.
846 ** This steps are broken out into a separate procedure because they are
847 ** usually not needed, and by avoiding the stack initialization required
848 ** for these steps, the main pcache1Fetch() procedure can run faster.
850 static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2(
851 PCache1 *pCache,
852 unsigned int iKey,
853 int createFlag
855 unsigned int nPinned;
856 PGroup *pGroup = pCache->pGroup;
857 PgHdr1 *pPage = 0;
859 /* Step 3: Abort if createFlag is 1 but the cache is nearly full */
860 assert( pCache->nPage >= pCache->nRecyclable );
861 nPinned = pCache->nPage - pCache->nRecyclable;
862 assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage );
863 assert( pCache->n90pct == pCache->nMax*9/10 );
864 if( createFlag==1 && (
865 nPinned>=pGroup->mxPinned
866 || nPinned>=pCache->n90pct
867 || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned)
869 return 0;
872 if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache);
873 assert( pCache->nHash>0 && pCache->apHash );
875 /* Step 4. Try to recycle a page. */
876 if( pCache->bPurgeable
877 && !pGroup->lru.pLruPrev->isAnchor
878 && ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache))
880 PCache1 *pOther;
881 pPage = pGroup->lru.pLruPrev;
882 assert( pPage->isPinned==0 );
883 pcache1RemoveFromHash(pPage, 0);
884 pcache1PinPage(pPage);
885 pOther = pPage->pCache;
886 if( pOther->szAlloc != pCache->szAlloc ){
887 pcache1FreePage(pPage);
888 pPage = 0;
889 }else{
890 pGroup->nCurrentPage -= (pOther->bPurgeable - pCache->bPurgeable);
894 /* Step 5. If a usable page buffer has still not been found,
895 ** attempt to allocate a new one.
897 if( !pPage ){
898 pPage = pcache1AllocPage(pCache, createFlag==1);
901 if( pPage ){
902 unsigned int h = iKey % pCache->nHash;
903 pCache->nPage++;
904 pPage->iKey = iKey;
905 pPage->pNext = pCache->apHash[h];
906 pPage->pCache = pCache;
907 pPage->pLruPrev = 0;
908 pPage->pLruNext = 0;
909 pPage->isPinned = 1;
910 *(void **)pPage->page.pExtra = 0;
911 pCache->apHash[h] = pPage;
912 if( iKey>pCache->iMaxKey ){
913 pCache->iMaxKey = iKey;
916 return pPage;
920 ** Implementation of the sqlite3_pcache.xFetch method.
922 ** Fetch a page by key value.
924 ** Whether or not a new page may be allocated by this function depends on
925 ** the value of the createFlag argument. 0 means do not allocate a new
926 ** page. 1 means allocate a new page if space is easily available. 2
927 ** means to try really hard to allocate a new page.
929 ** For a non-purgeable cache (a cache used as the storage for an in-memory
930 ** database) there is really no difference between createFlag 1 and 2. So
931 ** the calling function (pcache.c) will never have a createFlag of 1 on
932 ** a non-purgeable cache.
934 ** There are three different approaches to obtaining space for a page,
935 ** depending on the value of parameter createFlag (which may be 0, 1 or 2).
937 ** 1. Regardless of the value of createFlag, the cache is searched for a
938 ** copy of the requested page. If one is found, it is returned.
940 ** 2. If createFlag==0 and the page is not already in the cache, NULL is
941 ** returned.
943 ** 3. If createFlag is 1, and the page is not already in the cache, then
944 ** return NULL (do not allocate a new page) if any of the following
945 ** conditions are true:
947 ** (a) the number of pages pinned by the cache is greater than
948 ** PCache1.nMax, or
950 ** (b) the number of pages pinned by the cache is greater than
951 ** the sum of nMax for all purgeable caches, less the sum of
952 ** nMin for all other purgeable caches, or
954 ** 4. If none of the first three conditions apply and the cache is marked
955 ** as purgeable, and if one of the following is true:
957 ** (a) The number of pages allocated for the cache is already
958 ** PCache1.nMax, or
960 ** (b) The number of pages allocated for all purgeable caches is
961 ** already equal to or greater than the sum of nMax for all
962 ** purgeable caches,
964 ** (c) The system is under memory pressure and wants to avoid
965 ** unnecessary pages cache entry allocations
967 ** then attempt to recycle a page from the LRU list. If it is the right
968 ** size, return the recycled buffer. Otherwise, free the buffer and
969 ** proceed to step 5.
971 ** 5. Otherwise, allocate and return a new page buffer.
973 ** There are two versions of this routine. pcache1FetchWithMutex() is
974 ** the general case. pcache1FetchNoMutex() is a faster implementation for
975 ** the common case where pGroup->mutex is NULL. The pcache1Fetch() wrapper
976 ** invokes the appropriate routine.
978 static PgHdr1 *pcache1FetchNoMutex(
979 sqlite3_pcache *p,
980 unsigned int iKey,
981 int createFlag
983 PCache1 *pCache = (PCache1 *)p;
984 PgHdr1 *pPage = 0;
986 /* Step 1: Search the hash table for an existing entry. */
987 pPage = pCache->apHash[iKey % pCache->nHash];
988 while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; }
990 /* Step 2: If the page was found in the hash table, then return it.
991 ** If the page was not in the hash table and createFlag is 0, abort.
992 ** Otherwise (page not in hash and createFlag!=0) continue with
993 ** subsequent steps to try to create the page. */
994 if( pPage ){
995 if( !pPage->isPinned ){
996 return pcache1PinPage(pPage);
997 }else{
998 return pPage;
1000 }else if( createFlag ){
1001 /* Steps 3, 4, and 5 implemented by this subroutine */
1002 return pcache1FetchStage2(pCache, iKey, createFlag);
1003 }else{
1004 return 0;
1007 #if PCACHE1_MIGHT_USE_GROUP_MUTEX
1008 static PgHdr1 *pcache1FetchWithMutex(
1009 sqlite3_pcache *p,
1010 unsigned int iKey,
1011 int createFlag
1013 PCache1 *pCache = (PCache1 *)p;
1014 PgHdr1 *pPage;
1016 pcache1EnterMutex(pCache->pGroup);
1017 pPage = pcache1FetchNoMutex(p, iKey, createFlag);
1018 assert( pPage==0 || pCache->iMaxKey>=iKey );
1019 pcache1LeaveMutex(pCache->pGroup);
1020 return pPage;
1022 #endif
1023 static sqlite3_pcache_page *pcache1Fetch(
1024 sqlite3_pcache *p,
1025 unsigned int iKey,
1026 int createFlag
1028 #if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG)
1029 PCache1 *pCache = (PCache1 *)p;
1030 #endif
1032 assert( offsetof(PgHdr1,page)==0 );
1033 assert( pCache->bPurgeable || createFlag!=1 );
1034 assert( pCache->bPurgeable || pCache->nMin==0 );
1035 assert( pCache->bPurgeable==0 || pCache->nMin==10 );
1036 assert( pCache->nMin==0 || pCache->bPurgeable );
1037 assert( pCache->nHash>0 );
1038 #if PCACHE1_MIGHT_USE_GROUP_MUTEX
1039 if( pCache->pGroup->mutex ){
1040 return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag);
1041 }else
1042 #endif
1044 return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag);
1050 ** Implementation of the sqlite3_pcache.xUnpin method.
1052 ** Mark a page as unpinned (eligible for asynchronous recycling).
1054 static void pcache1Unpin(
1055 sqlite3_pcache *p,
1056 sqlite3_pcache_page *pPg,
1057 int reuseUnlikely
1059 PCache1 *pCache = (PCache1 *)p;
1060 PgHdr1 *pPage = (PgHdr1 *)pPg;
1061 PGroup *pGroup = pCache->pGroup;
1063 assert( pPage->pCache==pCache );
1064 pcache1EnterMutex(pGroup);
1066 /* It is an error to call this function if the page is already
1067 ** part of the PGroup LRU list.
1069 assert( pPage->pLruPrev==0 && pPage->pLruNext==0 );
1070 assert( pPage->isPinned==1 );
1072 if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){
1073 pcache1RemoveFromHash(pPage, 1);
1074 }else{
1075 /* Add the page to the PGroup LRU list. */
1076 PgHdr1 **ppFirst = &pGroup->lru.pLruNext;
1077 pPage->pLruPrev = &pGroup->lru;
1078 (pPage->pLruNext = *ppFirst)->pLruPrev = pPage;
1079 *ppFirst = pPage;
1080 pCache->nRecyclable++;
1081 pPage->isPinned = 0;
1084 pcache1LeaveMutex(pCache->pGroup);
1088 ** Implementation of the sqlite3_pcache.xRekey method.
1090 static void pcache1Rekey(
1091 sqlite3_pcache *p,
1092 sqlite3_pcache_page *pPg,
1093 unsigned int iOld,
1094 unsigned int iNew
1096 PCache1 *pCache = (PCache1 *)p;
1097 PgHdr1 *pPage = (PgHdr1 *)pPg;
1098 PgHdr1 **pp;
1099 unsigned int h;
1100 assert( pPage->iKey==iOld );
1101 assert( pPage->pCache==pCache );
1103 pcache1EnterMutex(pCache->pGroup);
1105 h = iOld%pCache->nHash;
1106 pp = &pCache->apHash[h];
1107 while( (*pp)!=pPage ){
1108 pp = &(*pp)->pNext;
1110 *pp = pPage->pNext;
1112 h = iNew%pCache->nHash;
1113 pPage->iKey = iNew;
1114 pPage->pNext = pCache->apHash[h];
1115 pCache->apHash[h] = pPage;
1116 if( iNew>pCache->iMaxKey ){
1117 pCache->iMaxKey = iNew;
1120 pcache1LeaveMutex(pCache->pGroup);
1124 ** Implementation of the sqlite3_pcache.xTruncate method.
1126 ** Discard all unpinned pages in the cache with a page number equal to
1127 ** or greater than parameter iLimit. Any pinned pages with a page number
1128 ** equal to or greater than iLimit are implicitly unpinned.
1130 static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
1131 PCache1 *pCache = (PCache1 *)p;
1132 pcache1EnterMutex(pCache->pGroup);
1133 if( iLimit<=pCache->iMaxKey ){
1134 pcache1TruncateUnsafe(pCache, iLimit);
1135 pCache->iMaxKey = iLimit-1;
1137 pcache1LeaveMutex(pCache->pGroup);
1141 ** Implementation of the sqlite3_pcache.xDestroy method.
1143 ** Destroy a cache allocated using pcache1Create().
1145 static void pcache1Destroy(sqlite3_pcache *p){
1146 PCache1 *pCache = (PCache1 *)p;
1147 PGroup *pGroup = pCache->pGroup;
1148 assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) );
1149 pcache1EnterMutex(pGroup);
1150 if( pCache->nPage ) pcache1TruncateUnsafe(pCache, 0);
1151 assert( pGroup->nMaxPage >= pCache->nMax );
1152 pGroup->nMaxPage -= pCache->nMax;
1153 assert( pGroup->nMinPage >= pCache->nMin );
1154 pGroup->nMinPage -= pCache->nMin;
1155 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
1156 pcache1EnforceMaxPage(pCache);
1157 pcache1LeaveMutex(pGroup);
1158 sqlite3_free(pCache->pBulk);
1159 sqlite3_free(pCache->apHash);
1160 sqlite3_free(pCache);
1164 ** This function is called during initialization (sqlite3_initialize()) to
1165 ** install the default pluggable cache module, assuming the user has not
1166 ** already provided an alternative.
1168 void sqlite3PCacheSetDefault(void){
1169 static const sqlite3_pcache_methods2 defaultMethods = {
1170 1, /* iVersion */
1171 0, /* pArg */
1172 pcache1Init, /* xInit */
1173 pcache1Shutdown, /* xShutdown */
1174 pcache1Create, /* xCreate */
1175 pcache1Cachesize, /* xCachesize */
1176 pcache1Pagecount, /* xPagecount */
1177 pcache1Fetch, /* xFetch */
1178 pcache1Unpin, /* xUnpin */
1179 pcache1Rekey, /* xRekey */
1180 pcache1Truncate, /* xTruncate */
1181 pcache1Destroy, /* xDestroy */
1182 pcache1Shrink /* xShrink */
1184 sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods);
1188 ** Return the size of the header on each page of this PCACHE implementation.
1190 int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); }
1193 ** Return the global mutex used by this PCACHE implementation. The
1194 ** sqlite3_status() routine needs access to this mutex.
1196 sqlite3_mutex *sqlite3Pcache1Mutex(void){
1197 return pcache1.mutex;
1200 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
1202 ** This function is called to free superfluous dynamically allocated memory
1203 ** held by the pager system. Memory in use by any SQLite pager allocated
1204 ** by the current thread may be sqlite3_free()ed.
1206 ** nReq is the number of bytes of memory required. Once this much has
1207 ** been released, the function returns. The return value is the total number
1208 ** of bytes of memory released.
1210 int sqlite3PcacheReleaseMemory(int nReq){
1211 int nFree = 0;
1212 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
1213 assert( sqlite3_mutex_notheld(pcache1.mutex) );
1214 if( sqlite3GlobalConfig.nPage==0 ){
1215 PgHdr1 *p;
1216 pcache1EnterMutex(&pcache1.grp);
1217 while( (nReq<0 || nFree<nReq)
1218 && (p=pcache1.grp.lru.pLruPrev)!=0
1219 && p->isAnchor==0
1221 nFree += pcache1MemSize(p->page.pBuf);
1222 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
1223 nFree += sqlite3MemSize(p);
1224 #endif
1225 assert( p->isPinned==0 );
1226 pcache1PinPage(p);
1227 pcache1RemoveFromHash(p, 1);
1229 pcache1LeaveMutex(&pcache1.grp);
1231 return nFree;
1233 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
1235 #ifdef SQLITE_TEST
1237 ** This function is used by test procedures to inspect the internal state
1238 ** of the global cache.
1240 void sqlite3PcacheStats(
1241 int *pnCurrent, /* OUT: Total number of pages cached */
1242 int *pnMax, /* OUT: Global maximum cache size */
1243 int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */
1244 int *pnRecyclable /* OUT: Total number of pages available for recycling */
1246 PgHdr1 *p;
1247 int nRecyclable = 0;
1248 for(p=pcache1.grp.lru.pLruNext; p && !p->isAnchor; p=p->pLruNext){
1249 assert( p->isPinned==0 );
1250 nRecyclable++;
1252 *pnCurrent = pcache1.grp.nCurrentPage;
1253 *pnMax = (int)pcache1.grp.nMaxPage;
1254 *pnMin = (int)pcache1.grp.nMinPage;
1255 *pnRecyclable = nRecyclable;
1257 #endif