4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** Memory allocation functions used throughout sqlite.
15 #include "sqliteInt.h"
19 ** Attempt to release up to n bytes of non-essential memory currently
20 ** held by SQLite. An example of non-essential memory is memory used to
21 ** cache database pages that are not currently in use.
23 int sqlite3_release_memory(int n
){
24 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
25 return sqlite3PcacheReleaseMemory(n
);
27 /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine
28 ** is a no-op returning zero if SQLite is not compiled with
29 ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */
36 ** An instance of the following object records the location of
37 ** each unused scratch buffer.
39 typedef struct ScratchFreeslot
{
40 struct ScratchFreeslot
*pNext
; /* Next unused scratch buffer */
44 ** State information local to the memory allocation subsystem.
46 static SQLITE_WSD
struct Mem0Global
{
47 sqlite3_mutex
*mutex
; /* Mutex to serialize access */
48 sqlite3_int64 alarmThreshold
; /* The soft heap limit */
51 ** Pointers to the end of sqlite3GlobalConfig.pScratch memory
52 ** (so that a range test can be used to determine if an allocation
53 ** being freed came from pScratch) and a pointer to the list of
54 ** unused scratch allocations.
57 ScratchFreeslot
*pScratchFree
;
61 ** True if heap is nearly "full" where "full" is defined by the
62 ** sqlite3_soft_heap_limit() setting.
65 } mem0
= { 0, 0, 0, 0, 0, 0 };
67 #define mem0 GLOBAL(struct Mem0Global, mem0)
70 ** Return the memory allocator mutex. sqlite3_status() needs it.
72 sqlite3_mutex
*sqlite3MallocMutex(void){
76 #ifndef SQLITE_OMIT_DEPRECATED
78 ** Deprecated external interface. It used to set an alarm callback
79 ** that was invoked when memory usage grew too large. Now it is a
82 int sqlite3_memory_alarm(
83 void(*xCallback
)(void *pArg
, sqlite3_int64 used
,int N
),
85 sqlite3_int64 iThreshold
95 ** Set the soft heap-size limit for the library. Passing a zero or
96 ** negative value indicates no limit.
98 sqlite3_int64
sqlite3_soft_heap_limit64(sqlite3_int64 n
){
99 sqlite3_int64 priorLimit
;
100 sqlite3_int64 excess
;
102 #ifndef SQLITE_OMIT_AUTOINIT
103 int rc
= sqlite3_initialize();
106 sqlite3_mutex_enter(mem0
.mutex
);
107 priorLimit
= mem0
.alarmThreshold
;
109 sqlite3_mutex_leave(mem0
.mutex
);
112 mem0
.alarmThreshold
= n
;
113 nUsed
= sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED
);
114 mem0
.nearlyFull
= (n
>0 && n
<=nUsed
);
115 sqlite3_mutex_leave(mem0
.mutex
);
116 excess
= sqlite3_memory_used() - n
;
117 if( excess
>0 ) sqlite3_release_memory((int)(excess
& 0x7fffffff));
120 void sqlite3_soft_heap_limit(int n
){
122 sqlite3_soft_heap_limit64(n
);
126 ** Initialize the memory allocation subsystem.
128 int sqlite3MallocInit(void){
130 if( sqlite3GlobalConfig
.m
.xMalloc
==0 ){
131 sqlite3MemSetDefault();
133 memset(&mem0
, 0, sizeof(mem0
));
134 mem0
.mutex
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM
);
135 if( sqlite3GlobalConfig
.pScratch
&& sqlite3GlobalConfig
.szScratch
>=100
136 && sqlite3GlobalConfig
.nScratch
>0 ){
138 ScratchFreeslot
*pSlot
;
139 sz
= ROUNDDOWN8(sqlite3GlobalConfig
.szScratch
);
140 sqlite3GlobalConfig
.szScratch
= sz
;
141 pSlot
= (ScratchFreeslot
*)sqlite3GlobalConfig
.pScratch
;
142 n
= sqlite3GlobalConfig
.nScratch
;
143 mem0
.pScratchFree
= pSlot
;
144 mem0
.nScratchFree
= n
;
145 for(i
=0; i
<n
-1; i
++){
146 pSlot
->pNext
= (ScratchFreeslot
*)(sz
+(char*)pSlot
);
147 pSlot
= pSlot
->pNext
;
150 mem0
.pScratchEnd
= (void*)&pSlot
[1];
152 mem0
.pScratchEnd
= 0;
153 sqlite3GlobalConfig
.pScratch
= 0;
154 sqlite3GlobalConfig
.szScratch
= 0;
155 sqlite3GlobalConfig
.nScratch
= 0;
157 if( sqlite3GlobalConfig
.pPage
==0 || sqlite3GlobalConfig
.szPage
<512
158 || sqlite3GlobalConfig
.nPage
<=0 ){
159 sqlite3GlobalConfig
.pPage
= 0;
160 sqlite3GlobalConfig
.szPage
= 0;
162 rc
= sqlite3GlobalConfig
.m
.xInit(sqlite3GlobalConfig
.m
.pAppData
);
163 if( rc
!=SQLITE_OK
) memset(&mem0
, 0, sizeof(mem0
));
168 ** Return true if the heap is currently under memory pressure - in other
169 ** words if the amount of heap used is close to the limit set by
170 ** sqlite3_soft_heap_limit().
172 int sqlite3HeapNearlyFull(void){
173 return mem0
.nearlyFull
;
177 ** Deinitialize the memory allocation subsystem.
179 void sqlite3MallocEnd(void){
180 if( sqlite3GlobalConfig
.m
.xShutdown
){
181 sqlite3GlobalConfig
.m
.xShutdown(sqlite3GlobalConfig
.m
.pAppData
);
183 memset(&mem0
, 0, sizeof(mem0
));
187 ** Return the amount of memory currently checked out.
189 sqlite3_int64
sqlite3_memory_used(void){
190 sqlite3_int64 res
, mx
;
191 sqlite3_status64(SQLITE_STATUS_MEMORY_USED
, &res
, &mx
, 0);
196 ** Return the maximum amount of memory that has ever been
197 ** checked out since either the beginning of this process
198 ** or since the most recent reset.
200 sqlite3_int64
sqlite3_memory_highwater(int resetFlag
){
201 sqlite3_int64 res
, mx
;
202 sqlite3_status64(SQLITE_STATUS_MEMORY_USED
, &res
, &mx
, resetFlag
);
209 static void sqlite3MallocAlarm(int nByte
){
210 if( mem0
.alarmThreshold
<=0 ) return;
211 sqlite3_mutex_leave(mem0
.mutex
);
212 sqlite3_release_memory(nByte
);
213 sqlite3_mutex_enter(mem0
.mutex
);
217 ** Do a memory allocation with statistics and alarms. Assume the
218 ** lock is already held.
220 static int mallocWithAlarm(int n
, void **pp
){
223 assert( sqlite3_mutex_held(mem0
.mutex
) );
224 nFull
= sqlite3GlobalConfig
.m
.xRoundup(n
);
225 sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE
, n
);
226 if( mem0
.alarmThreshold
>0 ){
227 sqlite3_int64 nUsed
= sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED
);
228 if( nUsed
>= mem0
.alarmThreshold
- nFull
){
230 sqlite3MallocAlarm(nFull
);
235 p
= sqlite3GlobalConfig
.m
.xMalloc(nFull
);
236 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
237 if( p
==0 && mem0
.alarmThreshold
>0 ){
238 sqlite3MallocAlarm(nFull
);
239 p
= sqlite3GlobalConfig
.m
.xMalloc(nFull
);
243 nFull
= sqlite3MallocSize(p
);
244 sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED
, nFull
);
245 sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT
, 1);
252 ** Allocate memory. This routine is like sqlite3_malloc() except that it
253 ** assumes the memory subsystem has already been initialized.
255 void *sqlite3Malloc(u64 n
){
257 if( n
==0 || n
>=0x7fffff00 ){
258 /* A memory allocation of a number of bytes which is near the maximum
259 ** signed integer value might cause an integer overflow inside of the
260 ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving
261 ** 255 bytes of overhead. SQLite itself will never use anything near
262 ** this amount. The only way to reach the limit is with sqlite3_malloc() */
264 }else if( sqlite3GlobalConfig
.bMemstat
){
265 sqlite3_mutex_enter(mem0
.mutex
);
266 mallocWithAlarm((int)n
, &p
);
267 sqlite3_mutex_leave(mem0
.mutex
);
269 p
= sqlite3GlobalConfig
.m
.xMalloc((int)n
);
271 assert( EIGHT_BYTE_ALIGNMENT(p
) ); /* IMP: R-11148-40995 */
276 ** This version of the memory allocation is for use by the application.
277 ** First make sure the memory subsystem is initialized, then do the
280 void *sqlite3_malloc(int n
){
281 #ifndef SQLITE_OMIT_AUTOINIT
282 if( sqlite3_initialize() ) return 0;
284 return n
<=0 ? 0 : sqlite3Malloc(n
);
286 void *sqlite3_malloc64(sqlite3_uint64 n
){
287 #ifndef SQLITE_OMIT_AUTOINIT
288 if( sqlite3_initialize() ) return 0;
290 return sqlite3Malloc(n
);
294 ** Each thread may only have a single outstanding allocation from
295 ** xScratchMalloc(). We verify this constraint in the single-threaded
296 ** case by setting scratchAllocOut to 1 when an allocation
297 ** is outstanding clearing it when the allocation is freed.
299 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
300 static int scratchAllocOut
= 0;
305 ** Allocate memory that is to be used and released right away.
306 ** This routine is similar to alloca() in that it is not intended
307 ** for situations where the memory might be held long-term. This
308 ** routine is intended to get memory to old large transient data
309 ** structures that would not normally fit on the stack of an
310 ** embedded processor.
312 void *sqlite3ScratchMalloc(int n
){
316 sqlite3_mutex_enter(mem0
.mutex
);
317 sqlite3StatusHighwater(SQLITE_STATUS_SCRATCH_SIZE
, n
);
318 if( mem0
.nScratchFree
&& sqlite3GlobalConfig
.szScratch
>=n
){
319 p
= mem0
.pScratchFree
;
320 mem0
.pScratchFree
= mem0
.pScratchFree
->pNext
;
322 sqlite3StatusUp(SQLITE_STATUS_SCRATCH_USED
, 1);
323 sqlite3_mutex_leave(mem0
.mutex
);
325 sqlite3_mutex_leave(mem0
.mutex
);
326 p
= sqlite3Malloc(n
);
327 if( sqlite3GlobalConfig
.bMemstat
&& p
){
328 sqlite3_mutex_enter(mem0
.mutex
);
329 sqlite3StatusUp(SQLITE_STATUS_SCRATCH_OVERFLOW
, sqlite3MallocSize(p
));
330 sqlite3_mutex_leave(mem0
.mutex
);
332 sqlite3MemdebugSetType(p
, MEMTYPE_SCRATCH
);
334 assert( sqlite3_mutex_notheld(mem0
.mutex
) );
337 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
338 /* EVIDENCE-OF: R-12970-05880 SQLite will not use more than one scratch
339 ** buffers per thread.
341 ** This can only be checked in single-threaded mode.
343 assert( scratchAllocOut
==0 );
344 if( p
) scratchAllocOut
++;
349 void sqlite3ScratchFree(void *p
){
352 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
353 /* Verify that no more than two scratch allocation per thread
354 ** is outstanding at one time. (This is only checked in the
355 ** single-threaded case since checking in the multi-threaded case
356 ** would be much more complicated.) */
357 assert( scratchAllocOut
>=1 && scratchAllocOut
<=2 );
361 if( SQLITE_WITHIN(p
, sqlite3GlobalConfig
.pScratch
, mem0
.pScratchEnd
) ){
362 /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */
363 ScratchFreeslot
*pSlot
;
364 pSlot
= (ScratchFreeslot
*)p
;
365 sqlite3_mutex_enter(mem0
.mutex
);
366 pSlot
->pNext
= mem0
.pScratchFree
;
367 mem0
.pScratchFree
= pSlot
;
369 assert( mem0
.nScratchFree
<= (u32
)sqlite3GlobalConfig
.nScratch
);
370 sqlite3StatusDown(SQLITE_STATUS_SCRATCH_USED
, 1);
371 sqlite3_mutex_leave(mem0
.mutex
);
373 /* Release memory back to the heap */
374 assert( sqlite3MemdebugHasType(p
, MEMTYPE_SCRATCH
) );
375 assert( sqlite3MemdebugNoType(p
, (u8
)~MEMTYPE_SCRATCH
) );
376 sqlite3MemdebugSetType(p
, MEMTYPE_HEAP
);
377 if( sqlite3GlobalConfig
.bMemstat
){
378 int iSize
= sqlite3MallocSize(p
);
379 sqlite3_mutex_enter(mem0
.mutex
);
380 sqlite3StatusDown(SQLITE_STATUS_SCRATCH_OVERFLOW
, iSize
);
381 sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED
, iSize
);
382 sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT
, 1);
383 sqlite3GlobalConfig
.m
.xFree(p
);
384 sqlite3_mutex_leave(mem0
.mutex
);
386 sqlite3GlobalConfig
.m
.xFree(p
);
393 ** TRUE if p is a lookaside memory allocation from db
395 #ifndef SQLITE_OMIT_LOOKASIDE
396 static int isLookaside(sqlite3
*db
, void *p
){
397 return SQLITE_WITHIN(p
, db
->lookaside
.pStart
, db
->lookaside
.pEnd
);
400 #define isLookaside(A,B) 0
404 ** Return the size of a memory allocation previously obtained from
405 ** sqlite3Malloc() or sqlite3_malloc().
407 int sqlite3MallocSize(void *p
){
408 assert( sqlite3MemdebugHasType(p
, MEMTYPE_HEAP
) );
409 return sqlite3GlobalConfig
.m
.xSize(p
);
411 int sqlite3DbMallocSize(sqlite3
*db
, void *p
){
413 if( db
==0 || !isLookaside(db
,p
) ){
416 assert( sqlite3MemdebugNoType(p
, (u8
)~MEMTYPE_HEAP
) );
417 assert( sqlite3MemdebugHasType(p
, MEMTYPE_HEAP
) );
419 assert( sqlite3MemdebugHasType(p
, (MEMTYPE_LOOKASIDE
|MEMTYPE_HEAP
)) );
420 assert( sqlite3MemdebugNoType(p
, (u8
)~(MEMTYPE_LOOKASIDE
|MEMTYPE_HEAP
)) );
423 return sqlite3GlobalConfig
.m
.xSize(p
);
425 assert( sqlite3_mutex_held(db
->mutex
) );
426 return db
->lookaside
.sz
;
429 sqlite3_uint64
sqlite3_msize(void *p
){
430 assert( sqlite3MemdebugNoType(p
, (u8
)~MEMTYPE_HEAP
) );
431 assert( sqlite3MemdebugHasType(p
, MEMTYPE_HEAP
) );
432 return p
? sqlite3GlobalConfig
.m
.xSize(p
) : 0;
436 ** Free memory previously obtained from sqlite3Malloc().
438 void sqlite3_free(void *p
){
439 if( p
==0 ) return; /* IMP: R-49053-54554 */
440 assert( sqlite3MemdebugHasType(p
, MEMTYPE_HEAP
) );
441 assert( sqlite3MemdebugNoType(p
, (u8
)~MEMTYPE_HEAP
) );
442 if( sqlite3GlobalConfig
.bMemstat
){
443 sqlite3_mutex_enter(mem0
.mutex
);
444 sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED
, sqlite3MallocSize(p
));
445 sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT
, 1);
446 sqlite3GlobalConfig
.m
.xFree(p
);
447 sqlite3_mutex_leave(mem0
.mutex
);
449 sqlite3GlobalConfig
.m
.xFree(p
);
454 ** Add the size of memory allocation "p" to the count in
455 ** *db->pnBytesFreed.
457 static SQLITE_NOINLINE
void measureAllocationSize(sqlite3
*db
, void *p
){
458 *db
->pnBytesFreed
+= sqlite3DbMallocSize(db
,p
);
462 ** Free memory that might be associated with a particular database
465 void sqlite3DbFree(sqlite3
*db
, void *p
){
466 assert( db
==0 || sqlite3_mutex_held(db
->mutex
) );
469 if( db
->pnBytesFreed
){
470 measureAllocationSize(db
, p
);
473 if( isLookaside(db
, p
) ){
474 LookasideSlot
*pBuf
= (LookasideSlot
*)p
;
476 /* Trash all content in the buffer being freed */
477 memset(p
, 0xaa, db
->lookaside
.sz
);
479 pBuf
->pNext
= db
->lookaside
.pFree
;
480 db
->lookaside
.pFree
= pBuf
;
481 db
->lookaside
.nOut
--;
485 assert( sqlite3MemdebugHasType(p
, (MEMTYPE_LOOKASIDE
|MEMTYPE_HEAP
)) );
486 assert( sqlite3MemdebugNoType(p
, (u8
)~(MEMTYPE_LOOKASIDE
|MEMTYPE_HEAP
)) );
487 assert( db
!=0 || sqlite3MemdebugNoType(p
, MEMTYPE_LOOKASIDE
) );
488 sqlite3MemdebugSetType(p
, MEMTYPE_HEAP
);
493 ** Change the size of an existing memory allocation
495 void *sqlite3Realloc(void *pOld
, u64 nBytes
){
496 int nOld
, nNew
, nDiff
;
498 assert( sqlite3MemdebugHasType(pOld
, MEMTYPE_HEAP
) );
499 assert( sqlite3MemdebugNoType(pOld
, (u8
)~MEMTYPE_HEAP
) );
501 return sqlite3Malloc(nBytes
); /* IMP: R-04300-56712 */
504 sqlite3_free(pOld
); /* IMP: R-26507-47431 */
507 if( nBytes
>=0x7fffff00 ){
508 /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
511 nOld
= sqlite3MallocSize(pOld
);
512 /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second
513 ** argument to xRealloc is always a value returned by a prior call to
515 nNew
= sqlite3GlobalConfig
.m
.xRoundup((int)nBytes
);
518 }else if( sqlite3GlobalConfig
.bMemstat
){
519 sqlite3_mutex_enter(mem0
.mutex
);
520 sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE
, (int)nBytes
);
522 if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED
) >=
523 mem0
.alarmThreshold
-nDiff
){
524 sqlite3MallocAlarm(nDiff
);
526 pNew
= sqlite3GlobalConfig
.m
.xRealloc(pOld
, nNew
);
527 if( pNew
==0 && mem0
.alarmThreshold
>0 ){
528 sqlite3MallocAlarm((int)nBytes
);
529 pNew
= sqlite3GlobalConfig
.m
.xRealloc(pOld
, nNew
);
532 nNew
= sqlite3MallocSize(pNew
);
533 sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED
, nNew
-nOld
);
535 sqlite3_mutex_leave(mem0
.mutex
);
537 pNew
= sqlite3GlobalConfig
.m
.xRealloc(pOld
, nNew
);
539 assert( EIGHT_BYTE_ALIGNMENT(pNew
) ); /* IMP: R-11148-40995 */
544 ** The public interface to sqlite3Realloc. Make sure that the memory
545 ** subsystem is initialized prior to invoking sqliteRealloc.
547 void *sqlite3_realloc(void *pOld
, int n
){
548 #ifndef SQLITE_OMIT_AUTOINIT
549 if( sqlite3_initialize() ) return 0;
551 if( n
<0 ) n
= 0; /* IMP: R-26507-47431 */
552 return sqlite3Realloc(pOld
, n
);
554 void *sqlite3_realloc64(void *pOld
, sqlite3_uint64 n
){
555 #ifndef SQLITE_OMIT_AUTOINIT
556 if( sqlite3_initialize() ) return 0;
558 return sqlite3Realloc(pOld
, n
);
563 ** Allocate and zero memory.
565 void *sqlite3MallocZero(u64 n
){
566 void *p
= sqlite3Malloc(n
);
568 memset(p
, 0, (size_t)n
);
574 ** Allocate and zero memory. If the allocation fails, make
575 ** the mallocFailed flag in the connection pointer.
577 void *sqlite3DbMallocZero(sqlite3
*db
, u64 n
){
580 p
= sqlite3DbMallocRaw(db
, n
);
581 if( p
) memset(p
, 0, (size_t)n
);
586 /* Finish the work of sqlite3DbMallocRawNN for the unusual and
587 ** slower case when the allocation cannot be fulfilled using lookaside.
589 static SQLITE_NOINLINE
void *dbMallocRawFinish(sqlite3
*db
, u64 n
){
592 p
= sqlite3Malloc(n
);
593 if( !p
) sqlite3OomFault(db
);
594 sqlite3MemdebugSetType(p
,
595 (db
->lookaside
.bDisable
==0) ? MEMTYPE_LOOKASIDE
: MEMTYPE_HEAP
);
600 ** Allocate memory, either lookaside (if possible) or heap.
601 ** If the allocation fails, set the mallocFailed flag in
602 ** the connection pointer.
604 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc
605 ** failure on the same database connection) then always return 0.
606 ** Hence for a particular database connection, once malloc starts
607 ** failing, it fails consistently until mallocFailed is reset.
608 ** This is an important assumption. There are many places in the
609 ** code that do things like this:
611 ** int *a = (int*)sqlite3DbMallocRaw(db, 100);
612 ** int *b = (int*)sqlite3DbMallocRaw(db, 200);
613 ** if( b ) a[10] = 9;
615 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
616 ** that all prior mallocs (ex: "a") worked too.
618 ** The sqlite3MallocRawNN() variant guarantees that the "db" parameter is
619 ** not a NULL pointer.
621 void *sqlite3DbMallocRaw(sqlite3
*db
, u64 n
){
623 if( db
) return sqlite3DbMallocRawNN(db
, n
);
624 p
= sqlite3Malloc(n
);
625 sqlite3MemdebugSetType(p
, MEMTYPE_HEAP
);
628 void *sqlite3DbMallocRawNN(sqlite3
*db
, u64 n
){
629 #ifndef SQLITE_OMIT_LOOKASIDE
632 assert( sqlite3_mutex_held(db
->mutex
) );
633 assert( db
->pnBytesFreed
==0 );
634 if( db
->lookaside
.bDisable
==0 ){
635 assert( db
->mallocFailed
==0 );
636 if( n
>db
->lookaside
.sz
){
637 db
->lookaside
.anStat
[1]++;
638 }else if( (pBuf
= db
->lookaside
.pFree
)==0 ){
639 db
->lookaside
.anStat
[2]++;
641 db
->lookaside
.pFree
= pBuf
->pNext
;
642 db
->lookaside
.nOut
++;
643 db
->lookaside
.anStat
[0]++;
644 if( db
->lookaside
.nOut
>db
->lookaside
.mxOut
){
645 db
->lookaside
.mxOut
= db
->lookaside
.nOut
;
649 }else if( db
->mallocFailed
){
654 assert( sqlite3_mutex_held(db
->mutex
) );
655 assert( db
->pnBytesFreed
==0 );
656 if( db
->mallocFailed
){
660 return dbMallocRawFinish(db
, n
);
663 /* Forward declaration */
664 static SQLITE_NOINLINE
void *dbReallocFinish(sqlite3
*db
, void *p
, u64 n
);
667 ** Resize the block of memory pointed to by p to n bytes. If the
668 ** resize fails, set the mallocFailed flag in the connection object.
670 void *sqlite3DbRealloc(sqlite3
*db
, void *p
, u64 n
){
672 if( p
==0 ) return sqlite3DbMallocRawNN(db
, n
);
673 assert( sqlite3_mutex_held(db
->mutex
) );
674 if( isLookaside(db
,p
) && n
<=db
->lookaside
.sz
) return p
;
675 return dbReallocFinish(db
, p
, n
);
677 static SQLITE_NOINLINE
void *dbReallocFinish(sqlite3
*db
, void *p
, u64 n
){
681 if( db
->mallocFailed
==0 ){
682 if( isLookaside(db
, p
) ){
683 pNew
= sqlite3DbMallocRawNN(db
, n
);
685 memcpy(pNew
, p
, db
->lookaside
.sz
);
686 sqlite3DbFree(db
, p
);
689 assert( sqlite3MemdebugHasType(p
, (MEMTYPE_LOOKASIDE
|MEMTYPE_HEAP
)) );
690 assert( sqlite3MemdebugNoType(p
, (u8
)~(MEMTYPE_LOOKASIDE
|MEMTYPE_HEAP
)) );
691 sqlite3MemdebugSetType(p
, MEMTYPE_HEAP
);
692 pNew
= sqlite3_realloc64(p
, n
);
696 sqlite3MemdebugSetType(pNew
,
697 (db
->lookaside
.bDisable
==0 ? MEMTYPE_LOOKASIDE
: MEMTYPE_HEAP
));
704 ** Attempt to reallocate p. If the reallocation fails, then free p
705 ** and set the mallocFailed flag in the database connection.
707 void *sqlite3DbReallocOrFree(sqlite3
*db
, void *p
, u64 n
){
709 pNew
= sqlite3DbRealloc(db
, p
, n
);
711 sqlite3DbFree(db
, p
);
717 ** Make a copy of a string in memory obtained from sqliteMalloc(). These
718 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
719 ** is because when memory debugging is turned on, these two functions are
720 ** called via macros that record the current file and line number in the
721 ** ThreadData structure.
723 char *sqlite3DbStrDup(sqlite3
*db
, const char *z
){
729 n
= sqlite3Strlen30(z
) + 1;
730 assert( (n
&0x7fffffff)==n
);
731 zNew
= sqlite3DbMallocRaw(db
, (int)n
);
737 char *sqlite3DbStrNDup(sqlite3
*db
, const char *z
, u64 n
){
743 assert( (n
&0x7fffffff)==n
);
744 zNew
= sqlite3DbMallocRawNN(db
, n
+1);
746 memcpy(zNew
, z
, (size_t)n
);
753 ** Free any prior content in *pz and replace it with a copy of zNew.
755 void sqlite3SetString(char **pz
, sqlite3
*db
, const char *zNew
){
756 sqlite3DbFree(db
, *pz
);
757 *pz
= sqlite3DbStrDup(db
, zNew
);
761 ** Call this routine to record the fact that an OOM (out-of-memory) error
762 ** has happened. This routine will set db->mallocFailed, and also
763 ** temporarily disable the lookaside memory allocator and interrupt
764 ** any running VDBEs.
766 void sqlite3OomFault(sqlite3
*db
){
767 if( db
->mallocFailed
==0 && db
->bBenignMalloc
==0 ){
768 db
->mallocFailed
= 1;
769 if( db
->nVdbeExec
>0 ){
770 db
->u1
.isInterrupted
= 1;
772 db
->lookaside
.bDisable
++;
777 ** This routine reactivates the memory allocator and clears the
778 ** db->mallocFailed flag as necessary.
780 ** The memory allocator is not restarted if there are running
783 void sqlite3OomClear(sqlite3
*db
){
784 if( db
->mallocFailed
&& db
->nVdbeExec
==0 ){
785 db
->mallocFailed
= 0;
786 db
->u1
.isInterrupted
= 0;
787 assert( db
->lookaside
.bDisable
>0 );
788 db
->lookaside
.bDisable
--;
793 ** Take actions at the end of an API call to indicate an OOM error
795 static SQLITE_NOINLINE
int apiOomError(sqlite3
*db
){
797 sqlite3Error(db
, SQLITE_NOMEM
);
798 return SQLITE_NOMEM_BKPT
;
802 ** This function must be called before exiting any API function (i.e.
803 ** returning control to the user) that has called sqlite3_malloc or
806 ** The returned value is normally a copy of the second argument to this
807 ** function. However, if a malloc() failure has occurred since the previous
808 ** invocation SQLITE_NOMEM is returned instead.
810 ** If an OOM as occurred, then the connection error-code (the value
811 ** returned by sqlite3_errcode()) is set to SQLITE_NOMEM.
813 int sqlite3ApiExit(sqlite3
* db
, int rc
){
814 /* If the db handle must hold the connection handle mutex here.
815 ** Otherwise the read (and possible write) of db->mallocFailed
816 ** is unsafe, as is the call to sqlite3Error().
819 assert( sqlite3_mutex_held(db
->mutex
) );
820 if( db
->mallocFailed
|| rc
==SQLITE_IOERR_NOMEM
){
821 return apiOomError(db
);
823 return rc
& db
->errMask
;