Merge branch 'prerelease'
[sqlcipher.git] / src / vdbeapi.c
blob23b19273b614f3ab83f0e0f51751b2a7b16fa16b
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to implement APIs that are part of the
14 ** VDBE.
16 #include "sqliteInt.h"
17 #include "vdbeInt.h"
19 #ifndef SQLITE_OMIT_DEPRECATED
21 ** Return TRUE (non-zero) of the statement supplied as an argument needs
22 ** to be recompiled. A statement needs to be recompiled whenever the
23 ** execution environment changes in a way that would alter the program
24 ** that sqlite3_prepare() generates. For example, if new functions or
25 ** collating sequences are registered or if an authorizer function is
26 ** added or changed.
28 int sqlite3_expired(sqlite3_stmt *pStmt){
29 Vdbe *p = (Vdbe*)pStmt;
30 return p==0 || p->expired;
32 #endif
35 ** Check on a Vdbe to make sure it has not been finalized. Log
36 ** an error and return true if it has been finalized (or is otherwise
37 ** invalid). Return false if it is ok.
39 static int vdbeSafety(Vdbe *p){
40 if( p->db==0 ){
41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement");
42 return 1;
43 }else{
44 return 0;
47 static int vdbeSafetyNotNull(Vdbe *p){
48 if( p==0 ){
49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement");
50 return 1;
51 }else{
52 return vdbeSafety(p);
56 #ifndef SQLITE_OMIT_TRACE
58 ** Invoke the profile callback. This routine is only called if we already
59 ** know that the profile callback is defined and needs to be invoked.
61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){
62 sqlite3_int64 iNow;
63 sqlite3_int64 iElapse;
64 assert( p->startTime>0 );
65 assert( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 );
66 assert( db->init.busy==0 );
67 assert( p->zSql!=0 );
68 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow);
69 iElapse = (iNow - p->startTime)*1000000;
70 #ifndef SQLITE_OMIT_DEPRECATED
71 if( db->xProfile ){
72 db->xProfile(db->pProfileArg, p->zSql, iElapse);
74 #endif
75 if( db->mTrace & SQLITE_TRACE_PROFILE ){
76 db->xTrace(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse);
78 p->startTime = 0;
81 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback
82 ** is needed, and it invokes the callback if it is needed.
84 # define checkProfileCallback(DB,P) \
85 if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); }
86 #else
87 # define checkProfileCallback(DB,P) /*no-op*/
88 #endif
91 ** The following routine destroys a virtual machine that is created by
92 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
93 ** success/failure code that describes the result of executing the virtual
94 ** machine.
96 ** This routine sets the error code and string returned by
97 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
99 int sqlite3_finalize(sqlite3_stmt *pStmt){
100 int rc;
101 if( pStmt==0 ){
102 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
103 ** pointer is a harmless no-op. */
104 rc = SQLITE_OK;
105 }else{
106 Vdbe *v = (Vdbe*)pStmt;
107 sqlite3 *db = v->db;
108 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT;
109 sqlite3_mutex_enter(db->mutex);
110 checkProfileCallback(db, v);
111 rc = sqlite3VdbeFinalize(v);
112 rc = sqlite3ApiExit(db, rc);
113 sqlite3LeaveMutexAndCloseZombie(db);
115 return rc;
119 ** Terminate the current execution of an SQL statement and reset it
120 ** back to its starting state so that it can be reused. A success code from
121 ** the prior execution is returned.
123 ** This routine sets the error code and string returned by
124 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
126 int sqlite3_reset(sqlite3_stmt *pStmt){
127 int rc;
128 if( pStmt==0 ){
129 rc = SQLITE_OK;
130 }else{
131 Vdbe *v = (Vdbe*)pStmt;
132 sqlite3 *db = v->db;
133 sqlite3_mutex_enter(db->mutex);
134 checkProfileCallback(db, v);
135 rc = sqlite3VdbeReset(v);
136 sqlite3VdbeRewind(v);
137 assert( (rc & (db->errMask))==rc );
138 rc = sqlite3ApiExit(db, rc);
139 sqlite3_mutex_leave(db->mutex);
141 return rc;
145 ** Set all the parameters in the compiled SQL statement to NULL.
147 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
148 int i;
149 int rc = SQLITE_OK;
150 Vdbe *p = (Vdbe*)pStmt;
151 #if SQLITE_THREADSAFE
152 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
153 #endif
154 sqlite3_mutex_enter(mutex);
155 for(i=0; i<p->nVar; i++){
156 sqlite3VdbeMemRelease(&p->aVar[i]);
157 p->aVar[i].flags = MEM_Null;
159 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
160 if( p->expmask ){
161 p->expired = 1;
163 sqlite3_mutex_leave(mutex);
164 return rc;
168 /**************************** sqlite3_value_ *******************************
169 ** The following routines extract information from a Mem or sqlite3_value
170 ** structure.
172 const void *sqlite3_value_blob(sqlite3_value *pVal){
173 Mem *p = (Mem*)pVal;
174 if( p->flags & (MEM_Blob|MEM_Str) ){
175 if( ExpandBlob(p)!=SQLITE_OK ){
176 assert( p->flags==MEM_Null && p->z==0 );
177 return 0;
179 p->flags |= MEM_Blob;
180 return p->n ? p->z : 0;
181 }else{
182 return sqlite3_value_text(pVal);
185 int sqlite3_value_bytes(sqlite3_value *pVal){
186 return sqlite3ValueBytes(pVal, SQLITE_UTF8);
188 int sqlite3_value_bytes16(sqlite3_value *pVal){
189 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
191 double sqlite3_value_double(sqlite3_value *pVal){
192 return sqlite3VdbeRealValue((Mem*)pVal);
194 int sqlite3_value_int(sqlite3_value *pVal){
195 return (int)sqlite3VdbeIntValue((Mem*)pVal);
197 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
198 return sqlite3VdbeIntValue((Mem*)pVal);
200 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){
201 Mem *pMem = (Mem*)pVal;
202 return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0);
204 void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){
205 Mem *p = (Mem*)pVal;
206 if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) ==
207 (MEM_Null|MEM_Term|MEM_Subtype)
208 && zPType!=0
209 && p->eSubtype=='p'
210 && strcmp(p->u.zPType, zPType)==0
212 return (void*)p->z;
213 }else{
214 return 0;
217 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
218 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
220 #ifndef SQLITE_OMIT_UTF16
221 const void *sqlite3_value_text16(sqlite3_value* pVal){
222 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
224 const void *sqlite3_value_text16be(sqlite3_value *pVal){
225 return sqlite3ValueText(pVal, SQLITE_UTF16BE);
227 const void *sqlite3_value_text16le(sqlite3_value *pVal){
228 return sqlite3ValueText(pVal, SQLITE_UTF16LE);
230 #endif /* SQLITE_OMIT_UTF16 */
231 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five
232 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating
233 ** point number string BLOB NULL
235 int sqlite3_value_type(sqlite3_value* pVal){
236 static const u8 aType[] = {
237 SQLITE_BLOB, /* 0x00 */
238 SQLITE_NULL, /* 0x01 */
239 SQLITE_TEXT, /* 0x02 */
240 SQLITE_NULL, /* 0x03 */
241 SQLITE_INTEGER, /* 0x04 */
242 SQLITE_NULL, /* 0x05 */
243 SQLITE_INTEGER, /* 0x06 */
244 SQLITE_NULL, /* 0x07 */
245 SQLITE_FLOAT, /* 0x08 */
246 SQLITE_NULL, /* 0x09 */
247 SQLITE_FLOAT, /* 0x0a */
248 SQLITE_NULL, /* 0x0b */
249 SQLITE_INTEGER, /* 0x0c */
250 SQLITE_NULL, /* 0x0d */
251 SQLITE_INTEGER, /* 0x0e */
252 SQLITE_NULL, /* 0x0f */
253 SQLITE_BLOB, /* 0x10 */
254 SQLITE_NULL, /* 0x11 */
255 SQLITE_TEXT, /* 0x12 */
256 SQLITE_NULL, /* 0x13 */
257 SQLITE_INTEGER, /* 0x14 */
258 SQLITE_NULL, /* 0x15 */
259 SQLITE_INTEGER, /* 0x16 */
260 SQLITE_NULL, /* 0x17 */
261 SQLITE_FLOAT, /* 0x18 */
262 SQLITE_NULL, /* 0x19 */
263 SQLITE_FLOAT, /* 0x1a */
264 SQLITE_NULL, /* 0x1b */
265 SQLITE_INTEGER, /* 0x1c */
266 SQLITE_NULL, /* 0x1d */
267 SQLITE_INTEGER, /* 0x1e */
268 SQLITE_NULL, /* 0x1f */
270 return aType[pVal->flags&MEM_AffMask];
273 /* Return true if a parameter to xUpdate represents an unchanged column */
274 int sqlite3_value_nochange(sqlite3_value *pVal){
275 return (pVal->flags&(MEM_Null|MEM_Zero))==(MEM_Null|MEM_Zero);
278 /* Make a copy of an sqlite3_value object
280 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){
281 sqlite3_value *pNew;
282 if( pOrig==0 ) return 0;
283 pNew = sqlite3_malloc( sizeof(*pNew) );
284 if( pNew==0 ) return 0;
285 memset(pNew, 0, sizeof(*pNew));
286 memcpy(pNew, pOrig, MEMCELLSIZE);
287 pNew->flags &= ~MEM_Dyn;
288 pNew->db = 0;
289 if( pNew->flags&(MEM_Str|MEM_Blob) ){
290 pNew->flags &= ~(MEM_Static|MEM_Dyn);
291 pNew->flags |= MEM_Ephem;
292 if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){
293 sqlite3ValueFree(pNew);
294 pNew = 0;
297 return pNew;
300 /* Destroy an sqlite3_value object previously obtained from
301 ** sqlite3_value_dup().
303 void sqlite3_value_free(sqlite3_value *pOld){
304 sqlite3ValueFree(pOld);
308 /**************************** sqlite3_result_ *******************************
309 ** The following routines are used by user-defined functions to specify
310 ** the function result.
312 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the
313 ** result as a string or blob but if the string or blob is too large, it
314 ** then sets the error code to SQLITE_TOOBIG
316 ** The invokeValueDestructor(P,X) routine invokes destructor function X()
317 ** on value P is not going to be used and need to be destroyed.
319 static void setResultStrOrError(
320 sqlite3_context *pCtx, /* Function context */
321 const char *z, /* String pointer */
322 int n, /* Bytes in string, or negative */
323 u8 enc, /* Encoding of z. 0 for BLOBs */
324 void (*xDel)(void*) /* Destructor function */
326 if( sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel)==SQLITE_TOOBIG ){
327 sqlite3_result_error_toobig(pCtx);
330 static int invokeValueDestructor(
331 const void *p, /* Value to destroy */
332 void (*xDel)(void*), /* The destructor */
333 sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */
335 assert( xDel!=SQLITE_DYNAMIC );
336 if( xDel==0 ){
337 /* noop */
338 }else if( xDel==SQLITE_TRANSIENT ){
339 /* noop */
340 }else{
341 xDel((void*)p);
343 if( pCtx ) sqlite3_result_error_toobig(pCtx);
344 return SQLITE_TOOBIG;
346 void sqlite3_result_blob(
347 sqlite3_context *pCtx,
348 const void *z,
349 int n,
350 void (*xDel)(void *)
352 assert( n>=0 );
353 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
354 setResultStrOrError(pCtx, z, n, 0, xDel);
356 void sqlite3_result_blob64(
357 sqlite3_context *pCtx,
358 const void *z,
359 sqlite3_uint64 n,
360 void (*xDel)(void *)
362 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
363 assert( xDel!=SQLITE_DYNAMIC );
364 if( n>0x7fffffff ){
365 (void)invokeValueDestructor(z, xDel, pCtx);
366 }else{
367 setResultStrOrError(pCtx, z, (int)n, 0, xDel);
370 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
371 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
372 sqlite3VdbeMemSetDouble(pCtx->pOut, rVal);
374 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
375 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
376 pCtx->isError = SQLITE_ERROR;
377 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
379 #ifndef SQLITE_OMIT_UTF16
380 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
381 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
382 pCtx->isError = SQLITE_ERROR;
383 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
385 #endif
386 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
387 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
388 sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal);
390 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
391 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
392 sqlite3VdbeMemSetInt64(pCtx->pOut, iVal);
394 void sqlite3_result_null(sqlite3_context *pCtx){
395 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
396 sqlite3VdbeMemSetNull(pCtx->pOut);
398 void sqlite3_result_pointer(
399 sqlite3_context *pCtx,
400 void *pPtr,
401 const char *zPType,
402 void (*xDestructor)(void*)
404 Mem *pOut = pCtx->pOut;
405 assert( sqlite3_mutex_held(pOut->db->mutex) );
406 sqlite3VdbeMemRelease(pOut);
407 pOut->flags = MEM_Null;
408 sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor);
410 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){
411 Mem *pOut = pCtx->pOut;
412 assert( sqlite3_mutex_held(pOut->db->mutex) );
413 pOut->eSubtype = eSubtype & 0xff;
414 pOut->flags |= MEM_Subtype;
416 void sqlite3_result_text(
417 sqlite3_context *pCtx,
418 const char *z,
419 int n,
420 void (*xDel)(void *)
422 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
423 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
425 void sqlite3_result_text64(
426 sqlite3_context *pCtx,
427 const char *z,
428 sqlite3_uint64 n,
429 void (*xDel)(void *),
430 unsigned char enc
432 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
433 assert( xDel!=SQLITE_DYNAMIC );
434 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
435 if( n>0x7fffffff ){
436 (void)invokeValueDestructor(z, xDel, pCtx);
437 }else{
438 setResultStrOrError(pCtx, z, (int)n, enc, xDel);
441 #ifndef SQLITE_OMIT_UTF16
442 void sqlite3_result_text16(
443 sqlite3_context *pCtx,
444 const void *z,
445 int n,
446 void (*xDel)(void *)
448 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
449 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel);
451 void sqlite3_result_text16be(
452 sqlite3_context *pCtx,
453 const void *z,
454 int n,
455 void (*xDel)(void *)
457 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
458 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel);
460 void sqlite3_result_text16le(
461 sqlite3_context *pCtx,
462 const void *z,
463 int n,
464 void (*xDel)(void *)
466 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
467 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel);
469 #endif /* SQLITE_OMIT_UTF16 */
470 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
471 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
472 sqlite3VdbeMemCopy(pCtx->pOut, pValue);
474 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
475 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
476 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n);
478 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){
479 Mem *pOut = pCtx->pOut;
480 assert( sqlite3_mutex_held(pOut->db->mutex) );
481 if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){
482 return SQLITE_TOOBIG;
484 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n);
485 return SQLITE_OK;
487 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
488 pCtx->isError = errCode ? errCode : -1;
489 #ifdef SQLITE_DEBUG
490 if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode;
491 #endif
492 if( pCtx->pOut->flags & MEM_Null ){
493 sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1,
494 SQLITE_UTF8, SQLITE_STATIC);
498 /* Force an SQLITE_TOOBIG error. */
499 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
500 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
501 pCtx->isError = SQLITE_TOOBIG;
502 sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1,
503 SQLITE_UTF8, SQLITE_STATIC);
506 /* An SQLITE_NOMEM error. */
507 void sqlite3_result_error_nomem(sqlite3_context *pCtx){
508 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
509 sqlite3VdbeMemSetNull(pCtx->pOut);
510 pCtx->isError = SQLITE_NOMEM_BKPT;
511 sqlite3OomFault(pCtx->pOut->db);
515 ** This function is called after a transaction has been committed. It
516 ** invokes callbacks registered with sqlite3_wal_hook() as required.
518 static int doWalCallbacks(sqlite3 *db){
519 int rc = SQLITE_OK;
520 #ifndef SQLITE_OMIT_WAL
521 int i;
522 for(i=0; i<db->nDb; i++){
523 Btree *pBt = db->aDb[i].pBt;
524 if( pBt ){
525 int nEntry;
526 sqlite3BtreeEnter(pBt);
527 nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt));
528 sqlite3BtreeLeave(pBt);
529 if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){
530 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry);
534 #endif
535 return rc;
540 ** Execute the statement pStmt, either until a row of data is ready, the
541 ** statement is completely executed or an error occurs.
543 ** This routine implements the bulk of the logic behind the sqlite_step()
544 ** API. The only thing omitted is the automatic recompile if a
545 ** schema change has occurred. That detail is handled by the
546 ** outer sqlite3_step() wrapper procedure.
548 static int sqlite3Step(Vdbe *p){
549 sqlite3 *db;
550 int rc;
552 assert(p);
553 if( p->magic!=VDBE_MAGIC_RUN ){
554 /* We used to require that sqlite3_reset() be called before retrying
555 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning
556 ** with version 3.7.0, we changed this so that sqlite3_reset() would
557 ** be called automatically instead of throwing the SQLITE_MISUSE error.
558 ** This "automatic-reset" change is not technically an incompatibility,
559 ** since any application that receives an SQLITE_MISUSE is broken by
560 ** definition.
562 ** Nevertheless, some published applications that were originally written
563 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE
564 ** returns, and those were broken by the automatic-reset change. As a
565 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the
566 ** legacy behavior of returning SQLITE_MISUSE for cases where the
567 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED
568 ** or SQLITE_BUSY error.
570 #ifdef SQLITE_OMIT_AUTORESET
571 if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){
572 sqlite3_reset((sqlite3_stmt*)p);
573 }else{
574 return SQLITE_MISUSE_BKPT;
576 #else
577 sqlite3_reset((sqlite3_stmt*)p);
578 #endif
581 /* Check that malloc() has not failed. If it has, return early. */
582 db = p->db;
583 if( db->mallocFailed ){
584 p->rc = SQLITE_NOMEM;
585 return SQLITE_NOMEM_BKPT;
588 if( p->pc<0 && p->expired ){
589 p->rc = SQLITE_SCHEMA;
590 rc = SQLITE_ERROR;
591 goto end_of_step;
593 if( p->pc<0 ){
594 /* If there are no other statements currently running, then
595 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt
596 ** from interrupting a statement that has not yet started.
598 if( db->nVdbeActive==0 ){
599 db->u1.isInterrupted = 0;
602 assert( db->nVdbeWrite>0 || db->autoCommit==0
603 || (db->nDeferredCons==0 && db->nDeferredImmCons==0)
606 #ifndef SQLITE_OMIT_TRACE
607 if( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0
608 && !db->init.busy && p->zSql ){
609 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime);
610 }else{
611 assert( p->startTime==0 );
613 #endif
615 db->nVdbeActive++;
616 if( p->readOnly==0 ) db->nVdbeWrite++;
617 if( p->bIsReader ) db->nVdbeRead++;
618 p->pc = 0;
620 #ifdef SQLITE_DEBUG
621 p->rcApp = SQLITE_OK;
622 #endif
623 #ifndef SQLITE_OMIT_EXPLAIN
624 if( p->explain ){
625 rc = sqlite3VdbeList(p);
626 }else
627 #endif /* SQLITE_OMIT_EXPLAIN */
629 db->nVdbeExec++;
630 rc = sqlite3VdbeExec(p);
631 db->nVdbeExec--;
634 if( rc!=SQLITE_ROW ){
635 #ifndef SQLITE_OMIT_TRACE
636 /* If the statement completed successfully, invoke the profile callback */
637 checkProfileCallback(db, p);
638 #endif
640 if( rc==SQLITE_DONE && db->autoCommit ){
641 assert( p->rc==SQLITE_OK );
642 p->rc = doWalCallbacks(db);
643 if( p->rc!=SQLITE_OK ){
644 rc = SQLITE_ERROR;
649 db->errCode = rc;
650 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){
651 p->rc = SQLITE_NOMEM_BKPT;
653 end_of_step:
654 /* At this point local variable rc holds the value that should be
655 ** returned if this statement was compiled using the legacy
656 ** sqlite3_prepare() interface. According to the docs, this can only
657 ** be one of the values in the first assert() below. Variable p->rc
658 ** contains the value that would be returned if sqlite3_finalize()
659 ** were called on statement p.
661 assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR
662 || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE
664 assert( (p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE) || p->rc==p->rcApp );
665 if( rc!=SQLITE_ROW
666 && rc!=SQLITE_DONE
667 && (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0
669 /* If this statement was prepared using saved SQL and an
670 ** error has occurred, then return the error code in p->rc to the
671 ** caller. Set the error code in the database handle to the same value.
673 rc = sqlite3VdbeTransferError(p);
675 return (rc&db->errMask);
679 ** This is the top-level implementation of sqlite3_step(). Call
680 ** sqlite3Step() to do most of the work. If a schema error occurs,
681 ** call sqlite3Reprepare() and try again.
683 int sqlite3_step(sqlite3_stmt *pStmt){
684 int rc = SQLITE_OK; /* Result from sqlite3Step() */
685 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */
686 int cnt = 0; /* Counter to prevent infinite loop of reprepares */
687 sqlite3 *db; /* The database connection */
689 if( vdbeSafetyNotNull(v) ){
690 return SQLITE_MISUSE_BKPT;
692 db = v->db;
693 sqlite3_mutex_enter(db->mutex);
694 v->doingRerun = 0;
695 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
696 && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){
697 int savedPc = v->pc;
698 rc = sqlite3Reprepare(v);
699 if( rc!=SQLITE_OK ){
700 /* This case occurs after failing to recompile an sql statement.
701 ** The error message from the SQL compiler has already been loaded
702 ** into the database handle. This block copies the error message
703 ** from the database handle into the statement and sets the statement
704 ** program counter to 0 to ensure that when the statement is
705 ** finalized or reset the parser error message is available via
706 ** sqlite3_errmsg() and sqlite3_errcode().
708 const char *zErr = (const char *)sqlite3_value_text(db->pErr);
709 sqlite3DbFree(db, v->zErrMsg);
710 if( !db->mallocFailed ){
711 v->zErrMsg = sqlite3DbStrDup(db, zErr);
712 v->rc = rc = sqlite3ApiExit(db, rc);
713 } else {
714 v->zErrMsg = 0;
715 v->rc = rc = SQLITE_NOMEM_BKPT;
717 break;
719 sqlite3_reset(pStmt);
720 if( savedPc>=0 ) v->doingRerun = 1;
721 assert( v->expired==0 );
723 sqlite3_mutex_leave(db->mutex);
724 return rc;
729 ** Extract the user data from a sqlite3_context structure and return a
730 ** pointer to it.
732 void *sqlite3_user_data(sqlite3_context *p){
733 assert( p && p->pFunc );
734 return p->pFunc->pUserData;
738 ** Extract the user data from a sqlite3_context structure and return a
739 ** pointer to it.
741 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
742 ** returns a copy of the pointer to the database connection (the 1st
743 ** parameter) of the sqlite3_create_function() and
744 ** sqlite3_create_function16() routines that originally registered the
745 ** application defined function.
747 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
748 assert( p && p->pOut );
749 return p->pOut->db;
753 ** If this routine is invoked from within an xColumn method of a virtual
754 ** table, then it returns true if and only if the the call is during an
755 ** UPDATE operation and the value of the column will not be modified
756 ** by the UPDATE.
758 ** If this routine is called from any context other than within the
759 ** xColumn method of a virtual table, then the return value is meaningless
760 ** and arbitrary.
762 ** Virtual table implements might use this routine to optimize their
763 ** performance by substituting a NULL result, or some other light-weight
764 ** value, as a signal to the xUpdate routine that the column is unchanged.
766 int sqlite3_vtab_nochange(sqlite3_context *p){
767 assert( p );
768 return sqlite3_value_nochange(p->pOut);
772 ** Return the current time for a statement. If the current time
773 ** is requested more than once within the same run of a single prepared
774 ** statement, the exact same time is returned for each invocation regardless
775 ** of the amount of time that elapses between invocations. In other words,
776 ** the time returned is always the time of the first call.
778 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){
779 int rc;
780 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4
781 sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime;
782 assert( p->pVdbe!=0 );
783 #else
784 sqlite3_int64 iTime = 0;
785 sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime;
786 #endif
787 if( *piTime==0 ){
788 rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime);
789 if( rc ) *piTime = 0;
791 return *piTime;
795 ** Create a new aggregate context for p and return a pointer to
796 ** its pMem->z element.
798 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){
799 Mem *pMem = p->pMem;
800 assert( (pMem->flags & MEM_Agg)==0 );
801 if( nByte<=0 ){
802 sqlite3VdbeMemSetNull(pMem);
803 pMem->z = 0;
804 }else{
805 sqlite3VdbeMemClearAndResize(pMem, nByte);
806 pMem->flags = MEM_Agg;
807 pMem->u.pDef = p->pFunc;
808 if( pMem->z ){
809 memset(pMem->z, 0, nByte);
812 return (void*)pMem->z;
816 ** Allocate or return the aggregate context for a user function. A new
817 ** context is allocated on the first call. Subsequent calls return the
818 ** same context that was returned on prior calls.
820 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
821 assert( p && p->pFunc && p->pFunc->xFinalize );
822 assert( sqlite3_mutex_held(p->pOut->db->mutex) );
823 testcase( nByte<0 );
824 if( (p->pMem->flags & MEM_Agg)==0 ){
825 return createAggContext(p, nByte);
826 }else{
827 return (void*)p->pMem->z;
832 ** Return the auxiliary data pointer, if any, for the iArg'th argument to
833 ** the user-function defined by pCtx.
835 ** The left-most argument is 0.
837 ** Undocumented behavior: If iArg is negative then access a cache of
838 ** auxiliary data pointers that is available to all functions within a
839 ** single prepared statement. The iArg values must match.
841 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
842 AuxData *pAuxData;
844 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
845 #if SQLITE_ENABLE_STAT3_OR_STAT4
846 if( pCtx->pVdbe==0 ) return 0;
847 #else
848 assert( pCtx->pVdbe!=0 );
849 #endif
850 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
851 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
852 return pAuxData->pAux;
855 return 0;
859 ** Set the auxiliary data pointer and delete function, for the iArg'th
860 ** argument to the user-function defined by pCtx. Any previous value is
861 ** deleted by calling the delete function specified when it was set.
863 ** The left-most argument is 0.
865 ** Undocumented behavior: If iArg is negative then make the data available
866 ** to all functions within the current prepared statement using iArg as an
867 ** access code.
869 void sqlite3_set_auxdata(
870 sqlite3_context *pCtx,
871 int iArg,
872 void *pAux,
873 void (*xDelete)(void*)
875 AuxData *pAuxData;
876 Vdbe *pVdbe = pCtx->pVdbe;
878 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
879 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
880 if( pVdbe==0 ) goto failed;
881 #else
882 assert( pVdbe!=0 );
883 #endif
885 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
886 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
887 break;
890 if( pAuxData==0 ){
891 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData));
892 if( !pAuxData ) goto failed;
893 pAuxData->iAuxOp = pCtx->iOp;
894 pAuxData->iAuxArg = iArg;
895 pAuxData->pNextAux = pVdbe->pAuxData;
896 pVdbe->pAuxData = pAuxData;
897 if( pCtx->isError==0 ) pCtx->isError = -1;
898 }else if( pAuxData->xDeleteAux ){
899 pAuxData->xDeleteAux(pAuxData->pAux);
902 pAuxData->pAux = pAux;
903 pAuxData->xDeleteAux = xDelete;
904 return;
906 failed:
907 if( xDelete ){
908 xDelete(pAux);
912 #ifndef SQLITE_OMIT_DEPRECATED
914 ** Return the number of times the Step function of an aggregate has been
915 ** called.
917 ** This function is deprecated. Do not use it for new code. It is
918 ** provide only to avoid breaking legacy code. New aggregate function
919 ** implementations should keep their own counts within their aggregate
920 ** context.
922 int sqlite3_aggregate_count(sqlite3_context *p){
923 assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize );
924 return p->pMem->n;
926 #endif
929 ** Return the number of columns in the result set for the statement pStmt.
931 int sqlite3_column_count(sqlite3_stmt *pStmt){
932 Vdbe *pVm = (Vdbe *)pStmt;
933 return pVm ? pVm->nResColumn : 0;
937 ** Return the number of values available from the current row of the
938 ** currently executing statement pStmt.
940 int sqlite3_data_count(sqlite3_stmt *pStmt){
941 Vdbe *pVm = (Vdbe *)pStmt;
942 if( pVm==0 || pVm->pResultSet==0 ) return 0;
943 return pVm->nResColumn;
947 ** Return a pointer to static memory containing an SQL NULL value.
949 static const Mem *columnNullValue(void){
950 /* Even though the Mem structure contains an element
951 ** of type i64, on certain architectures (x86) with certain compiler
952 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary
953 ** instead of an 8-byte one. This all works fine, except that when
954 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
955 ** that a Mem structure is located on an 8-byte boundary. To prevent
956 ** these assert()s from failing, when building with SQLITE_DEBUG defined
957 ** using gcc, we force nullMem to be 8-byte aligned using the magical
958 ** __attribute__((aligned(8))) macro. */
959 static const Mem nullMem
960 #if defined(SQLITE_DEBUG) && defined(__GNUC__)
961 __attribute__((aligned(8)))
962 #endif
964 /* .u = */ {0},
965 /* .flags = */ (u16)MEM_Null,
966 /* .enc = */ (u8)0,
967 /* .eSubtype = */ (u8)0,
968 /* .n = */ (int)0,
969 /* .z = */ (char*)0,
970 /* .zMalloc = */ (char*)0,
971 /* .szMalloc = */ (int)0,
972 /* .uTemp = */ (u32)0,
973 /* .db = */ (sqlite3*)0,
974 /* .xDel = */ (void(*)(void*))0,
975 #ifdef SQLITE_DEBUG
976 /* .pScopyFrom = */ (Mem*)0,
977 /* .mScopyFlags= */ 0,
978 #endif
980 return &nullMem;
984 ** Check to see if column iCol of the given statement is valid. If
985 ** it is, return a pointer to the Mem for the value of that column.
986 ** If iCol is not valid, return a pointer to a Mem which has a value
987 ** of NULL.
989 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
990 Vdbe *pVm;
991 Mem *pOut;
993 pVm = (Vdbe *)pStmt;
994 if( pVm==0 ) return (Mem*)columnNullValue();
995 assert( pVm->db );
996 sqlite3_mutex_enter(pVm->db->mutex);
997 if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
998 pOut = &pVm->pResultSet[i];
999 }else{
1000 sqlite3Error(pVm->db, SQLITE_RANGE);
1001 pOut = (Mem*)columnNullValue();
1003 return pOut;
1007 ** This function is called after invoking an sqlite3_value_XXX function on a
1008 ** column value (i.e. a value returned by evaluating an SQL expression in the
1009 ** select list of a SELECT statement) that may cause a malloc() failure. If
1010 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
1011 ** code of statement pStmt set to SQLITE_NOMEM.
1013 ** Specifically, this is called from within:
1015 ** sqlite3_column_int()
1016 ** sqlite3_column_int64()
1017 ** sqlite3_column_text()
1018 ** sqlite3_column_text16()
1019 ** sqlite3_column_real()
1020 ** sqlite3_column_bytes()
1021 ** sqlite3_column_bytes16()
1022 ** sqiite3_column_blob()
1024 static void columnMallocFailure(sqlite3_stmt *pStmt)
1026 /* If malloc() failed during an encoding conversion within an
1027 ** sqlite3_column_XXX API, then set the return code of the statement to
1028 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
1029 ** and _finalize() will return NOMEM.
1031 Vdbe *p = (Vdbe *)pStmt;
1032 if( p ){
1033 assert( p->db!=0 );
1034 assert( sqlite3_mutex_held(p->db->mutex) );
1035 p->rc = sqlite3ApiExit(p->db, p->rc);
1036 sqlite3_mutex_leave(p->db->mutex);
1040 /**************************** sqlite3_column_ *******************************
1041 ** The following routines are used to access elements of the current row
1042 ** in the result set.
1044 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
1045 const void *val;
1046 val = sqlite3_value_blob( columnMem(pStmt,i) );
1047 /* Even though there is no encoding conversion, value_blob() might
1048 ** need to call malloc() to expand the result of a zeroblob()
1049 ** expression.
1051 columnMallocFailure(pStmt);
1052 return val;
1054 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
1055 int val = sqlite3_value_bytes( columnMem(pStmt,i) );
1056 columnMallocFailure(pStmt);
1057 return val;
1059 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
1060 int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
1061 columnMallocFailure(pStmt);
1062 return val;
1064 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
1065 double val = sqlite3_value_double( columnMem(pStmt,i) );
1066 columnMallocFailure(pStmt);
1067 return val;
1069 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
1070 int val = sqlite3_value_int( columnMem(pStmt,i) );
1071 columnMallocFailure(pStmt);
1072 return val;
1074 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
1075 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
1076 columnMallocFailure(pStmt);
1077 return val;
1079 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
1080 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
1081 columnMallocFailure(pStmt);
1082 return val;
1084 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
1085 Mem *pOut = columnMem(pStmt, i);
1086 if( pOut->flags&MEM_Static ){
1087 pOut->flags &= ~MEM_Static;
1088 pOut->flags |= MEM_Ephem;
1090 columnMallocFailure(pStmt);
1091 return (sqlite3_value *)pOut;
1093 #ifndef SQLITE_OMIT_UTF16
1094 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
1095 const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
1096 columnMallocFailure(pStmt);
1097 return val;
1099 #endif /* SQLITE_OMIT_UTF16 */
1100 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
1101 int iType = sqlite3_value_type( columnMem(pStmt,i) );
1102 columnMallocFailure(pStmt);
1103 return iType;
1107 ** Convert the N-th element of pStmt->pColName[] into a string using
1108 ** xFunc() then return that string. If N is out of range, return 0.
1110 ** There are up to 5 names for each column. useType determines which
1111 ** name is returned. Here are the names:
1113 ** 0 The column name as it should be displayed for output
1114 ** 1 The datatype name for the column
1115 ** 2 The name of the database that the column derives from
1116 ** 3 The name of the table that the column derives from
1117 ** 4 The name of the table column that the result column derives from
1119 ** If the result is not a simple column reference (if it is an expression
1120 ** or a constant) then useTypes 2, 3, and 4 return NULL.
1122 static const void *columnName(
1123 sqlite3_stmt *pStmt,
1124 int N,
1125 const void *(*xFunc)(Mem*),
1126 int useType
1128 const void *ret;
1129 Vdbe *p;
1130 int n;
1131 sqlite3 *db;
1132 #ifdef SQLITE_ENABLE_API_ARMOR
1133 if( pStmt==0 ){
1134 (void)SQLITE_MISUSE_BKPT;
1135 return 0;
1137 #endif
1138 ret = 0;
1139 p = (Vdbe *)pStmt;
1140 db = p->db;
1141 assert( db!=0 );
1142 n = sqlite3_column_count(pStmt);
1143 if( N<n && N>=0 ){
1144 N += useType*n;
1145 sqlite3_mutex_enter(db->mutex);
1146 assert( db->mallocFailed==0 );
1147 ret = xFunc(&p->aColName[N]);
1148 /* A malloc may have failed inside of the xFunc() call. If this
1149 ** is the case, clear the mallocFailed flag and return NULL.
1151 if( db->mallocFailed ){
1152 sqlite3OomClear(db);
1153 ret = 0;
1155 sqlite3_mutex_leave(db->mutex);
1157 return ret;
1161 ** Return the name of the Nth column of the result set returned by SQL
1162 ** statement pStmt.
1164 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
1165 return columnName(
1166 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
1168 #ifndef SQLITE_OMIT_UTF16
1169 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
1170 return columnName(
1171 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
1173 #endif
1176 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must
1177 ** not define OMIT_DECLTYPE.
1179 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
1180 # error "Must not define both SQLITE_OMIT_DECLTYPE \
1181 and SQLITE_ENABLE_COLUMN_METADATA"
1182 #endif
1184 #ifndef SQLITE_OMIT_DECLTYPE
1186 ** Return the column declaration type (if applicable) of the 'i'th column
1187 ** of the result set of SQL statement pStmt.
1189 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
1190 return columnName(
1191 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
1193 #ifndef SQLITE_OMIT_UTF16
1194 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
1195 return columnName(
1196 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
1198 #endif /* SQLITE_OMIT_UTF16 */
1199 #endif /* SQLITE_OMIT_DECLTYPE */
1201 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1203 ** Return the name of the database from which a result column derives.
1204 ** NULL is returned if the result column is an expression or constant or
1205 ** anything else which is not an unambiguous reference to a database column.
1207 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
1208 return columnName(
1209 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
1211 #ifndef SQLITE_OMIT_UTF16
1212 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
1213 return columnName(
1214 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
1216 #endif /* SQLITE_OMIT_UTF16 */
1219 ** Return the name of the table from which a result column derives.
1220 ** NULL is returned if the result column is an expression or constant or
1221 ** anything else which is not an unambiguous reference to a database column.
1223 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
1224 return columnName(
1225 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
1227 #ifndef SQLITE_OMIT_UTF16
1228 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
1229 return columnName(
1230 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
1232 #endif /* SQLITE_OMIT_UTF16 */
1235 ** Return the name of the table column from which a result column derives.
1236 ** NULL is returned if the result column is an expression or constant or
1237 ** anything else which is not an unambiguous reference to a database column.
1239 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
1240 return columnName(
1241 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
1243 #ifndef SQLITE_OMIT_UTF16
1244 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
1245 return columnName(
1246 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
1248 #endif /* SQLITE_OMIT_UTF16 */
1249 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
1252 /******************************* sqlite3_bind_ ***************************
1254 ** Routines used to attach values to wildcards in a compiled SQL statement.
1257 ** Unbind the value bound to variable i in virtual machine p. This is the
1258 ** the same as binding a NULL value to the column. If the "i" parameter is
1259 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
1261 ** A successful evaluation of this routine acquires the mutex on p.
1262 ** the mutex is released if any kind of error occurs.
1264 ** The error code stored in database p->db is overwritten with the return
1265 ** value in any case.
1267 static int vdbeUnbind(Vdbe *p, int i){
1268 Mem *pVar;
1269 if( vdbeSafetyNotNull(p) ){
1270 return SQLITE_MISUSE_BKPT;
1272 sqlite3_mutex_enter(p->db->mutex);
1273 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
1274 sqlite3Error(p->db, SQLITE_MISUSE);
1275 sqlite3_mutex_leave(p->db->mutex);
1276 sqlite3_log(SQLITE_MISUSE,
1277 "bind on a busy prepared statement: [%s]", p->zSql);
1278 return SQLITE_MISUSE_BKPT;
1280 if( i<1 || i>p->nVar ){
1281 sqlite3Error(p->db, SQLITE_RANGE);
1282 sqlite3_mutex_leave(p->db->mutex);
1283 return SQLITE_RANGE;
1285 i--;
1286 pVar = &p->aVar[i];
1287 sqlite3VdbeMemRelease(pVar);
1288 pVar->flags = MEM_Null;
1289 p->db->errCode = SQLITE_OK;
1291 /* If the bit corresponding to this variable in Vdbe.expmask is set, then
1292 ** binding a new value to this variable invalidates the current query plan.
1294 ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host
1295 ** parameter in the WHERE clause might influence the choice of query plan
1296 ** for a statement, then the statement will be automatically recompiled,
1297 ** as if there had been a schema change, on the first sqlite3_step() call
1298 ** following any change to the bindings of that parameter.
1300 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
1301 if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){
1302 p->expired = 1;
1304 return SQLITE_OK;
1308 ** Bind a text or BLOB value.
1310 static int bindText(
1311 sqlite3_stmt *pStmt, /* The statement to bind against */
1312 int i, /* Index of the parameter to bind */
1313 const void *zData, /* Pointer to the data to be bound */
1314 int nData, /* Number of bytes of data to be bound */
1315 void (*xDel)(void*), /* Destructor for the data */
1316 u8 encoding /* Encoding for the data */
1318 Vdbe *p = (Vdbe *)pStmt;
1319 Mem *pVar;
1320 int rc;
1322 rc = vdbeUnbind(p, i);
1323 if( rc==SQLITE_OK ){
1324 if( zData!=0 ){
1325 pVar = &p->aVar[i-1];
1326 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
1327 if( rc==SQLITE_OK && encoding!=0 ){
1328 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
1330 if( rc ){
1331 sqlite3Error(p->db, rc);
1332 rc = sqlite3ApiExit(p->db, rc);
1335 sqlite3_mutex_leave(p->db->mutex);
1336 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){
1337 xDel((void*)zData);
1339 return rc;
1344 ** Bind a blob value to an SQL statement variable.
1346 int sqlite3_bind_blob(
1347 sqlite3_stmt *pStmt,
1348 int i,
1349 const void *zData,
1350 int nData,
1351 void (*xDel)(void*)
1353 #ifdef SQLITE_ENABLE_API_ARMOR
1354 if( nData<0 ) return SQLITE_MISUSE_BKPT;
1355 #endif
1356 return bindText(pStmt, i, zData, nData, xDel, 0);
1358 int sqlite3_bind_blob64(
1359 sqlite3_stmt *pStmt,
1360 int i,
1361 const void *zData,
1362 sqlite3_uint64 nData,
1363 void (*xDel)(void*)
1365 assert( xDel!=SQLITE_DYNAMIC );
1366 if( nData>0x7fffffff ){
1367 return invokeValueDestructor(zData, xDel, 0);
1368 }else{
1369 return bindText(pStmt, i, zData, (int)nData, xDel, 0);
1372 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
1373 int rc;
1374 Vdbe *p = (Vdbe *)pStmt;
1375 rc = vdbeUnbind(p, i);
1376 if( rc==SQLITE_OK ){
1377 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
1378 sqlite3_mutex_leave(p->db->mutex);
1380 return rc;
1382 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
1383 return sqlite3_bind_int64(p, i, (i64)iValue);
1385 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
1386 int rc;
1387 Vdbe *p = (Vdbe *)pStmt;
1388 rc = vdbeUnbind(p, i);
1389 if( rc==SQLITE_OK ){
1390 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
1391 sqlite3_mutex_leave(p->db->mutex);
1393 return rc;
1395 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
1396 int rc;
1397 Vdbe *p = (Vdbe*)pStmt;
1398 rc = vdbeUnbind(p, i);
1399 if( rc==SQLITE_OK ){
1400 sqlite3_mutex_leave(p->db->mutex);
1402 return rc;
1404 int sqlite3_bind_pointer(
1405 sqlite3_stmt *pStmt,
1406 int i,
1407 void *pPtr,
1408 const char *zPTtype,
1409 void (*xDestructor)(void*)
1411 int rc;
1412 Vdbe *p = (Vdbe*)pStmt;
1413 rc = vdbeUnbind(p, i);
1414 if( rc==SQLITE_OK ){
1415 sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor);
1416 sqlite3_mutex_leave(p->db->mutex);
1417 }else if( xDestructor ){
1418 xDestructor(pPtr);
1420 return rc;
1422 int sqlite3_bind_text(
1423 sqlite3_stmt *pStmt,
1424 int i,
1425 const char *zData,
1426 int nData,
1427 void (*xDel)(void*)
1429 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
1431 int sqlite3_bind_text64(
1432 sqlite3_stmt *pStmt,
1433 int i,
1434 const char *zData,
1435 sqlite3_uint64 nData,
1436 void (*xDel)(void*),
1437 unsigned char enc
1439 assert( xDel!=SQLITE_DYNAMIC );
1440 if( nData>0x7fffffff ){
1441 return invokeValueDestructor(zData, xDel, 0);
1442 }else{
1443 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
1444 return bindText(pStmt, i, zData, (int)nData, xDel, enc);
1447 #ifndef SQLITE_OMIT_UTF16
1448 int sqlite3_bind_text16(
1449 sqlite3_stmt *pStmt,
1450 int i,
1451 const void *zData,
1452 int nData,
1453 void (*xDel)(void*)
1455 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
1457 #endif /* SQLITE_OMIT_UTF16 */
1458 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
1459 int rc;
1460 switch( sqlite3_value_type((sqlite3_value*)pValue) ){
1461 case SQLITE_INTEGER: {
1462 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
1463 break;
1465 case SQLITE_FLOAT: {
1466 rc = sqlite3_bind_double(pStmt, i, pValue->u.r);
1467 break;
1469 case SQLITE_BLOB: {
1470 if( pValue->flags & MEM_Zero ){
1471 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
1472 }else{
1473 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);
1475 break;
1477 case SQLITE_TEXT: {
1478 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT,
1479 pValue->enc);
1480 break;
1482 default: {
1483 rc = sqlite3_bind_null(pStmt, i);
1484 break;
1487 return rc;
1489 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
1490 int rc;
1491 Vdbe *p = (Vdbe *)pStmt;
1492 rc = vdbeUnbind(p, i);
1493 if( rc==SQLITE_OK ){
1494 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1495 sqlite3_mutex_leave(p->db->mutex);
1497 return rc;
1499 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){
1500 int rc;
1501 Vdbe *p = (Vdbe *)pStmt;
1502 sqlite3_mutex_enter(p->db->mutex);
1503 if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){
1504 rc = SQLITE_TOOBIG;
1505 }else{
1506 assert( (n & 0x7FFFFFFF)==n );
1507 rc = sqlite3_bind_zeroblob(pStmt, i, n);
1509 rc = sqlite3ApiExit(p->db, rc);
1510 sqlite3_mutex_leave(p->db->mutex);
1511 return rc;
1515 ** Return the number of wildcards that can be potentially bound to.
1516 ** This routine is added to support DBD::SQLite.
1518 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
1519 Vdbe *p = (Vdbe*)pStmt;
1520 return p ? p->nVar : 0;
1524 ** Return the name of a wildcard parameter. Return NULL if the index
1525 ** is out of range or if the wildcard is unnamed.
1527 ** The result is always UTF-8.
1529 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
1530 Vdbe *p = (Vdbe*)pStmt;
1531 if( p==0 ) return 0;
1532 return sqlite3VListNumToName(p->pVList, i);
1536 ** Given a wildcard parameter name, return the index of the variable
1537 ** with that name. If there is no variable with the given name,
1538 ** return 0.
1540 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){
1541 if( p==0 || zName==0 ) return 0;
1542 return sqlite3VListNameToNum(p->pVList, zName, nName);
1544 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
1545 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName));
1549 ** Transfer all bindings from the first statement over to the second.
1551 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1552 Vdbe *pFrom = (Vdbe*)pFromStmt;
1553 Vdbe *pTo = (Vdbe*)pToStmt;
1554 int i;
1555 assert( pTo->db==pFrom->db );
1556 assert( pTo->nVar==pFrom->nVar );
1557 sqlite3_mutex_enter(pTo->db->mutex);
1558 for(i=0; i<pFrom->nVar; i++){
1559 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
1561 sqlite3_mutex_leave(pTo->db->mutex);
1562 return SQLITE_OK;
1565 #ifndef SQLITE_OMIT_DEPRECATED
1567 ** Deprecated external interface. Internal/core SQLite code
1568 ** should call sqlite3TransferBindings.
1570 ** It is misuse to call this routine with statements from different
1571 ** database connections. But as this is a deprecated interface, we
1572 ** will not bother to check for that condition.
1574 ** If the two statements contain a different number of bindings, then
1575 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise
1576 ** SQLITE_OK is returned.
1578 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1579 Vdbe *pFrom = (Vdbe*)pFromStmt;
1580 Vdbe *pTo = (Vdbe*)pToStmt;
1581 if( pFrom->nVar!=pTo->nVar ){
1582 return SQLITE_ERROR;
1584 assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 );
1585 if( pTo->expmask ){
1586 pTo->expired = 1;
1588 assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 );
1589 if( pFrom->expmask ){
1590 pFrom->expired = 1;
1592 return sqlite3TransferBindings(pFromStmt, pToStmt);
1594 #endif
1597 ** Return the sqlite3* database handle to which the prepared statement given
1598 ** in the argument belongs. This is the same database handle that was
1599 ** the first argument to the sqlite3_prepare() that was used to create
1600 ** the statement in the first place.
1602 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
1603 return pStmt ? ((Vdbe*)pStmt)->db : 0;
1607 ** Return true if the prepared statement is guaranteed to not modify the
1608 ** database.
1610 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){
1611 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1;
1615 ** Return true if the prepared statement is in need of being reset.
1617 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){
1618 Vdbe *v = (Vdbe*)pStmt;
1619 return v!=0 && v->magic==VDBE_MAGIC_RUN && v->pc>=0;
1623 ** Return a pointer to the next prepared statement after pStmt associated
1624 ** with database connection pDb. If pStmt is NULL, return the first
1625 ** prepared statement for the database connection. Return NULL if there
1626 ** are no more.
1628 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
1629 sqlite3_stmt *pNext;
1630 #ifdef SQLITE_ENABLE_API_ARMOR
1631 if( !sqlite3SafetyCheckOk(pDb) ){
1632 (void)SQLITE_MISUSE_BKPT;
1633 return 0;
1635 #endif
1636 sqlite3_mutex_enter(pDb->mutex);
1637 if( pStmt==0 ){
1638 pNext = (sqlite3_stmt*)pDb->pVdbe;
1639 }else{
1640 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
1642 sqlite3_mutex_leave(pDb->mutex);
1643 return pNext;
1647 ** Return the value of a status counter for a prepared statement
1649 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
1650 Vdbe *pVdbe = (Vdbe*)pStmt;
1651 u32 v;
1652 #ifdef SQLITE_ENABLE_API_ARMOR
1653 if( !pStmt
1654 || (op!=SQLITE_STMTSTATUS_MEMUSED && (op<0||op>=ArraySize(pVdbe->aCounter)))
1656 (void)SQLITE_MISUSE_BKPT;
1657 return 0;
1659 #endif
1660 if( op==SQLITE_STMTSTATUS_MEMUSED ){
1661 sqlite3 *db = pVdbe->db;
1662 sqlite3_mutex_enter(db->mutex);
1663 v = 0;
1664 db->pnBytesFreed = (int*)&v;
1665 sqlite3VdbeClearObject(db, pVdbe);
1666 sqlite3DbFree(db, pVdbe);
1667 db->pnBytesFreed = 0;
1668 sqlite3_mutex_leave(db->mutex);
1669 }else{
1670 v = pVdbe->aCounter[op];
1671 if( resetFlag ) pVdbe->aCounter[op] = 0;
1673 return (int)v;
1677 ** Return the SQL associated with a prepared statement
1679 const char *sqlite3_sql(sqlite3_stmt *pStmt){
1680 Vdbe *p = (Vdbe *)pStmt;
1681 return p ? p->zSql : 0;
1685 ** Return the SQL associated with a prepared statement with
1686 ** bound parameters expanded. Space to hold the returned string is
1687 ** obtained from sqlite3_malloc(). The caller is responsible for
1688 ** freeing the returned string by passing it to sqlite3_free().
1690 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of
1691 ** expanded bound parameters.
1693 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){
1694 #ifdef SQLITE_OMIT_TRACE
1695 return 0;
1696 #else
1697 char *z = 0;
1698 const char *zSql = sqlite3_sql(pStmt);
1699 if( zSql ){
1700 Vdbe *p = (Vdbe *)pStmt;
1701 sqlite3_mutex_enter(p->db->mutex);
1702 z = sqlite3VdbeExpandSql(p, zSql);
1703 sqlite3_mutex_leave(p->db->mutex);
1705 return z;
1706 #endif
1709 #ifdef SQLITE_ENABLE_NORMALIZE
1711 ** Return the normalized SQL associated with a prepared statement.
1713 const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt){
1714 Vdbe *p = (Vdbe *)pStmt;
1715 if( p==0 ) return 0;
1716 if( p->zNormSql==0 && ALWAYS(p->zSql!=0) ){
1717 sqlite3_mutex_enter(p->db->mutex);
1718 p->zNormSql = sqlite3Normalize(p, p->zSql);
1719 sqlite3_mutex_leave(p->db->mutex);
1721 return p->zNormSql;
1723 #endif /* SQLITE_ENABLE_NORMALIZE */
1725 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1727 ** Allocate and populate an UnpackedRecord structure based on the serialized
1728 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure
1729 ** if successful, or a NULL pointer if an OOM error is encountered.
1731 static UnpackedRecord *vdbeUnpackRecord(
1732 KeyInfo *pKeyInfo,
1733 int nKey,
1734 const void *pKey
1736 UnpackedRecord *pRet; /* Return value */
1738 pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
1739 if( pRet ){
1740 memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1));
1741 sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet);
1743 return pRet;
1747 ** This function is called from within a pre-update callback to retrieve
1748 ** a field of the row currently being updated or deleted.
1750 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
1751 PreUpdate *p = db->pPreUpdate;
1752 Mem *pMem;
1753 int rc = SQLITE_OK;
1755 /* Test that this call is being made from within an SQLITE_DELETE or
1756 ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */
1757 if( !p || p->op==SQLITE_INSERT ){
1758 rc = SQLITE_MISUSE_BKPT;
1759 goto preupdate_old_out;
1761 if( p->pPk ){
1762 iIdx = sqlite3ColumnOfIndex(p->pPk, iIdx);
1764 if( iIdx>=p->pCsr->nField || iIdx<0 ){
1765 rc = SQLITE_RANGE;
1766 goto preupdate_old_out;
1769 /* If the old.* record has not yet been loaded into memory, do so now. */
1770 if( p->pUnpacked==0 ){
1771 u32 nRec;
1772 u8 *aRec;
1774 nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor);
1775 aRec = sqlite3DbMallocRaw(db, nRec);
1776 if( !aRec ) goto preupdate_old_out;
1777 rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec);
1778 if( rc==SQLITE_OK ){
1779 p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec);
1780 if( !p->pUnpacked ) rc = SQLITE_NOMEM;
1782 if( rc!=SQLITE_OK ){
1783 sqlite3DbFree(db, aRec);
1784 goto preupdate_old_out;
1786 p->aRecord = aRec;
1789 pMem = *ppValue = &p->pUnpacked->aMem[iIdx];
1790 if( iIdx==p->pTab->iPKey ){
1791 sqlite3VdbeMemSetInt64(pMem, p->iKey1);
1792 }else if( iIdx>=p->pUnpacked->nField ){
1793 *ppValue = (sqlite3_value *)columnNullValue();
1794 }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){
1795 if( pMem->flags & MEM_Int ){
1796 sqlite3VdbeMemRealify(pMem);
1800 preupdate_old_out:
1801 sqlite3Error(db, rc);
1802 return sqlite3ApiExit(db, rc);
1804 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1806 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1808 ** This function is called from within a pre-update callback to retrieve
1809 ** the number of columns in the row being updated, deleted or inserted.
1811 int sqlite3_preupdate_count(sqlite3 *db){
1812 PreUpdate *p = db->pPreUpdate;
1813 return (p ? p->keyinfo.nKeyField : 0);
1815 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1817 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1819 ** This function is designed to be called from within a pre-update callback
1820 ** only. It returns zero if the change that caused the callback was made
1821 ** immediately by a user SQL statement. Or, if the change was made by a
1822 ** trigger program, it returns the number of trigger programs currently
1823 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a
1824 ** top-level trigger etc.).
1826 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL
1827 ** or SET DEFAULT action is considered a trigger.
1829 int sqlite3_preupdate_depth(sqlite3 *db){
1830 PreUpdate *p = db->pPreUpdate;
1831 return (p ? p->v->nFrame : 0);
1833 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1835 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1837 ** This function is called from within a pre-update callback to retrieve
1838 ** a field of the row currently being updated or inserted.
1840 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
1841 PreUpdate *p = db->pPreUpdate;
1842 int rc = SQLITE_OK;
1843 Mem *pMem;
1845 if( !p || p->op==SQLITE_DELETE ){
1846 rc = SQLITE_MISUSE_BKPT;
1847 goto preupdate_new_out;
1849 if( p->pPk && p->op!=SQLITE_UPDATE ){
1850 iIdx = sqlite3ColumnOfIndex(p->pPk, iIdx);
1852 if( iIdx>=p->pCsr->nField || iIdx<0 ){
1853 rc = SQLITE_RANGE;
1854 goto preupdate_new_out;
1857 if( p->op==SQLITE_INSERT ){
1858 /* For an INSERT, memory cell p->iNewReg contains the serialized record
1859 ** that is being inserted. Deserialize it. */
1860 UnpackedRecord *pUnpack = p->pNewUnpacked;
1861 if( !pUnpack ){
1862 Mem *pData = &p->v->aMem[p->iNewReg];
1863 rc = ExpandBlob(pData);
1864 if( rc!=SQLITE_OK ) goto preupdate_new_out;
1865 pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z);
1866 if( !pUnpack ){
1867 rc = SQLITE_NOMEM;
1868 goto preupdate_new_out;
1870 p->pNewUnpacked = pUnpack;
1872 pMem = &pUnpack->aMem[iIdx];
1873 if( iIdx==p->pTab->iPKey ){
1874 sqlite3VdbeMemSetInt64(pMem, p->iKey2);
1875 }else if( iIdx>=pUnpack->nField ){
1876 pMem = (sqlite3_value *)columnNullValue();
1878 }else{
1879 /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required
1880 ** value. Make a copy of the cell contents and return a pointer to it.
1881 ** It is not safe to return a pointer to the memory cell itself as the
1882 ** caller may modify the value text encoding.
1884 assert( p->op==SQLITE_UPDATE );
1885 if( !p->aNew ){
1886 p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField);
1887 if( !p->aNew ){
1888 rc = SQLITE_NOMEM;
1889 goto preupdate_new_out;
1892 assert( iIdx>=0 && iIdx<p->pCsr->nField );
1893 pMem = &p->aNew[iIdx];
1894 if( pMem->flags==0 ){
1895 if( iIdx==p->pTab->iPKey ){
1896 sqlite3VdbeMemSetInt64(pMem, p->iKey2);
1897 }else{
1898 rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]);
1899 if( rc!=SQLITE_OK ) goto preupdate_new_out;
1903 *ppValue = pMem;
1905 preupdate_new_out:
1906 sqlite3Error(db, rc);
1907 return sqlite3ApiExit(db, rc);
1909 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1911 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1913 ** Return status data for a single loop within query pStmt.
1915 int sqlite3_stmt_scanstatus(
1916 sqlite3_stmt *pStmt, /* Prepared statement being queried */
1917 int idx, /* Index of loop to report on */
1918 int iScanStatusOp, /* Which metric to return */
1919 void *pOut /* OUT: Write the answer here */
1921 Vdbe *p = (Vdbe*)pStmt;
1922 ScanStatus *pScan;
1923 if( idx<0 || idx>=p->nScan ) return 1;
1924 pScan = &p->aScan[idx];
1925 switch( iScanStatusOp ){
1926 case SQLITE_SCANSTAT_NLOOP: {
1927 *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop];
1928 break;
1930 case SQLITE_SCANSTAT_NVISIT: {
1931 *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit];
1932 break;
1934 case SQLITE_SCANSTAT_EST: {
1935 double r = 1.0;
1936 LogEst x = pScan->nEst;
1937 while( x<100 ){
1938 x += 10;
1939 r *= 0.5;
1941 *(double*)pOut = r*sqlite3LogEstToInt(x);
1942 break;
1944 case SQLITE_SCANSTAT_NAME: {
1945 *(const char**)pOut = pScan->zName;
1946 break;
1948 case SQLITE_SCANSTAT_EXPLAIN: {
1949 if( pScan->addrExplain ){
1950 *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z;
1951 }else{
1952 *(const char**)pOut = 0;
1954 break;
1956 case SQLITE_SCANSTAT_SELECTID: {
1957 if( pScan->addrExplain ){
1958 *(int*)pOut = p->aOp[ pScan->addrExplain ].p1;
1959 }else{
1960 *(int*)pOut = -1;
1962 break;
1964 default: {
1965 return 1;
1968 return 0;
1972 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data.
1974 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){
1975 Vdbe *p = (Vdbe*)pStmt;
1976 memset(p->anExec, 0, p->nOp * sizeof(i64));
1978 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */