Merge branch 'prerelease'
[sqlcipher.git] / src / util.c
blob8432d897f99358888921c114af18c78620589d67
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** Utility functions used throughout sqlite.
14 ** This file contains functions for allocating memory, comparing
15 ** strings, and stuff like that.
18 #include "sqliteInt.h"
19 #include <stdarg.h>
20 #if HAVE_ISNAN || SQLITE_HAVE_ISNAN
21 # include <math.h>
22 #endif
25 ** Routine needed to support the testcase() macro.
27 #ifdef SQLITE_COVERAGE_TEST
28 void sqlite3Coverage(int x){
29 static unsigned dummy = 0;
30 dummy += (unsigned)x;
32 #endif
35 ** Give a callback to the test harness that can be used to simulate faults
36 ** in places where it is difficult or expensive to do so purely by means
37 ** of inputs.
39 ** The intent of the integer argument is to let the fault simulator know
40 ** which of multiple sqlite3FaultSim() calls has been hit.
42 ** Return whatever integer value the test callback returns, or return
43 ** SQLITE_OK if no test callback is installed.
45 #ifndef SQLITE_UNTESTABLE
46 int sqlite3FaultSim(int iTest){
47 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
48 return xCallback ? xCallback(iTest) : SQLITE_OK;
50 #endif
52 #ifndef SQLITE_OMIT_FLOATING_POINT
54 ** Return true if the floating point value is Not a Number (NaN).
56 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
57 ** Otherwise, we have our own implementation that works on most systems.
59 int sqlite3IsNaN(double x){
60 int rc; /* The value return */
61 #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN
63 ** Systems that support the isnan() library function should probably
64 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have
65 ** found that many systems do not have a working isnan() function so
66 ** this implementation is provided as an alternative.
68 ** This NaN test sometimes fails if compiled on GCC with -ffast-math.
69 ** On the other hand, the use of -ffast-math comes with the following
70 ** warning:
72 ** This option [-ffast-math] should never be turned on by any
73 ** -O option since it can result in incorrect output for programs
74 ** which depend on an exact implementation of IEEE or ISO
75 ** rules/specifications for math functions.
77 ** Under MSVC, this NaN test may fail if compiled with a floating-
78 ** point precision mode other than /fp:precise. From the MSDN
79 ** documentation:
81 ** The compiler [with /fp:precise] will properly handle comparisons
82 ** involving NaN. For example, x != x evaluates to true if x is NaN
83 ** ...
85 #ifdef __FAST_MATH__
86 # error SQLite will not work correctly with the -ffast-math option of GCC.
87 #endif
88 volatile double y = x;
89 volatile double z = y;
90 rc = (y!=z);
91 #else /* if HAVE_ISNAN */
92 rc = isnan(x);
93 #endif /* HAVE_ISNAN */
94 testcase( rc );
95 return rc;
97 #endif /* SQLITE_OMIT_FLOATING_POINT */
100 ** Compute a string length that is limited to what can be stored in
101 ** lower 30 bits of a 32-bit signed integer.
103 ** The value returned will never be negative. Nor will it ever be greater
104 ** than the actual length of the string. For very long strings (greater
105 ** than 1GiB) the value returned might be less than the true string length.
107 int sqlite3Strlen30(const char *z){
108 if( z==0 ) return 0;
109 return 0x3fffffff & (int)strlen(z);
113 ** Return the declared type of a column. Or return zDflt if the column
114 ** has no declared type.
116 ** The column type is an extra string stored after the zero-terminator on
117 ** the column name if and only if the COLFLAG_HASTYPE flag is set.
119 char *sqlite3ColumnType(Column *pCol, char *zDflt){
120 if( (pCol->colFlags & COLFLAG_HASTYPE)==0 ) return zDflt;
121 return pCol->zName + strlen(pCol->zName) + 1;
125 ** Helper function for sqlite3Error() - called rarely. Broken out into
126 ** a separate routine to avoid unnecessary register saves on entry to
127 ** sqlite3Error().
129 static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){
130 if( db->pErr ) sqlite3ValueSetNull(db->pErr);
131 sqlite3SystemError(db, err_code);
135 ** Set the current error code to err_code and clear any prior error message.
136 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates
137 ** that would be appropriate.
139 void sqlite3Error(sqlite3 *db, int err_code){
140 assert( db!=0 );
141 db->errCode = err_code;
142 if( err_code || db->pErr ) sqlite3ErrorFinish(db, err_code);
146 ** Load the sqlite3.iSysErrno field if that is an appropriate thing
147 ** to do based on the SQLite error code in rc.
149 void sqlite3SystemError(sqlite3 *db, int rc){
150 if( rc==SQLITE_IOERR_NOMEM ) return;
151 rc &= 0xff;
152 if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){
153 db->iSysErrno = sqlite3OsGetLastError(db->pVfs);
158 ** Set the most recent error code and error string for the sqlite
159 ** handle "db". The error code is set to "err_code".
161 ** If it is not NULL, string zFormat specifies the format of the
162 ** error string in the style of the printf functions: The following
163 ** format characters are allowed:
165 ** %s Insert a string
166 ** %z A string that should be freed after use
167 ** %d Insert an integer
168 ** %T Insert a token
169 ** %S Insert the first element of a SrcList
171 ** zFormat and any string tokens that follow it are assumed to be
172 ** encoded in UTF-8.
174 ** To clear the most recent error for sqlite handle "db", sqlite3Error
175 ** should be called with err_code set to SQLITE_OK and zFormat set
176 ** to NULL.
178 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
179 assert( db!=0 );
180 db->errCode = err_code;
181 sqlite3SystemError(db, err_code);
182 if( zFormat==0 ){
183 sqlite3Error(db, err_code);
184 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
185 char *z;
186 va_list ap;
187 va_start(ap, zFormat);
188 z = sqlite3VMPrintf(db, zFormat, ap);
189 va_end(ap);
190 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
195 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
196 ** The following formatting characters are allowed:
198 ** %s Insert a string
199 ** %z A string that should be freed after use
200 ** %d Insert an integer
201 ** %T Insert a token
202 ** %S Insert the first element of a SrcList
204 ** This function should be used to report any error that occurs while
205 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
206 ** last thing the sqlite3_prepare() function does is copy the error
207 ** stored by this function into the database handle using sqlite3Error().
208 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
209 ** during statement execution (sqlite3_step() etc.).
211 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
212 char *zMsg;
213 va_list ap;
214 sqlite3 *db = pParse->db;
215 va_start(ap, zFormat);
216 zMsg = sqlite3VMPrintf(db, zFormat, ap);
217 va_end(ap);
218 if( db->suppressErr ){
219 sqlite3DbFree(db, zMsg);
220 }else{
221 pParse->nErr++;
222 sqlite3DbFree(db, pParse->zErrMsg);
223 pParse->zErrMsg = zMsg;
224 pParse->rc = SQLITE_ERROR;
229 ** Convert an SQL-style quoted string into a normal string by removing
230 ** the quote characters. The conversion is done in-place. If the
231 ** input does not begin with a quote character, then this routine
232 ** is a no-op.
234 ** The input string must be zero-terminated. A new zero-terminator
235 ** is added to the dequoted string.
237 ** The return value is -1 if no dequoting occurs or the length of the
238 ** dequoted string, exclusive of the zero terminator, if dequoting does
239 ** occur.
241 ** 2002-02-14: This routine is extended to remove MS-Access style
242 ** brackets from around identifiers. For example: "[a-b-c]" becomes
243 ** "a-b-c".
245 void sqlite3Dequote(char *z){
246 char quote;
247 int i, j;
248 if( z==0 ) return;
249 quote = z[0];
250 if( !sqlite3Isquote(quote) ) return;
251 if( quote=='[' ) quote = ']';
252 for(i=1, j=0;; i++){
253 assert( z[i] );
254 if( z[i]==quote ){
255 if( z[i+1]==quote ){
256 z[j++] = quote;
257 i++;
258 }else{
259 break;
261 }else{
262 z[j++] = z[i];
265 z[j] = 0;
267 void sqlite3DequoteExpr(Expr *p){
268 assert( sqlite3Isquote(p->u.zToken[0]) );
269 p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted;
270 sqlite3Dequote(p->u.zToken);
274 ** Generate a Token object from a string
276 void sqlite3TokenInit(Token *p, char *z){
277 p->z = z;
278 p->n = sqlite3Strlen30(z);
281 /* Convenient short-hand */
282 #define UpperToLower sqlite3UpperToLower
285 ** Some systems have stricmp(). Others have strcasecmp(). Because
286 ** there is no consistency, we will define our own.
288 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
289 ** sqlite3_strnicmp() APIs allow applications and extensions to compare
290 ** the contents of two buffers containing UTF-8 strings in a
291 ** case-independent fashion, using the same definition of "case
292 ** independence" that SQLite uses internally when comparing identifiers.
294 int sqlite3_stricmp(const char *zLeft, const char *zRight){
295 if( zLeft==0 ){
296 return zRight ? -1 : 0;
297 }else if( zRight==0 ){
298 return 1;
300 return sqlite3StrICmp(zLeft, zRight);
302 int sqlite3StrICmp(const char *zLeft, const char *zRight){
303 unsigned char *a, *b;
304 int c;
305 a = (unsigned char *)zLeft;
306 b = (unsigned char *)zRight;
307 for(;;){
308 c = (int)UpperToLower[*a] - (int)UpperToLower[*b];
309 if( c || *a==0 ) break;
310 a++;
311 b++;
313 return c;
315 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
316 register unsigned char *a, *b;
317 if( zLeft==0 ){
318 return zRight ? -1 : 0;
319 }else if( zRight==0 ){
320 return 1;
322 a = (unsigned char *)zLeft;
323 b = (unsigned char *)zRight;
324 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
325 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
329 ** Compute 10 to the E-th power. Examples: E==1 results in 10.
330 ** E==2 results in 100. E==50 results in 1.0e50.
332 ** This routine only works for values of E between 1 and 341.
334 static LONGDOUBLE_TYPE sqlite3Pow10(int E){
335 #if defined(_MSC_VER)
336 static const LONGDOUBLE_TYPE x[] = {
337 1.0e+001,
338 1.0e+002,
339 1.0e+004,
340 1.0e+008,
341 1.0e+016,
342 1.0e+032,
343 1.0e+064,
344 1.0e+128,
345 1.0e+256
347 LONGDOUBLE_TYPE r = 1.0;
348 int i;
349 assert( E>=0 && E<=307 );
350 for(i=0; E!=0; i++, E >>=1){
351 if( E & 1 ) r *= x[i];
353 return r;
354 #else
355 LONGDOUBLE_TYPE x = 10.0;
356 LONGDOUBLE_TYPE r = 1.0;
357 while(1){
358 if( E & 1 ) r *= x;
359 E >>= 1;
360 if( E==0 ) break;
361 x *= x;
363 return r;
364 #endif
368 ** The string z[] is an text representation of a real number.
369 ** Convert this string to a double and write it into *pResult.
371 ** The string z[] is length bytes in length (bytes, not characters) and
372 ** uses the encoding enc. The string is not necessarily zero-terminated.
374 ** Return TRUE if the result is a valid real number (or integer) and FALSE
375 ** if the string is empty or contains extraneous text. Valid numbers
376 ** are in one of these formats:
378 ** [+-]digits[E[+-]digits]
379 ** [+-]digits.[digits][E[+-]digits]
380 ** [+-].digits[E[+-]digits]
382 ** Leading and trailing whitespace is ignored for the purpose of determining
383 ** validity.
385 ** If some prefix of the input string is a valid number, this routine
386 ** returns FALSE but it still converts the prefix and writes the result
387 ** into *pResult.
389 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
390 #ifndef SQLITE_OMIT_FLOATING_POINT
391 int incr;
392 const char *zEnd = z + length;
393 /* sign * significand * (10 ^ (esign * exponent)) */
394 int sign = 1; /* sign of significand */
395 i64 s = 0; /* significand */
396 int d = 0; /* adjust exponent for shifting decimal point */
397 int esign = 1; /* sign of exponent */
398 int e = 0; /* exponent */
399 int eValid = 1; /* True exponent is either not used or is well-formed */
400 double result;
401 int nDigits = 0;
402 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */
404 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
405 *pResult = 0.0; /* Default return value, in case of an error */
407 if( enc==SQLITE_UTF8 ){
408 incr = 1;
409 }else{
410 int i;
411 incr = 2;
412 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
413 for(i=3-enc; i<length && z[i]==0; i+=2){}
414 nonNum = i<length;
415 zEnd = &z[i^1];
416 z += (enc&1);
419 /* skip leading spaces */
420 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
421 if( z>=zEnd ) return 0;
423 /* get sign of significand */
424 if( *z=='-' ){
425 sign = -1;
426 z+=incr;
427 }else if( *z=='+' ){
428 z+=incr;
431 /* copy max significant digits to significand */
432 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
433 s = s*10 + (*z - '0');
434 z+=incr; nDigits++;
437 /* skip non-significant significand digits
438 ** (increase exponent by d to shift decimal left) */
439 while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; nDigits++; d++; }
440 if( z>=zEnd ) goto do_atof_calc;
442 /* if decimal point is present */
443 if( *z=='.' ){
444 z+=incr;
445 /* copy digits from after decimal to significand
446 ** (decrease exponent by d to shift decimal right) */
447 while( z<zEnd && sqlite3Isdigit(*z) ){
448 if( s<((LARGEST_INT64-9)/10) ){
449 s = s*10 + (*z - '0');
450 d--;
452 z+=incr; nDigits++;
455 if( z>=zEnd ) goto do_atof_calc;
457 /* if exponent is present */
458 if( *z=='e' || *z=='E' ){
459 z+=incr;
460 eValid = 0;
462 /* This branch is needed to avoid a (harmless) buffer overread. The
463 ** special comment alerts the mutation tester that the correct answer
464 ** is obtained even if the branch is omitted */
465 if( z>=zEnd ) goto do_atof_calc; /*PREVENTS-HARMLESS-OVERREAD*/
467 /* get sign of exponent */
468 if( *z=='-' ){
469 esign = -1;
470 z+=incr;
471 }else if( *z=='+' ){
472 z+=incr;
474 /* copy digits to exponent */
475 while( z<zEnd && sqlite3Isdigit(*z) ){
476 e = e<10000 ? (e*10 + (*z - '0')) : 10000;
477 z+=incr;
478 eValid = 1;
482 /* skip trailing spaces */
483 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
485 do_atof_calc:
486 /* adjust exponent by d, and update sign */
487 e = (e*esign) + d;
488 if( e<0 ) {
489 esign = -1;
490 e *= -1;
491 } else {
492 esign = 1;
495 if( s==0 ) {
496 /* In the IEEE 754 standard, zero is signed. */
497 result = sign<0 ? -(double)0 : (double)0;
498 } else {
499 /* Attempt to reduce exponent.
501 ** Branches that are not required for the correct answer but which only
502 ** help to obtain the correct answer faster are marked with special
503 ** comments, as a hint to the mutation tester.
505 while( e>0 ){ /*OPTIMIZATION-IF-TRUE*/
506 if( esign>0 ){
507 if( s>=(LARGEST_INT64/10) ) break; /*OPTIMIZATION-IF-FALSE*/
508 s *= 10;
509 }else{
510 if( s%10!=0 ) break; /*OPTIMIZATION-IF-FALSE*/
511 s /= 10;
513 e--;
516 /* adjust the sign of significand */
517 s = sign<0 ? -s : s;
519 if( e==0 ){ /*OPTIMIZATION-IF-TRUE*/
520 result = (double)s;
521 }else{
522 /* attempt to handle extremely small/large numbers better */
523 if( e>307 ){ /*OPTIMIZATION-IF-TRUE*/
524 if( e<342 ){ /*OPTIMIZATION-IF-TRUE*/
525 LONGDOUBLE_TYPE scale = sqlite3Pow10(e-308);
526 if( esign<0 ){
527 result = s / scale;
528 result /= 1.0e+308;
529 }else{
530 result = s * scale;
531 result *= 1.0e+308;
533 }else{ assert( e>=342 );
534 if( esign<0 ){
535 result = 0.0*s;
536 }else{
537 #ifdef INFINITY
538 result = INFINITY*s;
539 #else
540 result = 1e308*1e308*s; /* Infinity */
541 #endif
544 }else{
545 LONGDOUBLE_TYPE scale = sqlite3Pow10(e);
546 if( esign<0 ){
547 result = s / scale;
548 }else{
549 result = s * scale;
555 /* store the result */
556 *pResult = result;
558 /* return true if number and no extra non-whitespace chracters after */
559 return z==zEnd && nDigits>0 && eValid && nonNum==0;
560 #else
561 return !sqlite3Atoi64(z, pResult, length, enc);
562 #endif /* SQLITE_OMIT_FLOATING_POINT */
566 ** Compare the 19-character string zNum against the text representation
567 ** value 2^63: 9223372036854775808. Return negative, zero, or positive
568 ** if zNum is less than, equal to, or greater than the string.
569 ** Note that zNum must contain exactly 19 characters.
571 ** Unlike memcmp() this routine is guaranteed to return the difference
572 ** in the values of the last digit if the only difference is in the
573 ** last digit. So, for example,
575 ** compare2pow63("9223372036854775800", 1)
577 ** will return -8.
579 static int compare2pow63(const char *zNum, int incr){
580 int c = 0;
581 int i;
582 /* 012345678901234567 */
583 const char *pow63 = "922337203685477580";
584 for(i=0; c==0 && i<18; i++){
585 c = (zNum[i*incr]-pow63[i])*10;
587 if( c==0 ){
588 c = zNum[18*incr] - '8';
589 testcase( c==(-1) );
590 testcase( c==0 );
591 testcase( c==(+1) );
593 return c;
597 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This
598 ** routine does *not* accept hexadecimal notation.
600 ** Returns:
602 ** 0 Successful transformation. Fits in a 64-bit signed integer.
603 ** 1 Excess non-space text after the integer value
604 ** 2 Integer too large for a 64-bit signed integer or is malformed
605 ** 3 Special case of 9223372036854775808
607 ** length is the number of bytes in the string (bytes, not characters).
608 ** The string is not necessarily zero-terminated. The encoding is
609 ** given by enc.
611 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
612 int incr;
613 u64 u = 0;
614 int neg = 0; /* assume positive */
615 int i;
616 int c = 0;
617 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */
618 int rc; /* Baseline return code */
619 const char *zStart;
620 const char *zEnd = zNum + length;
621 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
622 if( enc==SQLITE_UTF8 ){
623 incr = 1;
624 }else{
625 incr = 2;
626 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
627 for(i=3-enc; i<length && zNum[i]==0; i+=2){}
628 nonNum = i<length;
629 zEnd = &zNum[i^1];
630 zNum += (enc&1);
632 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
633 if( zNum<zEnd ){
634 if( *zNum=='-' ){
635 neg = 1;
636 zNum+=incr;
637 }else if( *zNum=='+' ){
638 zNum+=incr;
641 zStart = zNum;
642 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
643 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
644 u = u*10 + c - '0';
646 testcase( i==18*incr );
647 testcase( i==19*incr );
648 testcase( i==20*incr );
649 if( u>LARGEST_INT64 ){
650 /* This test and assignment is needed only to suppress UB warnings
651 ** from clang and -fsanitize=undefined. This test and assignment make
652 ** the code a little larger and slower, and no harm comes from omitting
653 ** them, but we must appaise the undefined-behavior pharisees. */
654 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
655 }else if( neg ){
656 *pNum = -(i64)u;
657 }else{
658 *pNum = (i64)u;
660 rc = 0;
661 if( (i==0 && zStart==zNum) /* No digits */
662 || nonNum /* UTF16 with high-order bytes non-zero */
664 rc = 1;
665 }else if( &zNum[i]<zEnd ){ /* Extra bytes at the end */
666 int jj = i;
668 if( !sqlite3Isspace(zNum[jj]) ){
669 rc = 1; /* Extra non-space text after the integer */
670 break;
672 jj += incr;
673 }while( &zNum[jj]<zEnd );
675 if( i<19*incr ){
676 /* Less than 19 digits, so we know that it fits in 64 bits */
677 assert( u<=LARGEST_INT64 );
678 return rc;
679 }else{
680 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */
681 c = i>19*incr ? 1 : compare2pow63(zNum, incr);
682 if( c<0 ){
683 /* zNum is less than 9223372036854775808 so it fits */
684 assert( u<=LARGEST_INT64 );
685 return rc;
686 }else{
687 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
688 if( c>0 ){
689 /* zNum is greater than 9223372036854775808 so it overflows */
690 return 2;
691 }else{
692 /* zNum is exactly 9223372036854775808. Fits if negative. The
693 ** special case 2 overflow if positive */
694 assert( u-1==LARGEST_INT64 );
695 return neg ? rc : 3;
702 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
703 ** into a 64-bit signed integer. This routine accepts hexadecimal literals,
704 ** whereas sqlite3Atoi64() does not.
706 ** Returns:
708 ** 0 Successful transformation. Fits in a 64-bit signed integer.
709 ** 1 Excess text after the integer value
710 ** 2 Integer too large for a 64-bit signed integer or is malformed
711 ** 3 Special case of 9223372036854775808
713 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
714 #ifndef SQLITE_OMIT_HEX_INTEGER
715 if( z[0]=='0'
716 && (z[1]=='x' || z[1]=='X')
718 u64 u = 0;
719 int i, k;
720 for(i=2; z[i]=='0'; i++){}
721 for(k=i; sqlite3Isxdigit(z[k]); k++){
722 u = u*16 + sqlite3HexToInt(z[k]);
724 memcpy(pOut, &u, 8);
725 return (z[k]==0 && k-i<=16) ? 0 : 2;
726 }else
727 #endif /* SQLITE_OMIT_HEX_INTEGER */
729 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8);
734 ** If zNum represents an integer that will fit in 32-bits, then set
735 ** *pValue to that integer and return true. Otherwise return false.
737 ** This routine accepts both decimal and hexadecimal notation for integers.
739 ** Any non-numeric characters that following zNum are ignored.
740 ** This is different from sqlite3Atoi64() which requires the
741 ** input number to be zero-terminated.
743 int sqlite3GetInt32(const char *zNum, int *pValue){
744 sqlite_int64 v = 0;
745 int i, c;
746 int neg = 0;
747 if( zNum[0]=='-' ){
748 neg = 1;
749 zNum++;
750 }else if( zNum[0]=='+' ){
751 zNum++;
753 #ifndef SQLITE_OMIT_HEX_INTEGER
754 else if( zNum[0]=='0'
755 && (zNum[1]=='x' || zNum[1]=='X')
756 && sqlite3Isxdigit(zNum[2])
758 u32 u = 0;
759 zNum += 2;
760 while( zNum[0]=='0' ) zNum++;
761 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){
762 u = u*16 + sqlite3HexToInt(zNum[i]);
764 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
765 memcpy(pValue, &u, 4);
766 return 1;
767 }else{
768 return 0;
771 #endif
772 if( !sqlite3Isdigit(zNum[0]) ) return 0;
773 while( zNum[0]=='0' ) zNum++;
774 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
775 v = v*10 + c;
778 /* The longest decimal representation of a 32 bit integer is 10 digits:
780 ** 1234567890
781 ** 2^31 -> 2147483648
783 testcase( i==10 );
784 if( i>10 ){
785 return 0;
787 testcase( v-neg==2147483647 );
788 if( v-neg>2147483647 ){
789 return 0;
791 if( neg ){
792 v = -v;
794 *pValue = (int)v;
795 return 1;
799 ** Return a 32-bit integer value extracted from a string. If the
800 ** string is not an integer, just return 0.
802 int sqlite3Atoi(const char *z){
803 int x = 0;
804 if( z ) sqlite3GetInt32(z, &x);
805 return x;
809 ** The variable-length integer encoding is as follows:
811 ** KEY:
812 ** A = 0xxxxxxx 7 bits of data and one flag bit
813 ** B = 1xxxxxxx 7 bits of data and one flag bit
814 ** C = xxxxxxxx 8 bits of data
816 ** 7 bits - A
817 ** 14 bits - BA
818 ** 21 bits - BBA
819 ** 28 bits - BBBA
820 ** 35 bits - BBBBA
821 ** 42 bits - BBBBBA
822 ** 49 bits - BBBBBBA
823 ** 56 bits - BBBBBBBA
824 ** 64 bits - BBBBBBBBC
828 ** Write a 64-bit variable-length integer to memory starting at p[0].
829 ** The length of data write will be between 1 and 9 bytes. The number
830 ** of bytes written is returned.
832 ** A variable-length integer consists of the lower 7 bits of each byte
833 ** for all bytes that have the 8th bit set and one byte with the 8th
834 ** bit clear. Except, if we get to the 9th byte, it stores the full
835 ** 8 bits and is the last byte.
837 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
838 int i, j, n;
839 u8 buf[10];
840 if( v & (((u64)0xff000000)<<32) ){
841 p[8] = (u8)v;
842 v >>= 8;
843 for(i=7; i>=0; i--){
844 p[i] = (u8)((v & 0x7f) | 0x80);
845 v >>= 7;
847 return 9;
849 n = 0;
851 buf[n++] = (u8)((v & 0x7f) | 0x80);
852 v >>= 7;
853 }while( v!=0 );
854 buf[0] &= 0x7f;
855 assert( n<=9 );
856 for(i=0, j=n-1; j>=0; j--, i++){
857 p[i] = buf[j];
859 return n;
861 int sqlite3PutVarint(unsigned char *p, u64 v){
862 if( v<=0x7f ){
863 p[0] = v&0x7f;
864 return 1;
866 if( v<=0x3fff ){
867 p[0] = ((v>>7)&0x7f)|0x80;
868 p[1] = v&0x7f;
869 return 2;
871 return putVarint64(p,v);
875 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants
876 ** are defined here rather than simply putting the constant expressions
877 ** inline in order to work around bugs in the RVT compiler.
879 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
881 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
883 #define SLOT_2_0 0x001fc07f
884 #define SLOT_4_2_0 0xf01fc07f
888 ** Read a 64-bit variable-length integer from memory starting at p[0].
889 ** Return the number of bytes read. The value is stored in *v.
891 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
892 u32 a,b,s;
894 a = *p;
895 /* a: p0 (unmasked) */
896 if (!(a&0x80))
898 *v = a;
899 return 1;
902 p++;
903 b = *p;
904 /* b: p1 (unmasked) */
905 if (!(b&0x80))
907 a &= 0x7f;
908 a = a<<7;
909 a |= b;
910 *v = a;
911 return 2;
914 /* Verify that constants are precomputed correctly */
915 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
916 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
918 p++;
919 a = a<<14;
920 a |= *p;
921 /* a: p0<<14 | p2 (unmasked) */
922 if (!(a&0x80))
924 a &= SLOT_2_0;
925 b &= 0x7f;
926 b = b<<7;
927 a |= b;
928 *v = a;
929 return 3;
932 /* CSE1 from below */
933 a &= SLOT_2_0;
934 p++;
935 b = b<<14;
936 b |= *p;
937 /* b: p1<<14 | p3 (unmasked) */
938 if (!(b&0x80))
940 b &= SLOT_2_0;
941 /* moved CSE1 up */
942 /* a &= (0x7f<<14)|(0x7f); */
943 a = a<<7;
944 a |= b;
945 *v = a;
946 return 4;
949 /* a: p0<<14 | p2 (masked) */
950 /* b: p1<<14 | p3 (unmasked) */
951 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
952 /* moved CSE1 up */
953 /* a &= (0x7f<<14)|(0x7f); */
954 b &= SLOT_2_0;
955 s = a;
956 /* s: p0<<14 | p2 (masked) */
958 p++;
959 a = a<<14;
960 a |= *p;
961 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
962 if (!(a&0x80))
964 /* we can skip these cause they were (effectively) done above
965 ** while calculating s */
966 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
967 /* b &= (0x7f<<14)|(0x7f); */
968 b = b<<7;
969 a |= b;
970 s = s>>18;
971 *v = ((u64)s)<<32 | a;
972 return 5;
975 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
976 s = s<<7;
977 s |= b;
978 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
980 p++;
981 b = b<<14;
982 b |= *p;
983 /* b: p1<<28 | p3<<14 | p5 (unmasked) */
984 if (!(b&0x80))
986 /* we can skip this cause it was (effectively) done above in calc'ing s */
987 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
988 a &= SLOT_2_0;
989 a = a<<7;
990 a |= b;
991 s = s>>18;
992 *v = ((u64)s)<<32 | a;
993 return 6;
996 p++;
997 a = a<<14;
998 a |= *p;
999 /* a: p2<<28 | p4<<14 | p6 (unmasked) */
1000 if (!(a&0x80))
1002 a &= SLOT_4_2_0;
1003 b &= SLOT_2_0;
1004 b = b<<7;
1005 a |= b;
1006 s = s>>11;
1007 *v = ((u64)s)<<32 | a;
1008 return 7;
1011 /* CSE2 from below */
1012 a &= SLOT_2_0;
1013 p++;
1014 b = b<<14;
1015 b |= *p;
1016 /* b: p3<<28 | p5<<14 | p7 (unmasked) */
1017 if (!(b&0x80))
1019 b &= SLOT_4_2_0;
1020 /* moved CSE2 up */
1021 /* a &= (0x7f<<14)|(0x7f); */
1022 a = a<<7;
1023 a |= b;
1024 s = s>>4;
1025 *v = ((u64)s)<<32 | a;
1026 return 8;
1029 p++;
1030 a = a<<15;
1031 a |= *p;
1032 /* a: p4<<29 | p6<<15 | p8 (unmasked) */
1034 /* moved CSE2 up */
1035 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
1036 b &= SLOT_2_0;
1037 b = b<<8;
1038 a |= b;
1040 s = s<<4;
1041 b = p[-4];
1042 b &= 0x7f;
1043 b = b>>3;
1044 s |= b;
1046 *v = ((u64)s)<<32 | a;
1048 return 9;
1052 ** Read a 32-bit variable-length integer from memory starting at p[0].
1053 ** Return the number of bytes read. The value is stored in *v.
1055 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
1056 ** integer, then set *v to 0xffffffff.
1058 ** A MACRO version, getVarint32, is provided which inlines the
1059 ** single-byte case. All code should use the MACRO version as
1060 ** this function assumes the single-byte case has already been handled.
1062 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
1063 u32 a,b;
1065 /* The 1-byte case. Overwhelmingly the most common. Handled inline
1066 ** by the getVarin32() macro */
1067 a = *p;
1068 /* a: p0 (unmasked) */
1069 #ifndef getVarint32
1070 if (!(a&0x80))
1072 /* Values between 0 and 127 */
1073 *v = a;
1074 return 1;
1076 #endif
1078 /* The 2-byte case */
1079 p++;
1080 b = *p;
1081 /* b: p1 (unmasked) */
1082 if (!(b&0x80))
1084 /* Values between 128 and 16383 */
1085 a &= 0x7f;
1086 a = a<<7;
1087 *v = a | b;
1088 return 2;
1091 /* The 3-byte case */
1092 p++;
1093 a = a<<14;
1094 a |= *p;
1095 /* a: p0<<14 | p2 (unmasked) */
1096 if (!(a&0x80))
1098 /* Values between 16384 and 2097151 */
1099 a &= (0x7f<<14)|(0x7f);
1100 b &= 0x7f;
1101 b = b<<7;
1102 *v = a | b;
1103 return 3;
1106 /* A 32-bit varint is used to store size information in btrees.
1107 ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
1108 ** A 3-byte varint is sufficient, for example, to record the size
1109 ** of a 1048569-byte BLOB or string.
1111 ** We only unroll the first 1-, 2-, and 3- byte cases. The very
1112 ** rare larger cases can be handled by the slower 64-bit varint
1113 ** routine.
1115 #if 1
1117 u64 v64;
1118 u8 n;
1120 p -= 2;
1121 n = sqlite3GetVarint(p, &v64);
1122 assert( n>3 && n<=9 );
1123 if( (v64 & SQLITE_MAX_U32)!=v64 ){
1124 *v = 0xffffffff;
1125 }else{
1126 *v = (u32)v64;
1128 return n;
1131 #else
1132 /* For following code (kept for historical record only) shows an
1133 ** unrolling for the 3- and 4-byte varint cases. This code is
1134 ** slightly faster, but it is also larger and much harder to test.
1136 p++;
1137 b = b<<14;
1138 b |= *p;
1139 /* b: p1<<14 | p3 (unmasked) */
1140 if (!(b&0x80))
1142 /* Values between 2097152 and 268435455 */
1143 b &= (0x7f<<14)|(0x7f);
1144 a &= (0x7f<<14)|(0x7f);
1145 a = a<<7;
1146 *v = a | b;
1147 return 4;
1150 p++;
1151 a = a<<14;
1152 a |= *p;
1153 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1154 if (!(a&0x80))
1156 /* Values between 268435456 and 34359738367 */
1157 a &= SLOT_4_2_0;
1158 b &= SLOT_4_2_0;
1159 b = b<<7;
1160 *v = a | b;
1161 return 5;
1164 /* We can only reach this point when reading a corrupt database
1165 ** file. In that case we are not in any hurry. Use the (relatively
1166 ** slow) general-purpose sqlite3GetVarint() routine to extract the
1167 ** value. */
1169 u64 v64;
1170 u8 n;
1172 p -= 4;
1173 n = sqlite3GetVarint(p, &v64);
1174 assert( n>5 && n<=9 );
1175 *v = (u32)v64;
1176 return n;
1178 #endif
1182 ** Return the number of bytes that will be needed to store the given
1183 ** 64-bit integer.
1185 int sqlite3VarintLen(u64 v){
1186 int i;
1187 for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); }
1188 return i;
1193 ** Read or write a four-byte big-endian integer value.
1195 u32 sqlite3Get4byte(const u8 *p){
1196 #if SQLITE_BYTEORDER==4321
1197 u32 x;
1198 memcpy(&x,p,4);
1199 return x;
1200 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1201 u32 x;
1202 memcpy(&x,p,4);
1203 return __builtin_bswap32(x);
1204 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1205 u32 x;
1206 memcpy(&x,p,4);
1207 return _byteswap_ulong(x);
1208 #else
1209 testcase( p[0]&0x80 );
1210 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
1211 #endif
1213 void sqlite3Put4byte(unsigned char *p, u32 v){
1214 #if SQLITE_BYTEORDER==4321
1215 memcpy(p,&v,4);
1216 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1217 u32 x = __builtin_bswap32(v);
1218 memcpy(p,&x,4);
1219 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1220 u32 x = _byteswap_ulong(v);
1221 memcpy(p,&x,4);
1222 #else
1223 p[0] = (u8)(v>>24);
1224 p[1] = (u8)(v>>16);
1225 p[2] = (u8)(v>>8);
1226 p[3] = (u8)v;
1227 #endif
1233 ** Translate a single byte of Hex into an integer.
1234 ** This routine only works if h really is a valid hexadecimal
1235 ** character: 0..9a..fA..F
1237 u8 sqlite3HexToInt(int h){
1238 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
1239 #ifdef SQLITE_ASCII
1240 h += 9*(1&(h>>6));
1241 #endif
1242 #ifdef SQLITE_EBCDIC
1243 h += 9*(1&~(h>>4));
1244 #endif
1245 return (u8)(h & 0xf);
1248 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
1250 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1251 ** value. Return a pointer to its binary value. Space to hold the
1252 ** binary value has been obtained from malloc and must be freed by
1253 ** the calling routine.
1255 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1256 char *zBlob;
1257 int i;
1259 zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1);
1260 n--;
1261 if( zBlob ){
1262 for(i=0; i<n; i+=2){
1263 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
1265 zBlob[i/2] = 0;
1267 return zBlob;
1269 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1272 ** Log an error that is an API call on a connection pointer that should
1273 ** not have been used. The "type" of connection pointer is given as the
1274 ** argument. The zType is a word like "NULL" or "closed" or "invalid".
1276 static void logBadConnection(const char *zType){
1277 sqlite3_log(SQLITE_MISUSE,
1278 "API call with %s database connection pointer",
1279 zType
1284 ** Check to make sure we have a valid db pointer. This test is not
1285 ** foolproof but it does provide some measure of protection against
1286 ** misuse of the interface such as passing in db pointers that are
1287 ** NULL or which have been previously closed. If this routine returns
1288 ** 1 it means that the db pointer is valid and 0 if it should not be
1289 ** dereferenced for any reason. The calling function should invoke
1290 ** SQLITE_MISUSE immediately.
1292 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1293 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1294 ** open properly and is not fit for general use but which can be
1295 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
1297 int sqlite3SafetyCheckOk(sqlite3 *db){
1298 u32 magic;
1299 if( db==0 ){
1300 logBadConnection("NULL");
1301 return 0;
1303 magic = db->magic;
1304 if( magic!=SQLITE_MAGIC_OPEN ){
1305 if( sqlite3SafetyCheckSickOrOk(db) ){
1306 testcase( sqlite3GlobalConfig.xLog!=0 );
1307 logBadConnection("unopened");
1309 return 0;
1310 }else{
1311 return 1;
1314 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1315 u32 magic;
1316 magic = db->magic;
1317 if( magic!=SQLITE_MAGIC_SICK &&
1318 magic!=SQLITE_MAGIC_OPEN &&
1319 magic!=SQLITE_MAGIC_BUSY ){
1320 testcase( sqlite3GlobalConfig.xLog!=0 );
1321 logBadConnection("invalid");
1322 return 0;
1323 }else{
1324 return 1;
1329 ** Attempt to add, substract, or multiply the 64-bit signed value iB against
1330 ** the other 64-bit signed integer at *pA and store the result in *pA.
1331 ** Return 0 on success. Or if the operation would have resulted in an
1332 ** overflow, leave *pA unchanged and return 1.
1334 int sqlite3AddInt64(i64 *pA, i64 iB){
1335 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1336 return __builtin_add_overflow(*pA, iB, pA);
1337 #else
1338 i64 iA = *pA;
1339 testcase( iA==0 ); testcase( iA==1 );
1340 testcase( iB==-1 ); testcase( iB==0 );
1341 if( iB>=0 ){
1342 testcase( iA>0 && LARGEST_INT64 - iA == iB );
1343 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1344 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
1345 }else{
1346 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1347 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1348 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
1350 *pA += iB;
1351 return 0;
1352 #endif
1354 int sqlite3SubInt64(i64 *pA, i64 iB){
1355 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1356 return __builtin_sub_overflow(*pA, iB, pA);
1357 #else
1358 testcase( iB==SMALLEST_INT64+1 );
1359 if( iB==SMALLEST_INT64 ){
1360 testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1361 if( (*pA)>=0 ) return 1;
1362 *pA -= iB;
1363 return 0;
1364 }else{
1365 return sqlite3AddInt64(pA, -iB);
1367 #endif
1369 int sqlite3MulInt64(i64 *pA, i64 iB){
1370 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1371 return __builtin_mul_overflow(*pA, iB, pA);
1372 #else
1373 i64 iA = *pA;
1374 if( iB>0 ){
1375 if( iA>LARGEST_INT64/iB ) return 1;
1376 if( iA<SMALLEST_INT64/iB ) return 1;
1377 }else if( iB<0 ){
1378 if( iA>0 ){
1379 if( iB<SMALLEST_INT64/iA ) return 1;
1380 }else if( iA<0 ){
1381 if( iB==SMALLEST_INT64 ) return 1;
1382 if( iA==SMALLEST_INT64 ) return 1;
1383 if( -iA>LARGEST_INT64/-iB ) return 1;
1386 *pA = iA*iB;
1387 return 0;
1388 #endif
1392 ** Compute the absolute value of a 32-bit signed integer, of possible. Or
1393 ** if the integer has a value of -2147483648, return +2147483647
1395 int sqlite3AbsInt32(int x){
1396 if( x>=0 ) return x;
1397 if( x==(int)0x80000000 ) return 0x7fffffff;
1398 return -x;
1401 #ifdef SQLITE_ENABLE_8_3_NAMES
1403 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
1404 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1405 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1406 ** three characters, then shorten the suffix on z[] to be the last three
1407 ** characters of the original suffix.
1409 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1410 ** do the suffix shortening regardless of URI parameter.
1412 ** Examples:
1414 ** test.db-journal => test.nal
1415 ** test.db-wal => test.wal
1416 ** test.db-shm => test.shm
1417 ** test.db-mj7f3319fa => test.9fa
1419 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
1420 #if SQLITE_ENABLE_8_3_NAMES<2
1421 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
1422 #endif
1424 int i, sz;
1425 sz = sqlite3Strlen30(z);
1426 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
1427 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
1430 #endif
1433 ** Find (an approximate) sum of two LogEst values. This computation is
1434 ** not a simple "+" operator because LogEst is stored as a logarithmic
1435 ** value.
1438 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
1439 static const unsigned char x[] = {
1440 10, 10, /* 0,1 */
1441 9, 9, /* 2,3 */
1442 8, 8, /* 4,5 */
1443 7, 7, 7, /* 6,7,8 */
1444 6, 6, 6, /* 9,10,11 */
1445 5, 5, 5, /* 12-14 */
1446 4, 4, 4, 4, /* 15-18 */
1447 3, 3, 3, 3, 3, 3, /* 19-24 */
1448 2, 2, 2, 2, 2, 2, 2, /* 25-31 */
1450 if( a>=b ){
1451 if( a>b+49 ) return a;
1452 if( a>b+31 ) return a+1;
1453 return a+x[a-b];
1454 }else{
1455 if( b>a+49 ) return b;
1456 if( b>a+31 ) return b+1;
1457 return b+x[b-a];
1462 ** Convert an integer into a LogEst. In other words, compute an
1463 ** approximation for 10*log2(x).
1465 LogEst sqlite3LogEst(u64 x){
1466 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1467 LogEst y = 40;
1468 if( x<8 ){
1469 if( x<2 ) return 0;
1470 while( x<8 ){ y -= 10; x <<= 1; }
1471 }else{
1472 #if GCC_VERSION>=5004000
1473 int i = 60 - __builtin_clzll(x);
1474 y += i*10;
1475 x >>= i;
1476 #else
1477 while( x>255 ){ y += 40; x >>= 4; } /*OPTIMIZATION-IF-TRUE*/
1478 while( x>15 ){ y += 10; x >>= 1; }
1479 #endif
1481 return a[x&7] + y - 10;
1484 #ifndef SQLITE_OMIT_VIRTUALTABLE
1486 ** Convert a double into a LogEst
1487 ** In other words, compute an approximation for 10*log2(x).
1489 LogEst sqlite3LogEstFromDouble(double x){
1490 u64 a;
1491 LogEst e;
1492 assert( sizeof(x)==8 && sizeof(a)==8 );
1493 if( x<=1 ) return 0;
1494 if( x<=2000000000 ) return sqlite3LogEst((u64)x);
1495 memcpy(&a, &x, 8);
1496 e = (a>>52) - 1022;
1497 return e*10;
1499 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1501 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
1502 defined(SQLITE_ENABLE_STAT3_OR_STAT4) || \
1503 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
1505 ** Convert a LogEst into an integer.
1507 ** Note that this routine is only used when one or more of various
1508 ** non-standard compile-time options is enabled.
1510 u64 sqlite3LogEstToInt(LogEst x){
1511 u64 n;
1512 n = x%10;
1513 x /= 10;
1514 if( n>=5 ) n -= 2;
1515 else if( n>=1 ) n -= 1;
1516 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
1517 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
1518 if( x>60 ) return (u64)LARGEST_INT64;
1519 #else
1520 /* If only SQLITE_ENABLE_STAT3_OR_STAT4 is on, then the largest input
1521 ** possible to this routine is 310, resulting in a maximum x of 31 */
1522 assert( x<=60 );
1523 #endif
1524 return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x);
1526 #endif /* defined SCANSTAT or STAT4 or ESTIMATED_ROWS */
1529 ** Add a new name/number pair to a VList. This might require that the
1530 ** VList object be reallocated, so return the new VList. If an OOM
1531 ** error occurs, the original VList returned and the
1532 ** db->mallocFailed flag is set.
1534 ** A VList is really just an array of integers. To destroy a VList,
1535 ** simply pass it to sqlite3DbFree().
1537 ** The first integer is the number of integers allocated for the whole
1538 ** VList. The second integer is the number of integers actually used.
1539 ** Each name/number pair is encoded by subsequent groups of 3 or more
1540 ** integers.
1542 ** Each name/number pair starts with two integers which are the numeric
1543 ** value for the pair and the size of the name/number pair, respectively.
1544 ** The text name overlays one or more following integers. The text name
1545 ** is always zero-terminated.
1547 ** Conceptually:
1549 ** struct VList {
1550 ** int nAlloc; // Number of allocated slots
1551 ** int nUsed; // Number of used slots
1552 ** struct VListEntry {
1553 ** int iValue; // Value for this entry
1554 ** int nSlot; // Slots used by this entry
1555 ** // ... variable name goes here
1556 ** } a[0];
1557 ** }
1559 ** During code generation, pointers to the variable names within the
1560 ** VList are taken. When that happens, nAlloc is set to zero as an
1561 ** indication that the VList may never again be enlarged, since the
1562 ** accompanying realloc() would invalidate the pointers.
1564 VList *sqlite3VListAdd(
1565 sqlite3 *db, /* The database connection used for malloc() */
1566 VList *pIn, /* The input VList. Might be NULL */
1567 const char *zName, /* Name of symbol to add */
1568 int nName, /* Bytes of text in zName */
1569 int iVal /* Value to associate with zName */
1571 int nInt; /* number of sizeof(int) objects needed for zName */
1572 char *z; /* Pointer to where zName will be stored */
1573 int i; /* Index in pIn[] where zName is stored */
1575 nInt = nName/4 + 3;
1576 assert( pIn==0 || pIn[0]>=3 ); /* Verify ok to add new elements */
1577 if( pIn==0 || pIn[1]+nInt > pIn[0] ){
1578 /* Enlarge the allocation */
1579 int nAlloc = (pIn ? pIn[0]*2 : 10) + nInt;
1580 VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int));
1581 if( pOut==0 ) return pIn;
1582 if( pIn==0 ) pOut[1] = 2;
1583 pIn = pOut;
1584 pIn[0] = nAlloc;
1586 i = pIn[1];
1587 pIn[i] = iVal;
1588 pIn[i+1] = nInt;
1589 z = (char*)&pIn[i+2];
1590 pIn[1] = i+nInt;
1591 assert( pIn[1]<=pIn[0] );
1592 memcpy(z, zName, nName);
1593 z[nName] = 0;
1594 return pIn;
1598 ** Return a pointer to the name of a variable in the given VList that
1599 ** has the value iVal. Or return a NULL if there is no such variable in
1600 ** the list
1602 const char *sqlite3VListNumToName(VList *pIn, int iVal){
1603 int i, mx;
1604 if( pIn==0 ) return 0;
1605 mx = pIn[1];
1606 i = 2;
1608 if( pIn[i]==iVal ) return (char*)&pIn[i+2];
1609 i += pIn[i+1];
1610 }while( i<mx );
1611 return 0;
1615 ** Return the number of the variable named zName, if it is in VList.
1616 ** or return 0 if there is no such variable.
1618 int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){
1619 int i, mx;
1620 if( pIn==0 ) return 0;
1621 mx = pIn[1];
1622 i = 2;
1624 const char *z = (const char*)&pIn[i+2];
1625 if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i];
1626 i += pIn[i+1];
1627 }while( i<mx );
1628 return 0;