Merge branch 'prerelease'
[sqlcipher.git] / src / select.c
blobf30cea50deaaf7dc4fbc2afac7d34b6bd9432dfb
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
15 #include "sqliteInt.h"
18 ** Trace output macros
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X) \
23 if(sqlite3SelectTrace&(K)) \
24 sqlite3DebugPrintf("%u/%d/%p: ",(S)->selId,(P)->addrExplain,(S)),\
25 sqlite3DebugPrintf X
26 #else
27 # define SELECTTRACE(K,P,S,X)
28 #endif
32 ** An instance of the following object is used to record information about
33 ** how to process the DISTINCT keyword, to simplify passing that information
34 ** into the selectInnerLoop() routine.
36 typedef struct DistinctCtx DistinctCtx;
37 struct DistinctCtx {
38 u8 isTnct; /* True if the DISTINCT keyword is present */
39 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */
40 int tabTnct; /* Ephemeral table used for DISTINCT processing */
41 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */
45 ** An instance of the following object is used to record information about
46 ** the ORDER BY (or GROUP BY) clause of query is being coded.
48 ** The aDefer[] array is used by the sorter-references optimization. For
49 ** example, assuming there is no index that can be used for the ORDER BY,
50 ** for the query:
52 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
54 ** it may be more efficient to add just the "a" values to the sorter, and
55 ** retrieve the associated "bigblob" values directly from table t1 as the
56 ** 10 smallest "a" values are extracted from the sorter.
58 ** When the sorter-reference optimization is used, there is one entry in the
59 ** aDefer[] array for each database table that may be read as values are
60 ** extracted from the sorter.
62 typedef struct SortCtx SortCtx;
63 struct SortCtx {
64 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */
65 int nOBSat; /* Number of ORDER BY terms satisfied by indices */
66 int iECursor; /* Cursor number for the sorter */
67 int regReturn; /* Register holding block-output return address */
68 int labelBkOut; /* Start label for the block-output subroutine */
69 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
70 int labelDone; /* Jump here when done, ex: LIMIT reached */
71 int labelOBLopt; /* Jump here when sorter is full */
72 u8 sortFlags; /* Zero or more SORTFLAG_* bits */
73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
74 u8 nDefer; /* Number of valid entries in aDefer[] */
75 struct DeferredCsr {
76 Table *pTab; /* Table definition */
77 int iCsr; /* Cursor number for table */
78 int nKey; /* Number of PK columns for table pTab (>=1) */
79 } aDefer[4];
80 #endif
81 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */
83 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
86 ** Delete all the content of a Select structure. Deallocate the structure
87 ** itself only if bFree is true.
89 static void clearSelect(sqlite3 *db, Select *p, int bFree){
90 while( p ){
91 Select *pPrior = p->pPrior;
92 sqlite3ExprListDelete(db, p->pEList);
93 sqlite3SrcListDelete(db, p->pSrc);
94 sqlite3ExprDelete(db, p->pWhere);
95 sqlite3ExprListDelete(db, p->pGroupBy);
96 sqlite3ExprDelete(db, p->pHaving);
97 sqlite3ExprListDelete(db, p->pOrderBy);
98 sqlite3ExprDelete(db, p->pLimit);
99 #ifndef SQLITE_OMIT_WINDOWFUNC
100 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
101 sqlite3WindowListDelete(db, p->pWinDefn);
103 #endif
104 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
105 if( bFree ) sqlite3DbFreeNN(db, p);
106 p = pPrior;
107 bFree = 1;
112 ** Initialize a SelectDest structure.
114 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
115 pDest->eDest = (u8)eDest;
116 pDest->iSDParm = iParm;
117 pDest->zAffSdst = 0;
118 pDest->iSdst = 0;
119 pDest->nSdst = 0;
124 ** Allocate a new Select structure and return a pointer to that
125 ** structure.
127 Select *sqlite3SelectNew(
128 Parse *pParse, /* Parsing context */
129 ExprList *pEList, /* which columns to include in the result */
130 SrcList *pSrc, /* the FROM clause -- which tables to scan */
131 Expr *pWhere, /* the WHERE clause */
132 ExprList *pGroupBy, /* the GROUP BY clause */
133 Expr *pHaving, /* the HAVING clause */
134 ExprList *pOrderBy, /* the ORDER BY clause */
135 u32 selFlags, /* Flag parameters, such as SF_Distinct */
136 Expr *pLimit /* LIMIT value. NULL means not used */
138 Select *pNew;
139 Select standin;
140 pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
141 if( pNew==0 ){
142 assert( pParse->db->mallocFailed );
143 pNew = &standin;
145 if( pEList==0 ){
146 pEList = sqlite3ExprListAppend(pParse, 0,
147 sqlite3Expr(pParse->db,TK_ASTERISK,0));
149 pNew->pEList = pEList;
150 pNew->op = TK_SELECT;
151 pNew->selFlags = selFlags;
152 pNew->iLimit = 0;
153 pNew->iOffset = 0;
154 pNew->selId = ++pParse->nSelect;
155 pNew->addrOpenEphm[0] = -1;
156 pNew->addrOpenEphm[1] = -1;
157 pNew->nSelectRow = 0;
158 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
159 pNew->pSrc = pSrc;
160 pNew->pWhere = pWhere;
161 pNew->pGroupBy = pGroupBy;
162 pNew->pHaving = pHaving;
163 pNew->pOrderBy = pOrderBy;
164 pNew->pPrior = 0;
165 pNew->pNext = 0;
166 pNew->pLimit = pLimit;
167 pNew->pWith = 0;
168 #ifndef SQLITE_OMIT_WINDOWFUNC
169 pNew->pWin = 0;
170 pNew->pWinDefn = 0;
171 #endif
172 if( pParse->db->mallocFailed ) {
173 clearSelect(pParse->db, pNew, pNew!=&standin);
174 pNew = 0;
175 }else{
176 assert( pNew->pSrc!=0 || pParse->nErr>0 );
178 assert( pNew!=&standin );
179 return pNew;
184 ** Delete the given Select structure and all of its substructures.
186 void sqlite3SelectDelete(sqlite3 *db, Select *p){
187 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
191 ** Return a pointer to the right-most SELECT statement in a compound.
193 static Select *findRightmost(Select *p){
194 while( p->pNext ) p = p->pNext;
195 return p;
199 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
200 ** type of join. Return an integer constant that expresses that type
201 ** in terms of the following bit values:
203 ** JT_INNER
204 ** JT_CROSS
205 ** JT_OUTER
206 ** JT_NATURAL
207 ** JT_LEFT
208 ** JT_RIGHT
210 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
212 ** If an illegal or unsupported join type is seen, then still return
213 ** a join type, but put an error in the pParse structure.
215 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
216 int jointype = 0;
217 Token *apAll[3];
218 Token *p;
219 /* 0123456789 123456789 123456789 123 */
220 static const char zKeyText[] = "naturaleftouterightfullinnercross";
221 static const struct {
222 u8 i; /* Beginning of keyword text in zKeyText[] */
223 u8 nChar; /* Length of the keyword in characters */
224 u8 code; /* Join type mask */
225 } aKeyword[] = {
226 /* natural */ { 0, 7, JT_NATURAL },
227 /* left */ { 6, 4, JT_LEFT|JT_OUTER },
228 /* outer */ { 10, 5, JT_OUTER },
229 /* right */ { 14, 5, JT_RIGHT|JT_OUTER },
230 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
231 /* inner */ { 23, 5, JT_INNER },
232 /* cross */ { 28, 5, JT_INNER|JT_CROSS },
234 int i, j;
235 apAll[0] = pA;
236 apAll[1] = pB;
237 apAll[2] = pC;
238 for(i=0; i<3 && apAll[i]; i++){
239 p = apAll[i];
240 for(j=0; j<ArraySize(aKeyword); j++){
241 if( p->n==aKeyword[j].nChar
242 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
243 jointype |= aKeyword[j].code;
244 break;
247 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
248 if( j>=ArraySize(aKeyword) ){
249 jointype |= JT_ERROR;
250 break;
254 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
255 (jointype & JT_ERROR)!=0
257 const char *zSp = " ";
258 assert( pB!=0 );
259 if( pC==0 ){ zSp++; }
260 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
261 "%T %T%s%T", pA, pB, zSp, pC);
262 jointype = JT_INNER;
263 }else if( (jointype & JT_OUTER)!=0
264 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
265 sqlite3ErrorMsg(pParse,
266 "RIGHT and FULL OUTER JOINs are not currently supported");
267 jointype = JT_INNER;
269 return jointype;
273 ** Return the index of a column in a table. Return -1 if the column
274 ** is not contained in the table.
276 static int columnIndex(Table *pTab, const char *zCol){
277 int i;
278 for(i=0; i<pTab->nCol; i++){
279 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
281 return -1;
285 ** Search the first N tables in pSrc, from left to right, looking for a
286 ** table that has a column named zCol.
288 ** When found, set *piTab and *piCol to the table index and column index
289 ** of the matching column and return TRUE.
291 ** If not found, return FALSE.
293 static int tableAndColumnIndex(
294 SrcList *pSrc, /* Array of tables to search */
295 int N, /* Number of tables in pSrc->a[] to search */
296 const char *zCol, /* Name of the column we are looking for */
297 int *piTab, /* Write index of pSrc->a[] here */
298 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
300 int i; /* For looping over tables in pSrc */
301 int iCol; /* Index of column matching zCol */
303 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */
304 for(i=0; i<N; i++){
305 iCol = columnIndex(pSrc->a[i].pTab, zCol);
306 if( iCol>=0 ){
307 if( piTab ){
308 *piTab = i;
309 *piCol = iCol;
311 return 1;
314 return 0;
318 ** This function is used to add terms implied by JOIN syntax to the
319 ** WHERE clause expression of a SELECT statement. The new term, which
320 ** is ANDed with the existing WHERE clause, is of the form:
322 ** (tab1.col1 = tab2.col2)
324 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
325 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
326 ** column iColRight of tab2.
328 static void addWhereTerm(
329 Parse *pParse, /* Parsing context */
330 SrcList *pSrc, /* List of tables in FROM clause */
331 int iLeft, /* Index of first table to join in pSrc */
332 int iColLeft, /* Index of column in first table */
333 int iRight, /* Index of second table in pSrc */
334 int iColRight, /* Index of column in second table */
335 int isOuterJoin, /* True if this is an OUTER join */
336 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */
338 sqlite3 *db = pParse->db;
339 Expr *pE1;
340 Expr *pE2;
341 Expr *pEq;
343 assert( iLeft<iRight );
344 assert( pSrc->nSrc>iRight );
345 assert( pSrc->a[iLeft].pTab );
346 assert( pSrc->a[iRight].pTab );
348 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
349 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
351 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
352 if( pEq && isOuterJoin ){
353 ExprSetProperty(pEq, EP_FromJoin);
354 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
355 ExprSetVVAProperty(pEq, EP_NoReduce);
356 pEq->iRightJoinTable = (i16)pE2->iTable;
358 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
362 ** Set the EP_FromJoin property on all terms of the given expression.
363 ** And set the Expr.iRightJoinTable to iTable for every term in the
364 ** expression.
366 ** The EP_FromJoin property is used on terms of an expression to tell
367 ** the LEFT OUTER JOIN processing logic that this term is part of the
368 ** join restriction specified in the ON or USING clause and not a part
369 ** of the more general WHERE clause. These terms are moved over to the
370 ** WHERE clause during join processing but we need to remember that they
371 ** originated in the ON or USING clause.
373 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
374 ** expression depends on table iRightJoinTable even if that table is not
375 ** explicitly mentioned in the expression. That information is needed
376 ** for cases like this:
378 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
380 ** The where clause needs to defer the handling of the t1.x=5
381 ** term until after the t2 loop of the join. In that way, a
382 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not
383 ** defer the handling of t1.x=5, it will be processed immediately
384 ** after the t1 loop and rows with t1.x!=5 will never appear in
385 ** the output, which is incorrect.
387 static void setJoinExpr(Expr *p, int iTable){
388 while( p ){
389 ExprSetProperty(p, EP_FromJoin);
390 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
391 ExprSetVVAProperty(p, EP_NoReduce);
392 p->iRightJoinTable = (i16)iTable;
393 if( p->op==TK_FUNCTION && p->x.pList ){
394 int i;
395 for(i=0; i<p->x.pList->nExpr; i++){
396 setJoinExpr(p->x.pList->a[i].pExpr, iTable);
399 setJoinExpr(p->pLeft, iTable);
400 p = p->pRight;
404 /* Undo the work of setJoinExpr(). In the expression tree p, convert every
405 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
406 ** an ordinary term that omits the EP_FromJoin mark.
408 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
410 static void unsetJoinExpr(Expr *p, int iTable){
411 while( p ){
412 if( ExprHasProperty(p, EP_FromJoin)
413 && (iTable<0 || p->iRightJoinTable==iTable) ){
414 ExprClearProperty(p, EP_FromJoin);
416 if( p->op==TK_FUNCTION && p->x.pList ){
417 int i;
418 for(i=0; i<p->x.pList->nExpr; i++){
419 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
422 unsetJoinExpr(p->pLeft, iTable);
423 p = p->pRight;
428 ** This routine processes the join information for a SELECT statement.
429 ** ON and USING clauses are converted into extra terms of the WHERE clause.
430 ** NATURAL joins also create extra WHERE clause terms.
432 ** The terms of a FROM clause are contained in the Select.pSrc structure.
433 ** The left most table is the first entry in Select.pSrc. The right-most
434 ** table is the last entry. The join operator is held in the entry to
435 ** the left. Thus entry 0 contains the join operator for the join between
436 ** entries 0 and 1. Any ON or USING clauses associated with the join are
437 ** also attached to the left entry.
439 ** This routine returns the number of errors encountered.
441 static int sqliteProcessJoin(Parse *pParse, Select *p){
442 SrcList *pSrc; /* All tables in the FROM clause */
443 int i, j; /* Loop counters */
444 struct SrcList_item *pLeft; /* Left table being joined */
445 struct SrcList_item *pRight; /* Right table being joined */
447 pSrc = p->pSrc;
448 pLeft = &pSrc->a[0];
449 pRight = &pLeft[1];
450 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
451 Table *pRightTab = pRight->pTab;
452 int isOuter;
454 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
455 isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
457 /* When the NATURAL keyword is present, add WHERE clause terms for
458 ** every column that the two tables have in common.
460 if( pRight->fg.jointype & JT_NATURAL ){
461 if( pRight->pOn || pRight->pUsing ){
462 sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
463 "an ON or USING clause", 0);
464 return 1;
466 for(j=0; j<pRightTab->nCol; j++){
467 char *zName; /* Name of column in the right table */
468 int iLeft; /* Matching left table */
469 int iLeftCol; /* Matching column in the left table */
471 zName = pRightTab->aCol[j].zName;
472 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
473 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
474 isOuter, &p->pWhere);
479 /* Disallow both ON and USING clauses in the same join
481 if( pRight->pOn && pRight->pUsing ){
482 sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
483 "clauses in the same join");
484 return 1;
487 /* Add the ON clause to the end of the WHERE clause, connected by
488 ** an AND operator.
490 if( pRight->pOn ){
491 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
492 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
493 pRight->pOn = 0;
496 /* Create extra terms on the WHERE clause for each column named
497 ** in the USING clause. Example: If the two tables to be joined are
498 ** A and B and the USING clause names X, Y, and Z, then add this
499 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
500 ** Report an error if any column mentioned in the USING clause is
501 ** not contained in both tables to be joined.
503 if( pRight->pUsing ){
504 IdList *pList = pRight->pUsing;
505 for(j=0; j<pList->nId; j++){
506 char *zName; /* Name of the term in the USING clause */
507 int iLeft; /* Table on the left with matching column name */
508 int iLeftCol; /* Column number of matching column on the left */
509 int iRightCol; /* Column number of matching column on the right */
511 zName = pList->a[j].zName;
512 iRightCol = columnIndex(pRightTab, zName);
513 if( iRightCol<0
514 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
516 sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
517 "not present in both tables", zName);
518 return 1;
520 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
521 isOuter, &p->pWhere);
525 return 0;
529 ** An instance of this object holds information (beyond pParse and pSelect)
530 ** needed to load the next result row that is to be added to the sorter.
532 typedef struct RowLoadInfo RowLoadInfo;
533 struct RowLoadInfo {
534 int regResult; /* Store results in array of registers here */
535 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */
536 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
537 ExprList *pExtra; /* Extra columns needed by sorter refs */
538 int regExtraResult; /* Where to load the extra columns */
539 #endif
543 ** This routine does the work of loading query data into an array of
544 ** registers so that it can be added to the sorter.
546 static void innerLoopLoadRow(
547 Parse *pParse, /* Statement under construction */
548 Select *pSelect, /* The query being coded */
549 RowLoadInfo *pInfo /* Info needed to complete the row load */
551 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
552 0, pInfo->ecelFlags);
553 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
554 if( pInfo->pExtra ){
555 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
556 sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
558 #endif
562 ** Code the OP_MakeRecord instruction that generates the entry to be
563 ** added into the sorter.
565 ** Return the register in which the result is stored.
567 static int makeSorterRecord(
568 Parse *pParse,
569 SortCtx *pSort,
570 Select *pSelect,
571 int regBase,
572 int nBase
574 int nOBSat = pSort->nOBSat;
575 Vdbe *v = pParse->pVdbe;
576 int regOut = ++pParse->nMem;
577 if( pSort->pDeferredRowLoad ){
578 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
580 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
581 return regOut;
585 ** Generate code that will push the record in registers regData
586 ** through regData+nData-1 onto the sorter.
588 static void pushOntoSorter(
589 Parse *pParse, /* Parser context */
590 SortCtx *pSort, /* Information about the ORDER BY clause */
591 Select *pSelect, /* The whole SELECT statement */
592 int regData, /* First register holding data to be sorted */
593 int regOrigData, /* First register holding data before packing */
594 int nData, /* Number of elements in the regData data array */
595 int nPrefixReg /* No. of reg prior to regData available for use */
597 Vdbe *v = pParse->pVdbe; /* Stmt under construction */
598 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
599 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */
600 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */
601 int regBase; /* Regs for sorter record */
602 int regRecord = 0; /* Assembled sorter record */
603 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */
604 int op; /* Opcode to add sorter record to sorter */
605 int iLimit; /* LIMIT counter */
606 int iSkip = 0; /* End of the sorter insert loop */
608 assert( bSeq==0 || bSeq==1 );
610 /* Three cases:
611 ** (1) The data to be sorted has already been packed into a Record
612 ** by a prior OP_MakeRecord. In this case nData==1 and regData
613 ** will be completely unrelated to regOrigData.
614 ** (2) All output columns are included in the sort record. In that
615 ** case regData==regOrigData.
616 ** (3) Some output columns are omitted from the sort record due to
617 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
618 ** SQLITE_ECEL_OMITREF optimization, or due to the
619 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases
620 ** regOrigData is 0 to prevent this routine from trying to copy
621 ** values that might not yet exist.
623 assert( nData==1 || regData==regOrigData || regOrigData==0 );
625 if( nPrefixReg ){
626 assert( nPrefixReg==nExpr+bSeq );
627 regBase = regData - nPrefixReg;
628 }else{
629 regBase = pParse->nMem + 1;
630 pParse->nMem += nBase;
632 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
633 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
634 pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
635 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
636 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
637 if( bSeq ){
638 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
640 if( nPrefixReg==0 && nData>0 ){
641 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
643 if( nOBSat>0 ){
644 int regPrevKey; /* The first nOBSat columns of the previous row */
645 int addrFirst; /* Address of the OP_IfNot opcode */
646 int addrJmp; /* Address of the OP_Jump opcode */
647 VdbeOp *pOp; /* Opcode that opens the sorter */
648 int nKey; /* Number of sorting key columns, including OP_Sequence */
649 KeyInfo *pKI; /* Original KeyInfo on the sorter table */
651 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
652 regPrevKey = pParse->nMem+1;
653 pParse->nMem += pSort->nOBSat;
654 nKey = nExpr - pSort->nOBSat + bSeq;
655 if( bSeq ){
656 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
657 }else{
658 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
660 VdbeCoverage(v);
661 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
662 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
663 if( pParse->db->mallocFailed ) return;
664 pOp->p2 = nKey + nData;
665 pKI = pOp->p4.pKeyInfo;
666 memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */
667 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
668 testcase( pKI->nAllField > pKI->nKeyField+2 );
669 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
670 pKI->nAllField-pKI->nKeyField-1);
671 addrJmp = sqlite3VdbeCurrentAddr(v);
672 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
673 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
674 pSort->regReturn = ++pParse->nMem;
675 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
676 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
677 if( iLimit ){
678 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
679 VdbeCoverage(v);
681 sqlite3VdbeJumpHere(v, addrFirst);
682 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
683 sqlite3VdbeJumpHere(v, addrJmp);
685 if( iLimit ){
686 /* At this point the values for the new sorter entry are stored
687 ** in an array of registers. They need to be composed into a record
688 ** and inserted into the sorter if either (a) there are currently
689 ** less than LIMIT+OFFSET items or (b) the new record is smaller than
690 ** the largest record currently in the sorter. If (b) is true and there
691 ** are already LIMIT+OFFSET items in the sorter, delete the largest
692 ** entry before inserting the new one. This way there are never more
693 ** than LIMIT+OFFSET items in the sorter.
695 ** If the new record does not need to be inserted into the sorter,
696 ** jump to the next iteration of the loop. If the pSort->labelOBLopt
697 ** value is not zero, then it is a label of where to jump. Otherwise,
698 ** just bypass the row insert logic. See the header comment on the
699 ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
701 int iCsr = pSort->iECursor;
702 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
703 VdbeCoverage(v);
704 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
705 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
706 iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
707 VdbeCoverage(v);
708 sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
710 if( regRecord==0 ){
711 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
713 if( pSort->sortFlags & SORTFLAG_UseSorter ){
714 op = OP_SorterInsert;
715 }else{
716 op = OP_IdxInsert;
718 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
719 regBase+nOBSat, nBase-nOBSat);
720 if( iSkip ){
721 sqlite3VdbeChangeP2(v, iSkip,
722 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
727 ** Add code to implement the OFFSET
729 static void codeOffset(
730 Vdbe *v, /* Generate code into this VM */
731 int iOffset, /* Register holding the offset counter */
732 int iContinue /* Jump here to skip the current record */
734 if( iOffset>0 ){
735 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
736 VdbeComment((v, "OFFSET"));
741 ** Add code that will check to make sure the N registers starting at iMem
742 ** form a distinct entry. iTab is a sorting index that holds previously
743 ** seen combinations of the N values. A new entry is made in iTab
744 ** if the current N values are new.
746 ** A jump to addrRepeat is made and the N+1 values are popped from the
747 ** stack if the top N elements are not distinct.
749 static void codeDistinct(
750 Parse *pParse, /* Parsing and code generating context */
751 int iTab, /* A sorting index used to test for distinctness */
752 int addrRepeat, /* Jump to here if not distinct */
753 int N, /* Number of elements */
754 int iMem /* First element */
756 Vdbe *v;
757 int r1;
759 v = pParse->pVdbe;
760 r1 = sqlite3GetTempReg(pParse);
761 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
762 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
763 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
764 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
765 sqlite3ReleaseTempReg(pParse, r1);
768 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
770 ** This function is called as part of inner-loop generation for a SELECT
771 ** statement with an ORDER BY that is not optimized by an index. It
772 ** determines the expressions, if any, that the sorter-reference
773 ** optimization should be used for. The sorter-reference optimization
774 ** is used for SELECT queries like:
776 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
778 ** If the optimization is used for expression "bigblob", then instead of
779 ** storing values read from that column in the sorter records, the PK of
780 ** the row from table t1 is stored instead. Then, as records are extracted from
781 ** the sorter to return to the user, the required value of bigblob is
782 ** retrieved directly from table t1. If the values are very large, this
783 ** can be more efficient than storing them directly in the sorter records.
785 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
786 ** for which the sorter-reference optimization should be enabled.
787 ** Additionally, the pSort->aDefer[] array is populated with entries
788 ** for all cursors required to evaluate all selected expressions. Finally.
789 ** output variable (*ppExtra) is set to an expression list containing
790 ** expressions for all extra PK values that should be stored in the
791 ** sorter records.
793 static void selectExprDefer(
794 Parse *pParse, /* Leave any error here */
795 SortCtx *pSort, /* Sorter context */
796 ExprList *pEList, /* Expressions destined for sorter */
797 ExprList **ppExtra /* Expressions to append to sorter record */
799 int i;
800 int nDefer = 0;
801 ExprList *pExtra = 0;
802 for(i=0; i<pEList->nExpr; i++){
803 struct ExprList_item *pItem = &pEList->a[i];
804 if( pItem->u.x.iOrderByCol==0 ){
805 Expr *pExpr = pItem->pExpr;
806 Table *pTab = pExpr->y.pTab;
807 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab)
808 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
810 int j;
811 for(j=0; j<nDefer; j++){
812 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
814 if( j==nDefer ){
815 if( nDefer==ArraySize(pSort->aDefer) ){
816 continue;
817 }else{
818 int nKey = 1;
819 int k;
820 Index *pPk = 0;
821 if( !HasRowid(pTab) ){
822 pPk = sqlite3PrimaryKeyIndex(pTab);
823 nKey = pPk->nKeyCol;
825 for(k=0; k<nKey; k++){
826 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
827 if( pNew ){
828 pNew->iTable = pExpr->iTable;
829 pNew->y.pTab = pExpr->y.pTab;
830 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
831 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
834 pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
835 pSort->aDefer[nDefer].iCsr = pExpr->iTable;
836 pSort->aDefer[nDefer].nKey = nKey;
837 nDefer++;
840 pItem->bSorterRef = 1;
844 pSort->nDefer = (u8)nDefer;
845 *ppExtra = pExtra;
847 #endif
850 ** This routine generates the code for the inside of the inner loop
851 ** of a SELECT.
853 ** If srcTab is negative, then the p->pEList expressions
854 ** are evaluated in order to get the data for this row. If srcTab is
855 ** zero or more, then data is pulled from srcTab and p->pEList is used only
856 ** to get the number of columns and the collation sequence for each column.
858 static void selectInnerLoop(
859 Parse *pParse, /* The parser context */
860 Select *p, /* The complete select statement being coded */
861 int srcTab, /* Pull data from this table if non-negative */
862 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */
863 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
864 SelectDest *pDest, /* How to dispose of the results */
865 int iContinue, /* Jump here to continue with next row */
866 int iBreak /* Jump here to break out of the inner loop */
868 Vdbe *v = pParse->pVdbe;
869 int i;
870 int hasDistinct; /* True if the DISTINCT keyword is present */
871 int eDest = pDest->eDest; /* How to dispose of results */
872 int iParm = pDest->iSDParm; /* First argument to disposal method */
873 int nResultCol; /* Number of result columns */
874 int nPrefixReg = 0; /* Number of extra registers before regResult */
875 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */
877 /* Usually, regResult is the first cell in an array of memory cells
878 ** containing the current result row. In this case regOrig is set to the
879 ** same value. However, if the results are being sent to the sorter, the
880 ** values for any expressions that are also part of the sort-key are omitted
881 ** from this array. In this case regOrig is set to zero. */
882 int regResult; /* Start of memory holding current results */
883 int regOrig; /* Start of memory holding full result (or 0) */
885 assert( v );
886 assert( p->pEList!=0 );
887 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
888 if( pSort && pSort->pOrderBy==0 ) pSort = 0;
889 if( pSort==0 && !hasDistinct ){
890 assert( iContinue!=0 );
891 codeOffset(v, p->iOffset, iContinue);
894 /* Pull the requested columns.
896 nResultCol = p->pEList->nExpr;
898 if( pDest->iSdst==0 ){
899 if( pSort ){
900 nPrefixReg = pSort->pOrderBy->nExpr;
901 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
902 pParse->nMem += nPrefixReg;
904 pDest->iSdst = pParse->nMem+1;
905 pParse->nMem += nResultCol;
906 }else if( pDest->iSdst+nResultCol > pParse->nMem ){
907 /* This is an error condition that can result, for example, when a SELECT
908 ** on the right-hand side of an INSERT contains more result columns than
909 ** there are columns in the table on the left. The error will be caught
910 ** and reported later. But we need to make sure enough memory is allocated
911 ** to avoid other spurious errors in the meantime. */
912 pParse->nMem += nResultCol;
914 pDest->nSdst = nResultCol;
915 regOrig = regResult = pDest->iSdst;
916 if( srcTab>=0 ){
917 for(i=0; i<nResultCol; i++){
918 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
919 VdbeComment((v, "%s", p->pEList->a[i].zName));
921 }else if( eDest!=SRT_Exists ){
922 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
923 ExprList *pExtra = 0;
924 #endif
925 /* If the destination is an EXISTS(...) expression, the actual
926 ** values returned by the SELECT are not required.
928 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */
929 ExprList *pEList;
930 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
931 ecelFlags = SQLITE_ECEL_DUP;
932 }else{
933 ecelFlags = 0;
935 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
936 /* For each expression in p->pEList that is a copy of an expression in
937 ** the ORDER BY clause (pSort->pOrderBy), set the associated
938 ** iOrderByCol value to one more than the index of the ORDER BY
939 ** expression within the sort-key that pushOntoSorter() will generate.
940 ** This allows the p->pEList field to be omitted from the sorted record,
941 ** saving space and CPU cycles. */
942 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
944 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
945 int j;
946 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
947 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
950 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
951 selectExprDefer(pParse, pSort, p->pEList, &pExtra);
952 if( pExtra && pParse->db->mallocFailed==0 ){
953 /* If there are any extra PK columns to add to the sorter records,
954 ** allocate extra memory cells and adjust the OpenEphemeral
955 ** instruction to account for the larger records. This is only
956 ** required if there are one or more WITHOUT ROWID tables with
957 ** composite primary keys in the SortCtx.aDefer[] array. */
958 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
959 pOp->p2 += (pExtra->nExpr - pSort->nDefer);
960 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
961 pParse->nMem += pExtra->nExpr;
963 #endif
965 /* Adjust nResultCol to account for columns that are omitted
966 ** from the sorter by the optimizations in this branch */
967 pEList = p->pEList;
968 for(i=0; i<pEList->nExpr; i++){
969 if( pEList->a[i].u.x.iOrderByCol>0
970 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
971 || pEList->a[i].bSorterRef
972 #endif
974 nResultCol--;
975 regOrig = 0;
979 testcase( regOrig );
980 testcase( eDest==SRT_Set );
981 testcase( eDest==SRT_Mem );
982 testcase( eDest==SRT_Coroutine );
983 testcase( eDest==SRT_Output );
984 assert( eDest==SRT_Set || eDest==SRT_Mem
985 || eDest==SRT_Coroutine || eDest==SRT_Output );
987 sRowLoadInfo.regResult = regResult;
988 sRowLoadInfo.ecelFlags = ecelFlags;
989 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
990 sRowLoadInfo.pExtra = pExtra;
991 sRowLoadInfo.regExtraResult = regResult + nResultCol;
992 if( pExtra ) nResultCol += pExtra->nExpr;
993 #endif
994 if( p->iLimit
995 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
996 && nPrefixReg>0
998 assert( pSort!=0 );
999 assert( hasDistinct==0 );
1000 pSort->pDeferredRowLoad = &sRowLoadInfo;
1001 regOrig = 0;
1002 }else{
1003 innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1007 /* If the DISTINCT keyword was present on the SELECT statement
1008 ** and this row has been seen before, then do not make this row
1009 ** part of the result.
1011 if( hasDistinct ){
1012 switch( pDistinct->eTnctType ){
1013 case WHERE_DISTINCT_ORDERED: {
1014 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */
1015 int iJump; /* Jump destination */
1016 int regPrev; /* Previous row content */
1018 /* Allocate space for the previous row */
1019 regPrev = pParse->nMem+1;
1020 pParse->nMem += nResultCol;
1022 /* Change the OP_OpenEphemeral coded earlier to an OP_Null
1023 ** sets the MEM_Cleared bit on the first register of the
1024 ** previous value. This will cause the OP_Ne below to always
1025 ** fail on the first iteration of the loop even if the first
1026 ** row is all NULLs.
1028 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1029 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
1030 pOp->opcode = OP_Null;
1031 pOp->p1 = 1;
1032 pOp->p2 = regPrev;
1034 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
1035 for(i=0; i<nResultCol; i++){
1036 CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr);
1037 if( i<nResultCol-1 ){
1038 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
1039 VdbeCoverage(v);
1040 }else{
1041 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
1042 VdbeCoverage(v);
1044 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
1045 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
1047 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
1048 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
1049 break;
1052 case WHERE_DISTINCT_UNIQUE: {
1053 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1054 break;
1057 default: {
1058 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
1059 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
1060 regResult);
1061 break;
1064 if( pSort==0 ){
1065 codeOffset(v, p->iOffset, iContinue);
1069 switch( eDest ){
1070 /* In this mode, write each query result to the key of the temporary
1071 ** table iParm.
1073 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1074 case SRT_Union: {
1075 int r1;
1076 r1 = sqlite3GetTempReg(pParse);
1077 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1078 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1079 sqlite3ReleaseTempReg(pParse, r1);
1080 break;
1083 /* Construct a record from the query result, but instead of
1084 ** saving that record, use it as a key to delete elements from
1085 ** the temporary table iParm.
1087 case SRT_Except: {
1088 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1089 break;
1091 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1093 /* Store the result as data using a unique key.
1095 case SRT_Fifo:
1096 case SRT_DistFifo:
1097 case SRT_Table:
1098 case SRT_EphemTab: {
1099 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1100 testcase( eDest==SRT_Table );
1101 testcase( eDest==SRT_EphemTab );
1102 testcase( eDest==SRT_Fifo );
1103 testcase( eDest==SRT_DistFifo );
1104 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1105 #ifndef SQLITE_OMIT_CTE
1106 if( eDest==SRT_DistFifo ){
1107 /* If the destination is DistFifo, then cursor (iParm+1) is open
1108 ** on an ephemeral index. If the current row is already present
1109 ** in the index, do not write it to the output. If not, add the
1110 ** current row to the index and proceed with writing it to the
1111 ** output table as well. */
1112 int addr = sqlite3VdbeCurrentAddr(v) + 4;
1113 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1114 VdbeCoverage(v);
1115 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1116 assert( pSort==0 );
1118 #endif
1119 if( pSort ){
1120 assert( regResult==regOrig );
1121 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1122 }else{
1123 int r2 = sqlite3GetTempReg(pParse);
1124 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1125 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1126 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1127 sqlite3ReleaseTempReg(pParse, r2);
1129 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1130 break;
1133 #ifndef SQLITE_OMIT_SUBQUERY
1134 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1135 ** then there should be a single item on the stack. Write this
1136 ** item into the set table with bogus data.
1138 case SRT_Set: {
1139 if( pSort ){
1140 /* At first glance you would think we could optimize out the
1141 ** ORDER BY in this case since the order of entries in the set
1142 ** does not matter. But there might be a LIMIT clause, in which
1143 ** case the order does matter */
1144 pushOntoSorter(
1145 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1146 }else{
1147 int r1 = sqlite3GetTempReg(pParse);
1148 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1149 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1150 r1, pDest->zAffSdst, nResultCol);
1151 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1152 sqlite3ReleaseTempReg(pParse, r1);
1154 break;
1157 /* If any row exist in the result set, record that fact and abort.
1159 case SRT_Exists: {
1160 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1161 /* The LIMIT clause will terminate the loop for us */
1162 break;
1165 /* If this is a scalar select that is part of an expression, then
1166 ** store the results in the appropriate memory cell or array of
1167 ** memory cells and break out of the scan loop.
1169 case SRT_Mem: {
1170 if( pSort ){
1171 assert( nResultCol<=pDest->nSdst );
1172 pushOntoSorter(
1173 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1174 }else{
1175 assert( nResultCol==pDest->nSdst );
1176 assert( regResult==iParm );
1177 /* The LIMIT clause will jump out of the loop for us */
1179 break;
1181 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1183 case SRT_Coroutine: /* Send data to a co-routine */
1184 case SRT_Output: { /* Return the results */
1185 testcase( eDest==SRT_Coroutine );
1186 testcase( eDest==SRT_Output );
1187 if( pSort ){
1188 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1189 nPrefixReg);
1190 }else if( eDest==SRT_Coroutine ){
1191 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1192 }else{
1193 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1195 break;
1198 #ifndef SQLITE_OMIT_CTE
1199 /* Write the results into a priority queue that is order according to
1200 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
1201 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first
1202 ** pSO->nExpr columns, then make sure all keys are unique by adding a
1203 ** final OP_Sequence column. The last column is the record as a blob.
1205 case SRT_DistQueue:
1206 case SRT_Queue: {
1207 int nKey;
1208 int r1, r2, r3;
1209 int addrTest = 0;
1210 ExprList *pSO;
1211 pSO = pDest->pOrderBy;
1212 assert( pSO );
1213 nKey = pSO->nExpr;
1214 r1 = sqlite3GetTempReg(pParse);
1215 r2 = sqlite3GetTempRange(pParse, nKey+2);
1216 r3 = r2+nKey+1;
1217 if( eDest==SRT_DistQueue ){
1218 /* If the destination is DistQueue, then cursor (iParm+1) is open
1219 ** on a second ephemeral index that holds all values every previously
1220 ** added to the queue. */
1221 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1222 regResult, nResultCol);
1223 VdbeCoverage(v);
1225 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1226 if( eDest==SRT_DistQueue ){
1227 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1228 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1230 for(i=0; i<nKey; i++){
1231 sqlite3VdbeAddOp2(v, OP_SCopy,
1232 regResult + pSO->a[i].u.x.iOrderByCol - 1,
1233 r2+i);
1235 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1236 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1237 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1238 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1239 sqlite3ReleaseTempReg(pParse, r1);
1240 sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1241 break;
1243 #endif /* SQLITE_OMIT_CTE */
1247 #if !defined(SQLITE_OMIT_TRIGGER)
1248 /* Discard the results. This is used for SELECT statements inside
1249 ** the body of a TRIGGER. The purpose of such selects is to call
1250 ** user-defined functions that have side effects. We do not care
1251 ** about the actual results of the select.
1253 default: {
1254 assert( eDest==SRT_Discard );
1255 break;
1257 #endif
1260 /* Jump to the end of the loop if the LIMIT is reached. Except, if
1261 ** there is a sorter, in which case the sorter has already limited
1262 ** the output for us.
1264 if( pSort==0 && p->iLimit ){
1265 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1270 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1271 ** X extra columns.
1273 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1274 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1275 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1276 if( p ){
1277 p->aSortOrder = (u8*)&p->aColl[N+X];
1278 p->nKeyField = (u16)N;
1279 p->nAllField = (u16)(N+X);
1280 p->enc = ENC(db);
1281 p->db = db;
1282 p->nRef = 1;
1283 memset(&p[1], 0, nExtra);
1284 }else{
1285 sqlite3OomFault(db);
1287 return p;
1291 ** Deallocate a KeyInfo object
1293 void sqlite3KeyInfoUnref(KeyInfo *p){
1294 if( p ){
1295 assert( p->nRef>0 );
1296 p->nRef--;
1297 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1302 ** Make a new pointer to a KeyInfo object
1304 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1305 if( p ){
1306 assert( p->nRef>0 );
1307 p->nRef++;
1309 return p;
1312 #ifdef SQLITE_DEBUG
1314 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object
1315 ** can only be changed if this is just a single reference to the object.
1317 ** This routine is used only inside of assert() statements.
1319 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1320 #endif /* SQLITE_DEBUG */
1323 ** Given an expression list, generate a KeyInfo structure that records
1324 ** the collating sequence for each expression in that expression list.
1326 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1327 ** KeyInfo structure is appropriate for initializing a virtual index to
1328 ** implement that clause. If the ExprList is the result set of a SELECT
1329 ** then the KeyInfo structure is appropriate for initializing a virtual
1330 ** index to implement a DISTINCT test.
1332 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1333 ** function is responsible for seeing that this structure is eventually
1334 ** freed.
1336 KeyInfo *sqlite3KeyInfoFromExprList(
1337 Parse *pParse, /* Parsing context */
1338 ExprList *pList, /* Form the KeyInfo object from this ExprList */
1339 int iStart, /* Begin with this column of pList */
1340 int nExtra /* Add this many extra columns to the end */
1342 int nExpr;
1343 KeyInfo *pInfo;
1344 struct ExprList_item *pItem;
1345 sqlite3 *db = pParse->db;
1346 int i;
1348 nExpr = pList->nExpr;
1349 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1350 if( pInfo ){
1351 assert( sqlite3KeyInfoIsWriteable(pInfo) );
1352 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1353 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1354 pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1357 return pInfo;
1361 ** Name of the connection operator, used for error messages.
1363 static const char *selectOpName(int id){
1364 char *z;
1365 switch( id ){
1366 case TK_ALL: z = "UNION ALL"; break;
1367 case TK_INTERSECT: z = "INTERSECT"; break;
1368 case TK_EXCEPT: z = "EXCEPT"; break;
1369 default: z = "UNION"; break;
1371 return z;
1374 #ifndef SQLITE_OMIT_EXPLAIN
1376 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1377 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1378 ** where the caption is of the form:
1380 ** "USE TEMP B-TREE FOR xxx"
1382 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1383 ** is determined by the zUsage argument.
1385 static void explainTempTable(Parse *pParse, const char *zUsage){
1386 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1390 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1391 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1392 ** in sqlite3Select() to assign values to structure member variables that
1393 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1394 ** code with #ifndef directives.
1396 # define explainSetInteger(a, b) a = b
1398 #else
1399 /* No-op versions of the explainXXX() functions and macros. */
1400 # define explainTempTable(y,z)
1401 # define explainSetInteger(y,z)
1402 #endif
1406 ** If the inner loop was generated using a non-null pOrderBy argument,
1407 ** then the results were placed in a sorter. After the loop is terminated
1408 ** we need to run the sorter and output the results. The following
1409 ** routine generates the code needed to do that.
1411 static void generateSortTail(
1412 Parse *pParse, /* Parsing context */
1413 Select *p, /* The SELECT statement */
1414 SortCtx *pSort, /* Information on the ORDER BY clause */
1415 int nColumn, /* Number of columns of data */
1416 SelectDest *pDest /* Write the sorted results here */
1418 Vdbe *v = pParse->pVdbe; /* The prepared statement */
1419 int addrBreak = pSort->labelDone; /* Jump here to exit loop */
1420 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
1421 int addr; /* Top of output loop. Jump for Next. */
1422 int addrOnce = 0;
1423 int iTab;
1424 ExprList *pOrderBy = pSort->pOrderBy;
1425 int eDest = pDest->eDest;
1426 int iParm = pDest->iSDParm;
1427 int regRow;
1428 int regRowid;
1429 int iCol;
1430 int nKey; /* Number of key columns in sorter record */
1431 int iSortTab; /* Sorter cursor to read from */
1432 int i;
1433 int bSeq; /* True if sorter record includes seq. no. */
1434 int nRefKey = 0;
1435 struct ExprList_item *aOutEx = p->pEList->a;
1437 assert( addrBreak<0 );
1438 if( pSort->labelBkOut ){
1439 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1440 sqlite3VdbeGoto(v, addrBreak);
1441 sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1444 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1445 /* Open any cursors needed for sorter-reference expressions */
1446 for(i=0; i<pSort->nDefer; i++){
1447 Table *pTab = pSort->aDefer[i].pTab;
1448 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1449 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1450 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1452 #endif
1454 iTab = pSort->iECursor;
1455 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1456 regRowid = 0;
1457 regRow = pDest->iSdst;
1458 }else{
1459 regRowid = sqlite3GetTempReg(pParse);
1460 if( eDest==SRT_EphemTab || eDest==SRT_Table ){
1461 regRow = sqlite3GetTempReg(pParse);
1462 nColumn = 0;
1463 }else{
1464 regRow = sqlite3GetTempRange(pParse, nColumn);
1467 nKey = pOrderBy->nExpr - pSort->nOBSat;
1468 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1469 int regSortOut = ++pParse->nMem;
1470 iSortTab = pParse->nTab++;
1471 if( pSort->labelBkOut ){
1472 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1474 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1475 nKey+1+nColumn+nRefKey);
1476 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1477 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1478 VdbeCoverage(v);
1479 codeOffset(v, p->iOffset, addrContinue);
1480 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1481 bSeq = 0;
1482 }else{
1483 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1484 codeOffset(v, p->iOffset, addrContinue);
1485 iSortTab = iTab;
1486 bSeq = 1;
1488 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1489 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1490 if( aOutEx[i].bSorterRef ) continue;
1491 #endif
1492 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1494 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1495 if( pSort->nDefer ){
1496 int iKey = iCol+1;
1497 int regKey = sqlite3GetTempRange(pParse, nRefKey);
1499 for(i=0; i<pSort->nDefer; i++){
1500 int iCsr = pSort->aDefer[i].iCsr;
1501 Table *pTab = pSort->aDefer[i].pTab;
1502 int nKey = pSort->aDefer[i].nKey;
1504 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1505 if( HasRowid(pTab) ){
1506 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1507 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1508 sqlite3VdbeCurrentAddr(v)+1, regKey);
1509 }else{
1510 int k;
1511 int iJmp;
1512 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1513 for(k=0; k<nKey; k++){
1514 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1516 iJmp = sqlite3VdbeCurrentAddr(v);
1517 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1518 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1519 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1522 sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1524 #endif
1525 for(i=nColumn-1; i>=0; i--){
1526 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1527 if( aOutEx[i].bSorterRef ){
1528 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1529 }else
1530 #endif
1532 int iRead;
1533 if( aOutEx[i].u.x.iOrderByCol ){
1534 iRead = aOutEx[i].u.x.iOrderByCol-1;
1535 }else{
1536 iRead = iCol--;
1538 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1539 VdbeComment((v, "%s", aOutEx[i].zName?aOutEx[i].zName : aOutEx[i].zSpan));
1542 switch( eDest ){
1543 case SRT_Table:
1544 case SRT_EphemTab: {
1545 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
1546 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1547 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1548 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1549 break;
1551 #ifndef SQLITE_OMIT_SUBQUERY
1552 case SRT_Set: {
1553 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1554 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1555 pDest->zAffSdst, nColumn);
1556 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1557 break;
1559 case SRT_Mem: {
1560 /* The LIMIT clause will terminate the loop for us */
1561 break;
1563 #endif
1564 default: {
1565 assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1566 testcase( eDest==SRT_Output );
1567 testcase( eDest==SRT_Coroutine );
1568 if( eDest==SRT_Output ){
1569 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1570 }else{
1571 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1573 break;
1576 if( regRowid ){
1577 if( eDest==SRT_Set ){
1578 sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1579 }else{
1580 sqlite3ReleaseTempReg(pParse, regRow);
1582 sqlite3ReleaseTempReg(pParse, regRowid);
1584 /* The bottom of the loop
1586 sqlite3VdbeResolveLabel(v, addrContinue);
1587 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1588 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1589 }else{
1590 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1592 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1593 sqlite3VdbeResolveLabel(v, addrBreak);
1597 ** Return a pointer to a string containing the 'declaration type' of the
1598 ** expression pExpr. The string may be treated as static by the caller.
1600 ** Also try to estimate the size of the returned value and return that
1601 ** result in *pEstWidth.
1603 ** The declaration type is the exact datatype definition extracted from the
1604 ** original CREATE TABLE statement if the expression is a column. The
1605 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1606 ** is considered a column can be complex in the presence of subqueries. The
1607 ** result-set expression in all of the following SELECT statements is
1608 ** considered a column by this function.
1610 ** SELECT col FROM tbl;
1611 ** SELECT (SELECT col FROM tbl;
1612 ** SELECT (SELECT col FROM tbl);
1613 ** SELECT abc FROM (SELECT col AS abc FROM tbl);
1615 ** The declaration type for any expression other than a column is NULL.
1617 ** This routine has either 3 or 6 parameters depending on whether or not
1618 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1620 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1621 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1622 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1623 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1624 #endif
1625 static const char *columnTypeImpl(
1626 NameContext *pNC,
1627 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1628 Expr *pExpr
1629 #else
1630 Expr *pExpr,
1631 const char **pzOrigDb,
1632 const char **pzOrigTab,
1633 const char **pzOrigCol
1634 #endif
1636 char const *zType = 0;
1637 int j;
1638 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1639 char const *zOrigDb = 0;
1640 char const *zOrigTab = 0;
1641 char const *zOrigCol = 0;
1642 #endif
1644 assert( pExpr!=0 );
1645 assert( pNC->pSrcList!=0 );
1646 assert( pExpr->op!=TK_AGG_COLUMN ); /* This routine runes before aggregates
1647 ** are processed */
1648 switch( pExpr->op ){
1649 case TK_COLUMN: {
1650 /* The expression is a column. Locate the table the column is being
1651 ** extracted from in NameContext.pSrcList. This table may be real
1652 ** database table or a subquery.
1654 Table *pTab = 0; /* Table structure column is extracted from */
1655 Select *pS = 0; /* Select the column is extracted from */
1656 int iCol = pExpr->iColumn; /* Index of column in pTab */
1657 while( pNC && !pTab ){
1658 SrcList *pTabList = pNC->pSrcList;
1659 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1660 if( j<pTabList->nSrc ){
1661 pTab = pTabList->a[j].pTab;
1662 pS = pTabList->a[j].pSelect;
1663 }else{
1664 pNC = pNC->pNext;
1668 if( pTab==0 ){
1669 /* At one time, code such as "SELECT new.x" within a trigger would
1670 ** cause this condition to run. Since then, we have restructured how
1671 ** trigger code is generated and so this condition is no longer
1672 ** possible. However, it can still be true for statements like
1673 ** the following:
1675 ** CREATE TABLE t1(col INTEGER);
1676 ** SELECT (SELECT t1.col) FROM FROM t1;
1678 ** when columnType() is called on the expression "t1.col" in the
1679 ** sub-select. In this case, set the column type to NULL, even
1680 ** though it should really be "INTEGER".
1682 ** This is not a problem, as the column type of "t1.col" is never
1683 ** used. When columnType() is called on the expression
1684 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1685 ** branch below. */
1686 break;
1689 assert( pTab && pExpr->y.pTab==pTab );
1690 if( pS ){
1691 /* The "table" is actually a sub-select or a view in the FROM clause
1692 ** of the SELECT statement. Return the declaration type and origin
1693 ** data for the result-set column of the sub-select.
1695 if( iCol>=0 && iCol<pS->pEList->nExpr ){
1696 /* If iCol is less than zero, then the expression requests the
1697 ** rowid of the sub-select or view. This expression is legal (see
1698 ** test case misc2.2.2) - it always evaluates to NULL.
1700 NameContext sNC;
1701 Expr *p = pS->pEList->a[iCol].pExpr;
1702 sNC.pSrcList = pS->pSrc;
1703 sNC.pNext = pNC;
1704 sNC.pParse = pNC->pParse;
1705 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1707 }else{
1708 /* A real table or a CTE table */
1709 assert( !pS );
1710 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1711 if( iCol<0 ) iCol = pTab->iPKey;
1712 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1713 if( iCol<0 ){
1714 zType = "INTEGER";
1715 zOrigCol = "rowid";
1716 }else{
1717 zOrigCol = pTab->aCol[iCol].zName;
1718 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1720 zOrigTab = pTab->zName;
1721 if( pNC->pParse && pTab->pSchema ){
1722 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1723 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1725 #else
1726 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1727 if( iCol<0 ){
1728 zType = "INTEGER";
1729 }else{
1730 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1732 #endif
1734 break;
1736 #ifndef SQLITE_OMIT_SUBQUERY
1737 case TK_SELECT: {
1738 /* The expression is a sub-select. Return the declaration type and
1739 ** origin info for the single column in the result set of the SELECT
1740 ** statement.
1742 NameContext sNC;
1743 Select *pS = pExpr->x.pSelect;
1744 Expr *p = pS->pEList->a[0].pExpr;
1745 assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1746 sNC.pSrcList = pS->pSrc;
1747 sNC.pNext = pNC;
1748 sNC.pParse = pNC->pParse;
1749 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1750 break;
1752 #endif
1755 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1756 if( pzOrigDb ){
1757 assert( pzOrigTab && pzOrigCol );
1758 *pzOrigDb = zOrigDb;
1759 *pzOrigTab = zOrigTab;
1760 *pzOrigCol = zOrigCol;
1762 #endif
1763 return zType;
1767 ** Generate code that will tell the VDBE the declaration types of columns
1768 ** in the result set.
1770 static void generateColumnTypes(
1771 Parse *pParse, /* Parser context */
1772 SrcList *pTabList, /* List of tables */
1773 ExprList *pEList /* Expressions defining the result set */
1775 #ifndef SQLITE_OMIT_DECLTYPE
1776 Vdbe *v = pParse->pVdbe;
1777 int i;
1778 NameContext sNC;
1779 sNC.pSrcList = pTabList;
1780 sNC.pParse = pParse;
1781 sNC.pNext = 0;
1782 for(i=0; i<pEList->nExpr; i++){
1783 Expr *p = pEList->a[i].pExpr;
1784 const char *zType;
1785 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1786 const char *zOrigDb = 0;
1787 const char *zOrigTab = 0;
1788 const char *zOrigCol = 0;
1789 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1791 /* The vdbe must make its own copy of the column-type and other
1792 ** column specific strings, in case the schema is reset before this
1793 ** virtual machine is deleted.
1795 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1796 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1797 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1798 #else
1799 zType = columnType(&sNC, p, 0, 0, 0);
1800 #endif
1801 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1803 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1808 ** Compute the column names for a SELECT statement.
1810 ** The only guarantee that SQLite makes about column names is that if the
1811 ** column has an AS clause assigning it a name, that will be the name used.
1812 ** That is the only documented guarantee. However, countless applications
1813 ** developed over the years have made baseless assumptions about column names
1814 ** and will break if those assumptions changes. Hence, use extreme caution
1815 ** when modifying this routine to avoid breaking legacy.
1817 ** See Also: sqlite3ColumnsFromExprList()
1819 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1820 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all
1821 ** applications should operate this way. Nevertheless, we need to support the
1822 ** other modes for legacy:
1824 ** short=OFF, full=OFF: Column name is the text of the expression has it
1825 ** originally appears in the SELECT statement. In
1826 ** other words, the zSpan of the result expression.
1828 ** short=ON, full=OFF: (This is the default setting). If the result
1829 ** refers directly to a table column, then the
1830 ** result column name is just the table column
1831 ** name: COLUMN. Otherwise use zSpan.
1833 ** full=ON, short=ANY: If the result refers directly to a table column,
1834 ** then the result column name with the table name
1835 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan.
1837 static void generateColumnNames(
1838 Parse *pParse, /* Parser context */
1839 Select *pSelect /* Generate column names for this SELECT statement */
1841 Vdbe *v = pParse->pVdbe;
1842 int i;
1843 Table *pTab;
1844 SrcList *pTabList;
1845 ExprList *pEList;
1846 sqlite3 *db = pParse->db;
1847 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */
1848 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1850 #ifndef SQLITE_OMIT_EXPLAIN
1851 /* If this is an EXPLAIN, skip this step */
1852 if( pParse->explain ){
1853 return;
1855 #endif
1857 if( pParse->colNamesSet ) return;
1858 /* Column names are determined by the left-most term of a compound select */
1859 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1860 SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
1861 pTabList = pSelect->pSrc;
1862 pEList = pSelect->pEList;
1863 assert( v!=0 );
1864 assert( pTabList!=0 );
1865 pParse->colNamesSet = 1;
1866 fullName = (db->flags & SQLITE_FullColNames)!=0;
1867 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1868 sqlite3VdbeSetNumCols(v, pEList->nExpr);
1869 for(i=0; i<pEList->nExpr; i++){
1870 Expr *p = pEList->a[i].pExpr;
1872 assert( p!=0 );
1873 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */
1874 assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */
1875 if( pEList->a[i].zName ){
1876 /* An AS clause always takes first priority */
1877 char *zName = pEList->a[i].zName;
1878 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1879 }else if( srcName && p->op==TK_COLUMN ){
1880 char *zCol;
1881 int iCol = p->iColumn;
1882 pTab = p->y.pTab;
1883 assert( pTab!=0 );
1884 if( iCol<0 ) iCol = pTab->iPKey;
1885 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1886 if( iCol<0 ){
1887 zCol = "rowid";
1888 }else{
1889 zCol = pTab->aCol[iCol].zName;
1891 if( fullName ){
1892 char *zName = 0;
1893 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1894 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1895 }else{
1896 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1898 }else{
1899 const char *z = pEList->a[i].zSpan;
1900 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1901 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1904 generateColumnTypes(pParse, pTabList, pEList);
1908 ** Given an expression list (which is really the list of expressions
1909 ** that form the result set of a SELECT statement) compute appropriate
1910 ** column names for a table that would hold the expression list.
1912 ** All column names will be unique.
1914 ** Only the column names are computed. Column.zType, Column.zColl,
1915 ** and other fields of Column are zeroed.
1917 ** Return SQLITE_OK on success. If a memory allocation error occurs,
1918 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1920 ** The only guarantee that SQLite makes about column names is that if the
1921 ** column has an AS clause assigning it a name, that will be the name used.
1922 ** That is the only documented guarantee. However, countless applications
1923 ** developed over the years have made baseless assumptions about column names
1924 ** and will break if those assumptions changes. Hence, use extreme caution
1925 ** when modifying this routine to avoid breaking legacy.
1927 ** See Also: generateColumnNames()
1929 int sqlite3ColumnsFromExprList(
1930 Parse *pParse, /* Parsing context */
1931 ExprList *pEList, /* Expr list from which to derive column names */
1932 i16 *pnCol, /* Write the number of columns here */
1933 Column **paCol /* Write the new column list here */
1935 sqlite3 *db = pParse->db; /* Database connection */
1936 int i, j; /* Loop counters */
1937 u32 cnt; /* Index added to make the name unique */
1938 Column *aCol, *pCol; /* For looping over result columns */
1939 int nCol; /* Number of columns in the result set */
1940 char *zName; /* Column name */
1941 int nName; /* Size of name in zName[] */
1942 Hash ht; /* Hash table of column names */
1944 sqlite3HashInit(&ht);
1945 if( pEList ){
1946 nCol = pEList->nExpr;
1947 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1948 testcase( aCol==0 );
1949 if( nCol>32767 ) nCol = 32767;
1950 }else{
1951 nCol = 0;
1952 aCol = 0;
1954 assert( nCol==(i16)nCol );
1955 *pnCol = nCol;
1956 *paCol = aCol;
1958 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1959 /* Get an appropriate name for the column
1961 if( (zName = pEList->a[i].zName)!=0 ){
1962 /* If the column contains an "AS <name>" phrase, use <name> as the name */
1963 }else{
1964 Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1965 while( pColExpr->op==TK_DOT ){
1966 pColExpr = pColExpr->pRight;
1967 assert( pColExpr!=0 );
1969 assert( pColExpr->op!=TK_AGG_COLUMN );
1970 if( pColExpr->op==TK_COLUMN ){
1971 /* For columns use the column name name */
1972 int iCol = pColExpr->iColumn;
1973 Table *pTab = pColExpr->y.pTab;
1974 assert( pTab!=0 );
1975 if( iCol<0 ) iCol = pTab->iPKey;
1976 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1977 }else if( pColExpr->op==TK_ID ){
1978 assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1979 zName = pColExpr->u.zToken;
1980 }else{
1981 /* Use the original text of the column expression as its name */
1982 zName = pEList->a[i].zSpan;
1985 if( zName ){
1986 zName = sqlite3DbStrDup(db, zName);
1987 }else{
1988 zName = sqlite3MPrintf(db,"column%d",i+1);
1991 /* Make sure the column name is unique. If the name is not unique,
1992 ** append an integer to the name so that it becomes unique.
1994 cnt = 0;
1995 while( zName && sqlite3HashFind(&ht, zName)!=0 ){
1996 nName = sqlite3Strlen30(zName);
1997 if( nName>0 ){
1998 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
1999 if( zName[j]==':' ) nName = j;
2001 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2002 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2004 pCol->zName = zName;
2005 sqlite3ColumnPropertiesFromName(0, pCol);
2006 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
2007 sqlite3OomFault(db);
2010 sqlite3HashClear(&ht);
2011 if( db->mallocFailed ){
2012 for(j=0; j<i; j++){
2013 sqlite3DbFree(db, aCol[j].zName);
2015 sqlite3DbFree(db, aCol);
2016 *paCol = 0;
2017 *pnCol = 0;
2018 return SQLITE_NOMEM_BKPT;
2020 return SQLITE_OK;
2024 ** Add type and collation information to a column list based on
2025 ** a SELECT statement.
2027 ** The column list presumably came from selectColumnNamesFromExprList().
2028 ** The column list has only names, not types or collations. This
2029 ** routine goes through and adds the types and collations.
2031 ** This routine requires that all identifiers in the SELECT
2032 ** statement be resolved.
2034 void sqlite3SelectAddColumnTypeAndCollation(
2035 Parse *pParse, /* Parsing contexts */
2036 Table *pTab, /* Add column type information to this table */
2037 Select *pSelect /* SELECT used to determine types and collations */
2039 sqlite3 *db = pParse->db;
2040 NameContext sNC;
2041 Column *pCol;
2042 CollSeq *pColl;
2043 int i;
2044 Expr *p;
2045 struct ExprList_item *a;
2047 assert( pSelect!=0 );
2048 assert( (pSelect->selFlags & SF_Resolved)!=0 );
2049 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2050 if( db->mallocFailed ) return;
2051 memset(&sNC, 0, sizeof(sNC));
2052 sNC.pSrcList = pSelect->pSrc;
2053 a = pSelect->pEList->a;
2054 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2055 const char *zType;
2056 int n, m;
2057 p = a[i].pExpr;
2058 zType = columnType(&sNC, p, 0, 0, 0);
2059 /* pCol->szEst = ... // Column size est for SELECT tables never used */
2060 pCol->affinity = sqlite3ExprAffinity(p);
2061 if( zType ){
2062 m = sqlite3Strlen30(zType);
2063 n = sqlite3Strlen30(pCol->zName);
2064 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
2065 if( pCol->zName ){
2066 memcpy(&pCol->zName[n+1], zType, m+1);
2067 pCol->colFlags |= COLFLAG_HASTYPE;
2070 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB;
2071 pColl = sqlite3ExprCollSeq(pParse, p);
2072 if( pColl && pCol->zColl==0 ){
2073 pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
2076 pTab->szTabRow = 1; /* Any non-zero value works */
2080 ** Given a SELECT statement, generate a Table structure that describes
2081 ** the result set of that SELECT.
2083 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
2084 Table *pTab;
2085 sqlite3 *db = pParse->db;
2086 u64 savedFlags;
2088 savedFlags = db->flags;
2089 db->flags &= ~(u64)SQLITE_FullColNames;
2090 db->flags |= SQLITE_ShortColNames;
2091 sqlite3SelectPrep(pParse, pSelect, 0);
2092 db->flags = savedFlags;
2093 if( pParse->nErr ) return 0;
2094 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2095 pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2096 if( pTab==0 ){
2097 return 0;
2099 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
2100 ** is disabled */
2101 assert( db->lookaside.bDisable );
2102 pTab->nTabRef = 1;
2103 pTab->zName = 0;
2104 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2105 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2106 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect);
2107 pTab->iPKey = -1;
2108 if( db->mallocFailed ){
2109 sqlite3DeleteTable(db, pTab);
2110 return 0;
2112 return pTab;
2116 ** Get a VDBE for the given parser context. Create a new one if necessary.
2117 ** If an error occurs, return NULL and leave a message in pParse.
2119 Vdbe *sqlite3GetVdbe(Parse *pParse){
2120 if( pParse->pVdbe ){
2121 return pParse->pVdbe;
2123 if( pParse->pToplevel==0
2124 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2126 pParse->okConstFactor = 1;
2128 return sqlite3VdbeCreate(pParse);
2133 ** Compute the iLimit and iOffset fields of the SELECT based on the
2134 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions
2135 ** that appear in the original SQL statement after the LIMIT and OFFSET
2136 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
2137 ** are the integer memory register numbers for counters used to compute
2138 ** the limit and offset. If there is no limit and/or offset, then
2139 ** iLimit and iOffset are negative.
2141 ** This routine changes the values of iLimit and iOffset only if
2142 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit
2143 ** and iOffset should have been preset to appropriate default values (zero)
2144 ** prior to calling this routine.
2146 ** The iOffset register (if it exists) is initialized to the value
2147 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register
2148 ** iOffset+1 is initialized to LIMIT+OFFSET.
2150 ** Only if pLimit->pLeft!=0 do the limit registers get
2151 ** redefined. The UNION ALL operator uses this property to force
2152 ** the reuse of the same limit and offset registers across multiple
2153 ** SELECT statements.
2155 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2156 Vdbe *v = 0;
2157 int iLimit = 0;
2158 int iOffset;
2159 int n;
2160 Expr *pLimit = p->pLimit;
2162 if( p->iLimit ) return;
2165 ** "LIMIT -1" always shows all rows. There is some
2166 ** controversy about what the correct behavior should be.
2167 ** The current implementation interprets "LIMIT 0" to mean
2168 ** no rows.
2170 if( pLimit ){
2171 assert( pLimit->op==TK_LIMIT );
2172 assert( pLimit->pLeft!=0 );
2173 p->iLimit = iLimit = ++pParse->nMem;
2174 v = sqlite3GetVdbe(pParse);
2175 assert( v!=0 );
2176 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2177 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2178 VdbeComment((v, "LIMIT counter"));
2179 if( n==0 ){
2180 sqlite3VdbeGoto(v, iBreak);
2181 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2182 p->nSelectRow = sqlite3LogEst((u64)n);
2183 p->selFlags |= SF_FixedLimit;
2185 }else{
2186 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2187 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2188 VdbeComment((v, "LIMIT counter"));
2189 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2191 if( pLimit->pRight ){
2192 p->iOffset = iOffset = ++pParse->nMem;
2193 pParse->nMem++; /* Allocate an extra register for limit+offset */
2194 sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2195 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2196 VdbeComment((v, "OFFSET counter"));
2197 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2198 VdbeComment((v, "LIMIT+OFFSET"));
2203 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2205 ** Return the appropriate collating sequence for the iCol-th column of
2206 ** the result set for the compound-select statement "p". Return NULL if
2207 ** the column has no default collating sequence.
2209 ** The collating sequence for the compound select is taken from the
2210 ** left-most term of the select that has a collating sequence.
2212 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2213 CollSeq *pRet;
2214 if( p->pPrior ){
2215 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2216 }else{
2217 pRet = 0;
2219 assert( iCol>=0 );
2220 /* iCol must be less than p->pEList->nExpr. Otherwise an error would
2221 ** have been thrown during name resolution and we would not have gotten
2222 ** this far */
2223 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2224 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2226 return pRet;
2230 ** The select statement passed as the second parameter is a compound SELECT
2231 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2232 ** structure suitable for implementing the ORDER BY.
2234 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2235 ** function is responsible for ensuring that this structure is eventually
2236 ** freed.
2238 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2239 ExprList *pOrderBy = p->pOrderBy;
2240 int nOrderBy = p->pOrderBy->nExpr;
2241 sqlite3 *db = pParse->db;
2242 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2243 if( pRet ){
2244 int i;
2245 for(i=0; i<nOrderBy; i++){
2246 struct ExprList_item *pItem = &pOrderBy->a[i];
2247 Expr *pTerm = pItem->pExpr;
2248 CollSeq *pColl;
2250 if( pTerm->flags & EP_Collate ){
2251 pColl = sqlite3ExprCollSeq(pParse, pTerm);
2252 }else{
2253 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2254 if( pColl==0 ) pColl = db->pDfltColl;
2255 pOrderBy->a[i].pExpr =
2256 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2258 assert( sqlite3KeyInfoIsWriteable(pRet) );
2259 pRet->aColl[i] = pColl;
2260 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2264 return pRet;
2267 #ifndef SQLITE_OMIT_CTE
2269 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2270 ** query of the form:
2272 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2273 ** \___________/ \_______________/
2274 ** p->pPrior p
2277 ** There is exactly one reference to the recursive-table in the FROM clause
2278 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2280 ** The setup-query runs once to generate an initial set of rows that go
2281 ** into a Queue table. Rows are extracted from the Queue table one by
2282 ** one. Each row extracted from Queue is output to pDest. Then the single
2283 ** extracted row (now in the iCurrent table) becomes the content of the
2284 ** recursive-table for a recursive-query run. The output of the recursive-query
2285 ** is added back into the Queue table. Then another row is extracted from Queue
2286 ** and the iteration continues until the Queue table is empty.
2288 ** If the compound query operator is UNION then no duplicate rows are ever
2289 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows
2290 ** that have ever been inserted into Queue and causes duplicates to be
2291 ** discarded. If the operator is UNION ALL, then duplicates are allowed.
2293 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2294 ** ORDER BY order and the first entry is extracted for each cycle. Without
2295 ** an ORDER BY, the Queue table is just a FIFO.
2297 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2298 ** have been output to pDest. A LIMIT of zero means to output no rows and a
2299 ** negative LIMIT means to output all rows. If there is also an OFFSET clause
2300 ** with a positive value, then the first OFFSET outputs are discarded rather
2301 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET
2302 ** rows have been skipped.
2304 static void generateWithRecursiveQuery(
2305 Parse *pParse, /* Parsing context */
2306 Select *p, /* The recursive SELECT to be coded */
2307 SelectDest *pDest /* What to do with query results */
2309 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */
2310 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */
2311 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */
2312 Select *pSetup = p->pPrior; /* The setup query */
2313 int addrTop; /* Top of the loop */
2314 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */
2315 int iCurrent = 0; /* The Current table */
2316 int regCurrent; /* Register holding Current table */
2317 int iQueue; /* The Queue table */
2318 int iDistinct = 0; /* To ensure unique results if UNION */
2319 int eDest = SRT_Fifo; /* How to write to Queue */
2320 SelectDest destQueue; /* SelectDest targetting the Queue table */
2321 int i; /* Loop counter */
2322 int rc; /* Result code */
2323 ExprList *pOrderBy; /* The ORDER BY clause */
2324 Expr *pLimit; /* Saved LIMIT and OFFSET */
2325 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */
2327 #ifndef SQLITE_OMIT_WINDOWFUNC
2328 if( p->pWin ){
2329 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2330 return;
2332 #endif
2334 /* Obtain authorization to do a recursive query */
2335 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2337 /* Process the LIMIT and OFFSET clauses, if they exist */
2338 addrBreak = sqlite3VdbeMakeLabel(pParse);
2339 p->nSelectRow = 320; /* 4 billion rows */
2340 computeLimitRegisters(pParse, p, addrBreak);
2341 pLimit = p->pLimit;
2342 regLimit = p->iLimit;
2343 regOffset = p->iOffset;
2344 p->pLimit = 0;
2345 p->iLimit = p->iOffset = 0;
2346 pOrderBy = p->pOrderBy;
2348 /* Locate the cursor number of the Current table */
2349 for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2350 if( pSrc->a[i].fg.isRecursive ){
2351 iCurrent = pSrc->a[i].iCursor;
2352 break;
2356 /* Allocate cursors numbers for Queue and Distinct. The cursor number for
2357 ** the Distinct table must be exactly one greater than Queue in order
2358 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2359 iQueue = pParse->nTab++;
2360 if( p->op==TK_UNION ){
2361 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2362 iDistinct = pParse->nTab++;
2363 }else{
2364 eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2366 sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2368 /* Allocate cursors for Current, Queue, and Distinct. */
2369 regCurrent = ++pParse->nMem;
2370 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2371 if( pOrderBy ){
2372 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2373 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2374 (char*)pKeyInfo, P4_KEYINFO);
2375 destQueue.pOrderBy = pOrderBy;
2376 }else{
2377 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2379 VdbeComment((v, "Queue table"));
2380 if( iDistinct ){
2381 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2382 p->selFlags |= SF_UsesEphemeral;
2385 /* Detach the ORDER BY clause from the compound SELECT */
2386 p->pOrderBy = 0;
2388 /* Store the results of the setup-query in Queue. */
2389 pSetup->pNext = 0;
2390 ExplainQueryPlan((pParse, 1, "SETUP"));
2391 rc = sqlite3Select(pParse, pSetup, &destQueue);
2392 pSetup->pNext = p;
2393 if( rc ) goto end_of_recursive_query;
2395 /* Find the next row in the Queue and output that row */
2396 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2398 /* Transfer the next row in Queue over to Current */
2399 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2400 if( pOrderBy ){
2401 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2402 }else{
2403 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2405 sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2407 /* Output the single row in Current */
2408 addrCont = sqlite3VdbeMakeLabel(pParse);
2409 codeOffset(v, regOffset, addrCont);
2410 selectInnerLoop(pParse, p, iCurrent,
2411 0, 0, pDest, addrCont, addrBreak);
2412 if( regLimit ){
2413 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2414 VdbeCoverage(v);
2416 sqlite3VdbeResolveLabel(v, addrCont);
2418 /* Execute the recursive SELECT taking the single row in Current as
2419 ** the value for the recursive-table. Store the results in the Queue.
2421 if( p->selFlags & SF_Aggregate ){
2422 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2423 }else{
2424 p->pPrior = 0;
2425 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2426 sqlite3Select(pParse, p, &destQueue);
2427 assert( p->pPrior==0 );
2428 p->pPrior = pSetup;
2431 /* Keep running the loop until the Queue is empty */
2432 sqlite3VdbeGoto(v, addrTop);
2433 sqlite3VdbeResolveLabel(v, addrBreak);
2435 end_of_recursive_query:
2436 sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2437 p->pOrderBy = pOrderBy;
2438 p->pLimit = pLimit;
2439 return;
2441 #endif /* SQLITE_OMIT_CTE */
2443 /* Forward references */
2444 static int multiSelectOrderBy(
2445 Parse *pParse, /* Parsing context */
2446 Select *p, /* The right-most of SELECTs to be coded */
2447 SelectDest *pDest /* What to do with query results */
2451 ** Handle the special case of a compound-select that originates from a
2452 ** VALUES clause. By handling this as a special case, we avoid deep
2453 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2454 ** on a VALUES clause.
2456 ** Because the Select object originates from a VALUES clause:
2457 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2458 ** (2) All terms are UNION ALL
2459 ** (3) There is no ORDER BY clause
2461 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2462 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2463 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2464 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2466 static int multiSelectValues(
2467 Parse *pParse, /* Parsing context */
2468 Select *p, /* The right-most of SELECTs to be coded */
2469 SelectDest *pDest /* What to do with query results */
2471 int nRow = 1;
2472 int rc = 0;
2473 int bShowAll = p->pLimit==0;
2474 assert( p->selFlags & SF_MultiValue );
2476 assert( p->selFlags & SF_Values );
2477 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2478 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2479 if( p->pPrior==0 ) break;
2480 assert( p->pPrior->pNext==p );
2481 p = p->pPrior;
2482 nRow += bShowAll;
2483 }while(1);
2484 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2485 nRow==1 ? "" : "S"));
2486 while( p ){
2487 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2488 if( !bShowAll ) break;
2489 p->nSelectRow = nRow;
2490 p = p->pNext;
2492 return rc;
2496 ** This routine is called to process a compound query form from
2497 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2498 ** INTERSECT
2500 ** "p" points to the right-most of the two queries. the query on the
2501 ** left is p->pPrior. The left query could also be a compound query
2502 ** in which case this routine will be called recursively.
2504 ** The results of the total query are to be written into a destination
2505 ** of type eDest with parameter iParm.
2507 ** Example 1: Consider a three-way compound SQL statement.
2509 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2511 ** This statement is parsed up as follows:
2513 ** SELECT c FROM t3
2514 ** |
2515 ** `-----> SELECT b FROM t2
2516 ** |
2517 ** `------> SELECT a FROM t1
2519 ** The arrows in the diagram above represent the Select.pPrior pointer.
2520 ** So if this routine is called with p equal to the t3 query, then
2521 ** pPrior will be the t2 query. p->op will be TK_UNION in this case.
2523 ** Notice that because of the way SQLite parses compound SELECTs, the
2524 ** individual selects always group from left to right.
2526 static int multiSelect(
2527 Parse *pParse, /* Parsing context */
2528 Select *p, /* The right-most of SELECTs to be coded */
2529 SelectDest *pDest /* What to do with query results */
2531 int rc = SQLITE_OK; /* Success code from a subroutine */
2532 Select *pPrior; /* Another SELECT immediately to our left */
2533 Vdbe *v; /* Generate code to this VDBE */
2534 SelectDest dest; /* Alternative data destination */
2535 Select *pDelete = 0; /* Chain of simple selects to delete */
2536 sqlite3 *db; /* Database connection */
2538 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
2539 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2541 assert( p && p->pPrior ); /* Calling function guarantees this much */
2542 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2543 db = pParse->db;
2544 pPrior = p->pPrior;
2545 dest = *pDest;
2546 if( pPrior->pOrderBy || pPrior->pLimit ){
2547 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
2548 pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op));
2549 rc = 1;
2550 goto multi_select_end;
2553 v = sqlite3GetVdbe(pParse);
2554 assert( v!=0 ); /* The VDBE already created by calling function */
2556 /* Create the destination temporary table if necessary
2558 if( dest.eDest==SRT_EphemTab ){
2559 assert( p->pEList );
2560 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2561 dest.eDest = SRT_Table;
2564 /* Special handling for a compound-select that originates as a VALUES clause.
2566 if( p->selFlags & SF_MultiValue ){
2567 rc = multiSelectValues(pParse, p, &dest);
2568 goto multi_select_end;
2571 /* Make sure all SELECTs in the statement have the same number of elements
2572 ** in their result sets.
2574 assert( p->pEList && pPrior->pEList );
2575 assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2577 #ifndef SQLITE_OMIT_CTE
2578 if( p->selFlags & SF_Recursive ){
2579 generateWithRecursiveQuery(pParse, p, &dest);
2580 }else
2581 #endif
2583 /* Compound SELECTs that have an ORDER BY clause are handled separately.
2585 if( p->pOrderBy ){
2586 return multiSelectOrderBy(pParse, p, pDest);
2587 }else{
2589 #ifndef SQLITE_OMIT_EXPLAIN
2590 if( pPrior->pPrior==0 ){
2591 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2592 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2594 #endif
2596 /* Generate code for the left and right SELECT statements.
2598 switch( p->op ){
2599 case TK_ALL: {
2600 int addr = 0;
2601 int nLimit;
2602 assert( !pPrior->pLimit );
2603 pPrior->iLimit = p->iLimit;
2604 pPrior->iOffset = p->iOffset;
2605 pPrior->pLimit = p->pLimit;
2606 rc = sqlite3Select(pParse, pPrior, &dest);
2607 p->pLimit = 0;
2608 if( rc ){
2609 goto multi_select_end;
2611 p->pPrior = 0;
2612 p->iLimit = pPrior->iLimit;
2613 p->iOffset = pPrior->iOffset;
2614 if( p->iLimit ){
2615 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2616 VdbeComment((v, "Jump ahead if LIMIT reached"));
2617 if( p->iOffset ){
2618 sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2619 p->iLimit, p->iOffset+1, p->iOffset);
2622 ExplainQueryPlan((pParse, 1, "UNION ALL"));
2623 rc = sqlite3Select(pParse, p, &dest);
2624 testcase( rc!=SQLITE_OK );
2625 pDelete = p->pPrior;
2626 p->pPrior = pPrior;
2627 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2628 if( pPrior->pLimit
2629 && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit)
2630 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2632 p->nSelectRow = sqlite3LogEst((u64)nLimit);
2634 if( addr ){
2635 sqlite3VdbeJumpHere(v, addr);
2637 break;
2639 case TK_EXCEPT:
2640 case TK_UNION: {
2641 int unionTab; /* Cursor number of the temp table holding result */
2642 u8 op = 0; /* One of the SRT_ operations to apply to self */
2643 int priorOp; /* The SRT_ operation to apply to prior selects */
2644 Expr *pLimit; /* Saved values of p->nLimit */
2645 int addr;
2646 SelectDest uniondest;
2648 testcase( p->op==TK_EXCEPT );
2649 testcase( p->op==TK_UNION );
2650 priorOp = SRT_Union;
2651 if( dest.eDest==priorOp ){
2652 /* We can reuse a temporary table generated by a SELECT to our
2653 ** right.
2655 assert( p->pLimit==0 ); /* Not allowed on leftward elements */
2656 unionTab = dest.iSDParm;
2657 }else{
2658 /* We will need to create our own temporary table to hold the
2659 ** intermediate results.
2661 unionTab = pParse->nTab++;
2662 assert( p->pOrderBy==0 );
2663 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2664 assert( p->addrOpenEphm[0] == -1 );
2665 p->addrOpenEphm[0] = addr;
2666 findRightmost(p)->selFlags |= SF_UsesEphemeral;
2667 assert( p->pEList );
2670 /* Code the SELECT statements to our left
2672 assert( !pPrior->pOrderBy );
2673 sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2674 rc = sqlite3Select(pParse, pPrior, &uniondest);
2675 if( rc ){
2676 goto multi_select_end;
2679 /* Code the current SELECT statement
2681 if( p->op==TK_EXCEPT ){
2682 op = SRT_Except;
2683 }else{
2684 assert( p->op==TK_UNION );
2685 op = SRT_Union;
2687 p->pPrior = 0;
2688 pLimit = p->pLimit;
2689 p->pLimit = 0;
2690 uniondest.eDest = op;
2691 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2692 selectOpName(p->op)));
2693 rc = sqlite3Select(pParse, p, &uniondest);
2694 testcase( rc!=SQLITE_OK );
2695 /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2696 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2697 sqlite3ExprListDelete(db, p->pOrderBy);
2698 pDelete = p->pPrior;
2699 p->pPrior = pPrior;
2700 p->pOrderBy = 0;
2701 if( p->op==TK_UNION ){
2702 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2704 sqlite3ExprDelete(db, p->pLimit);
2705 p->pLimit = pLimit;
2706 p->iLimit = 0;
2707 p->iOffset = 0;
2709 /* Convert the data in the temporary table into whatever form
2710 ** it is that we currently need.
2712 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2713 if( dest.eDest!=priorOp ){
2714 int iCont, iBreak, iStart;
2715 assert( p->pEList );
2716 iBreak = sqlite3VdbeMakeLabel(pParse);
2717 iCont = sqlite3VdbeMakeLabel(pParse);
2718 computeLimitRegisters(pParse, p, iBreak);
2719 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2720 iStart = sqlite3VdbeCurrentAddr(v);
2721 selectInnerLoop(pParse, p, unionTab,
2722 0, 0, &dest, iCont, iBreak);
2723 sqlite3VdbeResolveLabel(v, iCont);
2724 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2725 sqlite3VdbeResolveLabel(v, iBreak);
2726 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2728 break;
2730 default: assert( p->op==TK_INTERSECT ); {
2731 int tab1, tab2;
2732 int iCont, iBreak, iStart;
2733 Expr *pLimit;
2734 int addr;
2735 SelectDest intersectdest;
2736 int r1;
2738 /* INTERSECT is different from the others since it requires
2739 ** two temporary tables. Hence it has its own case. Begin
2740 ** by allocating the tables we will need.
2742 tab1 = pParse->nTab++;
2743 tab2 = pParse->nTab++;
2744 assert( p->pOrderBy==0 );
2746 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2747 assert( p->addrOpenEphm[0] == -1 );
2748 p->addrOpenEphm[0] = addr;
2749 findRightmost(p)->selFlags |= SF_UsesEphemeral;
2750 assert( p->pEList );
2752 /* Code the SELECTs to our left into temporary table "tab1".
2754 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2755 rc = sqlite3Select(pParse, pPrior, &intersectdest);
2756 if( rc ){
2757 goto multi_select_end;
2760 /* Code the current SELECT into temporary table "tab2"
2762 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2763 assert( p->addrOpenEphm[1] == -1 );
2764 p->addrOpenEphm[1] = addr;
2765 p->pPrior = 0;
2766 pLimit = p->pLimit;
2767 p->pLimit = 0;
2768 intersectdest.iSDParm = tab2;
2769 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2770 selectOpName(p->op)));
2771 rc = sqlite3Select(pParse, p, &intersectdest);
2772 testcase( rc!=SQLITE_OK );
2773 pDelete = p->pPrior;
2774 p->pPrior = pPrior;
2775 if( p->nSelectRow>pPrior->nSelectRow ){
2776 p->nSelectRow = pPrior->nSelectRow;
2778 sqlite3ExprDelete(db, p->pLimit);
2779 p->pLimit = pLimit;
2781 /* Generate code to take the intersection of the two temporary
2782 ** tables.
2784 assert( p->pEList );
2785 iBreak = sqlite3VdbeMakeLabel(pParse);
2786 iCont = sqlite3VdbeMakeLabel(pParse);
2787 computeLimitRegisters(pParse, p, iBreak);
2788 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2789 r1 = sqlite3GetTempReg(pParse);
2790 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2791 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
2792 VdbeCoverage(v);
2793 sqlite3ReleaseTempReg(pParse, r1);
2794 selectInnerLoop(pParse, p, tab1,
2795 0, 0, &dest, iCont, iBreak);
2796 sqlite3VdbeResolveLabel(v, iCont);
2797 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2798 sqlite3VdbeResolveLabel(v, iBreak);
2799 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2800 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2801 break;
2805 #ifndef SQLITE_OMIT_EXPLAIN
2806 if( p->pNext==0 ){
2807 ExplainQueryPlanPop(pParse);
2809 #endif
2812 /* Compute collating sequences used by
2813 ** temporary tables needed to implement the compound select.
2814 ** Attach the KeyInfo structure to all temporary tables.
2816 ** This section is run by the right-most SELECT statement only.
2817 ** SELECT statements to the left always skip this part. The right-most
2818 ** SELECT might also skip this part if it has no ORDER BY clause and
2819 ** no temp tables are required.
2821 if( p->selFlags & SF_UsesEphemeral ){
2822 int i; /* Loop counter */
2823 KeyInfo *pKeyInfo; /* Collating sequence for the result set */
2824 Select *pLoop; /* For looping through SELECT statements */
2825 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
2826 int nCol; /* Number of columns in result set */
2828 assert( p->pNext==0 );
2829 nCol = p->pEList->nExpr;
2830 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2831 if( !pKeyInfo ){
2832 rc = SQLITE_NOMEM_BKPT;
2833 goto multi_select_end;
2835 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2836 *apColl = multiSelectCollSeq(pParse, p, i);
2837 if( 0==*apColl ){
2838 *apColl = db->pDfltColl;
2842 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2843 for(i=0; i<2; i++){
2844 int addr = pLoop->addrOpenEphm[i];
2845 if( addr<0 ){
2846 /* If [0] is unused then [1] is also unused. So we can
2847 ** always safely abort as soon as the first unused slot is found */
2848 assert( pLoop->addrOpenEphm[1]<0 );
2849 break;
2851 sqlite3VdbeChangeP2(v, addr, nCol);
2852 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2853 P4_KEYINFO);
2854 pLoop->addrOpenEphm[i] = -1;
2857 sqlite3KeyInfoUnref(pKeyInfo);
2860 multi_select_end:
2861 pDest->iSdst = dest.iSdst;
2862 pDest->nSdst = dest.nSdst;
2863 sqlite3SelectDelete(db, pDelete);
2864 return rc;
2866 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2869 ** Error message for when two or more terms of a compound select have different
2870 ** size result sets.
2872 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2873 if( p->selFlags & SF_Values ){
2874 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2875 }else{
2876 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2877 " do not have the same number of result columns", selectOpName(p->op));
2882 ** Code an output subroutine for a coroutine implementation of a
2883 ** SELECT statment.
2885 ** The data to be output is contained in pIn->iSdst. There are
2886 ** pIn->nSdst columns to be output. pDest is where the output should
2887 ** be sent.
2889 ** regReturn is the number of the register holding the subroutine
2890 ** return address.
2892 ** If regPrev>0 then it is the first register in a vector that
2893 ** records the previous output. mem[regPrev] is a flag that is false
2894 ** if there has been no previous output. If regPrev>0 then code is
2895 ** generated to suppress duplicates. pKeyInfo is used for comparing
2896 ** keys.
2898 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2899 ** iBreak.
2901 static int generateOutputSubroutine(
2902 Parse *pParse, /* Parsing context */
2903 Select *p, /* The SELECT statement */
2904 SelectDest *pIn, /* Coroutine supplying data */
2905 SelectDest *pDest, /* Where to send the data */
2906 int regReturn, /* The return address register */
2907 int regPrev, /* Previous result register. No uniqueness if 0 */
2908 KeyInfo *pKeyInfo, /* For comparing with previous entry */
2909 int iBreak /* Jump here if we hit the LIMIT */
2911 Vdbe *v = pParse->pVdbe;
2912 int iContinue;
2913 int addr;
2915 addr = sqlite3VdbeCurrentAddr(v);
2916 iContinue = sqlite3VdbeMakeLabel(pParse);
2918 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2920 if( regPrev ){
2921 int addr1, addr2;
2922 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2923 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2924 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2925 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2926 sqlite3VdbeJumpHere(v, addr1);
2927 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2928 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2930 if( pParse->db->mallocFailed ) return 0;
2932 /* Suppress the first OFFSET entries if there is an OFFSET clause
2934 codeOffset(v, p->iOffset, iContinue);
2936 assert( pDest->eDest!=SRT_Exists );
2937 assert( pDest->eDest!=SRT_Table );
2938 switch( pDest->eDest ){
2939 /* Store the result as data using a unique key.
2941 case SRT_EphemTab: {
2942 int r1 = sqlite3GetTempReg(pParse);
2943 int r2 = sqlite3GetTempReg(pParse);
2944 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2945 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2946 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2947 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2948 sqlite3ReleaseTempReg(pParse, r2);
2949 sqlite3ReleaseTempReg(pParse, r1);
2950 break;
2953 #ifndef SQLITE_OMIT_SUBQUERY
2954 /* If we are creating a set for an "expr IN (SELECT ...)".
2956 case SRT_Set: {
2957 int r1;
2958 testcase( pIn->nSdst>1 );
2959 r1 = sqlite3GetTempReg(pParse);
2960 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
2961 r1, pDest->zAffSdst, pIn->nSdst);
2962 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
2963 pIn->iSdst, pIn->nSdst);
2964 sqlite3ReleaseTempReg(pParse, r1);
2965 break;
2968 /* If this is a scalar select that is part of an expression, then
2969 ** store the results in the appropriate memory cell and break out
2970 ** of the scan loop.
2972 case SRT_Mem: {
2973 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 );
2974 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2975 /* The LIMIT clause will jump out of the loop for us */
2976 break;
2978 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2980 /* The results are stored in a sequence of registers
2981 ** starting at pDest->iSdst. Then the co-routine yields.
2983 case SRT_Coroutine: {
2984 if( pDest->iSdst==0 ){
2985 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2986 pDest->nSdst = pIn->nSdst;
2988 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2989 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2990 break;
2993 /* If none of the above, then the result destination must be
2994 ** SRT_Output. This routine is never called with any other
2995 ** destination other than the ones handled above or SRT_Output.
2997 ** For SRT_Output, results are stored in a sequence of registers.
2998 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2999 ** return the next row of result.
3001 default: {
3002 assert( pDest->eDest==SRT_Output );
3003 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3004 break;
3008 /* Jump to the end of the loop if the LIMIT is reached.
3010 if( p->iLimit ){
3011 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3014 /* Generate the subroutine return
3016 sqlite3VdbeResolveLabel(v, iContinue);
3017 sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3019 return addr;
3023 ** Alternative compound select code generator for cases when there
3024 ** is an ORDER BY clause.
3026 ** We assume a query of the following form:
3028 ** <selectA> <operator> <selectB> ORDER BY <orderbylist>
3030 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
3031 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3032 ** co-routines. Then run the co-routines in parallel and merge the results
3033 ** into the output. In addition to the two coroutines (called selectA and
3034 ** selectB) there are 7 subroutines:
3036 ** outA: Move the output of the selectA coroutine into the output
3037 ** of the compound query.
3039 ** outB: Move the output of the selectB coroutine into the output
3040 ** of the compound query. (Only generated for UNION and
3041 ** UNION ALL. EXCEPT and INSERTSECT never output a row that
3042 ** appears only in B.)
3044 ** AltB: Called when there is data from both coroutines and A<B.
3046 ** AeqB: Called when there is data from both coroutines and A==B.
3048 ** AgtB: Called when there is data from both coroutines and A>B.
3050 ** EofA: Called when data is exhausted from selectA.
3052 ** EofB: Called when data is exhausted from selectB.
3054 ** The implementation of the latter five subroutines depend on which
3055 ** <operator> is used:
3058 ** UNION ALL UNION EXCEPT INTERSECT
3059 ** ------------- ----------------- -------------- -----------------
3060 ** AltB: outA, nextA outA, nextA outA, nextA nextA
3062 ** AeqB: outA, nextA nextA nextA outA, nextA
3064 ** AgtB: outB, nextB outB, nextB nextB nextB
3066 ** EofA: outB, nextB outB, nextB halt halt
3068 ** EofB: outA, nextA outA, nextA outA, nextA halt
3070 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3071 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3072 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
3073 ** following nextX causes a jump to the end of the select processing.
3075 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3076 ** within the output subroutine. The regPrev register set holds the previously
3077 ** output value. A comparison is made against this value and the output
3078 ** is skipped if the next results would be the same as the previous.
3080 ** The implementation plan is to implement the two coroutines and seven
3081 ** subroutines first, then put the control logic at the bottom. Like this:
3083 ** goto Init
3084 ** coA: coroutine for left query (A)
3085 ** coB: coroutine for right query (B)
3086 ** outA: output one row of A
3087 ** outB: output one row of B (UNION and UNION ALL only)
3088 ** EofA: ...
3089 ** EofB: ...
3090 ** AltB: ...
3091 ** AeqB: ...
3092 ** AgtB: ...
3093 ** Init: initialize coroutine registers
3094 ** yield coA
3095 ** if eof(A) goto EofA
3096 ** yield coB
3097 ** if eof(B) goto EofB
3098 ** Cmpr: Compare A, B
3099 ** Jump AltB, AeqB, AgtB
3100 ** End: ...
3102 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3103 ** actually called using Gosub and they do not Return. EofA and EofB loop
3104 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
3105 ** and AgtB jump to either L2 or to one of EofA or EofB.
3107 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3108 static int multiSelectOrderBy(
3109 Parse *pParse, /* Parsing context */
3110 Select *p, /* The right-most of SELECTs to be coded */
3111 SelectDest *pDest /* What to do with query results */
3113 int i, j; /* Loop counters */
3114 Select *pPrior; /* Another SELECT immediately to our left */
3115 Vdbe *v; /* Generate code to this VDBE */
3116 SelectDest destA; /* Destination for coroutine A */
3117 SelectDest destB; /* Destination for coroutine B */
3118 int regAddrA; /* Address register for select-A coroutine */
3119 int regAddrB; /* Address register for select-B coroutine */
3120 int addrSelectA; /* Address of the select-A coroutine */
3121 int addrSelectB; /* Address of the select-B coroutine */
3122 int regOutA; /* Address register for the output-A subroutine */
3123 int regOutB; /* Address register for the output-B subroutine */
3124 int addrOutA; /* Address of the output-A subroutine */
3125 int addrOutB = 0; /* Address of the output-B subroutine */
3126 int addrEofA; /* Address of the select-A-exhausted subroutine */
3127 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */
3128 int addrEofB; /* Address of the select-B-exhausted subroutine */
3129 int addrAltB; /* Address of the A<B subroutine */
3130 int addrAeqB; /* Address of the A==B subroutine */
3131 int addrAgtB; /* Address of the A>B subroutine */
3132 int regLimitA; /* Limit register for select-A */
3133 int regLimitB; /* Limit register for select-A */
3134 int regPrev; /* A range of registers to hold previous output */
3135 int savedLimit; /* Saved value of p->iLimit */
3136 int savedOffset; /* Saved value of p->iOffset */
3137 int labelCmpr; /* Label for the start of the merge algorithm */
3138 int labelEnd; /* Label for the end of the overall SELECT stmt */
3139 int addr1; /* Jump instructions that get retargetted */
3140 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3141 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3142 KeyInfo *pKeyMerge; /* Comparison information for merging rows */
3143 sqlite3 *db; /* Database connection */
3144 ExprList *pOrderBy; /* The ORDER BY clause */
3145 int nOrderBy; /* Number of terms in the ORDER BY clause */
3146 int *aPermute; /* Mapping from ORDER BY terms to result set columns */
3148 assert( p->pOrderBy!=0 );
3149 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */
3150 db = pParse->db;
3151 v = pParse->pVdbe;
3152 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */
3153 labelEnd = sqlite3VdbeMakeLabel(pParse);
3154 labelCmpr = sqlite3VdbeMakeLabel(pParse);
3157 /* Patch up the ORDER BY clause
3159 op = p->op;
3160 pPrior = p->pPrior;
3161 assert( pPrior->pOrderBy==0 );
3162 pOrderBy = p->pOrderBy;
3163 assert( pOrderBy );
3164 nOrderBy = pOrderBy->nExpr;
3166 /* For operators other than UNION ALL we have to make sure that
3167 ** the ORDER BY clause covers every term of the result set. Add
3168 ** terms to the ORDER BY clause as necessary.
3170 if( op!=TK_ALL ){
3171 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3172 struct ExprList_item *pItem;
3173 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3174 assert( pItem->u.x.iOrderByCol>0 );
3175 if( pItem->u.x.iOrderByCol==i ) break;
3177 if( j==nOrderBy ){
3178 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3179 if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3180 pNew->flags |= EP_IntValue;
3181 pNew->u.iValue = i;
3182 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3183 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3188 /* Compute the comparison permutation and keyinfo that is used with
3189 ** the permutation used to determine if the next
3190 ** row of results comes from selectA or selectB. Also add explicit
3191 ** collations to the ORDER BY clause terms so that when the subqueries
3192 ** to the right and the left are evaluated, they use the correct
3193 ** collation.
3195 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
3196 if( aPermute ){
3197 struct ExprList_item *pItem;
3198 aPermute[0] = nOrderBy;
3199 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3200 assert( pItem->u.x.iOrderByCol>0 );
3201 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3202 aPermute[i] = pItem->u.x.iOrderByCol - 1;
3204 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3205 }else{
3206 pKeyMerge = 0;
3209 /* Reattach the ORDER BY clause to the query.
3211 p->pOrderBy = pOrderBy;
3212 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3214 /* Allocate a range of temporary registers and the KeyInfo needed
3215 ** for the logic that removes duplicate result rows when the
3216 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3218 if( op==TK_ALL ){
3219 regPrev = 0;
3220 }else{
3221 int nExpr = p->pEList->nExpr;
3222 assert( nOrderBy>=nExpr || db->mallocFailed );
3223 regPrev = pParse->nMem+1;
3224 pParse->nMem += nExpr+1;
3225 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3226 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3227 if( pKeyDup ){
3228 assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3229 for(i=0; i<nExpr; i++){
3230 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3231 pKeyDup->aSortOrder[i] = 0;
3236 /* Separate the left and the right query from one another
3238 p->pPrior = 0;
3239 pPrior->pNext = 0;
3240 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3241 if( pPrior->pPrior==0 ){
3242 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3245 /* Compute the limit registers */
3246 computeLimitRegisters(pParse, p, labelEnd);
3247 if( p->iLimit && op==TK_ALL ){
3248 regLimitA = ++pParse->nMem;
3249 regLimitB = ++pParse->nMem;
3250 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3251 regLimitA);
3252 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3253 }else{
3254 regLimitA = regLimitB = 0;
3256 sqlite3ExprDelete(db, p->pLimit);
3257 p->pLimit = 0;
3259 regAddrA = ++pParse->nMem;
3260 regAddrB = ++pParse->nMem;
3261 regOutA = ++pParse->nMem;
3262 regOutB = ++pParse->nMem;
3263 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3264 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3266 ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op)));
3268 /* Generate a coroutine to evaluate the SELECT statement to the
3269 ** left of the compound operator - the "A" select.
3271 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3272 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3273 VdbeComment((v, "left SELECT"));
3274 pPrior->iLimit = regLimitA;
3275 ExplainQueryPlan((pParse, 1, "LEFT"));
3276 sqlite3Select(pParse, pPrior, &destA);
3277 sqlite3VdbeEndCoroutine(v, regAddrA);
3278 sqlite3VdbeJumpHere(v, addr1);
3280 /* Generate a coroutine to evaluate the SELECT statement on
3281 ** the right - the "B" select
3283 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3284 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3285 VdbeComment((v, "right SELECT"));
3286 savedLimit = p->iLimit;
3287 savedOffset = p->iOffset;
3288 p->iLimit = regLimitB;
3289 p->iOffset = 0;
3290 ExplainQueryPlan((pParse, 1, "RIGHT"));
3291 sqlite3Select(pParse, p, &destB);
3292 p->iLimit = savedLimit;
3293 p->iOffset = savedOffset;
3294 sqlite3VdbeEndCoroutine(v, regAddrB);
3296 /* Generate a subroutine that outputs the current row of the A
3297 ** select as the next output row of the compound select.
3299 VdbeNoopComment((v, "Output routine for A"));
3300 addrOutA = generateOutputSubroutine(pParse,
3301 p, &destA, pDest, regOutA,
3302 regPrev, pKeyDup, labelEnd);
3304 /* Generate a subroutine that outputs the current row of the B
3305 ** select as the next output row of the compound select.
3307 if( op==TK_ALL || op==TK_UNION ){
3308 VdbeNoopComment((v, "Output routine for B"));
3309 addrOutB = generateOutputSubroutine(pParse,
3310 p, &destB, pDest, regOutB,
3311 regPrev, pKeyDup, labelEnd);
3313 sqlite3KeyInfoUnref(pKeyDup);
3315 /* Generate a subroutine to run when the results from select A
3316 ** are exhausted and only data in select B remains.
3318 if( op==TK_EXCEPT || op==TK_INTERSECT ){
3319 addrEofA_noB = addrEofA = labelEnd;
3320 }else{
3321 VdbeNoopComment((v, "eof-A subroutine"));
3322 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3323 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3324 VdbeCoverage(v);
3325 sqlite3VdbeGoto(v, addrEofA);
3326 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3329 /* Generate a subroutine to run when the results from select B
3330 ** are exhausted and only data in select A remains.
3332 if( op==TK_INTERSECT ){
3333 addrEofB = addrEofA;
3334 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3335 }else{
3336 VdbeNoopComment((v, "eof-B subroutine"));
3337 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3338 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3339 sqlite3VdbeGoto(v, addrEofB);
3342 /* Generate code to handle the case of A<B
3344 VdbeNoopComment((v, "A-lt-B subroutine"));
3345 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3346 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3347 sqlite3VdbeGoto(v, labelCmpr);
3349 /* Generate code to handle the case of A==B
3351 if( op==TK_ALL ){
3352 addrAeqB = addrAltB;
3353 }else if( op==TK_INTERSECT ){
3354 addrAeqB = addrAltB;
3355 addrAltB++;
3356 }else{
3357 VdbeNoopComment((v, "A-eq-B subroutine"));
3358 addrAeqB =
3359 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3360 sqlite3VdbeGoto(v, labelCmpr);
3363 /* Generate code to handle the case of A>B
3365 VdbeNoopComment((v, "A-gt-B subroutine"));
3366 addrAgtB = sqlite3VdbeCurrentAddr(v);
3367 if( op==TK_ALL || op==TK_UNION ){
3368 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3370 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3371 sqlite3VdbeGoto(v, labelCmpr);
3373 /* This code runs once to initialize everything.
3375 sqlite3VdbeJumpHere(v, addr1);
3376 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3377 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3379 /* Implement the main merge loop
3381 sqlite3VdbeResolveLabel(v, labelCmpr);
3382 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3383 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3384 (char*)pKeyMerge, P4_KEYINFO);
3385 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3386 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3388 /* Jump to the this point in order to terminate the query.
3390 sqlite3VdbeResolveLabel(v, labelEnd);
3392 /* Reassembly the compound query so that it will be freed correctly
3393 ** by the calling function */
3394 if( p->pPrior ){
3395 sqlite3SelectDelete(db, p->pPrior);
3397 p->pPrior = pPrior;
3398 pPrior->pNext = p;
3400 /*** TBD: Insert subroutine calls to close cursors on incomplete
3401 **** subqueries ****/
3402 ExplainQueryPlanPop(pParse);
3403 return pParse->nErr!=0;
3405 #endif
3407 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3409 /* An instance of the SubstContext object describes an substitution edit
3410 ** to be performed on a parse tree.
3412 ** All references to columns in table iTable are to be replaced by corresponding
3413 ** expressions in pEList.
3415 typedef struct SubstContext {
3416 Parse *pParse; /* The parsing context */
3417 int iTable; /* Replace references to this table */
3418 int iNewTable; /* New table number */
3419 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */
3420 ExprList *pEList; /* Replacement expressions */
3421 } SubstContext;
3423 /* Forward Declarations */
3424 static void substExprList(SubstContext*, ExprList*);
3425 static void substSelect(SubstContext*, Select*, int);
3428 ** Scan through the expression pExpr. Replace every reference to
3429 ** a column in table number iTable with a copy of the iColumn-th
3430 ** entry in pEList. (But leave references to the ROWID column
3431 ** unchanged.)
3433 ** This routine is part of the flattening procedure. A subquery
3434 ** whose result set is defined by pEList appears as entry in the
3435 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3436 ** FORM clause entry is iTable. This routine makes the necessary
3437 ** changes to pExpr so that it refers directly to the source table
3438 ** of the subquery rather the result set of the subquery.
3440 static Expr *substExpr(
3441 SubstContext *pSubst, /* Description of the substitution */
3442 Expr *pExpr /* Expr in which substitution occurs */
3444 if( pExpr==0 ) return 0;
3445 if( ExprHasProperty(pExpr, EP_FromJoin)
3446 && pExpr->iRightJoinTable==pSubst->iTable
3448 pExpr->iRightJoinTable = pSubst->iNewTable;
3450 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){
3451 if( pExpr->iColumn<0 ){
3452 pExpr->op = TK_NULL;
3453 }else{
3454 Expr *pNew;
3455 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3456 Expr ifNullRow;
3457 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3458 assert( pExpr->pRight==0 );
3459 if( sqlite3ExprIsVector(pCopy) ){
3460 sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3461 }else{
3462 sqlite3 *db = pSubst->pParse->db;
3463 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3464 memset(&ifNullRow, 0, sizeof(ifNullRow));
3465 ifNullRow.op = TK_IF_NULL_ROW;
3466 ifNullRow.pLeft = pCopy;
3467 ifNullRow.iTable = pSubst->iNewTable;
3468 pCopy = &ifNullRow;
3470 testcase( ExprHasProperty(pCopy, EP_Subquery) );
3471 pNew = sqlite3ExprDup(db, pCopy, 0);
3472 if( pNew && pSubst->isLeftJoin ){
3473 ExprSetProperty(pNew, EP_CanBeNull);
3475 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3476 pNew->iRightJoinTable = pExpr->iRightJoinTable;
3477 ExprSetProperty(pNew, EP_FromJoin);
3479 sqlite3ExprDelete(db, pExpr);
3480 pExpr = pNew;
3483 }else{
3484 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3485 pExpr->iTable = pSubst->iNewTable;
3487 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3488 pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3489 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3490 substSelect(pSubst, pExpr->x.pSelect, 1);
3491 }else{
3492 substExprList(pSubst, pExpr->x.pList);
3495 return pExpr;
3497 static void substExprList(
3498 SubstContext *pSubst, /* Description of the substitution */
3499 ExprList *pList /* List to scan and in which to make substitutes */
3501 int i;
3502 if( pList==0 ) return;
3503 for(i=0; i<pList->nExpr; i++){
3504 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3507 static void substSelect(
3508 SubstContext *pSubst, /* Description of the substitution */
3509 Select *p, /* SELECT statement in which to make substitutions */
3510 int doPrior /* Do substitutes on p->pPrior too */
3512 SrcList *pSrc;
3513 struct SrcList_item *pItem;
3514 int i;
3515 if( !p ) return;
3517 substExprList(pSubst, p->pEList);
3518 substExprList(pSubst, p->pGroupBy);
3519 substExprList(pSubst, p->pOrderBy);
3520 p->pHaving = substExpr(pSubst, p->pHaving);
3521 p->pWhere = substExpr(pSubst, p->pWhere);
3522 pSrc = p->pSrc;
3523 assert( pSrc!=0 );
3524 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3525 substSelect(pSubst, pItem->pSelect, 1);
3526 if( pItem->fg.isTabFunc ){
3527 substExprList(pSubst, pItem->u1.pFuncArg);
3530 }while( doPrior && (p = p->pPrior)!=0 );
3532 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3534 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3536 ** This routine attempts to flatten subqueries as a performance optimization.
3537 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3539 ** To understand the concept of flattening, consider the following
3540 ** query:
3542 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3544 ** The default way of implementing this query is to execute the
3545 ** subquery first and store the results in a temporary table, then
3546 ** run the outer query on that temporary table. This requires two
3547 ** passes over the data. Furthermore, because the temporary table
3548 ** has no indices, the WHERE clause on the outer query cannot be
3549 ** optimized.
3551 ** This routine attempts to rewrite queries such as the above into
3552 ** a single flat select, like this:
3554 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3556 ** The code generated for this simplification gives the same result
3557 ** but only has to scan the data once. And because indices might
3558 ** exist on the table t1, a complete scan of the data might be
3559 ** avoided.
3561 ** Flattening is subject to the following constraints:
3563 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3564 ** The subquery and the outer query cannot both be aggregates.
3566 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3567 ** (2) If the subquery is an aggregate then
3568 ** (2a) the outer query must not be a join and
3569 ** (2b) the outer query must not use subqueries
3570 ** other than the one FROM-clause subquery that is a candidate
3571 ** for flattening. (This is due to ticket [2f7170d73bf9abf80]
3572 ** from 2015-02-09.)
3574 ** (3) If the subquery is the right operand of a LEFT JOIN then
3575 ** (3a) the subquery may not be a join and
3576 ** (3b) the FROM clause of the subquery may not contain a virtual
3577 ** table and
3578 ** (3c) the outer query may not be an aggregate.
3580 ** (4) The subquery can not be DISTINCT.
3582 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
3583 ** sub-queries that were excluded from this optimization. Restriction
3584 ** (4) has since been expanded to exclude all DISTINCT subqueries.
3586 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3587 ** If the subquery is aggregate, the outer query may not be DISTINCT.
3589 ** (7) The subquery must have a FROM clause. TODO: For subqueries without
3590 ** A FROM clause, consider adding a FROM clause with the special
3591 ** table sqlite_once that consists of a single row containing a
3592 ** single NULL.
3594 ** (8) If the subquery uses LIMIT then the outer query may not be a join.
3596 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate.
3598 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we
3599 ** accidently carried the comment forward until 2014-09-15. Original
3600 ** constraint: "If the subquery is aggregate then the outer query
3601 ** may not use LIMIT."
3603 ** (11) The subquery and the outer query may not both have ORDER BY clauses.
3605 ** (**) Not implemented. Subsumed into restriction (3). Was previously
3606 ** a separate restriction deriving from ticket #350.
3608 ** (13) The subquery and outer query may not both use LIMIT.
3610 ** (14) The subquery may not use OFFSET.
3612 ** (15) If the outer query is part of a compound select, then the
3613 ** subquery may not use LIMIT.
3614 ** (See ticket #2339 and ticket [02a8e81d44]).
3616 ** (16) If the outer query is aggregate, then the subquery may not
3617 ** use ORDER BY. (Ticket #2942) This used to not matter
3618 ** until we introduced the group_concat() function.
3620 ** (17) If the subquery is a compound select, then
3621 ** (17a) all compound operators must be a UNION ALL, and
3622 ** (17b) no terms within the subquery compound may be aggregate
3623 ** or DISTINCT, and
3624 ** (17c) every term within the subquery compound must have a FROM clause
3625 ** (17d) the outer query may not be
3626 ** (17d1) aggregate, or
3627 ** (17d2) DISTINCT, or
3628 ** (17d3) a join.
3630 ** The parent and sub-query may contain WHERE clauses. Subject to
3631 ** rules (11), (13) and (14), they may also contain ORDER BY,
3632 ** LIMIT and OFFSET clauses. The subquery cannot use any compound
3633 ** operator other than UNION ALL because all the other compound
3634 ** operators have an implied DISTINCT which is disallowed by
3635 ** restriction (4).
3637 ** Also, each component of the sub-query must return the same number
3638 ** of result columns. This is actually a requirement for any compound
3639 ** SELECT statement, but all the code here does is make sure that no
3640 ** such (illegal) sub-query is flattened. The caller will detect the
3641 ** syntax error and return a detailed message.
3643 ** (18) If the sub-query is a compound select, then all terms of the
3644 ** ORDER BY clause of the parent must be simple references to
3645 ** columns of the sub-query.
3647 ** (19) If the subquery uses LIMIT then the outer query may not
3648 ** have a WHERE clause.
3650 ** (20) If the sub-query is a compound select, then it must not use
3651 ** an ORDER BY clause. Ticket #3773. We could relax this constraint
3652 ** somewhat by saying that the terms of the ORDER BY clause must
3653 ** appear as unmodified result columns in the outer query. But we
3654 ** have other optimizations in mind to deal with that case.
3656 ** (21) If the subquery uses LIMIT then the outer query may not be
3657 ** DISTINCT. (See ticket [752e1646fc]).
3659 ** (22) The subquery may not be a recursive CTE.
3661 ** (**) Subsumed into restriction (17d3). Was: If the outer query is
3662 ** a recursive CTE, then the sub-query may not be a compound query.
3663 ** This restriction is because transforming the
3664 ** parent to a compound query confuses the code that handles
3665 ** recursive queries in multiSelect().
3667 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3668 ** The subquery may not be an aggregate that uses the built-in min() or
3669 ** or max() functions. (Without this restriction, a query like:
3670 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3671 ** return the value X for which Y was maximal.)
3673 ** (25) If either the subquery or the parent query contains a window
3674 ** function in the select list or ORDER BY clause, flattening
3675 ** is not attempted.
3678 ** In this routine, the "p" parameter is a pointer to the outer query.
3679 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
3680 ** uses aggregates.
3682 ** If flattening is not attempted, this routine is a no-op and returns 0.
3683 ** If flattening is attempted this routine returns 1.
3685 ** All of the expression analysis must occur on both the outer query and
3686 ** the subquery before this routine runs.
3688 static int flattenSubquery(
3689 Parse *pParse, /* Parsing context */
3690 Select *p, /* The parent or outer SELECT statement */
3691 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
3692 int isAgg /* True if outer SELECT uses aggregate functions */
3694 const char *zSavedAuthContext = pParse->zAuthContext;
3695 Select *pParent; /* Current UNION ALL term of the other query */
3696 Select *pSub; /* The inner query or "subquery" */
3697 Select *pSub1; /* Pointer to the rightmost select in sub-query */
3698 SrcList *pSrc; /* The FROM clause of the outer query */
3699 SrcList *pSubSrc; /* The FROM clause of the subquery */
3700 int iParent; /* VDBE cursor number of the pSub result set temp table */
3701 int iNewParent = -1;/* Replacement table for iParent */
3702 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3703 int i; /* Loop counter */
3704 Expr *pWhere; /* The WHERE clause */
3705 struct SrcList_item *pSubitem; /* The subquery */
3706 sqlite3 *db = pParse->db;
3708 /* Check to see if flattening is permitted. Return 0 if not.
3710 assert( p!=0 );
3711 assert( p->pPrior==0 );
3712 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3713 pSrc = p->pSrc;
3714 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3715 pSubitem = &pSrc->a[iFrom];
3716 iParent = pSubitem->iCursor;
3717 pSub = pSubitem->pSelect;
3718 assert( pSub!=0 );
3720 #ifndef SQLITE_OMIT_WINDOWFUNC
3721 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */
3722 #endif
3724 pSubSrc = pSub->pSrc;
3725 assert( pSubSrc );
3726 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3727 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3728 ** because they could be computed at compile-time. But when LIMIT and OFFSET
3729 ** became arbitrary expressions, we were forced to add restrictions (13)
3730 ** and (14). */
3731 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
3732 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */
3733 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3734 return 0; /* Restriction (15) */
3736 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
3737 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */
3738 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3739 return 0; /* Restrictions (8)(9) */
3741 if( p->pOrderBy && pSub->pOrderBy ){
3742 return 0; /* Restriction (11) */
3744 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */
3745 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */
3746 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3747 return 0; /* Restriction (21) */
3749 if( pSub->selFlags & (SF_Recursive) ){
3750 return 0; /* Restrictions (22) */
3754 ** If the subquery is the right operand of a LEFT JOIN, then the
3755 ** subquery may not be a join itself (3a). Example of why this is not
3756 ** allowed:
3758 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
3760 ** If we flatten the above, we would get
3762 ** (t1 LEFT OUTER JOIN t2) JOIN t3
3764 ** which is not at all the same thing.
3766 ** If the subquery is the right operand of a LEFT JOIN, then the outer
3767 ** query cannot be an aggregate. (3c) This is an artifact of the way
3768 ** aggregates are processed - there is no mechanism to determine if
3769 ** the LEFT JOIN table should be all-NULL.
3771 ** See also tickets #306, #350, and #3300.
3773 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3774 isLeftJoin = 1;
3775 if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){
3776 /* (3a) (3c) (3b) */
3777 return 0;
3780 #ifdef SQLITE_EXTRA_IFNULLROW
3781 else if( iFrom>0 && !isAgg ){
3782 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3783 ** every reference to any result column from subquery in a join, even
3784 ** though they are not necessary. This will stress-test the OP_IfNullRow
3785 ** opcode. */
3786 isLeftJoin = -1;
3788 #endif
3790 /* Restriction (17): If the sub-query is a compound SELECT, then it must
3791 ** use only the UNION ALL operator. And none of the simple select queries
3792 ** that make up the compound SELECT are allowed to be aggregate or distinct
3793 ** queries.
3795 if( pSub->pPrior ){
3796 if( pSub->pOrderBy ){
3797 return 0; /* Restriction (20) */
3799 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3800 return 0; /* (17d1), (17d2), or (17d3) */
3802 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3803 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3804 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3805 assert( pSub->pSrc!=0 );
3806 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3807 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */
3808 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */
3809 || pSub1->pSrc->nSrc<1 /* (17c) */
3811 return 0;
3813 testcase( pSub1->pSrc->nSrc>1 );
3816 /* Restriction (18). */
3817 if( p->pOrderBy ){
3818 int ii;
3819 for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3820 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3825 /* Ex-restriction (23):
3826 ** The only way that the recursive part of a CTE can contain a compound
3827 ** subquery is for the subquery to be one term of a join. But if the
3828 ** subquery is a join, then the flattening has already been stopped by
3829 ** restriction (17d3)
3831 assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 );
3833 /***** If we reach this point, flattening is permitted. *****/
3834 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
3835 pSub->selId, pSub, iFrom));
3837 /* Authorize the subquery */
3838 pParse->zAuthContext = pSubitem->zName;
3839 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3840 testcase( i==SQLITE_DENY );
3841 pParse->zAuthContext = zSavedAuthContext;
3843 /* If the sub-query is a compound SELECT statement, then (by restrictions
3844 ** 17 and 18 above) it must be a UNION ALL and the parent query must
3845 ** be of the form:
3847 ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
3849 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3850 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3851 ** OFFSET clauses and joins them to the left-hand-side of the original
3852 ** using UNION ALL operators. In this case N is the number of simple
3853 ** select statements in the compound sub-query.
3855 ** Example:
3857 ** SELECT a+1 FROM (
3858 ** SELECT x FROM tab
3859 ** UNION ALL
3860 ** SELECT y FROM tab
3861 ** UNION ALL
3862 ** SELECT abs(z*2) FROM tab2
3863 ** ) WHERE a!=5 ORDER BY 1
3865 ** Transformed into:
3867 ** SELECT x+1 FROM tab WHERE x+1!=5
3868 ** UNION ALL
3869 ** SELECT y+1 FROM tab WHERE y+1!=5
3870 ** UNION ALL
3871 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3872 ** ORDER BY 1
3874 ** We call this the "compound-subquery flattening".
3876 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3877 Select *pNew;
3878 ExprList *pOrderBy = p->pOrderBy;
3879 Expr *pLimit = p->pLimit;
3880 Select *pPrior = p->pPrior;
3881 p->pOrderBy = 0;
3882 p->pSrc = 0;
3883 p->pPrior = 0;
3884 p->pLimit = 0;
3885 pNew = sqlite3SelectDup(db, p, 0);
3886 p->pLimit = pLimit;
3887 p->pOrderBy = pOrderBy;
3888 p->pSrc = pSrc;
3889 p->op = TK_ALL;
3890 if( pNew==0 ){
3891 p->pPrior = pPrior;
3892 }else{
3893 pNew->pPrior = pPrior;
3894 if( pPrior ) pPrior->pNext = pNew;
3895 pNew->pNext = p;
3896 p->pPrior = pNew;
3897 SELECTTRACE(2,pParse,p,("compound-subquery flattener"
3898 " creates %u as peer\n",pNew->selId));
3900 if( db->mallocFailed ) return 1;
3903 /* Begin flattening the iFrom-th entry of the FROM clause
3904 ** in the outer query.
3906 pSub = pSub1 = pSubitem->pSelect;
3908 /* Delete the transient table structure associated with the
3909 ** subquery
3911 sqlite3DbFree(db, pSubitem->zDatabase);
3912 sqlite3DbFree(db, pSubitem->zName);
3913 sqlite3DbFree(db, pSubitem->zAlias);
3914 pSubitem->zDatabase = 0;
3915 pSubitem->zName = 0;
3916 pSubitem->zAlias = 0;
3917 pSubitem->pSelect = 0;
3919 /* Defer deleting the Table object associated with the
3920 ** subquery until code generation is
3921 ** complete, since there may still exist Expr.pTab entries that
3922 ** refer to the subquery even after flattening. Ticket #3346.
3924 ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3926 if( ALWAYS(pSubitem->pTab!=0) ){
3927 Table *pTabToDel = pSubitem->pTab;
3928 if( pTabToDel->nTabRef==1 ){
3929 Parse *pToplevel = sqlite3ParseToplevel(pParse);
3930 pTabToDel->pNextZombie = pToplevel->pZombieTab;
3931 pToplevel->pZombieTab = pTabToDel;
3932 }else{
3933 pTabToDel->nTabRef--;
3935 pSubitem->pTab = 0;
3938 /* The following loop runs once for each term in a compound-subquery
3939 ** flattening (as described above). If we are doing a different kind
3940 ** of flattening - a flattening other than a compound-subquery flattening -
3941 ** then this loop only runs once.
3943 ** This loop moves all of the FROM elements of the subquery into the
3944 ** the FROM clause of the outer query. Before doing this, remember
3945 ** the cursor number for the original outer query FROM element in
3946 ** iParent. The iParent cursor will never be used. Subsequent code
3947 ** will scan expressions looking for iParent references and replace
3948 ** those references with expressions that resolve to the subquery FROM
3949 ** elements we are now copying in.
3951 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3952 int nSubSrc;
3953 u8 jointype = 0;
3954 pSubSrc = pSub->pSrc; /* FROM clause of subquery */
3955 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */
3956 pSrc = pParent->pSrc; /* FROM clause of the outer query */
3958 if( pSrc ){
3959 assert( pParent==p ); /* First time through the loop */
3960 jointype = pSubitem->fg.jointype;
3961 }else{
3962 assert( pParent!=p ); /* 2nd and subsequent times through the loop */
3963 pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
3964 if( pSrc==0 ) break;
3965 pParent->pSrc = pSrc;
3968 /* The subquery uses a single slot of the FROM clause of the outer
3969 ** query. If the subquery has more than one element in its FROM clause,
3970 ** then expand the outer query to make space for it to hold all elements
3971 ** of the subquery.
3973 ** Example:
3975 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3977 ** The outer query has 3 slots in its FROM clause. One slot of the
3978 ** outer query (the middle slot) is used by the subquery. The next
3979 ** block of code will expand the outer query FROM clause to 4 slots.
3980 ** The middle slot is expanded to two slots in order to make space
3981 ** for the two elements in the FROM clause of the subquery.
3983 if( nSubSrc>1 ){
3984 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
3985 if( pSrc==0 ) break;
3986 pParent->pSrc = pSrc;
3989 /* Transfer the FROM clause terms from the subquery into the
3990 ** outer query.
3992 for(i=0; i<nSubSrc; i++){
3993 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3994 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
3995 pSrc->a[i+iFrom] = pSubSrc->a[i];
3996 iNewParent = pSubSrc->a[i].iCursor;
3997 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3999 pSrc->a[iFrom].fg.jointype = jointype;
4001 /* Now begin substituting subquery result set expressions for
4002 ** references to the iParent in the outer query.
4004 ** Example:
4006 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4007 ** \ \_____________ subquery __________/ /
4008 ** \_____________________ outer query ______________________________/
4010 ** We look at every expression in the outer query and every place we see
4011 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4013 if( pSub->pOrderBy ){
4014 /* At this point, any non-zero iOrderByCol values indicate that the
4015 ** ORDER BY column expression is identical to the iOrderByCol'th
4016 ** expression returned by SELECT statement pSub. Since these values
4017 ** do not necessarily correspond to columns in SELECT statement pParent,
4018 ** zero them before transfering the ORDER BY clause.
4020 ** Not doing this may cause an error if a subsequent call to this
4021 ** function attempts to flatten a compound sub-query into pParent
4022 ** (the only way this can happen is if the compound sub-query is
4023 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
4024 ExprList *pOrderBy = pSub->pOrderBy;
4025 for(i=0; i<pOrderBy->nExpr; i++){
4026 pOrderBy->a[i].u.x.iOrderByCol = 0;
4028 assert( pParent->pOrderBy==0 );
4029 pParent->pOrderBy = pOrderBy;
4030 pSub->pOrderBy = 0;
4032 pWhere = pSub->pWhere;
4033 pSub->pWhere = 0;
4034 if( isLeftJoin>0 ){
4035 setJoinExpr(pWhere, iNewParent);
4037 pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere);
4038 if( db->mallocFailed==0 ){
4039 SubstContext x;
4040 x.pParse = pParse;
4041 x.iTable = iParent;
4042 x.iNewTable = iNewParent;
4043 x.isLeftJoin = isLeftJoin;
4044 x.pEList = pSub->pEList;
4045 substSelect(&x, pParent, 0);
4048 /* The flattened query is distinct if either the inner or the
4049 ** outer query is distinct.
4051 pParent->selFlags |= pSub->selFlags & SF_Distinct;
4054 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4056 ** One is tempted to try to add a and b to combine the limits. But this
4057 ** does not work if either limit is negative.
4059 if( pSub->pLimit ){
4060 pParent->pLimit = pSub->pLimit;
4061 pSub->pLimit = 0;
4065 /* Finially, delete what is left of the subquery and return
4066 ** success.
4068 sqlite3SelectDelete(db, pSub1);
4070 #if SELECTTRACE_ENABLED
4071 if( sqlite3SelectTrace & 0x100 ){
4072 SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4073 sqlite3TreeViewSelect(0, p, 0);
4075 #endif
4077 return 1;
4079 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4082 ** A structure to keep track of all of the column values that are fixed to
4083 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4085 typedef struct WhereConst WhereConst;
4086 struct WhereConst {
4087 Parse *pParse; /* Parsing context */
4088 int nConst; /* Number for COLUMN=CONSTANT terms */
4089 int nChng; /* Number of times a constant is propagated */
4090 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */
4094 ** Add a new entry to the pConst object. Except, do not add duplicate
4095 ** pColumn entires.
4097 static void constInsert(
4098 WhereConst *pConst, /* The WhereConst into which we are inserting */
4099 Expr *pColumn, /* The COLUMN part of the constraint */
4100 Expr *pValue /* The VALUE part of the constraint */
4102 int i;
4103 assert( pColumn->op==TK_COLUMN );
4105 /* 2018-10-25 ticket [cf5ed20f]
4106 ** Make sure the same pColumn is not inserted more than once */
4107 for(i=0; i<pConst->nConst; i++){
4108 const Expr *pExpr = pConst->apExpr[i*2];
4109 assert( pExpr->op==TK_COLUMN );
4110 if( pExpr->iTable==pColumn->iTable
4111 && pExpr->iColumn==pColumn->iColumn
4113 return; /* Already present. Return without doing anything. */
4117 pConst->nConst++;
4118 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4119 pConst->nConst*2*sizeof(Expr*));
4120 if( pConst->apExpr==0 ){
4121 pConst->nConst = 0;
4122 }else{
4123 if( ExprHasProperty(pValue, EP_FixedCol) ) pValue = pValue->pLeft;
4124 pConst->apExpr[pConst->nConst*2-2] = pColumn;
4125 pConst->apExpr[pConst->nConst*2-1] = pValue;
4130 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4131 ** is a constant expression and where the term must be true because it
4132 ** is part of the AND-connected terms of the expression. For each term
4133 ** found, add it to the pConst structure.
4135 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4136 Expr *pRight, *pLeft;
4137 if( pExpr==0 ) return;
4138 if( ExprHasProperty(pExpr, EP_FromJoin) ) return;
4139 if( pExpr->op==TK_AND ){
4140 findConstInWhere(pConst, pExpr->pRight);
4141 findConstInWhere(pConst, pExpr->pLeft);
4142 return;
4144 if( pExpr->op!=TK_EQ ) return;
4145 pRight = pExpr->pRight;
4146 pLeft = pExpr->pLeft;
4147 assert( pRight!=0 );
4148 assert( pLeft!=0 );
4149 if( pRight->op==TK_COLUMN
4150 && !ExprHasProperty(pRight, EP_FixedCol)
4151 && sqlite3ExprIsConstant(pLeft)
4152 && sqlite3IsBinary(sqlite3BinaryCompareCollSeq(pConst->pParse,pLeft,pRight))
4154 constInsert(pConst, pRight, pLeft);
4155 }else
4156 if( pLeft->op==TK_COLUMN
4157 && !ExprHasProperty(pLeft, EP_FixedCol)
4158 && sqlite3ExprIsConstant(pRight)
4159 && sqlite3IsBinary(sqlite3BinaryCompareCollSeq(pConst->pParse,pLeft,pRight))
4161 constInsert(pConst, pLeft, pRight);
4166 ** This is a Walker expression callback. pExpr is a candidate expression
4167 ** to be replaced by a value. If pExpr is equivalent to one of the
4168 ** columns named in pWalker->u.pConst, then overwrite it with its
4169 ** corresponding value.
4171 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4172 int i;
4173 WhereConst *pConst;
4174 if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4175 if( ExprHasProperty(pExpr, EP_FixedCol) ) return WRC_Continue;
4176 pConst = pWalker->u.pConst;
4177 for(i=0; i<pConst->nConst; i++){
4178 Expr *pColumn = pConst->apExpr[i*2];
4179 if( pColumn==pExpr ) continue;
4180 if( pColumn->iTable!=pExpr->iTable ) continue;
4181 if( pColumn->iColumn!=pExpr->iColumn ) continue;
4182 /* A match is found. Add the EP_FixedCol property */
4183 pConst->nChng++;
4184 ExprClearProperty(pExpr, EP_Leaf);
4185 ExprSetProperty(pExpr, EP_FixedCol);
4186 assert( pExpr->pLeft==0 );
4187 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4188 break;
4190 return WRC_Prune;
4194 ** The WHERE-clause constant propagation optimization.
4196 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4197 ** CONSTANT=COLUMN that must be tree (in other words, if the terms top-level
4198 ** AND-connected terms that are not part of a ON clause from a LEFT JOIN)
4199 ** then throughout the query replace all other occurrences of COLUMN
4200 ** with CONSTANT within the WHERE clause.
4202 ** For example, the query:
4204 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4206 ** Is transformed into
4208 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4210 ** Return true if any transformations where made and false if not.
4212 ** Implementation note: Constant propagation is tricky due to affinity
4213 ** and collating sequence interactions. Consider this example:
4215 ** CREATE TABLE t1(a INT,b TEXT);
4216 ** INSERT INTO t1 VALUES(123,'0123');
4217 ** SELECT * FROM t1 WHERE a=123 AND b=a;
4218 ** SELECT * FROM t1 WHERE a=123 AND b=123;
4220 ** The two SELECT statements above should return different answers. b=a
4221 ** is alway true because the comparison uses numeric affinity, but b=123
4222 ** is false because it uses text affinity and '0123' is not the same as '123'.
4223 ** To work around this, the expression tree is not actually changed from
4224 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4225 ** and the "123" value is hung off of the pLeft pointer. Code generator
4226 ** routines know to generate the constant "123" instead of looking up the
4227 ** column value. Also, to avoid collation problems, this optimization is
4228 ** only attempted if the "a=123" term uses the default BINARY collation.
4230 static int propagateConstants(
4231 Parse *pParse, /* The parsing context */
4232 Select *p /* The query in which to propagate constants */
4234 WhereConst x;
4235 Walker w;
4236 int nChng = 0;
4237 x.pParse = pParse;
4239 x.nConst = 0;
4240 x.nChng = 0;
4241 x.apExpr = 0;
4242 findConstInWhere(&x, p->pWhere);
4243 if( x.nConst ){
4244 memset(&w, 0, sizeof(w));
4245 w.pParse = pParse;
4246 w.xExprCallback = propagateConstantExprRewrite;
4247 w.xSelectCallback = sqlite3SelectWalkNoop;
4248 w.xSelectCallback2 = 0;
4249 w.walkerDepth = 0;
4250 w.u.pConst = &x;
4251 sqlite3WalkExpr(&w, p->pWhere);
4252 sqlite3DbFree(x.pParse->db, x.apExpr);
4253 nChng += x.nChng;
4255 }while( x.nChng );
4256 return nChng;
4259 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4261 ** Make copies of relevant WHERE clause terms of the outer query into
4262 ** the WHERE clause of subquery. Example:
4264 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4266 ** Transformed into:
4268 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4269 ** WHERE x=5 AND y=10;
4271 ** The hope is that the terms added to the inner query will make it more
4272 ** efficient.
4274 ** Do not attempt this optimization if:
4276 ** (1) (** This restriction was removed on 2017-09-29. We used to
4277 ** disallow this optimization for aggregate subqueries, but now
4278 ** it is allowed by putting the extra terms on the HAVING clause.
4279 ** The added HAVING clause is pointless if the subquery lacks
4280 ** a GROUP BY clause. But such a HAVING clause is also harmless
4281 ** so there does not appear to be any reason to add extra logic
4282 ** to suppress it. **)
4284 ** (2) The inner query is the recursive part of a common table expression.
4286 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE
4287 ** clause would change the meaning of the LIMIT).
4289 ** (4) The inner query is the right operand of a LEFT JOIN and the
4290 ** expression to be pushed down does not come from the ON clause
4291 ** on that LEFT JOIN.
4293 ** (5) The WHERE clause expression originates in the ON or USING clause
4294 ** of a LEFT JOIN where iCursor is not the right-hand table of that
4295 ** left join. An example:
4297 ** SELECT *
4298 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4299 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4300 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4302 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9).
4303 ** But if the (b2=2) term were to be pushed down into the bb subquery,
4304 ** then the (1,1,NULL) row would be suppressed.
4306 ** (6) The inner query features one or more window-functions (since
4307 ** changes to the WHERE clause of the inner query could change the
4308 ** window over which window functions are calculated).
4310 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4311 ** terms are duplicated into the subquery.
4313 static int pushDownWhereTerms(
4314 Parse *pParse, /* Parse context (for malloc() and error reporting) */
4315 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */
4316 Expr *pWhere, /* The WHERE clause of the outer query */
4317 int iCursor, /* Cursor number of the subquery */
4318 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */
4320 Expr *pNew;
4321 int nChng = 0;
4322 if( pWhere==0 ) return 0;
4323 if( pSubq->selFlags & SF_Recursive ) return 0; /* restriction (2) */
4325 #ifndef SQLITE_OMIT_WINDOWFUNC
4326 if( pSubq->pWin ) return 0; /* restriction (6) */
4327 #endif
4329 #ifdef SQLITE_DEBUG
4330 /* Only the first term of a compound can have a WITH clause. But make
4331 ** sure no other terms are marked SF_Recursive in case something changes
4332 ** in the future.
4335 Select *pX;
4336 for(pX=pSubq; pX; pX=pX->pPrior){
4337 assert( (pX->selFlags & (SF_Recursive))==0 );
4340 #endif
4342 if( pSubq->pLimit!=0 ){
4343 return 0; /* restriction (3) */
4345 while( pWhere->op==TK_AND ){
4346 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4347 iCursor, isLeftJoin);
4348 pWhere = pWhere->pLeft;
4350 if( isLeftJoin
4351 && (ExprHasProperty(pWhere,EP_FromJoin)==0
4352 || pWhere->iRightJoinTable!=iCursor)
4354 return 0; /* restriction (4) */
4356 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
4357 return 0; /* restriction (5) */
4359 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4360 nChng++;
4361 while( pSubq ){
4362 SubstContext x;
4363 pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4364 unsetJoinExpr(pNew, -1);
4365 x.pParse = pParse;
4366 x.iTable = iCursor;
4367 x.iNewTable = iCursor;
4368 x.isLeftJoin = 0;
4369 x.pEList = pSubq->pEList;
4370 pNew = substExpr(&x, pNew);
4371 if( pSubq->selFlags & SF_Aggregate ){
4372 pSubq->pHaving = sqlite3ExprAnd(pParse->db, pSubq->pHaving, pNew);
4373 }else{
4374 pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew);
4376 pSubq = pSubq->pPrior;
4379 return nChng;
4381 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4384 ** The pFunc is the only aggregate function in the query. Check to see
4385 ** if the query is a candidate for the min/max optimization.
4387 ** If the query is a candidate for the min/max optimization, then set
4388 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4389 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4390 ** whether pFunc is a min() or max() function.
4392 ** If the query is not a candidate for the min/max optimization, return
4393 ** WHERE_ORDERBY_NORMAL (which must be zero).
4395 ** This routine must be called after aggregate functions have been
4396 ** located but before their arguments have been subjected to aggregate
4397 ** analysis.
4399 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4400 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */
4401 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */
4402 const char *zFunc; /* Name of aggregate function pFunc */
4403 ExprList *pOrderBy;
4404 u8 sortOrder;
4406 assert( *ppMinMax==0 );
4407 assert( pFunc->op==TK_AGG_FUNCTION );
4408 if( pEList==0 || pEList->nExpr!=1 ) return eRet;
4409 zFunc = pFunc->u.zToken;
4410 if( sqlite3StrICmp(zFunc, "min")==0 ){
4411 eRet = WHERE_ORDERBY_MIN;
4412 sortOrder = SQLITE_SO_ASC;
4413 }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4414 eRet = WHERE_ORDERBY_MAX;
4415 sortOrder = SQLITE_SO_DESC;
4416 }else{
4417 return eRet;
4419 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
4420 assert( pOrderBy!=0 || db->mallocFailed );
4421 if( pOrderBy ) pOrderBy->a[0].sortOrder = sortOrder;
4422 return eRet;
4426 ** The select statement passed as the first argument is an aggregate query.
4427 ** The second argument is the associated aggregate-info object. This
4428 ** function tests if the SELECT is of the form:
4430 ** SELECT count(*) FROM <tbl>
4432 ** where table is a database table, not a sub-select or view. If the query
4433 ** does match this pattern, then a pointer to the Table object representing
4434 ** <tbl> is returned. Otherwise, 0 is returned.
4436 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4437 Table *pTab;
4438 Expr *pExpr;
4440 assert( !p->pGroupBy );
4442 if( p->pWhere || p->pEList->nExpr!=1
4443 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
4445 return 0;
4447 pTab = p->pSrc->a[0].pTab;
4448 pExpr = p->pEList->a[0].pExpr;
4449 assert( pTab && !pTab->pSelect && pExpr );
4451 if( IsVirtual(pTab) ) return 0;
4452 if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4453 if( NEVER(pAggInfo->nFunc==0) ) return 0;
4454 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4455 if( pExpr->flags&EP_Distinct ) return 0;
4457 return pTab;
4461 ** If the source-list item passed as an argument was augmented with an
4462 ** INDEXED BY clause, then try to locate the specified index. If there
4463 ** was such a clause and the named index cannot be found, return
4464 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4465 ** pFrom->pIndex and return SQLITE_OK.
4467 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
4468 if( pFrom->pTab && pFrom->fg.isIndexedBy ){
4469 Table *pTab = pFrom->pTab;
4470 char *zIndexedBy = pFrom->u1.zIndexedBy;
4471 Index *pIdx;
4472 for(pIdx=pTab->pIndex;
4473 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4474 pIdx=pIdx->pNext
4476 if( !pIdx ){
4477 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4478 pParse->checkSchema = 1;
4479 return SQLITE_ERROR;
4481 pFrom->pIBIndex = pIdx;
4483 return SQLITE_OK;
4486 ** Detect compound SELECT statements that use an ORDER BY clause with
4487 ** an alternative collating sequence.
4489 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4491 ** These are rewritten as a subquery:
4493 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4494 ** ORDER BY ... COLLATE ...
4496 ** This transformation is necessary because the multiSelectOrderBy() routine
4497 ** above that generates the code for a compound SELECT with an ORDER BY clause
4498 ** uses a merge algorithm that requires the same collating sequence on the
4499 ** result columns as on the ORDER BY clause. See ticket
4500 ** http://www.sqlite.org/src/info/6709574d2a
4502 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4503 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4504 ** there are COLLATE terms in the ORDER BY.
4506 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4507 int i;
4508 Select *pNew;
4509 Select *pX;
4510 sqlite3 *db;
4511 struct ExprList_item *a;
4512 SrcList *pNewSrc;
4513 Parse *pParse;
4514 Token dummy;
4516 if( p->pPrior==0 ) return WRC_Continue;
4517 if( p->pOrderBy==0 ) return WRC_Continue;
4518 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4519 if( pX==0 ) return WRC_Continue;
4520 a = p->pOrderBy->a;
4521 for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4522 if( a[i].pExpr->flags & EP_Collate ) break;
4524 if( i<0 ) return WRC_Continue;
4526 /* If we reach this point, that means the transformation is required. */
4528 pParse = pWalker->pParse;
4529 db = pParse->db;
4530 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4531 if( pNew==0 ) return WRC_Abort;
4532 memset(&dummy, 0, sizeof(dummy));
4533 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4534 if( pNewSrc==0 ) return WRC_Abort;
4535 *pNew = *p;
4536 p->pSrc = pNewSrc;
4537 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4538 p->op = TK_SELECT;
4539 p->pWhere = 0;
4540 pNew->pGroupBy = 0;
4541 pNew->pHaving = 0;
4542 pNew->pOrderBy = 0;
4543 p->pPrior = 0;
4544 p->pNext = 0;
4545 p->pWith = 0;
4546 p->selFlags &= ~SF_Compound;
4547 assert( (p->selFlags & SF_Converted)==0 );
4548 p->selFlags |= SF_Converted;
4549 assert( pNew->pPrior!=0 );
4550 pNew->pPrior->pNext = pNew;
4551 pNew->pLimit = 0;
4552 return WRC_Continue;
4556 ** Check to see if the FROM clause term pFrom has table-valued function
4557 ** arguments. If it does, leave an error message in pParse and return
4558 ** non-zero, since pFrom is not allowed to be a table-valued function.
4560 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4561 if( pFrom->fg.isTabFunc ){
4562 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4563 return 1;
4565 return 0;
4568 #ifndef SQLITE_OMIT_CTE
4570 ** Argument pWith (which may be NULL) points to a linked list of nested
4571 ** WITH contexts, from inner to outermost. If the table identified by
4572 ** FROM clause element pItem is really a common-table-expression (CTE)
4573 ** then return a pointer to the CTE definition for that table. Otherwise
4574 ** return NULL.
4576 ** If a non-NULL value is returned, set *ppContext to point to the With
4577 ** object that the returned CTE belongs to.
4579 static struct Cte *searchWith(
4580 With *pWith, /* Current innermost WITH clause */
4581 struct SrcList_item *pItem, /* FROM clause element to resolve */
4582 With **ppContext /* OUT: WITH clause return value belongs to */
4584 const char *zName;
4585 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4586 With *p;
4587 for(p=pWith; p; p=p->pOuter){
4588 int i;
4589 for(i=0; i<p->nCte; i++){
4590 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4591 *ppContext = p;
4592 return &p->a[i];
4597 return 0;
4600 /* The code generator maintains a stack of active WITH clauses
4601 ** with the inner-most WITH clause being at the top of the stack.
4603 ** This routine pushes the WITH clause passed as the second argument
4604 ** onto the top of the stack. If argument bFree is true, then this
4605 ** WITH clause will never be popped from the stack. In this case it
4606 ** should be freed along with the Parse object. In other cases, when
4607 ** bFree==0, the With object will be freed along with the SELECT
4608 ** statement with which it is associated.
4610 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4611 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4612 if( pWith ){
4613 assert( pParse->pWith!=pWith );
4614 pWith->pOuter = pParse->pWith;
4615 pParse->pWith = pWith;
4616 if( bFree ) pParse->pWithToFree = pWith;
4621 ** This function checks if argument pFrom refers to a CTE declared by
4622 ** a WITH clause on the stack currently maintained by the parser. And,
4623 ** if currently processing a CTE expression, if it is a recursive
4624 ** reference to the current CTE.
4626 ** If pFrom falls into either of the two categories above, pFrom->pTab
4627 ** and other fields are populated accordingly. The caller should check
4628 ** (pFrom->pTab!=0) to determine whether or not a successful match
4629 ** was found.
4631 ** Whether or not a match is found, SQLITE_OK is returned if no error
4632 ** occurs. If an error does occur, an error message is stored in the
4633 ** parser and some error code other than SQLITE_OK returned.
4635 static int withExpand(
4636 Walker *pWalker,
4637 struct SrcList_item *pFrom
4639 Parse *pParse = pWalker->pParse;
4640 sqlite3 *db = pParse->db;
4641 struct Cte *pCte; /* Matched CTE (or NULL if no match) */
4642 With *pWith; /* WITH clause that pCte belongs to */
4644 assert( pFrom->pTab==0 );
4646 pCte = searchWith(pParse->pWith, pFrom, &pWith);
4647 if( pCte ){
4648 Table *pTab;
4649 ExprList *pEList;
4650 Select *pSel;
4651 Select *pLeft; /* Left-most SELECT statement */
4652 int bMayRecursive; /* True if compound joined by UNION [ALL] */
4653 With *pSavedWith; /* Initial value of pParse->pWith */
4655 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4656 ** recursive reference to CTE pCte. Leave an error in pParse and return
4657 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4658 ** In this case, proceed. */
4659 if( pCte->zCteErr ){
4660 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4661 return SQLITE_ERROR;
4663 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4665 assert( pFrom->pTab==0 );
4666 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4667 if( pTab==0 ) return WRC_Abort;
4668 pTab->nTabRef = 1;
4669 pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4670 pTab->iPKey = -1;
4671 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4672 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4673 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4674 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4675 assert( pFrom->pSelect );
4677 /* Check if this is a recursive CTE. */
4678 pSel = pFrom->pSelect;
4679 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4680 if( bMayRecursive ){
4681 int i;
4682 SrcList *pSrc = pFrom->pSelect->pSrc;
4683 for(i=0; i<pSrc->nSrc; i++){
4684 struct SrcList_item *pItem = &pSrc->a[i];
4685 if( pItem->zDatabase==0
4686 && pItem->zName!=0
4687 && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4689 pItem->pTab = pTab;
4690 pItem->fg.isRecursive = 1;
4691 pTab->nTabRef++;
4692 pSel->selFlags |= SF_Recursive;
4697 /* Only one recursive reference is permitted. */
4698 if( pTab->nTabRef>2 ){
4699 sqlite3ErrorMsg(
4700 pParse, "multiple references to recursive table: %s", pCte->zName
4702 return SQLITE_ERROR;
4704 assert( pTab->nTabRef==1 ||
4705 ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 ));
4707 pCte->zCteErr = "circular reference: %s";
4708 pSavedWith = pParse->pWith;
4709 pParse->pWith = pWith;
4710 if( bMayRecursive ){
4711 Select *pPrior = pSel->pPrior;
4712 assert( pPrior->pWith==0 );
4713 pPrior->pWith = pSel->pWith;
4714 sqlite3WalkSelect(pWalker, pPrior);
4715 pPrior->pWith = 0;
4716 }else{
4717 sqlite3WalkSelect(pWalker, pSel);
4719 pParse->pWith = pWith;
4721 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4722 pEList = pLeft->pEList;
4723 if( pCte->pCols ){
4724 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4725 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4726 pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4728 pParse->pWith = pSavedWith;
4729 return SQLITE_ERROR;
4731 pEList = pCte->pCols;
4734 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4735 if( bMayRecursive ){
4736 if( pSel->selFlags & SF_Recursive ){
4737 pCte->zCteErr = "multiple recursive references: %s";
4738 }else{
4739 pCte->zCteErr = "recursive reference in a subquery: %s";
4741 sqlite3WalkSelect(pWalker, pSel);
4743 pCte->zCteErr = 0;
4744 pParse->pWith = pSavedWith;
4747 return SQLITE_OK;
4749 #endif
4751 #ifndef SQLITE_OMIT_CTE
4753 ** If the SELECT passed as the second argument has an associated WITH
4754 ** clause, pop it from the stack stored as part of the Parse object.
4756 ** This function is used as the xSelectCallback2() callback by
4757 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4758 ** names and other FROM clause elements.
4760 static void selectPopWith(Walker *pWalker, Select *p){
4761 Parse *pParse = pWalker->pParse;
4762 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
4763 With *pWith = findRightmost(p)->pWith;
4764 if( pWith!=0 ){
4765 assert( pParse->pWith==pWith );
4766 pParse->pWith = pWith->pOuter;
4770 #else
4771 #define selectPopWith 0
4772 #endif
4775 ** The SrcList_item structure passed as the second argument represents a
4776 ** sub-query in the FROM clause of a SELECT statement. This function
4777 ** allocates and populates the SrcList_item.pTab object. If successful,
4778 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
4779 ** SQLITE_NOMEM.
4781 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){
4782 Select *pSel = pFrom->pSelect;
4783 Table *pTab;
4785 assert( pSel );
4786 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
4787 if( pTab==0 ) return SQLITE_NOMEM;
4788 pTab->nTabRef = 1;
4789 if( pFrom->zAlias ){
4790 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
4791 }else{
4792 pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId);
4794 while( pSel->pPrior ){ pSel = pSel->pPrior; }
4795 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4796 pTab->iPKey = -1;
4797 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4798 pTab->tabFlags |= TF_Ephemeral;
4800 return SQLITE_OK;
4804 ** This routine is a Walker callback for "expanding" a SELECT statement.
4805 ** "Expanding" means to do the following:
4807 ** (1) Make sure VDBE cursor numbers have been assigned to every
4808 ** element of the FROM clause.
4810 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
4811 ** defines FROM clause. When views appear in the FROM clause,
4812 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
4813 ** that implements the view. A copy is made of the view's SELECT
4814 ** statement so that we can freely modify or delete that statement
4815 ** without worrying about messing up the persistent representation
4816 ** of the view.
4818 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
4819 ** on joins and the ON and USING clause of joins.
4821 ** (4) Scan the list of columns in the result set (pEList) looking
4822 ** for instances of the "*" operator or the TABLE.* operator.
4823 ** If found, expand each "*" to be every column in every table
4824 ** and TABLE.* to be every column in TABLE.
4827 static int selectExpander(Walker *pWalker, Select *p){
4828 Parse *pParse = pWalker->pParse;
4829 int i, j, k;
4830 SrcList *pTabList;
4831 ExprList *pEList;
4832 struct SrcList_item *pFrom;
4833 sqlite3 *db = pParse->db;
4834 Expr *pE, *pRight, *pExpr;
4835 u16 selFlags = p->selFlags;
4836 u32 elistFlags = 0;
4838 p->selFlags |= SF_Expanded;
4839 if( db->mallocFailed ){
4840 return WRC_Abort;
4842 assert( p->pSrc!=0 );
4843 if( (selFlags & SF_Expanded)!=0 ){
4844 return WRC_Prune;
4846 pTabList = p->pSrc;
4847 pEList = p->pEList;
4848 sqlite3WithPush(pParse, p->pWith, 0);
4850 /* Make sure cursor numbers have been assigned to all entries in
4851 ** the FROM clause of the SELECT statement.
4853 sqlite3SrcListAssignCursors(pParse, pTabList);
4855 /* Look up every table named in the FROM clause of the select. If
4856 ** an entry of the FROM clause is a subquery instead of a table or view,
4857 ** then create a transient table structure to describe the subquery.
4859 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4860 Table *pTab;
4861 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4862 if( pFrom->fg.isRecursive ) continue;
4863 assert( pFrom->pTab==0 );
4864 #ifndef SQLITE_OMIT_CTE
4865 if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4866 if( pFrom->pTab ) {} else
4867 #endif
4868 if( pFrom->zName==0 ){
4869 #ifndef SQLITE_OMIT_SUBQUERY
4870 Select *pSel = pFrom->pSelect;
4871 /* A sub-query in the FROM clause of a SELECT */
4872 assert( pSel!=0 );
4873 assert( pFrom->pTab==0 );
4874 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4875 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
4876 #endif
4877 }else{
4878 /* An ordinary table or view name in the FROM clause */
4879 assert( pFrom->pTab==0 );
4880 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4881 if( pTab==0 ) return WRC_Abort;
4882 if( pTab->nTabRef>=0xffff ){
4883 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4884 pTab->zName);
4885 pFrom->pTab = 0;
4886 return WRC_Abort;
4888 pTab->nTabRef++;
4889 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
4890 return WRC_Abort;
4892 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4893 if( IsVirtual(pTab) || pTab->pSelect ){
4894 i16 nCol;
4895 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4896 assert( pFrom->pSelect==0 );
4897 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4898 nCol = pTab->nCol;
4899 pTab->nCol = -1;
4900 sqlite3WalkSelect(pWalker, pFrom->pSelect);
4901 pTab->nCol = nCol;
4903 #endif
4906 /* Locate the index named by the INDEXED BY clause, if any. */
4907 if( sqlite3IndexedByLookup(pParse, pFrom) ){
4908 return WRC_Abort;
4912 /* Process NATURAL keywords, and ON and USING clauses of joins.
4914 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4915 return WRC_Abort;
4918 /* For every "*" that occurs in the column list, insert the names of
4919 ** all columns in all tables. And for every TABLE.* insert the names
4920 ** of all columns in TABLE. The parser inserted a special expression
4921 ** with the TK_ASTERISK operator for each "*" that it found in the column
4922 ** list. The following code just has to locate the TK_ASTERISK
4923 ** expressions and expand each one to the list of all columns in
4924 ** all tables.
4926 ** The first loop just checks to see if there are any "*" operators
4927 ** that need expanding.
4929 for(k=0; k<pEList->nExpr; k++){
4930 pE = pEList->a[k].pExpr;
4931 if( pE->op==TK_ASTERISK ) break;
4932 assert( pE->op!=TK_DOT || pE->pRight!=0 );
4933 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4934 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
4935 elistFlags |= pE->flags;
4937 if( k<pEList->nExpr ){
4939 ** If we get here it means the result set contains one or more "*"
4940 ** operators that need to be expanded. Loop through each expression
4941 ** in the result set and expand them one by one.
4943 struct ExprList_item *a = pEList->a;
4944 ExprList *pNew = 0;
4945 int flags = pParse->db->flags;
4946 int longNames = (flags & SQLITE_FullColNames)!=0
4947 && (flags & SQLITE_ShortColNames)==0;
4949 for(k=0; k<pEList->nExpr; k++){
4950 pE = a[k].pExpr;
4951 elistFlags |= pE->flags;
4952 pRight = pE->pRight;
4953 assert( pE->op!=TK_DOT || pRight!=0 );
4954 if( pE->op!=TK_ASTERISK
4955 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
4957 /* This particular expression does not need to be expanded.
4959 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4960 if( pNew ){
4961 pNew->a[pNew->nExpr-1].zName = a[k].zName;
4962 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4963 a[k].zName = 0;
4964 a[k].zSpan = 0;
4966 a[k].pExpr = 0;
4967 }else{
4968 /* This expression is a "*" or a "TABLE.*" and needs to be
4969 ** expanded. */
4970 int tableSeen = 0; /* Set to 1 when TABLE matches */
4971 char *zTName = 0; /* text of name of TABLE */
4972 if( pE->op==TK_DOT ){
4973 assert( pE->pLeft!=0 );
4974 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4975 zTName = pE->pLeft->u.zToken;
4977 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4978 Table *pTab = pFrom->pTab;
4979 Select *pSub = pFrom->pSelect;
4980 char *zTabName = pFrom->zAlias;
4981 const char *zSchemaName = 0;
4982 int iDb;
4983 if( zTabName==0 ){
4984 zTabName = pTab->zName;
4986 if( db->mallocFailed ) break;
4987 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4988 pSub = 0;
4989 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4990 continue;
4992 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4993 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
4995 for(j=0; j<pTab->nCol; j++){
4996 char *zName = pTab->aCol[j].zName;
4997 char *zColname; /* The computed column name */
4998 char *zToFree; /* Malloced string that needs to be freed */
4999 Token sColname; /* Computed column name as a token */
5001 assert( zName );
5002 if( zTName && pSub
5003 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
5005 continue;
5008 /* If a column is marked as 'hidden', omit it from the expanded
5009 ** result-set list unless the SELECT has the SF_IncludeHidden
5010 ** bit set.
5012 if( (p->selFlags & SF_IncludeHidden)==0
5013 && IsHiddenColumn(&pTab->aCol[j])
5015 continue;
5017 tableSeen = 1;
5019 if( i>0 && zTName==0 ){
5020 if( (pFrom->fg.jointype & JT_NATURAL)!=0
5021 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
5023 /* In a NATURAL join, omit the join columns from the
5024 ** table to the right of the join */
5025 continue;
5027 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
5028 /* In a join with a USING clause, omit columns in the
5029 ** using clause from the table on the right. */
5030 continue;
5033 pRight = sqlite3Expr(db, TK_ID, zName);
5034 zColname = zName;
5035 zToFree = 0;
5036 if( longNames || pTabList->nSrc>1 ){
5037 Expr *pLeft;
5038 pLeft = sqlite3Expr(db, TK_ID, zTabName);
5039 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
5040 if( zSchemaName ){
5041 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
5042 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
5044 if( longNames ){
5045 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
5046 zToFree = zColname;
5048 }else{
5049 pExpr = pRight;
5051 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
5052 sqlite3TokenInit(&sColname, zColname);
5053 sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
5054 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
5055 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
5056 if( pSub ){
5057 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
5058 testcase( pX->zSpan==0 );
5059 }else{
5060 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
5061 zSchemaName, zTabName, zColname);
5062 testcase( pX->zSpan==0 );
5064 pX->bSpanIsTab = 1;
5066 sqlite3DbFree(db, zToFree);
5069 if( !tableSeen ){
5070 if( zTName ){
5071 sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
5072 }else{
5073 sqlite3ErrorMsg(pParse, "no tables specified");
5078 sqlite3ExprListDelete(db, pEList);
5079 p->pEList = pNew;
5081 if( p->pEList ){
5082 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
5083 sqlite3ErrorMsg(pParse, "too many columns in result set");
5084 return WRC_Abort;
5086 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
5087 p->selFlags |= SF_ComplexResult;
5090 return WRC_Continue;
5094 ** No-op routine for the parse-tree walker.
5096 ** When this routine is the Walker.xExprCallback then expression trees
5097 ** are walked without any actions being taken at each node. Presumably,
5098 ** when this routine is used for Walker.xExprCallback then
5099 ** Walker.xSelectCallback is set to do something useful for every
5100 ** subquery in the parser tree.
5102 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
5103 UNUSED_PARAMETER2(NotUsed, NotUsed2);
5104 return WRC_Continue;
5108 ** No-op routine for the parse-tree walker for SELECT statements.
5109 ** subquery in the parser tree.
5111 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){
5112 UNUSED_PARAMETER2(NotUsed, NotUsed2);
5113 return WRC_Continue;
5116 #if SQLITE_DEBUG
5118 ** Always assert. This xSelectCallback2 implementation proves that the
5119 ** xSelectCallback2 is never invoked.
5121 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
5122 UNUSED_PARAMETER2(NotUsed, NotUsed2);
5123 assert( 0 );
5125 #endif
5127 ** This routine "expands" a SELECT statement and all of its subqueries.
5128 ** For additional information on what it means to "expand" a SELECT
5129 ** statement, see the comment on the selectExpand worker callback above.
5131 ** Expanding a SELECT statement is the first step in processing a
5132 ** SELECT statement. The SELECT statement must be expanded before
5133 ** name resolution is performed.
5135 ** If anything goes wrong, an error message is written into pParse.
5136 ** The calling function can detect the problem by looking at pParse->nErr
5137 ** and/or pParse->db->mallocFailed.
5139 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
5140 Walker w;
5141 w.xExprCallback = sqlite3ExprWalkNoop;
5142 w.pParse = pParse;
5143 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
5144 w.xSelectCallback = convertCompoundSelectToSubquery;
5145 w.xSelectCallback2 = 0;
5146 sqlite3WalkSelect(&w, pSelect);
5148 w.xSelectCallback = selectExpander;
5149 w.xSelectCallback2 = selectPopWith;
5150 sqlite3WalkSelect(&w, pSelect);
5154 #ifndef SQLITE_OMIT_SUBQUERY
5156 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
5157 ** interface.
5159 ** For each FROM-clause subquery, add Column.zType and Column.zColl
5160 ** information to the Table structure that represents the result set
5161 ** of that subquery.
5163 ** The Table structure that represents the result set was constructed
5164 ** by selectExpander() but the type and collation information was omitted
5165 ** at that point because identifiers had not yet been resolved. This
5166 ** routine is called after identifier resolution.
5168 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
5169 Parse *pParse;
5170 int i;
5171 SrcList *pTabList;
5172 struct SrcList_item *pFrom;
5174 assert( p->selFlags & SF_Resolved );
5175 if( p->selFlags & SF_HasTypeInfo ) return;
5176 p->selFlags |= SF_HasTypeInfo;
5177 pParse = pWalker->pParse;
5178 pTabList = p->pSrc;
5179 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5180 Table *pTab = pFrom->pTab;
5181 assert( pTab!=0 );
5182 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
5183 /* A sub-query in the FROM clause of a SELECT */
5184 Select *pSel = pFrom->pSelect;
5185 if( pSel ){
5186 while( pSel->pPrior ) pSel = pSel->pPrior;
5187 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel);
5192 #endif
5196 ** This routine adds datatype and collating sequence information to
5197 ** the Table structures of all FROM-clause subqueries in a
5198 ** SELECT statement.
5200 ** Use this routine after name resolution.
5202 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
5203 #ifndef SQLITE_OMIT_SUBQUERY
5204 Walker w;
5205 w.xSelectCallback = sqlite3SelectWalkNoop;
5206 w.xSelectCallback2 = selectAddSubqueryTypeInfo;
5207 w.xExprCallback = sqlite3ExprWalkNoop;
5208 w.pParse = pParse;
5209 sqlite3WalkSelect(&w, pSelect);
5210 #endif
5215 ** This routine sets up a SELECT statement for processing. The
5216 ** following is accomplished:
5218 ** * VDBE Cursor numbers are assigned to all FROM-clause terms.
5219 ** * Ephemeral Table objects are created for all FROM-clause subqueries.
5220 ** * ON and USING clauses are shifted into WHERE statements
5221 ** * Wildcards "*" and "TABLE.*" in result sets are expanded.
5222 ** * Identifiers in expression are matched to tables.
5224 ** This routine acts recursively on all subqueries within the SELECT.
5226 void sqlite3SelectPrep(
5227 Parse *pParse, /* The parser context */
5228 Select *p, /* The SELECT statement being coded. */
5229 NameContext *pOuterNC /* Name context for container */
5231 assert( p!=0 || pParse->db->mallocFailed );
5232 if( pParse->db->mallocFailed ) return;
5233 if( p->selFlags & SF_HasTypeInfo ) return;
5234 sqlite3SelectExpand(pParse, p);
5235 if( pParse->nErr || pParse->db->mallocFailed ) return;
5236 sqlite3ResolveSelectNames(pParse, p, pOuterNC);
5237 if( pParse->nErr || pParse->db->mallocFailed ) return;
5238 sqlite3SelectAddTypeInfo(pParse, p);
5242 ** Reset the aggregate accumulator.
5244 ** The aggregate accumulator is a set of memory cells that hold
5245 ** intermediate results while calculating an aggregate. This
5246 ** routine generates code that stores NULLs in all of those memory
5247 ** cells.
5249 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
5250 Vdbe *v = pParse->pVdbe;
5251 int i;
5252 struct AggInfo_func *pFunc;
5253 int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
5254 if( nReg==0 ) return;
5255 #ifdef SQLITE_DEBUG
5256 /* Verify that all AggInfo registers are within the range specified by
5257 ** AggInfo.mnReg..AggInfo.mxReg */
5258 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
5259 for(i=0; i<pAggInfo->nColumn; i++){
5260 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
5261 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
5263 for(i=0; i<pAggInfo->nFunc; i++){
5264 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
5265 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
5267 #endif
5268 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
5269 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
5270 if( pFunc->iDistinct>=0 ){
5271 Expr *pE = pFunc->pExpr;
5272 assert( !ExprHasProperty(pE, EP_xIsSelect) );
5273 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5274 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5275 "argument");
5276 pFunc->iDistinct = -1;
5277 }else{
5278 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
5279 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
5280 (char*)pKeyInfo, P4_KEYINFO);
5287 ** Invoke the OP_AggFinalize opcode for every aggregate function
5288 ** in the AggInfo structure.
5290 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
5291 Vdbe *v = pParse->pVdbe;
5292 int i;
5293 struct AggInfo_func *pF;
5294 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5295 ExprList *pList = pF->pExpr->x.pList;
5296 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5297 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
5298 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5304 ** Update the accumulator memory cells for an aggregate based on
5305 ** the current cursor position.
5307 ** If regAcc is non-zero and there are no min() or max() aggregates
5308 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
5309 ** registers i register regAcc contains 0. The caller will take care
5310 ** of setting and clearing regAcc.
5312 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){
5313 Vdbe *v = pParse->pVdbe;
5314 int i;
5315 int regHit = 0;
5316 int addrHitTest = 0;
5317 struct AggInfo_func *pF;
5318 struct AggInfo_col *pC;
5320 pAggInfo->directMode = 1;
5321 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5322 int nArg;
5323 int addrNext = 0;
5324 int regAgg;
5325 ExprList *pList = pF->pExpr->x.pList;
5326 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5327 if( pList ){
5328 nArg = pList->nExpr;
5329 regAgg = sqlite3GetTempRange(pParse, nArg);
5330 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
5331 }else{
5332 nArg = 0;
5333 regAgg = 0;
5335 if( pF->iDistinct>=0 ){
5336 addrNext = sqlite3VdbeMakeLabel(pParse);
5337 testcase( nArg==0 ); /* Error condition */
5338 testcase( nArg>1 ); /* Also an error */
5339 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
5341 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
5342 CollSeq *pColl = 0;
5343 struct ExprList_item *pItem;
5344 int j;
5345 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
5346 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
5347 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
5349 if( !pColl ){
5350 pColl = pParse->db->pDfltColl;
5352 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
5353 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
5355 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
5356 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5357 sqlite3VdbeChangeP5(v, (u8)nArg);
5358 sqlite3ReleaseTempRange(pParse, regAgg, nArg);
5359 if( addrNext ){
5360 sqlite3VdbeResolveLabel(v, addrNext);
5363 if( regHit==0 && pAggInfo->nAccumulator ){
5364 regHit = regAcc;
5366 if( regHit ){
5367 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
5369 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
5370 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
5372 pAggInfo->directMode = 0;
5373 if( addrHitTest ){
5374 sqlite3VdbeJumpHere(v, addrHitTest);
5379 ** Add a single OP_Explain instruction to the VDBE to explain a simple
5380 ** count(*) query ("SELECT count(*) FROM pTab").
5382 #ifndef SQLITE_OMIT_EXPLAIN
5383 static void explainSimpleCount(
5384 Parse *pParse, /* Parse context */
5385 Table *pTab, /* Table being queried */
5386 Index *pIdx /* Index used to optimize scan, or NULL */
5388 if( pParse->explain==2 ){
5389 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
5390 sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s",
5391 pTab->zName,
5392 bCover ? " USING COVERING INDEX " : "",
5393 bCover ? pIdx->zName : ""
5397 #else
5398 # define explainSimpleCount(a,b,c)
5399 #endif
5402 ** sqlite3WalkExpr() callback used by havingToWhere().
5404 ** If the node passed to the callback is a TK_AND node, return
5405 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
5407 ** Otherwise, return WRC_Prune. In this case, also check if the
5408 ** sub-expression matches the criteria for being moved to the WHERE
5409 ** clause. If so, add it to the WHERE clause and replace the sub-expression
5410 ** within the HAVING expression with a constant "1".
5412 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
5413 if( pExpr->op!=TK_AND ){
5414 Select *pS = pWalker->u.pSelect;
5415 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){
5416 sqlite3 *db = pWalker->pParse->db;
5417 Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0);
5418 if( pNew ){
5419 Expr *pWhere = pS->pWhere;
5420 SWAP(Expr, *pNew, *pExpr);
5421 pNew = sqlite3ExprAnd(db, pWhere, pNew);
5422 pS->pWhere = pNew;
5423 pWalker->eCode = 1;
5426 return WRC_Prune;
5428 return WRC_Continue;
5432 ** Transfer eligible terms from the HAVING clause of a query, which is
5433 ** processed after grouping, to the WHERE clause, which is processed before
5434 ** grouping. For example, the query:
5436 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
5438 ** can be rewritten as:
5440 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
5442 ** A term of the HAVING expression is eligible for transfer if it consists
5443 ** entirely of constants and expressions that are also GROUP BY terms that
5444 ** use the "BINARY" collation sequence.
5446 static void havingToWhere(Parse *pParse, Select *p){
5447 Walker sWalker;
5448 memset(&sWalker, 0, sizeof(sWalker));
5449 sWalker.pParse = pParse;
5450 sWalker.xExprCallback = havingToWhereExprCb;
5451 sWalker.u.pSelect = p;
5452 sqlite3WalkExpr(&sWalker, p->pHaving);
5453 #if SELECTTRACE_ENABLED
5454 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){
5455 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
5456 sqlite3TreeViewSelect(0, p, 0);
5458 #endif
5462 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
5463 ** If it is, then return the SrcList_item for the prior view. If it is not,
5464 ** then return 0.
5466 static struct SrcList_item *isSelfJoinView(
5467 SrcList *pTabList, /* Search for self-joins in this FROM clause */
5468 struct SrcList_item *pThis /* Search for prior reference to this subquery */
5470 struct SrcList_item *pItem;
5471 for(pItem = pTabList->a; pItem<pThis; pItem++){
5472 Select *pS1;
5473 if( pItem->pSelect==0 ) continue;
5474 if( pItem->fg.viaCoroutine ) continue;
5475 if( pItem->zName==0 ) continue;
5476 if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue;
5477 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5478 pS1 = pItem->pSelect;
5479 if( pThis->pSelect->selId!=pS1->selId ){
5480 /* The query flattener left two different CTE tables with identical
5481 ** names in the same FROM clause. */
5482 continue;
5484 if( sqlite3ExprCompare(0, pThis->pSelect->pWhere, pS1->pWhere, -1) ){
5485 /* The view was modified by some other optimization such as
5486 ** pushDownWhereTerms() */
5487 continue;
5489 return pItem;
5491 return 0;
5494 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5496 ** Attempt to transform a query of the form
5498 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5500 ** Into this:
5502 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5504 ** The transformation only works if all of the following are true:
5506 ** * The subquery is a UNION ALL of two or more terms
5507 ** * The subquery does not have a LIMIT clause
5508 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5509 ** * The outer query is a simple count(*)
5511 ** Return TRUE if the optimization is undertaken.
5513 static int countOfViewOptimization(Parse *pParse, Select *p){
5514 Select *pSub, *pPrior;
5515 Expr *pExpr;
5516 Expr *pCount;
5517 sqlite3 *db;
5518 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */
5519 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */
5520 pExpr = p->pEList->a[0].pExpr;
5521 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */
5522 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */
5523 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */
5524 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */
5525 pSub = p->pSrc->a[0].pSelect;
5526 if( pSub==0 ) return 0; /* The FROM is a subquery */
5527 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */
5529 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */
5530 if( pSub->pWhere ) return 0; /* No WHERE clause */
5531 if( pSub->pLimit ) return 0; /* No LIMIT clause */
5532 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */
5533 pSub = pSub->pPrior; /* Repeat over compound */
5534 }while( pSub );
5536 /* If we reach this point then it is OK to perform the transformation */
5538 db = pParse->db;
5539 pCount = pExpr;
5540 pExpr = 0;
5541 pSub = p->pSrc->a[0].pSelect;
5542 p->pSrc->a[0].pSelect = 0;
5543 sqlite3SrcListDelete(db, p->pSrc);
5544 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
5545 while( pSub ){
5546 Expr *pTerm;
5547 pPrior = pSub->pPrior;
5548 pSub->pPrior = 0;
5549 pSub->pNext = 0;
5550 pSub->selFlags |= SF_Aggregate;
5551 pSub->selFlags &= ~SF_Compound;
5552 pSub->nSelectRow = 0;
5553 sqlite3ExprListDelete(db, pSub->pEList);
5554 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
5555 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
5556 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
5557 sqlite3PExprAddSelect(pParse, pTerm, pSub);
5558 if( pExpr==0 ){
5559 pExpr = pTerm;
5560 }else{
5561 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
5563 pSub = pPrior;
5565 p->pEList->a[0].pExpr = pExpr;
5566 p->selFlags &= ~SF_Aggregate;
5568 #if SELECTTRACE_ENABLED
5569 if( sqlite3SelectTrace & 0x400 ){
5570 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
5571 sqlite3TreeViewSelect(0, p, 0);
5573 #endif
5574 return 1;
5576 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5579 ** Generate code for the SELECT statement given in the p argument.
5581 ** The results are returned according to the SelectDest structure.
5582 ** See comments in sqliteInt.h for further information.
5584 ** This routine returns the number of errors. If any errors are
5585 ** encountered, then an appropriate error message is left in
5586 ** pParse->zErrMsg.
5588 ** This routine does NOT free the Select structure passed in. The
5589 ** calling function needs to do that.
5591 int sqlite3Select(
5592 Parse *pParse, /* The parser context */
5593 Select *p, /* The SELECT statement being coded. */
5594 SelectDest *pDest /* What to do with the query results */
5596 int i, j; /* Loop counters */
5597 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
5598 Vdbe *v; /* The virtual machine under construction */
5599 int isAgg; /* True for select lists like "count(*)" */
5600 ExprList *pEList = 0; /* List of columns to extract. */
5601 SrcList *pTabList; /* List of tables to select from */
5602 Expr *pWhere; /* The WHERE clause. May be NULL */
5603 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
5604 Expr *pHaving; /* The HAVING clause. May be NULL */
5605 int rc = 1; /* Value to return from this function */
5606 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
5607 SortCtx sSort; /* Info on how to code the ORDER BY clause */
5608 AggInfo sAggInfo; /* Information used by aggregate queries */
5609 int iEnd; /* Address of the end of the query */
5610 sqlite3 *db; /* The database connection */
5611 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */
5612 u8 minMaxFlag; /* Flag for min/max queries */
5614 db = pParse->db;
5615 v = sqlite3GetVdbe(pParse);
5616 if( p==0 || db->mallocFailed || pParse->nErr ){
5617 return 1;
5619 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
5620 memset(&sAggInfo, 0, sizeof(sAggInfo));
5621 #if SELECTTRACE_ENABLED
5622 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
5623 if( sqlite3SelectTrace & 0x100 ){
5624 sqlite3TreeViewSelect(0, p, 0);
5626 #endif
5628 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
5629 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5630 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
5631 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
5632 if( IgnorableOrderby(pDest) ){
5633 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
5634 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
5635 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo ||
5636 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
5637 /* If ORDER BY makes no difference in the output then neither does
5638 ** DISTINCT so it can be removed too. */
5639 sqlite3ExprListDelete(db, p->pOrderBy);
5640 p->pOrderBy = 0;
5641 p->selFlags &= ~SF_Distinct;
5643 sqlite3SelectPrep(pParse, p, 0);
5644 if( pParse->nErr || db->mallocFailed ){
5645 goto select_end;
5647 assert( p->pEList!=0 );
5648 #if SELECTTRACE_ENABLED
5649 if( sqlite3SelectTrace & 0x104 ){
5650 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
5651 sqlite3TreeViewSelect(0, p, 0);
5653 #endif
5655 if( pDest->eDest==SRT_Output ){
5656 generateColumnNames(pParse, p);
5659 #ifndef SQLITE_OMIT_WINDOWFUNC
5660 if( sqlite3WindowRewrite(pParse, p) ){
5661 goto select_end;
5663 #if SELECTTRACE_ENABLED
5664 if( sqlite3SelectTrace & 0x108 ){
5665 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
5666 sqlite3TreeViewSelect(0, p, 0);
5668 #endif
5669 #endif /* SQLITE_OMIT_WINDOWFUNC */
5670 pTabList = p->pSrc;
5671 isAgg = (p->selFlags & SF_Aggregate)!=0;
5672 memset(&sSort, 0, sizeof(sSort));
5673 sSort.pOrderBy = p->pOrderBy;
5675 /* Try to various optimizations (flattening subqueries, and strength
5676 ** reduction of join operators) in the FROM clause up into the main query
5678 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5679 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
5680 struct SrcList_item *pItem = &pTabList->a[i];
5681 Select *pSub = pItem->pSelect;
5682 Table *pTab = pItem->pTab;
5684 /* Convert LEFT JOIN into JOIN if there are terms of the right table
5685 ** of the LEFT JOIN used in the WHERE clause.
5687 if( (pItem->fg.jointype & JT_LEFT)!=0
5688 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
5689 && OptimizationEnabled(db, SQLITE_SimplifyJoin)
5691 SELECTTRACE(0x100,pParse,p,
5692 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
5693 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
5694 unsetJoinExpr(p->pWhere, pItem->iCursor);
5697 /* No futher action if this term of the FROM clause is no a subquery */
5698 if( pSub==0 ) continue;
5700 /* Catch mismatch in the declared columns of a view and the number of
5701 ** columns in the SELECT on the RHS */
5702 if( pTab->nCol!=pSub->pEList->nExpr ){
5703 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
5704 pTab->nCol, pTab->zName, pSub->pEList->nExpr);
5705 goto select_end;
5708 /* Do not try to flatten an aggregate subquery.
5710 ** Flattening an aggregate subquery is only possible if the outer query
5711 ** is not a join. But if the outer query is not a join, then the subquery
5712 ** will be implemented as a co-routine and there is no advantage to
5713 ** flattening in that case.
5715 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
5716 assert( pSub->pGroupBy==0 );
5718 /* If the outer query contains a "complex" result set (that is,
5719 ** if the result set of the outer query uses functions or subqueries)
5720 ** and if the subquery contains an ORDER BY clause and if
5721 ** it will be implemented as a co-routine, then do not flatten. This
5722 ** restriction allows SQL constructs like this:
5724 ** SELECT expensive_function(x)
5725 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5727 ** The expensive_function() is only computed on the 10 rows that
5728 ** are output, rather than every row of the table.
5730 ** The requirement that the outer query have a complex result set
5731 ** means that flattening does occur on simpler SQL constraints without
5732 ** the expensive_function() like:
5734 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5736 if( pSub->pOrderBy!=0
5737 && i==0
5738 && (p->selFlags & SF_ComplexResult)!=0
5739 && (pTabList->nSrc==1
5740 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
5742 continue;
5745 if( flattenSubquery(pParse, p, i, isAgg) ){
5746 if( pParse->nErr ) goto select_end;
5747 /* This subquery can be absorbed into its parent. */
5748 i = -1;
5750 pTabList = p->pSrc;
5751 if( db->mallocFailed ) goto select_end;
5752 if( !IgnorableOrderby(pDest) ){
5753 sSort.pOrderBy = p->pOrderBy;
5756 #endif
5758 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5759 /* Handle compound SELECT statements using the separate multiSelect()
5760 ** procedure.
5762 if( p->pPrior ){
5763 rc = multiSelect(pParse, p, pDest);
5764 #if SELECTTRACE_ENABLED
5765 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
5766 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
5767 sqlite3TreeViewSelect(0, p, 0);
5769 #endif
5770 if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
5771 return rc;
5773 #endif
5775 /* Do the WHERE-clause constant propagation optimization if this is
5776 ** a join. No need to speed time on this operation for non-join queries
5777 ** as the equivalent optimization will be handled by query planner in
5778 ** sqlite3WhereBegin().
5780 if( pTabList->nSrc>1
5781 && OptimizationEnabled(db, SQLITE_PropagateConst)
5782 && propagateConstants(pParse, p)
5784 #if SELECTTRACE_ENABLED
5785 if( sqlite3SelectTrace & 0x100 ){
5786 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
5787 sqlite3TreeViewSelect(0, p, 0);
5789 #endif
5790 }else{
5791 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
5794 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5795 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
5796 && countOfViewOptimization(pParse, p)
5798 if( db->mallocFailed ) goto select_end;
5799 pEList = p->pEList;
5800 pTabList = p->pSrc;
5802 #endif
5804 /* For each term in the FROM clause, do two things:
5805 ** (1) Authorized unreferenced tables
5806 ** (2) Generate code for all sub-queries
5808 for(i=0; i<pTabList->nSrc; i++){
5809 struct SrcList_item *pItem = &pTabList->a[i];
5810 SelectDest dest;
5811 Select *pSub;
5812 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5813 const char *zSavedAuthContext;
5814 #endif
5816 /* Issue SQLITE_READ authorizations with a fake column name for any
5817 ** tables that are referenced but from which no values are extracted.
5818 ** Examples of where these kinds of null SQLITE_READ authorizations
5819 ** would occur:
5821 ** SELECT count(*) FROM t1; -- SQLITE_READ t1.""
5822 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2.""
5824 ** The fake column name is an empty string. It is possible for a table to
5825 ** have a column named by the empty string, in which case there is no way to
5826 ** distinguish between an unreferenced table and an actual reference to the
5827 ** "" column. The original design was for the fake column name to be a NULL,
5828 ** which would be unambiguous. But legacy authorization callbacks might
5829 ** assume the column name is non-NULL and segfault. The use of an empty
5830 ** string for the fake column name seems safer.
5832 if( pItem->colUsed==0 ){
5833 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
5836 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5837 /* Generate code for all sub-queries in the FROM clause
5839 pSub = pItem->pSelect;
5840 if( pSub==0 ) continue;
5842 /* The code for a subquery should only be generated once, though it is
5843 ** technically harmless for it to be generated multiple times. The
5844 ** following assert() will detect if something changes to cause
5845 ** the same subquery to be coded multiple times, as a signal to the
5846 ** developers to try to optimize the situation. */
5847 assert( pItem->addrFillSub==0 );
5849 /* Increment Parse.nHeight by the height of the largest expression
5850 ** tree referred to by this, the parent select. The child select
5851 ** may contain expression trees of at most
5852 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
5853 ** more conservative than necessary, but much easier than enforcing
5854 ** an exact limit.
5856 pParse->nHeight += sqlite3SelectExprHeight(p);
5858 /* Make copies of constant WHERE-clause terms in the outer query down
5859 ** inside the subquery. This can help the subquery to run more efficiently.
5861 if( OptimizationEnabled(db, SQLITE_PushDown)
5862 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
5863 (pItem->fg.jointype & JT_OUTER)!=0)
5865 #if SELECTTRACE_ENABLED
5866 if( sqlite3SelectTrace & 0x100 ){
5867 SELECTTRACE(0x100,pParse,p,
5868 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
5869 sqlite3TreeViewSelect(0, p, 0);
5871 #endif
5872 }else{
5873 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
5876 zSavedAuthContext = pParse->zAuthContext;
5877 pParse->zAuthContext = pItem->zName;
5879 /* Generate code to implement the subquery
5881 ** The subquery is implemented as a co-routine if the subquery is
5882 ** guaranteed to be the outer loop (so that it does not need to be
5883 ** computed more than once)
5885 ** TODO: Are there other reasons beside (1) to use a co-routine
5886 ** implementation?
5888 if( i==0
5889 && (pTabList->nSrc==1
5890 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */
5892 /* Implement a co-routine that will return a single row of the result
5893 ** set on each invocation.
5895 int addrTop = sqlite3VdbeCurrentAddr(v)+1;
5897 pItem->regReturn = ++pParse->nMem;
5898 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
5899 VdbeComment((v, "%s", pItem->pTab->zName));
5900 pItem->addrFillSub = addrTop;
5901 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
5902 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId));
5903 sqlite3Select(pParse, pSub, &dest);
5904 pItem->pTab->nRowLogEst = pSub->nSelectRow;
5905 pItem->fg.viaCoroutine = 1;
5906 pItem->regResult = dest.iSdst;
5907 sqlite3VdbeEndCoroutine(v, pItem->regReturn);
5908 sqlite3VdbeJumpHere(v, addrTop-1);
5909 sqlite3ClearTempRegCache(pParse);
5910 }else{
5911 /* Generate a subroutine that will fill an ephemeral table with
5912 ** the content of this subquery. pItem->addrFillSub will point
5913 ** to the address of the generated subroutine. pItem->regReturn
5914 ** is a register allocated to hold the subroutine return address
5916 int topAddr;
5917 int onceAddr = 0;
5918 int retAddr;
5919 struct SrcList_item *pPrior;
5921 assert( pItem->addrFillSub==0 );
5922 pItem->regReturn = ++pParse->nMem;
5923 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
5924 pItem->addrFillSub = topAddr+1;
5925 if( pItem->fg.isCorrelated==0 ){
5926 /* If the subquery is not correlated and if we are not inside of
5927 ** a trigger, then we only need to compute the value of the subquery
5928 ** once. */
5929 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
5930 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
5931 }else{
5932 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
5934 pPrior = isSelfJoinView(pTabList, pItem);
5935 if( pPrior ){
5936 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
5937 assert( pPrior->pSelect!=0 );
5938 pSub->nSelectRow = pPrior->pSelect->nSelectRow;
5939 }else{
5940 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
5941 ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId));
5942 sqlite3Select(pParse, pSub, &dest);
5944 pItem->pTab->nRowLogEst = pSub->nSelectRow;
5945 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
5946 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
5947 VdbeComment((v, "end %s", pItem->pTab->zName));
5948 sqlite3VdbeChangeP1(v, topAddr, retAddr);
5949 sqlite3ClearTempRegCache(pParse);
5951 if( db->mallocFailed ) goto select_end;
5952 pParse->nHeight -= sqlite3SelectExprHeight(p);
5953 pParse->zAuthContext = zSavedAuthContext;
5954 #endif
5957 /* Various elements of the SELECT copied into local variables for
5958 ** convenience */
5959 pEList = p->pEList;
5960 pWhere = p->pWhere;
5961 pGroupBy = p->pGroupBy;
5962 pHaving = p->pHaving;
5963 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
5965 #if SELECTTRACE_ENABLED
5966 if( sqlite3SelectTrace & 0x400 ){
5967 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
5968 sqlite3TreeViewSelect(0, p, 0);
5970 #endif
5972 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5973 ** if the select-list is the same as the ORDER BY list, then this query
5974 ** can be rewritten as a GROUP BY. In other words, this:
5976 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
5978 ** is transformed to:
5980 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5982 ** The second form is preferred as a single index (or temp-table) may be
5983 ** used for both the ORDER BY and DISTINCT processing. As originally
5984 ** written the query must use a temp-table for at least one of the ORDER
5985 ** BY and DISTINCT, and an index or separate temp-table for the other.
5987 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
5988 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
5990 p->selFlags &= ~SF_Distinct;
5991 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
5992 /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5993 ** the sDistinct.isTnct is still set. Hence, isTnct represents the
5994 ** original setting of the SF_Distinct flag, not the current setting */
5995 assert( sDistinct.isTnct );
5997 #if SELECTTRACE_ENABLED
5998 if( sqlite3SelectTrace & 0x400 ){
5999 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
6000 sqlite3TreeViewSelect(0, p, 0);
6002 #endif
6005 /* If there is an ORDER BY clause, then create an ephemeral index to
6006 ** do the sorting. But this sorting ephemeral index might end up
6007 ** being unused if the data can be extracted in pre-sorted order.
6008 ** If that is the case, then the OP_OpenEphemeral instruction will be
6009 ** changed to an OP_Noop once we figure out that the sorting index is
6010 ** not needed. The sSort.addrSortIndex variable is used to facilitate
6011 ** that change.
6013 if( sSort.pOrderBy ){
6014 KeyInfo *pKeyInfo;
6015 pKeyInfo = sqlite3KeyInfoFromExprList(
6016 pParse, sSort.pOrderBy, 0, pEList->nExpr);
6017 sSort.iECursor = pParse->nTab++;
6018 sSort.addrSortIndex =
6019 sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6020 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
6021 (char*)pKeyInfo, P4_KEYINFO
6023 }else{
6024 sSort.addrSortIndex = -1;
6027 /* If the output is destined for a temporary table, open that table.
6029 if( pDest->eDest==SRT_EphemTab ){
6030 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
6033 /* Set the limiter.
6035 iEnd = sqlite3VdbeMakeLabel(pParse);
6036 if( (p->selFlags & SF_FixedLimit)==0 ){
6037 p->nSelectRow = 320; /* 4 billion rows */
6039 computeLimitRegisters(pParse, p, iEnd);
6040 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
6041 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
6042 sSort.sortFlags |= SORTFLAG_UseSorter;
6045 /* Open an ephemeral index to use for the distinct set.
6047 if( p->selFlags & SF_Distinct ){
6048 sDistinct.tabTnct = pParse->nTab++;
6049 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6050 sDistinct.tabTnct, 0, 0,
6051 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
6052 P4_KEYINFO);
6053 sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
6054 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
6055 }else{
6056 sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
6059 if( !isAgg && pGroupBy==0 ){
6060 /* No aggregate functions and no GROUP BY clause */
6061 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
6062 | (p->selFlags & SF_FixedLimit);
6063 #ifndef SQLITE_OMIT_WINDOWFUNC
6064 Window *pWin = p->pWin; /* Master window object (or NULL) */
6065 if( pWin ){
6066 sqlite3WindowCodeInit(pParse, pWin);
6068 #endif
6069 assert( WHERE_USE_LIMIT==SF_FixedLimit );
6072 /* Begin the database scan. */
6073 SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6074 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
6075 p->pEList, wctrlFlags, p->nSelectRow);
6076 if( pWInfo==0 ) goto select_end;
6077 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
6078 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
6080 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
6081 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
6083 if( sSort.pOrderBy ){
6084 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
6085 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
6086 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
6087 sSort.pOrderBy = 0;
6091 /* If sorting index that was created by a prior OP_OpenEphemeral
6092 ** instruction ended up not being needed, then change the OP_OpenEphemeral
6093 ** into an OP_Noop.
6095 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
6096 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6099 assert( p->pEList==pEList );
6100 #ifndef SQLITE_OMIT_WINDOWFUNC
6101 if( pWin ){
6102 int addrGosub = sqlite3VdbeMakeLabel(pParse);
6103 int iCont = sqlite3VdbeMakeLabel(pParse);
6104 int iBreak = sqlite3VdbeMakeLabel(pParse);
6105 int regGosub = ++pParse->nMem;
6107 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
6109 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
6110 sqlite3VdbeResolveLabel(v, addrGosub);
6111 VdbeNoopComment((v, "inner-loop subroutine"));
6112 sSort.labelOBLopt = 0;
6113 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
6114 sqlite3VdbeResolveLabel(v, iCont);
6115 sqlite3VdbeAddOp1(v, OP_Return, regGosub);
6116 VdbeComment((v, "end inner-loop subroutine"));
6117 sqlite3VdbeResolveLabel(v, iBreak);
6118 }else
6119 #endif /* SQLITE_OMIT_WINDOWFUNC */
6121 /* Use the standard inner loop. */
6122 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
6123 sqlite3WhereContinueLabel(pWInfo),
6124 sqlite3WhereBreakLabel(pWInfo));
6126 /* End the database scan loop.
6128 sqlite3WhereEnd(pWInfo);
6130 }else{
6131 /* This case when there exist aggregate functions or a GROUP BY clause
6132 ** or both */
6133 NameContext sNC; /* Name context for processing aggregate information */
6134 int iAMem; /* First Mem address for storing current GROUP BY */
6135 int iBMem; /* First Mem address for previous GROUP BY */
6136 int iUseFlag; /* Mem address holding flag indicating that at least
6137 ** one row of the input to the aggregator has been
6138 ** processed */
6139 int iAbortFlag; /* Mem address which causes query abort if positive */
6140 int groupBySort; /* Rows come from source in GROUP BY order */
6141 int addrEnd; /* End of processing for this SELECT */
6142 int sortPTab = 0; /* Pseudotable used to decode sorting results */
6143 int sortOut = 0; /* Output register from the sorter */
6144 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
6146 /* Remove any and all aliases between the result set and the
6147 ** GROUP BY clause.
6149 if( pGroupBy ){
6150 int k; /* Loop counter */
6151 struct ExprList_item *pItem; /* For looping over expression in a list */
6153 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
6154 pItem->u.x.iAlias = 0;
6156 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
6157 pItem->u.x.iAlias = 0;
6159 assert( 66==sqlite3LogEst(100) );
6160 if( p->nSelectRow>66 ) p->nSelectRow = 66;
6161 }else{
6162 assert( 0==sqlite3LogEst(1) );
6163 p->nSelectRow = 0;
6166 /* If there is both a GROUP BY and an ORDER BY clause and they are
6167 ** identical, then it may be possible to disable the ORDER BY clause
6168 ** on the grounds that the GROUP BY will cause elements to come out
6169 ** in the correct order. It also may not - the GROUP BY might use a
6170 ** database index that causes rows to be grouped together as required
6171 ** but not actually sorted. Either way, record the fact that the
6172 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
6173 ** variable. */
6174 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
6175 orderByGrp = 1;
6178 /* Create a label to jump to when we want to abort the query */
6179 addrEnd = sqlite3VdbeMakeLabel(pParse);
6181 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
6182 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
6183 ** SELECT statement.
6185 memset(&sNC, 0, sizeof(sNC));
6186 sNC.pParse = pParse;
6187 sNC.pSrcList = pTabList;
6188 sNC.uNC.pAggInfo = &sAggInfo;
6189 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
6190 sAggInfo.mnReg = pParse->nMem+1;
6191 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
6192 sAggInfo.pGroupBy = pGroupBy;
6193 sqlite3ExprAnalyzeAggList(&sNC, pEList);
6194 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
6195 if( pHaving ){
6196 if( pGroupBy ){
6197 assert( pWhere==p->pWhere );
6198 assert( pHaving==p->pHaving );
6199 assert( pGroupBy==p->pGroupBy );
6200 havingToWhere(pParse, p);
6201 pWhere = p->pWhere;
6203 sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
6205 sAggInfo.nAccumulator = sAggInfo.nColumn;
6206 if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){
6207 minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy);
6208 }else{
6209 minMaxFlag = WHERE_ORDERBY_NORMAL;
6211 for(i=0; i<sAggInfo.nFunc; i++){
6212 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
6213 sNC.ncFlags |= NC_InAggFunc;
6214 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
6215 sNC.ncFlags &= ~NC_InAggFunc;
6217 sAggInfo.mxReg = pParse->nMem;
6218 if( db->mallocFailed ) goto select_end;
6219 #if SELECTTRACE_ENABLED
6220 if( sqlite3SelectTrace & 0x400 ){
6221 int ii;
6222 SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n"));
6223 sqlite3TreeViewSelect(0, p, 0);
6224 for(ii=0; ii<sAggInfo.nColumn; ii++){
6225 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
6226 ii, sAggInfo.aCol[ii].iMem);
6227 sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0);
6229 for(ii=0; ii<sAggInfo.nFunc; ii++){
6230 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
6231 ii, sAggInfo.aFunc[ii].iMem);
6232 sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0);
6235 #endif
6238 /* Processing for aggregates with GROUP BY is very different and
6239 ** much more complex than aggregates without a GROUP BY.
6241 if( pGroupBy ){
6242 KeyInfo *pKeyInfo; /* Keying information for the group by clause */
6243 int addr1; /* A-vs-B comparision jump */
6244 int addrOutputRow; /* Start of subroutine that outputs a result row */
6245 int regOutputRow; /* Return address register for output subroutine */
6246 int addrSetAbort; /* Set the abort flag and return */
6247 int addrTopOfLoop; /* Top of the input loop */
6248 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
6249 int addrReset; /* Subroutine for resetting the accumulator */
6250 int regReset; /* Return address register for reset subroutine */
6252 /* If there is a GROUP BY clause we might need a sorting index to
6253 ** implement it. Allocate that sorting index now. If it turns out
6254 ** that we do not need it after all, the OP_SorterOpen instruction
6255 ** will be converted into a Noop.
6257 sAggInfo.sortingIdx = pParse->nTab++;
6258 pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pGroupBy,0,sAggInfo.nColumn);
6259 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
6260 sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
6261 0, (char*)pKeyInfo, P4_KEYINFO);
6263 /* Initialize memory locations used by GROUP BY aggregate processing
6265 iUseFlag = ++pParse->nMem;
6266 iAbortFlag = ++pParse->nMem;
6267 regOutputRow = ++pParse->nMem;
6268 addrOutputRow = sqlite3VdbeMakeLabel(pParse);
6269 regReset = ++pParse->nMem;
6270 addrReset = sqlite3VdbeMakeLabel(pParse);
6271 iAMem = pParse->nMem + 1;
6272 pParse->nMem += pGroupBy->nExpr;
6273 iBMem = pParse->nMem + 1;
6274 pParse->nMem += pGroupBy->nExpr;
6275 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
6276 VdbeComment((v, "clear abort flag"));
6277 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
6279 /* Begin a loop that will extract all source rows in GROUP BY order.
6280 ** This might involve two separate loops with an OP_Sort in between, or
6281 ** it might be a single loop that uses an index to extract information
6282 ** in the right order to begin with.
6284 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6285 SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6286 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
6287 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
6289 if( pWInfo==0 ) goto select_end;
6290 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
6291 /* The optimizer is able to deliver rows in group by order so
6292 ** we do not have to sort. The OP_OpenEphemeral table will be
6293 ** cancelled later because we still need to use the pKeyInfo
6295 groupBySort = 0;
6296 }else{
6297 /* Rows are coming out in undetermined order. We have to push
6298 ** each row into a sorting index, terminate the first loop,
6299 ** then loop over the sorting index in order to get the output
6300 ** in sorted order
6302 int regBase;
6303 int regRecord;
6304 int nCol;
6305 int nGroupBy;
6307 explainTempTable(pParse,
6308 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
6309 "DISTINCT" : "GROUP BY");
6311 groupBySort = 1;
6312 nGroupBy = pGroupBy->nExpr;
6313 nCol = nGroupBy;
6314 j = nGroupBy;
6315 for(i=0; i<sAggInfo.nColumn; i++){
6316 if( sAggInfo.aCol[i].iSorterColumn>=j ){
6317 nCol++;
6318 j++;
6321 regBase = sqlite3GetTempRange(pParse, nCol);
6322 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
6323 j = nGroupBy;
6324 for(i=0; i<sAggInfo.nColumn; i++){
6325 struct AggInfo_col *pCol = &sAggInfo.aCol[i];
6326 if( pCol->iSorterColumn>=j ){
6327 int r1 = j + regBase;
6328 sqlite3ExprCodeGetColumnOfTable(v,
6329 pCol->pTab, pCol->iTable, pCol->iColumn, r1);
6330 j++;
6333 regRecord = sqlite3GetTempReg(pParse);
6334 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
6335 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
6336 sqlite3ReleaseTempReg(pParse, regRecord);
6337 sqlite3ReleaseTempRange(pParse, regBase, nCol);
6338 sqlite3WhereEnd(pWInfo);
6339 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
6340 sortOut = sqlite3GetTempReg(pParse);
6341 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
6342 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
6343 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
6344 sAggInfo.useSortingIdx = 1;
6347 /* If the index or temporary table used by the GROUP BY sort
6348 ** will naturally deliver rows in the order required by the ORDER BY
6349 ** clause, cancel the ephemeral table open coded earlier.
6351 ** This is an optimization - the correct answer should result regardless.
6352 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
6353 ** disable this optimization for testing purposes. */
6354 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
6355 && (groupBySort || sqlite3WhereIsSorted(pWInfo))
6357 sSort.pOrderBy = 0;
6358 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6361 /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
6362 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
6363 ** Then compare the current GROUP BY terms against the GROUP BY terms
6364 ** from the previous row currently stored in a0, a1, a2...
6366 addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
6367 if( groupBySort ){
6368 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
6369 sortOut, sortPTab);
6371 for(j=0; j<pGroupBy->nExpr; j++){
6372 if( groupBySort ){
6373 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
6374 }else{
6375 sAggInfo.directMode = 1;
6376 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
6379 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
6380 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
6381 addr1 = sqlite3VdbeCurrentAddr(v);
6382 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
6384 /* Generate code that runs whenever the GROUP BY changes.
6385 ** Changes in the GROUP BY are detected by the previous code
6386 ** block. If there were no changes, this block is skipped.
6388 ** This code copies current group by terms in b0,b1,b2,...
6389 ** over to a0,a1,a2. It then calls the output subroutine
6390 ** and resets the aggregate accumulator registers in preparation
6391 ** for the next GROUP BY batch.
6393 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
6394 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6395 VdbeComment((v, "output one row"));
6396 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
6397 VdbeComment((v, "check abort flag"));
6398 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6399 VdbeComment((v, "reset accumulator"));
6401 /* Update the aggregate accumulators based on the content of
6402 ** the current row
6404 sqlite3VdbeJumpHere(v, addr1);
6405 updateAccumulator(pParse, iUseFlag, &sAggInfo);
6406 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
6407 VdbeComment((v, "indicate data in accumulator"));
6409 /* End of the loop
6411 if( groupBySort ){
6412 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
6413 VdbeCoverage(v);
6414 }else{
6415 sqlite3WhereEnd(pWInfo);
6416 sqlite3VdbeChangeToNoop(v, addrSortingIdx);
6419 /* Output the final row of result
6421 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6422 VdbeComment((v, "output final row"));
6424 /* Jump over the subroutines
6426 sqlite3VdbeGoto(v, addrEnd);
6428 /* Generate a subroutine that outputs a single row of the result
6429 ** set. This subroutine first looks at the iUseFlag. If iUseFlag
6430 ** is less than or equal to zero, the subroutine is a no-op. If
6431 ** the processing calls for the query to abort, this subroutine
6432 ** increments the iAbortFlag memory location before returning in
6433 ** order to signal the caller to abort.
6435 addrSetAbort = sqlite3VdbeCurrentAddr(v);
6436 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
6437 VdbeComment((v, "set abort flag"));
6438 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6439 sqlite3VdbeResolveLabel(v, addrOutputRow);
6440 addrOutputRow = sqlite3VdbeCurrentAddr(v);
6441 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
6442 VdbeCoverage(v);
6443 VdbeComment((v, "Groupby result generator entry point"));
6444 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6445 finalizeAggFunctions(pParse, &sAggInfo);
6446 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
6447 selectInnerLoop(pParse, p, -1, &sSort,
6448 &sDistinct, pDest,
6449 addrOutputRow+1, addrSetAbort);
6450 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6451 VdbeComment((v, "end groupby result generator"));
6453 /* Generate a subroutine that will reset the group-by accumulator
6455 sqlite3VdbeResolveLabel(v, addrReset);
6456 resetAccumulator(pParse, &sAggInfo);
6457 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
6458 VdbeComment((v, "indicate accumulator empty"));
6459 sqlite3VdbeAddOp1(v, OP_Return, regReset);
6461 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
6462 else {
6463 #ifndef SQLITE_OMIT_BTREECOUNT
6464 Table *pTab;
6465 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
6466 /* If isSimpleCount() returns a pointer to a Table structure, then
6467 ** the SQL statement is of the form:
6469 ** SELECT count(*) FROM <tbl>
6471 ** where the Table structure returned represents table <tbl>.
6473 ** This statement is so common that it is optimized specially. The
6474 ** OP_Count instruction is executed either on the intkey table that
6475 ** contains the data for table <tbl> or on one of its indexes. It
6476 ** is better to execute the op on an index, as indexes are almost
6477 ** always spread across less pages than their corresponding tables.
6479 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
6480 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */
6481 Index *pIdx; /* Iterator variable */
6482 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */
6483 Index *pBest = 0; /* Best index found so far */
6484 int iRoot = pTab->tnum; /* Root page of scanned b-tree */
6486 sqlite3CodeVerifySchema(pParse, iDb);
6487 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
6489 /* Search for the index that has the lowest scan cost.
6491 ** (2011-04-15) Do not do a full scan of an unordered index.
6493 ** (2013-10-03) Do not count the entries in a partial index.
6495 ** In practice the KeyInfo structure will not be used. It is only
6496 ** passed to keep OP_OpenRead happy.
6498 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
6499 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
6500 if( pIdx->bUnordered==0
6501 && pIdx->szIdxRow<pTab->szTabRow
6502 && pIdx->pPartIdxWhere==0
6503 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
6505 pBest = pIdx;
6508 if( pBest ){
6509 iRoot = pBest->tnum;
6510 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
6513 /* Open a read-only cursor, execute the OP_Count, close the cursor. */
6514 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
6515 if( pKeyInfo ){
6516 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
6518 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
6519 sqlite3VdbeAddOp1(v, OP_Close, iCsr);
6520 explainSimpleCount(pParse, pTab, pBest);
6521 }else
6522 #endif /* SQLITE_OMIT_BTREECOUNT */
6524 int regAcc = 0; /* "populate accumulators" flag */
6526 /* If there are accumulator registers but no min() or max() functions,
6527 ** allocate register regAcc. Register regAcc will contain 0 the first
6528 ** time the inner loop runs, and 1 thereafter. The code generated
6529 ** by updateAccumulator() only updates the accumulator registers if
6530 ** regAcc contains 0. */
6531 if( sAggInfo.nAccumulator ){
6532 for(i=0; i<sAggInfo.nFunc; i++){
6533 if( sAggInfo.aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ) break;
6535 if( i==sAggInfo.nFunc ){
6536 regAcc = ++pParse->nMem;
6537 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
6541 /* This case runs if the aggregate has no GROUP BY clause. The
6542 ** processing is much simpler since there is only a single row
6543 ** of output.
6545 assert( p->pGroupBy==0 );
6546 resetAccumulator(pParse, &sAggInfo);
6548 /* If this query is a candidate for the min/max optimization, then
6549 ** minMaxFlag will have been previously set to either
6550 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
6551 ** be an appropriate ORDER BY expression for the optimization.
6553 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
6554 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
6556 SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6557 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
6558 0, minMaxFlag, 0);
6559 if( pWInfo==0 ){
6560 goto select_end;
6562 updateAccumulator(pParse, regAcc, &sAggInfo);
6563 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
6564 if( sqlite3WhereIsOrdered(pWInfo)>0 ){
6565 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
6566 VdbeComment((v, "%s() by index",
6567 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max")));
6569 sqlite3WhereEnd(pWInfo);
6570 finalizeAggFunctions(pParse, &sAggInfo);
6573 sSort.pOrderBy = 0;
6574 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
6575 selectInnerLoop(pParse, p, -1, 0, 0,
6576 pDest, addrEnd, addrEnd);
6578 sqlite3VdbeResolveLabel(v, addrEnd);
6580 } /* endif aggregate query */
6582 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
6583 explainTempTable(pParse, "DISTINCT");
6586 /* If there is an ORDER BY clause, then we need to sort the results
6587 ** and send them to the callback one by one.
6589 if( sSort.pOrderBy ){
6590 explainTempTable(pParse,
6591 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6592 assert( p->pEList==pEList );
6593 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
6596 /* Jump here to skip this query
6598 sqlite3VdbeResolveLabel(v, iEnd);
6600 /* The SELECT has been coded. If there is an error in the Parse structure,
6601 ** set the return code to 1. Otherwise 0. */
6602 rc = (pParse->nErr>0);
6604 /* Control jumps to here if an error is encountered above, or upon
6605 ** successful coding of the SELECT.
6607 select_end:
6608 sqlite3ExprListDelete(db, pMinMaxOrderBy);
6609 sqlite3DbFree(db, sAggInfo.aCol);
6610 sqlite3DbFree(db, sAggInfo.aFunc);
6611 #if SELECTTRACE_ENABLED
6612 SELECTTRACE(0x1,pParse,p,("end processing\n"));
6613 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6614 sqlite3TreeViewSelect(0, p, 0);
6616 #endif
6617 ExplainQueryPlanPop(pParse);
6618 return rc;