Merge branch 'prerelease'
[sqlcipher.git] / src / build.c
blob3daa677cb8367ba9f36c1dd0bdc9331db463dde3
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced. The routines in this file handle the
14 ** following kinds of SQL syntax:
16 ** CREATE TABLE
17 ** DROP TABLE
18 ** CREATE INDEX
19 ** DROP INDEX
20 ** creating ID lists
21 ** BEGIN TRANSACTION
22 ** COMMIT
23 ** ROLLBACK
25 #include "sqliteInt.h"
27 #ifndef SQLITE_OMIT_SHARED_CACHE
29 ** The TableLock structure is only used by the sqlite3TableLock() and
30 ** codeTableLocks() functions.
32 struct TableLock {
33 int iDb; /* The database containing the table to be locked */
34 int iTab; /* The root page of the table to be locked */
35 u8 isWriteLock; /* True for write lock. False for a read lock */
36 const char *zLockName; /* Name of the table */
40 ** Record the fact that we want to lock a table at run-time.
42 ** The table to be locked has root page iTab and is found in database iDb.
43 ** A read or a write lock can be taken depending on isWritelock.
45 ** This routine just records the fact that the lock is desired. The
46 ** code to make the lock occur is generated by a later call to
47 ** codeTableLocks() which occurs during sqlite3FinishCoding().
49 void sqlite3TableLock(
50 Parse *pParse, /* Parsing context */
51 int iDb, /* Index of the database containing the table to lock */
52 int iTab, /* Root page number of the table to be locked */
53 u8 isWriteLock, /* True for a write lock */
54 const char *zName /* Name of the table to be locked */
56 Parse *pToplevel = sqlite3ParseToplevel(pParse);
57 int i;
58 int nBytes;
59 TableLock *p;
60 assert( iDb>=0 );
62 if( iDb==1 ) return;
63 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return;
64 for(i=0; i<pToplevel->nTableLock; i++){
65 p = &pToplevel->aTableLock[i];
66 if( p->iDb==iDb && p->iTab==iTab ){
67 p->isWriteLock = (p->isWriteLock || isWriteLock);
68 return;
72 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
73 pToplevel->aTableLock =
74 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
75 if( pToplevel->aTableLock ){
76 p = &pToplevel->aTableLock[pToplevel->nTableLock++];
77 p->iDb = iDb;
78 p->iTab = iTab;
79 p->isWriteLock = isWriteLock;
80 p->zLockName = zName;
81 }else{
82 pToplevel->nTableLock = 0;
83 sqlite3OomFault(pToplevel->db);
88 ** Code an OP_TableLock instruction for each table locked by the
89 ** statement (configured by calls to sqlite3TableLock()).
91 static void codeTableLocks(Parse *pParse){
92 int i;
93 Vdbe *pVdbe;
95 pVdbe = sqlite3GetVdbe(pParse);
96 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
98 for(i=0; i<pParse->nTableLock; i++){
99 TableLock *p = &pParse->aTableLock[i];
100 int p1 = p->iDb;
101 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
102 p->zLockName, P4_STATIC);
105 #else
106 #define codeTableLocks(x)
107 #endif
110 ** Return TRUE if the given yDbMask object is empty - if it contains no
111 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero()
112 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
114 #if SQLITE_MAX_ATTACHED>30
115 int sqlite3DbMaskAllZero(yDbMask m){
116 int i;
117 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
118 return 1;
120 #endif
123 ** This routine is called after a single SQL statement has been
124 ** parsed and a VDBE program to execute that statement has been
125 ** prepared. This routine puts the finishing touches on the
126 ** VDBE program and resets the pParse structure for the next
127 ** parse.
129 ** Note that if an error occurred, it might be the case that
130 ** no VDBE code was generated.
132 void sqlite3FinishCoding(Parse *pParse){
133 sqlite3 *db;
134 Vdbe *v;
136 assert( pParse->pToplevel==0 );
137 db = pParse->db;
138 if( pParse->nested ) return;
139 if( db->mallocFailed || pParse->nErr ){
140 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR;
141 return;
144 /* Begin by generating some termination code at the end of the
145 ** vdbe program
147 v = sqlite3GetVdbe(pParse);
148 assert( !pParse->isMultiWrite
149 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
150 if( v ){
151 sqlite3VdbeAddOp0(v, OP_Halt);
153 #if SQLITE_USER_AUTHENTICATION
154 if( pParse->nTableLock>0 && db->init.busy==0 ){
155 sqlite3UserAuthInit(db);
156 if( db->auth.authLevel<UAUTH_User ){
157 sqlite3ErrorMsg(pParse, "user not authenticated");
158 pParse->rc = SQLITE_AUTH_USER;
159 return;
162 #endif
164 /* The cookie mask contains one bit for each database file open.
165 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
166 ** set for each database that is used. Generate code to start a
167 ** transaction on each used database and to verify the schema cookie
168 ** on each used database.
170 if( db->mallocFailed==0
171 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
173 int iDb, i;
174 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
175 sqlite3VdbeJumpHere(v, 0);
176 for(iDb=0; iDb<db->nDb; iDb++){
177 Schema *pSchema;
178 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
179 sqlite3VdbeUsesBtree(v, iDb);
180 pSchema = db->aDb[iDb].pSchema;
181 sqlite3VdbeAddOp4Int(v,
182 OP_Transaction, /* Opcode */
183 iDb, /* P1 */
184 DbMaskTest(pParse->writeMask,iDb), /* P2 */
185 pSchema->schema_cookie, /* P3 */
186 pSchema->iGeneration /* P4 */
188 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
189 VdbeComment((v,
190 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
192 #ifndef SQLITE_OMIT_VIRTUALTABLE
193 for(i=0; i<pParse->nVtabLock; i++){
194 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
195 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
197 pParse->nVtabLock = 0;
198 #endif
200 /* Once all the cookies have been verified and transactions opened,
201 ** obtain the required table-locks. This is a no-op unless the
202 ** shared-cache feature is enabled.
204 codeTableLocks(pParse);
206 /* Initialize any AUTOINCREMENT data structures required.
208 sqlite3AutoincrementBegin(pParse);
210 /* Code constant expressions that where factored out of inner loops */
211 if( pParse->pConstExpr ){
212 ExprList *pEL = pParse->pConstExpr;
213 pParse->okConstFactor = 0;
214 for(i=0; i<pEL->nExpr; i++){
215 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg);
219 /* Finally, jump back to the beginning of the executable code. */
220 sqlite3VdbeGoto(v, 1);
225 /* Get the VDBE program ready for execution
227 if( v && pParse->nErr==0 && !db->mallocFailed ){
228 /* A minimum of one cursor is required if autoincrement is used
229 * See ticket [a696379c1f08866] */
230 assert( pParse->pAinc==0 || pParse->nTab>0 );
231 sqlite3VdbeMakeReady(v, pParse);
232 pParse->rc = SQLITE_DONE;
233 }else{
234 pParse->rc = SQLITE_ERROR;
239 ** Run the parser and code generator recursively in order to generate
240 ** code for the SQL statement given onto the end of the pParse context
241 ** currently under construction. When the parser is run recursively
242 ** this way, the final OP_Halt is not appended and other initialization
243 ** and finalization steps are omitted because those are handling by the
244 ** outermost parser.
246 ** Not everything is nestable. This facility is designed to permit
247 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use
248 ** care if you decide to try to use this routine for some other purposes.
250 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
251 va_list ap;
252 char *zSql;
253 char *zErrMsg = 0;
254 sqlite3 *db = pParse->db;
255 char saveBuf[PARSE_TAIL_SZ];
257 if( pParse->nErr ) return;
258 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
259 va_start(ap, zFormat);
260 zSql = sqlite3VMPrintf(db, zFormat, ap);
261 va_end(ap);
262 if( zSql==0 ){
263 return; /* A malloc must have failed */
265 pParse->nested++;
266 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ);
267 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ);
268 sqlite3RunParser(pParse, zSql, &zErrMsg);
269 sqlite3DbFree(db, zErrMsg);
270 sqlite3DbFree(db, zSql);
271 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ);
272 pParse->nested--;
275 #if SQLITE_USER_AUTHENTICATION
277 ** Return TRUE if zTable is the name of the system table that stores the
278 ** list of users and their access credentials.
280 int sqlite3UserAuthTable(const char *zTable){
281 return sqlite3_stricmp(zTable, "sqlite_user")==0;
283 #endif
286 ** Locate the in-memory structure that describes a particular database
287 ** table given the name of that table and (optionally) the name of the
288 ** database containing the table. Return NULL if not found.
290 ** If zDatabase is 0, all databases are searched for the table and the
291 ** first matching table is returned. (No checking for duplicate table
292 ** names is done.) The search order is TEMP first, then MAIN, then any
293 ** auxiliary databases added using the ATTACH command.
295 ** See also sqlite3LocateTable().
297 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
298 Table *p = 0;
299 int i;
301 /* All mutexes are required for schema access. Make sure we hold them. */
302 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
303 #if SQLITE_USER_AUTHENTICATION
304 /* Only the admin user is allowed to know that the sqlite_user table
305 ** exists */
306 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
307 return 0;
309 #endif
310 while(1){
311 for(i=OMIT_TEMPDB; i<db->nDb; i++){
312 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
313 if( zDatabase==0 || sqlite3StrICmp(zDatabase, db->aDb[j].zDbSName)==0 ){
314 assert( sqlite3SchemaMutexHeld(db, j, 0) );
315 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName);
316 if( p ) return p;
319 /* Not found. If the name we were looking for was temp.sqlite_master
320 ** then change the name to sqlite_temp_master and try again. */
321 if( sqlite3StrICmp(zName, MASTER_NAME)!=0 ) break;
322 if( sqlite3_stricmp(zDatabase, db->aDb[1].zDbSName)!=0 ) break;
323 zName = TEMP_MASTER_NAME;
325 return 0;
329 ** Locate the in-memory structure that describes a particular database
330 ** table given the name of that table and (optionally) the name of the
331 ** database containing the table. Return NULL if not found. Also leave an
332 ** error message in pParse->zErrMsg.
334 ** The difference between this routine and sqlite3FindTable() is that this
335 ** routine leaves an error message in pParse->zErrMsg where
336 ** sqlite3FindTable() does not.
338 Table *sqlite3LocateTable(
339 Parse *pParse, /* context in which to report errors */
340 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */
341 const char *zName, /* Name of the table we are looking for */
342 const char *zDbase /* Name of the database. Might be NULL */
344 Table *p;
345 sqlite3 *db = pParse->db;
347 /* Read the database schema. If an error occurs, leave an error message
348 ** and code in pParse and return NULL. */
349 if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0
350 && SQLITE_OK!=sqlite3ReadSchema(pParse)
352 return 0;
355 p = sqlite3FindTable(db, zName, zDbase);
356 if( p==0 ){
357 #ifndef SQLITE_OMIT_VIRTUALTABLE
358 /* If zName is the not the name of a table in the schema created using
359 ** CREATE, then check to see if it is the name of an virtual table that
360 ** can be an eponymous virtual table. */
361 if( pParse->disableVtab==0 ){
362 Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName);
363 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){
364 pMod = sqlite3PragmaVtabRegister(db, zName);
366 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
367 return pMod->pEpoTab;
370 #endif
371 if( flags & LOCATE_NOERR ) return 0;
372 pParse->checkSchema = 1;
373 }else if( IsVirtual(p) && pParse->disableVtab ){
374 p = 0;
377 if( p==0 ){
378 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table";
379 if( zDbase ){
380 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
381 }else{
382 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
386 return p;
390 ** Locate the table identified by *p.
392 ** This is a wrapper around sqlite3LocateTable(). The difference between
393 ** sqlite3LocateTable() and this function is that this function restricts
394 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
395 ** non-NULL if it is part of a view or trigger program definition. See
396 ** sqlite3FixSrcList() for details.
398 Table *sqlite3LocateTableItem(
399 Parse *pParse,
400 u32 flags,
401 struct SrcList_item *p
403 const char *zDb;
404 assert( p->pSchema==0 || p->zDatabase==0 );
405 if( p->pSchema ){
406 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
407 zDb = pParse->db->aDb[iDb].zDbSName;
408 }else{
409 zDb = p->zDatabase;
411 return sqlite3LocateTable(pParse, flags, p->zName, zDb);
415 ** Locate the in-memory structure that describes
416 ** a particular index given the name of that index
417 ** and the name of the database that contains the index.
418 ** Return NULL if not found.
420 ** If zDatabase is 0, all databases are searched for the
421 ** table and the first matching index is returned. (No checking
422 ** for duplicate index names is done.) The search order is
423 ** TEMP first, then MAIN, then any auxiliary databases added
424 ** using the ATTACH command.
426 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
427 Index *p = 0;
428 int i;
429 /* All mutexes are required for schema access. Make sure we hold them. */
430 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
431 for(i=OMIT_TEMPDB; i<db->nDb; i++){
432 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
433 Schema *pSchema = db->aDb[j].pSchema;
434 assert( pSchema );
435 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zDbSName) ) continue;
436 assert( sqlite3SchemaMutexHeld(db, j, 0) );
437 p = sqlite3HashFind(&pSchema->idxHash, zName);
438 if( p ) break;
440 return p;
444 ** Reclaim the memory used by an index
446 void sqlite3FreeIndex(sqlite3 *db, Index *p){
447 #ifndef SQLITE_OMIT_ANALYZE
448 sqlite3DeleteIndexSamples(db, p);
449 #endif
450 sqlite3ExprDelete(db, p->pPartIdxWhere);
451 sqlite3ExprListDelete(db, p->aColExpr);
452 sqlite3DbFree(db, p->zColAff);
453 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl);
454 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
455 sqlite3_free(p->aiRowEst);
456 #endif
457 sqlite3DbFree(db, p);
461 ** For the index called zIdxName which is found in the database iDb,
462 ** unlike that index from its Table then remove the index from
463 ** the index hash table and free all memory structures associated
464 ** with the index.
466 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
467 Index *pIndex;
468 Hash *pHash;
470 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
471 pHash = &db->aDb[iDb].pSchema->idxHash;
472 pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
473 if( ALWAYS(pIndex) ){
474 if( pIndex->pTable->pIndex==pIndex ){
475 pIndex->pTable->pIndex = pIndex->pNext;
476 }else{
477 Index *p;
478 /* Justification of ALWAYS(); The index must be on the list of
479 ** indices. */
480 p = pIndex->pTable->pIndex;
481 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
482 if( ALWAYS(p && p->pNext==pIndex) ){
483 p->pNext = pIndex->pNext;
486 sqlite3FreeIndex(db, pIndex);
488 db->mDbFlags |= DBFLAG_SchemaChange;
492 ** Look through the list of open database files in db->aDb[] and if
493 ** any have been closed, remove them from the list. Reallocate the
494 ** db->aDb[] structure to a smaller size, if possible.
496 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
497 ** are never candidates for being collapsed.
499 void sqlite3CollapseDatabaseArray(sqlite3 *db){
500 int i, j;
501 for(i=j=2; i<db->nDb; i++){
502 struct Db *pDb = &db->aDb[i];
503 if( pDb->pBt==0 ){
504 sqlite3DbFree(db, pDb->zDbSName);
505 pDb->zDbSName = 0;
506 continue;
508 if( j<i ){
509 db->aDb[j] = db->aDb[i];
511 j++;
513 db->nDb = j;
514 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
515 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
516 sqlite3DbFree(db, db->aDb);
517 db->aDb = db->aDbStatic;
522 ** Reset the schema for the database at index iDb. Also reset the
523 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero.
524 ** Deferred resets may be run by calling with iDb<0.
526 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
527 int i;
528 assert( iDb<db->nDb );
530 if( iDb>=0 ){
531 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
532 DbSetProperty(db, iDb, DB_ResetWanted);
533 DbSetProperty(db, 1, DB_ResetWanted);
534 db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
537 if( db->nSchemaLock==0 ){
538 for(i=0; i<db->nDb; i++){
539 if( DbHasProperty(db, i, DB_ResetWanted) ){
540 sqlite3SchemaClear(db->aDb[i].pSchema);
547 ** Erase all schema information from all attached databases (including
548 ** "main" and "temp") for a single database connection.
550 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
551 int i;
552 sqlite3BtreeEnterAll(db);
553 for(i=0; i<db->nDb; i++){
554 Db *pDb = &db->aDb[i];
555 if( pDb->pSchema ){
556 if( db->nSchemaLock==0 ){
557 sqlite3SchemaClear(pDb->pSchema);
558 }else{
559 DbSetProperty(db, i, DB_ResetWanted);
563 db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk);
564 sqlite3VtabUnlockList(db);
565 sqlite3BtreeLeaveAll(db);
566 if( db->nSchemaLock==0 ){
567 sqlite3CollapseDatabaseArray(db);
572 ** This routine is called when a commit occurs.
574 void sqlite3CommitInternalChanges(sqlite3 *db){
575 db->mDbFlags &= ~DBFLAG_SchemaChange;
579 ** Delete memory allocated for the column names of a table or view (the
580 ** Table.aCol[] array).
582 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
583 int i;
584 Column *pCol;
585 assert( pTable!=0 );
586 if( (pCol = pTable->aCol)!=0 ){
587 for(i=0; i<pTable->nCol; i++, pCol++){
588 sqlite3DbFree(db, pCol->zName);
589 sqlite3ExprDelete(db, pCol->pDflt);
590 sqlite3DbFree(db, pCol->zColl);
592 sqlite3DbFree(db, pTable->aCol);
597 ** Remove the memory data structures associated with the given
598 ** Table. No changes are made to disk by this routine.
600 ** This routine just deletes the data structure. It does not unlink
601 ** the table data structure from the hash table. But it does destroy
602 ** memory structures of the indices and foreign keys associated with
603 ** the table.
605 ** The db parameter is optional. It is needed if the Table object
606 ** contains lookaside memory. (Table objects in the schema do not use
607 ** lookaside memory, but some ephemeral Table objects do.) Or the
608 ** db parameter can be used with db->pnBytesFreed to measure the memory
609 ** used by the Table object.
611 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){
612 Index *pIndex, *pNext;
614 #ifdef SQLITE_DEBUG
615 /* Record the number of outstanding lookaside allocations in schema Tables
616 ** prior to doing any free() operations. Since schema Tables do not use
617 ** lookaside, this number should not change. */
618 int nLookaside = 0;
619 if( db && (pTable->tabFlags & TF_Ephemeral)==0 ){
620 nLookaside = sqlite3LookasideUsed(db, 0);
622 #endif
624 /* Delete all indices associated with this table. */
625 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
626 pNext = pIndex->pNext;
627 assert( pIndex->pSchema==pTable->pSchema
628 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) );
629 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){
630 char *zName = pIndex->zName;
631 TESTONLY ( Index *pOld = ) sqlite3HashInsert(
632 &pIndex->pSchema->idxHash, zName, 0
634 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
635 assert( pOld==pIndex || pOld==0 );
637 sqlite3FreeIndex(db, pIndex);
640 /* Delete any foreign keys attached to this table. */
641 sqlite3FkDelete(db, pTable);
643 /* Delete the Table structure itself.
645 sqlite3DeleteColumnNames(db, pTable);
646 sqlite3DbFree(db, pTable->zName);
647 sqlite3DbFree(db, pTable->zColAff);
648 sqlite3SelectDelete(db, pTable->pSelect);
649 sqlite3ExprListDelete(db, pTable->pCheck);
650 #ifndef SQLITE_OMIT_VIRTUALTABLE
651 sqlite3VtabClear(db, pTable);
652 #endif
653 sqlite3DbFree(db, pTable);
655 /* Verify that no lookaside memory was used by schema tables */
656 assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) );
658 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
659 /* Do not delete the table until the reference count reaches zero. */
660 if( !pTable ) return;
661 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return;
662 deleteTable(db, pTable);
667 ** Unlink the given table from the hash tables and the delete the
668 ** table structure with all its indices and foreign keys.
670 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
671 Table *p;
672 Db *pDb;
674 assert( db!=0 );
675 assert( iDb>=0 && iDb<db->nDb );
676 assert( zTabName );
677 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
678 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */
679 pDb = &db->aDb[iDb];
680 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
681 sqlite3DeleteTable(db, p);
682 db->mDbFlags |= DBFLAG_SchemaChange;
686 ** Given a token, return a string that consists of the text of that
687 ** token. Space to hold the returned string
688 ** is obtained from sqliteMalloc() and must be freed by the calling
689 ** function.
691 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that
692 ** surround the body of the token are removed.
694 ** Tokens are often just pointers into the original SQL text and so
695 ** are not \000 terminated and are not persistent. The returned string
696 ** is \000 terminated and is persistent.
698 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
699 char *zName;
700 if( pName ){
701 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
702 sqlite3Dequote(zName);
703 }else{
704 zName = 0;
706 return zName;
710 ** Open the sqlite_master table stored in database number iDb for
711 ** writing. The table is opened using cursor 0.
713 void sqlite3OpenMasterTable(Parse *p, int iDb){
714 Vdbe *v = sqlite3GetVdbe(p);
715 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, MASTER_NAME);
716 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5);
717 if( p->nTab==0 ){
718 p->nTab = 1;
723 ** Parameter zName points to a nul-terminated buffer containing the name
724 ** of a database ("main", "temp" or the name of an attached db). This
725 ** function returns the index of the named database in db->aDb[], or
726 ** -1 if the named db cannot be found.
728 int sqlite3FindDbName(sqlite3 *db, const char *zName){
729 int i = -1; /* Database number */
730 if( zName ){
731 Db *pDb;
732 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
733 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break;
734 /* "main" is always an acceptable alias for the primary database
735 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */
736 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break;
739 return i;
743 ** The token *pName contains the name of a database (either "main" or
744 ** "temp" or the name of an attached db). This routine returns the
745 ** index of the named database in db->aDb[], or -1 if the named db
746 ** does not exist.
748 int sqlite3FindDb(sqlite3 *db, Token *pName){
749 int i; /* Database number */
750 char *zName; /* Name we are searching for */
751 zName = sqlite3NameFromToken(db, pName);
752 i = sqlite3FindDbName(db, zName);
753 sqlite3DbFree(db, zName);
754 return i;
757 /* The table or view or trigger name is passed to this routine via tokens
758 ** pName1 and pName2. If the table name was fully qualified, for example:
760 ** CREATE TABLE xxx.yyy (...);
762 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
763 ** the table name is not fully qualified, i.e.:
765 ** CREATE TABLE yyy(...);
767 ** Then pName1 is set to "yyy" and pName2 is "".
769 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
770 ** pName2) that stores the unqualified table name. The index of the
771 ** database "xxx" is returned.
773 int sqlite3TwoPartName(
774 Parse *pParse, /* Parsing and code generating context */
775 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
776 Token *pName2, /* The "yyy" in the name "xxx.yyy" */
777 Token **pUnqual /* Write the unqualified object name here */
779 int iDb; /* Database holding the object */
780 sqlite3 *db = pParse->db;
782 assert( pName2!=0 );
783 if( pName2->n>0 ){
784 if( db->init.busy ) {
785 sqlite3ErrorMsg(pParse, "corrupt database");
786 return -1;
788 *pUnqual = pName2;
789 iDb = sqlite3FindDb(db, pName1);
790 if( iDb<0 ){
791 sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
792 return -1;
794 }else{
795 assert( db->init.iDb==0 || db->init.busy || IN_RENAME_OBJECT
796 || (db->mDbFlags & DBFLAG_Vacuum)!=0);
797 iDb = db->init.iDb;
798 *pUnqual = pName1;
800 return iDb;
804 ** True if PRAGMA writable_schema is ON
806 int sqlite3WritableSchema(sqlite3 *db){
807 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 );
808 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
809 SQLITE_WriteSchema );
810 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
811 SQLITE_Defensive );
812 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
813 (SQLITE_WriteSchema|SQLITE_Defensive) );
814 return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema;
818 ** This routine is used to check if the UTF-8 string zName is a legal
819 ** unqualified name for a new schema object (table, index, view or
820 ** trigger). All names are legal except those that begin with the string
821 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
822 ** is reserved for internal use.
824 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
825 if( !pParse->db->init.busy && pParse->nested==0
826 && sqlite3WritableSchema(pParse->db)==0
827 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
828 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
829 return SQLITE_ERROR;
831 return SQLITE_OK;
835 ** Return the PRIMARY KEY index of a table
837 Index *sqlite3PrimaryKeyIndex(Table *pTab){
838 Index *p;
839 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
840 return p;
844 ** Return the column of index pIdx that corresponds to table
845 ** column iCol. Return -1 if not found.
847 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){
848 int i;
849 for(i=0; i<pIdx->nColumn; i++){
850 if( iCol==pIdx->aiColumn[i] ) return i;
852 return -1;
856 ** Begin constructing a new table representation in memory. This is
857 ** the first of several action routines that get called in response
858 ** to a CREATE TABLE statement. In particular, this routine is called
859 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
860 ** flag is true if the table should be stored in the auxiliary database
861 ** file instead of in the main database file. This is normally the case
862 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
863 ** CREATE and TABLE.
865 ** The new table record is initialized and put in pParse->pNewTable.
866 ** As more of the CREATE TABLE statement is parsed, additional action
867 ** routines will be called to add more information to this record.
868 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
869 ** is called to complete the construction of the new table record.
871 void sqlite3StartTable(
872 Parse *pParse, /* Parser context */
873 Token *pName1, /* First part of the name of the table or view */
874 Token *pName2, /* Second part of the name of the table or view */
875 int isTemp, /* True if this is a TEMP table */
876 int isView, /* True if this is a VIEW */
877 int isVirtual, /* True if this is a VIRTUAL table */
878 int noErr /* Do nothing if table already exists */
880 Table *pTable;
881 char *zName = 0; /* The name of the new table */
882 sqlite3 *db = pParse->db;
883 Vdbe *v;
884 int iDb; /* Database number to create the table in */
885 Token *pName; /* Unqualified name of the table to create */
887 if( db->init.busy && db->init.newTnum==1 ){
888 /* Special case: Parsing the sqlite_master or sqlite_temp_master schema */
889 iDb = db->init.iDb;
890 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb));
891 pName = pName1;
892 }else{
893 /* The common case */
894 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
895 if( iDb<0 ) return;
896 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
897 /* If creating a temp table, the name may not be qualified. Unless
898 ** the database name is "temp" anyway. */
899 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
900 return;
902 if( !OMIT_TEMPDB && isTemp ) iDb = 1;
903 zName = sqlite3NameFromToken(db, pName);
904 if( IN_RENAME_OBJECT ){
905 sqlite3RenameTokenMap(pParse, (void*)zName, pName);
908 pParse->sNameToken = *pName;
909 if( zName==0 ) return;
910 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
911 goto begin_table_error;
913 if( db->init.iDb==1 ) isTemp = 1;
914 #ifndef SQLITE_OMIT_AUTHORIZATION
915 assert( isTemp==0 || isTemp==1 );
916 assert( isView==0 || isView==1 );
918 static const u8 aCode[] = {
919 SQLITE_CREATE_TABLE,
920 SQLITE_CREATE_TEMP_TABLE,
921 SQLITE_CREATE_VIEW,
922 SQLITE_CREATE_TEMP_VIEW
924 char *zDb = db->aDb[iDb].zDbSName;
925 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
926 goto begin_table_error;
928 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView],
929 zName, 0, zDb) ){
930 goto begin_table_error;
933 #endif
935 /* Make sure the new table name does not collide with an existing
936 ** index or table name in the same database. Issue an error message if
937 ** it does. The exception is if the statement being parsed was passed
938 ** to an sqlite3_declare_vtab() call. In that case only the column names
939 ** and types will be used, so there is no need to test for namespace
940 ** collisions.
942 if( !IN_SPECIAL_PARSE ){
943 char *zDb = db->aDb[iDb].zDbSName;
944 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
945 goto begin_table_error;
947 pTable = sqlite3FindTable(db, zName, zDb);
948 if( pTable ){
949 if( !noErr ){
950 sqlite3ErrorMsg(pParse, "table %T already exists", pName);
951 }else{
952 assert( !db->init.busy || CORRUPT_DB );
953 sqlite3CodeVerifySchema(pParse, iDb);
955 goto begin_table_error;
957 if( sqlite3FindIndex(db, zName, zDb)!=0 ){
958 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
959 goto begin_table_error;
963 pTable = sqlite3DbMallocZero(db, sizeof(Table));
964 if( pTable==0 ){
965 assert( db->mallocFailed );
966 pParse->rc = SQLITE_NOMEM_BKPT;
967 pParse->nErr++;
968 goto begin_table_error;
970 pTable->zName = zName;
971 pTable->iPKey = -1;
972 pTable->pSchema = db->aDb[iDb].pSchema;
973 pTable->nTabRef = 1;
974 #ifdef SQLITE_DEFAULT_ROWEST
975 pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST);
976 #else
977 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
978 #endif
979 assert( pParse->pNewTable==0 );
980 pParse->pNewTable = pTable;
982 /* If this is the magic sqlite_sequence table used by autoincrement,
983 ** then record a pointer to this table in the main database structure
984 ** so that INSERT can find the table easily.
986 #ifndef SQLITE_OMIT_AUTOINCREMENT
987 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
988 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
989 pTable->pSchema->pSeqTab = pTable;
991 #endif
993 /* Begin generating the code that will insert the table record into
994 ** the SQLITE_MASTER table. Note in particular that we must go ahead
995 ** and allocate the record number for the table entry now. Before any
996 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
997 ** indices to be created and the table record must come before the
998 ** indices. Hence, the record number for the table must be allocated
999 ** now.
1001 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
1002 int addr1;
1003 int fileFormat;
1004 int reg1, reg2, reg3;
1005 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
1006 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
1007 sqlite3BeginWriteOperation(pParse, 1, iDb);
1009 #ifndef SQLITE_OMIT_VIRTUALTABLE
1010 if( isVirtual ){
1011 sqlite3VdbeAddOp0(v, OP_VBegin);
1013 #endif
1015 /* If the file format and encoding in the database have not been set,
1016 ** set them now.
1018 reg1 = pParse->regRowid = ++pParse->nMem;
1019 reg2 = pParse->regRoot = ++pParse->nMem;
1020 reg3 = ++pParse->nMem;
1021 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
1022 sqlite3VdbeUsesBtree(v, iDb);
1023 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
1024 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
1025 1 : SQLITE_MAX_FILE_FORMAT;
1026 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat);
1027 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db));
1028 sqlite3VdbeJumpHere(v, addr1);
1030 /* This just creates a place-holder record in the sqlite_master table.
1031 ** The record created does not contain anything yet. It will be replaced
1032 ** by the real entry in code generated at sqlite3EndTable().
1034 ** The rowid for the new entry is left in register pParse->regRowid.
1035 ** The root page number of the new table is left in reg pParse->regRoot.
1036 ** The rowid and root page number values are needed by the code that
1037 ** sqlite3EndTable will generate.
1039 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1040 if( isView || isVirtual ){
1041 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
1042 }else
1043 #endif
1045 pParse->addrCrTab =
1046 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY);
1048 sqlite3OpenMasterTable(pParse, iDb);
1049 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
1050 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
1051 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
1052 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1053 sqlite3VdbeAddOp0(v, OP_Close);
1056 /* Normal (non-error) return. */
1057 return;
1059 /* If an error occurs, we jump here */
1060 begin_table_error:
1061 sqlite3DbFree(db, zName);
1062 return;
1065 /* Set properties of a table column based on the (magical)
1066 ** name of the column.
1068 #if SQLITE_ENABLE_HIDDEN_COLUMNS
1069 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
1070 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){
1071 pCol->colFlags |= COLFLAG_HIDDEN;
1072 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
1073 pTab->tabFlags |= TF_OOOHidden;
1076 #endif
1080 ** Add a new column to the table currently being constructed.
1082 ** The parser calls this routine once for each column declaration
1083 ** in a CREATE TABLE statement. sqlite3StartTable() gets called
1084 ** first to get things going. Then this routine is called for each
1085 ** column.
1087 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){
1088 Table *p;
1089 int i;
1090 char *z;
1091 char *zType;
1092 Column *pCol;
1093 sqlite3 *db = pParse->db;
1094 if( (p = pParse->pNewTable)==0 ) return;
1095 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1096 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
1097 return;
1099 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2);
1100 if( z==0 ) return;
1101 if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, pName);
1102 memcpy(z, pName->z, pName->n);
1103 z[pName->n] = 0;
1104 sqlite3Dequote(z);
1105 for(i=0; i<p->nCol; i++){
1106 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){
1107 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
1108 sqlite3DbFree(db, z);
1109 return;
1112 if( (p->nCol & 0x7)==0 ){
1113 Column *aNew;
1114 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
1115 if( aNew==0 ){
1116 sqlite3DbFree(db, z);
1117 return;
1119 p->aCol = aNew;
1121 pCol = &p->aCol[p->nCol];
1122 memset(pCol, 0, sizeof(p->aCol[0]));
1123 pCol->zName = z;
1124 sqlite3ColumnPropertiesFromName(p, pCol);
1126 if( pType->n==0 ){
1127 /* If there is no type specified, columns have the default affinity
1128 ** 'BLOB' with a default size of 4 bytes. */
1129 pCol->affinity = SQLITE_AFF_BLOB;
1130 pCol->szEst = 1;
1131 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1132 if( 4>=sqlite3GlobalConfig.szSorterRef ){
1133 pCol->colFlags |= COLFLAG_SORTERREF;
1135 #endif
1136 }else{
1137 zType = z + sqlite3Strlen30(z) + 1;
1138 memcpy(zType, pType->z, pType->n);
1139 zType[pType->n] = 0;
1140 sqlite3Dequote(zType);
1141 pCol->affinity = sqlite3AffinityType(zType, pCol);
1142 pCol->colFlags |= COLFLAG_HASTYPE;
1144 p->nCol++;
1145 pParse->constraintName.n = 0;
1149 ** This routine is called by the parser while in the middle of
1150 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
1151 ** been seen on a column. This routine sets the notNull flag on
1152 ** the column currently under construction.
1154 void sqlite3AddNotNull(Parse *pParse, int onError){
1155 Table *p;
1156 Column *pCol;
1157 p = pParse->pNewTable;
1158 if( p==0 || NEVER(p->nCol<1) ) return;
1159 pCol = &p->aCol[p->nCol-1];
1160 pCol->notNull = (u8)onError;
1161 p->tabFlags |= TF_HasNotNull;
1163 /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created
1164 ** on this column. */
1165 if( pCol->colFlags & COLFLAG_UNIQUE ){
1166 Index *pIdx;
1167 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1168 assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None );
1169 if( pIdx->aiColumn[0]==p->nCol-1 ){
1170 pIdx->uniqNotNull = 1;
1177 ** Scan the column type name zType (length nType) and return the
1178 ** associated affinity type.
1180 ** This routine does a case-independent search of zType for the
1181 ** substrings in the following table. If one of the substrings is
1182 ** found, the corresponding affinity is returned. If zType contains
1183 ** more than one of the substrings, entries toward the top of
1184 ** the table take priority. For example, if zType is 'BLOBINT',
1185 ** SQLITE_AFF_INTEGER is returned.
1187 ** Substring | Affinity
1188 ** --------------------------------
1189 ** 'INT' | SQLITE_AFF_INTEGER
1190 ** 'CHAR' | SQLITE_AFF_TEXT
1191 ** 'CLOB' | SQLITE_AFF_TEXT
1192 ** 'TEXT' | SQLITE_AFF_TEXT
1193 ** 'BLOB' | SQLITE_AFF_BLOB
1194 ** 'REAL' | SQLITE_AFF_REAL
1195 ** 'FLOA' | SQLITE_AFF_REAL
1196 ** 'DOUB' | SQLITE_AFF_REAL
1198 ** If none of the substrings in the above table are found,
1199 ** SQLITE_AFF_NUMERIC is returned.
1201 char sqlite3AffinityType(const char *zIn, Column *pCol){
1202 u32 h = 0;
1203 char aff = SQLITE_AFF_NUMERIC;
1204 const char *zChar = 0;
1206 assert( zIn!=0 );
1207 while( zIn[0] ){
1208 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1209 zIn++;
1210 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
1211 aff = SQLITE_AFF_TEXT;
1212 zChar = zIn;
1213 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
1214 aff = SQLITE_AFF_TEXT;
1215 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
1216 aff = SQLITE_AFF_TEXT;
1217 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
1218 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1219 aff = SQLITE_AFF_BLOB;
1220 if( zIn[0]=='(' ) zChar = zIn;
1221 #ifndef SQLITE_OMIT_FLOATING_POINT
1222 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
1223 && aff==SQLITE_AFF_NUMERIC ){
1224 aff = SQLITE_AFF_REAL;
1225 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
1226 && aff==SQLITE_AFF_NUMERIC ){
1227 aff = SQLITE_AFF_REAL;
1228 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
1229 && aff==SQLITE_AFF_NUMERIC ){
1230 aff = SQLITE_AFF_REAL;
1231 #endif
1232 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
1233 aff = SQLITE_AFF_INTEGER;
1234 break;
1238 /* If pCol is not NULL, store an estimate of the field size. The
1239 ** estimate is scaled so that the size of an integer is 1. */
1240 if( pCol ){
1241 int v = 0; /* default size is approx 4 bytes */
1242 if( aff<SQLITE_AFF_NUMERIC ){
1243 if( zChar ){
1244 while( zChar[0] ){
1245 if( sqlite3Isdigit(zChar[0]) ){
1246 /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1247 sqlite3GetInt32(zChar, &v);
1248 break;
1250 zChar++;
1252 }else{
1253 v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/
1256 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1257 if( v>=sqlite3GlobalConfig.szSorterRef ){
1258 pCol->colFlags |= COLFLAG_SORTERREF;
1260 #endif
1261 v = v/4 + 1;
1262 if( v>255 ) v = 255;
1263 pCol->szEst = v;
1265 return aff;
1269 ** The expression is the default value for the most recently added column
1270 ** of the table currently under construction.
1272 ** Default value expressions must be constant. Raise an exception if this
1273 ** is not the case.
1275 ** This routine is called by the parser while in the middle of
1276 ** parsing a CREATE TABLE statement.
1278 void sqlite3AddDefaultValue(
1279 Parse *pParse, /* Parsing context */
1280 Expr *pExpr, /* The parsed expression of the default value */
1281 const char *zStart, /* Start of the default value text */
1282 const char *zEnd /* First character past end of defaut value text */
1284 Table *p;
1285 Column *pCol;
1286 sqlite3 *db = pParse->db;
1287 p = pParse->pNewTable;
1288 if( p!=0 ){
1289 pCol = &(p->aCol[p->nCol-1]);
1290 if( !sqlite3ExprIsConstantOrFunction(pExpr, db->init.busy) ){
1291 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1292 pCol->zName);
1293 }else{
1294 /* A copy of pExpr is used instead of the original, as pExpr contains
1295 ** tokens that point to volatile memory.
1297 Expr x;
1298 sqlite3ExprDelete(db, pCol->pDflt);
1299 memset(&x, 0, sizeof(x));
1300 x.op = TK_SPAN;
1301 x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd);
1302 x.pLeft = pExpr;
1303 x.flags = EP_Skip;
1304 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE);
1305 sqlite3DbFree(db, x.u.zToken);
1308 if( IN_RENAME_OBJECT ){
1309 sqlite3RenameExprUnmap(pParse, pExpr);
1311 sqlite3ExprDelete(db, pExpr);
1315 ** Backwards Compatibility Hack:
1317 ** Historical versions of SQLite accepted strings as column names in
1318 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example:
1320 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1321 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1323 ** This is goofy. But to preserve backwards compatibility we continue to
1324 ** accept it. This routine does the necessary conversion. It converts
1325 ** the expression given in its argument from a TK_STRING into a TK_ID
1326 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1327 ** If the epxression is anything other than TK_STRING, the expression is
1328 ** unchanged.
1330 static void sqlite3StringToId(Expr *p){
1331 if( p->op==TK_STRING ){
1332 p->op = TK_ID;
1333 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
1334 p->pLeft->op = TK_ID;
1339 ** Designate the PRIMARY KEY for the table. pList is a list of names
1340 ** of columns that form the primary key. If pList is NULL, then the
1341 ** most recently added column of the table is the primary key.
1343 ** A table can have at most one primary key. If the table already has
1344 ** a primary key (and this is the second primary key) then create an
1345 ** error.
1347 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1348 ** then we will try to use that column as the rowid. Set the Table.iPKey
1349 ** field of the table under construction to be the index of the
1350 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
1351 ** no INTEGER PRIMARY KEY.
1353 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1354 ** index for the key. No index is created for INTEGER PRIMARY KEYs.
1356 void sqlite3AddPrimaryKey(
1357 Parse *pParse, /* Parsing context */
1358 ExprList *pList, /* List of field names to be indexed */
1359 int onError, /* What to do with a uniqueness conflict */
1360 int autoInc, /* True if the AUTOINCREMENT keyword is present */
1361 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1363 Table *pTab = pParse->pNewTable;
1364 Column *pCol = 0;
1365 int iCol = -1, i;
1366 int nTerm;
1367 if( pTab==0 ) goto primary_key_exit;
1368 if( pTab->tabFlags & TF_HasPrimaryKey ){
1369 sqlite3ErrorMsg(pParse,
1370 "table \"%s\" has more than one primary key", pTab->zName);
1371 goto primary_key_exit;
1373 pTab->tabFlags |= TF_HasPrimaryKey;
1374 if( pList==0 ){
1375 iCol = pTab->nCol - 1;
1376 pCol = &pTab->aCol[iCol];
1377 pCol->colFlags |= COLFLAG_PRIMKEY;
1378 nTerm = 1;
1379 }else{
1380 nTerm = pList->nExpr;
1381 for(i=0; i<nTerm; i++){
1382 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
1383 assert( pCExpr!=0 );
1384 sqlite3StringToId(pCExpr);
1385 if( pCExpr->op==TK_ID ){
1386 const char *zCName = pCExpr->u.zToken;
1387 for(iCol=0; iCol<pTab->nCol; iCol++){
1388 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){
1389 pCol = &pTab->aCol[iCol];
1390 pCol->colFlags |= COLFLAG_PRIMKEY;
1391 break;
1397 if( nTerm==1
1398 && pCol
1399 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0
1400 && sortOrder!=SQLITE_SO_DESC
1402 if( IN_RENAME_OBJECT && pList ){
1403 sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pList->a[0].pExpr);
1405 pTab->iPKey = iCol;
1406 pTab->keyConf = (u8)onError;
1407 assert( autoInc==0 || autoInc==1 );
1408 pTab->tabFlags |= autoInc*TF_Autoincrement;
1409 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder;
1410 }else if( autoInc ){
1411 #ifndef SQLITE_OMIT_AUTOINCREMENT
1412 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1413 "INTEGER PRIMARY KEY");
1414 #endif
1415 }else{
1416 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
1417 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY);
1418 pList = 0;
1421 primary_key_exit:
1422 sqlite3ExprListDelete(pParse->db, pList);
1423 return;
1427 ** Add a new CHECK constraint to the table currently under construction.
1429 void sqlite3AddCheckConstraint(
1430 Parse *pParse, /* Parsing context */
1431 Expr *pCheckExpr /* The check expression */
1433 #ifndef SQLITE_OMIT_CHECK
1434 Table *pTab = pParse->pNewTable;
1435 sqlite3 *db = pParse->db;
1436 if( pTab && !IN_DECLARE_VTAB
1437 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
1439 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1440 if( pParse->constraintName.n ){
1441 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1443 }else
1444 #endif
1446 sqlite3ExprDelete(pParse->db, pCheckExpr);
1451 ** Set the collation function of the most recently parsed table column
1452 ** to the CollSeq given.
1454 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1455 Table *p;
1456 int i;
1457 char *zColl; /* Dequoted name of collation sequence */
1458 sqlite3 *db;
1460 if( (p = pParse->pNewTable)==0 ) return;
1461 i = p->nCol-1;
1462 db = pParse->db;
1463 zColl = sqlite3NameFromToken(db, pToken);
1464 if( !zColl ) return;
1466 if( sqlite3LocateCollSeq(pParse, zColl) ){
1467 Index *pIdx;
1468 sqlite3DbFree(db, p->aCol[i].zColl);
1469 p->aCol[i].zColl = zColl;
1471 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1472 ** then an index may have been created on this column before the
1473 ** collation type was added. Correct this if it is the case.
1475 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1476 assert( pIdx->nKeyCol==1 );
1477 if( pIdx->aiColumn[0]==i ){
1478 pIdx->azColl[0] = p->aCol[i].zColl;
1481 }else{
1482 sqlite3DbFree(db, zColl);
1487 ** This function returns the collation sequence for database native text
1488 ** encoding identified by the string zName, length nName.
1490 ** If the requested collation sequence is not available, or not available
1491 ** in the database native encoding, the collation factory is invoked to
1492 ** request it. If the collation factory does not supply such a sequence,
1493 ** and the sequence is available in another text encoding, then that is
1494 ** returned instead.
1496 ** If no versions of the requested collations sequence are available, or
1497 ** another error occurs, NULL is returned and an error message written into
1498 ** pParse.
1500 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine
1501 ** invokes the collation factory if the named collation cannot be found
1502 ** and generates an error message.
1504 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
1506 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
1507 sqlite3 *db = pParse->db;
1508 u8 enc = ENC(db);
1509 u8 initbusy = db->init.busy;
1510 CollSeq *pColl;
1512 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
1513 if( !initbusy && (!pColl || !pColl->xCmp) ){
1514 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName);
1517 return pColl;
1522 ** Generate code that will increment the schema cookie.
1524 ** The schema cookie is used to determine when the schema for the
1525 ** database changes. After each schema change, the cookie value
1526 ** changes. When a process first reads the schema it records the
1527 ** cookie. Thereafter, whenever it goes to access the database,
1528 ** it checks the cookie to make sure the schema has not changed
1529 ** since it was last read.
1531 ** This plan is not completely bullet-proof. It is possible for
1532 ** the schema to change multiple times and for the cookie to be
1533 ** set back to prior value. But schema changes are infrequent
1534 ** and the probability of hitting the same cookie value is only
1535 ** 1 chance in 2^32. So we're safe enough.
1537 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments
1538 ** the schema-version whenever the schema changes.
1540 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1541 sqlite3 *db = pParse->db;
1542 Vdbe *v = pParse->pVdbe;
1543 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1544 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION,
1545 (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie));
1549 ** Measure the number of characters needed to output the given
1550 ** identifier. The number returned includes any quotes used
1551 ** but does not include the null terminator.
1553 ** The estimate is conservative. It might be larger that what is
1554 ** really needed.
1556 static int identLength(const char *z){
1557 int n;
1558 for(n=0; *z; n++, z++){
1559 if( *z=='"' ){ n++; }
1561 return n + 2;
1565 ** The first parameter is a pointer to an output buffer. The second
1566 ** parameter is a pointer to an integer that contains the offset at
1567 ** which to write into the output buffer. This function copies the
1568 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1569 ** to the specified offset in the buffer and updates *pIdx to refer
1570 ** to the first byte after the last byte written before returning.
1572 ** If the string zSignedIdent consists entirely of alpha-numeric
1573 ** characters, does not begin with a digit and is not an SQL keyword,
1574 ** then it is copied to the output buffer exactly as it is. Otherwise,
1575 ** it is quoted using double-quotes.
1577 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1578 unsigned char *zIdent = (unsigned char*)zSignedIdent;
1579 int i, j, needQuote;
1580 i = *pIdx;
1582 for(j=0; zIdent[j]; j++){
1583 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1585 needQuote = sqlite3Isdigit(zIdent[0])
1586 || sqlite3KeywordCode(zIdent, j)!=TK_ID
1587 || zIdent[j]!=0
1588 || j==0;
1590 if( needQuote ) z[i++] = '"';
1591 for(j=0; zIdent[j]; j++){
1592 z[i++] = zIdent[j];
1593 if( zIdent[j]=='"' ) z[i++] = '"';
1595 if( needQuote ) z[i++] = '"';
1596 z[i] = 0;
1597 *pIdx = i;
1601 ** Generate a CREATE TABLE statement appropriate for the given
1602 ** table. Memory to hold the text of the statement is obtained
1603 ** from sqliteMalloc() and must be freed by the calling function.
1605 static char *createTableStmt(sqlite3 *db, Table *p){
1606 int i, k, n;
1607 char *zStmt;
1608 char *zSep, *zSep2, *zEnd;
1609 Column *pCol;
1610 n = 0;
1611 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1612 n += identLength(pCol->zName) + 5;
1614 n += identLength(p->zName);
1615 if( n<50 ){
1616 zSep = "";
1617 zSep2 = ",";
1618 zEnd = ")";
1619 }else{
1620 zSep = "\n ";
1621 zSep2 = ",\n ";
1622 zEnd = "\n)";
1624 n += 35 + 6*p->nCol;
1625 zStmt = sqlite3DbMallocRaw(0, n);
1626 if( zStmt==0 ){
1627 sqlite3OomFault(db);
1628 return 0;
1630 sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1631 k = sqlite3Strlen30(zStmt);
1632 identPut(zStmt, &k, p->zName);
1633 zStmt[k++] = '(';
1634 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1635 static const char * const azType[] = {
1636 /* SQLITE_AFF_BLOB */ "",
1637 /* SQLITE_AFF_TEXT */ " TEXT",
1638 /* SQLITE_AFF_NUMERIC */ " NUM",
1639 /* SQLITE_AFF_INTEGER */ " INT",
1640 /* SQLITE_AFF_REAL */ " REAL"
1642 int len;
1643 const char *zType;
1645 sqlite3_snprintf(n-k, &zStmt[k], zSep);
1646 k += sqlite3Strlen30(&zStmt[k]);
1647 zSep = zSep2;
1648 identPut(zStmt, &k, pCol->zName);
1649 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
1650 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
1651 testcase( pCol->affinity==SQLITE_AFF_BLOB );
1652 testcase( pCol->affinity==SQLITE_AFF_TEXT );
1653 testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
1654 testcase( pCol->affinity==SQLITE_AFF_INTEGER );
1655 testcase( pCol->affinity==SQLITE_AFF_REAL );
1657 zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
1658 len = sqlite3Strlen30(zType);
1659 assert( pCol->affinity==SQLITE_AFF_BLOB
1660 || pCol->affinity==sqlite3AffinityType(zType, 0) );
1661 memcpy(&zStmt[k], zType, len);
1662 k += len;
1663 assert( k<=n );
1665 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1666 return zStmt;
1670 ** Resize an Index object to hold N columns total. Return SQLITE_OK
1671 ** on success and SQLITE_NOMEM on an OOM error.
1673 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
1674 char *zExtra;
1675 int nByte;
1676 if( pIdx->nColumn>=N ) return SQLITE_OK;
1677 assert( pIdx->isResized==0 );
1678 nByte = (sizeof(char*) + sizeof(i16) + 1)*N;
1679 zExtra = sqlite3DbMallocZero(db, nByte);
1680 if( zExtra==0 ) return SQLITE_NOMEM_BKPT;
1681 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
1682 pIdx->azColl = (const char**)zExtra;
1683 zExtra += sizeof(char*)*N;
1684 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
1685 pIdx->aiColumn = (i16*)zExtra;
1686 zExtra += sizeof(i16)*N;
1687 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
1688 pIdx->aSortOrder = (u8*)zExtra;
1689 pIdx->nColumn = N;
1690 pIdx->isResized = 1;
1691 return SQLITE_OK;
1695 ** Estimate the total row width for a table.
1697 static void estimateTableWidth(Table *pTab){
1698 unsigned wTable = 0;
1699 const Column *pTabCol;
1700 int i;
1701 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
1702 wTable += pTabCol->szEst;
1704 if( pTab->iPKey<0 ) wTable++;
1705 pTab->szTabRow = sqlite3LogEst(wTable*4);
1709 ** Estimate the average size of a row for an index.
1711 static void estimateIndexWidth(Index *pIdx){
1712 unsigned wIndex = 0;
1713 int i;
1714 const Column *aCol = pIdx->pTable->aCol;
1715 for(i=0; i<pIdx->nColumn; i++){
1716 i16 x = pIdx->aiColumn[i];
1717 assert( x<pIdx->pTable->nCol );
1718 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
1720 pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
1723 /* Return true if value x is found any of the first nCol entries of aiCol[]
1725 static int hasColumn(const i16 *aiCol, int nCol, int x){
1726 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1;
1727 return 0;
1730 /* Recompute the colNotIdxed field of the Index.
1732 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed
1733 ** columns that are within the first 63 columns of the table. The
1734 ** high-order bit of colNotIdxed is always 1. All unindexed columns
1735 ** of the table have a 1.
1737 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask
1738 ** to determine if the index is covering index.
1740 static void recomputeColumnsNotIndexed(Index *pIdx){
1741 Bitmask m = 0;
1742 int j;
1743 for(j=pIdx->nColumn-1; j>=0; j--){
1744 int x = pIdx->aiColumn[j];
1745 if( x>=0 ){
1746 testcase( x==BMS-1 );
1747 testcase( x==BMS-2 );
1748 if( x<BMS-1 ) m |= MASKBIT(x);
1751 pIdx->colNotIdxed = ~m;
1752 assert( (pIdx->colNotIdxed>>63)==1 );
1756 ** This routine runs at the end of parsing a CREATE TABLE statement that
1757 ** has a WITHOUT ROWID clause. The job of this routine is to convert both
1758 ** internal schema data structures and the generated VDBE code so that they
1759 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
1760 ** Changes include:
1762 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL.
1763 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY
1764 ** into BTREE_BLOBKEY.
1765 ** (3) Bypass the creation of the sqlite_master table entry
1766 ** for the PRIMARY KEY as the primary key index is now
1767 ** identified by the sqlite_master table entry of the table itself.
1768 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the
1769 ** schema to the rootpage from the main table.
1770 ** (5) Add all table columns to the PRIMARY KEY Index object
1771 ** so that the PRIMARY KEY is a covering index. The surplus
1772 ** columns are part of KeyInfo.nAllField and are not used for
1773 ** sorting or lookup or uniqueness checks.
1774 ** (6) Replace the rowid tail on all automatically generated UNIQUE
1775 ** indices with the PRIMARY KEY columns.
1777 ** For virtual tables, only (1) is performed.
1779 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
1780 Index *pIdx;
1781 Index *pPk;
1782 int nPk;
1783 int i, j;
1784 sqlite3 *db = pParse->db;
1785 Vdbe *v = pParse->pVdbe;
1787 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables)
1789 if( !db->init.imposterTable ){
1790 for(i=0; i<pTab->nCol; i++){
1791 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){
1792 pTab->aCol[i].notNull = OE_Abort;
1797 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY
1798 ** into BTREE_BLOBKEY.
1800 if( pParse->addrCrTab ){
1801 assert( v );
1802 sqlite3VdbeChangeP3(v, pParse->addrCrTab, BTREE_BLOBKEY);
1805 /* Locate the PRIMARY KEY index. Or, if this table was originally
1806 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
1808 if( pTab->iPKey>=0 ){
1809 ExprList *pList;
1810 Token ipkToken;
1811 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName);
1812 pList = sqlite3ExprListAppend(pParse, 0,
1813 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
1814 if( pList==0 ) return;
1815 pList->a[0].sortOrder = pParse->iPkSortOrder;
1816 assert( pParse->pNewTable==pTab );
1817 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0,
1818 SQLITE_IDXTYPE_PRIMARYKEY);
1819 if( db->mallocFailed || pParse->nErr ) return;
1820 pPk = sqlite3PrimaryKeyIndex(pTab);
1821 pTab->iPKey = -1;
1822 }else{
1823 pPk = sqlite3PrimaryKeyIndex(pTab);
1826 ** Remove all redundant columns from the PRIMARY KEY. For example, change
1827 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later
1828 ** code assumes the PRIMARY KEY contains no repeated columns.
1830 for(i=j=1; i<pPk->nKeyCol; i++){
1831 if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){
1832 pPk->nColumn--;
1833 }else{
1834 pPk->aiColumn[j++] = pPk->aiColumn[i];
1837 pPk->nKeyCol = j;
1839 assert( pPk!=0 );
1840 pPk->isCovering = 1;
1841 if( !db->init.imposterTable ) pPk->uniqNotNull = 1;
1842 nPk = pPk->nKeyCol;
1844 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master
1845 ** table entry. This is only required if currently generating VDBE
1846 ** code for a CREATE TABLE (not when parsing one as part of reading
1847 ** a database schema). */
1848 if( v && pPk->tnum>0 ){
1849 assert( db->init.busy==0 );
1850 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto);
1853 /* The root page of the PRIMARY KEY is the table root page */
1854 pPk->tnum = pTab->tnum;
1856 /* Update the in-memory representation of all UNIQUE indices by converting
1857 ** the final rowid column into one or more columns of the PRIMARY KEY.
1859 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1860 int n;
1861 if( IsPrimaryKeyIndex(pIdx) ) continue;
1862 for(i=n=0; i<nPk; i++){
1863 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++;
1865 if( n==0 ){
1866 /* This index is a superset of the primary key */
1867 pIdx->nColumn = pIdx->nKeyCol;
1868 continue;
1870 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
1871 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
1872 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){
1873 pIdx->aiColumn[j] = pPk->aiColumn[i];
1874 pIdx->azColl[j] = pPk->azColl[i];
1875 j++;
1878 assert( pIdx->nColumn>=pIdx->nKeyCol+n );
1879 assert( pIdx->nColumn>=j );
1882 /* Add all table columns to the PRIMARY KEY index
1884 if( nPk<pTab->nCol ){
1885 if( resizeIndexObject(db, pPk, pTab->nCol) ) return;
1886 for(i=0, j=nPk; i<pTab->nCol; i++){
1887 if( !hasColumn(pPk->aiColumn, j, i) ){
1888 assert( j<pPk->nColumn );
1889 pPk->aiColumn[j] = i;
1890 pPk->azColl[j] = sqlite3StrBINARY;
1891 j++;
1894 assert( pPk->nColumn==j );
1895 assert( pTab->nCol==j );
1896 }else{
1897 pPk->nColumn = pTab->nCol;
1899 recomputeColumnsNotIndexed(pPk);
1902 #ifndef SQLITE_OMIT_VIRTUALTABLE
1904 ** Return true if zName is a shadow table name in the current database
1905 ** connection.
1907 ** zName is temporarily modified while this routine is running, but is
1908 ** restored to its original value prior to this routine returning.
1910 static int isShadowTableName(sqlite3 *db, char *zName){
1911 char *zTail; /* Pointer to the last "_" in zName */
1912 Table *pTab; /* Table that zName is a shadow of */
1913 Module *pMod; /* Module for the virtual table */
1915 zTail = strrchr(zName, '_');
1916 if( zTail==0 ) return 0;
1917 *zTail = 0;
1918 pTab = sqlite3FindTable(db, zName, 0);
1919 *zTail = '_';
1920 if( pTab==0 ) return 0;
1921 if( !IsVirtual(pTab) ) return 0;
1922 pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->azModuleArg[0]);
1923 if( pMod==0 ) return 0;
1924 if( pMod->pModule->iVersion<3 ) return 0;
1925 if( pMod->pModule->xShadowName==0 ) return 0;
1926 return pMod->pModule->xShadowName(zTail+1);
1928 #else
1929 # define isShadowTableName(x,y) 0
1930 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
1933 ** This routine is called to report the final ")" that terminates
1934 ** a CREATE TABLE statement.
1936 ** The table structure that other action routines have been building
1937 ** is added to the internal hash tables, assuming no errors have
1938 ** occurred.
1940 ** An entry for the table is made in the master table on disk, unless
1941 ** this is a temporary table or db->init.busy==1. When db->init.busy==1
1942 ** it means we are reading the sqlite_master table because we just
1943 ** connected to the database or because the sqlite_master table has
1944 ** recently changed, so the entry for this table already exists in
1945 ** the sqlite_master table. We do not want to create it again.
1947 ** If the pSelect argument is not NULL, it means that this routine
1948 ** was called to create a table generated from a
1949 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of
1950 ** the new table will match the result set of the SELECT.
1952 void sqlite3EndTable(
1953 Parse *pParse, /* Parse context */
1954 Token *pCons, /* The ',' token after the last column defn. */
1955 Token *pEnd, /* The ')' before options in the CREATE TABLE */
1956 u8 tabOpts, /* Extra table options. Usually 0. */
1957 Select *pSelect /* Select from a "CREATE ... AS SELECT" */
1959 Table *p; /* The new table */
1960 sqlite3 *db = pParse->db; /* The database connection */
1961 int iDb; /* Database in which the table lives */
1962 Index *pIdx; /* An implied index of the table */
1964 if( pEnd==0 && pSelect==0 ){
1965 return;
1967 assert( !db->mallocFailed );
1968 p = pParse->pNewTable;
1969 if( p==0 ) return;
1971 if( pSelect==0 && isShadowTableName(db, p->zName) ){
1972 p->tabFlags |= TF_Shadow;
1975 /* If the db->init.busy is 1 it means we are reading the SQL off the
1976 ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1977 ** So do not write to the disk again. Extract the root page number
1978 ** for the table from the db->init.newTnum field. (The page number
1979 ** should have been put there by the sqliteOpenCb routine.)
1981 ** If the root page number is 1, that means this is the sqlite_master
1982 ** table itself. So mark it read-only.
1984 if( db->init.busy ){
1985 if( pSelect ){
1986 sqlite3ErrorMsg(pParse, "");
1987 return;
1989 p->tnum = db->init.newTnum;
1990 if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
1993 /* Special processing for WITHOUT ROWID Tables */
1994 if( tabOpts & TF_WithoutRowid ){
1995 if( (p->tabFlags & TF_Autoincrement) ){
1996 sqlite3ErrorMsg(pParse,
1997 "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
1998 return;
2000 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
2001 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
2002 }else{
2003 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
2004 convertToWithoutRowidTable(pParse, p);
2008 iDb = sqlite3SchemaToIndex(db, p->pSchema);
2010 #ifndef SQLITE_OMIT_CHECK
2011 /* Resolve names in all CHECK constraint expressions.
2013 if( p->pCheck ){
2014 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
2016 #endif /* !defined(SQLITE_OMIT_CHECK) */
2018 /* Estimate the average row size for the table and for all implied indices */
2019 estimateTableWidth(p);
2020 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
2021 estimateIndexWidth(pIdx);
2024 /* If not initializing, then create a record for the new table
2025 ** in the SQLITE_MASTER table of the database.
2027 ** If this is a TEMPORARY table, write the entry into the auxiliary
2028 ** file instead of into the main database file.
2030 if( !db->init.busy ){
2031 int n;
2032 Vdbe *v;
2033 char *zType; /* "view" or "table" */
2034 char *zType2; /* "VIEW" or "TABLE" */
2035 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */
2037 v = sqlite3GetVdbe(pParse);
2038 if( NEVER(v==0) ) return;
2040 sqlite3VdbeAddOp1(v, OP_Close, 0);
2043 ** Initialize zType for the new view or table.
2045 if( p->pSelect==0 ){
2046 /* A regular table */
2047 zType = "table";
2048 zType2 = "TABLE";
2049 #ifndef SQLITE_OMIT_VIEW
2050 }else{
2051 /* A view */
2052 zType = "view";
2053 zType2 = "VIEW";
2054 #endif
2057 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
2058 ** statement to populate the new table. The root-page number for the
2059 ** new table is in register pParse->regRoot.
2061 ** Once the SELECT has been coded by sqlite3Select(), it is in a
2062 ** suitable state to query for the column names and types to be used
2063 ** by the new table.
2065 ** A shared-cache write-lock is not required to write to the new table,
2066 ** as a schema-lock must have already been obtained to create it. Since
2067 ** a schema-lock excludes all other database users, the write-lock would
2068 ** be redundant.
2070 if( pSelect ){
2071 SelectDest dest; /* Where the SELECT should store results */
2072 int regYield; /* Register holding co-routine entry-point */
2073 int addrTop; /* Top of the co-routine */
2074 int regRec; /* A record to be insert into the new table */
2075 int regRowid; /* Rowid of the next row to insert */
2076 int addrInsLoop; /* Top of the loop for inserting rows */
2077 Table *pSelTab; /* A table that describes the SELECT results */
2079 regYield = ++pParse->nMem;
2080 regRec = ++pParse->nMem;
2081 regRowid = ++pParse->nMem;
2082 assert(pParse->nTab==1);
2083 sqlite3MayAbort(pParse);
2084 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
2085 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
2086 pParse->nTab = 2;
2087 addrTop = sqlite3VdbeCurrentAddr(v) + 1;
2088 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
2089 if( pParse->nErr ) return;
2090 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
2091 if( pSelTab==0 ) return;
2092 assert( p->aCol==0 );
2093 p->nCol = pSelTab->nCol;
2094 p->aCol = pSelTab->aCol;
2095 pSelTab->nCol = 0;
2096 pSelTab->aCol = 0;
2097 sqlite3DeleteTable(db, pSelTab);
2098 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
2099 sqlite3Select(pParse, pSelect, &dest);
2100 if( pParse->nErr ) return;
2101 sqlite3VdbeEndCoroutine(v, regYield);
2102 sqlite3VdbeJumpHere(v, addrTop - 1);
2103 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
2104 VdbeCoverage(v);
2105 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
2106 sqlite3TableAffinity(v, p, 0);
2107 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
2108 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
2109 sqlite3VdbeGoto(v, addrInsLoop);
2110 sqlite3VdbeJumpHere(v, addrInsLoop);
2111 sqlite3VdbeAddOp1(v, OP_Close, 1);
2114 /* Compute the complete text of the CREATE statement */
2115 if( pSelect ){
2116 zStmt = createTableStmt(db, p);
2117 }else{
2118 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
2119 n = (int)(pEnd2->z - pParse->sNameToken.z);
2120 if( pEnd2->z[0]!=';' ) n += pEnd2->n;
2121 zStmt = sqlite3MPrintf(db,
2122 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
2126 /* A slot for the record has already been allocated in the
2127 ** SQLITE_MASTER table. We just need to update that slot with all
2128 ** the information we've collected.
2130 sqlite3NestedParse(pParse,
2131 "UPDATE %Q.%s "
2132 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
2133 "WHERE rowid=#%d",
2134 db->aDb[iDb].zDbSName, MASTER_NAME,
2135 zType,
2136 p->zName,
2137 p->zName,
2138 pParse->regRoot,
2139 zStmt,
2140 pParse->regRowid
2142 sqlite3DbFree(db, zStmt);
2143 sqlite3ChangeCookie(pParse, iDb);
2145 #ifndef SQLITE_OMIT_AUTOINCREMENT
2146 /* Check to see if we need to create an sqlite_sequence table for
2147 ** keeping track of autoincrement keys.
2149 if( (p->tabFlags & TF_Autoincrement)!=0 ){
2150 Db *pDb = &db->aDb[iDb];
2151 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2152 if( pDb->pSchema->pSeqTab==0 ){
2153 sqlite3NestedParse(pParse,
2154 "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2155 pDb->zDbSName
2159 #endif
2161 /* Reparse everything to update our internal data structures */
2162 sqlite3VdbeAddParseSchemaOp(v, iDb,
2163 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName));
2167 /* Add the table to the in-memory representation of the database.
2169 if( db->init.busy ){
2170 Table *pOld;
2171 Schema *pSchema = p->pSchema;
2172 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2173 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
2174 if( pOld ){
2175 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
2176 sqlite3OomFault(db);
2177 return;
2179 pParse->pNewTable = 0;
2180 db->mDbFlags |= DBFLAG_SchemaChange;
2182 #ifndef SQLITE_OMIT_ALTERTABLE
2183 if( !p->pSelect ){
2184 const char *zName = (const char *)pParse->sNameToken.z;
2185 int nName;
2186 assert( !pSelect && pCons && pEnd );
2187 if( pCons->z==0 ){
2188 pCons = pEnd;
2190 nName = (int)((const char *)pCons->z - zName);
2191 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
2193 #endif
2197 #ifndef SQLITE_OMIT_VIEW
2199 ** The parser calls this routine in order to create a new VIEW
2201 void sqlite3CreateView(
2202 Parse *pParse, /* The parsing context */
2203 Token *pBegin, /* The CREATE token that begins the statement */
2204 Token *pName1, /* The token that holds the name of the view */
2205 Token *pName2, /* The token that holds the name of the view */
2206 ExprList *pCNames, /* Optional list of view column names */
2207 Select *pSelect, /* A SELECT statement that will become the new view */
2208 int isTemp, /* TRUE for a TEMPORARY view */
2209 int noErr /* Suppress error messages if VIEW already exists */
2211 Table *p;
2212 int n;
2213 const char *z;
2214 Token sEnd;
2215 DbFixer sFix;
2216 Token *pName = 0;
2217 int iDb;
2218 sqlite3 *db = pParse->db;
2220 if( pParse->nVar>0 ){
2221 sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
2222 goto create_view_fail;
2224 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
2225 p = pParse->pNewTable;
2226 if( p==0 || pParse->nErr ) goto create_view_fail;
2227 sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2228 iDb = sqlite3SchemaToIndex(db, p->pSchema);
2229 sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
2230 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
2232 /* Make a copy of the entire SELECT statement that defines the view.
2233 ** This will force all the Expr.token.z values to be dynamically
2234 ** allocated rather than point to the input string - which means that
2235 ** they will persist after the current sqlite3_exec() call returns.
2237 if( IN_RENAME_OBJECT ){
2238 p->pSelect = pSelect;
2239 pSelect = 0;
2240 }else{
2241 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
2243 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
2244 if( db->mallocFailed ) goto create_view_fail;
2246 /* Locate the end of the CREATE VIEW statement. Make sEnd point to
2247 ** the end.
2249 sEnd = pParse->sLastToken;
2250 assert( sEnd.z[0]!=0 || sEnd.n==0 );
2251 if( sEnd.z[0]!=';' ){
2252 sEnd.z += sEnd.n;
2254 sEnd.n = 0;
2255 n = (int)(sEnd.z - pBegin->z);
2256 assert( n>0 );
2257 z = pBegin->z;
2258 while( sqlite3Isspace(z[n-1]) ){ n--; }
2259 sEnd.z = &z[n-1];
2260 sEnd.n = 1;
2262 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
2263 sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
2265 create_view_fail:
2266 sqlite3SelectDelete(db, pSelect);
2267 if( IN_RENAME_OBJECT ){
2268 sqlite3RenameExprlistUnmap(pParse, pCNames);
2270 sqlite3ExprListDelete(db, pCNames);
2271 return;
2273 #endif /* SQLITE_OMIT_VIEW */
2275 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2277 ** The Table structure pTable is really a VIEW. Fill in the names of
2278 ** the columns of the view in the pTable structure. Return the number
2279 ** of errors. If an error is seen leave an error message in pParse->zErrMsg.
2281 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
2282 Table *pSelTab; /* A fake table from which we get the result set */
2283 Select *pSel; /* Copy of the SELECT that implements the view */
2284 int nErr = 0; /* Number of errors encountered */
2285 int n; /* Temporarily holds the number of cursors assigned */
2286 sqlite3 *db = pParse->db; /* Database connection for malloc errors */
2287 #ifndef SQLITE_OMIT_VIRTUALTABLE
2288 int rc;
2289 #endif
2290 #ifndef SQLITE_OMIT_AUTHORIZATION
2291 sqlite3_xauth xAuth; /* Saved xAuth pointer */
2292 #endif
2294 assert( pTable );
2296 #ifndef SQLITE_OMIT_VIRTUALTABLE
2297 db->nSchemaLock++;
2298 rc = sqlite3VtabCallConnect(pParse, pTable);
2299 db->nSchemaLock--;
2300 if( rc ){
2301 return 1;
2303 if( IsVirtual(pTable) ) return 0;
2304 #endif
2306 #ifndef SQLITE_OMIT_VIEW
2307 /* A positive nCol means the columns names for this view are
2308 ** already known.
2310 if( pTable->nCol>0 ) return 0;
2312 /* A negative nCol is a special marker meaning that we are currently
2313 ** trying to compute the column names. If we enter this routine with
2314 ** a negative nCol, it means two or more views form a loop, like this:
2316 ** CREATE VIEW one AS SELECT * FROM two;
2317 ** CREATE VIEW two AS SELECT * FROM one;
2319 ** Actually, the error above is now caught prior to reaching this point.
2320 ** But the following test is still important as it does come up
2321 ** in the following:
2323 ** CREATE TABLE main.ex1(a);
2324 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
2325 ** SELECT * FROM temp.ex1;
2327 if( pTable->nCol<0 ){
2328 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
2329 return 1;
2331 assert( pTable->nCol>=0 );
2333 /* If we get this far, it means we need to compute the table names.
2334 ** Note that the call to sqlite3ResultSetOfSelect() will expand any
2335 ** "*" elements in the results set of the view and will assign cursors
2336 ** to the elements of the FROM clause. But we do not want these changes
2337 ** to be permanent. So the computation is done on a copy of the SELECT
2338 ** statement that defines the view.
2340 assert( pTable->pSelect );
2341 pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
2342 if( pSel ){
2343 #ifndef SQLITE_OMIT_ALTERTABLE
2344 u8 eParseMode = pParse->eParseMode;
2345 pParse->eParseMode = PARSE_MODE_NORMAL;
2346 #endif
2347 n = pParse->nTab;
2348 sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
2349 pTable->nCol = -1;
2350 db->lookaside.bDisable++;
2351 #ifndef SQLITE_OMIT_AUTHORIZATION
2352 xAuth = db->xAuth;
2353 db->xAuth = 0;
2354 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2355 db->xAuth = xAuth;
2356 #else
2357 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2358 #endif
2359 pParse->nTab = n;
2360 if( pTable->pCheck ){
2361 /* CREATE VIEW name(arglist) AS ...
2362 ** The names of the columns in the table are taken from
2363 ** arglist which is stored in pTable->pCheck. The pCheck field
2364 ** normally holds CHECK constraints on an ordinary table, but for
2365 ** a VIEW it holds the list of column names.
2367 sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
2368 &pTable->nCol, &pTable->aCol);
2369 if( db->mallocFailed==0
2370 && pParse->nErr==0
2371 && pTable->nCol==pSel->pEList->nExpr
2373 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel);
2375 }else if( pSelTab ){
2376 /* CREATE VIEW name AS... without an argument list. Construct
2377 ** the column names from the SELECT statement that defines the view.
2379 assert( pTable->aCol==0 );
2380 pTable->nCol = pSelTab->nCol;
2381 pTable->aCol = pSelTab->aCol;
2382 pSelTab->nCol = 0;
2383 pSelTab->aCol = 0;
2384 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
2385 }else{
2386 pTable->nCol = 0;
2387 nErr++;
2389 sqlite3DeleteTable(db, pSelTab);
2390 sqlite3SelectDelete(db, pSel);
2391 db->lookaside.bDisable--;
2392 #ifndef SQLITE_OMIT_ALTERTABLE
2393 pParse->eParseMode = eParseMode;
2394 #endif
2395 } else {
2396 nErr++;
2398 pTable->pSchema->schemaFlags |= DB_UnresetViews;
2399 if( db->mallocFailed ){
2400 sqlite3DeleteColumnNames(db, pTable);
2401 pTable->aCol = 0;
2402 pTable->nCol = 0;
2404 #endif /* SQLITE_OMIT_VIEW */
2405 return nErr;
2407 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
2409 #ifndef SQLITE_OMIT_VIEW
2411 ** Clear the column names from every VIEW in database idx.
2413 static void sqliteViewResetAll(sqlite3 *db, int idx){
2414 HashElem *i;
2415 assert( sqlite3SchemaMutexHeld(db, idx, 0) );
2416 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
2417 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
2418 Table *pTab = sqliteHashData(i);
2419 if( pTab->pSelect ){
2420 sqlite3DeleteColumnNames(db, pTab);
2421 pTab->aCol = 0;
2422 pTab->nCol = 0;
2425 DbClearProperty(db, idx, DB_UnresetViews);
2427 #else
2428 # define sqliteViewResetAll(A,B)
2429 #endif /* SQLITE_OMIT_VIEW */
2432 ** This function is called by the VDBE to adjust the internal schema
2433 ** used by SQLite when the btree layer moves a table root page. The
2434 ** root-page of a table or index in database iDb has changed from iFrom
2435 ** to iTo.
2437 ** Ticket #1728: The symbol table might still contain information
2438 ** on tables and/or indices that are the process of being deleted.
2439 ** If you are unlucky, one of those deleted indices or tables might
2440 ** have the same rootpage number as the real table or index that is
2441 ** being moved. So we cannot stop searching after the first match
2442 ** because the first match might be for one of the deleted indices
2443 ** or tables and not the table/index that is actually being moved.
2444 ** We must continue looping until all tables and indices with
2445 ** rootpage==iFrom have been converted to have a rootpage of iTo
2446 ** in order to be certain that we got the right one.
2448 #ifndef SQLITE_OMIT_AUTOVACUUM
2449 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
2450 HashElem *pElem;
2451 Hash *pHash;
2452 Db *pDb;
2454 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2455 pDb = &db->aDb[iDb];
2456 pHash = &pDb->pSchema->tblHash;
2457 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2458 Table *pTab = sqliteHashData(pElem);
2459 if( pTab->tnum==iFrom ){
2460 pTab->tnum = iTo;
2463 pHash = &pDb->pSchema->idxHash;
2464 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2465 Index *pIdx = sqliteHashData(pElem);
2466 if( pIdx->tnum==iFrom ){
2467 pIdx->tnum = iTo;
2471 #endif
2474 ** Write code to erase the table with root-page iTable from database iDb.
2475 ** Also write code to modify the sqlite_master table and internal schema
2476 ** if a root-page of another table is moved by the btree-layer whilst
2477 ** erasing iTable (this can happen with an auto-vacuum database).
2479 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
2480 Vdbe *v = sqlite3GetVdbe(pParse);
2481 int r1 = sqlite3GetTempReg(pParse);
2482 if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema");
2483 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
2484 sqlite3MayAbort(pParse);
2485 #ifndef SQLITE_OMIT_AUTOVACUUM
2486 /* OP_Destroy stores an in integer r1. If this integer
2487 ** is non-zero, then it is the root page number of a table moved to
2488 ** location iTable. The following code modifies the sqlite_master table to
2489 ** reflect this.
2491 ** The "#NNN" in the SQL is a special constant that means whatever value
2492 ** is in register NNN. See grammar rules associated with the TK_REGISTER
2493 ** token for additional information.
2495 sqlite3NestedParse(pParse,
2496 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
2497 pParse->db->aDb[iDb].zDbSName, MASTER_NAME, iTable, r1, r1);
2498 #endif
2499 sqlite3ReleaseTempReg(pParse, r1);
2503 ** Write VDBE code to erase table pTab and all associated indices on disk.
2504 ** Code to update the sqlite_master tables and internal schema definitions
2505 ** in case a root-page belonging to another table is moved by the btree layer
2506 ** is also added (this can happen with an auto-vacuum database).
2508 static void destroyTable(Parse *pParse, Table *pTab){
2509 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
2510 ** is not defined), then it is important to call OP_Destroy on the
2511 ** table and index root-pages in order, starting with the numerically
2512 ** largest root-page number. This guarantees that none of the root-pages
2513 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
2514 ** following were coded:
2516 ** OP_Destroy 4 0
2517 ** ...
2518 ** OP_Destroy 5 0
2520 ** and root page 5 happened to be the largest root-page number in the
2521 ** database, then root page 5 would be moved to page 4 by the
2522 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
2523 ** a free-list page.
2525 int iTab = pTab->tnum;
2526 int iDestroyed = 0;
2528 while( 1 ){
2529 Index *pIdx;
2530 int iLargest = 0;
2532 if( iDestroyed==0 || iTab<iDestroyed ){
2533 iLargest = iTab;
2535 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2536 int iIdx = pIdx->tnum;
2537 assert( pIdx->pSchema==pTab->pSchema );
2538 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
2539 iLargest = iIdx;
2542 if( iLargest==0 ){
2543 return;
2544 }else{
2545 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2546 assert( iDb>=0 && iDb<pParse->db->nDb );
2547 destroyRootPage(pParse, iLargest, iDb);
2548 iDestroyed = iLargest;
2554 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
2555 ** after a DROP INDEX or DROP TABLE command.
2557 static void sqlite3ClearStatTables(
2558 Parse *pParse, /* The parsing context */
2559 int iDb, /* The database number */
2560 const char *zType, /* "idx" or "tbl" */
2561 const char *zName /* Name of index or table */
2563 int i;
2564 const char *zDbName = pParse->db->aDb[iDb].zDbSName;
2565 for(i=1; i<=4; i++){
2566 char zTab[24];
2567 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
2568 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
2569 sqlite3NestedParse(pParse,
2570 "DELETE FROM %Q.%s WHERE %s=%Q",
2571 zDbName, zTab, zType, zName
2578 ** Generate code to drop a table.
2580 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
2581 Vdbe *v;
2582 sqlite3 *db = pParse->db;
2583 Trigger *pTrigger;
2584 Db *pDb = &db->aDb[iDb];
2586 v = sqlite3GetVdbe(pParse);
2587 assert( v!=0 );
2588 sqlite3BeginWriteOperation(pParse, 1, iDb);
2590 #ifndef SQLITE_OMIT_VIRTUALTABLE
2591 if( IsVirtual(pTab) ){
2592 sqlite3VdbeAddOp0(v, OP_VBegin);
2594 #endif
2596 /* Drop all triggers associated with the table being dropped. Code
2597 ** is generated to remove entries from sqlite_master and/or
2598 ** sqlite_temp_master if required.
2600 pTrigger = sqlite3TriggerList(pParse, pTab);
2601 while( pTrigger ){
2602 assert( pTrigger->pSchema==pTab->pSchema ||
2603 pTrigger->pSchema==db->aDb[1].pSchema );
2604 sqlite3DropTriggerPtr(pParse, pTrigger);
2605 pTrigger = pTrigger->pNext;
2608 #ifndef SQLITE_OMIT_AUTOINCREMENT
2609 /* Remove any entries of the sqlite_sequence table associated with
2610 ** the table being dropped. This is done before the table is dropped
2611 ** at the btree level, in case the sqlite_sequence table needs to
2612 ** move as a result of the drop (can happen in auto-vacuum mode).
2614 if( pTab->tabFlags & TF_Autoincrement ){
2615 sqlite3NestedParse(pParse,
2616 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
2617 pDb->zDbSName, pTab->zName
2620 #endif
2622 /* Drop all SQLITE_MASTER table and index entries that refer to the
2623 ** table. The program name loops through the master table and deletes
2624 ** every row that refers to a table of the same name as the one being
2625 ** dropped. Triggers are handled separately because a trigger can be
2626 ** created in the temp database that refers to a table in another
2627 ** database.
2629 sqlite3NestedParse(pParse,
2630 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2631 pDb->zDbSName, MASTER_NAME, pTab->zName);
2632 if( !isView && !IsVirtual(pTab) ){
2633 destroyTable(pParse, pTab);
2636 /* Remove the table entry from SQLite's internal schema and modify
2637 ** the schema cookie.
2639 if( IsVirtual(pTab) ){
2640 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2641 sqlite3MayAbort(pParse);
2643 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2644 sqlite3ChangeCookie(pParse, iDb);
2645 sqliteViewResetAll(db, iDb);
2649 ** This routine is called to do the work of a DROP TABLE statement.
2650 ** pName is the name of the table to be dropped.
2652 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
2653 Table *pTab;
2654 Vdbe *v;
2655 sqlite3 *db = pParse->db;
2656 int iDb;
2658 if( db->mallocFailed ){
2659 goto exit_drop_table;
2661 assert( pParse->nErr==0 );
2662 assert( pName->nSrc==1 );
2663 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
2664 if( noErr ) db->suppressErr++;
2665 assert( isView==0 || isView==LOCATE_VIEW );
2666 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
2667 if( noErr ) db->suppressErr--;
2669 if( pTab==0 ){
2670 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2671 goto exit_drop_table;
2673 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2674 assert( iDb>=0 && iDb<db->nDb );
2676 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
2677 ** it is initialized.
2679 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
2680 goto exit_drop_table;
2682 #ifndef SQLITE_OMIT_AUTHORIZATION
2684 int code;
2685 const char *zTab = SCHEMA_TABLE(iDb);
2686 const char *zDb = db->aDb[iDb].zDbSName;
2687 const char *zArg2 = 0;
2688 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
2689 goto exit_drop_table;
2691 if( isView ){
2692 if( !OMIT_TEMPDB && iDb==1 ){
2693 code = SQLITE_DROP_TEMP_VIEW;
2694 }else{
2695 code = SQLITE_DROP_VIEW;
2697 #ifndef SQLITE_OMIT_VIRTUALTABLE
2698 }else if( IsVirtual(pTab) ){
2699 code = SQLITE_DROP_VTABLE;
2700 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
2701 #endif
2702 }else{
2703 if( !OMIT_TEMPDB && iDb==1 ){
2704 code = SQLITE_DROP_TEMP_TABLE;
2705 }else{
2706 code = SQLITE_DROP_TABLE;
2709 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2710 goto exit_drop_table;
2712 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2713 goto exit_drop_table;
2716 #endif
2717 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2718 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){
2719 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2720 goto exit_drop_table;
2723 #ifndef SQLITE_OMIT_VIEW
2724 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2725 ** on a table.
2727 if( isView && pTab->pSelect==0 ){
2728 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2729 goto exit_drop_table;
2731 if( !isView && pTab->pSelect ){
2732 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2733 goto exit_drop_table;
2735 #endif
2737 /* Generate code to remove the table from the master table
2738 ** on disk.
2740 v = sqlite3GetVdbe(pParse);
2741 if( v ){
2742 sqlite3BeginWriteOperation(pParse, 1, iDb);
2743 if( !isView ){
2744 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
2745 sqlite3FkDropTable(pParse, pName, pTab);
2747 sqlite3CodeDropTable(pParse, pTab, iDb, isView);
2750 exit_drop_table:
2751 sqlite3SrcListDelete(db, pName);
2755 ** This routine is called to create a new foreign key on the table
2756 ** currently under construction. pFromCol determines which columns
2757 ** in the current table point to the foreign key. If pFromCol==0 then
2758 ** connect the key to the last column inserted. pTo is the name of
2759 ** the table referred to (a.k.a the "parent" table). pToCol is a list
2760 ** of tables in the parent pTo table. flags contains all
2761 ** information about the conflict resolution algorithms specified
2762 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2764 ** An FKey structure is created and added to the table currently
2765 ** under construction in the pParse->pNewTable field.
2767 ** The foreign key is set for IMMEDIATE processing. A subsequent call
2768 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2770 void sqlite3CreateForeignKey(
2771 Parse *pParse, /* Parsing context */
2772 ExprList *pFromCol, /* Columns in this table that point to other table */
2773 Token *pTo, /* Name of the other table */
2774 ExprList *pToCol, /* Columns in the other table */
2775 int flags /* Conflict resolution algorithms. */
2777 sqlite3 *db = pParse->db;
2778 #ifndef SQLITE_OMIT_FOREIGN_KEY
2779 FKey *pFKey = 0;
2780 FKey *pNextTo;
2781 Table *p = pParse->pNewTable;
2782 int nByte;
2783 int i;
2784 int nCol;
2785 char *z;
2787 assert( pTo!=0 );
2788 if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
2789 if( pFromCol==0 ){
2790 int iCol = p->nCol-1;
2791 if( NEVER(iCol<0) ) goto fk_end;
2792 if( pToCol && pToCol->nExpr!=1 ){
2793 sqlite3ErrorMsg(pParse, "foreign key on %s"
2794 " should reference only one column of table %T",
2795 p->aCol[iCol].zName, pTo);
2796 goto fk_end;
2798 nCol = 1;
2799 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2800 sqlite3ErrorMsg(pParse,
2801 "number of columns in foreign key does not match the number of "
2802 "columns in the referenced table");
2803 goto fk_end;
2804 }else{
2805 nCol = pFromCol->nExpr;
2807 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2808 if( pToCol ){
2809 for(i=0; i<pToCol->nExpr; i++){
2810 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
2813 pFKey = sqlite3DbMallocZero(db, nByte );
2814 if( pFKey==0 ){
2815 goto fk_end;
2817 pFKey->pFrom = p;
2818 pFKey->pNextFrom = p->pFKey;
2819 z = (char*)&pFKey->aCol[nCol];
2820 pFKey->zTo = z;
2821 if( IN_RENAME_OBJECT ){
2822 sqlite3RenameTokenMap(pParse, (void*)z, pTo);
2824 memcpy(z, pTo->z, pTo->n);
2825 z[pTo->n] = 0;
2826 sqlite3Dequote(z);
2827 z += pTo->n+1;
2828 pFKey->nCol = nCol;
2829 if( pFromCol==0 ){
2830 pFKey->aCol[0].iFrom = p->nCol-1;
2831 }else{
2832 for(i=0; i<nCol; i++){
2833 int j;
2834 for(j=0; j<p->nCol; j++){
2835 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2836 pFKey->aCol[i].iFrom = j;
2837 break;
2840 if( j>=p->nCol ){
2841 sqlite3ErrorMsg(pParse,
2842 "unknown column \"%s\" in foreign key definition",
2843 pFromCol->a[i].zName);
2844 goto fk_end;
2846 if( IN_RENAME_OBJECT ){
2847 sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zName);
2851 if( pToCol ){
2852 for(i=0; i<nCol; i++){
2853 int n = sqlite3Strlen30(pToCol->a[i].zName);
2854 pFKey->aCol[i].zCol = z;
2855 if( IN_RENAME_OBJECT ){
2856 sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zName);
2858 memcpy(z, pToCol->a[i].zName, n);
2859 z[n] = 0;
2860 z += n+1;
2863 pFKey->isDeferred = 0;
2864 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */
2865 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */
2867 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
2868 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
2869 pFKey->zTo, (void *)pFKey
2871 if( pNextTo==pFKey ){
2872 sqlite3OomFault(db);
2873 goto fk_end;
2875 if( pNextTo ){
2876 assert( pNextTo->pPrevTo==0 );
2877 pFKey->pNextTo = pNextTo;
2878 pNextTo->pPrevTo = pFKey;
2881 /* Link the foreign key to the table as the last step.
2883 p->pFKey = pFKey;
2884 pFKey = 0;
2886 fk_end:
2887 sqlite3DbFree(db, pFKey);
2888 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2889 sqlite3ExprListDelete(db, pFromCol);
2890 sqlite3ExprListDelete(db, pToCol);
2894 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2895 ** clause is seen as part of a foreign key definition. The isDeferred
2896 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2897 ** The behavior of the most recently created foreign key is adjusted
2898 ** accordingly.
2900 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2901 #ifndef SQLITE_OMIT_FOREIGN_KEY
2902 Table *pTab;
2903 FKey *pFKey;
2904 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2905 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
2906 pFKey->isDeferred = (u8)isDeferred;
2907 #endif
2911 ** Generate code that will erase and refill index *pIdx. This is
2912 ** used to initialize a newly created index or to recompute the
2913 ** content of an index in response to a REINDEX command.
2915 ** if memRootPage is not negative, it means that the index is newly
2916 ** created. The register specified by memRootPage contains the
2917 ** root page number of the index. If memRootPage is negative, then
2918 ** the index already exists and must be cleared before being refilled and
2919 ** the root page number of the index is taken from pIndex->tnum.
2921 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2922 Table *pTab = pIndex->pTable; /* The table that is indexed */
2923 int iTab = pParse->nTab++; /* Btree cursor used for pTab */
2924 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */
2925 int iSorter; /* Cursor opened by OpenSorter (if in use) */
2926 int addr1; /* Address of top of loop */
2927 int addr2; /* Address to jump to for next iteration */
2928 int tnum; /* Root page of index */
2929 int iPartIdxLabel; /* Jump to this label to skip a row */
2930 Vdbe *v; /* Generate code into this virtual machine */
2931 KeyInfo *pKey; /* KeyInfo for index */
2932 int regRecord; /* Register holding assembled index record */
2933 sqlite3 *db = pParse->db; /* The database connection */
2934 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2936 #ifndef SQLITE_OMIT_AUTHORIZATION
2937 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2938 db->aDb[iDb].zDbSName ) ){
2939 return;
2941 #endif
2943 /* Require a write-lock on the table to perform this operation */
2944 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2946 v = sqlite3GetVdbe(pParse);
2947 if( v==0 ) return;
2948 if( memRootPage>=0 ){
2949 tnum = memRootPage;
2950 }else{
2951 tnum = pIndex->tnum;
2953 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
2954 assert( pKey!=0 || db->mallocFailed || pParse->nErr );
2956 /* Open the sorter cursor if we are to use one. */
2957 iSorter = pParse->nTab++;
2958 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
2959 sqlite3KeyInfoRef(pKey), P4_KEYINFO);
2961 /* Open the table. Loop through all rows of the table, inserting index
2962 ** records into the sorter. */
2963 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2964 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
2965 regRecord = sqlite3GetTempReg(pParse);
2966 sqlite3MultiWrite(pParse);
2968 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
2969 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
2970 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
2971 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
2972 sqlite3VdbeJumpHere(v, addr1);
2973 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2974 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2975 (char *)pKey, P4_KEYINFO);
2976 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
2978 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
2979 if( IsUniqueIndex(pIndex) ){
2980 int j2 = sqlite3VdbeGoto(v, 1);
2981 addr2 = sqlite3VdbeCurrentAddr(v);
2982 sqlite3VdbeVerifyAbortable(v, OE_Abort);
2983 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
2984 pIndex->nKeyCol); VdbeCoverage(v);
2985 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
2986 sqlite3VdbeJumpHere(v, j2);
2987 }else{
2988 addr2 = sqlite3VdbeCurrentAddr(v);
2990 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
2991 sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx);
2992 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
2993 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2994 sqlite3ReleaseTempReg(pParse, regRecord);
2995 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
2996 sqlite3VdbeJumpHere(v, addr1);
2998 sqlite3VdbeAddOp1(v, OP_Close, iTab);
2999 sqlite3VdbeAddOp1(v, OP_Close, iIdx);
3000 sqlite3VdbeAddOp1(v, OP_Close, iSorter);
3004 ** Allocate heap space to hold an Index object with nCol columns.
3006 ** Increase the allocation size to provide an extra nExtra bytes
3007 ** of 8-byte aligned space after the Index object and return a
3008 ** pointer to this extra space in *ppExtra.
3010 Index *sqlite3AllocateIndexObject(
3011 sqlite3 *db, /* Database connection */
3012 i16 nCol, /* Total number of columns in the index */
3013 int nExtra, /* Number of bytes of extra space to alloc */
3014 char **ppExtra /* Pointer to the "extra" space */
3016 Index *p; /* Allocated index object */
3017 int nByte; /* Bytes of space for Index object + arrays */
3019 nByte = ROUND8(sizeof(Index)) + /* Index structure */
3020 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */
3021 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */
3022 sizeof(i16)*nCol + /* Index.aiColumn */
3023 sizeof(u8)*nCol); /* Index.aSortOrder */
3024 p = sqlite3DbMallocZero(db, nByte + nExtra);
3025 if( p ){
3026 char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
3027 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
3028 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
3029 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol;
3030 p->aSortOrder = (u8*)pExtra;
3031 p->nColumn = nCol;
3032 p->nKeyCol = nCol - 1;
3033 *ppExtra = ((char*)p) + nByte;
3035 return p;
3039 ** Create a new index for an SQL table. pName1.pName2 is the name of the index
3040 ** and pTblList is the name of the table that is to be indexed. Both will
3041 ** be NULL for a primary key or an index that is created to satisfy a
3042 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
3043 ** as the table to be indexed. pParse->pNewTable is a table that is
3044 ** currently being constructed by a CREATE TABLE statement.
3046 ** pList is a list of columns to be indexed. pList will be NULL if this
3047 ** is a primary key or unique-constraint on the most recent column added
3048 ** to the table currently under construction.
3050 void sqlite3CreateIndex(
3051 Parse *pParse, /* All information about this parse */
3052 Token *pName1, /* First part of index name. May be NULL */
3053 Token *pName2, /* Second part of index name. May be NULL */
3054 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
3055 ExprList *pList, /* A list of columns to be indexed */
3056 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
3057 Token *pStart, /* The CREATE token that begins this statement */
3058 Expr *pPIWhere, /* WHERE clause for partial indices */
3059 int sortOrder, /* Sort order of primary key when pList==NULL */
3060 int ifNotExist, /* Omit error if index already exists */
3061 u8 idxType /* The index type */
3063 Table *pTab = 0; /* Table to be indexed */
3064 Index *pIndex = 0; /* The index to be created */
3065 char *zName = 0; /* Name of the index */
3066 int nName; /* Number of characters in zName */
3067 int i, j;
3068 DbFixer sFix; /* For assigning database names to pTable */
3069 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */
3070 sqlite3 *db = pParse->db;
3071 Db *pDb; /* The specific table containing the indexed database */
3072 int iDb; /* Index of the database that is being written */
3073 Token *pName = 0; /* Unqualified name of the index to create */
3074 struct ExprList_item *pListItem; /* For looping over pList */
3075 int nExtra = 0; /* Space allocated for zExtra[] */
3076 int nExtraCol; /* Number of extra columns needed */
3077 char *zExtra = 0; /* Extra space after the Index object */
3078 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */
3080 if( db->mallocFailed || pParse->nErr>0 ){
3081 goto exit_create_index;
3083 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){
3084 goto exit_create_index;
3086 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3087 goto exit_create_index;
3091 ** Find the table that is to be indexed. Return early if not found.
3093 if( pTblName!=0 ){
3095 /* Use the two-part index name to determine the database
3096 ** to search for the table. 'Fix' the table name to this db
3097 ** before looking up the table.
3099 assert( pName1 && pName2 );
3100 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
3101 if( iDb<0 ) goto exit_create_index;
3102 assert( pName && pName->z );
3104 #ifndef SQLITE_OMIT_TEMPDB
3105 /* If the index name was unqualified, check if the table
3106 ** is a temp table. If so, set the database to 1. Do not do this
3107 ** if initialising a database schema.
3109 if( !db->init.busy ){
3110 pTab = sqlite3SrcListLookup(pParse, pTblName);
3111 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
3112 iDb = 1;
3115 #endif
3117 sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
3118 if( sqlite3FixSrcList(&sFix, pTblName) ){
3119 /* Because the parser constructs pTblName from a single identifier,
3120 ** sqlite3FixSrcList can never fail. */
3121 assert(0);
3123 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
3124 assert( db->mallocFailed==0 || pTab==0 );
3125 if( pTab==0 ) goto exit_create_index;
3126 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
3127 sqlite3ErrorMsg(pParse,
3128 "cannot create a TEMP index on non-TEMP table \"%s\"",
3129 pTab->zName);
3130 goto exit_create_index;
3132 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
3133 }else{
3134 assert( pName==0 );
3135 assert( pStart==0 );
3136 pTab = pParse->pNewTable;
3137 if( !pTab ) goto exit_create_index;
3138 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
3140 pDb = &db->aDb[iDb];
3142 assert( pTab!=0 );
3143 assert( pParse->nErr==0 );
3144 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
3145 && db->init.busy==0
3146 #if SQLITE_USER_AUTHENTICATION
3147 && sqlite3UserAuthTable(pTab->zName)==0
3148 #endif
3149 #ifdef SQLITE_ALLOW_SQLITE_MASTER_INDEX
3150 && sqlite3StrICmp(&pTab->zName[7],"master")!=0
3151 #endif
3152 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0
3154 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
3155 goto exit_create_index;
3157 #ifndef SQLITE_OMIT_VIEW
3158 if( pTab->pSelect ){
3159 sqlite3ErrorMsg(pParse, "views may not be indexed");
3160 goto exit_create_index;
3162 #endif
3163 #ifndef SQLITE_OMIT_VIRTUALTABLE
3164 if( IsVirtual(pTab) ){
3165 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
3166 goto exit_create_index;
3168 #endif
3171 ** Find the name of the index. Make sure there is not already another
3172 ** index or table with the same name.
3174 ** Exception: If we are reading the names of permanent indices from the
3175 ** sqlite_master table (because some other process changed the schema) and
3176 ** one of the index names collides with the name of a temporary table or
3177 ** index, then we will continue to process this index.
3179 ** If pName==0 it means that we are
3180 ** dealing with a primary key or UNIQUE constraint. We have to invent our
3181 ** own name.
3183 if( pName ){
3184 zName = sqlite3NameFromToken(db, pName);
3185 if( zName==0 ) goto exit_create_index;
3186 assert( pName->z!=0 );
3187 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
3188 goto exit_create_index;
3190 if( !IN_RENAME_OBJECT ){
3191 if( !db->init.busy ){
3192 if( sqlite3FindTable(db, zName, 0)!=0 ){
3193 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
3194 goto exit_create_index;
3197 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){
3198 if( !ifNotExist ){
3199 sqlite3ErrorMsg(pParse, "index %s already exists", zName);
3200 }else{
3201 assert( !db->init.busy );
3202 sqlite3CodeVerifySchema(pParse, iDb);
3204 goto exit_create_index;
3207 }else{
3208 int n;
3209 Index *pLoop;
3210 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
3211 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
3212 if( zName==0 ){
3213 goto exit_create_index;
3216 /* Automatic index names generated from within sqlite3_declare_vtab()
3217 ** must have names that are distinct from normal automatic index names.
3218 ** The following statement converts "sqlite3_autoindex..." into
3219 ** "sqlite3_butoindex..." in order to make the names distinct.
3220 ** The "vtab_err.test" test demonstrates the need of this statement. */
3221 if( IN_SPECIAL_PARSE ) zName[7]++;
3224 /* Check for authorization to create an index.
3226 #ifndef SQLITE_OMIT_AUTHORIZATION
3227 if( !IN_RENAME_OBJECT ){
3228 const char *zDb = pDb->zDbSName;
3229 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
3230 goto exit_create_index;
3232 i = SQLITE_CREATE_INDEX;
3233 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
3234 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
3235 goto exit_create_index;
3238 #endif
3240 /* If pList==0, it means this routine was called to make a primary
3241 ** key out of the last column added to the table under construction.
3242 ** So create a fake list to simulate this.
3244 if( pList==0 ){
3245 Token prevCol;
3246 Column *pCol = &pTab->aCol[pTab->nCol-1];
3247 pCol->colFlags |= COLFLAG_UNIQUE;
3248 sqlite3TokenInit(&prevCol, pCol->zName);
3249 pList = sqlite3ExprListAppend(pParse, 0,
3250 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
3251 if( pList==0 ) goto exit_create_index;
3252 assert( pList->nExpr==1 );
3253 sqlite3ExprListSetSortOrder(pList, sortOrder);
3254 }else{
3255 sqlite3ExprListCheckLength(pParse, pList, "index");
3258 /* Figure out how many bytes of space are required to store explicitly
3259 ** specified collation sequence names.
3261 for(i=0; i<pList->nExpr; i++){
3262 Expr *pExpr = pList->a[i].pExpr;
3263 assert( pExpr!=0 );
3264 if( pExpr->op==TK_COLLATE ){
3265 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
3270 ** Allocate the index structure.
3272 nName = sqlite3Strlen30(zName);
3273 nExtraCol = pPk ? pPk->nKeyCol : 1;
3274 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
3275 nName + nExtra + 1, &zExtra);
3276 if( db->mallocFailed ){
3277 goto exit_create_index;
3279 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
3280 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
3281 pIndex->zName = zExtra;
3282 zExtra += nName + 1;
3283 memcpy(pIndex->zName, zName, nName+1);
3284 pIndex->pTable = pTab;
3285 pIndex->onError = (u8)onError;
3286 pIndex->uniqNotNull = onError!=OE_None;
3287 pIndex->idxType = idxType;
3288 pIndex->pSchema = db->aDb[iDb].pSchema;
3289 pIndex->nKeyCol = pList->nExpr;
3290 if( pPIWhere ){
3291 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
3292 pIndex->pPartIdxWhere = pPIWhere;
3293 pPIWhere = 0;
3295 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3297 /* Check to see if we should honor DESC requests on index columns
3299 if( pDb->pSchema->file_format>=4 ){
3300 sortOrderMask = -1; /* Honor DESC */
3301 }else{
3302 sortOrderMask = 0; /* Ignore DESC */
3305 /* Analyze the list of expressions that form the terms of the index and
3306 ** report any errors. In the common case where the expression is exactly
3307 ** a table column, store that column in aiColumn[]. For general expressions,
3308 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
3310 ** TODO: Issue a warning if two or more columns of the index are identical.
3311 ** TODO: Issue a warning if the table primary key is used as part of the
3312 ** index key.
3314 pListItem = pList->a;
3315 if( IN_RENAME_OBJECT ){
3316 pIndex->aColExpr = pList;
3317 pList = 0;
3319 for(i=0; i<pIndex->nKeyCol; i++, pListItem++){
3320 Expr *pCExpr; /* The i-th index expression */
3321 int requestedSortOrder; /* ASC or DESC on the i-th expression */
3322 const char *zColl; /* Collation sequence name */
3324 sqlite3StringToId(pListItem->pExpr);
3325 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
3326 if( pParse->nErr ) goto exit_create_index;
3327 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
3328 if( pCExpr->op!=TK_COLUMN ){
3329 if( pTab==pParse->pNewTable ){
3330 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
3331 "UNIQUE constraints");
3332 goto exit_create_index;
3334 if( pIndex->aColExpr==0 ){
3335 pIndex->aColExpr = pList;
3336 pList = 0;
3338 j = XN_EXPR;
3339 pIndex->aiColumn[i] = XN_EXPR;
3340 pIndex->uniqNotNull = 0;
3341 }else{
3342 j = pCExpr->iColumn;
3343 assert( j<=0x7fff );
3344 if( j<0 ){
3345 j = pTab->iPKey;
3346 }else if( pTab->aCol[j].notNull==0 ){
3347 pIndex->uniqNotNull = 0;
3349 pIndex->aiColumn[i] = (i16)j;
3351 zColl = 0;
3352 if( pListItem->pExpr->op==TK_COLLATE ){
3353 int nColl;
3354 zColl = pListItem->pExpr->u.zToken;
3355 nColl = sqlite3Strlen30(zColl) + 1;
3356 assert( nExtra>=nColl );
3357 memcpy(zExtra, zColl, nColl);
3358 zColl = zExtra;
3359 zExtra += nColl;
3360 nExtra -= nColl;
3361 }else if( j>=0 ){
3362 zColl = pTab->aCol[j].zColl;
3364 if( !zColl ) zColl = sqlite3StrBINARY;
3365 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
3366 goto exit_create_index;
3368 pIndex->azColl[i] = zColl;
3369 requestedSortOrder = pListItem->sortOrder & sortOrderMask;
3370 pIndex->aSortOrder[i] = (u8)requestedSortOrder;
3373 /* Append the table key to the end of the index. For WITHOUT ROWID
3374 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For
3375 ** normal tables (when pPk==0) this will be the rowid.
3377 if( pPk ){
3378 for(j=0; j<pPk->nKeyCol; j++){
3379 int x = pPk->aiColumn[j];
3380 assert( x>=0 );
3381 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){
3382 pIndex->nColumn--;
3383 }else{
3384 pIndex->aiColumn[i] = x;
3385 pIndex->azColl[i] = pPk->azColl[j];
3386 pIndex->aSortOrder[i] = pPk->aSortOrder[j];
3387 i++;
3390 assert( i==pIndex->nColumn );
3391 }else{
3392 pIndex->aiColumn[i] = XN_ROWID;
3393 pIndex->azColl[i] = sqlite3StrBINARY;
3395 sqlite3DefaultRowEst(pIndex);
3396 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
3398 /* If this index contains every column of its table, then mark
3399 ** it as a covering index */
3400 assert( HasRowid(pTab)
3401 || pTab->iPKey<0 || sqlite3ColumnOfIndex(pIndex, pTab->iPKey)>=0 );
3402 recomputeColumnsNotIndexed(pIndex);
3403 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){
3404 pIndex->isCovering = 1;
3405 for(j=0; j<pTab->nCol; j++){
3406 if( j==pTab->iPKey ) continue;
3407 if( sqlite3ColumnOfIndex(pIndex,j)>=0 ) continue;
3408 pIndex->isCovering = 0;
3409 break;
3413 if( pTab==pParse->pNewTable ){
3414 /* This routine has been called to create an automatic index as a
3415 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
3416 ** a PRIMARY KEY or UNIQUE clause following the column definitions.
3417 ** i.e. one of:
3419 ** CREATE TABLE t(x PRIMARY KEY, y);
3420 ** CREATE TABLE t(x, y, UNIQUE(x, y));
3422 ** Either way, check to see if the table already has such an index. If
3423 ** so, don't bother creating this one. This only applies to
3424 ** automatically created indices. Users can do as they wish with
3425 ** explicit indices.
3427 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
3428 ** (and thus suppressing the second one) even if they have different
3429 ** sort orders.
3431 ** If there are different collating sequences or if the columns of
3432 ** the constraint occur in different orders, then the constraints are
3433 ** considered distinct and both result in separate indices.
3435 Index *pIdx;
3436 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3437 int k;
3438 assert( IsUniqueIndex(pIdx) );
3439 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
3440 assert( IsUniqueIndex(pIndex) );
3442 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
3443 for(k=0; k<pIdx->nKeyCol; k++){
3444 const char *z1;
3445 const char *z2;
3446 assert( pIdx->aiColumn[k]>=0 );
3447 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
3448 z1 = pIdx->azColl[k];
3449 z2 = pIndex->azColl[k];
3450 if( sqlite3StrICmp(z1, z2) ) break;
3452 if( k==pIdx->nKeyCol ){
3453 if( pIdx->onError!=pIndex->onError ){
3454 /* This constraint creates the same index as a previous
3455 ** constraint specified somewhere in the CREATE TABLE statement.
3456 ** However the ON CONFLICT clauses are different. If both this
3457 ** constraint and the previous equivalent constraint have explicit
3458 ** ON CONFLICT clauses this is an error. Otherwise, use the
3459 ** explicitly specified behavior for the index.
3461 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
3462 sqlite3ErrorMsg(pParse,
3463 "conflicting ON CONFLICT clauses specified", 0);
3465 if( pIdx->onError==OE_Default ){
3466 pIdx->onError = pIndex->onError;
3469 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType;
3470 if( IN_RENAME_OBJECT ){
3471 pIndex->pNext = pParse->pNewIndex;
3472 pParse->pNewIndex = pIndex;
3473 pIndex = 0;
3475 goto exit_create_index;
3480 if( !IN_RENAME_OBJECT ){
3482 /* Link the new Index structure to its table and to the other
3483 ** in-memory database structures.
3485 assert( pParse->nErr==0 );
3486 if( db->init.busy ){
3487 Index *p;
3488 assert( !IN_SPECIAL_PARSE );
3489 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
3490 if( pTblName!=0 ){
3491 pIndex->tnum = db->init.newTnum;
3492 if( sqlite3IndexHasDuplicateRootPage(pIndex) ){
3493 sqlite3ErrorMsg(pParse, "invalid rootpage");
3494 pParse->rc = SQLITE_CORRUPT_BKPT;
3495 goto exit_create_index;
3498 p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
3499 pIndex->zName, pIndex);
3500 if( p ){
3501 assert( p==pIndex ); /* Malloc must have failed */
3502 sqlite3OomFault(db);
3503 goto exit_create_index;
3505 db->mDbFlags |= DBFLAG_SchemaChange;
3508 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
3509 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
3510 ** emit code to allocate the index rootpage on disk and make an entry for
3511 ** the index in the sqlite_master table and populate the index with
3512 ** content. But, do not do this if we are simply reading the sqlite_master
3513 ** table to parse the schema, or if this index is the PRIMARY KEY index
3514 ** of a WITHOUT ROWID table.
3516 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
3517 ** or UNIQUE index in a CREATE TABLE statement. Since the table
3518 ** has just been created, it contains no data and the index initialization
3519 ** step can be skipped.
3521 else if( HasRowid(pTab) || pTblName!=0 ){
3522 Vdbe *v;
3523 char *zStmt;
3524 int iMem = ++pParse->nMem;
3526 v = sqlite3GetVdbe(pParse);
3527 if( v==0 ) goto exit_create_index;
3529 sqlite3BeginWriteOperation(pParse, 1, iDb);
3531 /* Create the rootpage for the index using CreateIndex. But before
3532 ** doing so, code a Noop instruction and store its address in
3533 ** Index.tnum. This is required in case this index is actually a
3534 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
3535 ** that case the convertToWithoutRowidTable() routine will replace
3536 ** the Noop with a Goto to jump over the VDBE code generated below. */
3537 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop);
3538 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY);
3540 /* Gather the complete text of the CREATE INDEX statement into
3541 ** the zStmt variable
3543 if( pStart ){
3544 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
3545 if( pName->z[n-1]==';' ) n--;
3546 /* A named index with an explicit CREATE INDEX statement */
3547 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
3548 onError==OE_None ? "" : " UNIQUE", n, pName->z);
3549 }else{
3550 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
3551 /* zStmt = sqlite3MPrintf(""); */
3552 zStmt = 0;
3555 /* Add an entry in sqlite_master for this index
3557 sqlite3NestedParse(pParse,
3558 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
3559 db->aDb[iDb].zDbSName, MASTER_NAME,
3560 pIndex->zName,
3561 pTab->zName,
3562 iMem,
3563 zStmt
3565 sqlite3DbFree(db, zStmt);
3567 /* Fill the index with data and reparse the schema. Code an OP_Expire
3568 ** to invalidate all pre-compiled statements.
3570 if( pTblName ){
3571 sqlite3RefillIndex(pParse, pIndex, iMem);
3572 sqlite3ChangeCookie(pParse, iDb);
3573 sqlite3VdbeAddParseSchemaOp(v, iDb,
3574 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));
3575 sqlite3VdbeAddOp2(v, OP_Expire, 0, 1);
3578 sqlite3VdbeJumpHere(v, pIndex->tnum);
3582 /* When adding an index to the list of indices for a table, make
3583 ** sure all indices labeled OE_Replace come after all those labeled
3584 ** OE_Ignore. This is necessary for the correct constraint check
3585 ** processing (in sqlite3GenerateConstraintChecks()) as part of
3586 ** UPDATE and INSERT statements.
3588 if( db->init.busy || pTblName==0 ){
3589 if( onError!=OE_Replace || pTab->pIndex==0
3590 || pTab->pIndex->onError==OE_Replace){
3591 pIndex->pNext = pTab->pIndex;
3592 pTab->pIndex = pIndex;
3593 }else{
3594 Index *pOther = pTab->pIndex;
3595 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
3596 pOther = pOther->pNext;
3598 pIndex->pNext = pOther->pNext;
3599 pOther->pNext = pIndex;
3601 pIndex = 0;
3603 else if( IN_RENAME_OBJECT ){
3604 assert( pParse->pNewIndex==0 );
3605 pParse->pNewIndex = pIndex;
3606 pIndex = 0;
3609 /* Clean up before exiting */
3610 exit_create_index:
3611 if( pIndex ) sqlite3FreeIndex(db, pIndex);
3612 sqlite3ExprDelete(db, pPIWhere);
3613 sqlite3ExprListDelete(db, pList);
3614 sqlite3SrcListDelete(db, pTblName);
3615 sqlite3DbFree(db, zName);
3619 ** Fill the Index.aiRowEst[] array with default information - information
3620 ** to be used when we have not run the ANALYZE command.
3622 ** aiRowEst[0] is supposed to contain the number of elements in the index.
3623 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
3624 ** number of rows in the table that match any particular value of the
3625 ** first column of the index. aiRowEst[2] is an estimate of the number
3626 ** of rows that match any particular combination of the first 2 columns
3627 ** of the index. And so forth. It must always be the case that
3629 ** aiRowEst[N]<=aiRowEst[N-1]
3630 ** aiRowEst[N]>=1
3632 ** Apart from that, we have little to go on besides intuition as to
3633 ** how aiRowEst[] should be initialized. The numbers generated here
3634 ** are based on typical values found in actual indices.
3636 void sqlite3DefaultRowEst(Index *pIdx){
3637 /* 10, 9, 8, 7, 6 */
3638 LogEst aVal[] = { 33, 32, 30, 28, 26 };
3639 LogEst *a = pIdx->aiRowLogEst;
3640 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
3641 int i;
3643 /* Indexes with default row estimates should not have stat1 data */
3644 assert( !pIdx->hasStat1 );
3646 /* Set the first entry (number of rows in the index) to the estimated
3647 ** number of rows in the table, or half the number of rows in the table
3648 ** for a partial index. But do not let the estimate drop below 10. */
3649 a[0] = pIdx->pTable->nRowLogEst;
3650 if( pIdx->pPartIdxWhere!=0 ) a[0] -= 10; assert( 10==sqlite3LogEst(2) );
3651 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) );
3653 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
3654 ** 6 and each subsequent value (if any) is 5. */
3655 memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
3656 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
3657 a[i] = 23; assert( 23==sqlite3LogEst(5) );
3660 assert( 0==sqlite3LogEst(1) );
3661 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
3665 ** This routine will drop an existing named index. This routine
3666 ** implements the DROP INDEX statement.
3668 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
3669 Index *pIndex;
3670 Vdbe *v;
3671 sqlite3 *db = pParse->db;
3672 int iDb;
3674 assert( pParse->nErr==0 ); /* Never called with prior errors */
3675 if( db->mallocFailed ){
3676 goto exit_drop_index;
3678 assert( pName->nSrc==1 );
3679 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3680 goto exit_drop_index;
3682 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
3683 if( pIndex==0 ){
3684 if( !ifExists ){
3685 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
3686 }else{
3687 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3689 pParse->checkSchema = 1;
3690 goto exit_drop_index;
3692 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
3693 sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
3694 "or PRIMARY KEY constraint cannot be dropped", 0);
3695 goto exit_drop_index;
3697 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3698 #ifndef SQLITE_OMIT_AUTHORIZATION
3700 int code = SQLITE_DROP_INDEX;
3701 Table *pTab = pIndex->pTable;
3702 const char *zDb = db->aDb[iDb].zDbSName;
3703 const char *zTab = SCHEMA_TABLE(iDb);
3704 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
3705 goto exit_drop_index;
3707 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
3708 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
3709 goto exit_drop_index;
3712 #endif
3714 /* Generate code to remove the index and from the master table */
3715 v = sqlite3GetVdbe(pParse);
3716 if( v ){
3717 sqlite3BeginWriteOperation(pParse, 1, iDb);
3718 sqlite3NestedParse(pParse,
3719 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
3720 db->aDb[iDb].zDbSName, MASTER_NAME, pIndex->zName
3722 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
3723 sqlite3ChangeCookie(pParse, iDb);
3724 destroyRootPage(pParse, pIndex->tnum, iDb);
3725 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
3728 exit_drop_index:
3729 sqlite3SrcListDelete(db, pName);
3733 ** pArray is a pointer to an array of objects. Each object in the
3734 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
3735 ** to extend the array so that there is space for a new object at the end.
3737 ** When this function is called, *pnEntry contains the current size of
3738 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
3739 ** in total).
3741 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
3742 ** space allocated for the new object is zeroed, *pnEntry updated to
3743 ** reflect the new size of the array and a pointer to the new allocation
3744 ** returned. *pIdx is set to the index of the new array entry in this case.
3746 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
3747 ** unchanged and a copy of pArray returned.
3749 void *sqlite3ArrayAllocate(
3750 sqlite3 *db, /* Connection to notify of malloc failures */
3751 void *pArray, /* Array of objects. Might be reallocated */
3752 int szEntry, /* Size of each object in the array */
3753 int *pnEntry, /* Number of objects currently in use */
3754 int *pIdx /* Write the index of a new slot here */
3756 char *z;
3757 int n = *pnEntry;
3758 if( (n & (n-1))==0 ){
3759 int sz = (n==0) ? 1 : 2*n;
3760 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
3761 if( pNew==0 ){
3762 *pIdx = -1;
3763 return pArray;
3765 pArray = pNew;
3767 z = (char*)pArray;
3768 memset(&z[n * szEntry], 0, szEntry);
3769 *pIdx = n;
3770 ++*pnEntry;
3771 return pArray;
3775 ** Append a new element to the given IdList. Create a new IdList if
3776 ** need be.
3778 ** A new IdList is returned, or NULL if malloc() fails.
3780 IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){
3781 sqlite3 *db = pParse->db;
3782 int i;
3783 if( pList==0 ){
3784 pList = sqlite3DbMallocZero(db, sizeof(IdList) );
3785 if( pList==0 ) return 0;
3787 pList->a = sqlite3ArrayAllocate(
3789 pList->a,
3790 sizeof(pList->a[0]),
3791 &pList->nId,
3794 if( i<0 ){
3795 sqlite3IdListDelete(db, pList);
3796 return 0;
3798 pList->a[i].zName = sqlite3NameFromToken(db, pToken);
3799 if( IN_RENAME_OBJECT && pList->a[i].zName ){
3800 sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken);
3802 return pList;
3806 ** Delete an IdList.
3808 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
3809 int i;
3810 if( pList==0 ) return;
3811 for(i=0; i<pList->nId; i++){
3812 sqlite3DbFree(db, pList->a[i].zName);
3814 sqlite3DbFree(db, pList->a);
3815 sqlite3DbFreeNN(db, pList);
3819 ** Return the index in pList of the identifier named zId. Return -1
3820 ** if not found.
3822 int sqlite3IdListIndex(IdList *pList, const char *zName){
3823 int i;
3824 if( pList==0 ) return -1;
3825 for(i=0; i<pList->nId; i++){
3826 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
3828 return -1;
3832 ** Maximum size of a SrcList object.
3833 ** The SrcList object is used to represent the FROM clause of a
3834 ** SELECT statement, and the query planner cannot deal with more
3835 ** than 64 tables in a join. So any value larger than 64 here
3836 ** is sufficient for most uses. Smaller values, like say 10, are
3837 ** appropriate for small and memory-limited applications.
3839 #ifndef SQLITE_MAX_SRCLIST
3840 # define SQLITE_MAX_SRCLIST 200
3841 #endif
3844 ** Expand the space allocated for the given SrcList object by
3845 ** creating nExtra new slots beginning at iStart. iStart is zero based.
3846 ** New slots are zeroed.
3848 ** For example, suppose a SrcList initially contains two entries: A,B.
3849 ** To append 3 new entries onto the end, do this:
3851 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
3853 ** After the call above it would contain: A, B, nil, nil, nil.
3854 ** If the iStart argument had been 1 instead of 2, then the result
3855 ** would have been: A, nil, nil, nil, B. To prepend the new slots,
3856 ** the iStart value would be 0. The result then would
3857 ** be: nil, nil, nil, A, B.
3859 ** If a memory allocation fails or the SrcList becomes too large, leave
3860 ** the original SrcList unchanged, return NULL, and leave an error message
3861 ** in pParse.
3863 SrcList *sqlite3SrcListEnlarge(
3864 Parse *pParse, /* Parsing context into which errors are reported */
3865 SrcList *pSrc, /* The SrcList to be enlarged */
3866 int nExtra, /* Number of new slots to add to pSrc->a[] */
3867 int iStart /* Index in pSrc->a[] of first new slot */
3869 int i;
3871 /* Sanity checking on calling parameters */
3872 assert( iStart>=0 );
3873 assert( nExtra>=1 );
3874 assert( pSrc!=0 );
3875 assert( iStart<=pSrc->nSrc );
3877 /* Allocate additional space if needed */
3878 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
3879 SrcList *pNew;
3880 int nAlloc = pSrc->nSrc*2+nExtra;
3881 sqlite3 *db = pParse->db;
3883 if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){
3884 sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d",
3885 SQLITE_MAX_SRCLIST);
3886 return 0;
3888 if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST;
3889 pNew = sqlite3DbRealloc(db, pSrc,
3890 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
3891 if( pNew==0 ){
3892 assert( db->mallocFailed );
3893 return 0;
3895 pSrc = pNew;
3896 pSrc->nAlloc = nAlloc;
3899 /* Move existing slots that come after the newly inserted slots
3900 ** out of the way */
3901 for(i=pSrc->nSrc-1; i>=iStart; i--){
3902 pSrc->a[i+nExtra] = pSrc->a[i];
3904 pSrc->nSrc += nExtra;
3906 /* Zero the newly allocated slots */
3907 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
3908 for(i=iStart; i<iStart+nExtra; i++){
3909 pSrc->a[i].iCursor = -1;
3912 /* Return a pointer to the enlarged SrcList */
3913 return pSrc;
3918 ** Append a new table name to the given SrcList. Create a new SrcList if
3919 ** need be. A new entry is created in the SrcList even if pTable is NULL.
3921 ** A SrcList is returned, or NULL if there is an OOM error or if the
3922 ** SrcList grows to large. The returned
3923 ** SrcList might be the same as the SrcList that was input or it might be
3924 ** a new one. If an OOM error does occurs, then the prior value of pList
3925 ** that is input to this routine is automatically freed.
3927 ** If pDatabase is not null, it means that the table has an optional
3928 ** database name prefix. Like this: "database.table". The pDatabase
3929 ** points to the table name and the pTable points to the database name.
3930 ** The SrcList.a[].zName field is filled with the table name which might
3931 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3932 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3933 ** or with NULL if no database is specified.
3935 ** In other words, if call like this:
3937 ** sqlite3SrcListAppend(D,A,B,0);
3939 ** Then B is a table name and the database name is unspecified. If called
3940 ** like this:
3942 ** sqlite3SrcListAppend(D,A,B,C);
3944 ** Then C is the table name and B is the database name. If C is defined
3945 ** then so is B. In other words, we never have a case where:
3947 ** sqlite3SrcListAppend(D,A,0,C);
3949 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted
3950 ** before being added to the SrcList.
3952 SrcList *sqlite3SrcListAppend(
3953 Parse *pParse, /* Parsing context, in which errors are reported */
3954 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */
3955 Token *pTable, /* Table to append */
3956 Token *pDatabase /* Database of the table */
3958 struct SrcList_item *pItem;
3959 sqlite3 *db;
3960 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */
3961 assert( pParse!=0 );
3962 assert( pParse->db!=0 );
3963 db = pParse->db;
3964 if( pList==0 ){
3965 pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) );
3966 if( pList==0 ) return 0;
3967 pList->nAlloc = 1;
3968 pList->nSrc = 1;
3969 memset(&pList->a[0], 0, sizeof(pList->a[0]));
3970 pList->a[0].iCursor = -1;
3971 }else{
3972 SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc);
3973 if( pNew==0 ){
3974 sqlite3SrcListDelete(db, pList);
3975 return 0;
3976 }else{
3977 pList = pNew;
3980 pItem = &pList->a[pList->nSrc-1];
3981 if( pDatabase && pDatabase->z==0 ){
3982 pDatabase = 0;
3984 if( pDatabase ){
3985 pItem->zName = sqlite3NameFromToken(db, pDatabase);
3986 pItem->zDatabase = sqlite3NameFromToken(db, pTable);
3987 }else{
3988 pItem->zName = sqlite3NameFromToken(db, pTable);
3989 pItem->zDatabase = 0;
3991 return pList;
3995 ** Assign VdbeCursor index numbers to all tables in a SrcList
3997 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3998 int i;
3999 struct SrcList_item *pItem;
4000 assert(pList || pParse->db->mallocFailed );
4001 if( pList ){
4002 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
4003 if( pItem->iCursor>=0 ) break;
4004 pItem->iCursor = pParse->nTab++;
4005 if( pItem->pSelect ){
4006 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
4013 ** Delete an entire SrcList including all its substructure.
4015 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
4016 int i;
4017 struct SrcList_item *pItem;
4018 if( pList==0 ) return;
4019 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
4020 sqlite3DbFree(db, pItem->zDatabase);
4021 sqlite3DbFree(db, pItem->zName);
4022 sqlite3DbFree(db, pItem->zAlias);
4023 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
4024 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
4025 sqlite3DeleteTable(db, pItem->pTab);
4026 sqlite3SelectDelete(db, pItem->pSelect);
4027 sqlite3ExprDelete(db, pItem->pOn);
4028 sqlite3IdListDelete(db, pItem->pUsing);
4030 sqlite3DbFreeNN(db, pList);
4034 ** This routine is called by the parser to add a new term to the
4035 ** end of a growing FROM clause. The "p" parameter is the part of
4036 ** the FROM clause that has already been constructed. "p" is NULL
4037 ** if this is the first term of the FROM clause. pTable and pDatabase
4038 ** are the name of the table and database named in the FROM clause term.
4039 ** pDatabase is NULL if the database name qualifier is missing - the
4040 ** usual case. If the term has an alias, then pAlias points to the
4041 ** alias token. If the term is a subquery, then pSubquery is the
4042 ** SELECT statement that the subquery encodes. The pTable and
4043 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing
4044 ** parameters are the content of the ON and USING clauses.
4046 ** Return a new SrcList which encodes is the FROM with the new
4047 ** term added.
4049 SrcList *sqlite3SrcListAppendFromTerm(
4050 Parse *pParse, /* Parsing context */
4051 SrcList *p, /* The left part of the FROM clause already seen */
4052 Token *pTable, /* Name of the table to add to the FROM clause */
4053 Token *pDatabase, /* Name of the database containing pTable */
4054 Token *pAlias, /* The right-hand side of the AS subexpression */
4055 Select *pSubquery, /* A subquery used in place of a table name */
4056 Expr *pOn, /* The ON clause of a join */
4057 IdList *pUsing /* The USING clause of a join */
4059 struct SrcList_item *pItem;
4060 sqlite3 *db = pParse->db;
4061 if( !p && (pOn || pUsing) ){
4062 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
4063 (pOn ? "ON" : "USING")
4065 goto append_from_error;
4067 p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase);
4068 if( p==0 ){
4069 goto append_from_error;
4071 assert( p->nSrc>0 );
4072 pItem = &p->a[p->nSrc-1];
4073 assert( (pTable==0)==(pDatabase==0) );
4074 assert( pItem->zName==0 || pDatabase!=0 );
4075 if( IN_RENAME_OBJECT && pItem->zName ){
4076 Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable;
4077 sqlite3RenameTokenMap(pParse, pItem->zName, pToken);
4079 assert( pAlias!=0 );
4080 if( pAlias->n ){
4081 pItem->zAlias = sqlite3NameFromToken(db, pAlias);
4083 pItem->pSelect = pSubquery;
4084 pItem->pOn = pOn;
4085 pItem->pUsing = pUsing;
4086 return p;
4088 append_from_error:
4089 assert( p==0 );
4090 sqlite3ExprDelete(db, pOn);
4091 sqlite3IdListDelete(db, pUsing);
4092 sqlite3SelectDelete(db, pSubquery);
4093 return 0;
4097 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
4098 ** element of the source-list passed as the second argument.
4100 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
4101 assert( pIndexedBy!=0 );
4102 if( p && pIndexedBy->n>0 ){
4103 struct SrcList_item *pItem;
4104 assert( p->nSrc>0 );
4105 pItem = &p->a[p->nSrc-1];
4106 assert( pItem->fg.notIndexed==0 );
4107 assert( pItem->fg.isIndexedBy==0 );
4108 assert( pItem->fg.isTabFunc==0 );
4109 if( pIndexedBy->n==1 && !pIndexedBy->z ){
4110 /* A "NOT INDEXED" clause was supplied. See parse.y
4111 ** construct "indexed_opt" for details. */
4112 pItem->fg.notIndexed = 1;
4113 }else{
4114 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
4115 pItem->fg.isIndexedBy = 1;
4121 ** Add the list of function arguments to the SrcList entry for a
4122 ** table-valued-function.
4124 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
4125 if( p ){
4126 struct SrcList_item *pItem = &p->a[p->nSrc-1];
4127 assert( pItem->fg.notIndexed==0 );
4128 assert( pItem->fg.isIndexedBy==0 );
4129 assert( pItem->fg.isTabFunc==0 );
4130 pItem->u1.pFuncArg = pList;
4131 pItem->fg.isTabFunc = 1;
4132 }else{
4133 sqlite3ExprListDelete(pParse->db, pList);
4138 ** When building up a FROM clause in the parser, the join operator
4139 ** is initially attached to the left operand. But the code generator
4140 ** expects the join operator to be on the right operand. This routine
4141 ** Shifts all join operators from left to right for an entire FROM
4142 ** clause.
4144 ** Example: Suppose the join is like this:
4146 ** A natural cross join B
4148 ** The operator is "natural cross join". The A and B operands are stored
4149 ** in p->a[0] and p->a[1], respectively. The parser initially stores the
4150 ** operator with A. This routine shifts that operator over to B.
4152 void sqlite3SrcListShiftJoinType(SrcList *p){
4153 if( p ){
4154 int i;
4155 for(i=p->nSrc-1; i>0; i--){
4156 p->a[i].fg.jointype = p->a[i-1].fg.jointype;
4158 p->a[0].fg.jointype = 0;
4163 ** Generate VDBE code for a BEGIN statement.
4165 void sqlite3BeginTransaction(Parse *pParse, int type){
4166 sqlite3 *db;
4167 Vdbe *v;
4168 int i;
4170 assert( pParse!=0 );
4171 db = pParse->db;
4172 assert( db!=0 );
4173 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
4174 return;
4176 v = sqlite3GetVdbe(pParse);
4177 if( !v ) return;
4178 if( type!=TK_DEFERRED ){
4179 for(i=0; i<db->nDb; i++){
4180 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
4181 sqlite3VdbeUsesBtree(v, i);
4184 sqlite3VdbeAddOp0(v, OP_AutoCommit);
4188 ** Generate VDBE code for a COMMIT or ROLLBACK statement.
4189 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise
4190 ** code is generated for a COMMIT.
4192 void sqlite3EndTransaction(Parse *pParse, int eType){
4193 Vdbe *v;
4194 int isRollback;
4196 assert( pParse!=0 );
4197 assert( pParse->db!=0 );
4198 assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK );
4199 isRollback = eType==TK_ROLLBACK;
4200 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION,
4201 isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){
4202 return;
4204 v = sqlite3GetVdbe(pParse);
4205 if( v ){
4206 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback);
4211 ** This function is called by the parser when it parses a command to create,
4212 ** release or rollback an SQL savepoint.
4214 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
4215 char *zName = sqlite3NameFromToken(pParse->db, pName);
4216 if( zName ){
4217 Vdbe *v = sqlite3GetVdbe(pParse);
4218 #ifndef SQLITE_OMIT_AUTHORIZATION
4219 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
4220 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
4221 #endif
4222 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
4223 sqlite3DbFree(pParse->db, zName);
4224 return;
4226 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
4231 ** Make sure the TEMP database is open and available for use. Return
4232 ** the number of errors. Leave any error messages in the pParse structure.
4234 int sqlite3OpenTempDatabase(Parse *pParse){
4235 sqlite3 *db = pParse->db;
4236 if( db->aDb[1].pBt==0 && !pParse->explain ){
4237 int rc;
4238 Btree *pBt;
4239 static const int flags =
4240 SQLITE_OPEN_READWRITE |
4241 SQLITE_OPEN_CREATE |
4242 SQLITE_OPEN_EXCLUSIVE |
4243 SQLITE_OPEN_DELETEONCLOSE |
4244 SQLITE_OPEN_TEMP_DB;
4246 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
4247 if( rc!=SQLITE_OK ){
4248 sqlite3ErrorMsg(pParse, "unable to open a temporary database "
4249 "file for storing temporary tables");
4250 pParse->rc = rc;
4251 return 1;
4253 db->aDb[1].pBt = pBt;
4254 assert( db->aDb[1].pSchema );
4255 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
4256 sqlite3OomFault(db);
4257 return 1;
4260 return 0;
4264 ** Record the fact that the schema cookie will need to be verified
4265 ** for database iDb. The code to actually verify the schema cookie
4266 ** will occur at the end of the top-level VDBE and will be generated
4267 ** later, by sqlite3FinishCoding().
4269 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
4270 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4272 assert( iDb>=0 && iDb<pParse->db->nDb );
4273 assert( pParse->db->aDb[iDb].pBt!=0 || iDb==1 );
4274 assert( iDb<SQLITE_MAX_ATTACHED+2 );
4275 assert( sqlite3SchemaMutexHeld(pParse->db, iDb, 0) );
4276 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
4277 DbMaskSet(pToplevel->cookieMask, iDb);
4278 if( !OMIT_TEMPDB && iDb==1 ){
4279 sqlite3OpenTempDatabase(pToplevel);
4285 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
4286 ** attached database. Otherwise, invoke it for the database named zDb only.
4288 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
4289 sqlite3 *db = pParse->db;
4290 int i;
4291 for(i=0; i<db->nDb; i++){
4292 Db *pDb = &db->aDb[i];
4293 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){
4294 sqlite3CodeVerifySchema(pParse, i);
4300 ** Generate VDBE code that prepares for doing an operation that
4301 ** might change the database.
4303 ** This routine starts a new transaction if we are not already within
4304 ** a transaction. If we are already within a transaction, then a checkpoint
4305 ** is set if the setStatement parameter is true. A checkpoint should
4306 ** be set for operations that might fail (due to a constraint) part of
4307 ** the way through and which will need to undo some writes without having to
4308 ** rollback the whole transaction. For operations where all constraints
4309 ** can be checked before any changes are made to the database, it is never
4310 ** necessary to undo a write and the checkpoint should not be set.
4312 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
4313 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4314 sqlite3CodeVerifySchema(pParse, iDb);
4315 DbMaskSet(pToplevel->writeMask, iDb);
4316 pToplevel->isMultiWrite |= setStatement;
4320 ** Indicate that the statement currently under construction might write
4321 ** more than one entry (example: deleting one row then inserting another,
4322 ** inserting multiple rows in a table, or inserting a row and index entries.)
4323 ** If an abort occurs after some of these writes have completed, then it will
4324 ** be necessary to undo the completed writes.
4326 void sqlite3MultiWrite(Parse *pParse){
4327 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4328 pToplevel->isMultiWrite = 1;
4332 ** The code generator calls this routine if is discovers that it is
4333 ** possible to abort a statement prior to completion. In order to
4334 ** perform this abort without corrupting the database, we need to make
4335 ** sure that the statement is protected by a statement transaction.
4337 ** Technically, we only need to set the mayAbort flag if the
4338 ** isMultiWrite flag was previously set. There is a time dependency
4339 ** such that the abort must occur after the multiwrite. This makes
4340 ** some statements involving the REPLACE conflict resolution algorithm
4341 ** go a little faster. But taking advantage of this time dependency
4342 ** makes it more difficult to prove that the code is correct (in
4343 ** particular, it prevents us from writing an effective
4344 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
4345 ** to take the safe route and skip the optimization.
4347 void sqlite3MayAbort(Parse *pParse){
4348 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4349 pToplevel->mayAbort = 1;
4353 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
4354 ** error. The onError parameter determines which (if any) of the statement
4355 ** and/or current transaction is rolled back.
4357 void sqlite3HaltConstraint(
4358 Parse *pParse, /* Parsing context */
4359 int errCode, /* extended error code */
4360 int onError, /* Constraint type */
4361 char *p4, /* Error message */
4362 i8 p4type, /* P4_STATIC or P4_TRANSIENT */
4363 u8 p5Errmsg /* P5_ErrMsg type */
4365 Vdbe *v = sqlite3GetVdbe(pParse);
4366 assert( (errCode&0xff)==SQLITE_CONSTRAINT );
4367 if( onError==OE_Abort ){
4368 sqlite3MayAbort(pParse);
4370 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
4371 sqlite3VdbeChangeP5(v, p5Errmsg);
4375 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
4377 void sqlite3UniqueConstraint(
4378 Parse *pParse, /* Parsing context */
4379 int onError, /* Constraint type */
4380 Index *pIdx /* The index that triggers the constraint */
4382 char *zErr;
4383 int j;
4384 StrAccum errMsg;
4385 Table *pTab = pIdx->pTable;
4387 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200);
4388 if( pIdx->aColExpr ){
4389 sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName);
4390 }else{
4391 for(j=0; j<pIdx->nKeyCol; j++){
4392 char *zCol;
4393 assert( pIdx->aiColumn[j]>=0 );
4394 zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
4395 if( j ) sqlite3_str_append(&errMsg, ", ", 2);
4396 sqlite3_str_appendall(&errMsg, pTab->zName);
4397 sqlite3_str_append(&errMsg, ".", 1);
4398 sqlite3_str_appendall(&errMsg, zCol);
4401 zErr = sqlite3StrAccumFinish(&errMsg);
4402 sqlite3HaltConstraint(pParse,
4403 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
4404 : SQLITE_CONSTRAINT_UNIQUE,
4405 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
4410 ** Code an OP_Halt due to non-unique rowid.
4412 void sqlite3RowidConstraint(
4413 Parse *pParse, /* Parsing context */
4414 int onError, /* Conflict resolution algorithm */
4415 Table *pTab /* The table with the non-unique rowid */
4417 char *zMsg;
4418 int rc;
4419 if( pTab->iPKey>=0 ){
4420 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
4421 pTab->aCol[pTab->iPKey].zName);
4422 rc = SQLITE_CONSTRAINT_PRIMARYKEY;
4423 }else{
4424 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
4425 rc = SQLITE_CONSTRAINT_ROWID;
4427 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
4428 P5_ConstraintUnique);
4432 ** Check to see if pIndex uses the collating sequence pColl. Return
4433 ** true if it does and false if it does not.
4435 #ifndef SQLITE_OMIT_REINDEX
4436 static int collationMatch(const char *zColl, Index *pIndex){
4437 int i;
4438 assert( zColl!=0 );
4439 for(i=0; i<pIndex->nColumn; i++){
4440 const char *z = pIndex->azColl[i];
4441 assert( z!=0 || pIndex->aiColumn[i]<0 );
4442 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
4443 return 1;
4446 return 0;
4448 #endif
4451 ** Recompute all indices of pTab that use the collating sequence pColl.
4452 ** If pColl==0 then recompute all indices of pTab.
4454 #ifndef SQLITE_OMIT_REINDEX
4455 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
4456 if( !IsVirtual(pTab) ){
4457 Index *pIndex; /* An index associated with pTab */
4459 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
4460 if( zColl==0 || collationMatch(zColl, pIndex) ){
4461 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4462 sqlite3BeginWriteOperation(pParse, 0, iDb);
4463 sqlite3RefillIndex(pParse, pIndex, -1);
4468 #endif
4471 ** Recompute all indices of all tables in all databases where the
4472 ** indices use the collating sequence pColl. If pColl==0 then recompute
4473 ** all indices everywhere.
4475 #ifndef SQLITE_OMIT_REINDEX
4476 static void reindexDatabases(Parse *pParse, char const *zColl){
4477 Db *pDb; /* A single database */
4478 int iDb; /* The database index number */
4479 sqlite3 *db = pParse->db; /* The database connection */
4480 HashElem *k; /* For looping over tables in pDb */
4481 Table *pTab; /* A table in the database */
4483 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */
4484 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
4485 assert( pDb!=0 );
4486 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){
4487 pTab = (Table*)sqliteHashData(k);
4488 reindexTable(pParse, pTab, zColl);
4492 #endif
4495 ** Generate code for the REINDEX command.
4497 ** REINDEX -- 1
4498 ** REINDEX <collation> -- 2
4499 ** REINDEX ?<database>.?<tablename> -- 3
4500 ** REINDEX ?<database>.?<indexname> -- 4
4502 ** Form 1 causes all indices in all attached databases to be rebuilt.
4503 ** Form 2 rebuilds all indices in all databases that use the named
4504 ** collating function. Forms 3 and 4 rebuild the named index or all
4505 ** indices associated with the named table.
4507 #ifndef SQLITE_OMIT_REINDEX
4508 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
4509 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */
4510 char *z; /* Name of a table or index */
4511 const char *zDb; /* Name of the database */
4512 Table *pTab; /* A table in the database */
4513 Index *pIndex; /* An index associated with pTab */
4514 int iDb; /* The database index number */
4515 sqlite3 *db = pParse->db; /* The database connection */
4516 Token *pObjName; /* Name of the table or index to be reindexed */
4518 /* Read the database schema. If an error occurs, leave an error message
4519 ** and code in pParse and return NULL. */
4520 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
4521 return;
4524 if( pName1==0 ){
4525 reindexDatabases(pParse, 0);
4526 return;
4527 }else if( NEVER(pName2==0) || pName2->z==0 ){
4528 char *zColl;
4529 assert( pName1->z );
4530 zColl = sqlite3NameFromToken(pParse->db, pName1);
4531 if( !zColl ) return;
4532 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
4533 if( pColl ){
4534 reindexDatabases(pParse, zColl);
4535 sqlite3DbFree(db, zColl);
4536 return;
4538 sqlite3DbFree(db, zColl);
4540 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
4541 if( iDb<0 ) return;
4542 z = sqlite3NameFromToken(db, pObjName);
4543 if( z==0 ) return;
4544 zDb = db->aDb[iDb].zDbSName;
4545 pTab = sqlite3FindTable(db, z, zDb);
4546 if( pTab ){
4547 reindexTable(pParse, pTab, 0);
4548 sqlite3DbFree(db, z);
4549 return;
4551 pIndex = sqlite3FindIndex(db, z, zDb);
4552 sqlite3DbFree(db, z);
4553 if( pIndex ){
4554 sqlite3BeginWriteOperation(pParse, 0, iDb);
4555 sqlite3RefillIndex(pParse, pIndex, -1);
4556 return;
4558 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
4560 #endif
4563 ** Return a KeyInfo structure that is appropriate for the given Index.
4565 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
4566 ** when it has finished using it.
4568 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
4569 int i;
4570 int nCol = pIdx->nColumn;
4571 int nKey = pIdx->nKeyCol;
4572 KeyInfo *pKey;
4573 if( pParse->nErr ) return 0;
4574 if( pIdx->uniqNotNull ){
4575 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
4576 }else{
4577 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
4579 if( pKey ){
4580 assert( sqlite3KeyInfoIsWriteable(pKey) );
4581 for(i=0; i<nCol; i++){
4582 const char *zColl = pIdx->azColl[i];
4583 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 :
4584 sqlite3LocateCollSeq(pParse, zColl);
4585 pKey->aSortOrder[i] = pIdx->aSortOrder[i];
4587 if( pParse->nErr ){
4588 assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ );
4589 if( pIdx->bNoQuery==0 ){
4590 /* Deactivate the index because it contains an unknown collating
4591 ** sequence. The only way to reactive the index is to reload the
4592 ** schema. Adding the missing collating sequence later does not
4593 ** reactive the index. The application had the chance to register
4594 ** the missing index using the collation-needed callback. For
4595 ** simplicity, SQLite will not give the application a second chance.
4597 pIdx->bNoQuery = 1;
4598 pParse->rc = SQLITE_ERROR_RETRY;
4600 sqlite3KeyInfoUnref(pKey);
4601 pKey = 0;
4604 return pKey;
4607 #ifndef SQLITE_OMIT_CTE
4609 ** This routine is invoked once per CTE by the parser while parsing a
4610 ** WITH clause.
4612 With *sqlite3WithAdd(
4613 Parse *pParse, /* Parsing context */
4614 With *pWith, /* Existing WITH clause, or NULL */
4615 Token *pName, /* Name of the common-table */
4616 ExprList *pArglist, /* Optional column name list for the table */
4617 Select *pQuery /* Query used to initialize the table */
4619 sqlite3 *db = pParse->db;
4620 With *pNew;
4621 char *zName;
4623 /* Check that the CTE name is unique within this WITH clause. If
4624 ** not, store an error in the Parse structure. */
4625 zName = sqlite3NameFromToken(pParse->db, pName);
4626 if( zName && pWith ){
4627 int i;
4628 for(i=0; i<pWith->nCte; i++){
4629 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
4630 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
4635 if( pWith ){
4636 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
4637 pNew = sqlite3DbRealloc(db, pWith, nByte);
4638 }else{
4639 pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
4641 assert( (pNew!=0 && zName!=0) || db->mallocFailed );
4643 if( db->mallocFailed ){
4644 sqlite3ExprListDelete(db, pArglist);
4645 sqlite3SelectDelete(db, pQuery);
4646 sqlite3DbFree(db, zName);
4647 pNew = pWith;
4648 }else{
4649 pNew->a[pNew->nCte].pSelect = pQuery;
4650 pNew->a[pNew->nCte].pCols = pArglist;
4651 pNew->a[pNew->nCte].zName = zName;
4652 pNew->a[pNew->nCte].zCteErr = 0;
4653 pNew->nCte++;
4656 return pNew;
4660 ** Free the contents of the With object passed as the second argument.
4662 void sqlite3WithDelete(sqlite3 *db, With *pWith){
4663 if( pWith ){
4664 int i;
4665 for(i=0; i<pWith->nCte; i++){
4666 struct Cte *pCte = &pWith->a[i];
4667 sqlite3ExprListDelete(db, pCte->pCols);
4668 sqlite3SelectDelete(db, pCte->pSelect);
4669 sqlite3DbFree(db, pCte->zName);
4671 sqlite3DbFree(db, pWith);
4674 #endif /* !defined(SQLITE_OMIT_CTE) */