rework kdf salt flags
[sqlcipher.git] / src / util.c
blob9bfcd253b0ae69187d9f30cb2419a5c912357f8e
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** Utility functions used throughout sqlite.
14 ** This file contains functions for allocating memory, comparing
15 ** strings, and stuff like that.
18 #include "sqliteInt.h"
19 #include <stdarg.h>
20 #ifndef SQLITE_OMIT_FLOATING_POINT
21 #include <math.h>
22 #endif
25 ** Calls to sqlite3FaultSim() are used to simulate a failure during testing,
26 ** or to bypass normal error detection during testing in order to let
27 ** execute proceed futher downstream.
29 ** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0). The
30 ** sqlite3FaultSim() function only returns non-zero during testing.
32 ** During testing, if the test harness has set a fault-sim callback using
33 ** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then
34 ** each call to sqlite3FaultSim() is relayed to that application-supplied
35 ** callback and the integer return value form the application-supplied
36 ** callback is returned by sqlite3FaultSim().
38 ** The integer argument to sqlite3FaultSim() is a code to identify which
39 ** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim()
40 ** should have a unique code. To prevent legacy testing applications from
41 ** breaking, the codes should not be changed or reused.
43 #ifndef SQLITE_UNTESTABLE
44 int sqlite3FaultSim(int iTest){
45 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
46 return xCallback ? xCallback(iTest) : SQLITE_OK;
48 #endif
50 #ifndef SQLITE_OMIT_FLOATING_POINT
52 ** Return true if the floating point value is Not a Number (NaN).
54 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
55 ** Otherwise, we have our own implementation that works on most systems.
57 int sqlite3IsNaN(double x){
58 int rc; /* The value return */
59 #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN
60 u64 y;
61 memcpy(&y,&x,sizeof(y));
62 rc = IsNaN(y);
63 #else
64 rc = isnan(x);
65 #endif /* HAVE_ISNAN */
66 testcase( rc );
67 return rc;
69 #endif /* SQLITE_OMIT_FLOATING_POINT */
72 ** Compute a string length that is limited to what can be stored in
73 ** lower 30 bits of a 32-bit signed integer.
75 ** The value returned will never be negative. Nor will it ever be greater
76 ** than the actual length of the string. For very long strings (greater
77 ** than 1GiB) the value returned might be less than the true string length.
79 int sqlite3Strlen30(const char *z){
80 if( z==0 ) return 0;
81 return 0x3fffffff & (int)strlen(z);
85 ** Return the declared type of a column. Or return zDflt if the column
86 ** has no declared type.
88 ** The column type is an extra string stored after the zero-terminator on
89 ** the column name if and only if the COLFLAG_HASTYPE flag is set.
91 char *sqlite3ColumnType(Column *pCol, char *zDflt){
92 if( pCol->colFlags & COLFLAG_HASTYPE ){
93 return pCol->zCnName + strlen(pCol->zCnName) + 1;
94 }else if( pCol->eCType ){
95 assert( pCol->eCType<=SQLITE_N_STDTYPE );
96 return (char*)sqlite3StdType[pCol->eCType-1];
97 }else{
98 return zDflt;
103 ** Helper function for sqlite3Error() - called rarely. Broken out into
104 ** a separate routine to avoid unnecessary register saves on entry to
105 ** sqlite3Error().
107 static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){
108 if( db->pErr ) sqlite3ValueSetNull(db->pErr);
109 sqlite3SystemError(db, err_code);
113 ** Set the current error code to err_code and clear any prior error message.
114 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates
115 ** that would be appropriate.
117 void sqlite3Error(sqlite3 *db, int err_code){
118 assert( db!=0 );
119 db->errCode = err_code;
120 if( err_code || db->pErr ){
121 sqlite3ErrorFinish(db, err_code);
122 }else{
123 db->errByteOffset = -1;
128 ** The equivalent of sqlite3Error(db, SQLITE_OK). Clear the error state
129 ** and error message.
131 void sqlite3ErrorClear(sqlite3 *db){
132 assert( db!=0 );
133 db->errCode = SQLITE_OK;
134 db->errByteOffset = -1;
135 if( db->pErr ) sqlite3ValueSetNull(db->pErr);
139 ** Load the sqlite3.iSysErrno field if that is an appropriate thing
140 ** to do based on the SQLite error code in rc.
142 void sqlite3SystemError(sqlite3 *db, int rc){
143 if( rc==SQLITE_IOERR_NOMEM ) return;
144 rc &= 0xff;
145 if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){
146 db->iSysErrno = sqlite3OsGetLastError(db->pVfs);
151 ** Set the most recent error code and error string for the sqlite
152 ** handle "db". The error code is set to "err_code".
154 ** If it is not NULL, string zFormat specifies the format of the
155 ** error string. zFormat and any string tokens that follow it are
156 ** assumed to be encoded in UTF-8.
158 ** To clear the most recent error for sqlite handle "db", sqlite3Error
159 ** should be called with err_code set to SQLITE_OK and zFormat set
160 ** to NULL.
162 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
163 assert( db!=0 );
164 db->errCode = err_code;
165 sqlite3SystemError(db, err_code);
166 if( zFormat==0 ){
167 sqlite3Error(db, err_code);
168 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
169 char *z;
170 va_list ap;
171 va_start(ap, zFormat);
172 z = sqlite3VMPrintf(db, zFormat, ap);
173 va_end(ap);
174 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
179 ** Check for interrupts and invoke progress callback.
181 void sqlite3ProgressCheck(Parse *p){
182 sqlite3 *db = p->db;
183 if( AtomicLoad(&db->u1.isInterrupted) ){
184 p->nErr++;
185 p->rc = SQLITE_INTERRUPT;
187 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
188 if( db->xProgress && (++p->nProgressSteps)>=db->nProgressOps ){
189 if( db->xProgress(db->pProgressArg) ){
190 p->nErr++;
191 p->rc = SQLITE_INTERRUPT;
193 p->nProgressSteps = 0;
195 #endif
199 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
201 ** This function should be used to report any error that occurs while
202 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
203 ** last thing the sqlite3_prepare() function does is copy the error
204 ** stored by this function into the database handle using sqlite3Error().
205 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
206 ** during statement execution (sqlite3_step() etc.).
208 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
209 char *zMsg;
210 va_list ap;
211 sqlite3 *db = pParse->db;
212 assert( db!=0 );
213 assert( db->pParse==pParse || db->pParse->pToplevel==pParse );
214 db->errByteOffset = -2;
215 va_start(ap, zFormat);
216 zMsg = sqlite3VMPrintf(db, zFormat, ap);
217 va_end(ap);
218 if( db->errByteOffset<-1 ) db->errByteOffset = -1;
219 if( db->suppressErr ){
220 sqlite3DbFree(db, zMsg);
221 if( db->mallocFailed ){
222 pParse->nErr++;
223 pParse->rc = SQLITE_NOMEM;
225 }else{
226 pParse->nErr++;
227 sqlite3DbFree(db, pParse->zErrMsg);
228 pParse->zErrMsg = zMsg;
229 pParse->rc = SQLITE_ERROR;
230 pParse->pWith = 0;
235 ** If database connection db is currently parsing SQL, then transfer
236 ** error code errCode to that parser if the parser has not already
237 ** encountered some other kind of error.
239 int sqlite3ErrorToParser(sqlite3 *db, int errCode){
240 Parse *pParse;
241 if( db==0 || (pParse = db->pParse)==0 ) return errCode;
242 pParse->rc = errCode;
243 pParse->nErr++;
244 return errCode;
248 ** Convert an SQL-style quoted string into a normal string by removing
249 ** the quote characters. The conversion is done in-place. If the
250 ** input does not begin with a quote character, then this routine
251 ** is a no-op.
253 ** The input string must be zero-terminated. A new zero-terminator
254 ** is added to the dequoted string.
256 ** The return value is -1 if no dequoting occurs or the length of the
257 ** dequoted string, exclusive of the zero terminator, if dequoting does
258 ** occur.
260 ** 2002-02-14: This routine is extended to remove MS-Access style
261 ** brackets from around identifiers. For example: "[a-b-c]" becomes
262 ** "a-b-c".
264 void sqlite3Dequote(char *z){
265 char quote;
266 int i, j;
267 if( z==0 ) return;
268 quote = z[0];
269 if( !sqlite3Isquote(quote) ) return;
270 if( quote=='[' ) quote = ']';
271 for(i=1, j=0;; i++){
272 assert( z[i] );
273 if( z[i]==quote ){
274 if( z[i+1]==quote ){
275 z[j++] = quote;
276 i++;
277 }else{
278 break;
280 }else{
281 z[j++] = z[i];
284 z[j] = 0;
286 void sqlite3DequoteExpr(Expr *p){
287 assert( !ExprHasProperty(p, EP_IntValue) );
288 assert( sqlite3Isquote(p->u.zToken[0]) );
289 p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted;
290 sqlite3Dequote(p->u.zToken);
294 ** If the input token p is quoted, try to adjust the token to remove
295 ** the quotes. This is not always possible:
297 ** "abc" -> abc
298 ** "ab""cd" -> (not possible because of the interior "")
300 ** Remove the quotes if possible. This is a optimization. The overall
301 ** system should still return the correct answer even if this routine
302 ** is always a no-op.
304 void sqlite3DequoteToken(Token *p){
305 unsigned int i;
306 if( p->n<2 ) return;
307 if( !sqlite3Isquote(p->z[0]) ) return;
308 for(i=1; i<p->n-1; i++){
309 if( sqlite3Isquote(p->z[i]) ) return;
311 p->n -= 2;
312 p->z++;
316 ** Generate a Token object from a string
318 void sqlite3TokenInit(Token *p, char *z){
319 p->z = z;
320 p->n = sqlite3Strlen30(z);
323 /* Convenient short-hand */
324 #define UpperToLower sqlite3UpperToLower
327 ** Some systems have stricmp(). Others have strcasecmp(). Because
328 ** there is no consistency, we will define our own.
330 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
331 ** sqlite3_strnicmp() APIs allow applications and extensions to compare
332 ** the contents of two buffers containing UTF-8 strings in a
333 ** case-independent fashion, using the same definition of "case
334 ** independence" that SQLite uses internally when comparing identifiers.
336 int sqlite3_stricmp(const char *zLeft, const char *zRight){
337 if( zLeft==0 ){
338 return zRight ? -1 : 0;
339 }else if( zRight==0 ){
340 return 1;
342 return sqlite3StrICmp(zLeft, zRight);
344 int sqlite3StrICmp(const char *zLeft, const char *zRight){
345 unsigned char *a, *b;
346 int c, x;
347 a = (unsigned char *)zLeft;
348 b = (unsigned char *)zRight;
349 for(;;){
350 c = *a;
351 x = *b;
352 if( c==x ){
353 if( c==0 ) break;
354 }else{
355 c = (int)UpperToLower[c] - (int)UpperToLower[x];
356 if( c ) break;
358 a++;
359 b++;
361 return c;
363 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
364 register unsigned char *a, *b;
365 if( zLeft==0 ){
366 return zRight ? -1 : 0;
367 }else if( zRight==0 ){
368 return 1;
370 a = (unsigned char *)zLeft;
371 b = (unsigned char *)zRight;
372 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
373 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
377 ** Compute an 8-bit hash on a string that is insensitive to case differences
379 u8 sqlite3StrIHash(const char *z){
380 u8 h = 0;
381 if( z==0 ) return 0;
382 while( z[0] ){
383 h += UpperToLower[(unsigned char)z[0]];
384 z++;
386 return h;
390 ** Compute 10 to the E-th power. Examples: E==1 results in 10.
391 ** E==2 results in 100. E==50 results in 1.0e50.
393 ** This routine only works for values of E between 1 and 341.
395 static LONGDOUBLE_TYPE sqlite3Pow10(int E){
396 #if defined(_MSC_VER)
397 static const LONGDOUBLE_TYPE x[] = {
398 1.0e+001L,
399 1.0e+002L,
400 1.0e+004L,
401 1.0e+008L,
402 1.0e+016L,
403 1.0e+032L,
404 1.0e+064L,
405 1.0e+128L,
406 1.0e+256L
408 LONGDOUBLE_TYPE r = 1.0;
409 int i;
410 assert( E>=0 && E<=307 );
411 for(i=0; E!=0; i++, E >>=1){
412 if( E & 1 ) r *= x[i];
414 return r;
415 #else
416 LONGDOUBLE_TYPE x = 10.0;
417 LONGDOUBLE_TYPE r = 1.0;
418 while(1){
419 if( E & 1 ) r *= x;
420 E >>= 1;
421 if( E==0 ) break;
422 x *= x;
424 return r;
425 #endif
429 ** The string z[] is an text representation of a real number.
430 ** Convert this string to a double and write it into *pResult.
432 ** The string z[] is length bytes in length (bytes, not characters) and
433 ** uses the encoding enc. The string is not necessarily zero-terminated.
435 ** Return TRUE if the result is a valid real number (or integer) and FALSE
436 ** if the string is empty or contains extraneous text. More specifically
437 ** return
438 ** 1 => The input string is a pure integer
439 ** 2 or more => The input has a decimal point or eNNN clause
440 ** 0 or less => The input string is not a valid number
441 ** -1 => Not a valid number, but has a valid prefix which
442 ** includes a decimal point and/or an eNNN clause
444 ** Valid numbers are in one of these formats:
446 ** [+-]digits[E[+-]digits]
447 ** [+-]digits.[digits][E[+-]digits]
448 ** [+-].digits[E[+-]digits]
450 ** Leading and trailing whitespace is ignored for the purpose of determining
451 ** validity.
453 ** If some prefix of the input string is a valid number, this routine
454 ** returns FALSE but it still converts the prefix and writes the result
455 ** into *pResult.
457 #if defined(_MSC_VER)
458 #pragma warning(disable : 4756)
459 #endif
460 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
461 #ifndef SQLITE_OMIT_FLOATING_POINT
462 int incr;
463 const char *zEnd;
464 /* sign * significand * (10 ^ (esign * exponent)) */
465 int sign = 1; /* sign of significand */
466 i64 s = 0; /* significand */
467 int d = 0; /* adjust exponent for shifting decimal point */
468 int esign = 1; /* sign of exponent */
469 int e = 0; /* exponent */
470 int eValid = 1; /* True exponent is either not used or is well-formed */
471 double result;
472 int nDigit = 0; /* Number of digits processed */
473 int eType = 1; /* 1: pure integer, 2+: fractional -1 or less: bad UTF16 */
475 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
476 *pResult = 0.0; /* Default return value, in case of an error */
477 if( length==0 ) return 0;
479 if( enc==SQLITE_UTF8 ){
480 incr = 1;
481 zEnd = z + length;
482 }else{
483 int i;
484 incr = 2;
485 length &= ~1;
486 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
487 testcase( enc==SQLITE_UTF16LE );
488 testcase( enc==SQLITE_UTF16BE );
489 for(i=3-enc; i<length && z[i]==0; i+=2){}
490 if( i<length ) eType = -100;
491 zEnd = &z[i^1];
492 z += (enc&1);
495 /* skip leading spaces */
496 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
497 if( z>=zEnd ) return 0;
499 /* get sign of significand */
500 if( *z=='-' ){
501 sign = -1;
502 z+=incr;
503 }else if( *z=='+' ){
504 z+=incr;
507 /* copy max significant digits to significand */
508 while( z<zEnd && sqlite3Isdigit(*z) ){
509 s = s*10 + (*z - '0');
510 z+=incr; nDigit++;
511 if( s>=((LARGEST_INT64-9)/10) ){
512 /* skip non-significant significand digits
513 ** (increase exponent by d to shift decimal left) */
514 while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; d++; }
517 if( z>=zEnd ) goto do_atof_calc;
519 /* if decimal point is present */
520 if( *z=='.' ){
521 z+=incr;
522 eType++;
523 /* copy digits from after decimal to significand
524 ** (decrease exponent by d to shift decimal right) */
525 while( z<zEnd && sqlite3Isdigit(*z) ){
526 if( s<((LARGEST_INT64-9)/10) ){
527 s = s*10 + (*z - '0');
528 d--;
529 nDigit++;
531 z+=incr;
534 if( z>=zEnd ) goto do_atof_calc;
536 /* if exponent is present */
537 if( *z=='e' || *z=='E' ){
538 z+=incr;
539 eValid = 0;
540 eType++;
542 /* This branch is needed to avoid a (harmless) buffer overread. The
543 ** special comment alerts the mutation tester that the correct answer
544 ** is obtained even if the branch is omitted */
545 if( z>=zEnd ) goto do_atof_calc; /*PREVENTS-HARMLESS-OVERREAD*/
547 /* get sign of exponent */
548 if( *z=='-' ){
549 esign = -1;
550 z+=incr;
551 }else if( *z=='+' ){
552 z+=incr;
554 /* copy digits to exponent */
555 while( z<zEnd && sqlite3Isdigit(*z) ){
556 e = e<10000 ? (e*10 + (*z - '0')) : 10000;
557 z+=incr;
558 eValid = 1;
562 /* skip trailing spaces */
563 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
565 do_atof_calc:
566 /* adjust exponent by d, and update sign */
567 e = (e*esign) + d;
568 if( e<0 ) {
569 esign = -1;
570 e *= -1;
571 } else {
572 esign = 1;
575 if( s==0 ) {
576 /* In the IEEE 754 standard, zero is signed. */
577 result = sign<0 ? -(double)0 : (double)0;
578 } else {
579 /* Attempt to reduce exponent.
581 ** Branches that are not required for the correct answer but which only
582 ** help to obtain the correct answer faster are marked with special
583 ** comments, as a hint to the mutation tester.
585 while( e>0 ){ /*OPTIMIZATION-IF-TRUE*/
586 if( esign>0 ){
587 if( s>=(LARGEST_INT64/10) ) break; /*OPTIMIZATION-IF-FALSE*/
588 s *= 10;
589 }else{
590 if( s%10!=0 ) break; /*OPTIMIZATION-IF-FALSE*/
591 s /= 10;
593 e--;
596 /* adjust the sign of significand */
597 s = sign<0 ? -s : s;
599 if( e==0 ){ /*OPTIMIZATION-IF-TRUE*/
600 result = (double)s;
601 }else{
602 /* attempt to handle extremely small/large numbers better */
603 if( e>307 ){ /*OPTIMIZATION-IF-TRUE*/
604 if( e<342 ){ /*OPTIMIZATION-IF-TRUE*/
605 LONGDOUBLE_TYPE scale = sqlite3Pow10(e-308);
606 if( esign<0 ){
607 result = s / scale;
608 result /= 1.0e+308;
609 }else{
610 result = s * scale;
611 result *= 1.0e+308;
613 }else{ assert( e>=342 );
614 if( esign<0 ){
615 result = 0.0*s;
616 }else{
617 #ifdef INFINITY
618 result = INFINITY*s;
619 #else
620 result = 1e308*1e308*s; /* Infinity */
621 #endif
624 }else{
625 LONGDOUBLE_TYPE scale = sqlite3Pow10(e);
626 if( esign<0 ){
627 result = s / scale;
628 }else{
629 result = s * scale;
635 /* store the result */
636 *pResult = result;
638 /* return true if number and no extra non-whitespace chracters after */
639 if( z==zEnd && nDigit>0 && eValid && eType>0 ){
640 return eType;
641 }else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){
642 return -1;
643 }else{
644 return 0;
646 #else
647 return !sqlite3Atoi64(z, pResult, length, enc);
648 #endif /* SQLITE_OMIT_FLOATING_POINT */
650 #if defined(_MSC_VER)
651 #pragma warning(default : 4756)
652 #endif
655 ** Render an signed 64-bit integer as text. Store the result in zOut[] and
656 ** return the length of the string that was stored, in bytes. The value
657 ** returned does not include the zero terminator at the end of the output
658 ** string.
660 ** The caller must ensure that zOut[] is at least 21 bytes in size.
662 int sqlite3Int64ToText(i64 v, char *zOut){
663 int i;
664 u64 x;
665 char zTemp[22];
666 if( v<0 ){
667 x = (v==SMALLEST_INT64) ? ((u64)1)<<63 : (u64)-v;
668 }else{
669 x = v;
671 i = sizeof(zTemp)-2;
672 zTemp[sizeof(zTemp)-1] = 0;
673 while( 1 /*exit-by-break*/ ){
674 zTemp[i] = (x%10) + '0';
675 x = x/10;
676 if( x==0 ) break;
677 i--;
679 if( v<0 ) zTemp[--i] = '-';
680 memcpy(zOut, &zTemp[i], sizeof(zTemp)-i);
681 return sizeof(zTemp)-1-i;
685 ** Compare the 19-character string zNum against the text representation
686 ** value 2^63: 9223372036854775808. Return negative, zero, or positive
687 ** if zNum is less than, equal to, or greater than the string.
688 ** Note that zNum must contain exactly 19 characters.
690 ** Unlike memcmp() this routine is guaranteed to return the difference
691 ** in the values of the last digit if the only difference is in the
692 ** last digit. So, for example,
694 ** compare2pow63("9223372036854775800", 1)
696 ** will return -8.
698 static int compare2pow63(const char *zNum, int incr){
699 int c = 0;
700 int i;
701 /* 012345678901234567 */
702 const char *pow63 = "922337203685477580";
703 for(i=0; c==0 && i<18; i++){
704 c = (zNum[i*incr]-pow63[i])*10;
706 if( c==0 ){
707 c = zNum[18*incr] - '8';
708 testcase( c==(-1) );
709 testcase( c==0 );
710 testcase( c==(+1) );
712 return c;
716 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This
717 ** routine does *not* accept hexadecimal notation.
719 ** Returns:
721 ** -1 Not even a prefix of the input text looks like an integer
722 ** 0 Successful transformation. Fits in a 64-bit signed integer.
723 ** 1 Excess non-space text after the integer value
724 ** 2 Integer too large for a 64-bit signed integer or is malformed
725 ** 3 Special case of 9223372036854775808
727 ** length is the number of bytes in the string (bytes, not characters).
728 ** The string is not necessarily zero-terminated. The encoding is
729 ** given by enc.
731 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
732 int incr;
733 u64 u = 0;
734 int neg = 0; /* assume positive */
735 int i;
736 int c = 0;
737 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */
738 int rc; /* Baseline return code */
739 const char *zStart;
740 const char *zEnd = zNum + length;
741 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
742 if( enc==SQLITE_UTF8 ){
743 incr = 1;
744 }else{
745 incr = 2;
746 length &= ~1;
747 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
748 for(i=3-enc; i<length && zNum[i]==0; i+=2){}
749 nonNum = i<length;
750 zEnd = &zNum[i^1];
751 zNum += (enc&1);
753 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
754 if( zNum<zEnd ){
755 if( *zNum=='-' ){
756 neg = 1;
757 zNum+=incr;
758 }else if( *zNum=='+' ){
759 zNum+=incr;
762 zStart = zNum;
763 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
764 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
765 u = u*10 + c - '0';
767 testcase( i==18*incr );
768 testcase( i==19*incr );
769 testcase( i==20*incr );
770 if( u>LARGEST_INT64 ){
771 /* This test and assignment is needed only to suppress UB warnings
772 ** from clang and -fsanitize=undefined. This test and assignment make
773 ** the code a little larger and slower, and no harm comes from omitting
774 ** them, but we must appaise the undefined-behavior pharisees. */
775 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
776 }else if( neg ){
777 *pNum = -(i64)u;
778 }else{
779 *pNum = (i64)u;
781 rc = 0;
782 if( i==0 && zStart==zNum ){ /* No digits */
783 rc = -1;
784 }else if( nonNum ){ /* UTF16 with high-order bytes non-zero */
785 rc = 1;
786 }else if( &zNum[i]<zEnd ){ /* Extra bytes at the end */
787 int jj = i;
789 if( !sqlite3Isspace(zNum[jj]) ){
790 rc = 1; /* Extra non-space text after the integer */
791 break;
793 jj += incr;
794 }while( &zNum[jj]<zEnd );
796 if( i<19*incr ){
797 /* Less than 19 digits, so we know that it fits in 64 bits */
798 assert( u<=LARGEST_INT64 );
799 return rc;
800 }else{
801 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */
802 c = i>19*incr ? 1 : compare2pow63(zNum, incr);
803 if( c<0 ){
804 /* zNum is less than 9223372036854775808 so it fits */
805 assert( u<=LARGEST_INT64 );
806 return rc;
807 }else{
808 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
809 if( c>0 ){
810 /* zNum is greater than 9223372036854775808 so it overflows */
811 return 2;
812 }else{
813 /* zNum is exactly 9223372036854775808. Fits if negative. The
814 ** special case 2 overflow if positive */
815 assert( u-1==LARGEST_INT64 );
816 return neg ? rc : 3;
823 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
824 ** into a 64-bit signed integer. This routine accepts hexadecimal literals,
825 ** whereas sqlite3Atoi64() does not.
827 ** Returns:
829 ** 0 Successful transformation. Fits in a 64-bit signed integer.
830 ** 1 Excess text after the integer value
831 ** 2 Integer too large for a 64-bit signed integer or is malformed
832 ** 3 Special case of 9223372036854775808
834 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
835 #ifndef SQLITE_OMIT_HEX_INTEGER
836 if( z[0]=='0'
837 && (z[1]=='x' || z[1]=='X')
839 u64 u = 0;
840 int i, k;
841 for(i=2; z[i]=='0'; i++){}
842 for(k=i; sqlite3Isxdigit(z[k]); k++){
843 u = u*16 + sqlite3HexToInt(z[k]);
845 memcpy(pOut, &u, 8);
846 if( k-i>16 ) return 2;
847 if( z[k]!=0 ) return 1;
848 return 0;
849 }else
850 #endif /* SQLITE_OMIT_HEX_INTEGER */
852 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8);
857 ** If zNum represents an integer that will fit in 32-bits, then set
858 ** *pValue to that integer and return true. Otherwise return false.
860 ** This routine accepts both decimal and hexadecimal notation for integers.
862 ** Any non-numeric characters that following zNum are ignored.
863 ** This is different from sqlite3Atoi64() which requires the
864 ** input number to be zero-terminated.
866 int sqlite3GetInt32(const char *zNum, int *pValue){
867 sqlite_int64 v = 0;
868 int i, c;
869 int neg = 0;
870 if( zNum[0]=='-' ){
871 neg = 1;
872 zNum++;
873 }else if( zNum[0]=='+' ){
874 zNum++;
876 #ifndef SQLITE_OMIT_HEX_INTEGER
877 else if( zNum[0]=='0'
878 && (zNum[1]=='x' || zNum[1]=='X')
879 && sqlite3Isxdigit(zNum[2])
881 u32 u = 0;
882 zNum += 2;
883 while( zNum[0]=='0' ) zNum++;
884 for(i=0; i<8 && sqlite3Isxdigit(zNum[i]); i++){
885 u = u*16 + sqlite3HexToInt(zNum[i]);
887 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
888 memcpy(pValue, &u, 4);
889 return 1;
890 }else{
891 return 0;
894 #endif
895 if( !sqlite3Isdigit(zNum[0]) ) return 0;
896 while( zNum[0]=='0' ) zNum++;
897 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
898 v = v*10 + c;
901 /* The longest decimal representation of a 32 bit integer is 10 digits:
903 ** 1234567890
904 ** 2^31 -> 2147483648
906 testcase( i==10 );
907 if( i>10 ){
908 return 0;
910 testcase( v-neg==2147483647 );
911 if( v-neg>2147483647 ){
912 return 0;
914 if( neg ){
915 v = -v;
917 *pValue = (int)v;
918 return 1;
922 ** Return a 32-bit integer value extracted from a string. If the
923 ** string is not an integer, just return 0.
925 int sqlite3Atoi(const char *z){
926 int x = 0;
927 sqlite3GetInt32(z, &x);
928 return x;
932 ** Try to convert z into an unsigned 32-bit integer. Return true on
933 ** success and false if there is an error.
935 ** Only decimal notation is accepted.
937 int sqlite3GetUInt32(const char *z, u32 *pI){
938 u64 v = 0;
939 int i;
940 for(i=0; sqlite3Isdigit(z[i]); i++){
941 v = v*10 + z[i] - '0';
942 if( v>4294967296LL ){ *pI = 0; return 0; }
944 if( i==0 || z[i]!=0 ){ *pI = 0; return 0; }
945 *pI = (u32)v;
946 return 1;
950 ** The variable-length integer encoding is as follows:
952 ** KEY:
953 ** A = 0xxxxxxx 7 bits of data and one flag bit
954 ** B = 1xxxxxxx 7 bits of data and one flag bit
955 ** C = xxxxxxxx 8 bits of data
957 ** 7 bits - A
958 ** 14 bits - BA
959 ** 21 bits - BBA
960 ** 28 bits - BBBA
961 ** 35 bits - BBBBA
962 ** 42 bits - BBBBBA
963 ** 49 bits - BBBBBBA
964 ** 56 bits - BBBBBBBA
965 ** 64 bits - BBBBBBBBC
969 ** Write a 64-bit variable-length integer to memory starting at p[0].
970 ** The length of data write will be between 1 and 9 bytes. The number
971 ** of bytes written is returned.
973 ** A variable-length integer consists of the lower 7 bits of each byte
974 ** for all bytes that have the 8th bit set and one byte with the 8th
975 ** bit clear. Except, if we get to the 9th byte, it stores the full
976 ** 8 bits and is the last byte.
978 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
979 int i, j, n;
980 u8 buf[10];
981 if( v & (((u64)0xff000000)<<32) ){
982 p[8] = (u8)v;
983 v >>= 8;
984 for(i=7; i>=0; i--){
985 p[i] = (u8)((v & 0x7f) | 0x80);
986 v >>= 7;
988 return 9;
990 n = 0;
992 buf[n++] = (u8)((v & 0x7f) | 0x80);
993 v >>= 7;
994 }while( v!=0 );
995 buf[0] &= 0x7f;
996 assert( n<=9 );
997 for(i=0, j=n-1; j>=0; j--, i++){
998 p[i] = buf[j];
1000 return n;
1002 int sqlite3PutVarint(unsigned char *p, u64 v){
1003 if( v<=0x7f ){
1004 p[0] = v&0x7f;
1005 return 1;
1007 if( v<=0x3fff ){
1008 p[0] = ((v>>7)&0x7f)|0x80;
1009 p[1] = v&0x7f;
1010 return 2;
1012 return putVarint64(p,v);
1016 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants
1017 ** are defined here rather than simply putting the constant expressions
1018 ** inline in order to work around bugs in the RVT compiler.
1020 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
1022 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
1024 #define SLOT_2_0 0x001fc07f
1025 #define SLOT_4_2_0 0xf01fc07f
1029 ** Read a 64-bit variable-length integer from memory starting at p[0].
1030 ** Return the number of bytes read. The value is stored in *v.
1032 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
1033 u32 a,b,s;
1035 if( ((signed char*)p)[0]>=0 ){
1036 *v = *p;
1037 return 1;
1039 if( ((signed char*)p)[1]>=0 ){
1040 *v = ((u32)(p[0]&0x7f)<<7) | p[1];
1041 return 2;
1044 /* Verify that constants are precomputed correctly */
1045 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
1046 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
1048 a = ((u32)p[0])<<14;
1049 b = p[1];
1050 p += 2;
1051 a |= *p;
1052 /* a: p0<<14 | p2 (unmasked) */
1053 if (!(a&0x80))
1055 a &= SLOT_2_0;
1056 b &= 0x7f;
1057 b = b<<7;
1058 a |= b;
1059 *v = a;
1060 return 3;
1063 /* CSE1 from below */
1064 a &= SLOT_2_0;
1065 p++;
1066 b = b<<14;
1067 b |= *p;
1068 /* b: p1<<14 | p3 (unmasked) */
1069 if (!(b&0x80))
1071 b &= SLOT_2_0;
1072 /* moved CSE1 up */
1073 /* a &= (0x7f<<14)|(0x7f); */
1074 a = a<<7;
1075 a |= b;
1076 *v = a;
1077 return 4;
1080 /* a: p0<<14 | p2 (masked) */
1081 /* b: p1<<14 | p3 (unmasked) */
1082 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1083 /* moved CSE1 up */
1084 /* a &= (0x7f<<14)|(0x7f); */
1085 b &= SLOT_2_0;
1086 s = a;
1087 /* s: p0<<14 | p2 (masked) */
1089 p++;
1090 a = a<<14;
1091 a |= *p;
1092 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1093 if (!(a&0x80))
1095 /* we can skip these cause they were (effectively) done above
1096 ** while calculating s */
1097 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
1098 /* b &= (0x7f<<14)|(0x7f); */
1099 b = b<<7;
1100 a |= b;
1101 s = s>>18;
1102 *v = ((u64)s)<<32 | a;
1103 return 5;
1106 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1107 s = s<<7;
1108 s |= b;
1109 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1111 p++;
1112 b = b<<14;
1113 b |= *p;
1114 /* b: p1<<28 | p3<<14 | p5 (unmasked) */
1115 if (!(b&0x80))
1117 /* we can skip this cause it was (effectively) done above in calc'ing s */
1118 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
1119 a &= SLOT_2_0;
1120 a = a<<7;
1121 a |= b;
1122 s = s>>18;
1123 *v = ((u64)s)<<32 | a;
1124 return 6;
1127 p++;
1128 a = a<<14;
1129 a |= *p;
1130 /* a: p2<<28 | p4<<14 | p6 (unmasked) */
1131 if (!(a&0x80))
1133 a &= SLOT_4_2_0;
1134 b &= SLOT_2_0;
1135 b = b<<7;
1136 a |= b;
1137 s = s>>11;
1138 *v = ((u64)s)<<32 | a;
1139 return 7;
1142 /* CSE2 from below */
1143 a &= SLOT_2_0;
1144 p++;
1145 b = b<<14;
1146 b |= *p;
1147 /* b: p3<<28 | p5<<14 | p7 (unmasked) */
1148 if (!(b&0x80))
1150 b &= SLOT_4_2_0;
1151 /* moved CSE2 up */
1152 /* a &= (0x7f<<14)|(0x7f); */
1153 a = a<<7;
1154 a |= b;
1155 s = s>>4;
1156 *v = ((u64)s)<<32 | a;
1157 return 8;
1160 p++;
1161 a = a<<15;
1162 a |= *p;
1163 /* a: p4<<29 | p6<<15 | p8 (unmasked) */
1165 /* moved CSE2 up */
1166 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
1167 b &= SLOT_2_0;
1168 b = b<<8;
1169 a |= b;
1171 s = s<<4;
1172 b = p[-4];
1173 b &= 0x7f;
1174 b = b>>3;
1175 s |= b;
1177 *v = ((u64)s)<<32 | a;
1179 return 9;
1183 ** Read a 32-bit variable-length integer from memory starting at p[0].
1184 ** Return the number of bytes read. The value is stored in *v.
1186 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
1187 ** integer, then set *v to 0xffffffff.
1189 ** A MACRO version, getVarint32, is provided which inlines the
1190 ** single-byte case. All code should use the MACRO version as
1191 ** this function assumes the single-byte case has already been handled.
1193 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
1194 u32 a,b;
1196 /* The 1-byte case. Overwhelmingly the most common. Handled inline
1197 ** by the getVarin32() macro */
1198 a = *p;
1199 /* a: p0 (unmasked) */
1200 #ifndef getVarint32
1201 if (!(a&0x80))
1203 /* Values between 0 and 127 */
1204 *v = a;
1205 return 1;
1207 #endif
1209 /* The 2-byte case */
1210 p++;
1211 b = *p;
1212 /* b: p1 (unmasked) */
1213 if (!(b&0x80))
1215 /* Values between 128 and 16383 */
1216 a &= 0x7f;
1217 a = a<<7;
1218 *v = a | b;
1219 return 2;
1222 /* The 3-byte case */
1223 p++;
1224 a = a<<14;
1225 a |= *p;
1226 /* a: p0<<14 | p2 (unmasked) */
1227 if (!(a&0x80))
1229 /* Values between 16384 and 2097151 */
1230 a &= (0x7f<<14)|(0x7f);
1231 b &= 0x7f;
1232 b = b<<7;
1233 *v = a | b;
1234 return 3;
1237 /* A 32-bit varint is used to store size information in btrees.
1238 ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
1239 ** A 3-byte varint is sufficient, for example, to record the size
1240 ** of a 1048569-byte BLOB or string.
1242 ** We only unroll the first 1-, 2-, and 3- byte cases. The very
1243 ** rare larger cases can be handled by the slower 64-bit varint
1244 ** routine.
1246 #if 1
1248 u64 v64;
1249 u8 n;
1251 n = sqlite3GetVarint(p-2, &v64);
1252 assert( n>3 && n<=9 );
1253 if( (v64 & SQLITE_MAX_U32)!=v64 ){
1254 *v = 0xffffffff;
1255 }else{
1256 *v = (u32)v64;
1258 return n;
1261 #else
1262 /* For following code (kept for historical record only) shows an
1263 ** unrolling for the 3- and 4-byte varint cases. This code is
1264 ** slightly faster, but it is also larger and much harder to test.
1266 p++;
1267 b = b<<14;
1268 b |= *p;
1269 /* b: p1<<14 | p3 (unmasked) */
1270 if (!(b&0x80))
1272 /* Values between 2097152 and 268435455 */
1273 b &= (0x7f<<14)|(0x7f);
1274 a &= (0x7f<<14)|(0x7f);
1275 a = a<<7;
1276 *v = a | b;
1277 return 4;
1280 p++;
1281 a = a<<14;
1282 a |= *p;
1283 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1284 if (!(a&0x80))
1286 /* Values between 268435456 and 34359738367 */
1287 a &= SLOT_4_2_0;
1288 b &= SLOT_4_2_0;
1289 b = b<<7;
1290 *v = a | b;
1291 return 5;
1294 /* We can only reach this point when reading a corrupt database
1295 ** file. In that case we are not in any hurry. Use the (relatively
1296 ** slow) general-purpose sqlite3GetVarint() routine to extract the
1297 ** value. */
1299 u64 v64;
1300 u8 n;
1302 p -= 4;
1303 n = sqlite3GetVarint(p, &v64);
1304 assert( n>5 && n<=9 );
1305 *v = (u32)v64;
1306 return n;
1308 #endif
1312 ** Return the number of bytes that will be needed to store the given
1313 ** 64-bit integer.
1315 int sqlite3VarintLen(u64 v){
1316 int i;
1317 for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); }
1318 return i;
1323 ** Read or write a four-byte big-endian integer value.
1325 u32 sqlite3Get4byte(const u8 *p){
1326 #if SQLITE_BYTEORDER==4321
1327 u32 x;
1328 memcpy(&x,p,4);
1329 return x;
1330 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1331 u32 x;
1332 memcpy(&x,p,4);
1333 return __builtin_bswap32(x);
1334 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1335 u32 x;
1336 memcpy(&x,p,4);
1337 return _byteswap_ulong(x);
1338 #else
1339 testcase( p[0]&0x80 );
1340 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
1341 #endif
1343 void sqlite3Put4byte(unsigned char *p, u32 v){
1344 #if SQLITE_BYTEORDER==4321
1345 memcpy(p,&v,4);
1346 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1347 u32 x = __builtin_bswap32(v);
1348 memcpy(p,&x,4);
1349 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1350 u32 x = _byteswap_ulong(v);
1351 memcpy(p,&x,4);
1352 #else
1353 p[0] = (u8)(v>>24);
1354 p[1] = (u8)(v>>16);
1355 p[2] = (u8)(v>>8);
1356 p[3] = (u8)v;
1357 #endif
1363 ** Translate a single byte of Hex into an integer.
1364 ** This routine only works if h really is a valid hexadecimal
1365 ** character: 0..9a..fA..F
1367 u8 sqlite3HexToInt(int h){
1368 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
1369 #ifdef SQLITE_ASCII
1370 h += 9*(1&(h>>6));
1371 #endif
1372 #ifdef SQLITE_EBCDIC
1373 h += 9*(1&~(h>>4));
1374 #endif
1375 return (u8)(h & 0xf);
1378 /* BEGIN SQLCIPHER */
1379 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
1381 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1382 ** value. Return a pointer to its binary value. Space to hold the
1383 ** binary value has been obtained from malloc and must be freed by
1384 ** the calling routine.
1386 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1387 char *zBlob;
1388 int i;
1390 zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1);
1391 n--;
1392 if( zBlob ){
1393 for(i=0; i<n; i+=2){
1394 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
1396 zBlob[i/2] = 0;
1398 return zBlob;
1400 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1401 /* END SQLCIPHER */
1404 ** Log an error that is an API call on a connection pointer that should
1405 ** not have been used. The "type" of connection pointer is given as the
1406 ** argument. The zType is a word like "NULL" or "closed" or "invalid".
1408 static void logBadConnection(const char *zType){
1409 sqlite3_log(SQLITE_MISUSE,
1410 "API call with %s database connection pointer",
1411 zType
1416 ** Check to make sure we have a valid db pointer. This test is not
1417 ** foolproof but it does provide some measure of protection against
1418 ** misuse of the interface such as passing in db pointers that are
1419 ** NULL or which have been previously closed. If this routine returns
1420 ** 1 it means that the db pointer is valid and 0 if it should not be
1421 ** dereferenced for any reason. The calling function should invoke
1422 ** SQLITE_MISUSE immediately.
1424 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1425 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1426 ** open properly and is not fit for general use but which can be
1427 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
1429 int sqlite3SafetyCheckOk(sqlite3 *db){
1430 u8 eOpenState;
1431 if( db==0 ){
1432 logBadConnection("NULL");
1433 return 0;
1435 eOpenState = db->eOpenState;
1436 if( eOpenState!=SQLITE_STATE_OPEN ){
1437 if( sqlite3SafetyCheckSickOrOk(db) ){
1438 testcase( sqlite3GlobalConfig.xLog!=0 );
1439 logBadConnection("unopened");
1441 return 0;
1442 }else{
1443 return 1;
1446 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1447 u8 eOpenState;
1448 eOpenState = db->eOpenState;
1449 if( eOpenState!=SQLITE_STATE_SICK &&
1450 eOpenState!=SQLITE_STATE_OPEN &&
1451 eOpenState!=SQLITE_STATE_BUSY ){
1452 testcase( sqlite3GlobalConfig.xLog!=0 );
1453 logBadConnection("invalid");
1454 return 0;
1455 }else{
1456 return 1;
1461 ** Attempt to add, substract, or multiply the 64-bit signed value iB against
1462 ** the other 64-bit signed integer at *pA and store the result in *pA.
1463 ** Return 0 on success. Or if the operation would have resulted in an
1464 ** overflow, leave *pA unchanged and return 1.
1466 int sqlite3AddInt64(i64 *pA, i64 iB){
1467 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1468 return __builtin_add_overflow(*pA, iB, pA);
1469 #else
1470 i64 iA = *pA;
1471 testcase( iA==0 ); testcase( iA==1 );
1472 testcase( iB==-1 ); testcase( iB==0 );
1473 if( iB>=0 ){
1474 testcase( iA>0 && LARGEST_INT64 - iA == iB );
1475 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1476 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
1477 }else{
1478 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1479 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1480 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
1482 *pA += iB;
1483 return 0;
1484 #endif
1486 int sqlite3SubInt64(i64 *pA, i64 iB){
1487 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1488 return __builtin_sub_overflow(*pA, iB, pA);
1489 #else
1490 testcase( iB==SMALLEST_INT64+1 );
1491 if( iB==SMALLEST_INT64 ){
1492 testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1493 if( (*pA)>=0 ) return 1;
1494 *pA -= iB;
1495 return 0;
1496 }else{
1497 return sqlite3AddInt64(pA, -iB);
1499 #endif
1501 int sqlite3MulInt64(i64 *pA, i64 iB){
1502 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1503 return __builtin_mul_overflow(*pA, iB, pA);
1504 #else
1505 i64 iA = *pA;
1506 if( iB>0 ){
1507 if( iA>LARGEST_INT64/iB ) return 1;
1508 if( iA<SMALLEST_INT64/iB ) return 1;
1509 }else if( iB<0 ){
1510 if( iA>0 ){
1511 if( iB<SMALLEST_INT64/iA ) return 1;
1512 }else if( iA<0 ){
1513 if( iB==SMALLEST_INT64 ) return 1;
1514 if( iA==SMALLEST_INT64 ) return 1;
1515 if( -iA>LARGEST_INT64/-iB ) return 1;
1518 *pA = iA*iB;
1519 return 0;
1520 #endif
1524 ** Compute the absolute value of a 32-bit signed integer, of possible. Or
1525 ** if the integer has a value of -2147483648, return +2147483647
1527 int sqlite3AbsInt32(int x){
1528 if( x>=0 ) return x;
1529 if( x==(int)0x80000000 ) return 0x7fffffff;
1530 return -x;
1533 #ifdef SQLITE_ENABLE_8_3_NAMES
1535 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
1536 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1537 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1538 ** three characters, then shorten the suffix on z[] to be the last three
1539 ** characters of the original suffix.
1541 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1542 ** do the suffix shortening regardless of URI parameter.
1544 ** Examples:
1546 ** test.db-journal => test.nal
1547 ** test.db-wal => test.wal
1548 ** test.db-shm => test.shm
1549 ** test.db-mj7f3319fa => test.9fa
1551 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
1552 #if SQLITE_ENABLE_8_3_NAMES<2
1553 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
1554 #endif
1556 int i, sz;
1557 sz = sqlite3Strlen30(z);
1558 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
1559 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
1562 #endif
1565 ** Find (an approximate) sum of two LogEst values. This computation is
1566 ** not a simple "+" operator because LogEst is stored as a logarithmic
1567 ** value.
1570 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
1571 static const unsigned char x[] = {
1572 10, 10, /* 0,1 */
1573 9, 9, /* 2,3 */
1574 8, 8, /* 4,5 */
1575 7, 7, 7, /* 6,7,8 */
1576 6, 6, 6, /* 9,10,11 */
1577 5, 5, 5, /* 12-14 */
1578 4, 4, 4, 4, /* 15-18 */
1579 3, 3, 3, 3, 3, 3, /* 19-24 */
1580 2, 2, 2, 2, 2, 2, 2, /* 25-31 */
1582 if( a>=b ){
1583 if( a>b+49 ) return a;
1584 if( a>b+31 ) return a+1;
1585 return a+x[a-b];
1586 }else{
1587 if( b>a+49 ) return b;
1588 if( b>a+31 ) return b+1;
1589 return b+x[b-a];
1594 ** Convert an integer into a LogEst. In other words, compute an
1595 ** approximation for 10*log2(x).
1597 LogEst sqlite3LogEst(u64 x){
1598 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1599 LogEst y = 40;
1600 if( x<8 ){
1601 if( x<2 ) return 0;
1602 while( x<8 ){ y -= 10; x <<= 1; }
1603 }else{
1604 #if GCC_VERSION>=5004000
1605 int i = 60 - __builtin_clzll(x);
1606 y += i*10;
1607 x >>= i;
1608 #else
1609 while( x>255 ){ y += 40; x >>= 4; } /*OPTIMIZATION-IF-TRUE*/
1610 while( x>15 ){ y += 10; x >>= 1; }
1611 #endif
1613 return a[x&7] + y - 10;
1617 ** Convert a double into a LogEst
1618 ** In other words, compute an approximation for 10*log2(x).
1620 LogEst sqlite3LogEstFromDouble(double x){
1621 u64 a;
1622 LogEst e;
1623 assert( sizeof(x)==8 && sizeof(a)==8 );
1624 if( x<=1 ) return 0;
1625 if( x<=2000000000 ) return sqlite3LogEst((u64)x);
1626 memcpy(&a, &x, 8);
1627 e = (a>>52) - 1022;
1628 return e*10;
1632 ** Convert a LogEst into an integer.
1634 u64 sqlite3LogEstToInt(LogEst x){
1635 u64 n;
1636 n = x%10;
1637 x /= 10;
1638 if( n>=5 ) n -= 2;
1639 else if( n>=1 ) n -= 1;
1640 if( x>60 ) return (u64)LARGEST_INT64;
1641 return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x);
1645 ** Add a new name/number pair to a VList. This might require that the
1646 ** VList object be reallocated, so return the new VList. If an OOM
1647 ** error occurs, the original VList returned and the
1648 ** db->mallocFailed flag is set.
1650 ** A VList is really just an array of integers. To destroy a VList,
1651 ** simply pass it to sqlite3DbFree().
1653 ** The first integer is the number of integers allocated for the whole
1654 ** VList. The second integer is the number of integers actually used.
1655 ** Each name/number pair is encoded by subsequent groups of 3 or more
1656 ** integers.
1658 ** Each name/number pair starts with two integers which are the numeric
1659 ** value for the pair and the size of the name/number pair, respectively.
1660 ** The text name overlays one or more following integers. The text name
1661 ** is always zero-terminated.
1663 ** Conceptually:
1665 ** struct VList {
1666 ** int nAlloc; // Number of allocated slots
1667 ** int nUsed; // Number of used slots
1668 ** struct VListEntry {
1669 ** int iValue; // Value for this entry
1670 ** int nSlot; // Slots used by this entry
1671 ** // ... variable name goes here
1672 ** } a[0];
1673 ** }
1675 ** During code generation, pointers to the variable names within the
1676 ** VList are taken. When that happens, nAlloc is set to zero as an
1677 ** indication that the VList may never again be enlarged, since the
1678 ** accompanying realloc() would invalidate the pointers.
1680 VList *sqlite3VListAdd(
1681 sqlite3 *db, /* The database connection used for malloc() */
1682 VList *pIn, /* The input VList. Might be NULL */
1683 const char *zName, /* Name of symbol to add */
1684 int nName, /* Bytes of text in zName */
1685 int iVal /* Value to associate with zName */
1687 int nInt; /* number of sizeof(int) objects needed for zName */
1688 char *z; /* Pointer to where zName will be stored */
1689 int i; /* Index in pIn[] where zName is stored */
1691 nInt = nName/4 + 3;
1692 assert( pIn==0 || pIn[0]>=3 ); /* Verify ok to add new elements */
1693 if( pIn==0 || pIn[1]+nInt > pIn[0] ){
1694 /* Enlarge the allocation */
1695 sqlite3_int64 nAlloc = (pIn ? 2*(sqlite3_int64)pIn[0] : 10) + nInt;
1696 VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int));
1697 if( pOut==0 ) return pIn;
1698 if( pIn==0 ) pOut[1] = 2;
1699 pIn = pOut;
1700 pIn[0] = nAlloc;
1702 i = pIn[1];
1703 pIn[i] = iVal;
1704 pIn[i+1] = nInt;
1705 z = (char*)&pIn[i+2];
1706 pIn[1] = i+nInt;
1707 assert( pIn[1]<=pIn[0] );
1708 memcpy(z, zName, nName);
1709 z[nName] = 0;
1710 return pIn;
1714 ** Return a pointer to the name of a variable in the given VList that
1715 ** has the value iVal. Or return a NULL if there is no such variable in
1716 ** the list
1718 const char *sqlite3VListNumToName(VList *pIn, int iVal){
1719 int i, mx;
1720 if( pIn==0 ) return 0;
1721 mx = pIn[1];
1722 i = 2;
1724 if( pIn[i]==iVal ) return (char*)&pIn[i+2];
1725 i += pIn[i+1];
1726 }while( i<mx );
1727 return 0;
1731 ** Return the number of the variable named zName, if it is in VList.
1732 ** or return 0 if there is no such variable.
1734 int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){
1735 int i, mx;
1736 if( pIn==0 ) return 0;
1737 mx = pIn[1];
1738 i = 2;
1740 const char *z = (const char*)&pIn[i+2];
1741 if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i];
1742 i += pIn[i+1];
1743 }while( i<mx );
1744 return 0;
1748 ** High-resolution hardware timer used for debugging and testing only.
1750 #if defined(VDBE_PROFILE) \
1751 || defined(SQLITE_PERFORMANCE_TRACE) \
1752 || defined(SQLITE_ENABLE_STMT_SCANSTATUS)
1753 # include "hwtime.h"
1754 #endif