3 # The author disclaims copyright to this source code. In place of
4 # a legal notice, here is a blessing:
6 # May you do good and not evil.
7 # May you find forgiveness for yourself and forgive others.
8 # May you share freely, never taking more than you give.
10 #***********************************************************************
12 # This file implements tests to verify that the "testable statements" in
13 # the lang_select.html document are correct.
16 set testdir [file dirname $argv0]
17 source $testdir/tester.tcl
19 #-------------------------------------------------------------------------
23 # te_read_sql DB SELECT-STATEMENT
24 # te_read_tbl DB TABLENAME
26 # These two commands are used to read a dataset from the database. A dataset
27 # consists of N rows of M named columns of values each, where each value has a
28 # type (null, integer, real, text or blob) and a value within the types domain.
29 # The tcl format for a "dataset" is a list of two elements:
31 # * A list of the column names.
32 # * A list of data rows. Each row is itself a list, where each element is
33 # the contents of a column of the row. Each of these is a list of two
34 # elements, the type name and the actual value.
36 # For example, the contents of table [t1] as a dataset is:
38 # CREATE TABLE t1(a, b);
39 # INSERT INTO t1 VALUES('abc', NULL);
40 # INSERT INTO t1 VALUES(43.1, 22);
42 # {a b} {{{TEXT abc} {NULL {}}} {{REAL 43.1} {INTEGER 22}}}
44 # The [te_read_tbl] command returns a dataset read from a table. The
45 # [te_read_sql] returns the dataset that results from executing a SELECT
49 # te_tbljoin ?SWITCHES? LHS-TABLE RHS-TABLE
50 # te_join ?SWITCHES? LHS-DATASET RHS-DATASET
52 # This command joins the two datasets and returns the resulting dataset. If
53 # there are no switches specified, then the results is the cartesian product
54 # of the two inputs. The [te_tbljoin] command reads the left and right-hand
55 # datasets from the specified tables. The [te_join] command is passed the
58 # Optional switches are as follows:
64 # The -on option specifies a tcl script that is executed for each row in the
65 # cartesian product of the two datasets. The script has 4 arguments appended
66 # to it, in the following order:
68 # * The list of column-names from the left-hand dataset.
69 # * A single row from the left-hand dataset (one "data row" list as
71 # * The list of column-names from the right-hand dataset.
72 # * A single row from the right-hand dataset.
74 # The script must return a boolean value - true if the combination of rows
75 # should be included in the output dataset, or false otherwise.
77 # The -using option specifies a list of the columns from the right-hand
78 # dataset that should be omitted from the output dataset.
80 # If the -left option is present, the join is done LEFT JOIN style.
81 # Specifically, an extra row is inserted if after the -on script is run there
82 # exist rows in the left-hand dataset that have no corresponding rows in
83 # the output. See the implementation for more specific comments.
86 # te_equals ?SWITCHES? COLNAME1 COLNAME2 <-on script args>
88 # The only supported switch is "-nocase". If it is present, then text values
89 # are compared in a case-independent fashion. Otherwise, they are compared
90 # as if using the SQLite BINARY collation sequence.
93 # te_and ONSCRIPT1 ONSCRIPT2...
99 # te_read_tbl DB TABLENAME
100 # te_read_sql DB SELECT-STATEMENT
102 # These two procs are used to extract datasets from the database, either
103 # by reading the contents of a named table (te_read_tbl), or by executing
104 # a SELECT statement (t3_read_sql).
106 # See the comment above, describing "te_* commands", for details of the
109 proc te_read_tbl {db tbl} {
110 te_read_sql $db "SELECT * FROM '$tbl'"
112 proc te_read_sql {db sql} {
113 set S [sqlite3_prepare_v2 $db $sql -1 DUMMY]
116 for {set i 0} {$i < [sqlite3_column_count $S]} {incr i} {
117 lappend cols [sqlite3_column_name $S $i]
121 while {[sqlite3_step $S] == "SQLITE_ROW"} {
123 for {set i 0} {$i < [sqlite3_column_count $S]} {incr i} {
124 lappend r [list [sqlite3_column_type $S $i] [sqlite3_column_text $S $i]]
130 return [list $cols $rows]
134 # Usage: te_join <table-data1> <table-data2> <join spec>...
136 # Where a join-spec is an optional list of arguments as follows:
139 # ?-using colname-list?
142 proc te_join {data1 data2 args} {
147 for {set i 0} {$i < [llength $args]} {incr i} {
148 set a [lindex $args $i]
150 -on { set testproc [lindex $args [incr i]] }
151 -using { set usinglist [lindex $args [incr i]] }
152 -left { set isleft 1 }
154 error "Unknown argument: $a"
159 set c1 [lindex $data1 0]
160 set c2 [lindex $data2 0]
162 set nullrowlist [list]
167 set idx [lsearch $usinglist $col]
168 if {$idx>=0} {lappend omitlist $cidx}
170 lappend nullrowlist {NULL {}}
175 set omitlist [lsort -integer -decreasing $omitlist]
179 foreach r1 [lindex $data1 1] {
181 foreach r2 [lindex $data2 1] {
183 if {$testproc != ""} {
184 set ok [eval $testproc [list $c1 $r1 $c2 $r2]]
188 foreach idx $omitlist {set r2 [lreplace $r2 $idx $idx]}
189 lappend rret [concat $r1 $r2]
193 if {$isleft && $one==0} {
194 lappend rret [concat $r1 $nullrowlist]
201 proc te_tbljoin {db t1 t2 args} {
202 te_join [te_read_tbl $db $t1] [te_read_tbl $db $t2] {*}$args
205 proc te_apply_affinity {affinity typevar valvar} {
209 switch -- $affinity {
211 if {[string is double $val]} { set type REAL }
212 if {[string is wideinteger $val]} { set type INTEGER }
213 if {$type == "REAL" && int($val)==$val} {
215 set val [expr {int($val)}]
223 default { error "invalid affinity: $affinity" }
228 # te_equals ?SWITCHES? c1 c2 cols1 row1 cols2 row2
230 proc te_equals {args} {
232 if {[llength $args]<6} {error "invalid arguments to te_equals"}
233 foreach {c1 c2 cols1 row1 cols2 row2} [lrange $args end-5 end] break
238 for {set i 0} {$i < ([llength $args]-6)} {incr i} {
239 set a [lindex $args $i]
245 set affinity [string tolower [lindex $args [incr i]]]
248 error "invalid arguments to te_equals"
253 set idx2 [if {[string is integer $c2]} { set c2 } else { lsearch $cols2 $c2 }]
254 set idx1 [if {[string is integer $c1]} { set c1 } else { lsearch $cols1 $c1 }]
256 set t1 [lindex $row1 $idx1 0]
257 set t2 [lindex $row2 $idx2 0]
258 set v1 [lindex $row1 $idx1 1]
259 set v2 [lindex $row2 $idx2 1]
261 te_apply_affinity $affinity t1 v1
262 te_apply_affinity $affinity t2 v2
264 if {$t1 == "NULL" || $t2 == "NULL"} { return 0 }
265 if {$nocase && $t1 == "TEXT"} { set v1 [string tolower $v1] }
266 if {$nocase && $t2 == "TEXT"} { set v2 [string tolower $v2] }
269 set res [expr {$t1 == $t2 && [string equal $v1 $v2]}]
273 proc te_false {args} { return 0 }
274 proc te_true {args} { return 1 }
277 foreach a [lrange $args 0 end-4] {
278 set res [eval $a [lrange $args end-3 end]]
279 if {$res == 0} {return 0}
285 proc te_dataset_eq {testname got expected} {
286 uplevel #0 [list do_test $testname [list set {} $got] $expected]
288 proc te_dataset_eq_unordered {testname got expected} {
289 lset got 1 [lsort [lindex $got 1]]
290 lset expected 1 [lsort [lindex $expected 1]]
291 te_dataset_eq $testname $got $expected
294 proc te_dataset_ne {testname got unexpected} {
295 uplevel #0 [list do_test $testname [list string equal $got $unexpected] 0]
297 proc te_dataset_ne_unordered {testname got unexpected} {
298 lset got 1 [lsort [lindex $got 1]]
299 lset unexpected 1 [lsort [lindex $unexpected 1]]
300 te_dataset_ne $testname $got $unexpected
304 #-------------------------------------------------------------------------
306 proc test_join {tn sqljoin tbljoinargs} {
307 set sql [te_read_sql db "SELECT * FROM $sqljoin"]
308 set te [te_tbljoin db {*}$tbljoinargs]
309 te_dataset_eq_unordered $tn $sql $te
313 do_execsql_test e_select-2.0 {
314 CREATE TABLE t1(a, b);
315 CREATE TABLE t2(a, b);
316 CREATE TABLE t3(b COLLATE nocase);
318 INSERT INTO t1 VALUES(2, 'B');
319 INSERT INTO t1 VALUES(1, 'A');
320 INSERT INTO t1 VALUES(4, 'D');
321 INSERT INTO t1 VALUES(NULL, NULL);
322 INSERT INTO t1 VALUES(3, NULL);
324 INSERT INTO t2 VALUES(1, 'A');
325 INSERT INTO t2 VALUES(2, NULL);
326 INSERT INTO t2 VALUES(5, 'E');
327 INSERT INTO t2 VALUES(NULL, NULL);
328 INSERT INTO t2 VALUES(3, 'C');
330 INSERT INTO t3 VALUES('a');
331 INSERT INTO t3 VALUES('c');
332 INSERT INTO t3 VALUES('b');
335 foreach {tn indexes} {
337 e_select-2.1.2 { CREATE INDEX i1 ON t1(a) }
338 e_select-2.1.3 { CREATE INDEX i1 ON t2(a) }
339 e_select-2.1.4 { CREATE INDEX i1 ON t3(b) }
342 catchsql { DROP INDEX i1 }
343 catchsql { DROP INDEX i2 }
344 catchsql { DROP INDEX i3 }
347 # EVIDENCE-OF: R-49872-03192 If the join-operator is "CROSS JOIN",
348 # "INNER JOIN", "JOIN" or a comma (",") and there is no ON or USING
349 # clause, then the result of the join is simply the cartesian product of
350 # the left and right-hand datasets.
352 # EVIDENCE-OF: R-46256-57243 There is no difference between the "INNER
353 # JOIN", "JOIN" and "," join operators.
355 # EVIDENCE-OF: R-25071-21202 The "CROSS JOIN" join operator produces the
356 # same result as the "INNER JOIN", "JOIN" and "," operators
358 test_join $tn.1.1 "t1, t2" {t1 t2}
359 test_join $tn.1.2 "t1 INNER JOIN t2" {t1 t2}
360 test_join $tn.1.3 "t1 CROSS JOIN t2" {t1 t2}
361 test_join $tn.1.4 "t1 JOIN t2" {t1 t2}
362 test_join $tn.1.5 "t2, t3" {t2 t3}
363 test_join $tn.1.6 "t2 INNER JOIN t3" {t2 t3}
364 test_join $tn.1.7 "t2 CROSS JOIN t3" {t2 t3}
365 test_join $tn.1.8 "t2 JOIN t3" {t2 t3}
366 test_join $tn.1.9 "t2, t2 AS x" {t2 t2}
367 test_join $tn.1.10 "t2 INNER JOIN t2 AS x" {t2 t2}
368 test_join $tn.1.11 "t2 CROSS JOIN t2 AS x" {t2 t2}
369 test_join $tn.1.12 "t2 JOIN t2 AS x" {t2 t2}
371 # EVIDENCE-OF: R-38465-03616 If there is an ON clause then the ON
372 # expression is evaluated for each row of the cartesian product as a
373 # boolean expression. Only rows for which the expression evaluates to
374 # true are included from the dataset.
376 test_join $tn.2.1 "t1, t2 ON (t1.a=t2.a)" {t1 t2 -on {te_equals a a}}
377 test_join $tn.2.2 "t2, t1 ON (t1.a=t2.a)" {t2 t1 -on {te_equals a a}}
378 test_join $tn.2.3 "t2, t1 ON (1)" {t2 t1 -on te_true}
379 test_join $tn.2.4 "t2, t1 ON (NULL)" {t2 t1 -on te_false}
380 test_join $tn.2.5 "t2, t1 ON (1.1-1.1)" {t2 t1 -on te_false}
381 test_join $tn.2.6 "t1, t2 ON (1.1-1.0)" {t1 t2 -on te_true}
384 test_join $tn.3 "t1 LEFT JOIN t2 ON (t1.a=t2.a)" {t1 t2 -left -on {te_equals a a}}
385 test_join $tn.4 "t1 LEFT JOIN t2 USING (a)" {
386 t1 t2 -left -using a -on {te_equals a a}
388 test_join $tn.5 "t1 CROSS JOIN t2 USING(b, a)" {
389 t1 t2 -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
391 test_join $tn.6 "t1 NATURAL JOIN t2" {
392 t1 t2 -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
394 test_join $tn.7 "t1 NATURAL INNER JOIN t2" {
395 t1 t2 -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
397 test_join $tn.8 "t1 NATURAL CROSS JOIN t2" {
398 t1 t2 -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
400 test_join $tn.9 "t1 NATURAL INNER JOIN t2" {
401 t1 t2 -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
403 test_join $tn.10 "t1 NATURAL LEFT JOIN t2" {
404 t1 t2 -left -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
406 test_join $tn.11 "t1 NATURAL LEFT OUTER JOIN t2" {
407 t1 t2 -left -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
409 test_join $tn.12 "t2 NATURAL JOIN t1" {
410 t2 t1 -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
412 test_join $tn.13 "t2 NATURAL INNER JOIN t1" {
413 t2 t1 -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
415 test_join $tn.14 "t2 NATURAL CROSS JOIN t1" {
416 t2 t1 -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
418 test_join $tn.15 "t2 NATURAL INNER JOIN t1" {
419 t2 t1 -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
421 test_join $tn.16 "t2 NATURAL LEFT JOIN t1" {
422 t2 t1 -left -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
424 test_join $tn.17 "t2 NATURAL LEFT OUTER JOIN t1" {
425 t2 t1 -left -using {a b} -on {te_and {te_equals a a} {te_equals b b}}
427 test_join $tn.18 "t1 LEFT JOIN t2 USING (b)" {
428 t1 t2 -left -using b -on {te_equals b b}
430 test_join $tn.19 "t1 JOIN t3 USING(b)" {t1 t3 -using b -on {te_equals b b}}
431 test_join $tn.20 "t3 JOIN t1 USING(b)" {
432 t3 t1 -using b -on {te_equals -nocase b b}
434 test_join $tn.21 "t1 NATURAL JOIN t3" {
435 t1 t3 -using b -on {te_equals b b}
437 test_join $tn.22 "t3 NATURAL JOIN t1" {
438 t3 t1 -using b -on {te_equals -nocase b b}
440 test_join $tn.23 "t1 NATURAL LEFT JOIN t3" {
441 t1 t3 -left -using b -on {te_equals b b}
443 test_join $tn.24 "t3 NATURAL LEFT JOIN t1" {
444 t3 t1 -left -using b -on {te_equals -nocase b b}
446 test_join $tn.25 "t1 LEFT JOIN t3 ON (t3.b=t1.b)" {
447 t1 t3 -left -on {te_equals -nocase b b}
449 test_join $tn.26 "t1 LEFT JOIN t3 ON (t1.b=t3.b)" {
450 t1 t3 -left -on {te_equals b b}
452 test_join $tn.27 "t1 JOIN t3 ON (t1.b=t3.b)" { t1 t3 -on {te_equals b b} }
454 # EVIDENCE-OF: R-28760-53843 When more than two tables are joined
455 # together as part of a FROM clause, the join operations are processed
456 # in order from left to right. In other words, the FROM clause (A
457 # join-op-1 B join-op-2 C) is computed as ((A join-op-1 B) join-op-2 C).
459 # Tests 28a and 28b show that the statement above is true for this case.
460 # Test 28c shows that if the parenthesis force a different order of
461 # evaluation the result is different. Test 28d verifies that the result
462 # of the query with the parenthesis forcing a different order of evaluation
463 # is as calculated by the [te_*] procs.
465 set t3_natural_left_join_t2 [
466 te_tbljoin db t3 t2 -left -using {b} -on {te_equals -nocase b b}
468 set t1 [te_read_tbl db t1]
469 te_dataset_eq_unordered $tn.28a [
470 te_read_sql db "SELECT * FROM t3 NATURAL LEFT JOIN t2 NATURAL JOIN t1"
471 ] [te_join $t3_natural_left_join_t2 $t1 \
472 -using {a b} -on {te_and {te_equals a a} {te_equals -nocase b b}} \
475 te_dataset_eq_unordered $tn.28b [
476 te_read_sql db "SELECT * FROM (t3 NATURAL LEFT JOIN t2) NATURAL JOIN t1"
477 ] [te_join $t3_natural_left_join_t2 $t1 \
478 -using {a b} -on {te_and {te_equals a a} {te_equals -nocase b b}} \
481 te_dataset_ne_unordered $tn.28c [
482 te_read_sql db "SELECT * FROM (t3 NATURAL LEFT JOIN t2) NATURAL JOIN t1"
484 te_read_sql db "SELECT * FROM t3 NATURAL LEFT JOIN (t2 NATURAL JOIN t1)"
487 set t2_natural_join_t1 [te_tbljoin db t2 t1 -using {a b} \
488 -using {a b} -on {te_and {te_equals a a} {te_equals -nocase b b}} \
490 set t3 [te_read_tbl db t3]
491 te_dataset_eq_unordered $tn.28d [
492 te_read_sql db "SELECT * FROM t3 NATURAL LEFT JOIN (t2 NATURAL JOIN t1)"
493 ] [te_join $t3 $t2_natural_join_t1 \
494 -left -using {b} -on {te_equals -nocase b b} \
498 do_execsql_test e_select-2.2.0 {
499 CREATE TABLE t4(x TEXT COLLATE nocase);
500 CREATE TABLE t5(y INTEGER, z TEXT COLLATE binary);
502 INSERT INTO t4 VALUES('2.0');
503 INSERT INTO t4 VALUES('TWO');
504 INSERT INTO t5 VALUES(2, 'two');
507 # EVIDENCE-OF: R-59237-46742 A subquery specified in the
508 # table-or-subquery following the FROM clause in a simple SELECT
509 # statement is handled as if it was a table containing the data returned
510 # by executing the subquery statement.
512 # EVIDENCE-OF: R-27438-53558 Each column of the subquery has the
513 # collation sequence and affinity of the corresponding expression in the
514 # subquery statement.
516 foreach {tn subselect select spec} {
517 1 "SELECT * FROM t2" "SELECT * FROM t1 JOIN %ss%"
520 2 "SELECT * FROM t2" "SELECT * FROM t1 JOIN %ss% AS x ON (t1.a=x.a)"
521 {t1 %ss% -on {te_equals 0 0}}
523 3 "SELECT * FROM t2" "SELECT * FROM %ss% AS x JOIN t1 ON (t1.a=x.a)"
524 {%ss% t1 -on {te_equals 0 0}}
526 4 "SELECT * FROM t1, t2" "SELECT * FROM %ss% AS x JOIN t3"
529 5 "SELECT * FROM t1, t2" "SELECT * FROM %ss% NATURAL JOIN t3"
530 {%ss% t3 -using b -on {te_equals 1 0}}
532 6 "SELECT * FROM t1, t2" "SELECT * FROM t3 NATURAL JOIN %ss%"
533 {t3 %ss% -using b -on {te_equals -nocase 0 1}}
535 7 "SELECT * FROM t1, t2" "SELECT * FROM t3 NATURAL LEFT JOIN %ss%"
536 {t3 %ss% -left -using b -on {te_equals -nocase 0 1}}
538 8 "SELECT count(*) AS y FROM t4" "SELECT * FROM t5, %ss% USING (y)"
539 {t5 %ss% -using y -on {te_equals -affinity text 0 0}}
541 9 "SELECT count(*) AS y FROM t4" "SELECT * FROM %ss%, t5 USING (y)"
542 {%ss% t5 -using y -on {te_equals -affinity text 0 0}}
544 10 "SELECT x AS y FROM t4" "SELECT * FROM %ss% JOIN t5 USING (y)"
545 {%ss% t5 -using y -on {te_equals -nocase -affinity integer 0 0}}
547 11 "SELECT x AS y FROM t4" "SELECT * FROM t5 JOIN %ss% USING (y)"
548 {t5 %ss% -using y -on {te_equals -nocase -affinity integer 0 0}}
550 12 "SELECT y AS x FROM t5" "SELECT * FROM %ss% JOIN t4 USING (x)"
551 {%ss% t4 -using x -on {te_equals -nocase -affinity integer 0 0}}
553 13 "SELECT y AS x FROM t5" "SELECT * FROM t4 JOIN %ss% USING (x)"
554 {t4 %ss% -using x -on {te_equals -nocase -affinity integer 0 0}}
556 14 "SELECT +y AS x FROM t5" "SELECT * FROM %ss% JOIN t4 USING (x)"
557 {%ss% t4 -using x -on {te_equals -nocase -affinity text 0 0}}
559 15 "SELECT +y AS x FROM t5" "SELECT * FROM t4 JOIN %ss% USING (x)"
560 {t4 %ss% -using x -on {te_equals -nocase -affinity text 0 0}}
563 # Create a temporary table named %ss% containing the data returned by
564 # the sub-select. Then have the [te_tbljoin] proc use this table to
565 # compute the expected results of the $select query. Drop the temporary
566 # table before continuing.
568 execsql "CREATE TEMP TABLE '%ss%' AS $subselect"
569 set te [eval te_tbljoin db $spec]
570 execsql "DROP TABLE '%ss%'"
572 # Check that the actual data returned by the $select query is the same
573 # as the expected data calculated using [te_tbljoin] above.
575 te_dataset_eq_unordered e_select-2.2.1.$tn [
576 te_read_sql db [string map [list %ss% "($subselect)"] $select]