deprecate cipher_store_pass
[sqlcipher.git] / src / util.c
blob7d1341f5d577574fb354e24e09e76dfcf7b7c78d
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** Utility functions used throughout sqlite.
14 ** This file contains functions for allocating memory, comparing
15 ** strings, and stuff like that.
18 #include "sqliteInt.h"
19 #include <stdarg.h>
20 #ifndef SQLITE_OMIT_FLOATING_POINT
21 #include <math.h>
22 #endif
25 ** Routine needed to support the testcase() macro.
27 #ifdef SQLITE_COVERAGE_TEST
28 void sqlite3Coverage(int x){
29 static unsigned dummy = 0;
30 dummy += (unsigned)x;
32 #endif
35 ** Calls to sqlite3FaultSim() are used to simulate a failure during testing,
36 ** or to bypass normal error detection during testing in order to let
37 ** execute proceed futher downstream.
39 ** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0). The
40 ** sqlite3FaultSim() function only returns non-zero during testing.
42 ** During testing, if the test harness has set a fault-sim callback using
43 ** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then
44 ** each call to sqlite3FaultSim() is relayed to that application-supplied
45 ** callback and the integer return value form the application-supplied
46 ** callback is returned by sqlite3FaultSim().
48 ** The integer argument to sqlite3FaultSim() is a code to identify which
49 ** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim()
50 ** should have a unique code. To prevent legacy testing applications from
51 ** breaking, the codes should not be changed or reused.
53 #ifndef SQLITE_UNTESTABLE
54 int sqlite3FaultSim(int iTest){
55 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
56 return xCallback ? xCallback(iTest) : SQLITE_OK;
58 #endif
60 #ifndef SQLITE_OMIT_FLOATING_POINT
62 ** Return true if the floating point value is Not a Number (NaN).
64 int sqlite3IsNaN(double x){
65 u64 y;
66 memcpy(&y,&x,sizeof(y));
67 return IsNaN(y);
69 #endif /* SQLITE_OMIT_FLOATING_POINT */
72 ** Compute a string length that is limited to what can be stored in
73 ** lower 30 bits of a 32-bit signed integer.
75 ** The value returned will never be negative. Nor will it ever be greater
76 ** than the actual length of the string. For very long strings (greater
77 ** than 1GiB) the value returned might be less than the true string length.
79 int sqlite3Strlen30(const char *z){
80 if( z==0 ) return 0;
81 return 0x3fffffff & (int)strlen(z);
85 ** Return the declared type of a column. Or return zDflt if the column
86 ** has no declared type.
88 ** The column type is an extra string stored after the zero-terminator on
89 ** the column name if and only if the COLFLAG_HASTYPE flag is set.
91 char *sqlite3ColumnType(Column *pCol, char *zDflt){
92 if( (pCol->colFlags & COLFLAG_HASTYPE)==0 ) return zDflt;
93 return pCol->zName + strlen(pCol->zName) + 1;
97 ** Helper function for sqlite3Error() - called rarely. Broken out into
98 ** a separate routine to avoid unnecessary register saves on entry to
99 ** sqlite3Error().
101 static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){
102 if( db->pErr ) sqlite3ValueSetNull(db->pErr);
103 sqlite3SystemError(db, err_code);
107 ** Set the current error code to err_code and clear any prior error message.
108 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates
109 ** that would be appropriate.
111 void sqlite3Error(sqlite3 *db, int err_code){
112 assert( db!=0 );
113 db->errCode = err_code;
114 if( err_code || db->pErr ) sqlite3ErrorFinish(db, err_code);
118 ** Load the sqlite3.iSysErrno field if that is an appropriate thing
119 ** to do based on the SQLite error code in rc.
121 void sqlite3SystemError(sqlite3 *db, int rc){
122 if( rc==SQLITE_IOERR_NOMEM ) return;
123 rc &= 0xff;
124 if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){
125 db->iSysErrno = sqlite3OsGetLastError(db->pVfs);
130 ** Set the most recent error code and error string for the sqlite
131 ** handle "db". The error code is set to "err_code".
133 ** If it is not NULL, string zFormat specifies the format of the
134 ** error string in the style of the printf functions: The following
135 ** format characters are allowed:
137 ** %s Insert a string
138 ** %z A string that should be freed after use
139 ** %d Insert an integer
140 ** %T Insert a token
141 ** %S Insert the first element of a SrcList
143 ** zFormat and any string tokens that follow it are assumed to be
144 ** encoded in UTF-8.
146 ** To clear the most recent error for sqlite handle "db", sqlite3Error
147 ** should be called with err_code set to SQLITE_OK and zFormat set
148 ** to NULL.
150 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
151 assert( db!=0 );
152 db->errCode = err_code;
153 sqlite3SystemError(db, err_code);
154 if( zFormat==0 ){
155 sqlite3Error(db, err_code);
156 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
157 char *z;
158 va_list ap;
159 va_start(ap, zFormat);
160 z = sqlite3VMPrintf(db, zFormat, ap);
161 va_end(ap);
162 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
167 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
168 ** The following formatting characters are allowed:
170 ** %s Insert a string
171 ** %z A string that should be freed after use
172 ** %d Insert an integer
173 ** %T Insert a token
174 ** %S Insert the first element of a SrcList
176 ** This function should be used to report any error that occurs while
177 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
178 ** last thing the sqlite3_prepare() function does is copy the error
179 ** stored by this function into the database handle using sqlite3Error().
180 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
181 ** during statement execution (sqlite3_step() etc.).
183 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
184 char *zMsg;
185 va_list ap;
186 sqlite3 *db = pParse->db;
187 va_start(ap, zFormat);
188 zMsg = sqlite3VMPrintf(db, zFormat, ap);
189 va_end(ap);
190 if( db->suppressErr ){
191 sqlite3DbFree(db, zMsg);
192 }else{
193 pParse->nErr++;
194 sqlite3DbFree(db, pParse->zErrMsg);
195 pParse->zErrMsg = zMsg;
196 pParse->rc = SQLITE_ERROR;
197 pParse->pWith = 0;
202 ** If database connection db is currently parsing SQL, then transfer
203 ** error code errCode to that parser if the parser has not already
204 ** encountered some other kind of error.
206 int sqlite3ErrorToParser(sqlite3 *db, int errCode){
207 Parse *pParse;
208 if( db==0 || (pParse = db->pParse)==0 ) return errCode;
209 pParse->rc = errCode;
210 pParse->nErr++;
211 return errCode;
215 ** Convert an SQL-style quoted string into a normal string by removing
216 ** the quote characters. The conversion is done in-place. If the
217 ** input does not begin with a quote character, then this routine
218 ** is a no-op.
220 ** The input string must be zero-terminated. A new zero-terminator
221 ** is added to the dequoted string.
223 ** The return value is -1 if no dequoting occurs or the length of the
224 ** dequoted string, exclusive of the zero terminator, if dequoting does
225 ** occur.
227 ** 2002-02-14: This routine is extended to remove MS-Access style
228 ** brackets from around identifiers. For example: "[a-b-c]" becomes
229 ** "a-b-c".
231 void sqlite3Dequote(char *z){
232 char quote;
233 int i, j;
234 if( z==0 ) return;
235 quote = z[0];
236 if( !sqlite3Isquote(quote) ) return;
237 if( quote=='[' ) quote = ']';
238 for(i=1, j=0;; i++){
239 assert( z[i] );
240 if( z[i]==quote ){
241 if( z[i+1]==quote ){
242 z[j++] = quote;
243 i++;
244 }else{
245 break;
247 }else{
248 z[j++] = z[i];
251 z[j] = 0;
253 void sqlite3DequoteExpr(Expr *p){
254 assert( sqlite3Isquote(p->u.zToken[0]) );
255 p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted;
256 sqlite3Dequote(p->u.zToken);
260 ** Generate a Token object from a string
262 void sqlite3TokenInit(Token *p, char *z){
263 p->z = z;
264 p->n = sqlite3Strlen30(z);
267 /* Convenient short-hand */
268 #define UpperToLower sqlite3UpperToLower
271 ** Some systems have stricmp(). Others have strcasecmp(). Because
272 ** there is no consistency, we will define our own.
274 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
275 ** sqlite3_strnicmp() APIs allow applications and extensions to compare
276 ** the contents of two buffers containing UTF-8 strings in a
277 ** case-independent fashion, using the same definition of "case
278 ** independence" that SQLite uses internally when comparing identifiers.
280 int sqlite3_stricmp(const char *zLeft, const char *zRight){
281 if( zLeft==0 ){
282 return zRight ? -1 : 0;
283 }else if( zRight==0 ){
284 return 1;
286 return sqlite3StrICmp(zLeft, zRight);
288 int sqlite3StrICmp(const char *zLeft, const char *zRight){
289 unsigned char *a, *b;
290 int c, x;
291 a = (unsigned char *)zLeft;
292 b = (unsigned char *)zRight;
293 for(;;){
294 c = *a;
295 x = *b;
296 if( c==x ){
297 if( c==0 ) break;
298 }else{
299 c = (int)UpperToLower[c] - (int)UpperToLower[x];
300 if( c ) break;
302 a++;
303 b++;
305 return c;
307 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
308 register unsigned char *a, *b;
309 if( zLeft==0 ){
310 return zRight ? -1 : 0;
311 }else if( zRight==0 ){
312 return 1;
314 a = (unsigned char *)zLeft;
315 b = (unsigned char *)zRight;
316 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
317 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
321 ** Compute an 8-bit hash on a string that is insensitive to case differences
323 u8 sqlite3StrIHash(const char *z){
324 u8 h = 0;
325 if( z==0 ) return 0;
326 while( z[0] ){
327 h += UpperToLower[(unsigned char)z[0]];
328 z++;
330 return h;
334 ** Compute 10 to the E-th power. Examples: E==1 results in 10.
335 ** E==2 results in 100. E==50 results in 1.0e50.
337 ** This routine only works for values of E between 1 and 341.
339 static LONGDOUBLE_TYPE sqlite3Pow10(int E){
340 #if defined(_MSC_VER)
341 static const LONGDOUBLE_TYPE x[] = {
342 1.0e+001L,
343 1.0e+002L,
344 1.0e+004L,
345 1.0e+008L,
346 1.0e+016L,
347 1.0e+032L,
348 1.0e+064L,
349 1.0e+128L,
350 1.0e+256L
352 LONGDOUBLE_TYPE r = 1.0;
353 int i;
354 assert( E>=0 && E<=307 );
355 for(i=0; E!=0; i++, E >>=1){
356 if( E & 1 ) r *= x[i];
358 return r;
359 #else
360 LONGDOUBLE_TYPE x = 10.0;
361 LONGDOUBLE_TYPE r = 1.0;
362 while(1){
363 if( E & 1 ) r *= x;
364 E >>= 1;
365 if( E==0 ) break;
366 x *= x;
368 return r;
369 #endif
373 ** The string z[] is an text representation of a real number.
374 ** Convert this string to a double and write it into *pResult.
376 ** The string z[] is length bytes in length (bytes, not characters) and
377 ** uses the encoding enc. The string is not necessarily zero-terminated.
379 ** Return TRUE if the result is a valid real number (or integer) and FALSE
380 ** if the string is empty or contains extraneous text. More specifically
381 ** return
382 ** 1 => The input string is a pure integer
383 ** 2 or more => The input has a decimal point or eNNN clause
384 ** 0 or less => The input string is not a valid number
385 ** -1 => Not a valid number, but has a valid prefix which
386 ** includes a decimal point and/or an eNNN clause
388 ** Valid numbers are in one of these formats:
390 ** [+-]digits[E[+-]digits]
391 ** [+-]digits.[digits][E[+-]digits]
392 ** [+-].digits[E[+-]digits]
394 ** Leading and trailing whitespace is ignored for the purpose of determining
395 ** validity.
397 ** If some prefix of the input string is a valid number, this routine
398 ** returns FALSE but it still converts the prefix and writes the result
399 ** into *pResult.
401 #if defined(_MSC_VER)
402 #pragma warning(disable : 4756)
403 #endif
404 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
405 #ifndef SQLITE_OMIT_FLOATING_POINT
406 int incr;
407 const char *zEnd;
408 /* sign * significand * (10 ^ (esign * exponent)) */
409 int sign = 1; /* sign of significand */
410 i64 s = 0; /* significand */
411 int d = 0; /* adjust exponent for shifting decimal point */
412 int esign = 1; /* sign of exponent */
413 int e = 0; /* exponent */
414 int eValid = 1; /* True exponent is either not used or is well-formed */
415 double result;
416 int nDigit = 0; /* Number of digits processed */
417 int eType = 1; /* 1: pure integer, 2+: fractional -1 or less: bad UTF16 */
419 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
420 *pResult = 0.0; /* Default return value, in case of an error */
421 if( length==0 ) return 0;
423 if( enc==SQLITE_UTF8 ){
424 incr = 1;
425 zEnd = z + length;
426 }else{
427 int i;
428 incr = 2;
429 length &= ~1;
430 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
431 testcase( enc==SQLITE_UTF16LE );
432 testcase( enc==SQLITE_UTF16BE );
433 for(i=3-enc; i<length && z[i]==0; i+=2){}
434 if( i<length ) eType = -100;
435 zEnd = &z[i^1];
436 z += (enc&1);
439 /* skip leading spaces */
440 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
441 if( z>=zEnd ) return 0;
443 /* get sign of significand */
444 if( *z=='-' ){
445 sign = -1;
446 z+=incr;
447 }else if( *z=='+' ){
448 z+=incr;
451 /* copy max significant digits to significand */
452 while( z<zEnd && sqlite3Isdigit(*z) ){
453 s = s*10 + (*z - '0');
454 z+=incr; nDigit++;
455 if( s>=((LARGEST_INT64-9)/10) ){
456 /* skip non-significant significand digits
457 ** (increase exponent by d to shift decimal left) */
458 while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; d++; }
461 if( z>=zEnd ) goto do_atof_calc;
463 /* if decimal point is present */
464 if( *z=='.' ){
465 z+=incr;
466 eType++;
467 /* copy digits from after decimal to significand
468 ** (decrease exponent by d to shift decimal right) */
469 while( z<zEnd && sqlite3Isdigit(*z) ){
470 if( s<((LARGEST_INT64-9)/10) ){
471 s = s*10 + (*z - '0');
472 d--;
473 nDigit++;
475 z+=incr;
478 if( z>=zEnd ) goto do_atof_calc;
480 /* if exponent is present */
481 if( *z=='e' || *z=='E' ){
482 z+=incr;
483 eValid = 0;
484 eType++;
486 /* This branch is needed to avoid a (harmless) buffer overread. The
487 ** special comment alerts the mutation tester that the correct answer
488 ** is obtained even if the branch is omitted */
489 if( z>=zEnd ) goto do_atof_calc; /*PREVENTS-HARMLESS-OVERREAD*/
491 /* get sign of exponent */
492 if( *z=='-' ){
493 esign = -1;
494 z+=incr;
495 }else if( *z=='+' ){
496 z+=incr;
498 /* copy digits to exponent */
499 while( z<zEnd && sqlite3Isdigit(*z) ){
500 e = e<10000 ? (e*10 + (*z - '0')) : 10000;
501 z+=incr;
502 eValid = 1;
506 /* skip trailing spaces */
507 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
509 do_atof_calc:
510 /* adjust exponent by d, and update sign */
511 e = (e*esign) + d;
512 if( e<0 ) {
513 esign = -1;
514 e *= -1;
515 } else {
516 esign = 1;
519 if( s==0 ) {
520 /* In the IEEE 754 standard, zero is signed. */
521 result = sign<0 ? -(double)0 : (double)0;
522 } else {
523 /* Attempt to reduce exponent.
525 ** Branches that are not required for the correct answer but which only
526 ** help to obtain the correct answer faster are marked with special
527 ** comments, as a hint to the mutation tester.
529 while( e>0 ){ /*OPTIMIZATION-IF-TRUE*/
530 if( esign>0 ){
531 if( s>=(LARGEST_INT64/10) ) break; /*OPTIMIZATION-IF-FALSE*/
532 s *= 10;
533 }else{
534 if( s%10!=0 ) break; /*OPTIMIZATION-IF-FALSE*/
535 s /= 10;
537 e--;
540 /* adjust the sign of significand */
541 s = sign<0 ? -s : s;
543 if( e==0 ){ /*OPTIMIZATION-IF-TRUE*/
544 result = (double)s;
545 }else{
546 /* attempt to handle extremely small/large numbers better */
547 if( e>307 ){ /*OPTIMIZATION-IF-TRUE*/
548 if( e<342 ){ /*OPTIMIZATION-IF-TRUE*/
549 LONGDOUBLE_TYPE scale = sqlite3Pow10(e-308);
550 if( esign<0 ){
551 result = s / scale;
552 result /= 1.0e+308;
553 }else{
554 result = s * scale;
555 result *= 1.0e+308;
557 }else{ assert( e>=342 );
558 if( esign<0 ){
559 result = 0.0*s;
560 }else{
561 #ifdef INFINITY
562 result = INFINITY*s;
563 #else
564 result = 1e308*1e308*s; /* Infinity */
565 #endif
568 }else{
569 LONGDOUBLE_TYPE scale = sqlite3Pow10(e);
570 if( esign<0 ){
571 result = s / scale;
572 }else{
573 result = s * scale;
579 /* store the result */
580 *pResult = result;
582 /* return true if number and no extra non-whitespace chracters after */
583 if( z==zEnd && nDigit>0 && eValid && eType>0 ){
584 return eType;
585 }else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){
586 return -1;
587 }else{
588 return 0;
590 #else
591 return !sqlite3Atoi64(z, pResult, length, enc);
592 #endif /* SQLITE_OMIT_FLOATING_POINT */
594 #if defined(_MSC_VER)
595 #pragma warning(default : 4756)
596 #endif
599 ** Render an signed 64-bit integer as text. Store the result in zOut[].
601 ** The caller must ensure that zOut[] is at least 21 bytes in size.
603 void sqlite3Int64ToText(i64 v, char *zOut){
604 int i;
605 u64 x;
606 char zTemp[22];
607 if( v<0 ){
608 x = (v==SMALLEST_INT64) ? ((u64)1)<<63 : (u64)-v;
609 }else{
610 x = v;
612 i = sizeof(zTemp)-2;
613 zTemp[sizeof(zTemp)-1] = 0;
615 zTemp[i--] = (x%10) + '0';
616 x = x/10;
617 }while( x );
618 if( v<0 ) zTemp[i--] = '-';
619 memcpy(zOut, &zTemp[i+1], sizeof(zTemp)-1-i);
623 ** Compare the 19-character string zNum against the text representation
624 ** value 2^63: 9223372036854775808. Return negative, zero, or positive
625 ** if zNum is less than, equal to, or greater than the string.
626 ** Note that zNum must contain exactly 19 characters.
628 ** Unlike memcmp() this routine is guaranteed to return the difference
629 ** in the values of the last digit if the only difference is in the
630 ** last digit. So, for example,
632 ** compare2pow63("9223372036854775800", 1)
634 ** will return -8.
636 static int compare2pow63(const char *zNum, int incr){
637 int c = 0;
638 int i;
639 /* 012345678901234567 */
640 const char *pow63 = "922337203685477580";
641 for(i=0; c==0 && i<18; i++){
642 c = (zNum[i*incr]-pow63[i])*10;
644 if( c==0 ){
645 c = zNum[18*incr] - '8';
646 testcase( c==(-1) );
647 testcase( c==0 );
648 testcase( c==(+1) );
650 return c;
654 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This
655 ** routine does *not* accept hexadecimal notation.
657 ** Returns:
659 ** -1 Not even a prefix of the input text looks like an integer
660 ** 0 Successful transformation. Fits in a 64-bit signed integer.
661 ** 1 Excess non-space text after the integer value
662 ** 2 Integer too large for a 64-bit signed integer or is malformed
663 ** 3 Special case of 9223372036854775808
665 ** length is the number of bytes in the string (bytes, not characters).
666 ** The string is not necessarily zero-terminated. The encoding is
667 ** given by enc.
669 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
670 int incr;
671 u64 u = 0;
672 int neg = 0; /* assume positive */
673 int i;
674 int c = 0;
675 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */
676 int rc; /* Baseline return code */
677 const char *zStart;
678 const char *zEnd = zNum + length;
679 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
680 if( enc==SQLITE_UTF8 ){
681 incr = 1;
682 }else{
683 incr = 2;
684 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
685 for(i=3-enc; i<length && zNum[i]==0; i+=2){}
686 nonNum = i<length;
687 zEnd = &zNum[i^1];
688 zNum += (enc&1);
690 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
691 if( zNum<zEnd ){
692 if( *zNum=='-' ){
693 neg = 1;
694 zNum+=incr;
695 }else if( *zNum=='+' ){
696 zNum+=incr;
699 zStart = zNum;
700 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
701 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
702 u = u*10 + c - '0';
704 testcase( i==18*incr );
705 testcase( i==19*incr );
706 testcase( i==20*incr );
707 if( u>LARGEST_INT64 ){
708 /* This test and assignment is needed only to suppress UB warnings
709 ** from clang and -fsanitize=undefined. This test and assignment make
710 ** the code a little larger and slower, and no harm comes from omitting
711 ** them, but we must appaise the undefined-behavior pharisees. */
712 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
713 }else if( neg ){
714 *pNum = -(i64)u;
715 }else{
716 *pNum = (i64)u;
718 rc = 0;
719 if( i==0 && zStart==zNum ){ /* No digits */
720 rc = -1;
721 }else if( nonNum ){ /* UTF16 with high-order bytes non-zero */
722 rc = 1;
723 }else if( &zNum[i]<zEnd ){ /* Extra bytes at the end */
724 int jj = i;
726 if( !sqlite3Isspace(zNum[jj]) ){
727 rc = 1; /* Extra non-space text after the integer */
728 break;
730 jj += incr;
731 }while( &zNum[jj]<zEnd );
733 if( i<19*incr ){
734 /* Less than 19 digits, so we know that it fits in 64 bits */
735 assert( u<=LARGEST_INT64 );
736 return rc;
737 }else{
738 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */
739 c = i>19*incr ? 1 : compare2pow63(zNum, incr);
740 if( c<0 ){
741 /* zNum is less than 9223372036854775808 so it fits */
742 assert( u<=LARGEST_INT64 );
743 return rc;
744 }else{
745 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
746 if( c>0 ){
747 /* zNum is greater than 9223372036854775808 so it overflows */
748 return 2;
749 }else{
750 /* zNum is exactly 9223372036854775808. Fits if negative. The
751 ** special case 2 overflow if positive */
752 assert( u-1==LARGEST_INT64 );
753 return neg ? rc : 3;
760 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
761 ** into a 64-bit signed integer. This routine accepts hexadecimal literals,
762 ** whereas sqlite3Atoi64() does not.
764 ** Returns:
766 ** 0 Successful transformation. Fits in a 64-bit signed integer.
767 ** 1 Excess text after the integer value
768 ** 2 Integer too large for a 64-bit signed integer or is malformed
769 ** 3 Special case of 9223372036854775808
771 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
772 #ifndef SQLITE_OMIT_HEX_INTEGER
773 if( z[0]=='0'
774 && (z[1]=='x' || z[1]=='X')
776 u64 u = 0;
777 int i, k;
778 for(i=2; z[i]=='0'; i++){}
779 for(k=i; sqlite3Isxdigit(z[k]); k++){
780 u = u*16 + sqlite3HexToInt(z[k]);
782 memcpy(pOut, &u, 8);
783 return (z[k]==0 && k-i<=16) ? 0 : 2;
784 }else
785 #endif /* SQLITE_OMIT_HEX_INTEGER */
787 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8);
792 ** If zNum represents an integer that will fit in 32-bits, then set
793 ** *pValue to that integer and return true. Otherwise return false.
795 ** This routine accepts both decimal and hexadecimal notation for integers.
797 ** Any non-numeric characters that following zNum are ignored.
798 ** This is different from sqlite3Atoi64() which requires the
799 ** input number to be zero-terminated.
801 int sqlite3GetInt32(const char *zNum, int *pValue){
802 sqlite_int64 v = 0;
803 int i, c;
804 int neg = 0;
805 if( zNum[0]=='-' ){
806 neg = 1;
807 zNum++;
808 }else if( zNum[0]=='+' ){
809 zNum++;
811 #ifndef SQLITE_OMIT_HEX_INTEGER
812 else if( zNum[0]=='0'
813 && (zNum[1]=='x' || zNum[1]=='X')
814 && sqlite3Isxdigit(zNum[2])
816 u32 u = 0;
817 zNum += 2;
818 while( zNum[0]=='0' ) zNum++;
819 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){
820 u = u*16 + sqlite3HexToInt(zNum[i]);
822 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
823 memcpy(pValue, &u, 4);
824 return 1;
825 }else{
826 return 0;
829 #endif
830 if( !sqlite3Isdigit(zNum[0]) ) return 0;
831 while( zNum[0]=='0' ) zNum++;
832 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
833 v = v*10 + c;
836 /* The longest decimal representation of a 32 bit integer is 10 digits:
838 ** 1234567890
839 ** 2^31 -> 2147483648
841 testcase( i==10 );
842 if( i>10 ){
843 return 0;
845 testcase( v-neg==2147483647 );
846 if( v-neg>2147483647 ){
847 return 0;
849 if( neg ){
850 v = -v;
852 *pValue = (int)v;
853 return 1;
857 ** Return a 32-bit integer value extracted from a string. If the
858 ** string is not an integer, just return 0.
860 int sqlite3Atoi(const char *z){
861 int x = 0;
862 sqlite3GetInt32(z, &x);
863 return x;
867 ** Try to convert z into an unsigned 32-bit integer. Return true on
868 ** success and false if there is an error.
870 ** Only decimal notation is accepted.
872 int sqlite3GetUInt32(const char *z, u32 *pI){
873 u64 v = 0;
874 int i;
875 for(i=0; sqlite3Isdigit(z[i]); i++){
876 v = v*10 + z[i] - '0';
877 if( v>4294967296LL ){ *pI = 0; return 0; }
879 if( i==0 || z[i]!=0 ){ *pI = 0; return 0; }
880 *pI = (u32)v;
881 return 1;
885 ** The variable-length integer encoding is as follows:
887 ** KEY:
888 ** A = 0xxxxxxx 7 bits of data and one flag bit
889 ** B = 1xxxxxxx 7 bits of data and one flag bit
890 ** C = xxxxxxxx 8 bits of data
892 ** 7 bits - A
893 ** 14 bits - BA
894 ** 21 bits - BBA
895 ** 28 bits - BBBA
896 ** 35 bits - BBBBA
897 ** 42 bits - BBBBBA
898 ** 49 bits - BBBBBBA
899 ** 56 bits - BBBBBBBA
900 ** 64 bits - BBBBBBBBC
904 ** Write a 64-bit variable-length integer to memory starting at p[0].
905 ** The length of data write will be between 1 and 9 bytes. The number
906 ** of bytes written is returned.
908 ** A variable-length integer consists of the lower 7 bits of each byte
909 ** for all bytes that have the 8th bit set and one byte with the 8th
910 ** bit clear. Except, if we get to the 9th byte, it stores the full
911 ** 8 bits and is the last byte.
913 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
914 int i, j, n;
915 u8 buf[10];
916 if( v & (((u64)0xff000000)<<32) ){
917 p[8] = (u8)v;
918 v >>= 8;
919 for(i=7; i>=0; i--){
920 p[i] = (u8)((v & 0x7f) | 0x80);
921 v >>= 7;
923 return 9;
925 n = 0;
927 buf[n++] = (u8)((v & 0x7f) | 0x80);
928 v >>= 7;
929 }while( v!=0 );
930 buf[0] &= 0x7f;
931 assert( n<=9 );
932 for(i=0, j=n-1; j>=0; j--, i++){
933 p[i] = buf[j];
935 return n;
937 int sqlite3PutVarint(unsigned char *p, u64 v){
938 if( v<=0x7f ){
939 p[0] = v&0x7f;
940 return 1;
942 if( v<=0x3fff ){
943 p[0] = ((v>>7)&0x7f)|0x80;
944 p[1] = v&0x7f;
945 return 2;
947 return putVarint64(p,v);
951 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants
952 ** are defined here rather than simply putting the constant expressions
953 ** inline in order to work around bugs in the RVT compiler.
955 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
957 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
959 #define SLOT_2_0 0x001fc07f
960 #define SLOT_4_2_0 0xf01fc07f
964 ** Read a 64-bit variable-length integer from memory starting at p[0].
965 ** Return the number of bytes read. The value is stored in *v.
967 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
968 u32 a,b,s;
970 if( ((signed char*)p)[0]>=0 ){
971 *v = *p;
972 return 1;
974 if( ((signed char*)p)[1]>=0 ){
975 *v = ((u32)(p[0]&0x7f)<<7) | p[1];
976 return 2;
979 /* Verify that constants are precomputed correctly */
980 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
981 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
983 a = ((u32)p[0])<<14;
984 b = p[1];
985 p += 2;
986 a |= *p;
987 /* a: p0<<14 | p2 (unmasked) */
988 if (!(a&0x80))
990 a &= SLOT_2_0;
991 b &= 0x7f;
992 b = b<<7;
993 a |= b;
994 *v = a;
995 return 3;
998 /* CSE1 from below */
999 a &= SLOT_2_0;
1000 p++;
1001 b = b<<14;
1002 b |= *p;
1003 /* b: p1<<14 | p3 (unmasked) */
1004 if (!(b&0x80))
1006 b &= SLOT_2_0;
1007 /* moved CSE1 up */
1008 /* a &= (0x7f<<14)|(0x7f); */
1009 a = a<<7;
1010 a |= b;
1011 *v = a;
1012 return 4;
1015 /* a: p0<<14 | p2 (masked) */
1016 /* b: p1<<14 | p3 (unmasked) */
1017 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1018 /* moved CSE1 up */
1019 /* a &= (0x7f<<14)|(0x7f); */
1020 b &= SLOT_2_0;
1021 s = a;
1022 /* s: p0<<14 | p2 (masked) */
1024 p++;
1025 a = a<<14;
1026 a |= *p;
1027 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1028 if (!(a&0x80))
1030 /* we can skip these cause they were (effectively) done above
1031 ** while calculating s */
1032 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
1033 /* b &= (0x7f<<14)|(0x7f); */
1034 b = b<<7;
1035 a |= b;
1036 s = s>>18;
1037 *v = ((u64)s)<<32 | a;
1038 return 5;
1041 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1042 s = s<<7;
1043 s |= b;
1044 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1046 p++;
1047 b = b<<14;
1048 b |= *p;
1049 /* b: p1<<28 | p3<<14 | p5 (unmasked) */
1050 if (!(b&0x80))
1052 /* we can skip this cause it was (effectively) done above in calc'ing s */
1053 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
1054 a &= SLOT_2_0;
1055 a = a<<7;
1056 a |= b;
1057 s = s>>18;
1058 *v = ((u64)s)<<32 | a;
1059 return 6;
1062 p++;
1063 a = a<<14;
1064 a |= *p;
1065 /* a: p2<<28 | p4<<14 | p6 (unmasked) */
1066 if (!(a&0x80))
1068 a &= SLOT_4_2_0;
1069 b &= SLOT_2_0;
1070 b = b<<7;
1071 a |= b;
1072 s = s>>11;
1073 *v = ((u64)s)<<32 | a;
1074 return 7;
1077 /* CSE2 from below */
1078 a &= SLOT_2_0;
1079 p++;
1080 b = b<<14;
1081 b |= *p;
1082 /* b: p3<<28 | p5<<14 | p7 (unmasked) */
1083 if (!(b&0x80))
1085 b &= SLOT_4_2_0;
1086 /* moved CSE2 up */
1087 /* a &= (0x7f<<14)|(0x7f); */
1088 a = a<<7;
1089 a |= b;
1090 s = s>>4;
1091 *v = ((u64)s)<<32 | a;
1092 return 8;
1095 p++;
1096 a = a<<15;
1097 a |= *p;
1098 /* a: p4<<29 | p6<<15 | p8 (unmasked) */
1100 /* moved CSE2 up */
1101 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
1102 b &= SLOT_2_0;
1103 b = b<<8;
1104 a |= b;
1106 s = s<<4;
1107 b = p[-4];
1108 b &= 0x7f;
1109 b = b>>3;
1110 s |= b;
1112 *v = ((u64)s)<<32 | a;
1114 return 9;
1118 ** Read a 32-bit variable-length integer from memory starting at p[0].
1119 ** Return the number of bytes read. The value is stored in *v.
1121 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
1122 ** integer, then set *v to 0xffffffff.
1124 ** A MACRO version, getVarint32, is provided which inlines the
1125 ** single-byte case. All code should use the MACRO version as
1126 ** this function assumes the single-byte case has already been handled.
1128 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
1129 u32 a,b;
1131 /* The 1-byte case. Overwhelmingly the most common. Handled inline
1132 ** by the getVarin32() macro */
1133 a = *p;
1134 /* a: p0 (unmasked) */
1135 #ifndef getVarint32
1136 if (!(a&0x80))
1138 /* Values between 0 and 127 */
1139 *v = a;
1140 return 1;
1142 #endif
1144 /* The 2-byte case */
1145 p++;
1146 b = *p;
1147 /* b: p1 (unmasked) */
1148 if (!(b&0x80))
1150 /* Values between 128 and 16383 */
1151 a &= 0x7f;
1152 a = a<<7;
1153 *v = a | b;
1154 return 2;
1157 /* The 3-byte case */
1158 p++;
1159 a = a<<14;
1160 a |= *p;
1161 /* a: p0<<14 | p2 (unmasked) */
1162 if (!(a&0x80))
1164 /* Values between 16384 and 2097151 */
1165 a &= (0x7f<<14)|(0x7f);
1166 b &= 0x7f;
1167 b = b<<7;
1168 *v = a | b;
1169 return 3;
1172 /* A 32-bit varint is used to store size information in btrees.
1173 ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
1174 ** A 3-byte varint is sufficient, for example, to record the size
1175 ** of a 1048569-byte BLOB or string.
1177 ** We only unroll the first 1-, 2-, and 3- byte cases. The very
1178 ** rare larger cases can be handled by the slower 64-bit varint
1179 ** routine.
1181 #if 1
1183 u64 v64;
1184 u8 n;
1186 n = sqlite3GetVarint(p-2, &v64);
1187 assert( n>3 && n<=9 );
1188 if( (v64 & SQLITE_MAX_U32)!=v64 ){
1189 *v = 0xffffffff;
1190 }else{
1191 *v = (u32)v64;
1193 return n;
1196 #else
1197 /* For following code (kept for historical record only) shows an
1198 ** unrolling for the 3- and 4-byte varint cases. This code is
1199 ** slightly faster, but it is also larger and much harder to test.
1201 p++;
1202 b = b<<14;
1203 b |= *p;
1204 /* b: p1<<14 | p3 (unmasked) */
1205 if (!(b&0x80))
1207 /* Values between 2097152 and 268435455 */
1208 b &= (0x7f<<14)|(0x7f);
1209 a &= (0x7f<<14)|(0x7f);
1210 a = a<<7;
1211 *v = a | b;
1212 return 4;
1215 p++;
1216 a = a<<14;
1217 a |= *p;
1218 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1219 if (!(a&0x80))
1221 /* Values between 268435456 and 34359738367 */
1222 a &= SLOT_4_2_0;
1223 b &= SLOT_4_2_0;
1224 b = b<<7;
1225 *v = a | b;
1226 return 5;
1229 /* We can only reach this point when reading a corrupt database
1230 ** file. In that case we are not in any hurry. Use the (relatively
1231 ** slow) general-purpose sqlite3GetVarint() routine to extract the
1232 ** value. */
1234 u64 v64;
1235 u8 n;
1237 p -= 4;
1238 n = sqlite3GetVarint(p, &v64);
1239 assert( n>5 && n<=9 );
1240 *v = (u32)v64;
1241 return n;
1243 #endif
1247 ** Return the number of bytes that will be needed to store the given
1248 ** 64-bit integer.
1250 int sqlite3VarintLen(u64 v){
1251 int i;
1252 for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); }
1253 return i;
1258 ** Read or write a four-byte big-endian integer value.
1260 u32 sqlite3Get4byte(const u8 *p){
1261 #if SQLITE_BYTEORDER==4321
1262 u32 x;
1263 memcpy(&x,p,4);
1264 return x;
1265 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1266 u32 x;
1267 memcpy(&x,p,4);
1268 return __builtin_bswap32(x);
1269 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1270 u32 x;
1271 memcpy(&x,p,4);
1272 return _byteswap_ulong(x);
1273 #else
1274 testcase( p[0]&0x80 );
1275 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
1276 #endif
1278 void sqlite3Put4byte(unsigned char *p, u32 v){
1279 #if SQLITE_BYTEORDER==4321
1280 memcpy(p,&v,4);
1281 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1282 u32 x = __builtin_bswap32(v);
1283 memcpy(p,&x,4);
1284 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1285 u32 x = _byteswap_ulong(v);
1286 memcpy(p,&x,4);
1287 #else
1288 p[0] = (u8)(v>>24);
1289 p[1] = (u8)(v>>16);
1290 p[2] = (u8)(v>>8);
1291 p[3] = (u8)v;
1292 #endif
1298 ** Translate a single byte of Hex into an integer.
1299 ** This routine only works if h really is a valid hexadecimal
1300 ** character: 0..9a..fA..F
1302 u8 sqlite3HexToInt(int h){
1303 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
1304 #ifdef SQLITE_ASCII
1305 h += 9*(1&(h>>6));
1306 #endif
1307 #ifdef SQLITE_EBCDIC
1308 h += 9*(1&~(h>>4));
1309 #endif
1310 return (u8)(h & 0xf);
1313 /* BEGIN SQLCIPHER */
1314 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
1316 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1317 ** value. Return a pointer to its binary value. Space to hold the
1318 ** binary value has been obtained from malloc and must be freed by
1319 ** the calling routine.
1321 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1322 char *zBlob;
1323 int i;
1325 zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1);
1326 n--;
1327 if( zBlob ){
1328 for(i=0; i<n; i+=2){
1329 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
1331 zBlob[i/2] = 0;
1333 return zBlob;
1335 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1336 /* END SQLCIPHER */
1339 ** Log an error that is an API call on a connection pointer that should
1340 ** not have been used. The "type" of connection pointer is given as the
1341 ** argument. The zType is a word like "NULL" or "closed" or "invalid".
1343 static void logBadConnection(const char *zType){
1344 sqlite3_log(SQLITE_MISUSE,
1345 "API call with %s database connection pointer",
1346 zType
1351 ** Check to make sure we have a valid db pointer. This test is not
1352 ** foolproof but it does provide some measure of protection against
1353 ** misuse of the interface such as passing in db pointers that are
1354 ** NULL or which have been previously closed. If this routine returns
1355 ** 1 it means that the db pointer is valid and 0 if it should not be
1356 ** dereferenced for any reason. The calling function should invoke
1357 ** SQLITE_MISUSE immediately.
1359 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1360 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1361 ** open properly and is not fit for general use but which can be
1362 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
1364 int sqlite3SafetyCheckOk(sqlite3 *db){
1365 u32 magic;
1366 if( db==0 ){
1367 logBadConnection("NULL");
1368 return 0;
1370 magic = db->magic;
1371 if( magic!=SQLITE_MAGIC_OPEN ){
1372 if( sqlite3SafetyCheckSickOrOk(db) ){
1373 testcase( sqlite3GlobalConfig.xLog!=0 );
1374 logBadConnection("unopened");
1376 return 0;
1377 }else{
1378 return 1;
1381 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1382 u32 magic;
1383 magic = db->magic;
1384 if( magic!=SQLITE_MAGIC_SICK &&
1385 magic!=SQLITE_MAGIC_OPEN &&
1386 magic!=SQLITE_MAGIC_BUSY ){
1387 testcase( sqlite3GlobalConfig.xLog!=0 );
1388 logBadConnection("invalid");
1389 return 0;
1390 }else{
1391 return 1;
1396 ** Attempt to add, substract, or multiply the 64-bit signed value iB against
1397 ** the other 64-bit signed integer at *pA and store the result in *pA.
1398 ** Return 0 on success. Or if the operation would have resulted in an
1399 ** overflow, leave *pA unchanged and return 1.
1401 int sqlite3AddInt64(i64 *pA, i64 iB){
1402 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1403 return __builtin_add_overflow(*pA, iB, pA);
1404 #else
1405 i64 iA = *pA;
1406 testcase( iA==0 ); testcase( iA==1 );
1407 testcase( iB==-1 ); testcase( iB==0 );
1408 if( iB>=0 ){
1409 testcase( iA>0 && LARGEST_INT64 - iA == iB );
1410 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1411 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
1412 }else{
1413 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1414 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1415 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
1417 *pA += iB;
1418 return 0;
1419 #endif
1421 int sqlite3SubInt64(i64 *pA, i64 iB){
1422 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1423 return __builtin_sub_overflow(*pA, iB, pA);
1424 #else
1425 testcase( iB==SMALLEST_INT64+1 );
1426 if( iB==SMALLEST_INT64 ){
1427 testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1428 if( (*pA)>=0 ) return 1;
1429 *pA -= iB;
1430 return 0;
1431 }else{
1432 return sqlite3AddInt64(pA, -iB);
1434 #endif
1436 int sqlite3MulInt64(i64 *pA, i64 iB){
1437 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1438 return __builtin_mul_overflow(*pA, iB, pA);
1439 #else
1440 i64 iA = *pA;
1441 if( iB>0 ){
1442 if( iA>LARGEST_INT64/iB ) return 1;
1443 if( iA<SMALLEST_INT64/iB ) return 1;
1444 }else if( iB<0 ){
1445 if( iA>0 ){
1446 if( iB<SMALLEST_INT64/iA ) return 1;
1447 }else if( iA<0 ){
1448 if( iB==SMALLEST_INT64 ) return 1;
1449 if( iA==SMALLEST_INT64 ) return 1;
1450 if( -iA>LARGEST_INT64/-iB ) return 1;
1453 *pA = iA*iB;
1454 return 0;
1455 #endif
1459 ** Compute the absolute value of a 32-bit signed integer, of possible. Or
1460 ** if the integer has a value of -2147483648, return +2147483647
1462 int sqlite3AbsInt32(int x){
1463 if( x>=0 ) return x;
1464 if( x==(int)0x80000000 ) return 0x7fffffff;
1465 return -x;
1468 #ifdef SQLITE_ENABLE_8_3_NAMES
1470 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
1471 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1472 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1473 ** three characters, then shorten the suffix on z[] to be the last three
1474 ** characters of the original suffix.
1476 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1477 ** do the suffix shortening regardless of URI parameter.
1479 ** Examples:
1481 ** test.db-journal => test.nal
1482 ** test.db-wal => test.wal
1483 ** test.db-shm => test.shm
1484 ** test.db-mj7f3319fa => test.9fa
1486 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
1487 #if SQLITE_ENABLE_8_3_NAMES<2
1488 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
1489 #endif
1491 int i, sz;
1492 sz = sqlite3Strlen30(z);
1493 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
1494 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
1497 #endif
1500 ** Find (an approximate) sum of two LogEst values. This computation is
1501 ** not a simple "+" operator because LogEst is stored as a logarithmic
1502 ** value.
1505 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
1506 static const unsigned char x[] = {
1507 10, 10, /* 0,1 */
1508 9, 9, /* 2,3 */
1509 8, 8, /* 4,5 */
1510 7, 7, 7, /* 6,7,8 */
1511 6, 6, 6, /* 9,10,11 */
1512 5, 5, 5, /* 12-14 */
1513 4, 4, 4, 4, /* 15-18 */
1514 3, 3, 3, 3, 3, 3, /* 19-24 */
1515 2, 2, 2, 2, 2, 2, 2, /* 25-31 */
1517 if( a>=b ){
1518 if( a>b+49 ) return a;
1519 if( a>b+31 ) return a+1;
1520 return a+x[a-b];
1521 }else{
1522 if( b>a+49 ) return b;
1523 if( b>a+31 ) return b+1;
1524 return b+x[b-a];
1529 ** Convert an integer into a LogEst. In other words, compute an
1530 ** approximation for 10*log2(x).
1532 LogEst sqlite3LogEst(u64 x){
1533 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1534 LogEst y = 40;
1535 if( x<8 ){
1536 if( x<2 ) return 0;
1537 while( x<8 ){ y -= 10; x <<= 1; }
1538 }else{
1539 #if GCC_VERSION>=5004000
1540 int i = 60 - __builtin_clzll(x);
1541 y += i*10;
1542 x >>= i;
1543 #else
1544 while( x>255 ){ y += 40; x >>= 4; } /*OPTIMIZATION-IF-TRUE*/
1545 while( x>15 ){ y += 10; x >>= 1; }
1546 #endif
1548 return a[x&7] + y - 10;
1551 #ifndef SQLITE_OMIT_VIRTUALTABLE
1553 ** Convert a double into a LogEst
1554 ** In other words, compute an approximation for 10*log2(x).
1556 LogEst sqlite3LogEstFromDouble(double x){
1557 u64 a;
1558 LogEst e;
1559 assert( sizeof(x)==8 && sizeof(a)==8 );
1560 if( x<=1 ) return 0;
1561 if( x<=2000000000 ) return sqlite3LogEst((u64)x);
1562 memcpy(&a, &x, 8);
1563 e = (a>>52) - 1022;
1564 return e*10;
1566 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1568 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
1569 defined(SQLITE_ENABLE_STAT4) || \
1570 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
1572 ** Convert a LogEst into an integer.
1574 ** Note that this routine is only used when one or more of various
1575 ** non-standard compile-time options is enabled.
1577 u64 sqlite3LogEstToInt(LogEst x){
1578 u64 n;
1579 n = x%10;
1580 x /= 10;
1581 if( n>=5 ) n -= 2;
1582 else if( n>=1 ) n -= 1;
1583 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
1584 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
1585 if( x>60 ) return (u64)LARGEST_INT64;
1586 #else
1587 /* If only SQLITE_ENABLE_STAT4 is on, then the largest input
1588 ** possible to this routine is 310, resulting in a maximum x of 31 */
1589 assert( x<=60 );
1590 #endif
1591 return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x);
1593 #endif /* defined SCANSTAT or STAT4 or ESTIMATED_ROWS */
1596 ** Add a new name/number pair to a VList. This might require that the
1597 ** VList object be reallocated, so return the new VList. If an OOM
1598 ** error occurs, the original VList returned and the
1599 ** db->mallocFailed flag is set.
1601 ** A VList is really just an array of integers. To destroy a VList,
1602 ** simply pass it to sqlite3DbFree().
1604 ** The first integer is the number of integers allocated for the whole
1605 ** VList. The second integer is the number of integers actually used.
1606 ** Each name/number pair is encoded by subsequent groups of 3 or more
1607 ** integers.
1609 ** Each name/number pair starts with two integers which are the numeric
1610 ** value for the pair and the size of the name/number pair, respectively.
1611 ** The text name overlays one or more following integers. The text name
1612 ** is always zero-terminated.
1614 ** Conceptually:
1616 ** struct VList {
1617 ** int nAlloc; // Number of allocated slots
1618 ** int nUsed; // Number of used slots
1619 ** struct VListEntry {
1620 ** int iValue; // Value for this entry
1621 ** int nSlot; // Slots used by this entry
1622 ** // ... variable name goes here
1623 ** } a[0];
1624 ** }
1626 ** During code generation, pointers to the variable names within the
1627 ** VList are taken. When that happens, nAlloc is set to zero as an
1628 ** indication that the VList may never again be enlarged, since the
1629 ** accompanying realloc() would invalidate the pointers.
1631 VList *sqlite3VListAdd(
1632 sqlite3 *db, /* The database connection used for malloc() */
1633 VList *pIn, /* The input VList. Might be NULL */
1634 const char *zName, /* Name of symbol to add */
1635 int nName, /* Bytes of text in zName */
1636 int iVal /* Value to associate with zName */
1638 int nInt; /* number of sizeof(int) objects needed for zName */
1639 char *z; /* Pointer to where zName will be stored */
1640 int i; /* Index in pIn[] where zName is stored */
1642 nInt = nName/4 + 3;
1643 assert( pIn==0 || pIn[0]>=3 ); /* Verify ok to add new elements */
1644 if( pIn==0 || pIn[1]+nInt > pIn[0] ){
1645 /* Enlarge the allocation */
1646 sqlite3_int64 nAlloc = (pIn ? 2*(sqlite3_int64)pIn[0] : 10) + nInt;
1647 VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int));
1648 if( pOut==0 ) return pIn;
1649 if( pIn==0 ) pOut[1] = 2;
1650 pIn = pOut;
1651 pIn[0] = nAlloc;
1653 i = pIn[1];
1654 pIn[i] = iVal;
1655 pIn[i+1] = nInt;
1656 z = (char*)&pIn[i+2];
1657 pIn[1] = i+nInt;
1658 assert( pIn[1]<=pIn[0] );
1659 memcpy(z, zName, nName);
1660 z[nName] = 0;
1661 return pIn;
1665 ** Return a pointer to the name of a variable in the given VList that
1666 ** has the value iVal. Or return a NULL if there is no such variable in
1667 ** the list
1669 const char *sqlite3VListNumToName(VList *pIn, int iVal){
1670 int i, mx;
1671 if( pIn==0 ) return 0;
1672 mx = pIn[1];
1673 i = 2;
1675 if( pIn[i]==iVal ) return (char*)&pIn[i+2];
1676 i += pIn[i+1];
1677 }while( i<mx );
1678 return 0;
1682 ** Return the number of the variable named zName, if it is in VList.
1683 ** or return 0 if there is no such variable.
1685 int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){
1686 int i, mx;
1687 if( pIn==0 ) return 0;
1688 mx = pIn[1];
1689 i = 2;
1691 const char *z = (const char*)&pIn[i+2];
1692 if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i];
1693 i += pIn[i+1];
1694 }while( i<mx );
1695 return 0;