Merge branch 'prerelease' of github.com:sqlcipher/sqlcipher into prerelease
[sqlcipher.git] / src / select.c
blobf3f1490963955b8ed0c9fe6e1eec836c1a5294b4
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
15 #include "sqliteInt.h"
19 ** Delete all the content of a Select structure but do not deallocate
20 ** the select structure itself.
22 static void clearSelect(sqlite3 *db, Select *p){
23 sqlite3ExprListDelete(db, p->pEList);
24 sqlite3SrcListDelete(db, p->pSrc);
25 sqlite3ExprDelete(db, p->pWhere);
26 sqlite3ExprListDelete(db, p->pGroupBy);
27 sqlite3ExprDelete(db, p->pHaving);
28 sqlite3ExprListDelete(db, p->pOrderBy);
29 sqlite3SelectDelete(db, p->pPrior);
30 sqlite3ExprDelete(db, p->pLimit);
31 sqlite3ExprDelete(db, p->pOffset);
35 ** Initialize a SelectDest structure.
37 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
38 pDest->eDest = (u8)eDest;
39 pDest->iSDParm = iParm;
40 pDest->affSdst = 0;
41 pDest->iSdst = 0;
42 pDest->nSdst = 0;
47 ** Allocate a new Select structure and return a pointer to that
48 ** structure.
50 Select *sqlite3SelectNew(
51 Parse *pParse, /* Parsing context */
52 ExprList *pEList, /* which columns to include in the result */
53 SrcList *pSrc, /* the FROM clause -- which tables to scan */
54 Expr *pWhere, /* the WHERE clause */
55 ExprList *pGroupBy, /* the GROUP BY clause */
56 Expr *pHaving, /* the HAVING clause */
57 ExprList *pOrderBy, /* the ORDER BY clause */
58 u16 selFlags, /* Flag parameters, such as SF_Distinct */
59 Expr *pLimit, /* LIMIT value. NULL means not used */
60 Expr *pOffset /* OFFSET value. NULL means no offset */
62 Select *pNew;
63 Select standin;
64 sqlite3 *db = pParse->db;
65 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
66 assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */
67 if( pNew==0 ){
68 assert( db->mallocFailed );
69 pNew = &standin;
70 memset(pNew, 0, sizeof(*pNew));
72 if( pEList==0 ){
73 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
75 pNew->pEList = pEList;
76 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
77 pNew->pSrc = pSrc;
78 pNew->pWhere = pWhere;
79 pNew->pGroupBy = pGroupBy;
80 pNew->pHaving = pHaving;
81 pNew->pOrderBy = pOrderBy;
82 pNew->selFlags = selFlags;
83 pNew->op = TK_SELECT;
84 pNew->pLimit = pLimit;
85 pNew->pOffset = pOffset;
86 assert( pOffset==0 || pLimit!=0 );
87 pNew->addrOpenEphm[0] = -1;
88 pNew->addrOpenEphm[1] = -1;
89 pNew->addrOpenEphm[2] = -1;
90 if( db->mallocFailed ) {
91 clearSelect(db, pNew);
92 if( pNew!=&standin ) sqlite3DbFree(db, pNew);
93 pNew = 0;
94 }else{
95 assert( pNew->pSrc!=0 || pParse->nErr>0 );
97 assert( pNew!=&standin );
98 return pNew;
102 ** Delete the given Select structure and all of its substructures.
104 void sqlite3SelectDelete(sqlite3 *db, Select *p){
105 if( p ){
106 clearSelect(db, p);
107 sqlite3DbFree(db, p);
112 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
113 ** type of join. Return an integer constant that expresses that type
114 ** in terms of the following bit values:
116 ** JT_INNER
117 ** JT_CROSS
118 ** JT_OUTER
119 ** JT_NATURAL
120 ** JT_LEFT
121 ** JT_RIGHT
123 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
125 ** If an illegal or unsupported join type is seen, then still return
126 ** a join type, but put an error in the pParse structure.
128 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
129 int jointype = 0;
130 Token *apAll[3];
131 Token *p;
132 /* 0123456789 123456789 123456789 123 */
133 static const char zKeyText[] = "naturaleftouterightfullinnercross";
134 static const struct {
135 u8 i; /* Beginning of keyword text in zKeyText[] */
136 u8 nChar; /* Length of the keyword in characters */
137 u8 code; /* Join type mask */
138 } aKeyword[] = {
139 /* natural */ { 0, 7, JT_NATURAL },
140 /* left */ { 6, 4, JT_LEFT|JT_OUTER },
141 /* outer */ { 10, 5, JT_OUTER },
142 /* right */ { 14, 5, JT_RIGHT|JT_OUTER },
143 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
144 /* inner */ { 23, 5, JT_INNER },
145 /* cross */ { 28, 5, JT_INNER|JT_CROSS },
147 int i, j;
148 apAll[0] = pA;
149 apAll[1] = pB;
150 apAll[2] = pC;
151 for(i=0; i<3 && apAll[i]; i++){
152 p = apAll[i];
153 for(j=0; j<ArraySize(aKeyword); j++){
154 if( p->n==aKeyword[j].nChar
155 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
156 jointype |= aKeyword[j].code;
157 break;
160 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
161 if( j>=ArraySize(aKeyword) ){
162 jointype |= JT_ERROR;
163 break;
167 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
168 (jointype & JT_ERROR)!=0
170 const char *zSp = " ";
171 assert( pB!=0 );
172 if( pC==0 ){ zSp++; }
173 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
174 "%T %T%s%T", pA, pB, zSp, pC);
175 jointype = JT_INNER;
176 }else if( (jointype & JT_OUTER)!=0
177 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
178 sqlite3ErrorMsg(pParse,
179 "RIGHT and FULL OUTER JOINs are not currently supported");
180 jointype = JT_INNER;
182 return jointype;
186 ** Return the index of a column in a table. Return -1 if the column
187 ** is not contained in the table.
189 static int columnIndex(Table *pTab, const char *zCol){
190 int i;
191 for(i=0; i<pTab->nCol; i++){
192 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
194 return -1;
198 ** Search the first N tables in pSrc, from left to right, looking for a
199 ** table that has a column named zCol.
201 ** When found, set *piTab and *piCol to the table index and column index
202 ** of the matching column and return TRUE.
204 ** If not found, return FALSE.
206 static int tableAndColumnIndex(
207 SrcList *pSrc, /* Array of tables to search */
208 int N, /* Number of tables in pSrc->a[] to search */
209 const char *zCol, /* Name of the column we are looking for */
210 int *piTab, /* Write index of pSrc->a[] here */
211 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
213 int i; /* For looping over tables in pSrc */
214 int iCol; /* Index of column matching zCol */
216 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */
217 for(i=0; i<N; i++){
218 iCol = columnIndex(pSrc->a[i].pTab, zCol);
219 if( iCol>=0 ){
220 if( piTab ){
221 *piTab = i;
222 *piCol = iCol;
224 return 1;
227 return 0;
231 ** This function is used to add terms implied by JOIN syntax to the
232 ** WHERE clause expression of a SELECT statement. The new term, which
233 ** is ANDed with the existing WHERE clause, is of the form:
235 ** (tab1.col1 = tab2.col2)
237 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
238 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
239 ** column iColRight of tab2.
241 static void addWhereTerm(
242 Parse *pParse, /* Parsing context */
243 SrcList *pSrc, /* List of tables in FROM clause */
244 int iLeft, /* Index of first table to join in pSrc */
245 int iColLeft, /* Index of column in first table */
246 int iRight, /* Index of second table in pSrc */
247 int iColRight, /* Index of column in second table */
248 int isOuterJoin, /* True if this is an OUTER join */
249 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */
251 sqlite3 *db = pParse->db;
252 Expr *pE1;
253 Expr *pE2;
254 Expr *pEq;
256 assert( iLeft<iRight );
257 assert( pSrc->nSrc>iRight );
258 assert( pSrc->a[iLeft].pTab );
259 assert( pSrc->a[iRight].pTab );
261 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
262 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
264 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
265 if( pEq && isOuterJoin ){
266 ExprSetProperty(pEq, EP_FromJoin);
267 assert( !ExprHasAnyProperty(pEq, EP_TokenOnly|EP_Reduced) );
268 ExprSetIrreducible(pEq);
269 pEq->iRightJoinTable = (i16)pE2->iTable;
271 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
275 ** Set the EP_FromJoin property on all terms of the given expression.
276 ** And set the Expr.iRightJoinTable to iTable for every term in the
277 ** expression.
279 ** The EP_FromJoin property is used on terms of an expression to tell
280 ** the LEFT OUTER JOIN processing logic that this term is part of the
281 ** join restriction specified in the ON or USING clause and not a part
282 ** of the more general WHERE clause. These terms are moved over to the
283 ** WHERE clause during join processing but we need to remember that they
284 ** originated in the ON or USING clause.
286 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
287 ** expression depends on table iRightJoinTable even if that table is not
288 ** explicitly mentioned in the expression. That information is needed
289 ** for cases like this:
291 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
293 ** The where clause needs to defer the handling of the t1.x=5
294 ** term until after the t2 loop of the join. In that way, a
295 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not
296 ** defer the handling of t1.x=5, it will be processed immediately
297 ** after the t1 loop and rows with t1.x!=5 will never appear in
298 ** the output, which is incorrect.
300 static void setJoinExpr(Expr *p, int iTable){
301 while( p ){
302 ExprSetProperty(p, EP_FromJoin);
303 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
304 ExprSetIrreducible(p);
305 p->iRightJoinTable = (i16)iTable;
306 setJoinExpr(p->pLeft, iTable);
307 p = p->pRight;
312 ** This routine processes the join information for a SELECT statement.
313 ** ON and USING clauses are converted into extra terms of the WHERE clause.
314 ** NATURAL joins also create extra WHERE clause terms.
316 ** The terms of a FROM clause are contained in the Select.pSrc structure.
317 ** The left most table is the first entry in Select.pSrc. The right-most
318 ** table is the last entry. The join operator is held in the entry to
319 ** the left. Thus entry 0 contains the join operator for the join between
320 ** entries 0 and 1. Any ON or USING clauses associated with the join are
321 ** also attached to the left entry.
323 ** This routine returns the number of errors encountered.
325 static int sqliteProcessJoin(Parse *pParse, Select *p){
326 SrcList *pSrc; /* All tables in the FROM clause */
327 int i, j; /* Loop counters */
328 struct SrcList_item *pLeft; /* Left table being joined */
329 struct SrcList_item *pRight; /* Right table being joined */
331 pSrc = p->pSrc;
332 pLeft = &pSrc->a[0];
333 pRight = &pLeft[1];
334 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
335 Table *pLeftTab = pLeft->pTab;
336 Table *pRightTab = pRight->pTab;
337 int isOuter;
339 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
340 isOuter = (pRight->jointype & JT_OUTER)!=0;
342 /* When the NATURAL keyword is present, add WHERE clause terms for
343 ** every column that the two tables have in common.
345 if( pRight->jointype & JT_NATURAL ){
346 if( pRight->pOn || pRight->pUsing ){
347 sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
348 "an ON or USING clause", 0);
349 return 1;
351 for(j=0; j<pRightTab->nCol; j++){
352 char *zName; /* Name of column in the right table */
353 int iLeft; /* Matching left table */
354 int iLeftCol; /* Matching column in the left table */
356 zName = pRightTab->aCol[j].zName;
357 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
358 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
359 isOuter, &p->pWhere);
364 /* Disallow both ON and USING clauses in the same join
366 if( pRight->pOn && pRight->pUsing ){
367 sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
368 "clauses in the same join");
369 return 1;
372 /* Add the ON clause to the end of the WHERE clause, connected by
373 ** an AND operator.
375 if( pRight->pOn ){
376 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
377 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
378 pRight->pOn = 0;
381 /* Create extra terms on the WHERE clause for each column named
382 ** in the USING clause. Example: If the two tables to be joined are
383 ** A and B and the USING clause names X, Y, and Z, then add this
384 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
385 ** Report an error if any column mentioned in the USING clause is
386 ** not contained in both tables to be joined.
388 if( pRight->pUsing ){
389 IdList *pList = pRight->pUsing;
390 for(j=0; j<pList->nId; j++){
391 char *zName; /* Name of the term in the USING clause */
392 int iLeft; /* Table on the left with matching column name */
393 int iLeftCol; /* Column number of matching column on the left */
394 int iRightCol; /* Column number of matching column on the right */
396 zName = pList->a[j].zName;
397 iRightCol = columnIndex(pRightTab, zName);
398 if( iRightCol<0
399 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
401 sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
402 "not present in both tables", zName);
403 return 1;
405 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
406 isOuter, &p->pWhere);
410 return 0;
414 ** Insert code into "v" that will push the record on the top of the
415 ** stack into the sorter.
417 static void pushOntoSorter(
418 Parse *pParse, /* Parser context */
419 ExprList *pOrderBy, /* The ORDER BY clause */
420 Select *pSelect, /* The whole SELECT statement */
421 int regData /* Register holding data to be sorted */
423 Vdbe *v = pParse->pVdbe;
424 int nExpr = pOrderBy->nExpr;
425 int regBase = sqlite3GetTempRange(pParse, nExpr+2);
426 int regRecord = sqlite3GetTempReg(pParse);
427 int op;
428 sqlite3ExprCacheClear(pParse);
429 sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
430 sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
431 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
432 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
433 if( pSelect->selFlags & SF_UseSorter ){
434 op = OP_SorterInsert;
435 }else{
436 op = OP_IdxInsert;
438 sqlite3VdbeAddOp2(v, op, pOrderBy->iECursor, regRecord);
439 sqlite3ReleaseTempReg(pParse, regRecord);
440 sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
441 if( pSelect->iLimit ){
442 int addr1, addr2;
443 int iLimit;
444 if( pSelect->iOffset ){
445 iLimit = pSelect->iOffset+1;
446 }else{
447 iLimit = pSelect->iLimit;
449 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit);
450 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
451 addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
452 sqlite3VdbeJumpHere(v, addr1);
453 sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
454 sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
455 sqlite3VdbeJumpHere(v, addr2);
460 ** Add code to implement the OFFSET
462 static void codeOffset(
463 Vdbe *v, /* Generate code into this VM */
464 Select *p, /* The SELECT statement being coded */
465 int iContinue /* Jump here to skip the current record */
467 if( p->iOffset && iContinue!=0 ){
468 int addr;
469 sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1);
470 addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset);
471 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
472 VdbeComment((v, "skip OFFSET records"));
473 sqlite3VdbeJumpHere(v, addr);
478 ** Add code that will check to make sure the N registers starting at iMem
479 ** form a distinct entry. iTab is a sorting index that holds previously
480 ** seen combinations of the N values. A new entry is made in iTab
481 ** if the current N values are new.
483 ** A jump to addrRepeat is made and the N+1 values are popped from the
484 ** stack if the top N elements are not distinct.
486 static void codeDistinct(
487 Parse *pParse, /* Parsing and code generating context */
488 int iTab, /* A sorting index used to test for distinctness */
489 int addrRepeat, /* Jump to here if not distinct */
490 int N, /* Number of elements */
491 int iMem /* First element */
493 Vdbe *v;
494 int r1;
496 v = pParse->pVdbe;
497 r1 = sqlite3GetTempReg(pParse);
498 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N);
499 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
500 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
501 sqlite3ReleaseTempReg(pParse, r1);
504 #ifndef SQLITE_OMIT_SUBQUERY
506 ** Generate an error message when a SELECT is used within a subexpression
507 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result
508 ** column. We do this in a subroutine because the error used to occur
509 ** in multiple places. (The error only occurs in one place now, but we
510 ** retain the subroutine to minimize code disruption.)
512 static int checkForMultiColumnSelectError(
513 Parse *pParse, /* Parse context. */
514 SelectDest *pDest, /* Destination of SELECT results */
515 int nExpr /* Number of result columns returned by SELECT */
517 int eDest = pDest->eDest;
518 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
519 sqlite3ErrorMsg(pParse, "only a single result allowed for "
520 "a SELECT that is part of an expression");
521 return 1;
522 }else{
523 return 0;
526 #endif
529 ** An instance of the following object is used to record information about
530 ** how to process the DISTINCT keyword, to simplify passing that information
531 ** into the selectInnerLoop() routine.
533 typedef struct DistinctCtx DistinctCtx;
534 struct DistinctCtx {
535 u8 isTnct; /* True if the DISTINCT keyword is present */
536 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */
537 int tabTnct; /* Ephemeral table used for DISTINCT processing */
538 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */
542 ** This routine generates the code for the inside of the inner loop
543 ** of a SELECT.
545 ** If srcTab and nColumn are both zero, then the pEList expressions
546 ** are evaluated in order to get the data for this row. If nColumn>0
547 ** then data is pulled from srcTab and pEList is used only to get the
548 ** datatypes for each column.
550 static void selectInnerLoop(
551 Parse *pParse, /* The parser context */
552 Select *p, /* The complete select statement being coded */
553 ExprList *pEList, /* List of values being extracted */
554 int srcTab, /* Pull data from this table */
555 int nColumn, /* Number of columns in the source table */
556 ExprList *pOrderBy, /* If not NULL, sort results using this key */
557 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
558 SelectDest *pDest, /* How to dispose of the results */
559 int iContinue, /* Jump here to continue with next row */
560 int iBreak /* Jump here to break out of the inner loop */
562 Vdbe *v = pParse->pVdbe;
563 int i;
564 int hasDistinct; /* True if the DISTINCT keyword is present */
565 int regResult; /* Start of memory holding result set */
566 int eDest = pDest->eDest; /* How to dispose of results */
567 int iParm = pDest->iSDParm; /* First argument to disposal method */
568 int nResultCol; /* Number of result columns */
570 assert( v );
571 if( NEVER(v==0) ) return;
572 assert( pEList!=0 );
573 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
574 if( pOrderBy==0 && !hasDistinct ){
575 codeOffset(v, p, iContinue);
578 /* Pull the requested columns.
580 if( nColumn>0 ){
581 nResultCol = nColumn;
582 }else{
583 nResultCol = pEList->nExpr;
585 if( pDest->iSdst==0 ){
586 pDest->iSdst = pParse->nMem+1;
587 pDest->nSdst = nResultCol;
588 pParse->nMem += nResultCol;
589 }else{
590 assert( pDest->nSdst==nResultCol );
592 regResult = pDest->iSdst;
593 if( nColumn>0 ){
594 for(i=0; i<nColumn; i++){
595 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
597 }else if( eDest!=SRT_Exists ){
598 /* If the destination is an EXISTS(...) expression, the actual
599 ** values returned by the SELECT are not required.
601 sqlite3ExprCacheClear(pParse);
602 sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output);
604 nColumn = nResultCol;
606 /* If the DISTINCT keyword was present on the SELECT statement
607 ** and this row has been seen before, then do not make this row
608 ** part of the result.
610 if( hasDistinct ){
611 assert( pEList!=0 );
612 assert( pEList->nExpr==nColumn );
613 switch( pDistinct->eTnctType ){
614 case WHERE_DISTINCT_ORDERED: {
615 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */
616 int iJump; /* Jump destination */
617 int regPrev; /* Previous row content */
619 /* Allocate space for the previous row */
620 regPrev = pParse->nMem+1;
621 pParse->nMem += nColumn;
623 /* Change the OP_OpenEphemeral coded earlier to an OP_Null
624 ** sets the MEM_Cleared bit on the first register of the
625 ** previous value. This will cause the OP_Ne below to always
626 ** fail on the first iteration of the loop even if the first
627 ** row is all NULLs.
629 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
630 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
631 pOp->opcode = OP_Null;
632 pOp->p1 = 1;
633 pOp->p2 = regPrev;
635 iJump = sqlite3VdbeCurrentAddr(v) + nColumn;
636 for(i=0; i<nColumn; i++){
637 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
638 if( i<nColumn-1 ){
639 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
640 }else{
641 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
643 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
644 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
646 assert( sqlite3VdbeCurrentAddr(v)==iJump );
647 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nColumn-1);
648 break;
651 case WHERE_DISTINCT_UNIQUE: {
652 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
653 break;
656 default: {
657 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
658 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nColumn, regResult);
659 break;
662 if( pOrderBy==0 ){
663 codeOffset(v, p, iContinue);
667 switch( eDest ){
668 /* In this mode, write each query result to the key of the temporary
669 ** table iParm.
671 #ifndef SQLITE_OMIT_COMPOUND_SELECT
672 case SRT_Union: {
673 int r1;
674 r1 = sqlite3GetTempReg(pParse);
675 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
676 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
677 sqlite3ReleaseTempReg(pParse, r1);
678 break;
681 /* Construct a record from the query result, but instead of
682 ** saving that record, use it as a key to delete elements from
683 ** the temporary table iParm.
685 case SRT_Except: {
686 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn);
687 break;
689 #endif
691 /* Store the result as data using a unique key.
693 case SRT_Table:
694 case SRT_EphemTab: {
695 int r1 = sqlite3GetTempReg(pParse);
696 testcase( eDest==SRT_Table );
697 testcase( eDest==SRT_EphemTab );
698 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
699 if( pOrderBy ){
700 pushOntoSorter(pParse, pOrderBy, p, r1);
701 }else{
702 int r2 = sqlite3GetTempReg(pParse);
703 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
704 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
705 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
706 sqlite3ReleaseTempReg(pParse, r2);
708 sqlite3ReleaseTempReg(pParse, r1);
709 break;
712 #ifndef SQLITE_OMIT_SUBQUERY
713 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
714 ** then there should be a single item on the stack. Write this
715 ** item into the set table with bogus data.
717 case SRT_Set: {
718 assert( nColumn==1 );
719 pDest->affSdst =
720 sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst);
721 if( pOrderBy ){
722 /* At first glance you would think we could optimize out the
723 ** ORDER BY in this case since the order of entries in the set
724 ** does not matter. But there might be a LIMIT clause, in which
725 ** case the order does matter */
726 pushOntoSorter(pParse, pOrderBy, p, regResult);
727 }else{
728 int r1 = sqlite3GetTempReg(pParse);
729 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1);
730 sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
731 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
732 sqlite3ReleaseTempReg(pParse, r1);
734 break;
737 /* If any row exist in the result set, record that fact and abort.
739 case SRT_Exists: {
740 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
741 /* The LIMIT clause will terminate the loop for us */
742 break;
745 /* If this is a scalar select that is part of an expression, then
746 ** store the results in the appropriate memory cell and break out
747 ** of the scan loop.
749 case SRT_Mem: {
750 assert( nColumn==1 );
751 if( pOrderBy ){
752 pushOntoSorter(pParse, pOrderBy, p, regResult);
753 }else{
754 sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
755 /* The LIMIT clause will jump out of the loop for us */
757 break;
759 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
761 /* Send the data to the callback function or to a subroutine. In the
762 ** case of a subroutine, the subroutine itself is responsible for
763 ** popping the data from the stack.
765 case SRT_Coroutine:
766 case SRT_Output: {
767 testcase( eDest==SRT_Coroutine );
768 testcase( eDest==SRT_Output );
769 if( pOrderBy ){
770 int r1 = sqlite3GetTempReg(pParse);
771 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
772 pushOntoSorter(pParse, pOrderBy, p, r1);
773 sqlite3ReleaseTempReg(pParse, r1);
774 }else if( eDest==SRT_Coroutine ){
775 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
776 }else{
777 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
778 sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn);
780 break;
783 #if !defined(SQLITE_OMIT_TRIGGER)
784 /* Discard the results. This is used for SELECT statements inside
785 ** the body of a TRIGGER. The purpose of such selects is to call
786 ** user-defined functions that have side effects. We do not care
787 ** about the actual results of the select.
789 default: {
790 assert( eDest==SRT_Discard );
791 break;
793 #endif
796 /* Jump to the end of the loop if the LIMIT is reached. Except, if
797 ** there is a sorter, in which case the sorter has already limited
798 ** the output for us.
800 if( pOrderBy==0 && p->iLimit ){
801 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
806 ** Given an expression list, generate a KeyInfo structure that records
807 ** the collating sequence for each expression in that expression list.
809 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
810 ** KeyInfo structure is appropriate for initializing a virtual index to
811 ** implement that clause. If the ExprList is the result set of a SELECT
812 ** then the KeyInfo structure is appropriate for initializing a virtual
813 ** index to implement a DISTINCT test.
815 ** Space to hold the KeyInfo structure is obtain from malloc. The calling
816 ** function is responsible for seeing that this structure is eventually
817 ** freed. Add the KeyInfo structure to the P4 field of an opcode using
818 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
820 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
821 sqlite3 *db = pParse->db;
822 int nExpr;
823 KeyInfo *pInfo;
824 struct ExprList_item *pItem;
825 int i;
827 nExpr = pList->nExpr;
828 pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
829 if( pInfo ){
830 pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
831 pInfo->nField = (u16)nExpr;
832 pInfo->enc = ENC(db);
833 pInfo->db = db;
834 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
835 CollSeq *pColl;
836 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
837 if( !pColl ){
838 pColl = db->pDfltColl;
840 pInfo->aColl[i] = pColl;
841 pInfo->aSortOrder[i] = pItem->sortOrder;
844 return pInfo;
847 #ifndef SQLITE_OMIT_COMPOUND_SELECT
849 ** Name of the connection operator, used for error messages.
851 static const char *selectOpName(int id){
852 char *z;
853 switch( id ){
854 case TK_ALL: z = "UNION ALL"; break;
855 case TK_INTERSECT: z = "INTERSECT"; break;
856 case TK_EXCEPT: z = "EXCEPT"; break;
857 default: z = "UNION"; break;
859 return z;
861 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
863 #ifndef SQLITE_OMIT_EXPLAIN
865 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
866 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
867 ** where the caption is of the form:
869 ** "USE TEMP B-TREE FOR xxx"
871 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
872 ** is determined by the zUsage argument.
874 static void explainTempTable(Parse *pParse, const char *zUsage){
875 if( pParse->explain==2 ){
876 Vdbe *v = pParse->pVdbe;
877 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
878 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
883 ** Assign expression b to lvalue a. A second, no-op, version of this macro
884 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
885 ** in sqlite3Select() to assign values to structure member variables that
886 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
887 ** code with #ifndef directives.
889 # define explainSetInteger(a, b) a = b
891 #else
892 /* No-op versions of the explainXXX() functions and macros. */
893 # define explainTempTable(y,z)
894 # define explainSetInteger(y,z)
895 #endif
897 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
899 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
900 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
901 ** where the caption is of one of the two forms:
903 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
904 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
906 ** where iSub1 and iSub2 are the integers passed as the corresponding
907 ** function parameters, and op is the text representation of the parameter
908 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
909 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
910 ** false, or the second form if it is true.
912 static void explainComposite(
913 Parse *pParse, /* Parse context */
914 int op, /* One of TK_UNION, TK_EXCEPT etc. */
915 int iSub1, /* Subquery id 1 */
916 int iSub2, /* Subquery id 2 */
917 int bUseTmp /* True if a temp table was used */
919 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
920 if( pParse->explain==2 ){
921 Vdbe *v = pParse->pVdbe;
922 char *zMsg = sqlite3MPrintf(
923 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
924 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
926 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
929 #else
930 /* No-op versions of the explainXXX() functions and macros. */
931 # define explainComposite(v,w,x,y,z)
932 #endif
935 ** If the inner loop was generated using a non-null pOrderBy argument,
936 ** then the results were placed in a sorter. After the loop is terminated
937 ** we need to run the sorter and output the results. The following
938 ** routine generates the code needed to do that.
940 static void generateSortTail(
941 Parse *pParse, /* Parsing context */
942 Select *p, /* The SELECT statement */
943 Vdbe *v, /* Generate code into this VDBE */
944 int nColumn, /* Number of columns of data */
945 SelectDest *pDest /* Write the sorted results here */
947 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */
948 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */
949 int addr;
950 int iTab;
951 int pseudoTab = 0;
952 ExprList *pOrderBy = p->pOrderBy;
954 int eDest = pDest->eDest;
955 int iParm = pDest->iSDParm;
957 int regRow;
958 int regRowid;
960 iTab = pOrderBy->iECursor;
961 regRow = sqlite3GetTempReg(pParse);
962 if( eDest==SRT_Output || eDest==SRT_Coroutine ){
963 pseudoTab = pParse->nTab++;
964 sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn);
965 regRowid = 0;
966 }else{
967 regRowid = sqlite3GetTempReg(pParse);
969 if( p->selFlags & SF_UseSorter ){
970 int regSortOut = ++pParse->nMem;
971 int ptab2 = pParse->nTab++;
972 sqlite3VdbeAddOp3(v, OP_OpenPseudo, ptab2, regSortOut, pOrderBy->nExpr+2);
973 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
974 codeOffset(v, p, addrContinue);
975 sqlite3VdbeAddOp2(v, OP_SorterData, iTab, regSortOut);
976 sqlite3VdbeAddOp3(v, OP_Column, ptab2, pOrderBy->nExpr+1, regRow);
977 sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
978 }else{
979 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak);
980 codeOffset(v, p, addrContinue);
981 sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr+1, regRow);
983 switch( eDest ){
984 case SRT_Table:
985 case SRT_EphemTab: {
986 testcase( eDest==SRT_Table );
987 testcase( eDest==SRT_EphemTab );
988 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
989 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
990 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
991 break;
993 #ifndef SQLITE_OMIT_SUBQUERY
994 case SRT_Set: {
995 assert( nColumn==1 );
996 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid,
997 &pDest->affSdst, 1);
998 sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
999 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
1000 break;
1002 case SRT_Mem: {
1003 assert( nColumn==1 );
1004 sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
1005 /* The LIMIT clause will terminate the loop for us */
1006 break;
1008 #endif
1009 default: {
1010 int i;
1011 assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1012 testcase( eDest==SRT_Output );
1013 testcase( eDest==SRT_Coroutine );
1014 for(i=0; i<nColumn; i++){
1015 assert( regRow!=pDest->iSdst+i );
1016 sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iSdst+i);
1017 if( i==0 ){
1018 sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
1021 if( eDest==SRT_Output ){
1022 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1023 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1024 }else{
1025 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1027 break;
1030 sqlite3ReleaseTempReg(pParse, regRow);
1031 sqlite3ReleaseTempReg(pParse, regRowid);
1033 /* The bottom of the loop
1035 sqlite3VdbeResolveLabel(v, addrContinue);
1036 if( p->selFlags & SF_UseSorter ){
1037 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr);
1038 }else{
1039 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
1041 sqlite3VdbeResolveLabel(v, addrBreak);
1042 if( eDest==SRT_Output || eDest==SRT_Coroutine ){
1043 sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
1048 ** Return a pointer to a string containing the 'declaration type' of the
1049 ** expression pExpr. The string may be treated as static by the caller.
1051 ** The declaration type is the exact datatype definition extracted from the
1052 ** original CREATE TABLE statement if the expression is a column. The
1053 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1054 ** is considered a column can be complex in the presence of subqueries. The
1055 ** result-set expression in all of the following SELECT statements is
1056 ** considered a column by this function.
1058 ** SELECT col FROM tbl;
1059 ** SELECT (SELECT col FROM tbl;
1060 ** SELECT (SELECT col FROM tbl);
1061 ** SELECT abc FROM (SELECT col AS abc FROM tbl);
1063 ** The declaration type for any expression other than a column is NULL.
1065 static const char *columnType(
1066 NameContext *pNC,
1067 Expr *pExpr,
1068 const char **pzOriginDb,
1069 const char **pzOriginTab,
1070 const char **pzOriginCol
1072 char const *zType = 0;
1073 char const *zOriginDb = 0;
1074 char const *zOriginTab = 0;
1075 char const *zOriginCol = 0;
1076 int j;
1077 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
1079 switch( pExpr->op ){
1080 case TK_AGG_COLUMN:
1081 case TK_COLUMN: {
1082 /* The expression is a column. Locate the table the column is being
1083 ** extracted from in NameContext.pSrcList. This table may be real
1084 ** database table or a subquery.
1086 Table *pTab = 0; /* Table structure column is extracted from */
1087 Select *pS = 0; /* Select the column is extracted from */
1088 int iCol = pExpr->iColumn; /* Index of column in pTab */
1089 testcase( pExpr->op==TK_AGG_COLUMN );
1090 testcase( pExpr->op==TK_COLUMN );
1091 while( pNC && !pTab ){
1092 SrcList *pTabList = pNC->pSrcList;
1093 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1094 if( j<pTabList->nSrc ){
1095 pTab = pTabList->a[j].pTab;
1096 pS = pTabList->a[j].pSelect;
1097 }else{
1098 pNC = pNC->pNext;
1102 if( pTab==0 ){
1103 /* At one time, code such as "SELECT new.x" within a trigger would
1104 ** cause this condition to run. Since then, we have restructured how
1105 ** trigger code is generated and so this condition is no longer
1106 ** possible. However, it can still be true for statements like
1107 ** the following:
1109 ** CREATE TABLE t1(col INTEGER);
1110 ** SELECT (SELECT t1.col) FROM FROM t1;
1112 ** when columnType() is called on the expression "t1.col" in the
1113 ** sub-select. In this case, set the column type to NULL, even
1114 ** though it should really be "INTEGER".
1116 ** This is not a problem, as the column type of "t1.col" is never
1117 ** used. When columnType() is called on the expression
1118 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1119 ** branch below. */
1120 break;
1123 assert( pTab && pExpr->pTab==pTab );
1124 if( pS ){
1125 /* The "table" is actually a sub-select or a view in the FROM clause
1126 ** of the SELECT statement. Return the declaration type and origin
1127 ** data for the result-set column of the sub-select.
1129 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
1130 /* If iCol is less than zero, then the expression requests the
1131 ** rowid of the sub-select or view. This expression is legal (see
1132 ** test case misc2.2.2) - it always evaluates to NULL.
1134 NameContext sNC;
1135 Expr *p = pS->pEList->a[iCol].pExpr;
1136 sNC.pSrcList = pS->pSrc;
1137 sNC.pNext = pNC;
1138 sNC.pParse = pNC->pParse;
1139 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
1141 }else if( ALWAYS(pTab->pSchema) ){
1142 /* A real table */
1143 assert( !pS );
1144 if( iCol<0 ) iCol = pTab->iPKey;
1145 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1146 if( iCol<0 ){
1147 zType = "INTEGER";
1148 zOriginCol = "rowid";
1149 }else{
1150 zType = pTab->aCol[iCol].zType;
1151 zOriginCol = pTab->aCol[iCol].zName;
1153 zOriginTab = pTab->zName;
1154 if( pNC->pParse ){
1155 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1156 zOriginDb = pNC->pParse->db->aDb[iDb].zName;
1159 break;
1161 #ifndef SQLITE_OMIT_SUBQUERY
1162 case TK_SELECT: {
1163 /* The expression is a sub-select. Return the declaration type and
1164 ** origin info for the single column in the result set of the SELECT
1165 ** statement.
1167 NameContext sNC;
1168 Select *pS = pExpr->x.pSelect;
1169 Expr *p = pS->pEList->a[0].pExpr;
1170 assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1171 sNC.pSrcList = pS->pSrc;
1172 sNC.pNext = pNC;
1173 sNC.pParse = pNC->pParse;
1174 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
1175 break;
1177 #endif
1180 if( pzOriginDb ){
1181 assert( pzOriginTab && pzOriginCol );
1182 *pzOriginDb = zOriginDb;
1183 *pzOriginTab = zOriginTab;
1184 *pzOriginCol = zOriginCol;
1186 return zType;
1190 ** Generate code that will tell the VDBE the declaration types of columns
1191 ** in the result set.
1193 static void generateColumnTypes(
1194 Parse *pParse, /* Parser context */
1195 SrcList *pTabList, /* List of tables */
1196 ExprList *pEList /* Expressions defining the result set */
1198 #ifndef SQLITE_OMIT_DECLTYPE
1199 Vdbe *v = pParse->pVdbe;
1200 int i;
1201 NameContext sNC;
1202 sNC.pSrcList = pTabList;
1203 sNC.pParse = pParse;
1204 for(i=0; i<pEList->nExpr; i++){
1205 Expr *p = pEList->a[i].pExpr;
1206 const char *zType;
1207 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1208 const char *zOrigDb = 0;
1209 const char *zOrigTab = 0;
1210 const char *zOrigCol = 0;
1211 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1213 /* The vdbe must make its own copy of the column-type and other
1214 ** column specific strings, in case the schema is reset before this
1215 ** virtual machine is deleted.
1217 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1218 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1219 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1220 #else
1221 zType = columnType(&sNC, p, 0, 0, 0);
1222 #endif
1223 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1225 #endif /* SQLITE_OMIT_DECLTYPE */
1229 ** Generate code that will tell the VDBE the names of columns
1230 ** in the result set. This information is used to provide the
1231 ** azCol[] values in the callback.
1233 static void generateColumnNames(
1234 Parse *pParse, /* Parser context */
1235 SrcList *pTabList, /* List of tables */
1236 ExprList *pEList /* Expressions defining the result set */
1238 Vdbe *v = pParse->pVdbe;
1239 int i, j;
1240 sqlite3 *db = pParse->db;
1241 int fullNames, shortNames;
1243 #ifndef SQLITE_OMIT_EXPLAIN
1244 /* If this is an EXPLAIN, skip this step */
1245 if( pParse->explain ){
1246 return;
1248 #endif
1250 if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
1251 pParse->colNamesSet = 1;
1252 fullNames = (db->flags & SQLITE_FullColNames)!=0;
1253 shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1254 sqlite3VdbeSetNumCols(v, pEList->nExpr);
1255 for(i=0; i<pEList->nExpr; i++){
1256 Expr *p;
1257 p = pEList->a[i].pExpr;
1258 if( NEVER(p==0) ) continue;
1259 if( pEList->a[i].zName ){
1260 char *zName = pEList->a[i].zName;
1261 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1262 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
1263 Table *pTab;
1264 char *zCol;
1265 int iCol = p->iColumn;
1266 for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1267 if( pTabList->a[j].iCursor==p->iTable ) break;
1269 assert( j<pTabList->nSrc );
1270 pTab = pTabList->a[j].pTab;
1271 if( iCol<0 ) iCol = pTab->iPKey;
1272 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1273 if( iCol<0 ){
1274 zCol = "rowid";
1275 }else{
1276 zCol = pTab->aCol[iCol].zName;
1278 if( !shortNames && !fullNames ){
1279 sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1280 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1281 }else if( fullNames ){
1282 char *zName = 0;
1283 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1284 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1285 }else{
1286 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1288 }else{
1289 sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1290 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1293 generateColumnTypes(pParse, pTabList, pEList);
1297 ** Given a an expression list (which is really the list of expressions
1298 ** that form the result set of a SELECT statement) compute appropriate
1299 ** column names for a table that would hold the expression list.
1301 ** All column names will be unique.
1303 ** Only the column names are computed. Column.zType, Column.zColl,
1304 ** and other fields of Column are zeroed.
1306 ** Return SQLITE_OK on success. If a memory allocation error occurs,
1307 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1309 static int selectColumnsFromExprList(
1310 Parse *pParse, /* Parsing context */
1311 ExprList *pEList, /* Expr list from which to derive column names */
1312 i16 *pnCol, /* Write the number of columns here */
1313 Column **paCol /* Write the new column list here */
1315 sqlite3 *db = pParse->db; /* Database connection */
1316 int i, j; /* Loop counters */
1317 int cnt; /* Index added to make the name unique */
1318 Column *aCol, *pCol; /* For looping over result columns */
1319 int nCol; /* Number of columns in the result set */
1320 Expr *p; /* Expression for a single result column */
1321 char *zName; /* Column name */
1322 int nName; /* Size of name in zName[] */
1324 if( pEList ){
1325 nCol = pEList->nExpr;
1326 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1327 testcase( aCol==0 );
1328 }else{
1329 nCol = 0;
1330 aCol = 0;
1332 *pnCol = nCol;
1333 *paCol = aCol;
1335 for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1336 /* Get an appropriate name for the column
1338 p = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1339 if( (zName = pEList->a[i].zName)!=0 ){
1340 /* If the column contains an "AS <name>" phrase, use <name> as the name */
1341 zName = sqlite3DbStrDup(db, zName);
1342 }else{
1343 Expr *pColExpr = p; /* The expression that is the result column name */
1344 Table *pTab; /* Table associated with this expression */
1345 while( pColExpr->op==TK_DOT ){
1346 pColExpr = pColExpr->pRight;
1347 assert( pColExpr!=0 );
1349 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
1350 /* For columns use the column name name */
1351 int iCol = pColExpr->iColumn;
1352 pTab = pColExpr->pTab;
1353 if( iCol<0 ) iCol = pTab->iPKey;
1354 zName = sqlite3MPrintf(db, "%s",
1355 iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
1356 }else if( pColExpr->op==TK_ID ){
1357 assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1358 zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
1359 }else{
1360 /* Use the original text of the column expression as its name */
1361 zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
1364 if( db->mallocFailed ){
1365 sqlite3DbFree(db, zName);
1366 break;
1369 /* Make sure the column name is unique. If the name is not unique,
1370 ** append a integer to the name so that it becomes unique.
1372 nName = sqlite3Strlen30(zName);
1373 for(j=cnt=0; j<i; j++){
1374 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1375 char *zNewName;
1376 int k;
1377 for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){}
1378 if( zName[k]==':' ) nName = k;
1379 zName[nName] = 0;
1380 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
1381 sqlite3DbFree(db, zName);
1382 zName = zNewName;
1383 j = -1;
1384 if( zName==0 ) break;
1387 pCol->zName = zName;
1389 if( db->mallocFailed ){
1390 for(j=0; j<i; j++){
1391 sqlite3DbFree(db, aCol[j].zName);
1393 sqlite3DbFree(db, aCol);
1394 *paCol = 0;
1395 *pnCol = 0;
1396 return SQLITE_NOMEM;
1398 return SQLITE_OK;
1402 ** Add type and collation information to a column list based on
1403 ** a SELECT statement.
1405 ** The column list presumably came from selectColumnNamesFromExprList().
1406 ** The column list has only names, not types or collations. This
1407 ** routine goes through and adds the types and collations.
1409 ** This routine requires that all identifiers in the SELECT
1410 ** statement be resolved.
1412 static void selectAddColumnTypeAndCollation(
1413 Parse *pParse, /* Parsing contexts */
1414 int nCol, /* Number of columns */
1415 Column *aCol, /* List of columns */
1416 Select *pSelect /* SELECT used to determine types and collations */
1418 sqlite3 *db = pParse->db;
1419 NameContext sNC;
1420 Column *pCol;
1421 CollSeq *pColl;
1422 int i;
1423 Expr *p;
1424 struct ExprList_item *a;
1426 assert( pSelect!=0 );
1427 assert( (pSelect->selFlags & SF_Resolved)!=0 );
1428 assert( nCol==pSelect->pEList->nExpr || db->mallocFailed );
1429 if( db->mallocFailed ) return;
1430 memset(&sNC, 0, sizeof(sNC));
1431 sNC.pSrcList = pSelect->pSrc;
1432 a = pSelect->pEList->a;
1433 for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1434 p = a[i].pExpr;
1435 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
1436 pCol->affinity = sqlite3ExprAffinity(p);
1437 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE;
1438 pColl = sqlite3ExprCollSeq(pParse, p);
1439 if( pColl ){
1440 pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1446 ** Given a SELECT statement, generate a Table structure that describes
1447 ** the result set of that SELECT.
1449 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1450 Table *pTab;
1451 sqlite3 *db = pParse->db;
1452 int savedFlags;
1454 savedFlags = db->flags;
1455 db->flags &= ~SQLITE_FullColNames;
1456 db->flags |= SQLITE_ShortColNames;
1457 sqlite3SelectPrep(pParse, pSelect, 0);
1458 if( pParse->nErr ) return 0;
1459 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1460 db->flags = savedFlags;
1461 pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1462 if( pTab==0 ){
1463 return 0;
1465 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1466 ** is disabled */
1467 assert( db->lookaside.bEnabled==0 );
1468 pTab->nRef = 1;
1469 pTab->zName = 0;
1470 pTab->nRowEst = 1000000;
1471 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1472 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect);
1473 pTab->iPKey = -1;
1474 if( db->mallocFailed ){
1475 sqlite3DeleteTable(db, pTab);
1476 return 0;
1478 return pTab;
1482 ** Get a VDBE for the given parser context. Create a new one if necessary.
1483 ** If an error occurs, return NULL and leave a message in pParse.
1485 Vdbe *sqlite3GetVdbe(Parse *pParse){
1486 Vdbe *v = pParse->pVdbe;
1487 if( v==0 ){
1488 v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
1489 #ifndef SQLITE_OMIT_TRACE
1490 if( v ){
1491 sqlite3VdbeAddOp0(v, OP_Trace);
1493 #endif
1495 return v;
1500 ** Compute the iLimit and iOffset fields of the SELECT based on the
1501 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions
1502 ** that appear in the original SQL statement after the LIMIT and OFFSET
1503 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
1504 ** are the integer memory register numbers for counters used to compute
1505 ** the limit and offset. If there is no limit and/or offset, then
1506 ** iLimit and iOffset are negative.
1508 ** This routine changes the values of iLimit and iOffset only if
1509 ** a limit or offset is defined by pLimit and pOffset. iLimit and
1510 ** iOffset should have been preset to appropriate default values
1511 ** (usually but not always -1) prior to calling this routine.
1512 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1513 ** redefined. The UNION ALL operator uses this property to force
1514 ** the reuse of the same limit and offset registers across multiple
1515 ** SELECT statements.
1517 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1518 Vdbe *v = 0;
1519 int iLimit = 0;
1520 int iOffset;
1521 int addr1, n;
1522 if( p->iLimit ) return;
1525 ** "LIMIT -1" always shows all rows. There is some
1526 ** contraversy about what the correct behavior should be.
1527 ** The current implementation interprets "LIMIT 0" to mean
1528 ** no rows.
1530 sqlite3ExprCacheClear(pParse);
1531 assert( p->pOffset==0 || p->pLimit!=0 );
1532 if( p->pLimit ){
1533 p->iLimit = iLimit = ++pParse->nMem;
1534 v = sqlite3GetVdbe(pParse);
1535 if( NEVER(v==0) ) return; /* VDBE should have already been allocated */
1536 if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1537 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1538 VdbeComment((v, "LIMIT counter"));
1539 if( n==0 ){
1540 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
1541 }else{
1542 if( p->nSelectRow > (double)n ) p->nSelectRow = (double)n;
1544 }else{
1545 sqlite3ExprCode(pParse, p->pLimit, iLimit);
1546 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
1547 VdbeComment((v, "LIMIT counter"));
1548 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
1550 if( p->pOffset ){
1551 p->iOffset = iOffset = ++pParse->nMem;
1552 pParse->nMem++; /* Allocate an extra register for limit+offset */
1553 sqlite3ExprCode(pParse, p->pOffset, iOffset);
1554 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset);
1555 VdbeComment((v, "OFFSET counter"));
1556 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset);
1557 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
1558 sqlite3VdbeJumpHere(v, addr1);
1559 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1560 VdbeComment((v, "LIMIT+OFFSET"));
1561 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit);
1562 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
1563 sqlite3VdbeJumpHere(v, addr1);
1568 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1570 ** Return the appropriate collating sequence for the iCol-th column of
1571 ** the result set for the compound-select statement "p". Return NULL if
1572 ** the column has no default collating sequence.
1574 ** The collating sequence for the compound select is taken from the
1575 ** left-most term of the select that has a collating sequence.
1577 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1578 CollSeq *pRet;
1579 if( p->pPrior ){
1580 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1581 }else{
1582 pRet = 0;
1584 assert( iCol>=0 );
1585 if( pRet==0 && iCol<p->pEList->nExpr ){
1586 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1588 return pRet;
1590 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1592 /* Forward reference */
1593 static int multiSelectOrderBy(
1594 Parse *pParse, /* Parsing context */
1595 Select *p, /* The right-most of SELECTs to be coded */
1596 SelectDest *pDest /* What to do with query results */
1600 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1602 ** This routine is called to process a compound query form from
1603 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
1604 ** INTERSECT
1606 ** "p" points to the right-most of the two queries. the query on the
1607 ** left is p->pPrior. The left query could also be a compound query
1608 ** in which case this routine will be called recursively.
1610 ** The results of the total query are to be written into a destination
1611 ** of type eDest with parameter iParm.
1613 ** Example 1: Consider a three-way compound SQL statement.
1615 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
1617 ** This statement is parsed up as follows:
1619 ** SELECT c FROM t3
1620 ** |
1621 ** `-----> SELECT b FROM t2
1622 ** |
1623 ** `------> SELECT a FROM t1
1625 ** The arrows in the diagram above represent the Select.pPrior pointer.
1626 ** So if this routine is called with p equal to the t3 query, then
1627 ** pPrior will be the t2 query. p->op will be TK_UNION in this case.
1629 ** Notice that because of the way SQLite parses compound SELECTs, the
1630 ** individual selects always group from left to right.
1632 static int multiSelect(
1633 Parse *pParse, /* Parsing context */
1634 Select *p, /* The right-most of SELECTs to be coded */
1635 SelectDest *pDest /* What to do with query results */
1637 int rc = SQLITE_OK; /* Success code from a subroutine */
1638 Select *pPrior; /* Another SELECT immediately to our left */
1639 Vdbe *v; /* Generate code to this VDBE */
1640 SelectDest dest; /* Alternative data destination */
1641 Select *pDelete = 0; /* Chain of simple selects to delete */
1642 sqlite3 *db; /* Database connection */
1643 #ifndef SQLITE_OMIT_EXPLAIN
1644 int iSub1; /* EQP id of left-hand query */
1645 int iSub2; /* EQP id of right-hand query */
1646 #endif
1648 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
1649 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
1651 assert( p && p->pPrior ); /* Calling function guarantees this much */
1652 db = pParse->db;
1653 pPrior = p->pPrior;
1654 assert( pPrior->pRightmost!=pPrior );
1655 assert( pPrior->pRightmost==p->pRightmost );
1656 dest = *pDest;
1657 if( pPrior->pOrderBy ){
1658 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
1659 selectOpName(p->op));
1660 rc = 1;
1661 goto multi_select_end;
1663 if( pPrior->pLimit ){
1664 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
1665 selectOpName(p->op));
1666 rc = 1;
1667 goto multi_select_end;
1670 v = sqlite3GetVdbe(pParse);
1671 assert( v!=0 ); /* The VDBE already created by calling function */
1673 /* Create the destination temporary table if necessary
1675 if( dest.eDest==SRT_EphemTab ){
1676 assert( p->pEList );
1677 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
1678 sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
1679 dest.eDest = SRT_Table;
1682 /* Make sure all SELECTs in the statement have the same number of elements
1683 ** in their result sets.
1685 assert( p->pEList && pPrior->pEList );
1686 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
1687 if( p->selFlags & SF_Values ){
1688 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
1689 }else{
1690 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
1691 " do not have the same number of result columns", selectOpName(p->op));
1693 rc = 1;
1694 goto multi_select_end;
1697 /* Compound SELECTs that have an ORDER BY clause are handled separately.
1699 if( p->pOrderBy ){
1700 return multiSelectOrderBy(pParse, p, pDest);
1703 /* Generate code for the left and right SELECT statements.
1705 switch( p->op ){
1706 case TK_ALL: {
1707 int addr = 0;
1708 int nLimit;
1709 assert( !pPrior->pLimit );
1710 pPrior->iLimit = p->iLimit;
1711 pPrior->iOffset = p->iOffset;
1712 pPrior->pLimit = p->pLimit;
1713 pPrior->pOffset = p->pOffset;
1714 explainSetInteger(iSub1, pParse->iNextSelectId);
1715 rc = sqlite3Select(pParse, pPrior, &dest);
1716 p->pLimit = 0;
1717 p->pOffset = 0;
1718 if( rc ){
1719 goto multi_select_end;
1721 p->pPrior = 0;
1722 p->iLimit = pPrior->iLimit;
1723 p->iOffset = pPrior->iOffset;
1724 if( p->iLimit ){
1725 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
1726 VdbeComment((v, "Jump ahead if LIMIT reached"));
1728 explainSetInteger(iSub2, pParse->iNextSelectId);
1729 rc = sqlite3Select(pParse, p, &dest);
1730 testcase( rc!=SQLITE_OK );
1731 pDelete = p->pPrior;
1732 p->pPrior = pPrior;
1733 p->nSelectRow += pPrior->nSelectRow;
1734 if( pPrior->pLimit
1735 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
1736 && p->nSelectRow > (double)nLimit
1738 p->nSelectRow = (double)nLimit;
1740 if( addr ){
1741 sqlite3VdbeJumpHere(v, addr);
1743 break;
1745 case TK_EXCEPT:
1746 case TK_UNION: {
1747 int unionTab; /* Cursor number of the temporary table holding result */
1748 u8 op = 0; /* One of the SRT_ operations to apply to self */
1749 int priorOp; /* The SRT_ operation to apply to prior selects */
1750 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
1751 int addr;
1752 SelectDest uniondest;
1754 testcase( p->op==TK_EXCEPT );
1755 testcase( p->op==TK_UNION );
1756 priorOp = SRT_Union;
1757 if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){
1758 /* We can reuse a temporary table generated by a SELECT to our
1759 ** right.
1761 assert( p->pRightmost!=p ); /* Can only happen for leftward elements
1762 ** of a 3-way or more compound */
1763 assert( p->pLimit==0 ); /* Not allowed on leftward elements */
1764 assert( p->pOffset==0 ); /* Not allowed on leftward elements */
1765 unionTab = dest.iSDParm;
1766 }else{
1767 /* We will need to create our own temporary table to hold the
1768 ** intermediate results.
1770 unionTab = pParse->nTab++;
1771 assert( p->pOrderBy==0 );
1772 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
1773 assert( p->addrOpenEphm[0] == -1 );
1774 p->addrOpenEphm[0] = addr;
1775 p->pRightmost->selFlags |= SF_UsesEphemeral;
1776 assert( p->pEList );
1779 /* Code the SELECT statements to our left
1781 assert( !pPrior->pOrderBy );
1782 sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
1783 explainSetInteger(iSub1, pParse->iNextSelectId);
1784 rc = sqlite3Select(pParse, pPrior, &uniondest);
1785 if( rc ){
1786 goto multi_select_end;
1789 /* Code the current SELECT statement
1791 if( p->op==TK_EXCEPT ){
1792 op = SRT_Except;
1793 }else{
1794 assert( p->op==TK_UNION );
1795 op = SRT_Union;
1797 p->pPrior = 0;
1798 pLimit = p->pLimit;
1799 p->pLimit = 0;
1800 pOffset = p->pOffset;
1801 p->pOffset = 0;
1802 uniondest.eDest = op;
1803 explainSetInteger(iSub2, pParse->iNextSelectId);
1804 rc = sqlite3Select(pParse, p, &uniondest);
1805 testcase( rc!=SQLITE_OK );
1806 /* Query flattening in sqlite3Select() might refill p->pOrderBy.
1807 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
1808 sqlite3ExprListDelete(db, p->pOrderBy);
1809 pDelete = p->pPrior;
1810 p->pPrior = pPrior;
1811 p->pOrderBy = 0;
1812 if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow;
1813 sqlite3ExprDelete(db, p->pLimit);
1814 p->pLimit = pLimit;
1815 p->pOffset = pOffset;
1816 p->iLimit = 0;
1817 p->iOffset = 0;
1819 /* Convert the data in the temporary table into whatever form
1820 ** it is that we currently need.
1822 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
1823 if( dest.eDest!=priorOp ){
1824 int iCont, iBreak, iStart;
1825 assert( p->pEList );
1826 if( dest.eDest==SRT_Output ){
1827 Select *pFirst = p;
1828 while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1829 generateColumnNames(pParse, 0, pFirst->pEList);
1831 iBreak = sqlite3VdbeMakeLabel(v);
1832 iCont = sqlite3VdbeMakeLabel(v);
1833 computeLimitRegisters(pParse, p, iBreak);
1834 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
1835 iStart = sqlite3VdbeCurrentAddr(v);
1836 selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
1837 0, 0, &dest, iCont, iBreak);
1838 sqlite3VdbeResolveLabel(v, iCont);
1839 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
1840 sqlite3VdbeResolveLabel(v, iBreak);
1841 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
1843 break;
1845 default: assert( p->op==TK_INTERSECT ); {
1846 int tab1, tab2;
1847 int iCont, iBreak, iStart;
1848 Expr *pLimit, *pOffset;
1849 int addr;
1850 SelectDest intersectdest;
1851 int r1;
1853 /* INTERSECT is different from the others since it requires
1854 ** two temporary tables. Hence it has its own case. Begin
1855 ** by allocating the tables we will need.
1857 tab1 = pParse->nTab++;
1858 tab2 = pParse->nTab++;
1859 assert( p->pOrderBy==0 );
1861 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
1862 assert( p->addrOpenEphm[0] == -1 );
1863 p->addrOpenEphm[0] = addr;
1864 p->pRightmost->selFlags |= SF_UsesEphemeral;
1865 assert( p->pEList );
1867 /* Code the SELECTs to our left into temporary table "tab1".
1869 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
1870 explainSetInteger(iSub1, pParse->iNextSelectId);
1871 rc = sqlite3Select(pParse, pPrior, &intersectdest);
1872 if( rc ){
1873 goto multi_select_end;
1876 /* Code the current SELECT into temporary table "tab2"
1878 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
1879 assert( p->addrOpenEphm[1] == -1 );
1880 p->addrOpenEphm[1] = addr;
1881 p->pPrior = 0;
1882 pLimit = p->pLimit;
1883 p->pLimit = 0;
1884 pOffset = p->pOffset;
1885 p->pOffset = 0;
1886 intersectdest.iSDParm = tab2;
1887 explainSetInteger(iSub2, pParse->iNextSelectId);
1888 rc = sqlite3Select(pParse, p, &intersectdest);
1889 testcase( rc!=SQLITE_OK );
1890 pDelete = p->pPrior;
1891 p->pPrior = pPrior;
1892 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
1893 sqlite3ExprDelete(db, p->pLimit);
1894 p->pLimit = pLimit;
1895 p->pOffset = pOffset;
1897 /* Generate code to take the intersection of the two temporary
1898 ** tables.
1900 assert( p->pEList );
1901 if( dest.eDest==SRT_Output ){
1902 Select *pFirst = p;
1903 while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1904 generateColumnNames(pParse, 0, pFirst->pEList);
1906 iBreak = sqlite3VdbeMakeLabel(v);
1907 iCont = sqlite3VdbeMakeLabel(v);
1908 computeLimitRegisters(pParse, p, iBreak);
1909 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
1910 r1 = sqlite3GetTempReg(pParse);
1911 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
1912 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
1913 sqlite3ReleaseTempReg(pParse, r1);
1914 selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
1915 0, 0, &dest, iCont, iBreak);
1916 sqlite3VdbeResolveLabel(v, iCont);
1917 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
1918 sqlite3VdbeResolveLabel(v, iBreak);
1919 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
1920 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
1921 break;
1925 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
1927 /* Compute collating sequences used by
1928 ** temporary tables needed to implement the compound select.
1929 ** Attach the KeyInfo structure to all temporary tables.
1931 ** This section is run by the right-most SELECT statement only.
1932 ** SELECT statements to the left always skip this part. The right-most
1933 ** SELECT might also skip this part if it has no ORDER BY clause and
1934 ** no temp tables are required.
1936 if( p->selFlags & SF_UsesEphemeral ){
1937 int i; /* Loop counter */
1938 KeyInfo *pKeyInfo; /* Collating sequence for the result set */
1939 Select *pLoop; /* For looping through SELECT statements */
1940 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
1941 int nCol; /* Number of columns in result set */
1943 assert( p->pRightmost==p );
1944 nCol = p->pEList->nExpr;
1945 pKeyInfo = sqlite3DbMallocZero(db,
1946 sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1));
1947 if( !pKeyInfo ){
1948 rc = SQLITE_NOMEM;
1949 goto multi_select_end;
1952 pKeyInfo->enc = ENC(db);
1953 pKeyInfo->nField = (u16)nCol;
1955 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
1956 *apColl = multiSelectCollSeq(pParse, p, i);
1957 if( 0==*apColl ){
1958 *apColl = db->pDfltColl;
1961 pKeyInfo->aSortOrder = (u8*)apColl;
1963 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
1964 for(i=0; i<2; i++){
1965 int addr = pLoop->addrOpenEphm[i];
1966 if( addr<0 ){
1967 /* If [0] is unused then [1] is also unused. So we can
1968 ** always safely abort as soon as the first unused slot is found */
1969 assert( pLoop->addrOpenEphm[1]<0 );
1970 break;
1972 sqlite3VdbeChangeP2(v, addr, nCol);
1973 sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO);
1974 pLoop->addrOpenEphm[i] = -1;
1977 sqlite3DbFree(db, pKeyInfo);
1980 multi_select_end:
1981 pDest->iSdst = dest.iSdst;
1982 pDest->nSdst = dest.nSdst;
1983 sqlite3SelectDelete(db, pDelete);
1984 return rc;
1986 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1989 ** Code an output subroutine for a coroutine implementation of a
1990 ** SELECT statment.
1992 ** The data to be output is contained in pIn->iSdst. There are
1993 ** pIn->nSdst columns to be output. pDest is where the output should
1994 ** be sent.
1996 ** regReturn is the number of the register holding the subroutine
1997 ** return address.
1999 ** If regPrev>0 then it is the first register in a vector that
2000 ** records the previous output. mem[regPrev] is a flag that is false
2001 ** if there has been no previous output. If regPrev>0 then code is
2002 ** generated to suppress duplicates. pKeyInfo is used for comparing
2003 ** keys.
2005 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2006 ** iBreak.
2008 static int generateOutputSubroutine(
2009 Parse *pParse, /* Parsing context */
2010 Select *p, /* The SELECT statement */
2011 SelectDest *pIn, /* Coroutine supplying data */
2012 SelectDest *pDest, /* Where to send the data */
2013 int regReturn, /* The return address register */
2014 int regPrev, /* Previous result register. No uniqueness if 0 */
2015 KeyInfo *pKeyInfo, /* For comparing with previous entry */
2016 int p4type, /* The p4 type for pKeyInfo */
2017 int iBreak /* Jump here if we hit the LIMIT */
2019 Vdbe *v = pParse->pVdbe;
2020 int iContinue;
2021 int addr;
2023 addr = sqlite3VdbeCurrentAddr(v);
2024 iContinue = sqlite3VdbeMakeLabel(v);
2026 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2028 if( regPrev ){
2029 int j1, j2;
2030 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev);
2031 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2032 (char*)pKeyInfo, p4type);
2033 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2);
2034 sqlite3VdbeJumpHere(v, j1);
2035 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2036 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2038 if( pParse->db->mallocFailed ) return 0;
2040 /* Suppress the first OFFSET entries if there is an OFFSET clause
2042 codeOffset(v, p, iContinue);
2044 switch( pDest->eDest ){
2045 /* Store the result as data using a unique key.
2047 case SRT_Table:
2048 case SRT_EphemTab: {
2049 int r1 = sqlite3GetTempReg(pParse);
2050 int r2 = sqlite3GetTempReg(pParse);
2051 testcase( pDest->eDest==SRT_Table );
2052 testcase( pDest->eDest==SRT_EphemTab );
2053 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2054 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2055 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2056 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2057 sqlite3ReleaseTempReg(pParse, r2);
2058 sqlite3ReleaseTempReg(pParse, r1);
2059 break;
2062 #ifndef SQLITE_OMIT_SUBQUERY
2063 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
2064 ** then there should be a single item on the stack. Write this
2065 ** item into the set table with bogus data.
2067 case SRT_Set: {
2068 int r1;
2069 assert( pIn->nSdst==1 );
2070 pDest->affSdst =
2071 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst);
2072 r1 = sqlite3GetTempReg(pParse);
2073 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1);
2074 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1);
2075 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1);
2076 sqlite3ReleaseTempReg(pParse, r1);
2077 break;
2080 #if 0 /* Never occurs on an ORDER BY query */
2081 /* If any row exist in the result set, record that fact and abort.
2083 case SRT_Exists: {
2084 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iSDParm);
2085 /* The LIMIT clause will terminate the loop for us */
2086 break;
2088 #endif
2090 /* If this is a scalar select that is part of an expression, then
2091 ** store the results in the appropriate memory cell and break out
2092 ** of the scan loop.
2094 case SRT_Mem: {
2095 assert( pIn->nSdst==1 );
2096 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2097 /* The LIMIT clause will jump out of the loop for us */
2098 break;
2100 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2102 /* The results are stored in a sequence of registers
2103 ** starting at pDest->iSdst. Then the co-routine yields.
2105 case SRT_Coroutine: {
2106 if( pDest->iSdst==0 ){
2107 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2108 pDest->nSdst = pIn->nSdst;
2110 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pDest->nSdst);
2111 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2112 break;
2115 /* If none of the above, then the result destination must be
2116 ** SRT_Output. This routine is never called with any other
2117 ** destination other than the ones handled above or SRT_Output.
2119 ** For SRT_Output, results are stored in a sequence of registers.
2120 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2121 ** return the next row of result.
2123 default: {
2124 assert( pDest->eDest==SRT_Output );
2125 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2126 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2127 break;
2131 /* Jump to the end of the loop if the LIMIT is reached.
2133 if( p->iLimit ){
2134 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
2137 /* Generate the subroutine return
2139 sqlite3VdbeResolveLabel(v, iContinue);
2140 sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2142 return addr;
2146 ** Alternative compound select code generator for cases when there
2147 ** is an ORDER BY clause.
2149 ** We assume a query of the following form:
2151 ** <selectA> <operator> <selectB> ORDER BY <orderbylist>
2153 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
2154 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2155 ** co-routines. Then run the co-routines in parallel and merge the results
2156 ** into the output. In addition to the two coroutines (called selectA and
2157 ** selectB) there are 7 subroutines:
2159 ** outA: Move the output of the selectA coroutine into the output
2160 ** of the compound query.
2162 ** outB: Move the output of the selectB coroutine into the output
2163 ** of the compound query. (Only generated for UNION and
2164 ** UNION ALL. EXCEPT and INSERTSECT never output a row that
2165 ** appears only in B.)
2167 ** AltB: Called when there is data from both coroutines and A<B.
2169 ** AeqB: Called when there is data from both coroutines and A==B.
2171 ** AgtB: Called when there is data from both coroutines and A>B.
2173 ** EofA: Called when data is exhausted from selectA.
2175 ** EofB: Called when data is exhausted from selectB.
2177 ** The implementation of the latter five subroutines depend on which
2178 ** <operator> is used:
2181 ** UNION ALL UNION EXCEPT INTERSECT
2182 ** ------------- ----------------- -------------- -----------------
2183 ** AltB: outA, nextA outA, nextA outA, nextA nextA
2185 ** AeqB: outA, nextA nextA nextA outA, nextA
2187 ** AgtB: outB, nextB outB, nextB nextB nextB
2189 ** EofA: outB, nextB outB, nextB halt halt
2191 ** EofB: outA, nextA outA, nextA outA, nextA halt
2193 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2194 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2195 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
2196 ** following nextX causes a jump to the end of the select processing.
2198 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2199 ** within the output subroutine. The regPrev register set holds the previously
2200 ** output value. A comparison is made against this value and the output
2201 ** is skipped if the next results would be the same as the previous.
2203 ** The implementation plan is to implement the two coroutines and seven
2204 ** subroutines first, then put the control logic at the bottom. Like this:
2206 ** goto Init
2207 ** coA: coroutine for left query (A)
2208 ** coB: coroutine for right query (B)
2209 ** outA: output one row of A
2210 ** outB: output one row of B (UNION and UNION ALL only)
2211 ** EofA: ...
2212 ** EofB: ...
2213 ** AltB: ...
2214 ** AeqB: ...
2215 ** AgtB: ...
2216 ** Init: initialize coroutine registers
2217 ** yield coA
2218 ** if eof(A) goto EofA
2219 ** yield coB
2220 ** if eof(B) goto EofB
2221 ** Cmpr: Compare A, B
2222 ** Jump AltB, AeqB, AgtB
2223 ** End: ...
2225 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2226 ** actually called using Gosub and they do not Return. EofA and EofB loop
2227 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
2228 ** and AgtB jump to either L2 or to one of EofA or EofB.
2230 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2231 static int multiSelectOrderBy(
2232 Parse *pParse, /* Parsing context */
2233 Select *p, /* The right-most of SELECTs to be coded */
2234 SelectDest *pDest /* What to do with query results */
2236 int i, j; /* Loop counters */
2237 Select *pPrior; /* Another SELECT immediately to our left */
2238 Vdbe *v; /* Generate code to this VDBE */
2239 SelectDest destA; /* Destination for coroutine A */
2240 SelectDest destB; /* Destination for coroutine B */
2241 int regAddrA; /* Address register for select-A coroutine */
2242 int regEofA; /* Flag to indicate when select-A is complete */
2243 int regAddrB; /* Address register for select-B coroutine */
2244 int regEofB; /* Flag to indicate when select-B is complete */
2245 int addrSelectA; /* Address of the select-A coroutine */
2246 int addrSelectB; /* Address of the select-B coroutine */
2247 int regOutA; /* Address register for the output-A subroutine */
2248 int regOutB; /* Address register for the output-B subroutine */
2249 int addrOutA; /* Address of the output-A subroutine */
2250 int addrOutB = 0; /* Address of the output-B subroutine */
2251 int addrEofA; /* Address of the select-A-exhausted subroutine */
2252 int addrEofB; /* Address of the select-B-exhausted subroutine */
2253 int addrAltB; /* Address of the A<B subroutine */
2254 int addrAeqB; /* Address of the A==B subroutine */
2255 int addrAgtB; /* Address of the A>B subroutine */
2256 int regLimitA; /* Limit register for select-A */
2257 int regLimitB; /* Limit register for select-A */
2258 int regPrev; /* A range of registers to hold previous output */
2259 int savedLimit; /* Saved value of p->iLimit */
2260 int savedOffset; /* Saved value of p->iOffset */
2261 int labelCmpr; /* Label for the start of the merge algorithm */
2262 int labelEnd; /* Label for the end of the overall SELECT stmt */
2263 int j1; /* Jump instructions that get retargetted */
2264 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2265 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2266 KeyInfo *pKeyMerge; /* Comparison information for merging rows */
2267 sqlite3 *db; /* Database connection */
2268 ExprList *pOrderBy; /* The ORDER BY clause */
2269 int nOrderBy; /* Number of terms in the ORDER BY clause */
2270 int *aPermute; /* Mapping from ORDER BY terms to result set columns */
2271 #ifndef SQLITE_OMIT_EXPLAIN
2272 int iSub1; /* EQP id of left-hand query */
2273 int iSub2; /* EQP id of right-hand query */
2274 #endif
2276 assert( p->pOrderBy!=0 );
2277 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */
2278 db = pParse->db;
2279 v = pParse->pVdbe;
2280 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */
2281 labelEnd = sqlite3VdbeMakeLabel(v);
2282 labelCmpr = sqlite3VdbeMakeLabel(v);
2285 /* Patch up the ORDER BY clause
2287 op = p->op;
2288 pPrior = p->pPrior;
2289 assert( pPrior->pOrderBy==0 );
2290 pOrderBy = p->pOrderBy;
2291 assert( pOrderBy );
2292 nOrderBy = pOrderBy->nExpr;
2294 /* For operators other than UNION ALL we have to make sure that
2295 ** the ORDER BY clause covers every term of the result set. Add
2296 ** terms to the ORDER BY clause as necessary.
2298 if( op!=TK_ALL ){
2299 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2300 struct ExprList_item *pItem;
2301 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2302 assert( pItem->iOrderByCol>0 );
2303 if( pItem->iOrderByCol==i ) break;
2305 if( j==nOrderBy ){
2306 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2307 if( pNew==0 ) return SQLITE_NOMEM;
2308 pNew->flags |= EP_IntValue;
2309 pNew->u.iValue = i;
2310 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2311 if( pOrderBy ) pOrderBy->a[nOrderBy++].iOrderByCol = (u16)i;
2316 /* Compute the comparison permutation and keyinfo that is used with
2317 ** the permutation used to determine if the next
2318 ** row of results comes from selectA or selectB. Also add explicit
2319 ** collations to the ORDER BY clause terms so that when the subqueries
2320 ** to the right and the left are evaluated, they use the correct
2321 ** collation.
2323 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2324 if( aPermute ){
2325 struct ExprList_item *pItem;
2326 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
2327 assert( pItem->iOrderByCol>0 && pItem->iOrderByCol<=p->pEList->nExpr );
2328 aPermute[i] = pItem->iOrderByCol - 1;
2330 pKeyMerge =
2331 sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1));
2332 if( pKeyMerge ){
2333 pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy];
2334 pKeyMerge->nField = (u16)nOrderBy;
2335 pKeyMerge->enc = ENC(db);
2336 for(i=0; i<nOrderBy; i++){
2337 CollSeq *pColl;
2338 Expr *pTerm = pOrderBy->a[i].pExpr;
2339 if( pTerm->flags & EP_Collate ){
2340 pColl = sqlite3ExprCollSeq(pParse, pTerm);
2341 }else{
2342 pColl = multiSelectCollSeq(pParse, p, aPermute[i]);
2343 if( pColl==0 ) pColl = db->pDfltColl;
2344 pOrderBy->a[i].pExpr =
2345 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2347 pKeyMerge->aColl[i] = pColl;
2348 pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2351 }else{
2352 pKeyMerge = 0;
2355 /* Reattach the ORDER BY clause to the query.
2357 p->pOrderBy = pOrderBy;
2358 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2360 /* Allocate a range of temporary registers and the KeyInfo needed
2361 ** for the logic that removes duplicate result rows when the
2362 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2364 if( op==TK_ALL ){
2365 regPrev = 0;
2366 }else{
2367 int nExpr = p->pEList->nExpr;
2368 assert( nOrderBy>=nExpr || db->mallocFailed );
2369 regPrev = pParse->nMem+1;
2370 pParse->nMem += nExpr+1;
2371 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2372 pKeyDup = sqlite3DbMallocZero(db,
2373 sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) );
2374 if( pKeyDup ){
2375 pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr];
2376 pKeyDup->nField = (u16)nExpr;
2377 pKeyDup->enc = ENC(db);
2378 for(i=0; i<nExpr; i++){
2379 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2380 pKeyDup->aSortOrder[i] = 0;
2385 /* Separate the left and the right query from one another
2387 p->pPrior = 0;
2388 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2389 if( pPrior->pPrior==0 ){
2390 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2393 /* Compute the limit registers */
2394 computeLimitRegisters(pParse, p, labelEnd);
2395 if( p->iLimit && op==TK_ALL ){
2396 regLimitA = ++pParse->nMem;
2397 regLimitB = ++pParse->nMem;
2398 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2399 regLimitA);
2400 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2401 }else{
2402 regLimitA = regLimitB = 0;
2404 sqlite3ExprDelete(db, p->pLimit);
2405 p->pLimit = 0;
2406 sqlite3ExprDelete(db, p->pOffset);
2407 p->pOffset = 0;
2409 regAddrA = ++pParse->nMem;
2410 regEofA = ++pParse->nMem;
2411 regAddrB = ++pParse->nMem;
2412 regEofB = ++pParse->nMem;
2413 regOutA = ++pParse->nMem;
2414 regOutB = ++pParse->nMem;
2415 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2416 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2418 /* Jump past the various subroutines and coroutines to the main
2419 ** merge loop
2421 j1 = sqlite3VdbeAddOp0(v, OP_Goto);
2422 addrSelectA = sqlite3VdbeCurrentAddr(v);
2425 /* Generate a coroutine to evaluate the SELECT statement to the
2426 ** left of the compound operator - the "A" select.
2428 VdbeNoopComment((v, "Begin coroutine for left SELECT"));
2429 pPrior->iLimit = regLimitA;
2430 explainSetInteger(iSub1, pParse->iNextSelectId);
2431 sqlite3Select(pParse, pPrior, &destA);
2432 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA);
2433 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2434 VdbeNoopComment((v, "End coroutine for left SELECT"));
2436 /* Generate a coroutine to evaluate the SELECT statement on
2437 ** the right - the "B" select
2439 addrSelectB = sqlite3VdbeCurrentAddr(v);
2440 VdbeNoopComment((v, "Begin coroutine for right SELECT"));
2441 savedLimit = p->iLimit;
2442 savedOffset = p->iOffset;
2443 p->iLimit = regLimitB;
2444 p->iOffset = 0;
2445 explainSetInteger(iSub2, pParse->iNextSelectId);
2446 sqlite3Select(pParse, p, &destB);
2447 p->iLimit = savedLimit;
2448 p->iOffset = savedOffset;
2449 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB);
2450 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2451 VdbeNoopComment((v, "End coroutine for right SELECT"));
2453 /* Generate a subroutine that outputs the current row of the A
2454 ** select as the next output row of the compound select.
2456 VdbeNoopComment((v, "Output routine for A"));
2457 addrOutA = generateOutputSubroutine(pParse,
2458 p, &destA, pDest, regOutA,
2459 regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd);
2461 /* Generate a subroutine that outputs the current row of the B
2462 ** select as the next output row of the compound select.
2464 if( op==TK_ALL || op==TK_UNION ){
2465 VdbeNoopComment((v, "Output routine for B"));
2466 addrOutB = generateOutputSubroutine(pParse,
2467 p, &destB, pDest, regOutB,
2468 regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd);
2471 /* Generate a subroutine to run when the results from select A
2472 ** are exhausted and only data in select B remains.
2474 VdbeNoopComment((v, "eof-A subroutine"));
2475 if( op==TK_EXCEPT || op==TK_INTERSECT ){
2476 addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd);
2477 }else{
2478 addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd);
2479 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2480 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2481 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
2482 p->nSelectRow += pPrior->nSelectRow;
2485 /* Generate a subroutine to run when the results from select B
2486 ** are exhausted and only data in select A remains.
2488 if( op==TK_INTERSECT ){
2489 addrEofB = addrEofA;
2490 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2491 }else{
2492 VdbeNoopComment((v, "eof-B subroutine"));
2493 addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd);
2494 sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2495 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2496 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
2499 /* Generate code to handle the case of A<B
2501 VdbeNoopComment((v, "A-lt-B subroutine"));
2502 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2503 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2504 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2505 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2507 /* Generate code to handle the case of A==B
2509 if( op==TK_ALL ){
2510 addrAeqB = addrAltB;
2511 }else if( op==TK_INTERSECT ){
2512 addrAeqB = addrAltB;
2513 addrAltB++;
2514 }else{
2515 VdbeNoopComment((v, "A-eq-B subroutine"));
2516 addrAeqB =
2517 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2518 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2519 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2522 /* Generate code to handle the case of A>B
2524 VdbeNoopComment((v, "A-gt-B subroutine"));
2525 addrAgtB = sqlite3VdbeCurrentAddr(v);
2526 if( op==TK_ALL || op==TK_UNION ){
2527 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2529 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2530 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2531 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2533 /* This code runs once to initialize everything.
2535 sqlite3VdbeJumpHere(v, j1);
2536 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA);
2537 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB);
2538 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA);
2539 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB);
2540 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2541 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2543 /* Implement the main merge loop
2545 sqlite3VdbeResolveLabel(v, labelCmpr);
2546 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
2547 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
2548 (char*)pKeyMerge, P4_KEYINFO_HANDOFF);
2549 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
2550 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB);
2552 /* Jump to the this point in order to terminate the query.
2554 sqlite3VdbeResolveLabel(v, labelEnd);
2556 /* Set the number of output columns
2558 if( pDest->eDest==SRT_Output ){
2559 Select *pFirst = pPrior;
2560 while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2561 generateColumnNames(pParse, 0, pFirst->pEList);
2564 /* Reassembly the compound query so that it will be freed correctly
2565 ** by the calling function */
2566 if( p->pPrior ){
2567 sqlite3SelectDelete(db, p->pPrior);
2569 p->pPrior = pPrior;
2571 /*** TBD: Insert subroutine calls to close cursors on incomplete
2572 **** subqueries ****/
2573 explainComposite(pParse, p->op, iSub1, iSub2, 0);
2574 return SQLITE_OK;
2576 #endif
2578 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2579 /* Forward Declarations */
2580 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
2581 static void substSelect(sqlite3*, Select *, int, ExprList *);
2584 ** Scan through the expression pExpr. Replace every reference to
2585 ** a column in table number iTable with a copy of the iColumn-th
2586 ** entry in pEList. (But leave references to the ROWID column
2587 ** unchanged.)
2589 ** This routine is part of the flattening procedure. A subquery
2590 ** whose result set is defined by pEList appears as entry in the
2591 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
2592 ** FORM clause entry is iTable. This routine make the necessary
2593 ** changes to pExpr so that it refers directly to the source table
2594 ** of the subquery rather the result set of the subquery.
2596 static Expr *substExpr(
2597 sqlite3 *db, /* Report malloc errors to this connection */
2598 Expr *pExpr, /* Expr in which substitution occurs */
2599 int iTable, /* Table to be substituted */
2600 ExprList *pEList /* Substitute expressions */
2602 if( pExpr==0 ) return 0;
2603 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
2604 if( pExpr->iColumn<0 ){
2605 pExpr->op = TK_NULL;
2606 }else{
2607 Expr *pNew;
2608 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
2609 assert( pExpr->pLeft==0 && pExpr->pRight==0 );
2610 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
2611 sqlite3ExprDelete(db, pExpr);
2612 pExpr = pNew;
2614 }else{
2615 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
2616 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
2617 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2618 substSelect(db, pExpr->x.pSelect, iTable, pEList);
2619 }else{
2620 substExprList(db, pExpr->x.pList, iTable, pEList);
2623 return pExpr;
2625 static void substExprList(
2626 sqlite3 *db, /* Report malloc errors here */
2627 ExprList *pList, /* List to scan and in which to make substitutes */
2628 int iTable, /* Table to be substituted */
2629 ExprList *pEList /* Substitute values */
2631 int i;
2632 if( pList==0 ) return;
2633 for(i=0; i<pList->nExpr; i++){
2634 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
2637 static void substSelect(
2638 sqlite3 *db, /* Report malloc errors here */
2639 Select *p, /* SELECT statement in which to make substitutions */
2640 int iTable, /* Table to be replaced */
2641 ExprList *pEList /* Substitute values */
2643 SrcList *pSrc;
2644 struct SrcList_item *pItem;
2645 int i;
2646 if( !p ) return;
2647 substExprList(db, p->pEList, iTable, pEList);
2648 substExprList(db, p->pGroupBy, iTable, pEList);
2649 substExprList(db, p->pOrderBy, iTable, pEList);
2650 p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
2651 p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
2652 substSelect(db, p->pPrior, iTable, pEList);
2653 pSrc = p->pSrc;
2654 assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
2655 if( ALWAYS(pSrc) ){
2656 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
2657 substSelect(db, pItem->pSelect, iTable, pEList);
2661 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
2663 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2665 ** This routine attempts to flatten subqueries as a performance optimization.
2666 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
2668 ** To understand the concept of flattening, consider the following
2669 ** query:
2671 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
2673 ** The default way of implementing this query is to execute the
2674 ** subquery first and store the results in a temporary table, then
2675 ** run the outer query on that temporary table. This requires two
2676 ** passes over the data. Furthermore, because the temporary table
2677 ** has no indices, the WHERE clause on the outer query cannot be
2678 ** optimized.
2680 ** This routine attempts to rewrite queries such as the above into
2681 ** a single flat select, like this:
2683 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
2685 ** The code generated for this simpification gives the same result
2686 ** but only has to scan the data once. And because indices might
2687 ** exist on the table t1, a complete scan of the data might be
2688 ** avoided.
2690 ** Flattening is only attempted if all of the following are true:
2692 ** (1) The subquery and the outer query do not both use aggregates.
2694 ** (2) The subquery is not an aggregate or the outer query is not a join.
2696 ** (3) The subquery is not the right operand of a left outer join
2697 ** (Originally ticket #306. Strengthened by ticket #3300)
2699 ** (4) The subquery is not DISTINCT.
2701 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
2702 ** sub-queries that were excluded from this optimization. Restriction
2703 ** (4) has since been expanded to exclude all DISTINCT subqueries.
2705 ** (6) The subquery does not use aggregates or the outer query is not
2706 ** DISTINCT.
2708 ** (7) The subquery has a FROM clause. TODO: For subqueries without
2709 ** A FROM clause, consider adding a FROM close with the special
2710 ** table sqlite_once that consists of a single row containing a
2711 ** single NULL.
2713 ** (8) The subquery does not use LIMIT or the outer query is not a join.
2715 ** (9) The subquery does not use LIMIT or the outer query does not use
2716 ** aggregates.
2718 ** (10) The subquery does not use aggregates or the outer query does not
2719 ** use LIMIT.
2721 ** (11) The subquery and the outer query do not both have ORDER BY clauses.
2723 ** (**) Not implemented. Subsumed into restriction (3). Was previously
2724 ** a separate restriction deriving from ticket #350.
2726 ** (13) The subquery and outer query do not both use LIMIT.
2728 ** (14) The subquery does not use OFFSET.
2730 ** (15) The outer query is not part of a compound select or the
2731 ** subquery does not have a LIMIT clause.
2732 ** (See ticket #2339 and ticket [02a8e81d44]).
2734 ** (16) The outer query is not an aggregate or the subquery does
2735 ** not contain ORDER BY. (Ticket #2942) This used to not matter
2736 ** until we introduced the group_concat() function.
2738 ** (17) The sub-query is not a compound select, or it is a UNION ALL
2739 ** compound clause made up entirely of non-aggregate queries, and
2740 ** the parent query:
2742 ** * is not itself part of a compound select,
2743 ** * is not an aggregate or DISTINCT query, and
2744 ** * is not a join
2746 ** The parent and sub-query may contain WHERE clauses. Subject to
2747 ** rules (11), (13) and (14), they may also contain ORDER BY,
2748 ** LIMIT and OFFSET clauses. The subquery cannot use any compound
2749 ** operator other than UNION ALL because all the other compound
2750 ** operators have an implied DISTINCT which is disallowed by
2751 ** restriction (4).
2753 ** Also, each component of the sub-query must return the same number
2754 ** of result columns. This is actually a requirement for any compound
2755 ** SELECT statement, but all the code here does is make sure that no
2756 ** such (illegal) sub-query is flattened. The caller will detect the
2757 ** syntax error and return a detailed message.
2759 ** (18) If the sub-query is a compound select, then all terms of the
2760 ** ORDER by clause of the parent must be simple references to
2761 ** columns of the sub-query.
2763 ** (19) The subquery does not use LIMIT or the outer query does not
2764 ** have a WHERE clause.
2766 ** (20) If the sub-query is a compound select, then it must not use
2767 ** an ORDER BY clause. Ticket #3773. We could relax this constraint
2768 ** somewhat by saying that the terms of the ORDER BY clause must
2769 ** appear as unmodified result columns in the outer query. But we
2770 ** have other optimizations in mind to deal with that case.
2772 ** (21) The subquery does not use LIMIT or the outer query is not
2773 ** DISTINCT. (See ticket [752e1646fc]).
2775 ** In this routine, the "p" parameter is a pointer to the outer query.
2776 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
2777 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
2779 ** If flattening is not attempted, this routine is a no-op and returns 0.
2780 ** If flattening is attempted this routine returns 1.
2782 ** All of the expression analysis must occur on both the outer query and
2783 ** the subquery before this routine runs.
2785 static int flattenSubquery(
2786 Parse *pParse, /* Parsing context */
2787 Select *p, /* The parent or outer SELECT statement */
2788 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
2789 int isAgg, /* True if outer SELECT uses aggregate functions */
2790 int subqueryIsAgg /* True if the subquery uses aggregate functions */
2792 const char *zSavedAuthContext = pParse->zAuthContext;
2793 Select *pParent;
2794 Select *pSub; /* The inner query or "subquery" */
2795 Select *pSub1; /* Pointer to the rightmost select in sub-query */
2796 SrcList *pSrc; /* The FROM clause of the outer query */
2797 SrcList *pSubSrc; /* The FROM clause of the subquery */
2798 ExprList *pList; /* The result set of the outer query */
2799 int iParent; /* VDBE cursor number of the pSub result set temp table */
2800 int i; /* Loop counter */
2801 Expr *pWhere; /* The WHERE clause */
2802 struct SrcList_item *pSubitem; /* The subquery */
2803 sqlite3 *db = pParse->db;
2805 /* Check to see if flattening is permitted. Return 0 if not.
2807 assert( p!=0 );
2808 assert( p->pPrior==0 ); /* Unable to flatten compound queries */
2809 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
2810 pSrc = p->pSrc;
2811 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
2812 pSubitem = &pSrc->a[iFrom];
2813 iParent = pSubitem->iCursor;
2814 pSub = pSubitem->pSelect;
2815 assert( pSub!=0 );
2816 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */
2817 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */
2818 pSubSrc = pSub->pSrc;
2819 assert( pSubSrc );
2820 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
2821 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
2822 ** because they could be computed at compile-time. But when LIMIT and OFFSET
2823 ** became arbitrary expressions, we were forced to add restrictions (13)
2824 ** and (14). */
2825 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
2826 if( pSub->pOffset ) return 0; /* Restriction (14) */
2827 if( p->pRightmost && pSub->pLimit ){
2828 return 0; /* Restriction (15) */
2830 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
2831 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */
2832 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
2833 return 0; /* Restrictions (8)(9) */
2835 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
2836 return 0; /* Restriction (6) */
2838 if( p->pOrderBy && pSub->pOrderBy ){
2839 return 0; /* Restriction (11) */
2841 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */
2842 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */
2843 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
2844 return 0; /* Restriction (21) */
2847 /* OBSOLETE COMMENT 1:
2848 ** Restriction 3: If the subquery is a join, make sure the subquery is
2849 ** not used as the right operand of an outer join. Examples of why this
2850 ** is not allowed:
2852 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
2854 ** If we flatten the above, we would get
2856 ** (t1 LEFT OUTER JOIN t2) JOIN t3
2858 ** which is not at all the same thing.
2860 ** OBSOLETE COMMENT 2:
2861 ** Restriction 12: If the subquery is the right operand of a left outer
2862 ** join, make sure the subquery has no WHERE clause.
2863 ** An examples of why this is not allowed:
2865 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
2867 ** If we flatten the above, we would get
2869 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
2871 ** But the t2.x>0 test will always fail on a NULL row of t2, which
2872 ** effectively converts the OUTER JOIN into an INNER JOIN.
2874 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
2875 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
2876 ** is fraught with danger. Best to avoid the whole thing. If the
2877 ** subquery is the right term of a LEFT JOIN, then do not flatten.
2879 if( (pSubitem->jointype & JT_OUTER)!=0 ){
2880 return 0;
2883 /* Restriction 17: If the sub-query is a compound SELECT, then it must
2884 ** use only the UNION ALL operator. And none of the simple select queries
2885 ** that make up the compound SELECT are allowed to be aggregate or distinct
2886 ** queries.
2888 if( pSub->pPrior ){
2889 if( pSub->pOrderBy ){
2890 return 0; /* Restriction 20 */
2892 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
2893 return 0;
2895 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
2896 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2897 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2898 assert( pSub->pSrc!=0 );
2899 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
2900 || (pSub1->pPrior && pSub1->op!=TK_ALL)
2901 || pSub1->pSrc->nSrc<1
2902 || pSub->pEList->nExpr!=pSub1->pEList->nExpr
2904 return 0;
2906 testcase( pSub1->pSrc->nSrc>1 );
2909 /* Restriction 18. */
2910 if( p->pOrderBy ){
2911 int ii;
2912 for(ii=0; ii<p->pOrderBy->nExpr; ii++){
2913 if( p->pOrderBy->a[ii].iOrderByCol==0 ) return 0;
2918 /***** If we reach this point, flattening is permitted. *****/
2920 /* Authorize the subquery */
2921 pParse->zAuthContext = pSubitem->zName;
2922 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
2923 testcase( i==SQLITE_DENY );
2924 pParse->zAuthContext = zSavedAuthContext;
2926 /* If the sub-query is a compound SELECT statement, then (by restrictions
2927 ** 17 and 18 above) it must be a UNION ALL and the parent query must
2928 ** be of the form:
2930 ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
2932 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
2933 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
2934 ** OFFSET clauses and joins them to the left-hand-side of the original
2935 ** using UNION ALL operators. In this case N is the number of simple
2936 ** select statements in the compound sub-query.
2938 ** Example:
2940 ** SELECT a+1 FROM (
2941 ** SELECT x FROM tab
2942 ** UNION ALL
2943 ** SELECT y FROM tab
2944 ** UNION ALL
2945 ** SELECT abs(z*2) FROM tab2
2946 ** ) WHERE a!=5 ORDER BY 1
2948 ** Transformed into:
2950 ** SELECT x+1 FROM tab WHERE x+1!=5
2951 ** UNION ALL
2952 ** SELECT y+1 FROM tab WHERE y+1!=5
2953 ** UNION ALL
2954 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
2955 ** ORDER BY 1
2957 ** We call this the "compound-subquery flattening".
2959 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
2960 Select *pNew;
2961 ExprList *pOrderBy = p->pOrderBy;
2962 Expr *pLimit = p->pLimit;
2963 Expr *pOffset = p->pOffset;
2964 Select *pPrior = p->pPrior;
2965 p->pOrderBy = 0;
2966 p->pSrc = 0;
2967 p->pPrior = 0;
2968 p->pLimit = 0;
2969 p->pOffset = 0;
2970 pNew = sqlite3SelectDup(db, p, 0);
2971 p->pOffset = pOffset;
2972 p->pLimit = pLimit;
2973 p->pOrderBy = pOrderBy;
2974 p->pSrc = pSrc;
2975 p->op = TK_ALL;
2976 p->pRightmost = 0;
2977 if( pNew==0 ){
2978 pNew = pPrior;
2979 }else{
2980 pNew->pPrior = pPrior;
2981 pNew->pRightmost = 0;
2983 p->pPrior = pNew;
2984 if( db->mallocFailed ) return 1;
2987 /* Begin flattening the iFrom-th entry of the FROM clause
2988 ** in the outer query.
2990 pSub = pSub1 = pSubitem->pSelect;
2992 /* Delete the transient table structure associated with the
2993 ** subquery
2995 sqlite3DbFree(db, pSubitem->zDatabase);
2996 sqlite3DbFree(db, pSubitem->zName);
2997 sqlite3DbFree(db, pSubitem->zAlias);
2998 pSubitem->zDatabase = 0;
2999 pSubitem->zName = 0;
3000 pSubitem->zAlias = 0;
3001 pSubitem->pSelect = 0;
3003 /* Defer deleting the Table object associated with the
3004 ** subquery until code generation is
3005 ** complete, since there may still exist Expr.pTab entries that
3006 ** refer to the subquery even after flattening. Ticket #3346.
3008 ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3010 if( ALWAYS(pSubitem->pTab!=0) ){
3011 Table *pTabToDel = pSubitem->pTab;
3012 if( pTabToDel->nRef==1 ){
3013 Parse *pToplevel = sqlite3ParseToplevel(pParse);
3014 pTabToDel->pNextZombie = pToplevel->pZombieTab;
3015 pToplevel->pZombieTab = pTabToDel;
3016 }else{
3017 pTabToDel->nRef--;
3019 pSubitem->pTab = 0;
3022 /* The following loop runs once for each term in a compound-subquery
3023 ** flattening (as described above). If we are doing a different kind
3024 ** of flattening - a flattening other than a compound-subquery flattening -
3025 ** then this loop only runs once.
3027 ** This loop moves all of the FROM elements of the subquery into the
3028 ** the FROM clause of the outer query. Before doing this, remember
3029 ** the cursor number for the original outer query FROM element in
3030 ** iParent. The iParent cursor will never be used. Subsequent code
3031 ** will scan expressions looking for iParent references and replace
3032 ** those references with expressions that resolve to the subquery FROM
3033 ** elements we are now copying in.
3035 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3036 int nSubSrc;
3037 u8 jointype = 0;
3038 pSubSrc = pSub->pSrc; /* FROM clause of subquery */
3039 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */
3040 pSrc = pParent->pSrc; /* FROM clause of the outer query */
3042 if( pSrc ){
3043 assert( pParent==p ); /* First time through the loop */
3044 jointype = pSubitem->jointype;
3045 }else{
3046 assert( pParent!=p ); /* 2nd and subsequent times through the loop */
3047 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3048 if( pSrc==0 ){
3049 assert( db->mallocFailed );
3050 break;
3054 /* The subquery uses a single slot of the FROM clause of the outer
3055 ** query. If the subquery has more than one element in its FROM clause,
3056 ** then expand the outer query to make space for it to hold all elements
3057 ** of the subquery.
3059 ** Example:
3061 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3063 ** The outer query has 3 slots in its FROM clause. One slot of the
3064 ** outer query (the middle slot) is used by the subquery. The next
3065 ** block of code will expand the out query to 4 slots. The middle
3066 ** slot is expanded to two slots in order to make space for the
3067 ** two elements in the FROM clause of the subquery.
3069 if( nSubSrc>1 ){
3070 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3071 if( db->mallocFailed ){
3072 break;
3076 /* Transfer the FROM clause terms from the subquery into the
3077 ** outer query.
3079 for(i=0; i<nSubSrc; i++){
3080 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3081 pSrc->a[i+iFrom] = pSubSrc->a[i];
3082 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3084 pSrc->a[iFrom].jointype = jointype;
3086 /* Now begin substituting subquery result set expressions for
3087 ** references to the iParent in the outer query.
3089 ** Example:
3091 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3092 ** \ \_____________ subquery __________/ /
3093 ** \_____________________ outer query ______________________________/
3095 ** We look at every expression in the outer query and every place we see
3096 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3098 pList = pParent->pEList;
3099 for(i=0; i<pList->nExpr; i++){
3100 if( pList->a[i].zName==0 ){
3101 char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan);
3102 sqlite3Dequote(zName);
3103 pList->a[i].zName = zName;
3106 substExprList(db, pParent->pEList, iParent, pSub->pEList);
3107 if( isAgg ){
3108 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
3109 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3111 if( pSub->pOrderBy ){
3112 assert( pParent->pOrderBy==0 );
3113 pParent->pOrderBy = pSub->pOrderBy;
3114 pSub->pOrderBy = 0;
3115 }else if( pParent->pOrderBy ){
3116 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
3118 if( pSub->pWhere ){
3119 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3120 }else{
3121 pWhere = 0;
3123 if( subqueryIsAgg ){
3124 assert( pParent->pHaving==0 );
3125 pParent->pHaving = pParent->pWhere;
3126 pParent->pWhere = pWhere;
3127 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3128 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
3129 sqlite3ExprDup(db, pSub->pHaving, 0));
3130 assert( pParent->pGroupBy==0 );
3131 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
3132 }else{
3133 pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList);
3134 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
3137 /* The flattened query is distinct if either the inner or the
3138 ** outer query is distinct.
3140 pParent->selFlags |= pSub->selFlags & SF_Distinct;
3143 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3145 ** One is tempted to try to add a and b to combine the limits. But this
3146 ** does not work if either limit is negative.
3148 if( pSub->pLimit ){
3149 pParent->pLimit = pSub->pLimit;
3150 pSub->pLimit = 0;
3154 /* Finially, delete what is left of the subquery and return
3155 ** success.
3157 sqlite3SelectDelete(db, pSub1);
3159 return 1;
3161 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3164 ** Based on the contents of the AggInfo structure indicated by the first
3165 ** argument, this function checks if the following are true:
3167 ** * the query contains just a single aggregate function,
3168 ** * the aggregate function is either min() or max(), and
3169 ** * the argument to the aggregate function is a column value.
3171 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
3172 ** is returned as appropriate. Also, *ppMinMax is set to point to the
3173 ** list of arguments passed to the aggregate before returning.
3175 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and
3176 ** WHERE_ORDERBY_NORMAL is returned.
3178 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){
3179 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */
3181 *ppMinMax = 0;
3182 if( pAggInfo->nFunc==1 ){
3183 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */
3184 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */
3186 assert( pExpr->op==TK_AGG_FUNCTION );
3187 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){
3188 const char *zFunc = pExpr->u.zToken;
3189 if( sqlite3StrICmp(zFunc, "min")==0 ){
3190 eRet = WHERE_ORDERBY_MIN;
3191 *ppMinMax = pEList;
3192 }else if( sqlite3StrICmp(zFunc, "max")==0 ){
3193 eRet = WHERE_ORDERBY_MAX;
3194 *ppMinMax = pEList;
3199 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 );
3200 return eRet;
3204 ** The select statement passed as the first argument is an aggregate query.
3205 ** The second argment is the associated aggregate-info object. This
3206 ** function tests if the SELECT is of the form:
3208 ** SELECT count(*) FROM <tbl>
3210 ** where table is a database table, not a sub-select or view. If the query
3211 ** does match this pattern, then a pointer to the Table object representing
3212 ** <tbl> is returned. Otherwise, 0 is returned.
3214 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3215 Table *pTab;
3216 Expr *pExpr;
3218 assert( !p->pGroupBy );
3220 if( p->pWhere || p->pEList->nExpr!=1
3221 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3223 return 0;
3225 pTab = p->pSrc->a[0].pTab;
3226 pExpr = p->pEList->a[0].pExpr;
3227 assert( pTab && !pTab->pSelect && pExpr );
3229 if( IsVirtual(pTab) ) return 0;
3230 if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3231 if( NEVER(pAggInfo->nFunc==0) ) return 0;
3232 if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0;
3233 if( pExpr->flags&EP_Distinct ) return 0;
3235 return pTab;
3239 ** If the source-list item passed as an argument was augmented with an
3240 ** INDEXED BY clause, then try to locate the specified index. If there
3241 ** was such a clause and the named index cannot be found, return
3242 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3243 ** pFrom->pIndex and return SQLITE_OK.
3245 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3246 if( pFrom->pTab && pFrom->zIndex ){
3247 Table *pTab = pFrom->pTab;
3248 char *zIndex = pFrom->zIndex;
3249 Index *pIdx;
3250 for(pIdx=pTab->pIndex;
3251 pIdx && sqlite3StrICmp(pIdx->zName, zIndex);
3252 pIdx=pIdx->pNext
3254 if( !pIdx ){
3255 sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
3256 pParse->checkSchema = 1;
3257 return SQLITE_ERROR;
3259 pFrom->pIndex = pIdx;
3261 return SQLITE_OK;
3264 ** Detect compound SELECT statements that use an ORDER BY clause with
3265 ** an alternative collating sequence.
3267 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
3269 ** These are rewritten as a subquery:
3271 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
3272 ** ORDER BY ... COLLATE ...
3274 ** This transformation is necessary because the multiSelectOrderBy() routine
3275 ** above that generates the code for a compound SELECT with an ORDER BY clause
3276 ** uses a merge algorithm that requires the same collating sequence on the
3277 ** result columns as on the ORDER BY clause. See ticket
3278 ** http://www.sqlite.org/src/info/6709574d2a
3280 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
3281 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
3282 ** there are COLLATE terms in the ORDER BY.
3284 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
3285 int i;
3286 Select *pNew;
3287 Select *pX;
3288 sqlite3 *db;
3289 struct ExprList_item *a;
3290 SrcList *pNewSrc;
3291 Parse *pParse;
3292 Token dummy;
3294 if( p->pPrior==0 ) return WRC_Continue;
3295 if( p->pOrderBy==0 ) return WRC_Continue;
3296 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
3297 if( pX==0 ) return WRC_Continue;
3298 a = p->pOrderBy->a;
3299 for(i=p->pOrderBy->nExpr-1; i>=0; i--){
3300 if( a[i].pExpr->flags & EP_Collate ) break;
3302 if( i<0 ) return WRC_Continue;
3304 /* If we reach this point, that means the transformation is required. */
3306 pParse = pWalker->pParse;
3307 db = pParse->db;
3308 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
3309 if( pNew==0 ) return WRC_Abort;
3310 memset(&dummy, 0, sizeof(dummy));
3311 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
3312 if( pNewSrc==0 ) return WRC_Abort;
3313 *pNew = *p;
3314 p->pSrc = pNewSrc;
3315 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0));
3316 p->op = TK_SELECT;
3317 p->pWhere = 0;
3318 pNew->pGroupBy = 0;
3319 pNew->pHaving = 0;
3320 pNew->pOrderBy = 0;
3321 p->pPrior = 0;
3322 pNew->pLimit = 0;
3323 pNew->pOffset = 0;
3324 return WRC_Continue;
3328 ** This routine is a Walker callback for "expanding" a SELECT statement.
3329 ** "Expanding" means to do the following:
3331 ** (1) Make sure VDBE cursor numbers have been assigned to every
3332 ** element of the FROM clause.
3334 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
3335 ** defines FROM clause. When views appear in the FROM clause,
3336 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
3337 ** that implements the view. A copy is made of the view's SELECT
3338 ** statement so that we can freely modify or delete that statement
3339 ** without worrying about messing up the presistent representation
3340 ** of the view.
3342 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword
3343 ** on joins and the ON and USING clause of joins.
3345 ** (4) Scan the list of columns in the result set (pEList) looking
3346 ** for instances of the "*" operator or the TABLE.* operator.
3347 ** If found, expand each "*" to be every column in every table
3348 ** and TABLE.* to be every column in TABLE.
3351 static int selectExpander(Walker *pWalker, Select *p){
3352 Parse *pParse = pWalker->pParse;
3353 int i, j, k;
3354 SrcList *pTabList;
3355 ExprList *pEList;
3356 struct SrcList_item *pFrom;
3357 sqlite3 *db = pParse->db;
3358 Expr *pE, *pRight, *pExpr;
3359 u16 selFlags = p->selFlags;
3361 p->selFlags |= SF_Expanded;
3362 if( db->mallocFailed ){
3363 return WRC_Abort;
3365 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
3366 return WRC_Prune;
3368 pTabList = p->pSrc;
3369 pEList = p->pEList;
3371 /* Make sure cursor numbers have been assigned to all entries in
3372 ** the FROM clause of the SELECT statement.
3374 sqlite3SrcListAssignCursors(pParse, pTabList);
3376 /* Look up every table named in the FROM clause of the select. If
3377 ** an entry of the FROM clause is a subquery instead of a table or view,
3378 ** then create a transient table structure to describe the subquery.
3380 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3381 Table *pTab;
3382 if( pFrom->pTab!=0 ){
3383 /* This statement has already been prepared. There is no need
3384 ** to go further. */
3385 assert( i==0 );
3386 return WRC_Prune;
3388 if( pFrom->zName==0 ){
3389 #ifndef SQLITE_OMIT_SUBQUERY
3390 Select *pSel = pFrom->pSelect;
3391 /* A sub-query in the FROM clause of a SELECT */
3392 assert( pSel!=0 );
3393 assert( pFrom->pTab==0 );
3394 sqlite3WalkSelect(pWalker, pSel);
3395 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
3396 if( pTab==0 ) return WRC_Abort;
3397 pTab->nRef = 1;
3398 pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab);
3399 while( pSel->pPrior ){ pSel = pSel->pPrior; }
3400 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
3401 pTab->iPKey = -1;
3402 pTab->nRowEst = 1000000;
3403 pTab->tabFlags |= TF_Ephemeral;
3404 #endif
3405 }else{
3406 /* An ordinary table or view name in the FROM clause */
3407 assert( pFrom->pTab==0 );
3408 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
3409 if( pTab==0 ) return WRC_Abort;
3410 if( pTab->nRef==0xffff ){
3411 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
3412 pTab->zName);
3413 pFrom->pTab = 0;
3414 return WRC_Abort;
3416 pTab->nRef++;
3417 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
3418 if( pTab->pSelect || IsVirtual(pTab) ){
3419 /* We reach here if the named table is a really a view */
3420 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
3421 assert( pFrom->pSelect==0 );
3422 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
3423 sqlite3WalkSelect(pWalker, pFrom->pSelect);
3425 #endif
3428 /* Locate the index named by the INDEXED BY clause, if any. */
3429 if( sqlite3IndexedByLookup(pParse, pFrom) ){
3430 return WRC_Abort;
3434 /* Process NATURAL keywords, and ON and USING clauses of joins.
3436 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
3437 return WRC_Abort;
3440 /* For every "*" that occurs in the column list, insert the names of
3441 ** all columns in all tables. And for every TABLE.* insert the names
3442 ** of all columns in TABLE. The parser inserted a special expression
3443 ** with the TK_ALL operator for each "*" that it found in the column list.
3444 ** The following code just has to locate the TK_ALL expressions and expand
3445 ** each one to the list of all columns in all tables.
3447 ** The first loop just checks to see if there are any "*" operators
3448 ** that need expanding.
3450 for(k=0; k<pEList->nExpr; k++){
3451 pE = pEList->a[k].pExpr;
3452 if( pE->op==TK_ALL ) break;
3453 assert( pE->op!=TK_DOT || pE->pRight!=0 );
3454 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
3455 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
3457 if( k<pEList->nExpr ){
3459 ** If we get here it means the result set contains one or more "*"
3460 ** operators that need to be expanded. Loop through each expression
3461 ** in the result set and expand them one by one.
3463 struct ExprList_item *a = pEList->a;
3464 ExprList *pNew = 0;
3465 int flags = pParse->db->flags;
3466 int longNames = (flags & SQLITE_FullColNames)!=0
3467 && (flags & SQLITE_ShortColNames)==0;
3469 /* When processing FROM-clause subqueries, it is always the case
3470 ** that full_column_names=OFF and short_column_names=ON. The
3471 ** sqlite3ResultSetOfSelect() routine makes it so. */
3472 assert( (p->selFlags & SF_NestedFrom)==0
3473 || ((flags & SQLITE_FullColNames)==0 &&
3474 (flags & SQLITE_ShortColNames)!=0) );
3476 for(k=0; k<pEList->nExpr; k++){
3477 pE = a[k].pExpr;
3478 pRight = pE->pRight;
3479 assert( pE->op!=TK_DOT || pRight!=0 );
3480 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){
3481 /* This particular expression does not need to be expanded.
3483 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
3484 if( pNew ){
3485 pNew->a[pNew->nExpr-1].zName = a[k].zName;
3486 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
3487 a[k].zName = 0;
3488 a[k].zSpan = 0;
3490 a[k].pExpr = 0;
3491 }else{
3492 /* This expression is a "*" or a "TABLE.*" and needs to be
3493 ** expanded. */
3494 int tableSeen = 0; /* Set to 1 when TABLE matches */
3495 char *zTName = 0; /* text of name of TABLE */
3496 if( pE->op==TK_DOT ){
3497 assert( pE->pLeft!=0 );
3498 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
3499 zTName = pE->pLeft->u.zToken;
3501 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3502 Table *pTab = pFrom->pTab;
3503 Select *pSub = pFrom->pSelect;
3504 char *zTabName = pFrom->zAlias;
3505 const char *zSchemaName = 0;
3506 int iDb;
3507 if( zTabName==0 ){
3508 zTabName = pTab->zName;
3510 if( db->mallocFailed ) break;
3511 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
3512 pSub = 0;
3513 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
3514 continue;
3516 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
3517 zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*";
3519 for(j=0; j<pTab->nCol; j++){
3520 char *zName = pTab->aCol[j].zName;
3521 char *zColname; /* The computed column name */
3522 char *zToFree; /* Malloced string that needs to be freed */
3523 Token sColname; /* Computed column name as a token */
3525 assert( zName );
3526 if( zTName && pSub
3527 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
3529 continue;
3532 /* If a column is marked as 'hidden' (currently only possible
3533 ** for virtual tables), do not include it in the expanded
3534 ** result-set list.
3536 if( IsHiddenColumn(&pTab->aCol[j]) ){
3537 assert(IsVirtual(pTab));
3538 continue;
3540 tableSeen = 1;
3542 if( i>0 && zTName==0 ){
3543 if( (pFrom->jointype & JT_NATURAL)!=0
3544 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
3546 /* In a NATURAL join, omit the join columns from the
3547 ** table to the right of the join */
3548 continue;
3550 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
3551 /* In a join with a USING clause, omit columns in the
3552 ** using clause from the table on the right. */
3553 continue;
3556 pRight = sqlite3Expr(db, TK_ID, zName);
3557 zColname = zName;
3558 zToFree = 0;
3559 if( longNames || pTabList->nSrc>1 ){
3560 Expr *pLeft;
3561 pLeft = sqlite3Expr(db, TK_ID, zTabName);
3562 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
3563 if( zSchemaName ){
3564 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
3565 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0);
3567 if( longNames ){
3568 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
3569 zToFree = zColname;
3571 }else{
3572 pExpr = pRight;
3574 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
3575 sColname.z = zColname;
3576 sColname.n = sqlite3Strlen30(zColname);
3577 sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
3578 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
3579 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
3580 if( pSub ){
3581 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
3582 testcase( pX->zSpan==0 );
3583 }else{
3584 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
3585 zSchemaName, zTabName, zColname);
3586 testcase( pX->zSpan==0 );
3588 pX->bSpanIsTab = 1;
3590 sqlite3DbFree(db, zToFree);
3593 if( !tableSeen ){
3594 if( zTName ){
3595 sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
3596 }else{
3597 sqlite3ErrorMsg(pParse, "no tables specified");
3602 sqlite3ExprListDelete(db, pEList);
3603 p->pEList = pNew;
3605 #if SQLITE_MAX_COLUMN
3606 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
3607 sqlite3ErrorMsg(pParse, "too many columns in result set");
3609 #endif
3610 return WRC_Continue;
3614 ** No-op routine for the parse-tree walker.
3616 ** When this routine is the Walker.xExprCallback then expression trees
3617 ** are walked without any actions being taken at each node. Presumably,
3618 ** when this routine is used for Walker.xExprCallback then
3619 ** Walker.xSelectCallback is set to do something useful for every
3620 ** subquery in the parser tree.
3622 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
3623 UNUSED_PARAMETER2(NotUsed, NotUsed2);
3624 return WRC_Continue;
3628 ** This routine "expands" a SELECT statement and all of its subqueries.
3629 ** For additional information on what it means to "expand" a SELECT
3630 ** statement, see the comment on the selectExpand worker callback above.
3632 ** Expanding a SELECT statement is the first step in processing a
3633 ** SELECT statement. The SELECT statement must be expanded before
3634 ** name resolution is performed.
3636 ** If anything goes wrong, an error message is written into pParse.
3637 ** The calling function can detect the problem by looking at pParse->nErr
3638 ** and/or pParse->db->mallocFailed.
3640 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
3641 Walker w;
3642 memset(&w, 0, sizeof(w));
3643 w.xSelectCallback = convertCompoundSelectToSubquery;
3644 w.xExprCallback = exprWalkNoop;
3645 w.pParse = pParse;
3646 sqlite3WalkSelect(&w, pSelect);
3647 w.xSelectCallback = selectExpander;
3648 sqlite3WalkSelect(&w, pSelect);
3652 #ifndef SQLITE_OMIT_SUBQUERY
3654 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
3655 ** interface.
3657 ** For each FROM-clause subquery, add Column.zType and Column.zColl
3658 ** information to the Table structure that represents the result set
3659 ** of that subquery.
3661 ** The Table structure that represents the result set was constructed
3662 ** by selectExpander() but the type and collation information was omitted
3663 ** at that point because identifiers had not yet been resolved. This
3664 ** routine is called after identifier resolution.
3666 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
3667 Parse *pParse;
3668 int i;
3669 SrcList *pTabList;
3670 struct SrcList_item *pFrom;
3672 assert( p->selFlags & SF_Resolved );
3673 if( (p->selFlags & SF_HasTypeInfo)==0 ){
3674 p->selFlags |= SF_HasTypeInfo;
3675 pParse = pWalker->pParse;
3676 pTabList = p->pSrc;
3677 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3678 Table *pTab = pFrom->pTab;
3679 if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
3680 /* A sub-query in the FROM clause of a SELECT */
3681 Select *pSel = pFrom->pSelect;
3682 assert( pSel );
3683 while( pSel->pPrior ) pSel = pSel->pPrior;
3684 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel);
3688 return WRC_Continue;
3690 #endif
3694 ** This routine adds datatype and collating sequence information to
3695 ** the Table structures of all FROM-clause subqueries in a
3696 ** SELECT statement.
3698 ** Use this routine after name resolution.
3700 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
3701 #ifndef SQLITE_OMIT_SUBQUERY
3702 Walker w;
3703 memset(&w, 0, sizeof(w));
3704 w.xSelectCallback = selectAddSubqueryTypeInfo;
3705 w.xExprCallback = exprWalkNoop;
3706 w.pParse = pParse;
3707 w.bSelectDepthFirst = 1;
3708 sqlite3WalkSelect(&w, pSelect);
3709 #endif
3714 ** This routine sets up a SELECT statement for processing. The
3715 ** following is accomplished:
3717 ** * VDBE Cursor numbers are assigned to all FROM-clause terms.
3718 ** * Ephemeral Table objects are created for all FROM-clause subqueries.
3719 ** * ON and USING clauses are shifted into WHERE statements
3720 ** * Wildcards "*" and "TABLE.*" in result sets are expanded.
3721 ** * Identifiers in expression are matched to tables.
3723 ** This routine acts recursively on all subqueries within the SELECT.
3725 void sqlite3SelectPrep(
3726 Parse *pParse, /* The parser context */
3727 Select *p, /* The SELECT statement being coded. */
3728 NameContext *pOuterNC /* Name context for container */
3730 sqlite3 *db;
3731 if( NEVER(p==0) ) return;
3732 db = pParse->db;
3733 if( db->mallocFailed ) return;
3734 if( p->selFlags & SF_HasTypeInfo ) return;
3735 sqlite3SelectExpand(pParse, p);
3736 if( pParse->nErr || db->mallocFailed ) return;
3737 sqlite3ResolveSelectNames(pParse, p, pOuterNC);
3738 if( pParse->nErr || db->mallocFailed ) return;
3739 sqlite3SelectAddTypeInfo(pParse, p);
3743 ** Reset the aggregate accumulator.
3745 ** The aggregate accumulator is a set of memory cells that hold
3746 ** intermediate results while calculating an aggregate. This
3747 ** routine generates code that stores NULLs in all of those memory
3748 ** cells.
3750 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
3751 Vdbe *v = pParse->pVdbe;
3752 int i;
3753 struct AggInfo_func *pFunc;
3754 if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
3755 return;
3757 for(i=0; i<pAggInfo->nColumn; i++){
3758 sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem);
3760 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
3761 sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem);
3762 if( pFunc->iDistinct>=0 ){
3763 Expr *pE = pFunc->pExpr;
3764 assert( !ExprHasProperty(pE, EP_xIsSelect) );
3765 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
3766 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
3767 "argument");
3768 pFunc->iDistinct = -1;
3769 }else{
3770 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList);
3771 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
3772 (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3779 ** Invoke the OP_AggFinalize opcode for every aggregate function
3780 ** in the AggInfo structure.
3782 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
3783 Vdbe *v = pParse->pVdbe;
3784 int i;
3785 struct AggInfo_func *pF;
3786 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3787 ExprList *pList = pF->pExpr->x.pList;
3788 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
3789 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
3790 (void*)pF->pFunc, P4_FUNCDEF);
3795 ** Update the accumulator memory cells for an aggregate based on
3796 ** the current cursor position.
3798 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
3799 Vdbe *v = pParse->pVdbe;
3800 int i;
3801 int regHit = 0;
3802 int addrHitTest = 0;
3803 struct AggInfo_func *pF;
3804 struct AggInfo_col *pC;
3806 pAggInfo->directMode = 1;
3807 sqlite3ExprCacheClear(pParse);
3808 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3809 int nArg;
3810 int addrNext = 0;
3811 int regAgg;
3812 ExprList *pList = pF->pExpr->x.pList;
3813 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
3814 if( pList ){
3815 nArg = pList->nExpr;
3816 regAgg = sqlite3GetTempRange(pParse, nArg);
3817 sqlite3ExprCodeExprList(pParse, pList, regAgg, 1);
3818 }else{
3819 nArg = 0;
3820 regAgg = 0;
3822 if( pF->iDistinct>=0 ){
3823 addrNext = sqlite3VdbeMakeLabel(v);
3824 assert( nArg==1 );
3825 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
3827 if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
3828 CollSeq *pColl = 0;
3829 struct ExprList_item *pItem;
3830 int j;
3831 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
3832 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
3833 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
3835 if( !pColl ){
3836 pColl = pParse->db->pDfltColl;
3838 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
3839 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
3841 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
3842 (void*)pF->pFunc, P4_FUNCDEF);
3843 sqlite3VdbeChangeP5(v, (u8)nArg);
3844 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
3845 sqlite3ReleaseTempRange(pParse, regAgg, nArg);
3846 if( addrNext ){
3847 sqlite3VdbeResolveLabel(v, addrNext);
3848 sqlite3ExprCacheClear(pParse);
3852 /* Before populating the accumulator registers, clear the column cache.
3853 ** Otherwise, if any of the required column values are already present
3854 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
3855 ** to pC->iMem. But by the time the value is used, the original register
3856 ** may have been used, invalidating the underlying buffer holding the
3857 ** text or blob value. See ticket [883034dcb5].
3859 ** Another solution would be to change the OP_SCopy used to copy cached
3860 ** values to an OP_Copy.
3862 if( regHit ){
3863 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit);
3865 sqlite3ExprCacheClear(pParse);
3866 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
3867 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
3869 pAggInfo->directMode = 0;
3870 sqlite3ExprCacheClear(pParse);
3871 if( addrHitTest ){
3872 sqlite3VdbeJumpHere(v, addrHitTest);
3877 ** Add a single OP_Explain instruction to the VDBE to explain a simple
3878 ** count(*) query ("SELECT count(*) FROM pTab").
3880 #ifndef SQLITE_OMIT_EXPLAIN
3881 static void explainSimpleCount(
3882 Parse *pParse, /* Parse context */
3883 Table *pTab, /* Table being queried */
3884 Index *pIdx /* Index used to optimize scan, or NULL */
3886 if( pParse->explain==2 ){
3887 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s %s%s(~%d rows)",
3888 pTab->zName,
3889 pIdx ? "USING COVERING INDEX " : "",
3890 pIdx ? pIdx->zName : "",
3891 pTab->nRowEst
3893 sqlite3VdbeAddOp4(
3894 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
3898 #else
3899 # define explainSimpleCount(a,b,c)
3900 #endif
3903 ** Generate code for the SELECT statement given in the p argument.
3905 ** The results are distributed in various ways depending on the
3906 ** contents of the SelectDest structure pointed to by argument pDest
3907 ** as follows:
3909 ** pDest->eDest Result
3910 ** ------------ -------------------------------------------
3911 ** SRT_Output Generate a row of output (using the OP_ResultRow
3912 ** opcode) for each row in the result set.
3914 ** SRT_Mem Only valid if the result is a single column.
3915 ** Store the first column of the first result row
3916 ** in register pDest->iSDParm then abandon the rest
3917 ** of the query. This destination implies "LIMIT 1".
3919 ** SRT_Set The result must be a single column. Store each
3920 ** row of result as the key in table pDest->iSDParm.
3921 ** Apply the affinity pDest->affSdst before storing
3922 ** results. Used to implement "IN (SELECT ...)".
3924 ** SRT_Union Store results as a key in a temporary table
3925 ** identified by pDest->iSDParm.
3927 ** SRT_Except Remove results from the temporary table pDest->iSDParm.
3929 ** SRT_Table Store results in temporary table pDest->iSDParm.
3930 ** This is like SRT_EphemTab except that the table
3931 ** is assumed to already be open.
3933 ** SRT_EphemTab Create an temporary table pDest->iSDParm and store
3934 ** the result there. The cursor is left open after
3935 ** returning. This is like SRT_Table except that
3936 ** this destination uses OP_OpenEphemeral to create
3937 ** the table first.
3939 ** SRT_Coroutine Generate a co-routine that returns a new row of
3940 ** results each time it is invoked. The entry point
3941 ** of the co-routine is stored in register pDest->iSDParm.
3943 ** SRT_Exists Store a 1 in memory cell pDest->iSDParm if the result
3944 ** set is not empty.
3946 ** SRT_Discard Throw the results away. This is used by SELECT
3947 ** statements within triggers whose only purpose is
3948 ** the side-effects of functions.
3950 ** This routine returns the number of errors. If any errors are
3951 ** encountered, then an appropriate error message is left in
3952 ** pParse->zErrMsg.
3954 ** This routine does NOT free the Select structure passed in. The
3955 ** calling function needs to do that.
3957 int sqlite3Select(
3958 Parse *pParse, /* The parser context */
3959 Select *p, /* The SELECT statement being coded. */
3960 SelectDest *pDest /* What to do with the query results */
3962 int i, j; /* Loop counters */
3963 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
3964 Vdbe *v; /* The virtual machine under construction */
3965 int isAgg; /* True for select lists like "count(*)" */
3966 ExprList *pEList; /* List of columns to extract. */
3967 SrcList *pTabList; /* List of tables to select from */
3968 Expr *pWhere; /* The WHERE clause. May be NULL */
3969 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */
3970 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
3971 Expr *pHaving; /* The HAVING clause. May be NULL */
3972 int rc = 1; /* Value to return from this function */
3973 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */
3974 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
3975 AggInfo sAggInfo; /* Information used by aggregate queries */
3976 int iEnd; /* Address of the end of the query */
3977 sqlite3 *db; /* The database connection */
3979 #ifndef SQLITE_OMIT_EXPLAIN
3980 int iRestoreSelectId = pParse->iSelectId;
3981 pParse->iSelectId = pParse->iNextSelectId++;
3982 #endif
3984 db = pParse->db;
3985 if( p==0 || db->mallocFailed || pParse->nErr ){
3986 return 1;
3988 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
3989 memset(&sAggInfo, 0, sizeof(sAggInfo));
3991 if( IgnorableOrderby(pDest) ){
3992 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
3993 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);
3994 /* If ORDER BY makes no difference in the output then neither does
3995 ** DISTINCT so it can be removed too. */
3996 sqlite3ExprListDelete(db, p->pOrderBy);
3997 p->pOrderBy = 0;
3998 p->selFlags &= ~SF_Distinct;
4000 sqlite3SelectPrep(pParse, p, 0);
4001 pOrderBy = p->pOrderBy;
4002 pTabList = p->pSrc;
4003 pEList = p->pEList;
4004 if( pParse->nErr || db->mallocFailed ){
4005 goto select_end;
4007 isAgg = (p->selFlags & SF_Aggregate)!=0;
4008 assert( pEList!=0 );
4010 /* Begin generating code.
4012 v = sqlite3GetVdbe(pParse);
4013 if( v==0 ) goto select_end;
4015 /* If writing to memory or generating a set
4016 ** only a single column may be output.
4018 #ifndef SQLITE_OMIT_SUBQUERY
4019 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
4020 goto select_end;
4022 #endif
4024 /* Generate code for all sub-queries in the FROM clause
4026 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4027 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
4028 struct SrcList_item *pItem = &pTabList->a[i];
4029 SelectDest dest;
4030 Select *pSub = pItem->pSelect;
4031 int isAggSub;
4033 if( pSub==0 ) continue;
4035 /* Sometimes the code for a subquery will be generated more than
4036 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
4037 ** for example. In that case, do not regenerate the code to manifest
4038 ** a view or the co-routine to implement a view. The first instance
4039 ** is sufficient, though the subroutine to manifest the view does need
4040 ** to be invoked again. */
4041 if( pItem->addrFillSub ){
4042 if( pItem->viaCoroutine==0 ){
4043 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
4045 continue;
4048 /* Increment Parse.nHeight by the height of the largest expression
4049 ** tree refered to by this, the parent select. The child select
4050 ** may contain expression trees of at most
4051 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
4052 ** more conservative than necessary, but much easier than enforcing
4053 ** an exact limit.
4055 pParse->nHeight += sqlite3SelectExprHeight(p);
4057 isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
4058 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
4059 /* This subquery can be absorbed into its parent. */
4060 if( isAggSub ){
4061 isAgg = 1;
4062 p->selFlags |= SF_Aggregate;
4064 i = -1;
4065 }else if( pTabList->nSrc==1 && (p->selFlags & SF_Materialize)==0
4066 && OptimizationEnabled(db, SQLITE_SubqCoroutine)
4068 /* Implement a co-routine that will return a single row of the result
4069 ** set on each invocation.
4071 int addrTop;
4072 int addrEof;
4073 pItem->regReturn = ++pParse->nMem;
4074 addrEof = ++pParse->nMem;
4075 /* Before coding the OP_Goto to jump to the start of the main routine,
4076 ** ensure that the jump to the verify-schema routine has already
4077 ** been coded. Otherwise, the verify-schema would likely be coded as
4078 ** part of the co-routine. If the main routine then accessed the
4079 ** database before invoking the co-routine for the first time (for
4080 ** example to initialize a LIMIT register from a sub-select), it would
4081 ** be doing so without having verified the schema version and obtained
4082 ** the required db locks. See ticket d6b36be38. */
4083 sqlite3CodeVerifySchema(pParse, -1);
4084 sqlite3VdbeAddOp0(v, OP_Goto);
4085 addrTop = sqlite3VdbeAddOp1(v, OP_OpenPseudo, pItem->iCursor);
4086 sqlite3VdbeChangeP5(v, 1);
4087 VdbeComment((v, "coroutine for %s", pItem->pTab->zName));
4088 pItem->addrFillSub = addrTop;
4089 sqlite3VdbeAddOp2(v, OP_Integer, 0, addrEof);
4090 sqlite3VdbeChangeP5(v, 1);
4091 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
4092 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4093 sqlite3Select(pParse, pSub, &dest);
4094 pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow;
4095 pItem->viaCoroutine = 1;
4096 sqlite3VdbeChangeP2(v, addrTop, dest.iSdst);
4097 sqlite3VdbeChangeP3(v, addrTop, dest.nSdst);
4098 sqlite3VdbeAddOp2(v, OP_Integer, 1, addrEof);
4099 sqlite3VdbeAddOp1(v, OP_Yield, pItem->regReturn);
4100 VdbeComment((v, "end %s", pItem->pTab->zName));
4101 sqlite3VdbeJumpHere(v, addrTop-1);
4102 sqlite3ClearTempRegCache(pParse);
4103 }else{
4104 /* Generate a subroutine that will fill an ephemeral table with
4105 ** the content of this subquery. pItem->addrFillSub will point
4106 ** to the address of the generated subroutine. pItem->regReturn
4107 ** is a register allocated to hold the subroutine return address
4109 int topAddr;
4110 int onceAddr = 0;
4111 int retAddr;
4112 assert( pItem->addrFillSub==0 );
4113 pItem->regReturn = ++pParse->nMem;
4114 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
4115 pItem->addrFillSub = topAddr+1;
4116 VdbeNoopComment((v, "materialize %s", pItem->pTab->zName));
4117 if( pItem->isCorrelated==0 ){
4118 /* If the subquery is not correlated and if we are not inside of
4119 ** a trigger, then we only need to compute the value of the subquery
4120 ** once. */
4121 onceAddr = sqlite3CodeOnce(pParse);
4123 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
4124 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4125 sqlite3Select(pParse, pSub, &dest);
4126 pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow;
4127 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
4128 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
4129 VdbeComment((v, "end %s", pItem->pTab->zName));
4130 sqlite3VdbeChangeP1(v, topAddr, retAddr);
4131 sqlite3ClearTempRegCache(pParse);
4133 if( /*pParse->nErr ||*/ db->mallocFailed ){
4134 goto select_end;
4136 pParse->nHeight -= sqlite3SelectExprHeight(p);
4137 pTabList = p->pSrc;
4138 if( !IgnorableOrderby(pDest) ){
4139 pOrderBy = p->pOrderBy;
4142 pEList = p->pEList;
4143 #endif
4144 pWhere = p->pWhere;
4145 pGroupBy = p->pGroupBy;
4146 pHaving = p->pHaving;
4147 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
4149 #ifndef SQLITE_OMIT_COMPOUND_SELECT
4150 /* If there is are a sequence of queries, do the earlier ones first.
4152 if( p->pPrior ){
4153 if( p->pRightmost==0 ){
4154 Select *pLoop, *pRight = 0;
4155 int cnt = 0;
4156 int mxSelect;
4157 for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
4158 pLoop->pRightmost = p;
4159 pLoop->pNext = pRight;
4160 pRight = pLoop;
4162 mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
4163 if( mxSelect && cnt>mxSelect ){
4164 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
4165 goto select_end;
4168 rc = multiSelect(pParse, p, pDest);
4169 explainSetInteger(pParse->iSelectId, iRestoreSelectId);
4170 return rc;
4172 #endif
4174 /* If there is both a GROUP BY and an ORDER BY clause and they are
4175 ** identical, then disable the ORDER BY clause since the GROUP BY
4176 ** will cause elements to come out in the correct order. This is
4177 ** an optimization - the correct answer should result regardless.
4178 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER
4179 ** to disable this optimization for testing purposes.
4181 if( sqlite3ExprListCompare(p->pGroupBy, pOrderBy)==0
4182 && OptimizationEnabled(db, SQLITE_GroupByOrder) ){
4183 pOrderBy = 0;
4186 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
4187 ** if the select-list is the same as the ORDER BY list, then this query
4188 ** can be rewritten as a GROUP BY. In other words, this:
4190 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
4192 ** is transformed to:
4194 ** SELECT xyz FROM ... GROUP BY xyz
4196 ** The second form is preferred as a single index (or temp-table) may be
4197 ** used for both the ORDER BY and DISTINCT processing. As originally
4198 ** written the query must use a temp-table for at least one of the ORDER
4199 ** BY and DISTINCT, and an index or separate temp-table for the other.
4201 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
4202 && sqlite3ExprListCompare(pOrderBy, p->pEList)==0
4204 p->selFlags &= ~SF_Distinct;
4205 p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
4206 pGroupBy = p->pGroupBy;
4207 pOrderBy = 0;
4208 /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
4209 ** the sDistinct.isTnct is still set. Hence, isTnct represents the
4210 ** original setting of the SF_Distinct flag, not the current setting */
4211 assert( sDistinct.isTnct );
4214 /* If there is an ORDER BY clause, then this sorting
4215 ** index might end up being unused if the data can be
4216 ** extracted in pre-sorted order. If that is the case, then the
4217 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
4218 ** we figure out that the sorting index is not needed. The addrSortIndex
4219 ** variable is used to facilitate that change.
4221 if( pOrderBy ){
4222 KeyInfo *pKeyInfo;
4223 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
4224 pOrderBy->iECursor = pParse->nTab++;
4225 p->addrOpenEphm[2] = addrSortIndex =
4226 sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
4227 pOrderBy->iECursor, pOrderBy->nExpr+2, 0,
4228 (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
4229 }else{
4230 addrSortIndex = -1;
4233 /* If the output is destined for a temporary table, open that table.
4235 if( pDest->eDest==SRT_EphemTab ){
4236 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
4239 /* Set the limiter.
4241 iEnd = sqlite3VdbeMakeLabel(v);
4242 p->nSelectRow = (double)LARGEST_INT64;
4243 computeLimitRegisters(pParse, p, iEnd);
4244 if( p->iLimit==0 && addrSortIndex>=0 ){
4245 sqlite3VdbeGetOp(v, addrSortIndex)->opcode = OP_SorterOpen;
4246 p->selFlags |= SF_UseSorter;
4249 /* Open a virtual index to use for the distinct set.
4251 if( p->selFlags & SF_Distinct ){
4252 sDistinct.tabTnct = pParse->nTab++;
4253 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
4254 sDistinct.tabTnct, 0, 0,
4255 (char*)keyInfoFromExprList(pParse, p->pEList),
4256 P4_KEYINFO_HANDOFF);
4257 sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
4258 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
4259 }else{
4260 sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
4263 if( !isAgg && pGroupBy==0 ){
4264 /* No aggregate functions and no GROUP BY clause */
4265 ExprList *pDist = (sDistinct.isTnct ? p->pEList : 0);
4267 /* Begin the database scan. */
4268 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pOrderBy, pDist, 0,0);
4269 if( pWInfo==0 ) goto select_end;
4270 if( pWInfo->nRowOut < p->nSelectRow ) p->nSelectRow = pWInfo->nRowOut;
4271 if( pWInfo->eDistinct ) sDistinct.eTnctType = pWInfo->eDistinct;
4272 if( pOrderBy && pWInfo->nOBSat==pOrderBy->nExpr ) pOrderBy = 0;
4274 /* If sorting index that was created by a prior OP_OpenEphemeral
4275 ** instruction ended up not being needed, then change the OP_OpenEphemeral
4276 ** into an OP_Noop.
4278 if( addrSortIndex>=0 && pOrderBy==0 ){
4279 sqlite3VdbeChangeToNoop(v, addrSortIndex);
4280 p->addrOpenEphm[2] = -1;
4283 /* Use the standard inner loop. */
4284 selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, &sDistinct, pDest,
4285 pWInfo->iContinue, pWInfo->iBreak);
4287 /* End the database scan loop.
4289 sqlite3WhereEnd(pWInfo);
4290 }else{
4291 /* This case when there exist aggregate functions or a GROUP BY clause
4292 ** or both */
4293 NameContext sNC; /* Name context for processing aggregate information */
4294 int iAMem; /* First Mem address for storing current GROUP BY */
4295 int iBMem; /* First Mem address for previous GROUP BY */
4296 int iUseFlag; /* Mem address holding flag indicating that at least
4297 ** one row of the input to the aggregator has been
4298 ** processed */
4299 int iAbortFlag; /* Mem address which causes query abort if positive */
4300 int groupBySort; /* Rows come from source in GROUP BY order */
4301 int addrEnd; /* End of processing for this SELECT */
4302 int sortPTab = 0; /* Pseudotable used to decode sorting results */
4303 int sortOut = 0; /* Output register from the sorter */
4305 /* Remove any and all aliases between the result set and the
4306 ** GROUP BY clause.
4308 if( pGroupBy ){
4309 int k; /* Loop counter */
4310 struct ExprList_item *pItem; /* For looping over expression in a list */
4312 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
4313 pItem->iAlias = 0;
4315 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
4316 pItem->iAlias = 0;
4318 if( p->nSelectRow>(double)100 ) p->nSelectRow = (double)100;
4319 }else{
4320 p->nSelectRow = (double)1;
4324 /* Create a label to jump to when we want to abort the query */
4325 addrEnd = sqlite3VdbeMakeLabel(v);
4327 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
4328 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
4329 ** SELECT statement.
4331 memset(&sNC, 0, sizeof(sNC));
4332 sNC.pParse = pParse;
4333 sNC.pSrcList = pTabList;
4334 sNC.pAggInfo = &sAggInfo;
4335 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
4336 sAggInfo.pGroupBy = pGroupBy;
4337 sqlite3ExprAnalyzeAggList(&sNC, pEList);
4338 sqlite3ExprAnalyzeAggList(&sNC, pOrderBy);
4339 if( pHaving ){
4340 sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
4342 sAggInfo.nAccumulator = sAggInfo.nColumn;
4343 for(i=0; i<sAggInfo.nFunc; i++){
4344 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
4345 sNC.ncFlags |= NC_InAggFunc;
4346 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
4347 sNC.ncFlags &= ~NC_InAggFunc;
4349 if( db->mallocFailed ) goto select_end;
4351 /* Processing for aggregates with GROUP BY is very different and
4352 ** much more complex than aggregates without a GROUP BY.
4354 if( pGroupBy ){
4355 KeyInfo *pKeyInfo; /* Keying information for the group by clause */
4356 int j1; /* A-vs-B comparision jump */
4357 int addrOutputRow; /* Start of subroutine that outputs a result row */
4358 int regOutputRow; /* Return address register for output subroutine */
4359 int addrSetAbort; /* Set the abort flag and return */
4360 int addrTopOfLoop; /* Top of the input loop */
4361 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
4362 int addrReset; /* Subroutine for resetting the accumulator */
4363 int regReset; /* Return address register for reset subroutine */
4365 /* If there is a GROUP BY clause we might need a sorting index to
4366 ** implement it. Allocate that sorting index now. If it turns out
4367 ** that we do not need it after all, the OP_SorterOpen instruction
4368 ** will be converted into a Noop.
4370 sAggInfo.sortingIdx = pParse->nTab++;
4371 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
4372 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
4373 sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
4374 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
4376 /* Initialize memory locations used by GROUP BY aggregate processing
4378 iUseFlag = ++pParse->nMem;
4379 iAbortFlag = ++pParse->nMem;
4380 regOutputRow = ++pParse->nMem;
4381 addrOutputRow = sqlite3VdbeMakeLabel(v);
4382 regReset = ++pParse->nMem;
4383 addrReset = sqlite3VdbeMakeLabel(v);
4384 iAMem = pParse->nMem + 1;
4385 pParse->nMem += pGroupBy->nExpr;
4386 iBMem = pParse->nMem + 1;
4387 pParse->nMem += pGroupBy->nExpr;
4388 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
4389 VdbeComment((v, "clear abort flag"));
4390 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
4391 VdbeComment((v, "indicate accumulator empty"));
4392 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
4394 /* Begin a loop that will extract all source rows in GROUP BY order.
4395 ** This might involve two separate loops with an OP_Sort in between, or
4396 ** it might be a single loop that uses an index to extract information
4397 ** in the right order to begin with.
4399 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
4400 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 0, 0);
4401 if( pWInfo==0 ) goto select_end;
4402 if( pWInfo->nOBSat==pGroupBy->nExpr ){
4403 /* The optimizer is able to deliver rows in group by order so
4404 ** we do not have to sort. The OP_OpenEphemeral table will be
4405 ** cancelled later because we still need to use the pKeyInfo
4407 groupBySort = 0;
4408 }else{
4409 /* Rows are coming out in undetermined order. We have to push
4410 ** each row into a sorting index, terminate the first loop,
4411 ** then loop over the sorting index in order to get the output
4412 ** in sorted order
4414 int regBase;
4415 int regRecord;
4416 int nCol;
4417 int nGroupBy;
4419 explainTempTable(pParse,
4420 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
4421 "DISTINCT" : "GROUP BY");
4423 groupBySort = 1;
4424 nGroupBy = pGroupBy->nExpr;
4425 nCol = nGroupBy + 1;
4426 j = nGroupBy+1;
4427 for(i=0; i<sAggInfo.nColumn; i++){
4428 if( sAggInfo.aCol[i].iSorterColumn>=j ){
4429 nCol++;
4430 j++;
4433 regBase = sqlite3GetTempRange(pParse, nCol);
4434 sqlite3ExprCacheClear(pParse);
4435 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
4436 sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
4437 j = nGroupBy+1;
4438 for(i=0; i<sAggInfo.nColumn; i++){
4439 struct AggInfo_col *pCol = &sAggInfo.aCol[i];
4440 if( pCol->iSorterColumn>=j ){
4441 int r1 = j + regBase;
4442 int r2;
4444 r2 = sqlite3ExprCodeGetColumn(pParse,
4445 pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
4446 if( r1!=r2 ){
4447 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
4449 j++;
4452 regRecord = sqlite3GetTempReg(pParse);
4453 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
4454 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
4455 sqlite3ReleaseTempReg(pParse, regRecord);
4456 sqlite3ReleaseTempRange(pParse, regBase, nCol);
4457 sqlite3WhereEnd(pWInfo);
4458 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
4459 sortOut = sqlite3GetTempReg(pParse);
4460 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
4461 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
4462 VdbeComment((v, "GROUP BY sort"));
4463 sAggInfo.useSortingIdx = 1;
4464 sqlite3ExprCacheClear(pParse);
4467 /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
4468 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
4469 ** Then compare the current GROUP BY terms against the GROUP BY terms
4470 ** from the previous row currently stored in a0, a1, a2...
4472 addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
4473 sqlite3ExprCacheClear(pParse);
4474 if( groupBySort ){
4475 sqlite3VdbeAddOp2(v, OP_SorterData, sAggInfo.sortingIdx, sortOut);
4477 for(j=0; j<pGroupBy->nExpr; j++){
4478 if( groupBySort ){
4479 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
4480 if( j==0 ) sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
4481 }else{
4482 sAggInfo.directMode = 1;
4483 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
4486 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
4487 (char*)pKeyInfo, P4_KEYINFO);
4488 j1 = sqlite3VdbeCurrentAddr(v);
4489 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1);
4491 /* Generate code that runs whenever the GROUP BY changes.
4492 ** Changes in the GROUP BY are detected by the previous code
4493 ** block. If there were no changes, this block is skipped.
4495 ** This code copies current group by terms in b0,b1,b2,...
4496 ** over to a0,a1,a2. It then calls the output subroutine
4497 ** and resets the aggregate accumulator registers in preparation
4498 ** for the next GROUP BY batch.
4500 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
4501 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
4502 VdbeComment((v, "output one row"));
4503 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
4504 VdbeComment((v, "check abort flag"));
4505 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
4506 VdbeComment((v, "reset accumulator"));
4508 /* Update the aggregate accumulators based on the content of
4509 ** the current row
4511 sqlite3VdbeJumpHere(v, j1);
4512 updateAccumulator(pParse, &sAggInfo);
4513 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
4514 VdbeComment((v, "indicate data in accumulator"));
4516 /* End of the loop
4518 if( groupBySort ){
4519 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
4520 }else{
4521 sqlite3WhereEnd(pWInfo);
4522 sqlite3VdbeChangeToNoop(v, addrSortingIdx);
4525 /* Output the final row of result
4527 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
4528 VdbeComment((v, "output final row"));
4530 /* Jump over the subroutines
4532 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
4534 /* Generate a subroutine that outputs a single row of the result
4535 ** set. This subroutine first looks at the iUseFlag. If iUseFlag
4536 ** is less than or equal to zero, the subroutine is a no-op. If
4537 ** the processing calls for the query to abort, this subroutine
4538 ** increments the iAbortFlag memory location before returning in
4539 ** order to signal the caller to abort.
4541 addrSetAbort = sqlite3VdbeCurrentAddr(v);
4542 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
4543 VdbeComment((v, "set abort flag"));
4544 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4545 sqlite3VdbeResolveLabel(v, addrOutputRow);
4546 addrOutputRow = sqlite3VdbeCurrentAddr(v);
4547 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
4548 VdbeComment((v, "Groupby result generator entry point"));
4549 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4550 finalizeAggFunctions(pParse, &sAggInfo);
4551 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
4552 selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
4553 &sDistinct, pDest,
4554 addrOutputRow+1, addrSetAbort);
4555 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4556 VdbeComment((v, "end groupby result generator"));
4558 /* Generate a subroutine that will reset the group-by accumulator
4560 sqlite3VdbeResolveLabel(v, addrReset);
4561 resetAccumulator(pParse, &sAggInfo);
4562 sqlite3VdbeAddOp1(v, OP_Return, regReset);
4564 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
4565 else {
4566 ExprList *pDel = 0;
4567 #ifndef SQLITE_OMIT_BTREECOUNT
4568 Table *pTab;
4569 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
4570 /* If isSimpleCount() returns a pointer to a Table structure, then
4571 ** the SQL statement is of the form:
4573 ** SELECT count(*) FROM <tbl>
4575 ** where the Table structure returned represents table <tbl>.
4577 ** This statement is so common that it is optimized specially. The
4578 ** OP_Count instruction is executed either on the intkey table that
4579 ** contains the data for table <tbl> or on one of its indexes. It
4580 ** is better to execute the op on an index, as indexes are almost
4581 ** always spread across less pages than their corresponding tables.
4583 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4584 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */
4585 Index *pIdx; /* Iterator variable */
4586 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */
4587 Index *pBest = 0; /* Best index found so far */
4588 int iRoot = pTab->tnum; /* Root page of scanned b-tree */
4590 sqlite3CodeVerifySchema(pParse, iDb);
4591 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
4593 /* Search for the index that has the least amount of columns. If
4594 ** there is such an index, and it has less columns than the table
4595 ** does, then we can assume that it consumes less space on disk and
4596 ** will therefore be cheaper to scan to determine the query result.
4597 ** In this case set iRoot to the root page number of the index b-tree
4598 ** and pKeyInfo to the KeyInfo structure required to navigate the
4599 ** index.
4601 ** (2011-04-15) Do not do a full scan of an unordered index.
4603 ** In practice the KeyInfo structure will not be used. It is only
4604 ** passed to keep OP_OpenRead happy.
4606 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4607 if( pIdx->bUnordered==0 && (!pBest || pIdx->nColumn<pBest->nColumn) ){
4608 pBest = pIdx;
4611 if( pBest && pBest->nColumn<pTab->nCol ){
4612 iRoot = pBest->tnum;
4613 pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest);
4616 /* Open a read-only cursor, execute the OP_Count, close the cursor. */
4617 sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb);
4618 if( pKeyInfo ){
4619 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF);
4621 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
4622 sqlite3VdbeAddOp1(v, OP_Close, iCsr);
4623 explainSimpleCount(pParse, pTab, pBest);
4624 }else
4625 #endif /* SQLITE_OMIT_BTREECOUNT */
4627 /* Check if the query is of one of the following forms:
4629 ** SELECT min(x) FROM ...
4630 ** SELECT max(x) FROM ...
4632 ** If it is, then ask the code in where.c to attempt to sort results
4633 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
4634 ** If where.c is able to produce results sorted in this order, then
4635 ** add vdbe code to break out of the processing loop after the
4636 ** first iteration (since the first iteration of the loop is
4637 ** guaranteed to operate on the row with the minimum or maximum
4638 ** value of x, the only row required).
4640 ** A special flag must be passed to sqlite3WhereBegin() to slightly
4641 ** modify behavior as follows:
4643 ** + If the query is a "SELECT min(x)", then the loop coded by
4644 ** where.c should not iterate over any values with a NULL value
4645 ** for x.
4647 ** + The optimizer code in where.c (the thing that decides which
4648 ** index or indices to use) should place a different priority on
4649 ** satisfying the 'ORDER BY' clause than it does in other cases.
4650 ** Refer to code and comments in where.c for details.
4652 ExprList *pMinMax = 0;
4653 u8 flag = WHERE_ORDERBY_NORMAL;
4655 assert( p->pGroupBy==0 );
4656 assert( flag==0 );
4657 if( p->pHaving==0 ){
4658 flag = minMaxQuery(&sAggInfo, &pMinMax);
4660 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) );
4662 if( flag ){
4663 pMinMax = sqlite3ExprListDup(db, pMinMax, 0);
4664 pDel = pMinMax;
4665 if( pMinMax && !db->mallocFailed ){
4666 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
4667 pMinMax->a[0].pExpr->op = TK_COLUMN;
4671 /* This case runs if the aggregate has no GROUP BY clause. The
4672 ** processing is much simpler since there is only a single row
4673 ** of output.
4675 resetAccumulator(pParse, &sAggInfo);
4676 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0);
4677 if( pWInfo==0 ){
4678 sqlite3ExprListDelete(db, pDel);
4679 goto select_end;
4681 updateAccumulator(pParse, &sAggInfo);
4682 assert( pMinMax==0 || pMinMax->nExpr==1 );
4683 if( pWInfo->nOBSat>0 ){
4684 sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
4685 VdbeComment((v, "%s() by index",
4686 (flag==WHERE_ORDERBY_MIN?"min":"max")));
4688 sqlite3WhereEnd(pWInfo);
4689 finalizeAggFunctions(pParse, &sAggInfo);
4692 pOrderBy = 0;
4693 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
4694 selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, 0,
4695 pDest, addrEnd, addrEnd);
4696 sqlite3ExprListDelete(db, pDel);
4698 sqlite3VdbeResolveLabel(v, addrEnd);
4700 } /* endif aggregate query */
4702 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
4703 explainTempTable(pParse, "DISTINCT");
4706 /* If there is an ORDER BY clause, then we need to sort the results
4707 ** and send them to the callback one by one.
4709 if( pOrderBy ){
4710 explainTempTable(pParse, "ORDER BY");
4711 generateSortTail(pParse, p, v, pEList->nExpr, pDest);
4714 /* Jump here to skip this query
4716 sqlite3VdbeResolveLabel(v, iEnd);
4718 /* The SELECT was successfully coded. Set the return code to 0
4719 ** to indicate no errors.
4721 rc = 0;
4723 /* Control jumps to here if an error is encountered above, or upon
4724 ** successful coding of the SELECT.
4726 select_end:
4727 explainSetInteger(pParse->iSelectId, iRestoreSelectId);
4729 /* Identify column names if results of the SELECT are to be output.
4731 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
4732 generateColumnNames(pParse, pTabList, pEList);
4735 sqlite3DbFree(db, sAggInfo.aCol);
4736 sqlite3DbFree(db, sAggInfo.aFunc);
4737 return rc;
4740 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
4742 ** Generate a human-readable description of a the Select object.
4744 static void explainOneSelect(Vdbe *pVdbe, Select *p){
4745 sqlite3ExplainPrintf(pVdbe, "SELECT ");
4746 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
4747 if( p->selFlags & SF_Distinct ){
4748 sqlite3ExplainPrintf(pVdbe, "DISTINCT ");
4750 if( p->selFlags & SF_Aggregate ){
4751 sqlite3ExplainPrintf(pVdbe, "agg_flag ");
4753 sqlite3ExplainNL(pVdbe);
4754 sqlite3ExplainPrintf(pVdbe, " ");
4756 sqlite3ExplainExprList(pVdbe, p->pEList);
4757 sqlite3ExplainNL(pVdbe);
4758 if( p->pSrc && p->pSrc->nSrc ){
4759 int i;
4760 sqlite3ExplainPrintf(pVdbe, "FROM ");
4761 sqlite3ExplainPush(pVdbe);
4762 for(i=0; i<p->pSrc->nSrc; i++){
4763 struct SrcList_item *pItem = &p->pSrc->a[i];
4764 sqlite3ExplainPrintf(pVdbe, "{%d,*} = ", pItem->iCursor);
4765 if( pItem->pSelect ){
4766 sqlite3ExplainSelect(pVdbe, pItem->pSelect);
4767 if( pItem->pTab ){
4768 sqlite3ExplainPrintf(pVdbe, " (tabname=%s)", pItem->pTab->zName);
4770 }else if( pItem->zName ){
4771 sqlite3ExplainPrintf(pVdbe, "%s", pItem->zName);
4773 if( pItem->zAlias ){
4774 sqlite3ExplainPrintf(pVdbe, " (AS %s)", pItem->zAlias);
4776 if( pItem->jointype & JT_LEFT ){
4777 sqlite3ExplainPrintf(pVdbe, " LEFT-JOIN");
4779 sqlite3ExplainNL(pVdbe);
4781 sqlite3ExplainPop(pVdbe);
4783 if( p->pWhere ){
4784 sqlite3ExplainPrintf(pVdbe, "WHERE ");
4785 sqlite3ExplainExpr(pVdbe, p->pWhere);
4786 sqlite3ExplainNL(pVdbe);
4788 if( p->pGroupBy ){
4789 sqlite3ExplainPrintf(pVdbe, "GROUPBY ");
4790 sqlite3ExplainExprList(pVdbe, p->pGroupBy);
4791 sqlite3ExplainNL(pVdbe);
4793 if( p->pHaving ){
4794 sqlite3ExplainPrintf(pVdbe, "HAVING ");
4795 sqlite3ExplainExpr(pVdbe, p->pHaving);
4796 sqlite3ExplainNL(pVdbe);
4798 if( p->pOrderBy ){
4799 sqlite3ExplainPrintf(pVdbe, "ORDERBY ");
4800 sqlite3ExplainExprList(pVdbe, p->pOrderBy);
4801 sqlite3ExplainNL(pVdbe);
4803 if( p->pLimit ){
4804 sqlite3ExplainPrintf(pVdbe, "LIMIT ");
4805 sqlite3ExplainExpr(pVdbe, p->pLimit);
4806 sqlite3ExplainNL(pVdbe);
4808 if( p->pOffset ){
4809 sqlite3ExplainPrintf(pVdbe, "OFFSET ");
4810 sqlite3ExplainExpr(pVdbe, p->pOffset);
4811 sqlite3ExplainNL(pVdbe);
4814 void sqlite3ExplainSelect(Vdbe *pVdbe, Select *p){
4815 if( p==0 ){
4816 sqlite3ExplainPrintf(pVdbe, "(null-select)");
4817 return;
4819 while( p->pPrior ){
4820 p->pPrior->pNext = p;
4821 p = p->pPrior;
4823 sqlite3ExplainPush(pVdbe);
4824 while( p ){
4825 explainOneSelect(pVdbe, p);
4826 p = p->pNext;
4827 if( p==0 ) break;
4828 sqlite3ExplainNL(pVdbe);
4829 sqlite3ExplainPrintf(pVdbe, "%s\n", selectOpName(p->op));
4831 sqlite3ExplainPrintf(pVdbe, "END");
4832 sqlite3ExplainPop(pVdbe);
4835 /* End of the structure debug printing code
4836 *****************************************************************************/
4837 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */