2 ** This file contains all sources (including headers) to the LEMON
3 ** LALR(1) parser generator. The sources have been combined into a
4 ** single file to make it easy to include LEMON in the source tree
5 ** and Makefile of another program.
7 ** The author of this program disclaims copyright.
16 #define ISSPACE(X) isspace((unsigned char)(X))
17 #define ISDIGIT(X) isdigit((unsigned char)(X))
18 #define ISALNUM(X) isalnum((unsigned char)(X))
19 #define ISALPHA(X) isalpha((unsigned char)(X))
20 #define ISUPPER(X) isupper((unsigned char)(X))
21 #define ISLOWER(X) islower((unsigned char)(X))
25 # if defined(_WIN32) || defined(WIN32)
34 extern int access(const char *path
, int mode
);
42 /* #define PRIVATE static */
46 #define MAXRHS 5 /* Set low to exercise exception code */
51 extern void memory_error();
52 static int showPrecedenceConflict
= 0;
53 static char *msort(char*,char**,int(*)(const char*,const char*));
56 ** Compilers are getting increasingly pedantic about type conversions
57 ** as C evolves ever closer to Ada.... To work around the latest problems
58 ** we have to define the following variant of strlen().
60 #define lemonStrlen(X) ((int)strlen(X))
63 ** Compilers are starting to complain about the use of sprintf() and strcpy(),
64 ** saying they are unsafe. So we define our own versions of those routines too.
66 ** There are three routines here: lemon_sprintf(), lemon_vsprintf(), and
67 ** lemon_addtext(). The first two are replacements for sprintf() and vsprintf().
68 ** The third is a helper routine for vsnprintf() that adds texts to the end of a
69 ** buffer, making sure the buffer is always zero-terminated.
71 ** The string formatter is a minimal subset of stdlib sprintf() supporting only
72 ** a few simply conversions:
79 static void lemon_addtext(
80 char *zBuf
, /* The buffer to which text is added */
81 int *pnUsed
, /* Slots of the buffer used so far */
82 const char *zIn
, /* Text to add */
83 int nIn
, /* Bytes of text to add. -1 to use strlen() */
84 int iWidth
/* Field width. Negative to left justify */
86 if( nIn
<0 ) for(nIn
=0; zIn
[nIn
]; nIn
++){}
87 while( iWidth
>nIn
){ zBuf
[(*pnUsed
)++] = ' '; iWidth
--; }
89 memcpy(&zBuf
[*pnUsed
], zIn
, nIn
);
91 while( (-iWidth
)>nIn
){ zBuf
[(*pnUsed
)++] = ' '; iWidth
++; }
94 static int lemon_vsprintf(char *str
, const char *zFormat
, va_list ap
){
100 for(i
=j
=0; (c
= zFormat
[i
])!=0; i
++){
103 lemon_addtext(str
, &nUsed
, &zFormat
[j
], i
-j
, 0);
105 if( ISDIGIT(c
) || (c
=='-' && ISDIGIT(zFormat
[i
+1])) ){
107 while( ISDIGIT(zFormat
[i
]) ) iWidth
= iWidth
*10 + zFormat
[i
++] - '0';
108 if( c
=='-' ) iWidth
= -iWidth
;
112 int v
= va_arg(ap
, int);
114 lemon_addtext(str
, &nUsed
, "-", 1, iWidth
);
117 lemon_addtext(str
, &nUsed
, "0", 1, iWidth
);
122 zTemp
[sizeof(zTemp
)-k
] = (v
%10) + '0';
125 lemon_addtext(str
, &nUsed
, &zTemp
[sizeof(zTemp
)-k
], k
, iWidth
);
127 z
= va_arg(ap
, const char*);
128 lemon_addtext(str
, &nUsed
, z
, -1, iWidth
);
129 }else if( c
=='.' && memcmp(&zFormat
[i
], ".*s", 3)==0 ){
132 z
= va_arg(ap
, const char*);
133 lemon_addtext(str
, &nUsed
, z
, k
, iWidth
);
135 lemon_addtext(str
, &nUsed
, "%", 1, 0);
137 fprintf(stderr
, "illegal format\n");
143 lemon_addtext(str
, &nUsed
, &zFormat
[j
], i
-j
, 0);
146 static int lemon_sprintf(char *str
, const char *format
, ...){
149 va_start(ap
, format
);
150 rc
= lemon_vsprintf(str
, format
, ap
);
154 static void lemon_strcpy(char *dest
, const char *src
){
155 while( (*(dest
++) = *(src
++))!=0 ){}
157 static void lemon_strcat(char *dest
, const char *src
){
158 while( *dest
) dest
++;
159 lemon_strcpy(dest
, src
);
163 /* a few forward declarations... */
168 static struct action
*Action_new(void);
169 static struct action
*Action_sort(struct action
*);
171 /********** From the file "build.h" ************************************/
172 void FindRulePrecedences(struct lemon
*);
173 void FindFirstSets(struct lemon
*);
174 void FindStates(struct lemon
*);
175 void FindLinks(struct lemon
*);
176 void FindFollowSets(struct lemon
*);
177 void FindActions(struct lemon
*);
179 /********* From the file "configlist.h" *********************************/
180 void Configlist_init(void);
181 struct config
*Configlist_add(struct rule
*, int);
182 struct config
*Configlist_addbasis(struct rule
*, int);
183 void Configlist_closure(struct lemon
*);
184 void Configlist_sort(void);
185 void Configlist_sortbasis(void);
186 struct config
*Configlist_return(void);
187 struct config
*Configlist_basis(void);
188 void Configlist_eat(struct config
*);
189 void Configlist_reset(void);
191 /********* From the file "error.h" ***************************************/
192 void ErrorMsg(const char *, int,const char *, ...);
194 /****** From the file "option.h" ******************************************/
195 enum option_type
{ OPT_FLAG
=1, OPT_INT
, OPT_DBL
, OPT_STR
,
196 OPT_FFLAG
, OPT_FINT
, OPT_FDBL
, OPT_FSTR
};
198 enum option_type type
;
203 int OptInit(char**,struct s_options
*,FILE*);
209 /******** From the file "parse.h" *****************************************/
210 void Parse(struct lemon
*lemp
);
212 /********* From the file "plink.h" ***************************************/
213 struct plink
*Plink_new(void);
214 void Plink_add(struct plink
**, struct config
*);
215 void Plink_copy(struct plink
**, struct plink
*);
216 void Plink_delete(struct plink
*);
218 /********** From the file "report.h" *************************************/
219 void Reprint(struct lemon
*);
220 void ReportOutput(struct lemon
*);
221 void ReportTable(struct lemon
*, int, int);
222 void ReportHeader(struct lemon
*);
223 void CompressTables(struct lemon
*);
224 void ResortStates(struct lemon
*);
226 /********** From the file "set.h" ****************************************/
227 void SetSize(int); /* All sets will be of size N */
228 char *SetNew(void); /* A new set for element 0..N */
229 void SetFree(char*); /* Deallocate a set */
230 int SetAdd(char*,int); /* Add element to a set */
231 int SetUnion(char *,char *); /* A <- A U B, thru element N */
232 #define SetFind(X,Y) (X[Y]) /* True if Y is in set X */
234 /********** From the file "struct.h" *************************************/
236 ** Principal data structures for the LEMON parser generator.
239 typedef enum {LEMON_FALSE
=0, LEMON_TRUE
} Boolean
;
241 /* Symbols (terminals and nonterminals) of the grammar are stored
242 ** in the following: */
255 const char *name
; /* Name of the symbol */
256 int index
; /* Index number for this symbol */
257 enum symbol_type type
; /* Symbols are all either TERMINALS or NTs */
258 struct rule
*rule
; /* Linked list of rules of this (if an NT) */
259 struct symbol
*fallback
; /* fallback token in case this token doesn't parse */
260 int prec
; /* Precedence if defined (-1 otherwise) */
261 enum e_assoc assoc
; /* Associativity if precedence is defined */
262 char *firstset
; /* First-set for all rules of this symbol */
263 Boolean lambda
; /* True if NT and can generate an empty string */
264 int useCnt
; /* Number of times used */
265 char *destructor
; /* Code which executes whenever this symbol is
266 ** popped from the stack during error processing */
267 int destLineno
; /* Line number for start of destructor. Set to
268 ** -1 for duplicate destructors. */
269 char *datatype
; /* The data type of information held by this
270 ** object. Only used if type==NONTERMINAL */
271 int dtnum
; /* The data type number. In the parser, the value
272 ** stack is a union. The .yy%d element of this
273 ** union is the correct data type for this object */
274 int bContent
; /* True if this symbol ever carries content - if
275 ** it is ever more than just syntax */
276 /* The following fields are used by MULTITERMINALs only */
277 int nsubsym
; /* Number of constituent symbols in the MULTI */
278 struct symbol
**subsym
; /* Array of constituent symbols */
281 /* Each production rule in the grammar is stored in the following
284 struct symbol
*lhs
; /* Left-hand side of the rule */
285 const char *lhsalias
; /* Alias for the LHS (NULL if none) */
286 int lhsStart
; /* True if left-hand side is the start symbol */
287 int ruleline
; /* Line number for the rule */
288 int nrhs
; /* Number of RHS symbols */
289 struct symbol
**rhs
; /* The RHS symbols */
290 const char **rhsalias
; /* An alias for each RHS symbol (NULL if none) */
291 int line
; /* Line number at which code begins */
292 const char *code
; /* The code executed when this rule is reduced */
293 const char *codePrefix
; /* Setup code before code[] above */
294 const char *codeSuffix
; /* Breakdown code after code[] above */
295 struct symbol
*precsym
; /* Precedence symbol for this rule */
296 int index
; /* An index number for this rule */
297 int iRule
; /* Rule number as used in the generated tables */
298 Boolean noCode
; /* True if this rule has no associated C code */
299 Boolean codeEmitted
; /* True if the code has been emitted already */
300 Boolean canReduce
; /* True if this rule is ever reduced */
301 Boolean doesReduce
; /* Reduce actions occur after optimization */
302 Boolean neverReduce
; /* Reduce is theoretically possible, but prevented
303 ** by actions or other outside implementation */
304 struct rule
*nextlhs
; /* Next rule with the same LHS */
305 struct rule
*next
; /* Next rule in the global list */
308 /* A configuration is a production rule of the grammar together with
309 ** a mark (dot) showing how much of that rule has been processed so far.
310 ** Configurations also contain a follow-set which is a list of terminal
311 ** symbols which are allowed to immediately follow the end of the rule.
312 ** Every configuration is recorded as an instance of the following: */
318 struct rule
*rp
; /* The rule upon which the configuration is based */
319 int dot
; /* The parse point */
320 char *fws
; /* Follow-set for this configuration only */
321 struct plink
*fplp
; /* Follow-set forward propagation links */
322 struct plink
*bplp
; /* Follow-set backwards propagation links */
323 struct state
*stp
; /* Pointer to state which contains this */
324 enum cfgstatus status
; /* used during followset and shift computations */
325 struct config
*next
; /* Next configuration in the state */
326 struct config
*bp
; /* The next basis configuration */
334 SSCONFLICT
, /* A shift/shift conflict */
335 SRCONFLICT
, /* Was a reduce, but part of a conflict */
336 RRCONFLICT
, /* Was a reduce, but part of a conflict */
337 SH_RESOLVED
, /* Was a shift. Precedence resolved conflict */
338 RD_RESOLVED
, /* Was reduce. Precedence resolved conflict */
339 NOT_USED
, /* Deleted by compression */
340 SHIFTREDUCE
/* Shift first, then reduce */
343 /* Every shift or reduce operation is stored as one of the following */
345 struct symbol
*sp
; /* The look-ahead symbol */
348 struct state
*stp
; /* The new state, if a shift */
349 struct rule
*rp
; /* The rule, if a reduce */
351 struct symbol
*spOpt
; /* SHIFTREDUCE optimization to this symbol */
352 struct action
*next
; /* Next action for this state */
353 struct action
*collide
; /* Next action with the same hash */
356 /* Each state of the generated parser's finite state machine
357 ** is encoded as an instance of the following structure. */
359 struct config
*bp
; /* The basis configurations for this state */
360 struct config
*cfp
; /* All configurations in this set */
361 int statenum
; /* Sequential number for this state */
362 struct action
*ap
; /* List of actions for this state */
363 int nTknAct
, nNtAct
; /* Number of actions on terminals and nonterminals */
364 int iTknOfst
, iNtOfst
; /* yy_action[] offset for terminals and nonterms */
365 int iDfltReduce
; /* Default action is to REDUCE by this rule */
366 struct rule
*pDfltReduce
;/* The default REDUCE rule. */
367 int autoReduce
; /* True if this is an auto-reduce state */
369 #define NO_OFFSET (-2147483647)
371 /* A followset propagation link indicates that the contents of one
372 ** configuration followset should be propagated to another whenever
373 ** the first changes. */
375 struct config
*cfp
; /* The configuration to which linked */
376 struct plink
*next
; /* The next propagate link */
379 /* The state vector for the entire parser generator is recorded as
380 ** follows. (LEMON uses no global variables and makes little use of
381 ** static variables. Fields in the following structure can be thought
382 ** of as begin global variables in the program.) */
384 struct state
**sorted
; /* Table of states sorted by state number */
385 struct rule
*rule
; /* List of all rules */
386 struct rule
*startRule
; /* First rule */
387 int nstate
; /* Number of states */
388 int nxstate
; /* nstate with tail degenerate states removed */
389 int nrule
; /* Number of rules */
390 int nruleWithAction
; /* Number of rules with actions */
391 int nsymbol
; /* Number of terminal and nonterminal symbols */
392 int nterminal
; /* Number of terminal symbols */
393 int minShiftReduce
; /* Minimum shift-reduce action value */
394 int errAction
; /* Error action value */
395 int accAction
; /* Accept action value */
396 int noAction
; /* No-op action value */
397 int minReduce
; /* Minimum reduce action */
398 int maxAction
; /* Maximum action value of any kind */
399 struct symbol
**symbols
; /* Sorted array of pointers to symbols */
400 int errorcnt
; /* Number of errors */
401 struct symbol
*errsym
; /* The error symbol */
402 struct symbol
*wildcard
; /* Token that matches anything */
403 char *name
; /* Name of the generated parser */
404 char *arg
; /* Declaration of the 3th argument to parser */
405 char *ctx
; /* Declaration of 2nd argument to constructor */
406 char *tokentype
; /* Type of terminal symbols in the parser stack */
407 char *vartype
; /* The default type of non-terminal symbols */
408 char *start
; /* Name of the start symbol for the grammar */
409 char *stacksize
; /* Size of the parser stack */
410 char *include
; /* Code to put at the start of the C file */
411 char *error
; /* Code to execute when an error is seen */
412 char *overflow
; /* Code to execute on a stack overflow */
413 char *failure
; /* Code to execute on parser failure */
414 char *accept
; /* Code to execute when the parser excepts */
415 char *extracode
; /* Code appended to the generated file */
416 char *tokendest
; /* Code to execute to destroy token data */
417 char *vardest
; /* Code for the default non-terminal destructor */
418 char *filename
; /* Name of the input file */
419 char *outname
; /* Name of the current output file */
420 char *tokenprefix
; /* A prefix added to token names in the .h file */
421 int nconflict
; /* Number of parsing conflicts */
422 int nactiontab
; /* Number of entries in the yy_action[] table */
423 int nlookaheadtab
; /* Number of entries in yy_lookahead[] */
424 int tablesize
; /* Total table size of all tables in bytes */
425 int basisflag
; /* Print only basis configurations */
426 int has_fallback
; /* True if any %fallback is seen in the grammar */
427 int nolinenosflag
; /* True if #line statements should not be printed */
428 char *argv0
; /* Name of the program */
431 #define MemoryCheck(X) if((X)==0){ \
432 extern void memory_error(); \
436 /**************** From the file "table.h" *********************************/
438 ** All code in this file has been automatically generated
439 ** from a specification in the file
441 ** by the associative array code building program "aagen".
442 ** Do not edit this file! Instead, edit the specification
443 ** file, then rerun aagen.
446 ** Code for processing tables in the LEMON parser generator.
448 /* Routines for handling a strings */
450 const char *Strsafe(const char *);
452 void Strsafe_init(void);
453 int Strsafe_insert(const char *);
454 const char *Strsafe_find(const char *);
456 /* Routines for handling symbols of the grammar */
458 struct symbol
*Symbol_new(const char *);
459 int Symbolcmpp(const void *, const void *);
460 void Symbol_init(void);
461 int Symbol_insert(struct symbol
*, const char *);
462 struct symbol
*Symbol_find(const char *);
463 struct symbol
*Symbol_Nth(int);
464 int Symbol_count(void);
465 struct symbol
**Symbol_arrayof(void);
467 /* Routines to manage the state table */
469 int Configcmp(const char *, const char *);
470 struct state
*State_new(void);
471 void State_init(void);
472 int State_insert(struct state
*, struct config
*);
473 struct state
*State_find(struct config
*);
474 struct state
**State_arrayof(void);
476 /* Routines used for efficiency in Configlist_add */
478 void Configtable_init(void);
479 int Configtable_insert(struct config
*);
480 struct config
*Configtable_find(struct config
*);
481 void Configtable_clear(int(*)(struct config
*));
483 /****************** From the file "action.c" *******************************/
485 ** Routines processing parser actions in the LEMON parser generator.
488 /* Allocate a new parser action */
489 static struct action
*Action_new(void){
490 static struct action
*actionfreelist
= 0;
491 struct action
*newaction
;
493 if( actionfreelist
==0 ){
496 actionfreelist
= (struct action
*)calloc(amt
, sizeof(struct action
));
497 if( actionfreelist
==0 ){
498 fprintf(stderr
,"Unable to allocate memory for a new parser action.");
501 for(i
=0; i
<amt
-1; i
++) actionfreelist
[i
].next
= &actionfreelist
[i
+1];
502 actionfreelist
[amt
-1].next
= 0;
504 newaction
= actionfreelist
;
505 actionfreelist
= actionfreelist
->next
;
509 /* Compare two actions for sorting purposes. Return negative, zero, or
510 ** positive if the first action is less than, equal to, or greater than
513 static int actioncmp(
518 rc
= ap1
->sp
->index
- ap2
->sp
->index
;
520 rc
= (int)ap1
->type
- (int)ap2
->type
;
522 if( rc
==0 && (ap1
->type
==REDUCE
|| ap1
->type
==SHIFTREDUCE
) ){
523 rc
= ap1
->x
.rp
->index
- ap2
->x
.rp
->index
;
526 rc
= (int) (ap2
- ap1
);
531 /* Sort parser actions */
532 static struct action
*Action_sort(
535 ap
= (struct action
*)msort((char *)ap
,(char **)&ap
->next
,
536 (int(*)(const char*,const char*))actioncmp
);
546 struct action
*newaction
;
547 newaction
= Action_new();
548 newaction
->next
= *app
;
550 newaction
->type
= type
;
552 newaction
->spOpt
= 0;
554 newaction
->x
.stp
= (struct state
*)arg
;
556 newaction
->x
.rp
= (struct rule
*)arg
;
559 /********************** New code to implement the "acttab" module ***********/
561 ** This module implements routines use to construct the yy_action[] table.
565 ** The state of the yy_action table under construction is an instance of
566 ** the following structure.
568 ** The yy_action table maps the pair (state_number, lookahead) into an
569 ** action_number. The table is an array of integers pairs. The state_number
570 ** determines an initial offset into the yy_action array. The lookahead
571 ** value is then added to this initial offset to get an index X into the
572 ** yy_action array. If the aAction[X].lookahead equals the value of the
573 ** of the lookahead input, then the value of the action_number output is
574 ** aAction[X].action. If the lookaheads do not match then the
575 ** default action for the state_number is returned.
577 ** All actions associated with a single state_number are first entered
578 ** into aLookahead[] using multiple calls to acttab_action(). Then the
579 ** actions for that single state_number are placed into the aAction[]
580 ** array with a single call to acttab_insert(). The acttab_insert() call
581 ** also resets the aLookahead[] array in preparation for the next
584 struct lookahead_action
{
585 int lookahead
; /* Value of the lookahead token */
586 int action
; /* Action to take on the given lookahead */
588 typedef struct acttab acttab
;
590 int nAction
; /* Number of used slots in aAction[] */
591 int nActionAlloc
; /* Slots allocated for aAction[] */
592 struct lookahead_action
593 *aAction
, /* The yy_action[] table under construction */
594 *aLookahead
; /* A single new transaction set */
595 int mnLookahead
; /* Minimum aLookahead[].lookahead */
596 int mnAction
; /* Action associated with mnLookahead */
597 int mxLookahead
; /* Maximum aLookahead[].lookahead */
598 int nLookahead
; /* Used slots in aLookahead[] */
599 int nLookaheadAlloc
; /* Slots allocated in aLookahead[] */
600 int nterminal
; /* Number of terminal symbols */
601 int nsymbol
; /* total number of symbols */
604 /* Return the number of entries in the yy_action table */
605 #define acttab_lookahead_size(X) ((X)->nAction)
607 /* The value for the N-th entry in yy_action */
608 #define acttab_yyaction(X,N) ((X)->aAction[N].action)
610 /* The value for the N-th entry in yy_lookahead */
611 #define acttab_yylookahead(X,N) ((X)->aAction[N].lookahead)
613 /* Free all memory associated with the given acttab */
614 void acttab_free(acttab
*p
){
616 free( p
->aLookahead
);
620 /* Allocate a new acttab structure */
621 acttab
*acttab_alloc(int nsymbol
, int nterminal
){
622 acttab
*p
= (acttab
*) calloc( 1, sizeof(*p
) );
624 fprintf(stderr
,"Unable to allocate memory for a new acttab.");
627 memset(p
, 0, sizeof(*p
));
628 p
->nsymbol
= nsymbol
;
629 p
->nterminal
= nterminal
;
633 /* Add a new action to the current transaction set.
635 ** This routine is called once for each lookahead for a particular
638 void acttab_action(acttab
*p
, int lookahead
, int action
){
639 if( p
->nLookahead
>=p
->nLookaheadAlloc
){
640 p
->nLookaheadAlloc
+= 25;
641 p
->aLookahead
= (struct lookahead_action
*) realloc( p
->aLookahead
,
642 sizeof(p
->aLookahead
[0])*p
->nLookaheadAlloc
);
643 if( p
->aLookahead
==0 ){
644 fprintf(stderr
,"malloc failed\n");
648 if( p
->nLookahead
==0 ){
649 p
->mxLookahead
= lookahead
;
650 p
->mnLookahead
= lookahead
;
651 p
->mnAction
= action
;
653 if( p
->mxLookahead
<lookahead
) p
->mxLookahead
= lookahead
;
654 if( p
->mnLookahead
>lookahead
){
655 p
->mnLookahead
= lookahead
;
656 p
->mnAction
= action
;
659 p
->aLookahead
[p
->nLookahead
].lookahead
= lookahead
;
660 p
->aLookahead
[p
->nLookahead
].action
= action
;
665 ** Add the transaction set built up with prior calls to acttab_action()
666 ** into the current action table. Then reset the transaction set back
667 ** to an empty set in preparation for a new round of acttab_action() calls.
669 ** Return the offset into the action table of the new transaction.
671 ** If the makeItSafe parameter is true, then the offset is chosen so that
672 ** it is impossible to overread the yy_lookaside[] table regardless of
673 ** the lookaside token. This is done for the terminal symbols, as they
674 ** come from external inputs and can contain syntax errors. When makeItSafe
675 ** is false, there is more flexibility in selecting offsets, resulting in
676 ** a smaller table. For non-terminal symbols, which are never syntax errors,
677 ** makeItSafe can be false.
679 int acttab_insert(acttab
*p
, int makeItSafe
){
681 assert( p
->nLookahead
>0 );
683 /* Make sure we have enough space to hold the expanded action table
684 ** in the worst case. The worst case occurs if the transaction set
685 ** must be appended to the current action table
688 if( p
->nAction
+ n
>= p
->nActionAlloc
){
689 int oldAlloc
= p
->nActionAlloc
;
690 p
->nActionAlloc
= p
->nAction
+ n
+ p
->nActionAlloc
+ 20;
691 p
->aAction
= (struct lookahead_action
*) realloc( p
->aAction
,
692 sizeof(p
->aAction
[0])*p
->nActionAlloc
);
694 fprintf(stderr
,"malloc failed\n");
697 for(i
=oldAlloc
; i
<p
->nActionAlloc
; i
++){
698 p
->aAction
[i
].lookahead
= -1;
699 p
->aAction
[i
].action
= -1;
703 /* Scan the existing action table looking for an offset that is a
704 ** duplicate of the current transaction set. Fall out of the loop
705 ** if and when the duplicate is found.
707 ** i is the index in p->aAction[] where p->mnLookahead is inserted.
709 end
= makeItSafe
? p
->mnLookahead
: 0;
710 for(i
=p
->nAction
-1; i
>=end
; i
--){
711 if( p
->aAction
[i
].lookahead
==p
->mnLookahead
){
712 /* All lookaheads and actions in the aLookahead[] transaction
713 ** must match against the candidate aAction[i] entry. */
714 if( p
->aAction
[i
].action
!=p
->mnAction
) continue;
715 for(j
=0; j
<p
->nLookahead
; j
++){
716 k
= p
->aLookahead
[j
].lookahead
- p
->mnLookahead
+ i
;
717 if( k
<0 || k
>=p
->nAction
) break;
718 if( p
->aLookahead
[j
].lookahead
!=p
->aAction
[k
].lookahead
) break;
719 if( p
->aLookahead
[j
].action
!=p
->aAction
[k
].action
) break;
721 if( j
<p
->nLookahead
) continue;
723 /* No possible lookahead value that is not in the aLookahead[]
724 ** transaction is allowed to match aAction[i] */
726 for(j
=0; j
<p
->nAction
; j
++){
727 if( p
->aAction
[j
].lookahead
<0 ) continue;
728 if( p
->aAction
[j
].lookahead
==j
+p
->mnLookahead
-i
) n
++;
730 if( n
==p
->nLookahead
){
731 break; /* An exact match is found at offset i */
736 /* If no existing offsets exactly match the current transaction, find an
737 ** an empty offset in the aAction[] table in which we can add the
738 ** aLookahead[] transaction.
741 /* Look for holes in the aAction[] table that fit the current
742 ** aLookahead[] transaction. Leave i set to the offset of the hole.
743 ** If no holes are found, i is left at p->nAction, which means the
744 ** transaction will be appended. */
745 i
= makeItSafe
? p
->mnLookahead
: 0;
746 for(; i
<p
->nActionAlloc
- p
->mxLookahead
; i
++){
747 if( p
->aAction
[i
].lookahead
<0 ){
748 for(j
=0; j
<p
->nLookahead
; j
++){
749 k
= p
->aLookahead
[j
].lookahead
- p
->mnLookahead
+ i
;
751 if( p
->aAction
[k
].lookahead
>=0 ) break;
753 if( j
<p
->nLookahead
) continue;
754 for(j
=0; j
<p
->nAction
; j
++){
755 if( p
->aAction
[j
].lookahead
==j
+p
->mnLookahead
-i
) break;
758 break; /* Fits in empty slots */
763 /* Insert transaction set at index i. */
766 for(j
=0; j
<p
->nLookahead
; j
++){
767 printf(" %d", p
->aLookahead
[j
].lookahead
);
769 printf(" inserted at %d\n", i
);
771 for(j
=0; j
<p
->nLookahead
; j
++){
772 k
= p
->aLookahead
[j
].lookahead
- p
->mnLookahead
+ i
;
773 p
->aAction
[k
] = p
->aLookahead
[j
];
774 if( k
>=p
->nAction
) p
->nAction
= k
+1;
776 if( makeItSafe
&& i
+p
->nterminal
>=p
->nAction
) p
->nAction
= i
+p
->nterminal
+1;
779 /* Return the offset that is added to the lookahead in order to get the
780 ** index into yy_action of the action */
781 return i
- p
->mnLookahead
;
785 ** Return the size of the action table without the trailing syntax error
788 int acttab_action_size(acttab
*p
){
790 while( n
>0 && p
->aAction
[n
-1].lookahead
<0 ){ n
--; }
794 /********************** From the file "build.c" *****************************/
796 ** Routines to construction the finite state machine for the LEMON
800 /* Find a precedence symbol of every rule in the grammar.
802 ** Those rules which have a precedence symbol coded in the input
803 ** grammar using the "[symbol]" construct will already have the
804 ** rp->precsym field filled. Other rules take as their precedence
805 ** symbol the first RHS symbol with a defined precedence. If there
806 ** are not RHS symbols with a defined precedence, the precedence
807 ** symbol field is left blank.
809 void FindRulePrecedences(struct lemon
*xp
)
812 for(rp
=xp
->rule
; rp
; rp
=rp
->next
){
813 if( rp
->precsym
==0 ){
815 for(i
=0; i
<rp
->nrhs
&& rp
->precsym
==0; i
++){
816 struct symbol
*sp
= rp
->rhs
[i
];
817 if( sp
->type
==MULTITERMINAL
){
818 for(j
=0; j
<sp
->nsubsym
; j
++){
819 if( sp
->subsym
[j
]->prec
>=0 ){
820 rp
->precsym
= sp
->subsym
[j
];
824 }else if( sp
->prec
>=0 ){
825 rp
->precsym
= rp
->rhs
[i
];
833 /* Find all nonterminals which will generate the empty string.
834 ** Then go back and compute the first sets of every nonterminal.
835 ** The first set is the set of all terminal symbols which can begin
836 ** a string generated by that nonterminal.
838 void FindFirstSets(struct lemon
*lemp
)
844 for(i
=0; i
<lemp
->nsymbol
; i
++){
845 lemp
->symbols
[i
]->lambda
= LEMON_FALSE
;
847 for(i
=lemp
->nterminal
; i
<lemp
->nsymbol
; i
++){
848 lemp
->symbols
[i
]->firstset
= SetNew();
851 /* First compute all lambdas */
854 for(rp
=lemp
->rule
; rp
; rp
=rp
->next
){
855 if( rp
->lhs
->lambda
) continue;
856 for(i
=0; i
<rp
->nrhs
; i
++){
857 struct symbol
*sp
= rp
->rhs
[i
];
858 assert( sp
->type
==NONTERMINAL
|| sp
->lambda
==LEMON_FALSE
);
859 if( sp
->lambda
==LEMON_FALSE
) break;
862 rp
->lhs
->lambda
= LEMON_TRUE
;
868 /* Now compute all first sets */
870 struct symbol
*s1
, *s2
;
872 for(rp
=lemp
->rule
; rp
; rp
=rp
->next
){
874 for(i
=0; i
<rp
->nrhs
; i
++){
876 if( s2
->type
==TERMINAL
){
877 progress
+= SetAdd(s1
->firstset
,s2
->index
);
879 }else if( s2
->type
==MULTITERMINAL
){
880 for(j
=0; j
<s2
->nsubsym
; j
++){
881 progress
+= SetAdd(s1
->firstset
,s2
->subsym
[j
]->index
);
885 if( s1
->lambda
==LEMON_FALSE
) break;
887 progress
+= SetUnion(s1
->firstset
,s2
->firstset
);
888 if( s2
->lambda
==LEMON_FALSE
) break;
896 /* Compute all LR(0) states for the grammar. Links
897 ** are added to between some states so that the LR(1) follow sets
898 ** can be computed later.
900 PRIVATE
struct state
*getstate(struct lemon
*); /* forward reference */
901 void FindStates(struct lemon
*lemp
)
908 /* Find the start symbol */
910 sp
= Symbol_find(lemp
->start
);
912 ErrorMsg(lemp
->filename
,0,
913 "The specified start symbol \"%s\" is not "
914 "in a nonterminal of the grammar. \"%s\" will be used as the start "
915 "symbol instead.",lemp
->start
,lemp
->startRule
->lhs
->name
);
917 sp
= lemp
->startRule
->lhs
;
920 sp
= lemp
->startRule
->lhs
;
923 /* Make sure the start symbol doesn't occur on the right-hand side of
924 ** any rule. Report an error if it does. (YACC would generate a new
925 ** start symbol in this case.) */
926 for(rp
=lemp
->rule
; rp
; rp
=rp
->next
){
928 for(i
=0; i
<rp
->nrhs
; i
++){
929 if( rp
->rhs
[i
]==sp
){ /* FIX ME: Deal with multiterminals */
930 ErrorMsg(lemp
->filename
,0,
931 "The start symbol \"%s\" occurs on the "
932 "right-hand side of a rule. This will result in a parser which "
933 "does not work properly.",sp
->name
);
939 /* The basis configuration set for the first state
940 ** is all rules which have the start symbol as their
942 for(rp
=sp
->rule
; rp
; rp
=rp
->nextlhs
){
943 struct config
*newcfp
;
945 newcfp
= Configlist_addbasis(rp
,0);
946 SetAdd(newcfp
->fws
,0);
949 /* Compute the first state. All other states will be
950 ** computed automatically during the computation of the first one.
951 ** The returned pointer to the first state is not used. */
952 (void)getstate(lemp
);
956 /* Return a pointer to a state which is described by the configuration
957 ** list which has been built from calls to Configlist_add.
959 PRIVATE
void buildshifts(struct lemon
*, struct state
*); /* Forwd ref */
960 PRIVATE
struct state
*getstate(struct lemon
*lemp
)
962 struct config
*cfp
, *bp
;
965 /* Extract the sorted basis of the new state. The basis was constructed
966 ** by prior calls to "Configlist_addbasis()". */
967 Configlist_sortbasis();
968 bp
= Configlist_basis();
970 /* Get a state with the same basis */
971 stp
= State_find(bp
);
973 /* A state with the same basis already exists! Copy all the follow-set
974 ** propagation links from the state under construction into the
975 ** preexisting state, then return a pointer to the preexisting state */
976 struct config
*x
, *y
;
977 for(x
=bp
, y
=stp
->bp
; x
&& y
; x
=x
->bp
, y
=y
->bp
){
978 Plink_copy(&y
->bplp
,x
->bplp
);
979 Plink_delete(x
->fplp
);
980 x
->fplp
= x
->bplp
= 0;
982 cfp
= Configlist_return();
985 /* This really is a new state. Construct all the details */
986 Configlist_closure(lemp
); /* Compute the configuration closure */
987 Configlist_sort(); /* Sort the configuration closure */
988 cfp
= Configlist_return(); /* Get a pointer to the config list */
989 stp
= State_new(); /* A new state structure */
991 stp
->bp
= bp
; /* Remember the configuration basis */
992 stp
->cfp
= cfp
; /* Remember the configuration closure */
993 stp
->statenum
= lemp
->nstate
++; /* Every state gets a sequence number */
994 stp
->ap
= 0; /* No actions, yet. */
995 State_insert(stp
,stp
->bp
); /* Add to the state table */
996 buildshifts(lemp
,stp
); /* Recursively compute successor states */
1002 ** Return true if two symbols are the same.
1004 int same_symbol(struct symbol
*a
, struct symbol
*b
)
1007 if( a
==b
) return 1;
1008 if( a
->type
!=MULTITERMINAL
) return 0;
1009 if( b
->type
!=MULTITERMINAL
) return 0;
1010 if( a
->nsubsym
!=b
->nsubsym
) return 0;
1011 for(i
=0; i
<a
->nsubsym
; i
++){
1012 if( a
->subsym
[i
]!=b
->subsym
[i
] ) return 0;
1017 /* Construct all successor states to the given state. A "successor"
1018 ** state is any state which can be reached by a shift action.
1020 PRIVATE
void buildshifts(struct lemon
*lemp
, struct state
*stp
)
1022 struct config
*cfp
; /* For looping thru the config closure of "stp" */
1023 struct config
*bcfp
; /* For the inner loop on config closure of "stp" */
1024 struct config
*newcfg
; /* */
1025 struct symbol
*sp
; /* Symbol following the dot in configuration "cfp" */
1026 struct symbol
*bsp
; /* Symbol following the dot in configuration "bcfp" */
1027 struct state
*newstp
; /* A pointer to a successor state */
1029 /* Each configuration becomes complete after it contibutes to a successor
1030 ** state. Initially, all configurations are incomplete */
1031 for(cfp
=stp
->cfp
; cfp
; cfp
=cfp
->next
) cfp
->status
= INCOMPLETE
;
1033 /* Loop through all configurations of the state "stp" */
1034 for(cfp
=stp
->cfp
; cfp
; cfp
=cfp
->next
){
1035 if( cfp
->status
==COMPLETE
) continue; /* Already used by inner loop */
1036 if( cfp
->dot
>=cfp
->rp
->nrhs
) continue; /* Can't shift this config */
1037 Configlist_reset(); /* Reset the new config set */
1038 sp
= cfp
->rp
->rhs
[cfp
->dot
]; /* Symbol after the dot */
1040 /* For every configuration in the state "stp" which has the symbol "sp"
1041 ** following its dot, add the same configuration to the basis set under
1042 ** construction but with the dot shifted one symbol to the right. */
1043 for(bcfp
=cfp
; bcfp
; bcfp
=bcfp
->next
){
1044 if( bcfp
->status
==COMPLETE
) continue; /* Already used */
1045 if( bcfp
->dot
>=bcfp
->rp
->nrhs
) continue; /* Can't shift this one */
1046 bsp
= bcfp
->rp
->rhs
[bcfp
->dot
]; /* Get symbol after dot */
1047 if( !same_symbol(bsp
,sp
) ) continue; /* Must be same as for "cfp" */
1048 bcfp
->status
= COMPLETE
; /* Mark this config as used */
1049 newcfg
= Configlist_addbasis(bcfp
->rp
,bcfp
->dot
+1);
1050 Plink_add(&newcfg
->bplp
,bcfp
);
1053 /* Get a pointer to the state described by the basis configuration set
1054 ** constructed in the preceding loop */
1055 newstp
= getstate(lemp
);
1057 /* The state "newstp" is reached from the state "stp" by a shift action
1058 ** on the symbol "sp" */
1059 if( sp
->type
==MULTITERMINAL
){
1061 for(i
=0; i
<sp
->nsubsym
; i
++){
1062 Action_add(&stp
->ap
,SHIFT
,sp
->subsym
[i
],(char*)newstp
);
1065 Action_add(&stp
->ap
,SHIFT
,sp
,(char *)newstp
);
1071 ** Construct the propagation links
1073 void FindLinks(struct lemon
*lemp
)
1076 struct config
*cfp
, *other
;
1080 /* Housekeeping detail:
1081 ** Add to every propagate link a pointer back to the state to
1082 ** which the link is attached. */
1083 for(i
=0; i
<lemp
->nstate
; i
++){
1084 stp
= lemp
->sorted
[i
];
1085 for(cfp
=stp
->cfp
; cfp
; cfp
=cfp
->next
){
1090 /* Convert all backlinks into forward links. Only the forward
1091 ** links are used in the follow-set computation. */
1092 for(i
=0; i
<lemp
->nstate
; i
++){
1093 stp
= lemp
->sorted
[i
];
1094 for(cfp
=stp
->cfp
; cfp
; cfp
=cfp
->next
){
1095 for(plp
=cfp
->bplp
; plp
; plp
=plp
->next
){
1097 Plink_add(&other
->fplp
,cfp
);
1103 /* Compute all followsets.
1105 ** A followset is the set of all symbols which can come immediately
1106 ** after a configuration.
1108 void FindFollowSets(struct lemon
*lemp
)
1116 for(i
=0; i
<lemp
->nstate
; i
++){
1117 for(cfp
=lemp
->sorted
[i
]->cfp
; cfp
; cfp
=cfp
->next
){
1118 cfp
->status
= INCOMPLETE
;
1124 for(i
=0; i
<lemp
->nstate
; i
++){
1125 for(cfp
=lemp
->sorted
[i
]->cfp
; cfp
; cfp
=cfp
->next
){
1126 if( cfp
->status
==COMPLETE
) continue;
1127 for(plp
=cfp
->fplp
; plp
; plp
=plp
->next
){
1128 change
= SetUnion(plp
->cfp
->fws
,cfp
->fws
);
1130 plp
->cfp
->status
= INCOMPLETE
;
1134 cfp
->status
= COMPLETE
;
1140 static int resolve_conflict(struct action
*,struct action
*);
1142 /* Compute the reduce actions, and resolve conflicts.
1144 void FindActions(struct lemon
*lemp
)
1152 /* Add all of the reduce actions
1153 ** A reduce action is added for each element of the followset of
1154 ** a configuration which has its dot at the extreme right.
1156 for(i
=0; i
<lemp
->nstate
; i
++){ /* Loop over all states */
1157 stp
= lemp
->sorted
[i
];
1158 for(cfp
=stp
->cfp
; cfp
; cfp
=cfp
->next
){ /* Loop over all configurations */
1159 if( cfp
->rp
->nrhs
==cfp
->dot
){ /* Is dot at extreme right? */
1160 for(j
=0; j
<lemp
->nterminal
; j
++){
1161 if( SetFind(cfp
->fws
,j
) ){
1162 /* Add a reduce action to the state "stp" which will reduce by the
1163 ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */
1164 Action_add(&stp
->ap
,REDUCE
,lemp
->symbols
[j
],(char *)cfp
->rp
);
1171 /* Add the accepting token */
1173 sp
= Symbol_find(lemp
->start
);
1174 if( sp
==0 ) sp
= lemp
->startRule
->lhs
;
1176 sp
= lemp
->startRule
->lhs
;
1178 /* Add to the first state (which is always the starting state of the
1179 ** finite state machine) an action to ACCEPT if the lookahead is the
1180 ** start nonterminal. */
1181 Action_add(&lemp
->sorted
[0]->ap
,ACCEPT
,sp
,0);
1183 /* Resolve conflicts */
1184 for(i
=0; i
<lemp
->nstate
; i
++){
1185 struct action
*ap
, *nap
;
1186 stp
= lemp
->sorted
[i
];
1187 /* assert( stp->ap ); */
1188 stp
->ap
= Action_sort(stp
->ap
);
1189 for(ap
=stp
->ap
; ap
&& ap
->next
; ap
=ap
->next
){
1190 for(nap
=ap
->next
; nap
&& nap
->sp
==ap
->sp
; nap
=nap
->next
){
1191 /* The two actions "ap" and "nap" have the same lookahead.
1192 ** Figure out which one should be used */
1193 lemp
->nconflict
+= resolve_conflict(ap
,nap
);
1198 /* Report an error for each rule that can never be reduced. */
1199 for(rp
=lemp
->rule
; rp
; rp
=rp
->next
) rp
->canReduce
= LEMON_FALSE
;
1200 for(i
=0; i
<lemp
->nstate
; i
++){
1202 for(ap
=lemp
->sorted
[i
]->ap
; ap
; ap
=ap
->next
){
1203 if( ap
->type
==REDUCE
) ap
->x
.rp
->canReduce
= LEMON_TRUE
;
1206 for(rp
=lemp
->rule
; rp
; rp
=rp
->next
){
1207 if( rp
->canReduce
) continue;
1208 ErrorMsg(lemp
->filename
,rp
->ruleline
,"This rule can not be reduced.\n");
1213 /* Resolve a conflict between the two given actions. If the
1214 ** conflict can't be resolved, return non-zero.
1217 ** To resolve a conflict, first look to see if either action
1218 ** is on an error rule. In that case, take the action which
1219 ** is not associated with the error rule. If neither or both
1220 ** actions are associated with an error rule, then try to
1221 ** use precedence to resolve the conflict.
1223 ** If either action is a SHIFT, then it must be apx. This
1224 ** function won't work if apx->type==REDUCE and apy->type==SHIFT.
1226 static int resolve_conflict(
1230 struct symbol
*spx
, *spy
;
1232 assert( apx
->sp
==apy
->sp
); /* Otherwise there would be no conflict */
1233 if( apx
->type
==SHIFT
&& apy
->type
==SHIFT
){
1234 apy
->type
= SSCONFLICT
;
1237 if( apx
->type
==SHIFT
&& apy
->type
==REDUCE
){
1239 spy
= apy
->x
.rp
->precsym
;
1240 if( spy
==0 || spx
->prec
<0 || spy
->prec
<0 ){
1241 /* Not enough precedence information. */
1242 apy
->type
= SRCONFLICT
;
1244 }else if( spx
->prec
>spy
->prec
){ /* higher precedence wins */
1245 apy
->type
= RD_RESOLVED
;
1246 }else if( spx
->prec
<spy
->prec
){
1247 apx
->type
= SH_RESOLVED
;
1248 }else if( spx
->prec
==spy
->prec
&& spx
->assoc
==RIGHT
){ /* Use operator */
1249 apy
->type
= RD_RESOLVED
; /* associativity */
1250 }else if( spx
->prec
==spy
->prec
&& spx
->assoc
==LEFT
){ /* to break tie */
1251 apx
->type
= SH_RESOLVED
;
1253 assert( spx
->prec
==spy
->prec
&& spx
->assoc
==NONE
);
1256 }else if( apx
->type
==REDUCE
&& apy
->type
==REDUCE
){
1257 spx
= apx
->x
.rp
->precsym
;
1258 spy
= apy
->x
.rp
->precsym
;
1259 if( spx
==0 || spy
==0 || spx
->prec
<0 ||
1260 spy
->prec
<0 || spx
->prec
==spy
->prec
){
1261 apy
->type
= RRCONFLICT
;
1263 }else if( spx
->prec
>spy
->prec
){
1264 apy
->type
= RD_RESOLVED
;
1265 }else if( spx
->prec
<spy
->prec
){
1266 apx
->type
= RD_RESOLVED
;
1270 apx
->type
==SH_RESOLVED
||
1271 apx
->type
==RD_RESOLVED
||
1272 apx
->type
==SSCONFLICT
||
1273 apx
->type
==SRCONFLICT
||
1274 apx
->type
==RRCONFLICT
||
1275 apy
->type
==SH_RESOLVED
||
1276 apy
->type
==RD_RESOLVED
||
1277 apy
->type
==SSCONFLICT
||
1278 apy
->type
==SRCONFLICT
||
1279 apy
->type
==RRCONFLICT
1281 /* The REDUCE/SHIFT case cannot happen because SHIFTs come before
1282 ** REDUCEs on the list. If we reach this point it must be because
1283 ** the parser conflict had already been resolved. */
1287 /********************* From the file "configlist.c" *************************/
1289 ** Routines to processing a configuration list and building a state
1290 ** in the LEMON parser generator.
1293 static struct config
*freelist
= 0; /* List of free configurations */
1294 static struct config
*current
= 0; /* Top of list of configurations */
1295 static struct config
**currentend
= 0; /* Last on list of configs */
1296 static struct config
*basis
= 0; /* Top of list of basis configs */
1297 static struct config
**basisend
= 0; /* End of list of basis configs */
1299 /* Return a pointer to a new configuration */
1300 PRIVATE
struct config
*newconfig(void){
1301 struct config
*newcfg
;
1305 freelist
= (struct config
*)calloc( amt
, sizeof(struct config
) );
1307 fprintf(stderr
,"Unable to allocate memory for a new configuration.");
1310 for(i
=0; i
<amt
-1; i
++) freelist
[i
].next
= &freelist
[i
+1];
1311 freelist
[amt
-1].next
= 0;
1314 freelist
= freelist
->next
;
1318 /* The configuration "old" is no longer used */
1319 PRIVATE
void deleteconfig(struct config
*old
)
1321 old
->next
= freelist
;
1325 /* Initialized the configuration list builder */
1326 void Configlist_init(void){
1328 currentend
= ¤t
;
1335 /* Initialized the configuration list builder */
1336 void Configlist_reset(void){
1338 currentend
= ¤t
;
1341 Configtable_clear(0);
1345 /* Add another configuration to the configuration list */
1346 struct config
*Configlist_add(
1347 struct rule
*rp
, /* The rule */
1348 int dot
/* Index into the RHS of the rule where the dot goes */
1350 struct config
*cfp
, model
;
1352 assert( currentend
!=0 );
1355 cfp
= Configtable_find(&model
);
1360 cfp
->fws
= SetNew();
1362 cfp
->fplp
= cfp
->bplp
= 0;
1366 currentend
= &cfp
->next
;
1367 Configtable_insert(cfp
);
1372 /* Add a basis configuration to the configuration list */
1373 struct config
*Configlist_addbasis(struct rule
*rp
, int dot
)
1375 struct config
*cfp
, model
;
1377 assert( basisend
!=0 );
1378 assert( currentend
!=0 );
1381 cfp
= Configtable_find(&model
);
1386 cfp
->fws
= SetNew();
1388 cfp
->fplp
= cfp
->bplp
= 0;
1392 currentend
= &cfp
->next
;
1394 basisend
= &cfp
->bp
;
1395 Configtable_insert(cfp
);
1400 /* Compute the closure of the configuration list */
1401 void Configlist_closure(struct lemon
*lemp
)
1403 struct config
*cfp
, *newcfp
;
1404 struct rule
*rp
, *newrp
;
1405 struct symbol
*sp
, *xsp
;
1408 assert( currentend
!=0 );
1409 for(cfp
=current
; cfp
; cfp
=cfp
->next
){
1412 if( dot
>=rp
->nrhs
) continue;
1414 if( sp
->type
==NONTERMINAL
){
1415 if( sp
->rule
==0 && sp
!=lemp
->errsym
){
1416 ErrorMsg(lemp
->filename
,rp
->line
,"Nonterminal \"%s\" has no rules.",
1420 for(newrp
=sp
->rule
; newrp
; newrp
=newrp
->nextlhs
){
1421 newcfp
= Configlist_add(newrp
,0);
1422 for(i
=dot
+1; i
<rp
->nrhs
; i
++){
1424 if( xsp
->type
==TERMINAL
){
1425 SetAdd(newcfp
->fws
,xsp
->index
);
1427 }else if( xsp
->type
==MULTITERMINAL
){
1429 for(k
=0; k
<xsp
->nsubsym
; k
++){
1430 SetAdd(newcfp
->fws
, xsp
->subsym
[k
]->index
);
1434 SetUnion(newcfp
->fws
,xsp
->firstset
);
1435 if( xsp
->lambda
==LEMON_FALSE
) break;
1438 if( i
==rp
->nrhs
) Plink_add(&cfp
->fplp
,newcfp
);
1445 /* Sort the configuration list */
1446 void Configlist_sort(void){
1447 current
= (struct config
*)msort((char*)current
,(char**)&(current
->next
),
1453 /* Sort the basis configuration list */
1454 void Configlist_sortbasis(void){
1455 basis
= (struct config
*)msort((char*)current
,(char**)&(current
->bp
),
1461 /* Return a pointer to the head of the configuration list and
1462 ** reset the list */
1463 struct config
*Configlist_return(void){
1471 /* Return a pointer to the head of the configuration list and
1472 ** reset the list */
1473 struct config
*Configlist_basis(void){
1481 /* Free all elements of the given configuration list */
1482 void Configlist_eat(struct config
*cfp
)
1484 struct config
*nextcfp
;
1485 for(; cfp
; cfp
=nextcfp
){
1486 nextcfp
= cfp
->next
;
1487 assert( cfp
->fplp
==0 );
1488 assert( cfp
->bplp
==0 );
1489 if( cfp
->fws
) SetFree(cfp
->fws
);
1494 /***************** From the file "error.c" *********************************/
1496 ** Code for printing error message.
1499 void ErrorMsg(const char *filename
, int lineno
, const char *format
, ...){
1501 fprintf(stderr
, "%s:%d: ", filename
, lineno
);
1502 va_start(ap
, format
);
1503 vfprintf(stderr
,format
,ap
);
1505 fprintf(stderr
, "\n");
1507 /**************** From the file "main.c" ************************************/
1509 ** Main program file for the LEMON parser generator.
1512 /* Report an out-of-memory condition and abort. This function
1513 ** is used mostly by the "MemoryCheck" macro in struct.h
1515 void memory_error(void){
1516 fprintf(stderr
,"Out of memory. Aborting...\n");
1520 static int nDefine
= 0; /* Number of -D options on the command line */
1521 static char **azDefine
= 0; /* Name of the -D macros */
1523 /* This routine is called with the argument to each -D command-line option.
1524 ** Add the macro defined to the azDefine array.
1526 static void handle_D_option(char *z
){
1529 azDefine
= (char **) realloc(azDefine
, sizeof(azDefine
[0])*nDefine
);
1531 fprintf(stderr
,"out of memory\n");
1534 paz
= &azDefine
[nDefine
-1];
1535 *paz
= (char *) malloc( lemonStrlen(z
)+1 );
1537 fprintf(stderr
,"out of memory\n");
1540 lemon_strcpy(*paz
, z
);
1541 for(z
=*paz
; *z
&& *z
!='='; z
++){}
1545 /* Rember the name of the output directory
1547 static char *outputDir
= NULL
;
1548 static void handle_d_option(char *z
){
1549 outputDir
= (char *) malloc( lemonStrlen(z
)+1 );
1551 fprintf(stderr
,"out of memory\n");
1554 lemon_strcpy(outputDir
, z
);
1557 static char *user_templatename
= NULL
;
1558 static void handle_T_option(char *z
){
1559 user_templatename
= (char *) malloc( lemonStrlen(z
)+1 );
1560 if( user_templatename
==0 ){
1563 lemon_strcpy(user_templatename
, z
);
1566 /* Merge together to lists of rules ordered by rule.iRule */
1567 static struct rule
*Rule_merge(struct rule
*pA
, struct rule
*pB
){
1568 struct rule
*pFirst
= 0;
1569 struct rule
**ppPrev
= &pFirst
;
1571 if( pA
->iRule
<pB
->iRule
){
1590 ** Sort a list of rules in order of increasing iRule value
1592 static struct rule
*Rule_sort(struct rule
*rp
){
1596 memset(x
, 0, sizeof(x
));
1600 for(i
=0; i
<sizeof(x
)/sizeof(x
[0]) && x
[i
]; i
++){
1601 rp
= Rule_merge(x
[i
], rp
);
1608 for(i
=0; i
<sizeof(x
)/sizeof(x
[0]); i
++){
1609 rp
= Rule_merge(x
[i
], rp
);
1614 /* forward reference */
1615 static const char *minimum_size_type(int lwr
, int upr
, int *pnByte
);
1617 /* Print a single line of the "Parser Stats" output
1619 static void stats_line(const char *zLabel
, int iValue
){
1620 int nLabel
= lemonStrlen(zLabel
);
1621 printf(" %s%.*s %5d\n", zLabel
,
1622 35-nLabel
, "................................",
1626 /* The main program. Parse the command line and do it... */
1627 int main(int argc
, char **argv
)
1629 static int version
= 0;
1630 static int rpflag
= 0;
1631 static int basisflag
= 0;
1632 static int compress
= 0;
1633 static int quiet
= 0;
1634 static int statistics
= 0;
1635 static int mhflag
= 0;
1636 static int nolinenosflag
= 0;
1637 static int noResort
= 0;
1638 static int sqlFlag
= 0;
1640 static struct s_options options
[] = {
1641 {OPT_FLAG
, "b", (char*)&basisflag
, "Print only the basis in report."},
1642 {OPT_FLAG
, "c", (char*)&compress
, "Don't compress the action table."},
1643 {OPT_FSTR
, "d", (char*)&handle_d_option
, "Output directory. Default '.'"},
1644 {OPT_FSTR
, "D", (char*)handle_D_option
, "Define an %ifdef macro."},
1645 {OPT_FSTR
, "f", 0, "Ignored. (Placeholder for -f compiler options.)"},
1646 {OPT_FLAG
, "g", (char*)&rpflag
, "Print grammar without actions."},
1647 {OPT_FSTR
, "I", 0, "Ignored. (Placeholder for '-I' compiler options.)"},
1648 {OPT_FLAG
, "m", (char*)&mhflag
, "Output a makeheaders compatible file."},
1649 {OPT_FLAG
, "l", (char*)&nolinenosflag
, "Do not print #line statements."},
1650 {OPT_FSTR
, "O", 0, "Ignored. (Placeholder for '-O' compiler options.)"},
1651 {OPT_FLAG
, "p", (char*)&showPrecedenceConflict
,
1652 "Show conflicts resolved by precedence rules"},
1653 {OPT_FLAG
, "q", (char*)&quiet
, "(Quiet) Don't print the report file."},
1654 {OPT_FLAG
, "r", (char*)&noResort
, "Do not sort or renumber states"},
1655 {OPT_FLAG
, "s", (char*)&statistics
,
1656 "Print parser stats to standard output."},
1657 {OPT_FLAG
, "S", (char*)&sqlFlag
,
1658 "Generate the *.sql file describing the parser tables."},
1659 {OPT_FLAG
, "x", (char*)&version
, "Print the version number."},
1660 {OPT_FSTR
, "T", (char*)handle_T_option
, "Specify a template file."},
1661 {OPT_FSTR
, "W", 0, "Ignored. (Placeholder for '-W' compiler options.)"},
1669 OptInit(argv
,options
,stderr
);
1671 printf("Lemon version 1.0\n");
1674 if( OptNArgs()!=1 ){
1675 fprintf(stderr
,"Exactly one filename argument is required.\n");
1678 memset(&lem
, 0, sizeof(lem
));
1681 /* Initialize the machine */
1685 lem
.argv0
= argv
[0];
1686 lem
.filename
= OptArg(0);
1687 lem
.basisflag
= basisflag
;
1688 lem
.nolinenosflag
= nolinenosflag
;
1691 /* Parse the input file */
1693 if( lem
.errorcnt
) exit(lem
.errorcnt
);
1695 fprintf(stderr
,"Empty grammar.\n");
1698 lem
.errsym
= Symbol_find("error");
1700 /* Count and index the symbols of the grammar */
1701 Symbol_new("{default}");
1702 lem
.nsymbol
= Symbol_count();
1703 lem
.symbols
= Symbol_arrayof();
1704 for(i
=0; i
<lem
.nsymbol
; i
++) lem
.symbols
[i
]->index
= i
;
1705 qsort(lem
.symbols
,lem
.nsymbol
,sizeof(struct symbol
*), Symbolcmpp
);
1706 for(i
=0; i
<lem
.nsymbol
; i
++) lem
.symbols
[i
]->index
= i
;
1707 while( lem
.symbols
[i
-1]->type
==MULTITERMINAL
){ i
--; }
1708 assert( strcmp(lem
.symbols
[i
-1]->name
,"{default}")==0 );
1709 lem
.nsymbol
= i
- 1;
1710 for(i
=1; ISUPPER(lem
.symbols
[i
]->name
[0]); i
++);
1713 /* Assign sequential rule numbers. Start with 0. Put rules that have no
1714 ** reduce action C-code associated with them last, so that the switch()
1715 ** statement that selects reduction actions will have a smaller jump table.
1717 for(i
=0, rp
=lem
.rule
; rp
; rp
=rp
->next
){
1718 rp
->iRule
= rp
->code
? i
++ : -1;
1720 lem
.nruleWithAction
= i
;
1721 for(rp
=lem
.rule
; rp
; rp
=rp
->next
){
1722 if( rp
->iRule
<0 ) rp
->iRule
= i
++;
1724 lem
.startRule
= lem
.rule
;
1725 lem
.rule
= Rule_sort(lem
.rule
);
1727 /* Generate a reprint of the grammar, if requested on the command line */
1731 /* Initialize the size for all follow and first sets */
1732 SetSize(lem
.nterminal
+1);
1734 /* Find the precedence for every production rule (that has one) */
1735 FindRulePrecedences(&lem
);
1737 /* Compute the lambda-nonterminals and the first-sets for every
1739 FindFirstSets(&lem
);
1741 /* Compute all LR(0) states. Also record follow-set propagation
1742 ** links so that the follow-set can be computed later */
1745 lem
.sorted
= State_arrayof();
1747 /* Tie up loose ends on the propagation links */
1750 /* Compute the follow set of every reducible configuration */
1751 FindFollowSets(&lem
);
1753 /* Compute the action tables */
1756 /* Compress the action tables */
1757 if( compress
==0 ) CompressTables(&lem
);
1759 /* Reorder and renumber the states so that states with fewer choices
1760 ** occur at the end. This is an optimization that helps make the
1761 ** generated parser tables smaller. */
1762 if( noResort
==0 ) ResortStates(&lem
);
1764 /* Generate a report of the parser generated. (the "y.output" file) */
1765 if( !quiet
) ReportOutput(&lem
);
1767 /* Generate the source code for the parser */
1768 ReportTable(&lem
, mhflag
, sqlFlag
);
1770 /* Produce a header file for use by the scanner. (This step is
1771 ** omitted if the "-m" option is used because makeheaders will
1772 ** generate the file for us.) */
1773 if( !mhflag
) ReportHeader(&lem
);
1776 printf("Parser statistics:\n");
1777 stats_line("terminal symbols", lem
.nterminal
);
1778 stats_line("non-terminal symbols", lem
.nsymbol
- lem
.nterminal
);
1779 stats_line("total symbols", lem
.nsymbol
);
1780 stats_line("rules", lem
.nrule
);
1781 stats_line("states", lem
.nxstate
);
1782 stats_line("conflicts", lem
.nconflict
);
1783 stats_line("action table entries", lem
.nactiontab
);
1784 stats_line("lookahead table entries", lem
.nlookaheadtab
);
1785 stats_line("total table size (bytes)", lem
.tablesize
);
1787 if( lem
.nconflict
> 0 ){
1788 fprintf(stderr
,"%d parsing conflicts.\n",lem
.nconflict
);
1791 /* return 0 on success, 1 on failure. */
1792 exitcode
= ((lem
.errorcnt
> 0) || (lem
.nconflict
> 0)) ? 1 : 0;
1796 /******************** From the file "msort.c" *******************************/
1798 ** A generic merge-sort program.
1801 ** Let "ptr" be a pointer to some structure which is at the head of
1802 ** a null-terminated list. Then to sort the list call:
1804 ** ptr = msort(ptr,&(ptr->next),cmpfnc);
1806 ** In the above, "cmpfnc" is a pointer to a function which compares
1807 ** two instances of the structure and returns an integer, as in
1808 ** strcmp. The second argument is a pointer to the pointer to the
1809 ** second element of the linked list. This address is used to compute
1810 ** the offset to the "next" field within the structure. The offset to
1811 ** the "next" field must be constant for all structures in the list.
1813 ** The function returns a new pointer which is the head of the list
1821 ** Return a pointer to the next structure in the linked list.
1823 #define NEXT(A) (*(char**)(((char*)A)+offset))
1827 ** a: A sorted, null-terminated linked list. (May be null).
1828 ** b: A sorted, null-terminated linked list. (May be null).
1829 ** cmp: A pointer to the comparison function.
1830 ** offset: Offset in the structure to the "next" field.
1833 ** A pointer to the head of a sorted list containing the elements
1837 ** The "next" pointers for elements in the lists a and b are
1843 int (*cmp
)(const char*,const char*),
1853 if( (*cmp
)(a
,b
)<=0 ){
1862 if( (*cmp
)(a
,b
)<=0 ){
1872 if( a
) NEXT(ptr
) = a
;
1880 ** list: Pointer to a singly-linked list of structures.
1881 ** next: Pointer to pointer to the second element of the list.
1882 ** cmp: A comparison function.
1885 ** A pointer to the head of a sorted list containing the elements
1886 ** orginally in list.
1889 ** The "next" pointers for elements in list are changed.
1895 int (*cmp
)(const char*,const char*)
1897 unsigned long offset
;
1899 char *set
[LISTSIZE
];
1901 offset
= (unsigned long)((char*)next
- (char*)list
);
1902 for(i
=0; i
<LISTSIZE
; i
++) set
[i
] = 0;
1907 for(i
=0; i
<LISTSIZE
-1 && set
[i
]!=0; i
++){
1908 ep
= merge(ep
,set
[i
],cmp
,offset
);
1914 for(i
=0; i
<LISTSIZE
; i
++) if( set
[i
] ) ep
= merge(set
[i
],ep
,cmp
,offset
);
1917 /************************ From the file "option.c" **************************/
1918 static char **g_argv
;
1919 static struct s_options
*op
;
1920 static FILE *errstream
;
1922 #define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0)
1925 ** Print the command line with a carrot pointing to the k-th character
1926 ** of the n-th field.
1928 static void errline(int n
, int k
, FILE *err
)
1931 if( g_argv
[0] ) fprintf(err
,"%s",g_argv
[0]);
1932 spcnt
= lemonStrlen(g_argv
[0]) + 1;
1933 for(i
=1; i
<n
&& g_argv
[i
]; i
++){
1934 fprintf(err
," %s",g_argv
[i
]);
1935 spcnt
+= lemonStrlen(g_argv
[i
])+1;
1938 for(; g_argv
[i
]; i
++) fprintf(err
," %s",g_argv
[i
]);
1940 fprintf(err
,"\n%*s^-- here\n",spcnt
,"");
1942 fprintf(err
,"\n%*shere --^\n",spcnt
-7,"");
1947 ** Return the index of the N-th non-switch argument. Return -1
1948 ** if N is out of range.
1950 static int argindex(int n
)
1954 if( g_argv
!=0 && *g_argv
!=0 ){
1955 for(i
=1; g_argv
[i
]; i
++){
1956 if( dashdash
|| !ISOPT(g_argv
[i
]) ){
1957 if( n
==0 ) return i
;
1960 if( strcmp(g_argv
[i
],"--")==0 ) dashdash
= 1;
1966 static char emsg
[] = "Command line syntax error: ";
1969 ** Process a flag command line argument.
1971 static int handleflags(int i
, FILE *err
)
1976 for(j
=0; op
[j
].label
; j
++){
1977 if( strncmp(&g_argv
[i
][1],op
[j
].label
,lemonStrlen(op
[j
].label
))==0 ) break;
1979 v
= g_argv
[i
][0]=='-' ? 1 : 0;
1980 if( op
[j
].label
==0 ){
1982 fprintf(err
,"%sundefined option.\n",emsg
);
1986 }else if( op
[j
].arg
==0 ){
1987 /* Ignore this option */
1988 }else if( op
[j
].type
==OPT_FLAG
){
1989 *((int*)op
[j
].arg
) = v
;
1990 }else if( op
[j
].type
==OPT_FFLAG
){
1991 (*(void(*)(int))(op
[j
].arg
))(v
);
1992 }else if( op
[j
].type
==OPT_FSTR
){
1993 (*(void(*)(char *))(op
[j
].arg
))(&g_argv
[i
][2]);
1996 fprintf(err
,"%smissing argument on switch.\n",emsg
);
2005 ** Process a command line switch which has an argument.
2007 static int handleswitch(int i
, FILE *err
)
2015 cp
= strchr(g_argv
[i
],'=');
2018 for(j
=0; op
[j
].label
; j
++){
2019 if( strcmp(g_argv
[i
],op
[j
].label
)==0 ) break;
2022 if( op
[j
].label
==0 ){
2024 fprintf(err
,"%sundefined option.\n",emsg
);
2030 switch( op
[j
].type
){
2034 fprintf(err
,"%soption requires an argument.\n",emsg
);
2041 dv
= strtod(cp
,&end
);
2045 "%sillegal character in floating-point argument.\n",emsg
);
2046 errline(i
,(int)((char*)end
-(char*)g_argv
[i
]),err
);
2053 lv
= strtol(cp
,&end
,0);
2056 fprintf(err
,"%sillegal character in integer argument.\n",emsg
);
2057 errline(i
,(int)((char*)end
-(char*)g_argv
[i
]),err
);
2067 switch( op
[j
].type
){
2072 *(double*)(op
[j
].arg
) = dv
;
2075 (*(void(*)(double))(op
[j
].arg
))(dv
);
2078 *(int*)(op
[j
].arg
) = lv
;
2081 (*(void(*)(int))(op
[j
].arg
))((int)lv
);
2084 *(char**)(op
[j
].arg
) = sv
;
2087 (*(void(*)(char *))(op
[j
].arg
))(sv
);
2094 int OptInit(char **a
, struct s_options
*o
, FILE *err
)
2100 if( g_argv
&& *g_argv
&& op
){
2102 for(i
=1; g_argv
[i
]; i
++){
2103 if( g_argv
[i
][0]=='+' || g_argv
[i
][0]=='-' ){
2104 errcnt
+= handleflags(i
,err
);
2105 }else if( strchr(g_argv
[i
],'=') ){
2106 errcnt
+= handleswitch(i
,err
);
2111 fprintf(err
,"Valid command line options for \"%s\" are:\n",*a
);
2122 if( g_argv
!=0 && g_argv
[0]!=0 ){
2123 for(i
=1; g_argv
[i
]; i
++){
2124 if( dashdash
|| !ISOPT(g_argv
[i
]) ) cnt
++;
2125 if( strcmp(g_argv
[i
],"--")==0 ) dashdash
= 1;
2135 return i
>=0 ? g_argv
[i
] : 0;
2142 if( i
>=0 ) errline(i
,0,errstream
);
2145 void OptPrint(void){
2149 for(i
=0; op
[i
].label
; i
++){
2150 len
= lemonStrlen(op
[i
].label
) + 1;
2151 switch( op
[i
].type
){
2157 len
+= 9; /* length of "<integer>" */
2161 len
+= 6; /* length of "<real>" */
2165 len
+= 8; /* length of "<string>" */
2168 if( len
>max
) max
= len
;
2170 for(i
=0; op
[i
].label
; i
++){
2171 switch( op
[i
].type
){
2174 fprintf(errstream
," -%-*s %s\n",max
,op
[i
].label
,op
[i
].message
);
2178 fprintf(errstream
," -%s<integer>%*s %s\n",op
[i
].label
,
2179 (int)(max
-lemonStrlen(op
[i
].label
)-9),"",op
[i
].message
);
2183 fprintf(errstream
," -%s<real>%*s %s\n",op
[i
].label
,
2184 (int)(max
-lemonStrlen(op
[i
].label
)-6),"",op
[i
].message
);
2188 fprintf(errstream
," -%s<string>%*s %s\n",op
[i
].label
,
2189 (int)(max
-lemonStrlen(op
[i
].label
)-8),"",op
[i
].message
);
2194 /*********************** From the file "parse.c" ****************************/
2196 ** Input file parser for the LEMON parser generator.
2199 /* The state of the parser */
2202 WAITING_FOR_DECL_OR_RULE
,
2203 WAITING_FOR_DECL_KEYWORD
,
2204 WAITING_FOR_DECL_ARG
,
2205 WAITING_FOR_PRECEDENCE_SYMBOL
,
2215 RESYNC_AFTER_RULE_ERROR
,
2216 RESYNC_AFTER_DECL_ERROR
,
2217 WAITING_FOR_DESTRUCTOR_SYMBOL
,
2218 WAITING_FOR_DATATYPE_SYMBOL
,
2219 WAITING_FOR_FALLBACK_ID
,
2220 WAITING_FOR_WILDCARD_ID
,
2221 WAITING_FOR_CLASS_ID
,
2222 WAITING_FOR_CLASS_TOKEN
,
2223 WAITING_FOR_TOKEN_NAME
2226 char *filename
; /* Name of the input file */
2227 int tokenlineno
; /* Linenumber at which current token starts */
2228 int errorcnt
; /* Number of errors so far */
2229 char *tokenstart
; /* Text of current token */
2230 struct lemon
*gp
; /* Global state vector */
2231 enum e_state state
; /* The state of the parser */
2232 struct symbol
*fallback
; /* The fallback token */
2233 struct symbol
*tkclass
; /* Token class symbol */
2234 struct symbol
*lhs
; /* Left-hand side of current rule */
2235 const char *lhsalias
; /* Alias for the LHS */
2236 int nrhs
; /* Number of right-hand side symbols seen */
2237 struct symbol
*rhs
[MAXRHS
]; /* RHS symbols */
2238 const char *alias
[MAXRHS
]; /* Aliases for each RHS symbol (or NULL) */
2239 struct rule
*prevrule
; /* Previous rule parsed */
2240 const char *declkeyword
; /* Keyword of a declaration */
2241 char **declargslot
; /* Where the declaration argument should be put */
2242 int insertLineMacro
; /* Add #line before declaration insert */
2243 int *decllinenoslot
; /* Where to write declaration line number */
2244 enum e_assoc declassoc
; /* Assign this association to decl arguments */
2245 int preccounter
; /* Assign this precedence to decl arguments */
2246 struct rule
*firstrule
; /* Pointer to first rule in the grammar */
2247 struct rule
*lastrule
; /* Pointer to the most recently parsed rule */
2250 /* Parse a single token */
2251 static void parseonetoken(struct pstate
*psp
)
2254 x
= Strsafe(psp
->tokenstart
); /* Save the token permanently */
2256 printf("%s:%d: Token=[%s] state=%d\n",psp
->filename
,psp
->tokenlineno
,
2259 switch( psp
->state
){
2262 psp
->preccounter
= 0;
2263 psp
->firstrule
= psp
->lastrule
= 0;
2265 /* Fall thru to next case */
2266 case WAITING_FOR_DECL_OR_RULE
:
2268 psp
->state
= WAITING_FOR_DECL_KEYWORD
;
2269 }else if( ISLOWER(x
[0]) ){
2270 psp
->lhs
= Symbol_new(x
);
2273 psp
->state
= WAITING_FOR_ARROW
;
2274 }else if( x
[0]=='{' ){
2275 if( psp
->prevrule
==0 ){
2276 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2277 "There is no prior rule upon which to attach the code "
2278 "fragment which begins on this line.");
2280 }else if( psp
->prevrule
->code
!=0 ){
2281 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2282 "Code fragment beginning on this line is not the first "
2283 "to follow the previous rule.");
2285 }else if( strcmp(x
, "{NEVER-REDUCE")==0 ){
2286 psp
->prevrule
->neverReduce
= 1;
2288 psp
->prevrule
->line
= psp
->tokenlineno
;
2289 psp
->prevrule
->code
= &x
[1];
2290 psp
->prevrule
->noCode
= 0;
2292 }else if( x
[0]=='[' ){
2293 psp
->state
= PRECEDENCE_MARK_1
;
2295 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2296 "Token \"%s\" should be either \"%%\" or a nonterminal name.",
2301 case PRECEDENCE_MARK_1
:
2302 if( !ISUPPER(x
[0]) ){
2303 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2304 "The precedence symbol must be a terminal.");
2306 }else if( psp
->prevrule
==0 ){
2307 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2308 "There is no prior rule to assign precedence \"[%s]\".",x
);
2310 }else if( psp
->prevrule
->precsym
!=0 ){
2311 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2312 "Precedence mark on this line is not the first "
2313 "to follow the previous rule.");
2316 psp
->prevrule
->precsym
= Symbol_new(x
);
2318 psp
->state
= PRECEDENCE_MARK_2
;
2320 case PRECEDENCE_MARK_2
:
2322 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2323 "Missing \"]\" on precedence mark.");
2326 psp
->state
= WAITING_FOR_DECL_OR_RULE
;
2328 case WAITING_FOR_ARROW
:
2329 if( x
[0]==':' && x
[1]==':' && x
[2]=='=' ){
2330 psp
->state
= IN_RHS
;
2331 }else if( x
[0]=='(' ){
2332 psp
->state
= LHS_ALIAS_1
;
2334 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2335 "Expected to see a \":\" following the LHS symbol \"%s\".",
2338 psp
->state
= RESYNC_AFTER_RULE_ERROR
;
2342 if( ISALPHA(x
[0]) ){
2344 psp
->state
= LHS_ALIAS_2
;
2346 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2347 "\"%s\" is not a valid alias for the LHS \"%s\"\n",
2350 psp
->state
= RESYNC_AFTER_RULE_ERROR
;
2355 psp
->state
= LHS_ALIAS_3
;
2357 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2358 "Missing \")\" following LHS alias name \"%s\".",psp
->lhsalias
);
2360 psp
->state
= RESYNC_AFTER_RULE_ERROR
;
2364 if( x
[0]==':' && x
[1]==':' && x
[2]=='=' ){
2365 psp
->state
= IN_RHS
;
2367 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2368 "Missing \"->\" following: \"%s(%s)\".",
2369 psp
->lhs
->name
,psp
->lhsalias
);
2371 psp
->state
= RESYNC_AFTER_RULE_ERROR
;
2377 rp
= (struct rule
*)calloc( sizeof(struct rule
) +
2378 sizeof(struct symbol
*)*psp
->nrhs
+ sizeof(char*)*psp
->nrhs
, 1);
2380 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2381 "Can't allocate enough memory for this rule.");
2386 rp
->ruleline
= psp
->tokenlineno
;
2387 rp
->rhs
= (struct symbol
**)&rp
[1];
2388 rp
->rhsalias
= (const char**)&(rp
->rhs
[psp
->nrhs
]);
2389 for(i
=0; i
<psp
->nrhs
; i
++){
2390 rp
->rhs
[i
] = psp
->rhs
[i
];
2391 rp
->rhsalias
[i
] = psp
->alias
[i
];
2392 if( rp
->rhsalias
[i
]!=0 ){ rp
->rhs
[i
]->bContent
= 1; }
2395 rp
->lhsalias
= psp
->lhsalias
;
2396 rp
->nrhs
= psp
->nrhs
;
2400 rp
->index
= psp
->gp
->nrule
++;
2401 rp
->nextlhs
= rp
->lhs
->rule
;
2404 if( psp
->firstrule
==0 ){
2405 psp
->firstrule
= psp
->lastrule
= rp
;
2407 psp
->lastrule
->next
= rp
;
2412 psp
->state
= WAITING_FOR_DECL_OR_RULE
;
2413 }else if( ISALPHA(x
[0]) ){
2414 if( psp
->nrhs
>=MAXRHS
){
2415 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2416 "Too many symbols on RHS of rule beginning at \"%s\".",
2419 psp
->state
= RESYNC_AFTER_RULE_ERROR
;
2421 psp
->rhs
[psp
->nrhs
] = Symbol_new(x
);
2422 psp
->alias
[psp
->nrhs
] = 0;
2425 }else if( (x
[0]=='|' || x
[0]=='/') && psp
->nrhs
>0 ){
2426 struct symbol
*msp
= psp
->rhs
[psp
->nrhs
-1];
2427 if( msp
->type
!=MULTITERMINAL
){
2428 struct symbol
*origsp
= msp
;
2429 msp
= (struct symbol
*) calloc(1,sizeof(*msp
));
2430 memset(msp
, 0, sizeof(*msp
));
2431 msp
->type
= MULTITERMINAL
;
2433 msp
->subsym
= (struct symbol
**) calloc(1,sizeof(struct symbol
*));
2434 msp
->subsym
[0] = origsp
;
2435 msp
->name
= origsp
->name
;
2436 psp
->rhs
[psp
->nrhs
-1] = msp
;
2439 msp
->subsym
= (struct symbol
**) realloc(msp
->subsym
,
2440 sizeof(struct symbol
*)*msp
->nsubsym
);
2441 msp
->subsym
[msp
->nsubsym
-1] = Symbol_new(&x
[1]);
2442 if( ISLOWER(x
[1]) || ISLOWER(msp
->subsym
[0]->name
[0]) ){
2443 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2444 "Cannot form a compound containing a non-terminal");
2447 }else if( x
[0]=='(' && psp
->nrhs
>0 ){
2448 psp
->state
= RHS_ALIAS_1
;
2450 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2451 "Illegal character on RHS of rule: \"%s\".",x
);
2453 psp
->state
= RESYNC_AFTER_RULE_ERROR
;
2457 if( ISALPHA(x
[0]) ){
2458 psp
->alias
[psp
->nrhs
-1] = x
;
2459 psp
->state
= RHS_ALIAS_2
;
2461 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2462 "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n",
2463 x
,psp
->rhs
[psp
->nrhs
-1]->name
);
2465 psp
->state
= RESYNC_AFTER_RULE_ERROR
;
2470 psp
->state
= IN_RHS
;
2472 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2473 "Missing \")\" following LHS alias name \"%s\".",psp
->lhsalias
);
2475 psp
->state
= RESYNC_AFTER_RULE_ERROR
;
2478 case WAITING_FOR_DECL_KEYWORD
:
2479 if( ISALPHA(x
[0]) ){
2480 psp
->declkeyword
= x
;
2481 psp
->declargslot
= 0;
2482 psp
->decllinenoslot
= 0;
2483 psp
->insertLineMacro
= 1;
2484 psp
->state
= WAITING_FOR_DECL_ARG
;
2485 if( strcmp(x
,"name")==0 ){
2486 psp
->declargslot
= &(psp
->gp
->name
);
2487 psp
->insertLineMacro
= 0;
2488 }else if( strcmp(x
,"include")==0 ){
2489 psp
->declargslot
= &(psp
->gp
->include
);
2490 }else if( strcmp(x
,"code")==0 ){
2491 psp
->declargslot
= &(psp
->gp
->extracode
);
2492 }else if( strcmp(x
,"token_destructor")==0 ){
2493 psp
->declargslot
= &psp
->gp
->tokendest
;
2494 }else if( strcmp(x
,"default_destructor")==0 ){
2495 psp
->declargslot
= &psp
->gp
->vardest
;
2496 }else if( strcmp(x
,"token_prefix")==0 ){
2497 psp
->declargslot
= &psp
->gp
->tokenprefix
;
2498 psp
->insertLineMacro
= 0;
2499 }else if( strcmp(x
,"syntax_error")==0 ){
2500 psp
->declargslot
= &(psp
->gp
->error
);
2501 }else if( strcmp(x
,"parse_accept")==0 ){
2502 psp
->declargslot
= &(psp
->gp
->accept
);
2503 }else if( strcmp(x
,"parse_failure")==0 ){
2504 psp
->declargslot
= &(psp
->gp
->failure
);
2505 }else if( strcmp(x
,"stack_overflow")==0 ){
2506 psp
->declargslot
= &(psp
->gp
->overflow
);
2507 }else if( strcmp(x
,"extra_argument")==0 ){
2508 psp
->declargslot
= &(psp
->gp
->arg
);
2509 psp
->insertLineMacro
= 0;
2510 }else if( strcmp(x
,"extra_context")==0 ){
2511 psp
->declargslot
= &(psp
->gp
->ctx
);
2512 psp
->insertLineMacro
= 0;
2513 }else if( strcmp(x
,"token_type")==0 ){
2514 psp
->declargslot
= &(psp
->gp
->tokentype
);
2515 psp
->insertLineMacro
= 0;
2516 }else if( strcmp(x
,"default_type")==0 ){
2517 psp
->declargslot
= &(psp
->gp
->vartype
);
2518 psp
->insertLineMacro
= 0;
2519 }else if( strcmp(x
,"stack_size")==0 ){
2520 psp
->declargslot
= &(psp
->gp
->stacksize
);
2521 psp
->insertLineMacro
= 0;
2522 }else if( strcmp(x
,"start_symbol")==0 ){
2523 psp
->declargslot
= &(psp
->gp
->start
);
2524 psp
->insertLineMacro
= 0;
2525 }else if( strcmp(x
,"left")==0 ){
2527 psp
->declassoc
= LEFT
;
2528 psp
->state
= WAITING_FOR_PRECEDENCE_SYMBOL
;
2529 }else if( strcmp(x
,"right")==0 ){
2531 psp
->declassoc
= RIGHT
;
2532 psp
->state
= WAITING_FOR_PRECEDENCE_SYMBOL
;
2533 }else if( strcmp(x
,"nonassoc")==0 ){
2535 psp
->declassoc
= NONE
;
2536 psp
->state
= WAITING_FOR_PRECEDENCE_SYMBOL
;
2537 }else if( strcmp(x
,"destructor")==0 ){
2538 psp
->state
= WAITING_FOR_DESTRUCTOR_SYMBOL
;
2539 }else if( strcmp(x
,"type")==0 ){
2540 psp
->state
= WAITING_FOR_DATATYPE_SYMBOL
;
2541 }else if( strcmp(x
,"fallback")==0 ){
2543 psp
->state
= WAITING_FOR_FALLBACK_ID
;
2544 }else if( strcmp(x
,"token")==0 ){
2545 psp
->state
= WAITING_FOR_TOKEN_NAME
;
2546 }else if( strcmp(x
,"wildcard")==0 ){
2547 psp
->state
= WAITING_FOR_WILDCARD_ID
;
2548 }else if( strcmp(x
,"token_class")==0 ){
2549 psp
->state
= WAITING_FOR_CLASS_ID
;
2551 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2552 "Unknown declaration keyword: \"%%%s\".",x
);
2554 psp
->state
= RESYNC_AFTER_DECL_ERROR
;
2557 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2558 "Illegal declaration keyword: \"%s\".",x
);
2560 psp
->state
= RESYNC_AFTER_DECL_ERROR
;
2563 case WAITING_FOR_DESTRUCTOR_SYMBOL
:
2564 if( !ISALPHA(x
[0]) ){
2565 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2566 "Symbol name missing after %%destructor keyword");
2568 psp
->state
= RESYNC_AFTER_DECL_ERROR
;
2570 struct symbol
*sp
= Symbol_new(x
);
2571 psp
->declargslot
= &sp
->destructor
;
2572 psp
->decllinenoslot
= &sp
->destLineno
;
2573 psp
->insertLineMacro
= 1;
2574 psp
->state
= WAITING_FOR_DECL_ARG
;
2577 case WAITING_FOR_DATATYPE_SYMBOL
:
2578 if( !ISALPHA(x
[0]) ){
2579 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2580 "Symbol name missing after %%type keyword");
2582 psp
->state
= RESYNC_AFTER_DECL_ERROR
;
2584 struct symbol
*sp
= Symbol_find(x
);
2585 if((sp
) && (sp
->datatype
)){
2586 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2587 "Symbol %%type \"%s\" already defined", x
);
2589 psp
->state
= RESYNC_AFTER_DECL_ERROR
;
2594 psp
->declargslot
= &sp
->datatype
;
2595 psp
->insertLineMacro
= 0;
2596 psp
->state
= WAITING_FOR_DECL_ARG
;
2600 case WAITING_FOR_PRECEDENCE_SYMBOL
:
2602 psp
->state
= WAITING_FOR_DECL_OR_RULE
;
2603 }else if( ISUPPER(x
[0]) ){
2607 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2608 "Symbol \"%s\" has already be given a precedence.",x
);
2611 sp
->prec
= psp
->preccounter
;
2612 sp
->assoc
= psp
->declassoc
;
2615 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2616 "Can't assign a precedence to \"%s\".",x
);
2620 case WAITING_FOR_DECL_ARG
:
2621 if( x
[0]=='{' || x
[0]=='\"' || ISALNUM(x
[0]) ){
2622 const char *zOld
, *zNew
;
2624 int nOld
, n
, nLine
= 0, nNew
, nBack
;
2628 if( zNew
[0]=='"' || zNew
[0]=='{' ) zNew
++;
2629 nNew
= lemonStrlen(zNew
);
2630 if( *psp
->declargslot
){
2631 zOld
= *psp
->declargslot
;
2635 nOld
= lemonStrlen(zOld
);
2636 n
= nOld
+ nNew
+ 20;
2637 addLineMacro
= !psp
->gp
->nolinenosflag
&& psp
->insertLineMacro
&&
2638 (psp
->decllinenoslot
==0 || psp
->decllinenoslot
[0]!=0);
2640 for(z
=psp
->filename
, nBack
=0; *z
; z
++){
2641 if( *z
=='\\' ) nBack
++;
2643 lemon_sprintf(zLine
, "#line %d ", psp
->tokenlineno
);
2644 nLine
= lemonStrlen(zLine
);
2645 n
+= nLine
+ lemonStrlen(psp
->filename
) + nBack
;
2647 *psp
->declargslot
= (char *) realloc(*psp
->declargslot
, n
);
2648 zBuf
= *psp
->declargslot
+ nOld
;
2650 if( nOld
&& zBuf
[-1]!='\n' ){
2653 memcpy(zBuf
, zLine
, nLine
);
2656 for(z
=psp
->filename
; *z
; z
++){
2665 if( psp
->decllinenoslot
&& psp
->decllinenoslot
[0]==0 ){
2666 psp
->decllinenoslot
[0] = psp
->tokenlineno
;
2668 memcpy(zBuf
, zNew
, nNew
);
2671 psp
->state
= WAITING_FOR_DECL_OR_RULE
;
2673 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2674 "Illegal argument to %%%s: %s",psp
->declkeyword
,x
);
2676 psp
->state
= RESYNC_AFTER_DECL_ERROR
;
2679 case WAITING_FOR_FALLBACK_ID
:
2681 psp
->state
= WAITING_FOR_DECL_OR_RULE
;
2682 }else if( !ISUPPER(x
[0]) ){
2683 ErrorMsg(psp
->filename
, psp
->tokenlineno
,
2684 "%%fallback argument \"%s\" should be a token", x
);
2687 struct symbol
*sp
= Symbol_new(x
);
2688 if( psp
->fallback
==0 ){
2690 }else if( sp
->fallback
){
2691 ErrorMsg(psp
->filename
, psp
->tokenlineno
,
2692 "More than one fallback assigned to token %s", x
);
2695 sp
->fallback
= psp
->fallback
;
2696 psp
->gp
->has_fallback
= 1;
2700 case WAITING_FOR_TOKEN_NAME
:
2701 /* Tokens do not have to be declared before use. But they can be
2702 ** in order to control their assigned integer number. The number for
2703 ** each token is assigned when it is first seen. So by including
2705 ** %token ONE TWO THREE
2707 ** early in the grammar file, that assigns small consecutive values
2708 ** to each of the tokens ONE TWO and THREE.
2711 psp
->state
= WAITING_FOR_DECL_OR_RULE
;
2712 }else if( !ISUPPER(x
[0]) ){
2713 ErrorMsg(psp
->filename
, psp
->tokenlineno
,
2714 "%%token argument \"%s\" should be a token", x
);
2717 (void)Symbol_new(x
);
2720 case WAITING_FOR_WILDCARD_ID
:
2722 psp
->state
= WAITING_FOR_DECL_OR_RULE
;
2723 }else if( !ISUPPER(x
[0]) ){
2724 ErrorMsg(psp
->filename
, psp
->tokenlineno
,
2725 "%%wildcard argument \"%s\" should be a token", x
);
2728 struct symbol
*sp
= Symbol_new(x
);
2729 if( psp
->gp
->wildcard
==0 ){
2730 psp
->gp
->wildcard
= sp
;
2732 ErrorMsg(psp
->filename
, psp
->tokenlineno
,
2733 "Extra wildcard to token: %s", x
);
2738 case WAITING_FOR_CLASS_ID
:
2739 if( !ISLOWER(x
[0]) ){
2740 ErrorMsg(psp
->filename
, psp
->tokenlineno
,
2741 "%%token_class must be followed by an identifier: %s", x
);
2743 psp
->state
= RESYNC_AFTER_DECL_ERROR
;
2744 }else if( Symbol_find(x
) ){
2745 ErrorMsg(psp
->filename
, psp
->tokenlineno
,
2746 "Symbol \"%s\" already used", x
);
2748 psp
->state
= RESYNC_AFTER_DECL_ERROR
;
2750 psp
->tkclass
= Symbol_new(x
);
2751 psp
->tkclass
->type
= MULTITERMINAL
;
2752 psp
->state
= WAITING_FOR_CLASS_TOKEN
;
2755 case WAITING_FOR_CLASS_TOKEN
:
2757 psp
->state
= WAITING_FOR_DECL_OR_RULE
;
2758 }else if( ISUPPER(x
[0]) || ((x
[0]=='|' || x
[0]=='/') && ISUPPER(x
[1])) ){
2759 struct symbol
*msp
= psp
->tkclass
;
2761 msp
->subsym
= (struct symbol
**) realloc(msp
->subsym
,
2762 sizeof(struct symbol
*)*msp
->nsubsym
);
2763 if( !ISUPPER(x
[0]) ) x
++;
2764 msp
->subsym
[msp
->nsubsym
-1] = Symbol_new(x
);
2766 ErrorMsg(psp
->filename
, psp
->tokenlineno
,
2767 "%%token_class argument \"%s\" should be a token", x
);
2769 psp
->state
= RESYNC_AFTER_DECL_ERROR
;
2772 case RESYNC_AFTER_RULE_ERROR
:
2773 /* if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
2775 case RESYNC_AFTER_DECL_ERROR
:
2776 if( x
[0]=='.' ) psp
->state
= WAITING_FOR_DECL_OR_RULE
;
2777 if( x
[0]=='%' ) psp
->state
= WAITING_FOR_DECL_KEYWORD
;
2782 /* Run the preprocessor over the input file text. The global variables
2783 ** azDefine[0] through azDefine[nDefine-1] contains the names of all defined
2784 ** macros. This routine looks for "%ifdef" and "%ifndef" and "%endif" and
2785 ** comments them out. Text in between is also commented out as appropriate.
2787 static void preprocess_input(char *z
){
2792 int start_lineno
= 1;
2793 for(i
=0; z
[i
]; i
++){
2794 if( z
[i
]=='\n' ) lineno
++;
2795 if( z
[i
]!='%' || (i
>0 && z
[i
-1]!='\n') ) continue;
2796 if( strncmp(&z
[i
],"%endif",6)==0 && ISSPACE(z
[i
+6]) ){
2800 for(j
=start
; j
<i
; j
++) if( z
[j
]!='\n' ) z
[j
] = ' ';
2803 for(j
=i
; z
[j
] && z
[j
]!='\n'; j
++) z
[j
] = ' ';
2804 }else if( (strncmp(&z
[i
],"%ifdef",6)==0 && ISSPACE(z
[i
+6]))
2805 || (strncmp(&z
[i
],"%ifndef",7)==0 && ISSPACE(z
[i
+7])) ){
2809 for(j
=i
+7; ISSPACE(z
[j
]); j
++){}
2810 for(n
=0; z
[j
+n
] && !ISSPACE(z
[j
+n
]); n
++){}
2812 for(k
=0; k
<nDefine
; k
++){
2813 if( strncmp(azDefine
[k
],&z
[j
],n
)==0 && lemonStrlen(azDefine
[k
])==n
){
2818 if( z
[i
+3]=='n' ) exclude
= !exclude
;
2821 start_lineno
= lineno
;
2824 for(j
=i
; z
[j
] && z
[j
]!='\n'; j
++) z
[j
] = ' ';
2828 fprintf(stderr
,"unterminated %%ifdef starting on line %d\n", start_lineno
);
2833 /* In spite of its name, this function is really a scanner. It read
2834 ** in the entire input file (all at once) then tokenizes it. Each
2835 ** token is passed to the function "parseonetoken" which builds all
2836 ** the appropriate data structures in the global state vector "gp".
2838 void Parse(struct lemon
*gp
)
2843 unsigned int filesize
;
2849 memset(&ps
, '\0', sizeof(ps
));
2851 ps
.filename
= gp
->filename
;
2853 ps
.state
= INITIALIZE
;
2855 /* Begin by reading the input file */
2856 fp
= fopen(ps
.filename
,"rb");
2858 ErrorMsg(ps
.filename
,0,"Can't open this file for reading.");
2863 filesize
= ftell(fp
);
2865 filebuf
= (char *)malloc( filesize
+1 );
2866 if( filesize
>100000000 || filebuf
==0 ){
2867 ErrorMsg(ps
.filename
,0,"Input file too large.");
2873 if( fread(filebuf
,1,filesize
,fp
)!=filesize
){
2874 ErrorMsg(ps
.filename
,0,"Can't read in all %d bytes of this file.",
2882 filebuf
[filesize
] = 0;
2884 /* Make an initial pass through the file to handle %ifdef and %ifndef */
2885 preprocess_input(filebuf
);
2887 /* Now scan the text of the input file */
2889 for(cp
=filebuf
; (c
= *cp
)!=0; ){
2890 if( c
=='\n' ) lineno
++; /* Keep track of the line number */
2891 if( ISSPACE(c
) ){ cp
++; continue; } /* Skip all white space */
2892 if( c
=='/' && cp
[1]=='/' ){ /* Skip C++ style comments */
2894 while( (c
= *cp
)!=0 && c
!='\n' ) cp
++;
2897 if( c
=='/' && cp
[1]=='*' ){ /* Skip C style comments */
2899 while( (c
= *cp
)!=0 && (c
!='/' || cp
[-1]!='*') ){
2900 if( c
=='\n' ) lineno
++;
2906 ps
.tokenstart
= cp
; /* Mark the beginning of the token */
2907 ps
.tokenlineno
= lineno
; /* Linenumber on which token begins */
2908 if( c
=='\"' ){ /* String literals */
2910 while( (c
= *cp
)!=0 && c
!='\"' ){
2911 if( c
=='\n' ) lineno
++;
2915 ErrorMsg(ps
.filename
,startline
,
2916 "String starting on this line is not terminated before "
2917 "the end of the file.");
2923 }else if( c
=='{' ){ /* A block of C code */
2926 for(level
=1; (c
= *cp
)!=0 && (level
>1 || c
!='}'); cp
++){
2927 if( c
=='\n' ) lineno
++;
2928 else if( c
=='{' ) level
++;
2929 else if( c
=='}' ) level
--;
2930 else if( c
=='/' && cp
[1]=='*' ){ /* Skip comments */
2934 while( (c
= *cp
)!=0 && (c
!='/' || prevc
!='*') ){
2935 if( c
=='\n' ) lineno
++;
2939 }else if( c
=='/' && cp
[1]=='/' ){ /* Skip C++ style comments too */
2941 while( (c
= *cp
)!=0 && c
!='\n' ) cp
++;
2943 }else if( c
=='\'' || c
=='\"' ){ /* String a character literals */
2944 int startchar
, prevc
;
2947 for(cp
++; (c
= *cp
)!=0 && (c
!=startchar
|| prevc
=='\\'); cp
++){
2948 if( c
=='\n' ) lineno
++;
2949 if( prevc
=='\\' ) prevc
= 0;
2955 ErrorMsg(ps
.filename
,ps
.tokenlineno
,
2956 "C code starting on this line is not terminated before "
2957 "the end of the file.");
2963 }else if( ISALNUM(c
) ){ /* Identifiers */
2964 while( (c
= *cp
)!=0 && (ISALNUM(c
) || c
=='_') ) cp
++;
2966 }else if( c
==':' && cp
[1]==':' && cp
[2]=='=' ){ /* The operator "::=" */
2969 }else if( (c
=='/' || c
=='|') && ISALPHA(cp
[1]) ){
2971 while( (c
= *cp
)!=0 && (ISALNUM(c
) || c
=='_') ) cp
++;
2973 }else{ /* All other (one character) operators */
2978 *cp
= 0; /* Null terminate the token */
2979 parseonetoken(&ps
); /* Parse the token */
2980 *cp
= (char)c
; /* Restore the buffer */
2983 free(filebuf
); /* Release the buffer after parsing */
2984 gp
->rule
= ps
.firstrule
;
2985 gp
->errorcnt
= ps
.errorcnt
;
2987 /*************************** From the file "plink.c" *********************/
2989 ** Routines processing configuration follow-set propagation links
2990 ** in the LEMON parser generator.
2992 static struct plink
*plink_freelist
= 0;
2994 /* Allocate a new plink */
2995 struct plink
*Plink_new(void){
2996 struct plink
*newlink
;
2998 if( plink_freelist
==0 ){
3001 plink_freelist
= (struct plink
*)calloc( amt
, sizeof(struct plink
) );
3002 if( plink_freelist
==0 ){
3004 "Unable to allocate memory for a new follow-set propagation link.\n");
3007 for(i
=0; i
<amt
-1; i
++) plink_freelist
[i
].next
= &plink_freelist
[i
+1];
3008 plink_freelist
[amt
-1].next
= 0;
3010 newlink
= plink_freelist
;
3011 plink_freelist
= plink_freelist
->next
;
3015 /* Add a plink to a plink list */
3016 void Plink_add(struct plink
**plpp
, struct config
*cfp
)
3018 struct plink
*newlink
;
3019 newlink
= Plink_new();
3020 newlink
->next
= *plpp
;
3025 /* Transfer every plink on the list "from" to the list "to" */
3026 void Plink_copy(struct plink
**to
, struct plink
*from
)
3028 struct plink
*nextpl
;
3030 nextpl
= from
->next
;
3037 /* Delete every plink on the list */
3038 void Plink_delete(struct plink
*plp
)
3040 struct plink
*nextpl
;
3044 plp
->next
= plink_freelist
;
3045 plink_freelist
= plp
;
3049 /*********************** From the file "report.c" **************************/
3051 ** Procedures for generating reports and tables in the LEMON parser generator.
3054 /* Generate a filename with the given suffix. Space to hold the
3055 ** name comes from malloc() and must be freed by the calling
3058 PRIVATE
char *file_makename(struct lemon
*lemp
, const char *suffix
)
3062 char *filename
= lemp
->filename
;
3066 cp
= strrchr(filename
, '/');
3067 if( cp
) filename
= cp
+ 1;
3069 sz
= lemonStrlen(filename
);
3070 sz
+= lemonStrlen(suffix
);
3071 if( outputDir
) sz
+= lemonStrlen(outputDir
) + 1;
3073 name
= (char*)malloc( sz
);
3075 fprintf(stderr
,"Can't allocate space for a filename.\n");
3080 lemon_strcpy(name
, outputDir
);
3081 lemon_strcat(name
, "/");
3083 lemon_strcat(name
,filename
);
3084 cp
= strrchr(name
,'.');
3086 lemon_strcat(name
,suffix
);
3090 /* Open a file with a name based on the name of the input file,
3091 ** but with a different (specified) suffix, and return a pointer
3093 PRIVATE
FILE *file_open(
3100 if( lemp
->outname
) free(lemp
->outname
);
3101 lemp
->outname
= file_makename(lemp
, suffix
);
3102 fp
= fopen(lemp
->outname
,mode
);
3103 if( fp
==0 && *mode
=='w' ){
3104 fprintf(stderr
,"Can't open file \"%s\".\n",lemp
->outname
);
3111 /* Print the text of a rule
3113 void rule_print(FILE *out
, struct rule
*rp
){
3115 fprintf(out
, "%s",rp
->lhs
->name
);
3116 /* if( rp->lhsalias ) fprintf(out,"(%s)",rp->lhsalias); */
3117 fprintf(out
," ::=");
3118 for(i
=0; i
<rp
->nrhs
; i
++){
3119 struct symbol
*sp
= rp
->rhs
[i
];
3120 if( sp
->type
==MULTITERMINAL
){
3121 fprintf(out
," %s", sp
->subsym
[0]->name
);
3122 for(j
=1; j
<sp
->nsubsym
; j
++){
3123 fprintf(out
,"|%s", sp
->subsym
[j
]->name
);
3126 fprintf(out
," %s", sp
->name
);
3128 /* if( rp->rhsalias[i] ) fprintf(out,"(%s)",rp->rhsalias[i]); */
3132 /* Duplicate the input file without comments and without actions
3134 void Reprint(struct lemon
*lemp
)
3138 int i
, j
, maxlen
, len
, ncolumns
, skip
;
3139 printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp
->filename
);
3141 for(i
=0; i
<lemp
->nsymbol
; i
++){
3142 sp
= lemp
->symbols
[i
];
3143 len
= lemonStrlen(sp
->name
);
3144 if( len
>maxlen
) maxlen
= len
;
3146 ncolumns
= 76/(maxlen
+5);
3147 if( ncolumns
<1 ) ncolumns
= 1;
3148 skip
= (lemp
->nsymbol
+ ncolumns
- 1)/ncolumns
;
3149 for(i
=0; i
<skip
; i
++){
3151 for(j
=i
; j
<lemp
->nsymbol
; j
+=skip
){
3152 sp
= lemp
->symbols
[j
];
3153 assert( sp
->index
==j
);
3154 printf(" %3d %-*.*s",j
,maxlen
,maxlen
,sp
->name
);
3158 for(rp
=lemp
->rule
; rp
; rp
=rp
->next
){
3159 rule_print(stdout
, rp
);
3161 if( rp
->precsym
) printf(" [%s]",rp
->precsym
->name
);
3162 /* if( rp->code ) printf("\n %s",rp->code); */
3167 /* Print a single rule.
3169 void RulePrint(FILE *fp
, struct rule
*rp
, int iCursor
){
3172 fprintf(fp
,"%s ::=",rp
->lhs
->name
);
3173 for(i
=0; i
<=rp
->nrhs
; i
++){
3174 if( i
==iCursor
) fprintf(fp
," *");
3175 if( i
==rp
->nrhs
) break;
3177 if( sp
->type
==MULTITERMINAL
){
3178 fprintf(fp
," %s", sp
->subsym
[0]->name
);
3179 for(j
=1; j
<sp
->nsubsym
; j
++){
3180 fprintf(fp
,"|%s",sp
->subsym
[j
]->name
);
3183 fprintf(fp
," %s", sp
->name
);
3188 /* Print the rule for a configuration.
3190 void ConfigPrint(FILE *fp
, struct config
*cfp
){
3191 RulePrint(fp
, cfp
->rp
, cfp
->dot
);
3197 PRIVATE
void SetPrint(out
,set
,lemp
)
3205 fprintf(out
,"%12s[","");
3206 for(i
=0; i
<lemp
->nterminal
; i
++){
3207 if( SetFind(set
,i
) ){
3208 fprintf(out
,"%s%s",spacer
,lemp
->symbols
[i
]->name
);
3215 /* Print a plink chain */
3216 PRIVATE
void PlinkPrint(out
,plp
,tag
)
3222 fprintf(out
,"%12s%s (state %2d) ","",tag
,plp
->cfp
->stp
->statenum
);
3223 ConfigPrint(out
,plp
->cfp
);
3230 /* Print an action to the given file descriptor. Return FALSE if
3231 ** nothing was actually printed.
3234 struct action
*ap
, /* The action to print */
3235 FILE *fp
, /* Print the action here */
3236 int indent
/* Indent by this amount */
3241 struct state
*stp
= ap
->x
.stp
;
3242 fprintf(fp
,"%*s shift %-7d",indent
,ap
->sp
->name
,stp
->statenum
);
3246 struct rule
*rp
= ap
->x
.rp
;
3247 fprintf(fp
,"%*s reduce %-7d",indent
,ap
->sp
->name
,rp
->iRule
);
3248 RulePrint(fp
, rp
, -1);
3252 struct rule
*rp
= ap
->x
.rp
;
3253 fprintf(fp
,"%*s shift-reduce %-7d",indent
,ap
->sp
->name
,rp
->iRule
);
3254 RulePrint(fp
, rp
, -1);
3258 fprintf(fp
,"%*s accept",indent
,ap
->sp
->name
);
3261 fprintf(fp
,"%*s error",indent
,ap
->sp
->name
);
3265 fprintf(fp
,"%*s reduce %-7d ** Parsing conflict **",
3266 indent
,ap
->sp
->name
,ap
->x
.rp
->iRule
);
3269 fprintf(fp
,"%*s shift %-7d ** Parsing conflict **",
3270 indent
,ap
->sp
->name
,ap
->x
.stp
->statenum
);
3273 if( showPrecedenceConflict
){
3274 fprintf(fp
,"%*s shift %-7d -- dropped by precedence",
3275 indent
,ap
->sp
->name
,ap
->x
.stp
->statenum
);
3281 if( showPrecedenceConflict
){
3282 fprintf(fp
,"%*s reduce %-7d -- dropped by precedence",
3283 indent
,ap
->sp
->name
,ap
->x
.rp
->iRule
);
3292 if( result
&& ap
->spOpt
){
3293 fprintf(fp
," /* because %s==%s */", ap
->sp
->name
, ap
->spOpt
->name
);
3298 /* Generate the "*.out" log file */
3299 void ReportOutput(struct lemon
*lemp
)
3308 fp
= file_open(lemp
,".out","wb");
3310 for(i
=0; i
<lemp
->nxstate
; i
++){
3311 stp
= lemp
->sorted
[i
];
3312 fprintf(fp
,"State %d:\n",stp
->statenum
);
3313 if( lemp
->basisflag
) cfp
=stp
->bp
;
3317 if( cfp
->dot
==cfp
->rp
->nrhs
){
3318 lemon_sprintf(buf
,"(%d)",cfp
->rp
->iRule
);
3319 fprintf(fp
," %5s ",buf
);
3323 ConfigPrint(fp
,cfp
);
3326 SetPrint(fp
,cfp
->fws
,lemp
);
3327 PlinkPrint(fp
,cfp
->fplp
,"To ");
3328 PlinkPrint(fp
,cfp
->bplp
,"From");
3330 if( lemp
->basisflag
) cfp
=cfp
->bp
;
3334 for(ap
=stp
->ap
; ap
; ap
=ap
->next
){
3335 if( PrintAction(ap
,fp
,30) ) fprintf(fp
,"\n");
3339 fprintf(fp
, "----------------------------------------------------\n");
3340 fprintf(fp
, "Symbols:\n");
3341 fprintf(fp
, "The first-set of non-terminals is shown after the name.\n\n");
3342 for(i
=0; i
<lemp
->nsymbol
; i
++){
3346 sp
= lemp
->symbols
[i
];
3347 fprintf(fp
, " %3d: %s", i
, sp
->name
);
3348 if( sp
->type
==NONTERMINAL
){
3351 fprintf(fp
, " <lambda>");
3353 for(j
=0; j
<lemp
->nterminal
; j
++){
3354 if( sp
->firstset
&& SetFind(sp
->firstset
, j
) ){
3355 fprintf(fp
, " %s", lemp
->symbols
[j
]->name
);
3359 if( sp
->prec
>=0 ) fprintf(fp
," (precedence=%d)", sp
->prec
);
3362 fprintf(fp
, "----------------------------------------------------\n");
3363 fprintf(fp
, "Syntax-only Symbols:\n");
3364 fprintf(fp
, "The following symbols never carry semantic content.\n\n");
3365 for(i
=n
=0; i
<lemp
->nsymbol
; i
++){
3367 struct symbol
*sp
= lemp
->symbols
[i
];
3368 if( sp
->bContent
) continue;
3369 w
= (int)strlen(sp
->name
);
3370 if( n
>0 && n
+w
>75 ){
3378 fprintf(fp
, "%s", sp
->name
);
3381 if( n
>0 ) fprintf(fp
, "\n");
3382 fprintf(fp
, "----------------------------------------------------\n");
3383 fprintf(fp
, "Rules:\n");
3384 for(rp
=lemp
->rule
; rp
; rp
=rp
->next
){
3385 fprintf(fp
, "%4d: ", rp
->iRule
);
3389 fprintf(fp
," [%s precedence=%d]",
3390 rp
->precsym
->name
, rp
->precsym
->prec
);
3398 /* Search for the file "name" which is in the same directory as
3399 ** the exacutable */
3400 PRIVATE
char *pathsearch(char *argv0
, char *name
, int modemask
)
3402 const char *pathlist
;
3409 cp
= strrchr(argv0
,'\\');
3411 cp
= strrchr(argv0
,'/');
3416 path
= (char *)malloc( lemonStrlen(argv0
) + lemonStrlen(name
) + 2 );
3417 if( path
) lemon_sprintf(path
,"%s/%s",argv0
,name
);
3420 pathlist
= getenv("PATH");
3421 if( pathlist
==0 ) pathlist
= ".:/bin:/usr/bin";
3422 pathbuf
= (char *) malloc( lemonStrlen(pathlist
) + 1 );
3423 path
= (char *)malloc( lemonStrlen(pathlist
)+lemonStrlen(name
)+2 );
3424 if( (pathbuf
!= 0) && (path
!=0) ){
3425 pathbufptr
= pathbuf
;
3426 lemon_strcpy(pathbuf
, pathlist
);
3428 cp
= strchr(pathbuf
,':');
3429 if( cp
==0 ) cp
= &pathbuf
[lemonStrlen(pathbuf
)];
3432 lemon_sprintf(path
,"%s/%s",pathbuf
,name
);
3434 if( c
==0 ) pathbuf
[0] = 0;
3435 else pathbuf
= &cp
[1];
3436 if( access(path
,modemask
)==0 ) break;
3444 /* Given an action, compute the integer value for that action
3445 ** which is to be put in the action table of the generated machine.
3446 ** Return negative if no action should be generated.
3448 PRIVATE
int compute_action(struct lemon
*lemp
, struct action
*ap
)
3452 case SHIFT
: act
= ap
->x
.stp
->statenum
; break;
3454 /* Since a SHIFT is inherient after a prior REDUCE, convert any
3455 ** SHIFTREDUCE action with a nonterminal on the LHS into a simple
3456 ** REDUCE action: */
3457 if( ap
->sp
->index
>=lemp
->nterminal
){
3458 act
= lemp
->minReduce
+ ap
->x
.rp
->iRule
;
3460 act
= lemp
->minShiftReduce
+ ap
->x
.rp
->iRule
;
3464 case REDUCE
: act
= lemp
->minReduce
+ ap
->x
.rp
->iRule
; break;
3465 case ERROR
: act
= lemp
->errAction
; break;
3466 case ACCEPT
: act
= lemp
->accAction
; break;
3467 default: act
= -1; break;
3472 #define LINESIZE 1000
3473 /* The next cluster of routines are for reading the template file
3474 ** and writing the results to the generated parser */
3475 /* The first function transfers data from "in" to "out" until
3476 ** a line is seen which begins with "%%". The line number is
3479 ** if name!=0, then any word that begin with "Parse" is changed to
3480 ** begin with *name instead.
3482 PRIVATE
void tplt_xfer(char *name
, FILE *in
, FILE *out
, int *lineno
)
3485 char line
[LINESIZE
];
3486 while( fgets(line
,LINESIZE
,in
) && (line
[0]!='%' || line
[1]!='%') ){
3490 for(i
=0; line
[i
]; i
++){
3491 if( line
[i
]=='P' && strncmp(&line
[i
],"Parse",5)==0
3492 && (i
==0 || !ISALPHA(line
[i
-1]))
3494 if( i
>iStart
) fprintf(out
,"%.*s",i
-iStart
,&line
[iStart
]);
3495 fprintf(out
,"%s",name
);
3501 fprintf(out
,"%s",&line
[iStart
]);
3505 /* The next function finds the template file and opens it, returning
3506 ** a pointer to the opened file. */
3507 PRIVATE
FILE *tplt_open(struct lemon
*lemp
)
3509 static char templatename
[] = "lempar.c";
3515 /* first, see if user specified a template filename on the command line. */
3516 if (user_templatename
!= 0) {
3517 if( access(user_templatename
,004)==-1 ){
3518 fprintf(stderr
,"Can't find the parser driver template file \"%s\".\n",
3523 in
= fopen(user_templatename
,"rb");
3525 fprintf(stderr
,"Can't open the template file \"%s\".\n",
3533 cp
= strrchr(lemp
->filename
,'.');
3535 lemon_sprintf(buf
,"%.*s.lt",(int)(cp
-lemp
->filename
),lemp
->filename
);
3537 lemon_sprintf(buf
,"%s.lt",lemp
->filename
);
3539 if( access(buf
,004)==0 ){
3541 }else if( access(templatename
,004)==0 ){
3542 tpltname
= templatename
;
3544 tpltname
= pathsearch(lemp
->argv0
,templatename
,0);
3547 fprintf(stderr
,"Can't find the parser driver template file \"%s\".\n",
3552 in
= fopen(tpltname
,"rb");
3554 fprintf(stderr
,"Can't open the template file \"%s\".\n",templatename
);
3561 /* Print a #line directive line to the output file. */
3562 PRIVATE
void tplt_linedir(FILE *out
, int lineno
, char *filename
)
3564 fprintf(out
,"#line %d \"",lineno
);
3566 if( *filename
== '\\' ) putc('\\',out
);
3567 putc(*filename
,out
);
3570 fprintf(out
,"\"\n");
3573 /* Print a string to the file and keep the linenumber up to date */
3574 PRIVATE
void tplt_print(FILE *out
, struct lemon
*lemp
, char *str
, int *lineno
)
3576 if( str
==0 ) return;
3579 if( *str
=='\n' ) (*lineno
)++;
3582 if( str
[-1]!='\n' ){
3586 if (!lemp
->nolinenosflag
) {
3587 (*lineno
)++; tplt_linedir(out
,*lineno
,lemp
->outname
);
3593 ** The following routine emits code for the destructor for the
3596 void emit_destructor_code(
3604 if( sp
->type
==TERMINAL
){
3605 cp
= lemp
->tokendest
;
3607 fprintf(out
,"{\n"); (*lineno
)++;
3608 }else if( sp
->destructor
){
3609 cp
= sp
->destructor
;
3610 fprintf(out
,"{\n"); (*lineno
)++;
3611 if( !lemp
->nolinenosflag
){
3613 tplt_linedir(out
,sp
->destLineno
,lemp
->filename
);
3615 }else if( lemp
->vardest
){
3618 fprintf(out
,"{\n"); (*lineno
)++;
3620 assert( 0 ); /* Cannot happen */
3623 if( *cp
=='$' && cp
[1]=='$' ){
3624 fprintf(out
,"(yypminor->yy%d)",sp
->dtnum
);
3628 if( *cp
=='\n' ) (*lineno
)++;
3631 fprintf(out
,"\n"); (*lineno
)++;
3632 if (!lemp
->nolinenosflag
) {
3633 (*lineno
)++; tplt_linedir(out
,*lineno
,lemp
->outname
);
3635 fprintf(out
,"}\n"); (*lineno
)++;
3640 ** Return TRUE (non-zero) if the given symbol has a destructor.
3642 int has_destructor(struct symbol
*sp
, struct lemon
*lemp
)
3645 if( sp
->type
==TERMINAL
){
3646 ret
= lemp
->tokendest
!=0;
3648 ret
= lemp
->vardest
!=0 || sp
->destructor
!=0;
3654 ** Append text to a dynamically allocated string. If zText is 0 then
3655 ** reset the string to be empty again. Always return the complete text
3656 ** of the string (which is overwritten with each call).
3658 ** n bytes of zText are stored. If n==0 then all of zText up to the first
3659 ** \000 terminator is stored. zText can contain up to two instances of
3660 ** %d. The values of p1 and p2 are written into the first and second
3663 ** If n==-1, then the previous character is overwritten.
3665 PRIVATE
char *append_str(const char *zText
, int n
, int p1
, int p2
){
3666 static char empty
[1] = { 0 };
3668 static int alloced
= 0;
3669 static int used
= 0;
3673 if( used
==0 && z
!=0 ) z
[0] = 0;
3682 n
= lemonStrlen(zText
);
3684 if( (int) (n
+sizeof(zInt
)*2+used
) >= alloced
){
3685 alloced
= n
+ sizeof(zInt
)*2 + used
+ 200;
3686 z
= (char *) realloc(z
, alloced
);
3688 if( z
==0 ) return empty
;
3691 if( c
=='%' && n
>0 && zText
[0]=='d' ){
3692 lemon_sprintf(zInt
, "%d", p1
);
3694 lemon_strcpy(&z
[used
], zInt
);
3695 used
+= lemonStrlen(&z
[used
]);
3699 z
[used
++] = (char)c
;
3707 ** Write and transform the rp->code string so that symbols are expanded.
3708 ** Populate the rp->codePrefix and rp->codeSuffix strings, as appropriate.
3710 ** Return 1 if the expanded code requires that "yylhsminor" local variable
3713 PRIVATE
int translate_code(struct lemon
*lemp
, struct rule
*rp
){
3716 int rc
= 0; /* True if yylhsminor is used */
3717 int dontUseRhs0
= 0; /* If true, use of left-most RHS label is illegal */
3718 const char *zSkip
= 0; /* The zOvwrt comment within rp->code, or NULL */
3719 char lhsused
= 0; /* True if the LHS element has been used */
3720 char lhsdirect
; /* True if LHS writes directly into stack */
3721 char used
[MAXRHS
]; /* True for each RHS element which is used */
3722 char zLhs
[50]; /* Convert the LHS symbol into this string */
3723 char zOvwrt
[900]; /* Comment that to allow LHS to overwrite RHS */
3725 for(i
=0; i
<rp
->nrhs
; i
++) used
[i
] = 0;
3729 static char newlinestr
[2] = { '\n', '\0' };
3730 rp
->code
= newlinestr
;
3731 rp
->line
= rp
->ruleline
;
3739 /* If there are no RHS symbols, then writing directly to the LHS is ok */
3741 }else if( rp
->rhsalias
[0]==0 ){
3742 /* The left-most RHS symbol has no value. LHS direct is ok. But
3743 ** we have to call the distructor on the RHS symbol first. */
3745 if( has_destructor(rp
->rhs
[0],lemp
) ){
3746 append_str(0,0,0,0);
3747 append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0,
3748 rp
->rhs
[0]->index
,1-rp
->nrhs
);
3749 rp
->codePrefix
= Strsafe(append_str(0,0,0,0));
3752 }else if( rp
->lhsalias
==0 ){
3753 /* There is no LHS value symbol. */
3755 }else if( strcmp(rp
->lhsalias
,rp
->rhsalias
[0])==0 ){
3756 /* The LHS symbol and the left-most RHS symbol are the same, so
3757 ** direct writing is allowed */
3761 if( rp
->lhs
->dtnum
!=rp
->rhs
[0]->dtnum
){
3762 ErrorMsg(lemp
->filename
,rp
->ruleline
,
3763 "%s(%s) and %s(%s) share the same label but have "
3764 "different datatypes.",
3765 rp
->lhs
->name
, rp
->lhsalias
, rp
->rhs
[0]->name
, rp
->rhsalias
[0]);
3769 lemon_sprintf(zOvwrt
, "/*%s-overwrites-%s*/",
3770 rp
->lhsalias
, rp
->rhsalias
[0]);
3771 zSkip
= strstr(rp
->code
, zOvwrt
);
3773 /* The code contains a special comment that indicates that it is safe
3774 ** for the LHS label to overwrite left-most RHS label. */
3781 sprintf(zLhs
, "yymsp[%d].minor.yy%d",1-rp
->nrhs
,rp
->lhs
->dtnum
);
3784 sprintf(zLhs
, "yylhsminor.yy%d",rp
->lhs
->dtnum
);
3787 append_str(0,0,0,0);
3789 /* This const cast is wrong but harmless, if we're careful. */
3790 for(cp
=(char *)rp
->code
; *cp
; cp
++){
3792 append_str(zOvwrt
,0,0,0);
3793 cp
+= lemonStrlen(zOvwrt
)-1;
3797 if( ISALPHA(*cp
) && (cp
==rp
->code
|| (!ISALNUM(cp
[-1]) && cp
[-1]!='_')) ){
3799 for(xp
= &cp
[1]; ISALNUM(*xp
) || *xp
=='_'; xp
++);
3802 if( rp
->lhsalias
&& strcmp(cp
,rp
->lhsalias
)==0 ){
3803 append_str(zLhs
,0,0,0);
3807 for(i
=0; i
<rp
->nrhs
; i
++){
3808 if( rp
->rhsalias
[i
] && strcmp(cp
,rp
->rhsalias
[i
])==0 ){
3809 if( i
==0 && dontUseRhs0
){
3810 ErrorMsg(lemp
->filename
,rp
->ruleline
,
3811 "Label %s used after '%s'.",
3812 rp
->rhsalias
[0], zOvwrt
);
3814 }else if( cp
!=rp
->code
&& cp
[-1]=='@' ){
3815 /* If the argument is of the form @X then substituted
3816 ** the token number of X, not the value of X */
3817 append_str("yymsp[%d].major",-1,i
-rp
->nrhs
+1,0);
3819 struct symbol
*sp
= rp
->rhs
[i
];
3821 if( sp
->type
==MULTITERMINAL
){
3822 dtnum
= sp
->subsym
[0]->dtnum
;
3826 append_str("yymsp[%d].minor.yy%d",0,i
-rp
->nrhs
+1, dtnum
);
3836 append_str(cp
, 1, 0, 0);
3839 /* Main code generation completed */
3840 cp
= append_str(0,0,0,0);
3841 if( cp
&& cp
[0] ) rp
->code
= Strsafe(cp
);
3842 append_str(0,0,0,0);
3844 /* Check to make sure the LHS has been used */
3845 if( rp
->lhsalias
&& !lhsused
){
3846 ErrorMsg(lemp
->filename
,rp
->ruleline
,
3847 "Label \"%s\" for \"%s(%s)\" is never used.",
3848 rp
->lhsalias
,rp
->lhs
->name
,rp
->lhsalias
);
3852 /* Generate destructor code for RHS minor values which are not referenced.
3853 ** Generate error messages for unused labels and duplicate labels.
3855 for(i
=0; i
<rp
->nrhs
; i
++){
3856 if( rp
->rhsalias
[i
] ){
3859 if( rp
->lhsalias
&& strcmp(rp
->lhsalias
,rp
->rhsalias
[i
])==0 ){
3860 ErrorMsg(lemp
->filename
,rp
->ruleline
,
3861 "%s(%s) has the same label as the LHS but is not the left-most "
3862 "symbol on the RHS.",
3863 rp
->rhs
[i
]->name
, rp
->rhsalias
[i
]);
3867 if( rp
->rhsalias
[j
] && strcmp(rp
->rhsalias
[j
],rp
->rhsalias
[i
])==0 ){
3868 ErrorMsg(lemp
->filename
,rp
->ruleline
,
3869 "Label %s used for multiple symbols on the RHS of a rule.",
3877 ErrorMsg(lemp
->filename
,rp
->ruleline
,
3878 "Label %s for \"%s(%s)\" is never used.",
3879 rp
->rhsalias
[i
],rp
->rhs
[i
]->name
,rp
->rhsalias
[i
]);
3882 }else if( i
>0 && has_destructor(rp
->rhs
[i
],lemp
) ){
3883 append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0,
3884 rp
->rhs
[i
]->index
,i
-rp
->nrhs
+1);
3888 /* If unable to write LHS values directly into the stack, write the
3889 ** saved LHS value now. */
3891 append_str(" yymsp[%d].minor.yy%d = ", 0, 1-rp
->nrhs
, rp
->lhs
->dtnum
);
3892 append_str(zLhs
, 0, 0, 0);
3893 append_str(";\n", 0, 0, 0);
3896 /* Suffix code generation complete */
3897 cp
= append_str(0,0,0,0);
3899 rp
->codeSuffix
= Strsafe(cp
);
3907 ** Generate code which executes when the rule "rp" is reduced. Write
3908 ** the code to "out". Make sure lineno stays up-to-date.
3910 PRIVATE
void emit_code(
3918 /* Setup code prior to the #line directive */
3919 if( rp
->codePrefix
&& rp
->codePrefix
[0] ){
3920 fprintf(out
, "{%s", rp
->codePrefix
);
3921 for(cp
=rp
->codePrefix
; *cp
; cp
++){ if( *cp
=='\n' ) (*lineno
)++; }
3924 /* Generate code to do the reduce action */
3926 if( !lemp
->nolinenosflag
){
3928 tplt_linedir(out
,rp
->line
,lemp
->filename
);
3930 fprintf(out
,"{%s",rp
->code
);
3931 for(cp
=rp
->code
; *cp
; cp
++){ if( *cp
=='\n' ) (*lineno
)++; }
3932 fprintf(out
,"}\n"); (*lineno
)++;
3933 if( !lemp
->nolinenosflag
){
3935 tplt_linedir(out
,*lineno
,lemp
->outname
);
3939 /* Generate breakdown code that occurs after the #line directive */
3940 if( rp
->codeSuffix
&& rp
->codeSuffix
[0] ){
3941 fprintf(out
, "%s", rp
->codeSuffix
);
3942 for(cp
=rp
->codeSuffix
; *cp
; cp
++){ if( *cp
=='\n' ) (*lineno
)++; }
3945 if( rp
->codePrefix
){
3946 fprintf(out
, "}\n"); (*lineno
)++;
3953 ** Print the definition of the union used for the parser's data stack.
3954 ** This union contains fields for every possible data type for tokens
3955 ** and nonterminals. In the process of computing and printing this
3956 ** union, also set the ".dtnum" field of every terminal and nonterminal
3959 void print_stack_union(
3960 FILE *out
, /* The output stream */
3961 struct lemon
*lemp
, /* The main info structure for this parser */
3962 int *plineno
, /* Pointer to the line number */
3963 int mhflag
/* True if generating makeheaders output */
3965 int lineno
= *plineno
; /* The line number of the output */
3966 char **types
; /* A hash table of datatypes */
3967 int arraysize
; /* Size of the "types" array */
3968 int maxdtlength
; /* Maximum length of any ".datatype" field. */
3969 char *stddt
; /* Standardized name for a datatype */
3970 int i
,j
; /* Loop counters */
3971 unsigned hash
; /* For hashing the name of a type */
3972 const char *name
; /* Name of the parser */
3974 /* Allocate and initialize types[] and allocate stddt[] */
3975 arraysize
= lemp
->nsymbol
* 2;
3976 types
= (char**)calloc( arraysize
, sizeof(char*) );
3978 fprintf(stderr
,"Out of memory.\n");
3981 for(i
=0; i
<arraysize
; i
++) types
[i
] = 0;
3983 if( lemp
->vartype
){
3984 maxdtlength
= lemonStrlen(lemp
->vartype
);
3986 for(i
=0; i
<lemp
->nsymbol
; i
++){
3988 struct symbol
*sp
= lemp
->symbols
[i
];
3989 if( sp
->datatype
==0 ) continue;
3990 len
= lemonStrlen(sp
->datatype
);
3991 if( len
>maxdtlength
) maxdtlength
= len
;
3993 stddt
= (char*)malloc( maxdtlength
*2 + 1 );
3995 fprintf(stderr
,"Out of memory.\n");
3999 /* Build a hash table of datatypes. The ".dtnum" field of each symbol
4000 ** is filled in with the hash index plus 1. A ".dtnum" value of 0 is
4001 ** used for terminal symbols. If there is no %default_type defined then
4002 ** 0 is also used as the .dtnum value for nonterminals which do not specify
4003 ** a datatype using the %type directive.
4005 for(i
=0; i
<lemp
->nsymbol
; i
++){
4006 struct symbol
*sp
= lemp
->symbols
[i
];
4008 if( sp
==lemp
->errsym
){
4009 sp
->dtnum
= arraysize
+1;
4012 if( sp
->type
!=NONTERMINAL
|| (sp
->datatype
==0 && lemp
->vartype
==0) ){
4017 if( cp
==0 ) cp
= lemp
->vartype
;
4019 while( ISSPACE(*cp
) ) cp
++;
4020 while( *cp
) stddt
[j
++] = *cp
++;
4021 while( j
>0 && ISSPACE(stddt
[j
-1]) ) j
--;
4023 if( lemp
->tokentype
&& strcmp(stddt
, lemp
->tokentype
)==0 ){
4028 for(j
=0; stddt
[j
]; j
++){
4029 hash
= hash
*53 + stddt
[j
];
4031 hash
= (hash
& 0x7fffffff)%arraysize
;
4032 while( types
[hash
] ){
4033 if( strcmp(types
[hash
],stddt
)==0 ){
4034 sp
->dtnum
= hash
+ 1;
4038 if( hash
>=(unsigned)arraysize
) hash
= 0;
4040 if( types
[hash
]==0 ){
4041 sp
->dtnum
= hash
+ 1;
4042 types
[hash
] = (char*)malloc( lemonStrlen(stddt
)+1 );
4043 if( types
[hash
]==0 ){
4044 fprintf(stderr
,"Out of memory.\n");
4047 lemon_strcpy(types
[hash
],stddt
);
4051 /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */
4052 name
= lemp
->name
? lemp
->name
: "Parse";
4054 if( mhflag
){ fprintf(out
,"#if INTERFACE\n"); lineno
++; }
4055 fprintf(out
,"#define %sTOKENTYPE %s\n",name
,
4056 lemp
->tokentype
?lemp
->tokentype
:"void*"); lineno
++;
4057 if( mhflag
){ fprintf(out
,"#endif\n"); lineno
++; }
4058 fprintf(out
,"typedef union {\n"); lineno
++;
4059 fprintf(out
," int yyinit;\n"); lineno
++;
4060 fprintf(out
," %sTOKENTYPE yy0;\n",name
); lineno
++;
4061 for(i
=0; i
<arraysize
; i
++){
4062 if( types
[i
]==0 ) continue;
4063 fprintf(out
," %s yy%d;\n",types
[i
],i
+1); lineno
++;
4066 if( lemp
->errsym
&& lemp
->errsym
->useCnt
){
4067 fprintf(out
," int yy%d;\n",lemp
->errsym
->dtnum
); lineno
++;
4071 fprintf(out
,"} YYMINORTYPE;\n"); lineno
++;
4076 ** Return the name of a C datatype able to represent values between
4077 ** lwr and upr, inclusive. If pnByte!=NULL then also write the sizeof
4078 ** for that type (1, 2, or 4) into *pnByte.
4080 static const char *minimum_size_type(int lwr
, int upr
, int *pnByte
){
4081 const char *zType
= "int";
4085 zType
= "unsigned char";
4087 }else if( upr
<65535 ){
4088 zType
= "unsigned short int";
4091 zType
= "unsigned int";
4094 }else if( lwr
>=-127 && upr
<=127 ){
4095 zType
= "signed char";
4097 }else if( lwr
>=-32767 && upr
<32767 ){
4101 if( pnByte
) *pnByte
= nByte
;
4106 ** Each state contains a set of token transaction and a set of
4107 ** nonterminal transactions. Each of these sets makes an instance
4108 ** of the following structure. An array of these structures is used
4109 ** to order the creation of entries in the yy_action[] table.
4112 struct state
*stp
; /* A pointer to a state */
4113 int isTkn
; /* True to use tokens. False for non-terminals */
4114 int nAction
; /* Number of actions */
4115 int iOrder
; /* Original order of action sets */
4119 ** Compare to axset structures for sorting purposes
4121 static int axset_compare(const void *a
, const void *b
){
4122 struct axset
*p1
= (struct axset
*)a
;
4123 struct axset
*p2
= (struct axset
*)b
;
4125 c
= p2
->nAction
- p1
->nAction
;
4127 c
= p1
->iOrder
- p2
->iOrder
;
4129 assert( c
!=0 || p1
==p2
);
4134 ** Write text on "out" that describes the rule "rp".
4136 static void writeRuleText(FILE *out
, struct rule
*rp
){
4138 fprintf(out
,"%s ::=", rp
->lhs
->name
);
4139 for(j
=0; j
<rp
->nrhs
; j
++){
4140 struct symbol
*sp
= rp
->rhs
[j
];
4141 if( sp
->type
!=MULTITERMINAL
){
4142 fprintf(out
," %s", sp
->name
);
4145 fprintf(out
," %s", sp
->subsym
[0]->name
);
4146 for(k
=1; k
<sp
->nsubsym
; k
++){
4147 fprintf(out
,"|%s",sp
->subsym
[k
]->name
);
4154 /* Generate C source code for the parser */
4157 int mhflag
, /* Output in makeheaders format if true */
4158 int sqlFlag
/* Generate the *.sql file too */
4160 FILE *out
, *in
, *sql
;
4161 char line
[LINESIZE
];
4166 struct acttab
*pActtab
;
4169 int szActionType
; /* sizeof(YYACTIONTYPE) */
4170 int szCodeType
; /* sizeof(YYCODETYPE) */
4172 int mnTknOfst
, mxTknOfst
;
4173 int mnNtOfst
, mxNtOfst
;
4176 lemp
->minShiftReduce
= lemp
->nstate
;
4177 lemp
->errAction
= lemp
->minShiftReduce
+ lemp
->nrule
;
4178 lemp
->accAction
= lemp
->errAction
+ 1;
4179 lemp
->noAction
= lemp
->accAction
+ 1;
4180 lemp
->minReduce
= lemp
->noAction
+ 1;
4181 lemp
->maxAction
= lemp
->minReduce
+ lemp
->nrule
;
4183 in
= tplt_open(lemp
);
4185 out
= file_open(lemp
,".c","wb");
4193 sql
= file_open(lemp
, ".sql", "wb");
4201 "CREATE TABLE symbol(\n"
4202 " id INTEGER PRIMARY KEY,\n"
4203 " name TEXT NOT NULL,\n"
4204 " isTerminal BOOLEAN NOT NULL,\n"
4205 " fallback INTEGER REFERENCES symbol"
4206 " DEFERRABLE INITIALLY DEFERRED\n"
4209 for(i
=0; i
<lemp
->nsymbol
; i
++){
4211 "INSERT INTO symbol(id,name,isTerminal,fallback)"
4212 "VALUES(%d,'%s',%s",
4213 i
, lemp
->symbols
[i
]->name
,
4214 i
<lemp
->nterminal
? "TRUE" : "FALSE"
4216 if( lemp
->symbols
[i
]->fallback
){
4217 fprintf(sql
, ",%d);\n", lemp
->symbols
[i
]->fallback
->index
);
4219 fprintf(sql
, ",NULL);\n");
4223 "CREATE TABLE rule(\n"
4224 " ruleid INTEGER PRIMARY KEY,\n"
4225 " lhs INTEGER REFERENCES symbol(id),\n"
4228 "CREATE TABLE rulerhs(\n"
4229 " ruleid INTEGER REFERENCES rule(ruleid),\n"
4231 " sym INTEGER REFERENCES symbol(id)\n"
4234 for(i
=0, rp
=lemp
->rule
; rp
; rp
=rp
->next
, i
++){
4235 assert( i
==rp
->iRule
);
4237 "INSERT INTO rule(ruleid,lhs,txt)VALUES(%d,%d,'",
4238 rp
->iRule
, rp
->lhs
->index
4240 writeRuleText(sql
, rp
);
4241 fprintf(sql
,"');\n");
4242 for(j
=0; j
<rp
->nrhs
; j
++){
4243 struct symbol
*sp
= rp
->rhs
[j
];
4244 if( sp
->type
!=MULTITERMINAL
){
4246 "INSERT INTO rulerhs(ruleid,pos,sym)VALUES(%d,%d,%d);\n",
4251 for(k
=0; k
<sp
->nsubsym
; k
++){
4253 "INSERT INTO rulerhs(ruleid,pos,sym)VALUES(%d,%d,%d);\n",
4254 i
,j
,sp
->subsym
[k
]->index
4260 fprintf(sql
, "COMMIT;\n");
4263 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4265 /* Generate the include code, if any */
4266 tplt_print(out
,lemp
,lemp
->include
,&lineno
);
4268 char *incName
= file_makename(lemp
, ".h");
4269 fprintf(out
,"#include \"%s\"\n", incName
); lineno
++;
4272 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4274 /* Generate #defines for all tokens */
4277 fprintf(out
,"#if INTERFACE\n"); lineno
++;
4278 if( lemp
->tokenprefix
) prefix
= lemp
->tokenprefix
;
4280 for(i
=1; i
<lemp
->nterminal
; i
++){
4281 fprintf(out
,"#define %s%-30s %2d\n",prefix
,lemp
->symbols
[i
]->name
,i
);
4284 fprintf(out
,"#endif\n"); lineno
++;
4286 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4288 /* Generate the defines */
4289 fprintf(out
,"#define YYCODETYPE %s\n",
4290 minimum_size_type(0, lemp
->nsymbol
, &szCodeType
)); lineno
++;
4291 fprintf(out
,"#define YYNOCODE %d\n",lemp
->nsymbol
); lineno
++;
4292 fprintf(out
,"#define YYACTIONTYPE %s\n",
4293 minimum_size_type(0,lemp
->maxAction
,&szActionType
)); lineno
++;
4294 if( lemp
->wildcard
){
4295 fprintf(out
,"#define YYWILDCARD %d\n",
4296 lemp
->wildcard
->index
); lineno
++;
4298 print_stack_union(out
,lemp
,&lineno
,mhflag
);
4299 fprintf(out
, "#ifndef YYSTACKDEPTH\n"); lineno
++;
4300 if( lemp
->stacksize
){
4301 fprintf(out
,"#define YYSTACKDEPTH %s\n",lemp
->stacksize
); lineno
++;
4303 fprintf(out
,"#define YYSTACKDEPTH 100\n"); lineno
++;
4305 fprintf(out
, "#endif\n"); lineno
++;
4307 fprintf(out
,"#if INTERFACE\n"); lineno
++;
4309 name
= lemp
->name
? lemp
->name
: "Parse";
4310 if( lemp
->arg
&& lemp
->arg
[0] ){
4311 i
= lemonStrlen(lemp
->arg
);
4312 while( i
>=1 && ISSPACE(lemp
->arg
[i
-1]) ) i
--;
4313 while( i
>=1 && (ISALNUM(lemp
->arg
[i
-1]) || lemp
->arg
[i
-1]=='_') ) i
--;
4314 fprintf(out
,"#define %sARG_SDECL %s;\n",name
,lemp
->arg
); lineno
++;
4315 fprintf(out
,"#define %sARG_PDECL ,%s\n",name
,lemp
->arg
); lineno
++;
4316 fprintf(out
,"#define %sARG_PARAM ,%s\n",name
,&lemp
->arg
[i
]); lineno
++;
4317 fprintf(out
,"#define %sARG_FETCH %s=yypParser->%s;\n",
4318 name
,lemp
->arg
,&lemp
->arg
[i
]); lineno
++;
4319 fprintf(out
,"#define %sARG_STORE yypParser->%s=%s;\n",
4320 name
,&lemp
->arg
[i
],&lemp
->arg
[i
]); lineno
++;
4322 fprintf(out
,"#define %sARG_SDECL\n",name
); lineno
++;
4323 fprintf(out
,"#define %sARG_PDECL\n",name
); lineno
++;
4324 fprintf(out
,"#define %sARG_PARAM\n",name
); lineno
++;
4325 fprintf(out
,"#define %sARG_FETCH\n",name
); lineno
++;
4326 fprintf(out
,"#define %sARG_STORE\n",name
); lineno
++;
4328 if( lemp
->ctx
&& lemp
->ctx
[0] ){
4329 i
= lemonStrlen(lemp
->ctx
);
4330 while( i
>=1 && ISSPACE(lemp
->ctx
[i
-1]) ) i
--;
4331 while( i
>=1 && (ISALNUM(lemp
->ctx
[i
-1]) || lemp
->ctx
[i
-1]=='_') ) i
--;
4332 fprintf(out
,"#define %sCTX_SDECL %s;\n",name
,lemp
->ctx
); lineno
++;
4333 fprintf(out
,"#define %sCTX_PDECL ,%s\n",name
,lemp
->ctx
); lineno
++;
4334 fprintf(out
,"#define %sCTX_PARAM ,%s\n",name
,&lemp
->ctx
[i
]); lineno
++;
4335 fprintf(out
,"#define %sCTX_FETCH %s=yypParser->%s;\n",
4336 name
,lemp
->ctx
,&lemp
->ctx
[i
]); lineno
++;
4337 fprintf(out
,"#define %sCTX_STORE yypParser->%s=%s;\n",
4338 name
,&lemp
->ctx
[i
],&lemp
->ctx
[i
]); lineno
++;
4340 fprintf(out
,"#define %sCTX_SDECL\n",name
); lineno
++;
4341 fprintf(out
,"#define %sCTX_PDECL\n",name
); lineno
++;
4342 fprintf(out
,"#define %sCTX_PARAM\n",name
); lineno
++;
4343 fprintf(out
,"#define %sCTX_FETCH\n",name
); lineno
++;
4344 fprintf(out
,"#define %sCTX_STORE\n",name
); lineno
++;
4347 fprintf(out
,"#endif\n"); lineno
++;
4349 if( lemp
->errsym
&& lemp
->errsym
->useCnt
){
4350 fprintf(out
,"#define YYERRORSYMBOL %d\n",lemp
->errsym
->index
); lineno
++;
4351 fprintf(out
,"#define YYERRSYMDT yy%d\n",lemp
->errsym
->dtnum
); lineno
++;
4353 if( lemp
->has_fallback
){
4354 fprintf(out
,"#define YYFALLBACK 1\n"); lineno
++;
4357 /* Compute the action table, but do not output it yet. The action
4358 ** table must be computed before generating the YYNSTATE macro because
4359 ** we need to know how many states can be eliminated.
4361 ax
= (struct axset
*) calloc(lemp
->nxstate
*2, sizeof(ax
[0]));
4363 fprintf(stderr
,"malloc failed\n");
4366 for(i
=0; i
<lemp
->nxstate
; i
++){
4367 stp
= lemp
->sorted
[i
];
4370 ax
[i
*2].nAction
= stp
->nTknAct
;
4371 ax
[i
*2+1].stp
= stp
;
4372 ax
[i
*2+1].isTkn
= 0;
4373 ax
[i
*2+1].nAction
= stp
->nNtAct
;
4375 mxTknOfst
= mnTknOfst
= 0;
4376 mxNtOfst
= mnNtOfst
= 0;
4377 /* In an effort to minimize the action table size, use the heuristic
4378 ** of placing the largest action sets first */
4379 for(i
=0; i
<lemp
->nxstate
*2; i
++) ax
[i
].iOrder
= i
;
4380 qsort(ax
, lemp
->nxstate
*2, sizeof(ax
[0]), axset_compare
);
4381 pActtab
= acttab_alloc(lemp
->nsymbol
, lemp
->nterminal
);
4382 for(i
=0; i
<lemp
->nxstate
*2 && ax
[i
].nAction
>0; i
++){
4385 for(ap
=stp
->ap
; ap
; ap
=ap
->next
){
4387 if( ap
->sp
->index
>=lemp
->nterminal
) continue;
4388 action
= compute_action(lemp
, ap
);
4389 if( action
<0 ) continue;
4390 acttab_action(pActtab
, ap
->sp
->index
, action
);
4392 stp
->iTknOfst
= acttab_insert(pActtab
, 1);
4393 if( stp
->iTknOfst
<mnTknOfst
) mnTknOfst
= stp
->iTknOfst
;
4394 if( stp
->iTknOfst
>mxTknOfst
) mxTknOfst
= stp
->iTknOfst
;
4396 for(ap
=stp
->ap
; ap
; ap
=ap
->next
){
4398 if( ap
->sp
->index
<lemp
->nterminal
) continue;
4399 if( ap
->sp
->index
==lemp
->nsymbol
) continue;
4400 action
= compute_action(lemp
, ap
);
4401 if( action
<0 ) continue;
4402 acttab_action(pActtab
, ap
->sp
->index
, action
);
4404 stp
->iNtOfst
= acttab_insert(pActtab
, 0);
4405 if( stp
->iNtOfst
<mnNtOfst
) mnNtOfst
= stp
->iNtOfst
;
4406 if( stp
->iNtOfst
>mxNtOfst
) mxNtOfst
= stp
->iNtOfst
;
4408 #if 0 /* Uncomment for a trace of how the yy_action[] table fills out */
4410 for(jj
=nn
=0; jj
<pActtab
->nAction
; jj
++){
4411 if( pActtab
->aAction
[jj
].action
<0 ) nn
++;
4413 printf("%4d: State %3d %s n: %2d size: %5d freespace: %d\n",
4414 i
, stp
->statenum
, ax
[i
].isTkn
? "Token" : "Var ",
4415 ax
[i
].nAction
, pActtab
->nAction
, nn
);
4421 /* Mark rules that are actually used for reduce actions after all
4422 ** optimizations have been applied
4424 for(rp
=lemp
->rule
; rp
; rp
=rp
->next
) rp
->doesReduce
= LEMON_FALSE
;
4425 for(i
=0; i
<lemp
->nxstate
; i
++){
4426 for(ap
=lemp
->sorted
[i
]->ap
; ap
; ap
=ap
->next
){
4427 if( ap
->type
==REDUCE
|| ap
->type
==SHIFTREDUCE
){
4428 ap
->x
.rp
->doesReduce
= 1;
4433 /* Finish rendering the constants now that the action table has
4435 fprintf(out
,"#define YYNSTATE %d\n",lemp
->nxstate
); lineno
++;
4436 fprintf(out
,"#define YYNRULE %d\n",lemp
->nrule
); lineno
++;
4437 fprintf(out
,"#define YYNRULE_WITH_ACTION %d\n",lemp
->nruleWithAction
);
4439 fprintf(out
,"#define YYNTOKEN %d\n",lemp
->nterminal
); lineno
++;
4440 fprintf(out
,"#define YY_MAX_SHIFT %d\n",lemp
->nxstate
-1); lineno
++;
4441 i
= lemp
->minShiftReduce
;
4442 fprintf(out
,"#define YY_MIN_SHIFTREDUCE %d\n",i
); lineno
++;
4444 fprintf(out
,"#define YY_MAX_SHIFTREDUCE %d\n", i
-1); lineno
++;
4445 fprintf(out
,"#define YY_ERROR_ACTION %d\n", lemp
->errAction
); lineno
++;
4446 fprintf(out
,"#define YY_ACCEPT_ACTION %d\n", lemp
->accAction
); lineno
++;
4447 fprintf(out
,"#define YY_NO_ACTION %d\n", lemp
->noAction
); lineno
++;
4448 fprintf(out
,"#define YY_MIN_REDUCE %d\n", lemp
->minReduce
); lineno
++;
4449 i
= lemp
->minReduce
+ lemp
->nrule
;
4450 fprintf(out
,"#define YY_MAX_REDUCE %d\n", i
-1); lineno
++;
4451 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4453 /* Now output the action table and its associates:
4455 ** yy_action[] A single table containing all actions.
4456 ** yy_lookahead[] A table containing the lookahead for each entry in
4457 ** yy_action. Used to detect hash collisions.
4458 ** yy_shift_ofst[] For each state, the offset into yy_action for
4459 ** shifting terminals.
4460 ** yy_reduce_ofst[] For each state, the offset into yy_action for
4461 ** shifting non-terminals after a reduce.
4462 ** yy_default[] Default action for each state.
4465 /* Output the yy_action table */
4466 lemp
->nactiontab
= n
= acttab_action_size(pActtab
);
4467 lemp
->tablesize
+= n
*szActionType
;
4468 fprintf(out
,"#define YY_ACTTAB_COUNT (%d)\n", n
); lineno
++;
4469 fprintf(out
,"static const YYACTIONTYPE yy_action[] = {\n"); lineno
++;
4470 for(i
=j
=0; i
<n
; i
++){
4471 int action
= acttab_yyaction(pActtab
, i
);
4472 if( action
<0 ) action
= lemp
->noAction
;
4473 if( j
==0 ) fprintf(out
," /* %5d */ ", i
);
4474 fprintf(out
, " %4d,", action
);
4475 if( j
==9 || i
==n
-1 ){
4476 fprintf(out
, "\n"); lineno
++;
4482 fprintf(out
, "};\n"); lineno
++;
4484 /* Output the yy_lookahead table */
4485 lemp
->nlookaheadtab
= n
= acttab_lookahead_size(pActtab
);
4486 lemp
->tablesize
+= n
*szCodeType
;
4487 fprintf(out
,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno
++;
4488 for(i
=j
=0; i
<n
; i
++){
4489 int la
= acttab_yylookahead(pActtab
, i
);
4490 if( la
<0 ) la
= lemp
->nsymbol
;
4491 if( j
==0 ) fprintf(out
," /* %5d */ ", i
);
4492 fprintf(out
, " %4d,", la
);
4494 fprintf(out
, "\n"); lineno
++;
4500 /* Add extra entries to the end of the yy_lookahead[] table so that
4501 ** yy_shift_ofst[]+iToken will always be a valid index into the array,
4502 ** even for the largest possible value of yy_shift_ofst[] and iToken. */
4503 nLookAhead
= lemp
->nterminal
+ lemp
->nactiontab
;
4504 while( i
<nLookAhead
){
4505 if( j
==0 ) fprintf(out
," /* %5d */ ", i
);
4506 fprintf(out
, " %4d,", lemp
->nterminal
);
4508 fprintf(out
, "\n"); lineno
++;
4515 if( j
>0 ){ fprintf(out
, "\n"); lineno
++; }
4516 fprintf(out
, "};\n"); lineno
++;
4518 /* Output the yy_shift_ofst[] table */
4520 while( n
>0 && lemp
->sorted
[n
-1]->iTknOfst
==NO_OFFSET
) n
--;
4521 fprintf(out
, "#define YY_SHIFT_COUNT (%d)\n", n
-1); lineno
++;
4522 fprintf(out
, "#define YY_SHIFT_MIN (%d)\n", mnTknOfst
); lineno
++;
4523 fprintf(out
, "#define YY_SHIFT_MAX (%d)\n", mxTknOfst
); lineno
++;
4524 fprintf(out
, "static const %s yy_shift_ofst[] = {\n",
4525 minimum_size_type(mnTknOfst
, lemp
->nterminal
+lemp
->nactiontab
, &sz
));
4527 lemp
->tablesize
+= n
*sz
;
4528 for(i
=j
=0; i
<n
; i
++){
4530 stp
= lemp
->sorted
[i
];
4531 ofst
= stp
->iTknOfst
;
4532 if( ofst
==NO_OFFSET
) ofst
= lemp
->nactiontab
;
4533 if( j
==0 ) fprintf(out
," /* %5d */ ", i
);
4534 fprintf(out
, " %4d,", ofst
);
4535 if( j
==9 || i
==n
-1 ){
4536 fprintf(out
, "\n"); lineno
++;
4542 fprintf(out
, "};\n"); lineno
++;
4544 /* Output the yy_reduce_ofst[] table */
4546 while( n
>0 && lemp
->sorted
[n
-1]->iNtOfst
==NO_OFFSET
) n
--;
4547 fprintf(out
, "#define YY_REDUCE_COUNT (%d)\n", n
-1); lineno
++;
4548 fprintf(out
, "#define YY_REDUCE_MIN (%d)\n", mnNtOfst
); lineno
++;
4549 fprintf(out
, "#define YY_REDUCE_MAX (%d)\n", mxNtOfst
); lineno
++;
4550 fprintf(out
, "static const %s yy_reduce_ofst[] = {\n",
4551 minimum_size_type(mnNtOfst
-1, mxNtOfst
, &sz
)); lineno
++;
4552 lemp
->tablesize
+= n
*sz
;
4553 for(i
=j
=0; i
<n
; i
++){
4555 stp
= lemp
->sorted
[i
];
4556 ofst
= stp
->iNtOfst
;
4557 if( ofst
==NO_OFFSET
) ofst
= mnNtOfst
- 1;
4558 if( j
==0 ) fprintf(out
," /* %5d */ ", i
);
4559 fprintf(out
, " %4d,", ofst
);
4560 if( j
==9 || i
==n
-1 ){
4561 fprintf(out
, "\n"); lineno
++;
4567 fprintf(out
, "};\n"); lineno
++;
4569 /* Output the default action table */
4570 fprintf(out
, "static const YYACTIONTYPE yy_default[] = {\n"); lineno
++;
4572 lemp
->tablesize
+= n
*szActionType
;
4573 for(i
=j
=0; i
<n
; i
++){
4574 stp
= lemp
->sorted
[i
];
4575 if( j
==0 ) fprintf(out
," /* %5d */ ", i
);
4576 if( stp
->iDfltReduce
<0 ){
4577 fprintf(out
, " %4d,", lemp
->errAction
);
4579 fprintf(out
, " %4d,", stp
->iDfltReduce
+ lemp
->minReduce
);
4581 if( j
==9 || i
==n
-1 ){
4582 fprintf(out
, "\n"); lineno
++;
4588 fprintf(out
, "};\n"); lineno
++;
4589 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4591 /* Generate the table of fallback tokens.
4593 if( lemp
->has_fallback
){
4594 int mx
= lemp
->nterminal
- 1;
4595 /* 2019-08-28: Generate fallback entries for every token to avoid
4596 ** having to do a range check on the index */
4597 /* while( mx>0 && lemp->symbols[mx]->fallback==0 ){ mx--; } */
4598 lemp
->tablesize
+= (mx
+1)*szCodeType
;
4599 for(i
=0; i
<=mx
; i
++){
4600 struct symbol
*p
= lemp
->symbols
[i
];
4601 if( p
->fallback
==0 ){
4602 fprintf(out
, " 0, /* %10s => nothing */\n", p
->name
);
4604 fprintf(out
, " %3d, /* %10s => %s */\n", p
->fallback
->index
,
4605 p
->name
, p
->fallback
->name
);
4610 tplt_xfer(lemp
->name
, in
, out
, &lineno
);
4612 /* Generate a table containing the symbolic name of every symbol
4614 for(i
=0; i
<lemp
->nsymbol
; i
++){
4615 lemon_sprintf(line
,"\"%s\",",lemp
->symbols
[i
]->name
);
4616 fprintf(out
," /* %4d */ \"%s\",\n",i
, lemp
->symbols
[i
]->name
); lineno
++;
4618 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4620 /* Generate a table containing a text string that describes every
4621 ** rule in the rule set of the grammar. This information is used
4622 ** when tracing REDUCE actions.
4624 for(i
=0, rp
=lemp
->rule
; rp
; rp
=rp
->next
, i
++){
4625 assert( rp
->iRule
==i
);
4626 fprintf(out
," /* %3d */ \"", i
);
4627 writeRuleText(out
, rp
);
4628 fprintf(out
,"\",\n"); lineno
++;
4630 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4632 /* Generate code which executes every time a symbol is popped from
4633 ** the stack while processing errors or while destroying the parser.
4634 ** (In other words, generate the %destructor actions)
4636 if( lemp
->tokendest
){
4638 for(i
=0; i
<lemp
->nsymbol
; i
++){
4639 struct symbol
*sp
= lemp
->symbols
[i
];
4640 if( sp
==0 || sp
->type
!=TERMINAL
) continue;
4642 fprintf(out
, " /* TERMINAL Destructor */\n"); lineno
++;
4645 fprintf(out
," case %d: /* %s */\n", sp
->index
, sp
->name
); lineno
++;
4647 for(i
=0; i
<lemp
->nsymbol
&& lemp
->symbols
[i
]->type
!=TERMINAL
; i
++);
4648 if( i
<lemp
->nsymbol
){
4649 emit_destructor_code(out
,lemp
->symbols
[i
],lemp
,&lineno
);
4650 fprintf(out
," break;\n"); lineno
++;
4653 if( lemp
->vardest
){
4654 struct symbol
*dflt_sp
= 0;
4656 for(i
=0; i
<lemp
->nsymbol
; i
++){
4657 struct symbol
*sp
= lemp
->symbols
[i
];
4658 if( sp
==0 || sp
->type
==TERMINAL
||
4659 sp
->index
<=0 || sp
->destructor
!=0 ) continue;
4661 fprintf(out
, " /* Default NON-TERMINAL Destructor */\n");lineno
++;
4664 fprintf(out
," case %d: /* %s */\n", sp
->index
, sp
->name
); lineno
++;
4668 emit_destructor_code(out
,dflt_sp
,lemp
,&lineno
);
4670 fprintf(out
," break;\n"); lineno
++;
4672 for(i
=0; i
<lemp
->nsymbol
; i
++){
4673 struct symbol
*sp
= lemp
->symbols
[i
];
4674 if( sp
==0 || sp
->type
==TERMINAL
|| sp
->destructor
==0 ) continue;
4675 if( sp
->destLineno
<0 ) continue; /* Already emitted */
4676 fprintf(out
," case %d: /* %s */\n", sp
->index
, sp
->name
); lineno
++;
4678 /* Combine duplicate destructors into a single case */
4679 for(j
=i
+1; j
<lemp
->nsymbol
; j
++){
4680 struct symbol
*sp2
= lemp
->symbols
[j
];
4681 if( sp2
&& sp2
->type
!=TERMINAL
&& sp2
->destructor
4682 && sp2
->dtnum
==sp
->dtnum
4683 && strcmp(sp
->destructor
,sp2
->destructor
)==0 ){
4684 fprintf(out
," case %d: /* %s */\n",
4685 sp2
->index
, sp2
->name
); lineno
++;
4686 sp2
->destLineno
= -1; /* Avoid emitting this destructor again */
4690 emit_destructor_code(out
,lemp
->symbols
[i
],lemp
,&lineno
);
4691 fprintf(out
," break;\n"); lineno
++;
4693 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4695 /* Generate code which executes whenever the parser stack overflows */
4696 tplt_print(out
,lemp
,lemp
->overflow
,&lineno
);
4697 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4699 /* Generate the tables of rule information. yyRuleInfoLhs[] and
4700 ** yyRuleInfoNRhs[].
4702 ** Note: This code depends on the fact that rules are number
4703 ** sequentually beginning with 0.
4705 for(i
=0, rp
=lemp
->rule
; rp
; rp
=rp
->next
, i
++){
4706 fprintf(out
," %4d, /* (%d) ", rp
->lhs
->index
, i
);
4707 rule_print(out
, rp
);
4708 fprintf(out
," */\n"); lineno
++;
4710 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4711 for(i
=0, rp
=lemp
->rule
; rp
; rp
=rp
->next
, i
++){
4712 fprintf(out
," %3d, /* (%d) ", -rp
->nrhs
, i
);
4713 rule_print(out
, rp
);
4714 fprintf(out
," */\n"); lineno
++;
4716 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4718 /* Generate code which execution during each REDUCE action */
4720 for(rp
=lemp
->rule
; rp
; rp
=rp
->next
){
4721 i
+= translate_code(lemp
, rp
);
4724 fprintf(out
," YYMINORTYPE yylhsminor;\n"); lineno
++;
4726 /* First output rules other than the default: rule */
4727 for(rp
=lemp
->rule
; rp
; rp
=rp
->next
){
4728 struct rule
*rp2
; /* Other rules with the same action */
4729 if( rp
->codeEmitted
) continue;
4731 /* No C code actions, so this will be part of the "default:" rule */
4734 fprintf(out
," case %d: /* ", rp
->iRule
);
4735 writeRuleText(out
, rp
);
4736 fprintf(out
, " */\n"); lineno
++;
4737 for(rp2
=rp
->next
; rp2
; rp2
=rp2
->next
){
4738 if( rp2
->code
==rp
->code
&& rp2
->codePrefix
==rp
->codePrefix
4739 && rp2
->codeSuffix
==rp
->codeSuffix
){
4740 fprintf(out
," case %d: /* ", rp2
->iRule
);
4741 writeRuleText(out
, rp2
);
4742 fprintf(out
," */ yytestcase(yyruleno==%d);\n", rp2
->iRule
); lineno
++;
4743 rp2
->codeEmitted
= 1;
4746 emit_code(out
,rp
,lemp
,&lineno
);
4747 fprintf(out
," break;\n"); lineno
++;
4748 rp
->codeEmitted
= 1;
4750 /* Finally, output the default: rule. We choose as the default: all
4751 ** empty actions. */
4752 fprintf(out
," default:\n"); lineno
++;
4753 for(rp
=lemp
->rule
; rp
; rp
=rp
->next
){
4754 if( rp
->codeEmitted
) continue;
4755 assert( rp
->noCode
);
4756 fprintf(out
," /* (%d) ", rp
->iRule
);
4757 writeRuleText(out
, rp
);
4758 if( rp
->neverReduce
){
4759 fprintf(out
, " (NEVER REDUCES) */ assert(yyruleno!=%d);\n",
4760 rp
->iRule
); lineno
++;
4761 }else if( rp
->doesReduce
){
4762 fprintf(out
, " */ yytestcase(yyruleno==%d);\n", rp
->iRule
); lineno
++;
4764 fprintf(out
, " (OPTIMIZED OUT) */ assert(yyruleno!=%d);\n",
4765 rp
->iRule
); lineno
++;
4768 fprintf(out
," break;\n"); lineno
++;
4769 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4771 /* Generate code which executes if a parse fails */
4772 tplt_print(out
,lemp
,lemp
->failure
,&lineno
);
4773 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4775 /* Generate code which executes when a syntax error occurs */
4776 tplt_print(out
,lemp
,lemp
->error
,&lineno
);
4777 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4779 /* Generate code which executes when the parser accepts its input */
4780 tplt_print(out
,lemp
,lemp
->accept
,&lineno
);
4781 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4783 /* Append any addition code the user desires */
4784 tplt_print(out
,lemp
,lemp
->extracode
,&lineno
);
4786 acttab_free(pActtab
);
4789 if( sql
) fclose(sql
);
4793 /* Generate a header file for the parser */
4794 void ReportHeader(struct lemon
*lemp
)
4798 char line
[LINESIZE
];
4799 char pattern
[LINESIZE
];
4802 if( lemp
->tokenprefix
) prefix
= lemp
->tokenprefix
;
4804 in
= file_open(lemp
,".h","rb");
4807 for(i
=1; i
<lemp
->nterminal
&& fgets(line
,LINESIZE
,in
); i
++){
4808 lemon_sprintf(pattern
,"#define %s%-30s %3d\n",
4809 prefix
,lemp
->symbols
[i
]->name
,i
);
4810 if( strcmp(line
,pattern
) ) break;
4812 nextChar
= fgetc(in
);
4814 if( i
==lemp
->nterminal
&& nextChar
==EOF
){
4815 /* No change in the file. Don't rewrite it. */
4819 out
= file_open(lemp
,".h","wb");
4821 for(i
=1; i
<lemp
->nterminal
; i
++){
4822 fprintf(out
,"#define %s%-30s %3d\n",prefix
,lemp
->symbols
[i
]->name
,i
);
4829 /* Reduce the size of the action tables, if possible, by making use
4832 ** In this version, we take the most frequent REDUCE action and make
4833 ** it the default. Except, there is no default if the wildcard token
4834 ** is a possible look-ahead.
4836 void CompressTables(struct lemon
*lemp
)
4839 struct action
*ap
, *ap2
, *nextap
;
4840 struct rule
*rp
, *rp2
, *rbest
;
4845 for(i
=0; i
<lemp
->nstate
; i
++){
4846 stp
= lemp
->sorted
[i
];
4851 for(ap
=stp
->ap
; ap
; ap
=ap
->next
){
4852 if( ap
->type
==SHIFT
&& ap
->sp
==lemp
->wildcard
){
4855 if( ap
->type
!=REDUCE
) continue;
4857 if( rp
->lhsStart
) continue;
4858 if( rp
==rbest
) continue;
4860 for(ap2
=ap
->next
; ap2
; ap2
=ap2
->next
){
4861 if( ap2
->type
!=REDUCE
) continue;
4863 if( rp2
==rbest
) continue;
4872 /* Do not make a default if the number of rules to default
4873 ** is not at least 1 or if the wildcard token is a possible
4876 if( nbest
<1 || usesWildcard
) continue;
4879 /* Combine matching REDUCE actions into a single default */
4880 for(ap
=stp
->ap
; ap
; ap
=ap
->next
){
4881 if( ap
->type
==REDUCE
&& ap
->x
.rp
==rbest
) break;
4884 ap
->sp
= Symbol_new("{default}");
4885 for(ap
=ap
->next
; ap
; ap
=ap
->next
){
4886 if( ap
->type
==REDUCE
&& ap
->x
.rp
==rbest
) ap
->type
= NOT_USED
;
4888 stp
->ap
= Action_sort(stp
->ap
);
4890 for(ap
=stp
->ap
; ap
; ap
=ap
->next
){
4891 if( ap
->type
==SHIFT
) break;
4892 if( ap
->type
==REDUCE
&& ap
->x
.rp
!=rbest
) break;
4895 stp
->autoReduce
= 1;
4896 stp
->pDfltReduce
= rbest
;
4900 /* Make a second pass over all states and actions. Convert
4901 ** every action that is a SHIFT to an autoReduce state into
4902 ** a SHIFTREDUCE action.
4904 for(i
=0; i
<lemp
->nstate
; i
++){
4905 stp
= lemp
->sorted
[i
];
4906 for(ap
=stp
->ap
; ap
; ap
=ap
->next
){
4907 struct state
*pNextState
;
4908 if( ap
->type
!=SHIFT
) continue;
4909 pNextState
= ap
->x
.stp
;
4910 if( pNextState
->autoReduce
&& pNextState
->pDfltReduce
!=0 ){
4911 ap
->type
= SHIFTREDUCE
;
4912 ap
->x
.rp
= pNextState
->pDfltReduce
;
4917 /* If a SHIFTREDUCE action specifies a rule that has a single RHS term
4918 ** (meaning that the SHIFTREDUCE will land back in the state where it
4919 ** started) and if there is no C-code associated with the reduce action,
4920 ** then we can go ahead and convert the action to be the same as the
4921 ** action for the RHS of the rule.
4923 for(i
=0; i
<lemp
->nstate
; i
++){
4924 stp
= lemp
->sorted
[i
];
4925 for(ap
=stp
->ap
; ap
; ap
=nextap
){
4927 if( ap
->type
!=SHIFTREDUCE
) continue;
4929 if( rp
->noCode
==0 ) continue;
4930 if( rp
->nrhs
!=1 ) continue;
4932 /* Only apply this optimization to non-terminals. It would be OK to
4933 ** apply it to terminal symbols too, but that makes the parser tables
4935 if( ap
->sp
->index
<lemp
->nterminal
) continue;
4937 /* If we reach this point, it means the optimization can be applied */
4939 for(ap2
=stp
->ap
; ap2
&& (ap2
==ap
|| ap2
->sp
!=rp
->lhs
); ap2
=ap2
->next
){}
4941 ap
->spOpt
= ap2
->sp
;
4942 ap
->type
= ap2
->type
;
4950 ** Compare two states for sorting purposes. The smaller state is the
4951 ** one with the most non-terminal actions. If they have the same number
4952 ** of non-terminal actions, then the smaller is the one with the most
4955 static int stateResortCompare(const void *a
, const void *b
){
4956 const struct state
*pA
= *(const struct state
**)a
;
4957 const struct state
*pB
= *(const struct state
**)b
;
4960 n
= pB
->nNtAct
- pA
->nNtAct
;
4962 n
= pB
->nTknAct
- pA
->nTknAct
;
4964 n
= pB
->statenum
- pA
->statenum
;
4973 ** Renumber and resort states so that states with fewer choices
4974 ** occur at the end. Except, keep state 0 as the first state.
4976 void ResortStates(struct lemon
*lemp
)
4982 for(i
=0; i
<lemp
->nstate
; i
++){
4983 stp
= lemp
->sorted
[i
];
4984 stp
->nTknAct
= stp
->nNtAct
= 0;
4985 stp
->iDfltReduce
= -1; /* Init dflt action to "syntax error" */
4986 stp
->iTknOfst
= NO_OFFSET
;
4987 stp
->iNtOfst
= NO_OFFSET
;
4988 for(ap
=stp
->ap
; ap
; ap
=ap
->next
){
4989 int iAction
= compute_action(lemp
,ap
);
4991 if( ap
->sp
->index
<lemp
->nterminal
){
4993 }else if( ap
->sp
->index
<lemp
->nsymbol
){
4996 assert( stp
->autoReduce
==0 || stp
->pDfltReduce
==ap
->x
.rp
);
4997 stp
->iDfltReduce
= iAction
;
5002 qsort(&lemp
->sorted
[1], lemp
->nstate
-1, sizeof(lemp
->sorted
[0]),
5003 stateResortCompare
);
5004 for(i
=0; i
<lemp
->nstate
; i
++){
5005 lemp
->sorted
[i
]->statenum
= i
;
5007 lemp
->nxstate
= lemp
->nstate
;
5008 while( lemp
->nxstate
>1 && lemp
->sorted
[lemp
->nxstate
-1]->autoReduce
){
5014 /***************** From the file "set.c" ************************************/
5016 ** Set manipulation routines for the LEMON parser generator.
5019 static int size
= 0;
5021 /* Set the set size */
5027 /* Allocate a new set */
5030 s
= (char*)calloc( size
, 1);
5037 /* Deallocate a set */
5038 void SetFree(char *s
)
5043 /* Add a new element to the set. Return TRUE if the element was added
5044 ** and FALSE if it was already there. */
5045 int SetAdd(char *s
, int e
)
5048 assert( e
>=0 && e
<size
);
5054 /* Add every element of s2 to s1. Return TRUE if s1 changes. */
5055 int SetUnion(char *s1
, char *s2
)
5059 for(i
=0; i
<size
; i
++){
5060 if( s2
[i
]==0 ) continue;
5068 /********************** From the file "table.c" ****************************/
5070 ** All code in this file has been automatically generated
5071 ** from a specification in the file
5073 ** by the associative array code building program "aagen".
5074 ** Do not edit this file! Instead, edit the specification
5075 ** file, then rerun aagen.
5078 ** Code for processing tables in the LEMON parser generator.
5081 PRIVATE
unsigned strhash(const char *x
)
5084 while( *x
) h
= h
*13 + *(x
++);
5088 /* Works like strdup, sort of. Save a string in malloced memory, but
5089 ** keep strings in a table so that the same string is not in more
5092 const char *Strsafe(const char *y
)
5097 if( y
==0 ) return 0;
5098 z
= Strsafe_find(y
);
5099 if( z
==0 && (cpy
=(char *)malloc( lemonStrlen(y
)+1 ))!=0 ){
5100 lemon_strcpy(cpy
,y
);
5108 /* There is one instance of the following structure for each
5109 ** associative array of type "x1".
5112 int size
; /* The number of available slots. */
5113 /* Must be a power of 2 greater than or */
5115 int count
; /* Number of currently slots filled */
5116 struct s_x1node
*tbl
; /* The data stored here */
5117 struct s_x1node
**ht
; /* Hash table for lookups */
5120 /* There is one instance of this structure for every data element
5121 ** in an associative array of type "x1".
5123 typedef struct s_x1node
{
5124 const char *data
; /* The data */
5125 struct s_x1node
*next
; /* Next entry with the same hash */
5126 struct s_x1node
**from
; /* Previous link */
5129 /* There is only one instance of the array, which is the following */
5130 static struct s_x1
*x1a
;
5132 /* Allocate a new associative array */
5133 void Strsafe_init(void){
5135 x1a
= (struct s_x1
*)malloc( sizeof(struct s_x1
) );
5139 x1a
->tbl
= (x1node
*)calloc(1024, sizeof(x1node
) + sizeof(x1node
*));
5145 x1a
->ht
= (x1node
**)&(x1a
->tbl
[1024]);
5146 for(i
=0; i
<1024; i
++) x1a
->ht
[i
] = 0;
5150 /* Insert a new record into the array. Return TRUE if successful.
5151 ** Prior data with the same key is NOT overwritten */
5152 int Strsafe_insert(const char *data
)
5158 if( x1a
==0 ) return 0;
5160 h
= ph
& (x1a
->size
-1);
5163 if( strcmp(np
->data
,data
)==0 ){
5164 /* An existing entry with the same key is found. */
5165 /* Fail because overwrite is not allows. */
5170 if( x1a
->count
>=x1a
->size
){
5171 /* Need to make the hash table bigger */
5174 array
.size
= arrSize
= x1a
->size
*2;
5175 array
.count
= x1a
->count
;
5176 array
.tbl
= (x1node
*)calloc(arrSize
, sizeof(x1node
) + sizeof(x1node
*));
5177 if( array
.tbl
==0 ) return 0; /* Fail due to malloc failure */
5178 array
.ht
= (x1node
**)&(array
.tbl
[arrSize
]);
5179 for(i
=0; i
<arrSize
; i
++) array
.ht
[i
] = 0;
5180 for(i
=0; i
<x1a
->count
; i
++){
5181 x1node
*oldnp
, *newnp
;
5182 oldnp
= &(x1a
->tbl
[i
]);
5183 h
= strhash(oldnp
->data
) & (arrSize
-1);
5184 newnp
= &(array
.tbl
[i
]);
5185 if( array
.ht
[h
] ) array
.ht
[h
]->from
= &(newnp
->next
);
5186 newnp
->next
= array
.ht
[h
];
5187 newnp
->data
= oldnp
->data
;
5188 newnp
->from
= &(array
.ht
[h
]);
5189 array
.ht
[h
] = newnp
;
5194 /* Insert the new data */
5195 h
= ph
& (x1a
->size
-1);
5196 np
= &(x1a
->tbl
[x1a
->count
++]);
5198 if( x1a
->ht
[h
] ) x1a
->ht
[h
]->from
= &(np
->next
);
5199 np
->next
= x1a
->ht
[h
];
5201 np
->from
= &(x1a
->ht
[h
]);
5205 /* Return a pointer to data assigned to the given key. Return NULL
5206 ** if no such key. */
5207 const char *Strsafe_find(const char *key
)
5212 if( x1a
==0 ) return 0;
5213 h
= strhash(key
) & (x1a
->size
-1);
5216 if( strcmp(np
->data
,key
)==0 ) break;
5219 return np
? np
->data
: 0;
5222 /* Return a pointer to the (terminal or nonterminal) symbol "x".
5223 ** Create a new symbol if this is the first time "x" has been seen.
5225 struct symbol
*Symbol_new(const char *x
)
5229 sp
= Symbol_find(x
);
5231 sp
= (struct symbol
*)calloc(1, sizeof(struct symbol
) );
5233 sp
->name
= Strsafe(x
);
5234 sp
->type
= ISUPPER(*x
) ? TERMINAL
: NONTERMINAL
;
5240 sp
->lambda
= LEMON_FALSE
;
5245 Symbol_insert(sp
,sp
->name
);
5251 /* Compare two symbols for sorting purposes. Return negative,
5252 ** zero, or positive if a is less then, equal to, or greater
5255 ** Symbols that begin with upper case letters (terminals or tokens)
5256 ** must sort before symbols that begin with lower case letters
5257 ** (non-terminals). And MULTITERMINAL symbols (created using the
5258 ** %token_class directive) must sort at the very end. Other than
5259 ** that, the order does not matter.
5261 ** We find experimentally that leaving the symbols in their original
5262 ** order (the order they appeared in the grammar file) gives the
5263 ** smallest parser tables in SQLite.
5265 int Symbolcmpp(const void *_a
, const void *_b
)
5267 const struct symbol
*a
= *(const struct symbol
**) _a
;
5268 const struct symbol
*b
= *(const struct symbol
**) _b
;
5269 int i1
= a
->type
==MULTITERMINAL
? 3 : a
->name
[0]>'Z' ? 2 : 1;
5270 int i2
= b
->type
==MULTITERMINAL
? 3 : b
->name
[0]>'Z' ? 2 : 1;
5271 return i1
==i2
? a
->index
- b
->index
: i1
- i2
;
5274 /* There is one instance of the following structure for each
5275 ** associative array of type "x2".
5278 int size
; /* The number of available slots. */
5279 /* Must be a power of 2 greater than or */
5281 int count
; /* Number of currently slots filled */
5282 struct s_x2node
*tbl
; /* The data stored here */
5283 struct s_x2node
**ht
; /* Hash table for lookups */
5286 /* There is one instance of this structure for every data element
5287 ** in an associative array of type "x2".
5289 typedef struct s_x2node
{
5290 struct symbol
*data
; /* The data */
5291 const char *key
; /* The key */
5292 struct s_x2node
*next
; /* Next entry with the same hash */
5293 struct s_x2node
**from
; /* Previous link */
5296 /* There is only one instance of the array, which is the following */
5297 static struct s_x2
*x2a
;
5299 /* Allocate a new associative array */
5300 void Symbol_init(void){
5302 x2a
= (struct s_x2
*)malloc( sizeof(struct s_x2
) );
5306 x2a
->tbl
= (x2node
*)calloc(128, sizeof(x2node
) + sizeof(x2node
*));
5312 x2a
->ht
= (x2node
**)&(x2a
->tbl
[128]);
5313 for(i
=0; i
<128; i
++) x2a
->ht
[i
] = 0;
5317 /* Insert a new record into the array. Return TRUE if successful.
5318 ** Prior data with the same key is NOT overwritten */
5319 int Symbol_insert(struct symbol
*data
, const char *key
)
5325 if( x2a
==0 ) return 0;
5327 h
= ph
& (x2a
->size
-1);
5330 if( strcmp(np
->key
,key
)==0 ){
5331 /* An existing entry with the same key is found. */
5332 /* Fail because overwrite is not allows. */
5337 if( x2a
->count
>=x2a
->size
){
5338 /* Need to make the hash table bigger */
5341 array
.size
= arrSize
= x2a
->size
*2;
5342 array
.count
= x2a
->count
;
5343 array
.tbl
= (x2node
*)calloc(arrSize
, sizeof(x2node
) + sizeof(x2node
*));
5344 if( array
.tbl
==0 ) return 0; /* Fail due to malloc failure */
5345 array
.ht
= (x2node
**)&(array
.tbl
[arrSize
]);
5346 for(i
=0; i
<arrSize
; i
++) array
.ht
[i
] = 0;
5347 for(i
=0; i
<x2a
->count
; i
++){
5348 x2node
*oldnp
, *newnp
;
5349 oldnp
= &(x2a
->tbl
[i
]);
5350 h
= strhash(oldnp
->key
) & (arrSize
-1);
5351 newnp
= &(array
.tbl
[i
]);
5352 if( array
.ht
[h
] ) array
.ht
[h
]->from
= &(newnp
->next
);
5353 newnp
->next
= array
.ht
[h
];
5354 newnp
->key
= oldnp
->key
;
5355 newnp
->data
= oldnp
->data
;
5356 newnp
->from
= &(array
.ht
[h
]);
5357 array
.ht
[h
] = newnp
;
5362 /* Insert the new data */
5363 h
= ph
& (x2a
->size
-1);
5364 np
= &(x2a
->tbl
[x2a
->count
++]);
5367 if( x2a
->ht
[h
] ) x2a
->ht
[h
]->from
= &(np
->next
);
5368 np
->next
= x2a
->ht
[h
];
5370 np
->from
= &(x2a
->ht
[h
]);
5374 /* Return a pointer to data assigned to the given key. Return NULL
5375 ** if no such key. */
5376 struct symbol
*Symbol_find(const char *key
)
5381 if( x2a
==0 ) return 0;
5382 h
= strhash(key
) & (x2a
->size
-1);
5385 if( strcmp(np
->key
,key
)==0 ) break;
5388 return np
? np
->data
: 0;
5391 /* Return the n-th data. Return NULL if n is out of range. */
5392 struct symbol
*Symbol_Nth(int n
)
5394 struct symbol
*data
;
5395 if( x2a
&& n
>0 && n
<=x2a
->count
){
5396 data
= x2a
->tbl
[n
-1].data
;
5403 /* Return the size of the array */
5406 return x2a
? x2a
->count
: 0;
5409 /* Return an array of pointers to all data in the table.
5410 ** The array is obtained from malloc. Return NULL if memory allocation
5411 ** problems, or if the array is empty. */
5412 struct symbol
**Symbol_arrayof()
5414 struct symbol
**array
;
5416 if( x2a
==0 ) return 0;
5417 arrSize
= x2a
->count
;
5418 array
= (struct symbol
**)calloc(arrSize
, sizeof(struct symbol
*));
5420 for(i
=0; i
<arrSize
; i
++) array
[i
] = x2a
->tbl
[i
].data
;
5425 /* Compare two configurations */
5426 int Configcmp(const char *_a
,const char *_b
)
5428 const struct config
*a
= (struct config
*) _a
;
5429 const struct config
*b
= (struct config
*) _b
;
5431 x
= a
->rp
->index
- b
->rp
->index
;
5432 if( x
==0 ) x
= a
->dot
- b
->dot
;
5436 /* Compare two states */
5437 PRIVATE
int statecmp(struct config
*a
, struct config
*b
)
5440 for(rc
=0; rc
==0 && a
&& b
; a
=a
->bp
, b
=b
->bp
){
5441 rc
= a
->rp
->index
- b
->rp
->index
;
5442 if( rc
==0 ) rc
= a
->dot
- b
->dot
;
5452 PRIVATE
unsigned statehash(struct config
*a
)
5456 h
= h
*571 + a
->rp
->index
*37 + a
->dot
;
5462 /* Allocate a new state structure */
5463 struct state
*State_new()
5465 struct state
*newstate
;
5466 newstate
= (struct state
*)calloc(1, sizeof(struct state
) );
5467 MemoryCheck(newstate
);
5471 /* There is one instance of the following structure for each
5472 ** associative array of type "x3".
5475 int size
; /* The number of available slots. */
5476 /* Must be a power of 2 greater than or */
5478 int count
; /* Number of currently slots filled */
5479 struct s_x3node
*tbl
; /* The data stored here */
5480 struct s_x3node
**ht
; /* Hash table for lookups */
5483 /* There is one instance of this structure for every data element
5484 ** in an associative array of type "x3".
5486 typedef struct s_x3node
{
5487 struct state
*data
; /* The data */
5488 struct config
*key
; /* The key */
5489 struct s_x3node
*next
; /* Next entry with the same hash */
5490 struct s_x3node
**from
; /* Previous link */
5493 /* There is only one instance of the array, which is the following */
5494 static struct s_x3
*x3a
;
5496 /* Allocate a new associative array */
5497 void State_init(void){
5499 x3a
= (struct s_x3
*)malloc( sizeof(struct s_x3
) );
5503 x3a
->tbl
= (x3node
*)calloc(128, sizeof(x3node
) + sizeof(x3node
*));
5509 x3a
->ht
= (x3node
**)&(x3a
->tbl
[128]);
5510 for(i
=0; i
<128; i
++) x3a
->ht
[i
] = 0;
5514 /* Insert a new record into the array. Return TRUE if successful.
5515 ** Prior data with the same key is NOT overwritten */
5516 int State_insert(struct state
*data
, struct config
*key
)
5522 if( x3a
==0 ) return 0;
5523 ph
= statehash(key
);
5524 h
= ph
& (x3a
->size
-1);
5527 if( statecmp(np
->key
,key
)==0 ){
5528 /* An existing entry with the same key is found. */
5529 /* Fail because overwrite is not allows. */
5534 if( x3a
->count
>=x3a
->size
){
5535 /* Need to make the hash table bigger */
5538 array
.size
= arrSize
= x3a
->size
*2;
5539 array
.count
= x3a
->count
;
5540 array
.tbl
= (x3node
*)calloc(arrSize
, sizeof(x3node
) + sizeof(x3node
*));
5541 if( array
.tbl
==0 ) return 0; /* Fail due to malloc failure */
5542 array
.ht
= (x3node
**)&(array
.tbl
[arrSize
]);
5543 for(i
=0; i
<arrSize
; i
++) array
.ht
[i
] = 0;
5544 for(i
=0; i
<x3a
->count
; i
++){
5545 x3node
*oldnp
, *newnp
;
5546 oldnp
= &(x3a
->tbl
[i
]);
5547 h
= statehash(oldnp
->key
) & (arrSize
-1);
5548 newnp
= &(array
.tbl
[i
]);
5549 if( array
.ht
[h
] ) array
.ht
[h
]->from
= &(newnp
->next
);
5550 newnp
->next
= array
.ht
[h
];
5551 newnp
->key
= oldnp
->key
;
5552 newnp
->data
= oldnp
->data
;
5553 newnp
->from
= &(array
.ht
[h
]);
5554 array
.ht
[h
] = newnp
;
5559 /* Insert the new data */
5560 h
= ph
& (x3a
->size
-1);
5561 np
= &(x3a
->tbl
[x3a
->count
++]);
5564 if( x3a
->ht
[h
] ) x3a
->ht
[h
]->from
= &(np
->next
);
5565 np
->next
= x3a
->ht
[h
];
5567 np
->from
= &(x3a
->ht
[h
]);
5571 /* Return a pointer to data assigned to the given key. Return NULL
5572 ** if no such key. */
5573 struct state
*State_find(struct config
*key
)
5578 if( x3a
==0 ) return 0;
5579 h
= statehash(key
) & (x3a
->size
-1);
5582 if( statecmp(np
->key
,key
)==0 ) break;
5585 return np
? np
->data
: 0;
5588 /* Return an array of pointers to all data in the table.
5589 ** The array is obtained from malloc. Return NULL if memory allocation
5590 ** problems, or if the array is empty. */
5591 struct state
**State_arrayof(void)
5593 struct state
**array
;
5595 if( x3a
==0 ) return 0;
5596 arrSize
= x3a
->count
;
5597 array
= (struct state
**)calloc(arrSize
, sizeof(struct state
*));
5599 for(i
=0; i
<arrSize
; i
++) array
[i
] = x3a
->tbl
[i
].data
;
5604 /* Hash a configuration */
5605 PRIVATE
unsigned confighash(struct config
*a
)
5608 h
= h
*571 + a
->rp
->index
*37 + a
->dot
;
5612 /* There is one instance of the following structure for each
5613 ** associative array of type "x4".
5616 int size
; /* The number of available slots. */
5617 /* Must be a power of 2 greater than or */
5619 int count
; /* Number of currently slots filled */
5620 struct s_x4node
*tbl
; /* The data stored here */
5621 struct s_x4node
**ht
; /* Hash table for lookups */
5624 /* There is one instance of this structure for every data element
5625 ** in an associative array of type "x4".
5627 typedef struct s_x4node
{
5628 struct config
*data
; /* The data */
5629 struct s_x4node
*next
; /* Next entry with the same hash */
5630 struct s_x4node
**from
; /* Previous link */
5633 /* There is only one instance of the array, which is the following */
5634 static struct s_x4
*x4a
;
5636 /* Allocate a new associative array */
5637 void Configtable_init(void){
5639 x4a
= (struct s_x4
*)malloc( sizeof(struct s_x4
) );
5643 x4a
->tbl
= (x4node
*)calloc(64, sizeof(x4node
) + sizeof(x4node
*));
5649 x4a
->ht
= (x4node
**)&(x4a
->tbl
[64]);
5650 for(i
=0; i
<64; i
++) x4a
->ht
[i
] = 0;
5654 /* Insert a new record into the array. Return TRUE if successful.
5655 ** Prior data with the same key is NOT overwritten */
5656 int Configtable_insert(struct config
*data
)
5662 if( x4a
==0 ) return 0;
5663 ph
= confighash(data
);
5664 h
= ph
& (x4a
->size
-1);
5667 if( Configcmp((const char *) np
->data
,(const char *) data
)==0 ){
5668 /* An existing entry with the same key is found. */
5669 /* Fail because overwrite is not allows. */
5674 if( x4a
->count
>=x4a
->size
){
5675 /* Need to make the hash table bigger */
5678 array
.size
= arrSize
= x4a
->size
*2;
5679 array
.count
= x4a
->count
;
5680 array
.tbl
= (x4node
*)calloc(arrSize
, sizeof(x4node
) + sizeof(x4node
*));
5681 if( array
.tbl
==0 ) return 0; /* Fail due to malloc failure */
5682 array
.ht
= (x4node
**)&(array
.tbl
[arrSize
]);
5683 for(i
=0; i
<arrSize
; i
++) array
.ht
[i
] = 0;
5684 for(i
=0; i
<x4a
->count
; i
++){
5685 x4node
*oldnp
, *newnp
;
5686 oldnp
= &(x4a
->tbl
[i
]);
5687 h
= confighash(oldnp
->data
) & (arrSize
-1);
5688 newnp
= &(array
.tbl
[i
]);
5689 if( array
.ht
[h
] ) array
.ht
[h
]->from
= &(newnp
->next
);
5690 newnp
->next
= array
.ht
[h
];
5691 newnp
->data
= oldnp
->data
;
5692 newnp
->from
= &(array
.ht
[h
]);
5693 array
.ht
[h
] = newnp
;
5698 /* Insert the new data */
5699 h
= ph
& (x4a
->size
-1);
5700 np
= &(x4a
->tbl
[x4a
->count
++]);
5702 if( x4a
->ht
[h
] ) x4a
->ht
[h
]->from
= &(np
->next
);
5703 np
->next
= x4a
->ht
[h
];
5705 np
->from
= &(x4a
->ht
[h
]);
5709 /* Return a pointer to data assigned to the given key. Return NULL
5710 ** if no such key. */
5711 struct config
*Configtable_find(struct config
*key
)
5716 if( x4a
==0 ) return 0;
5717 h
= confighash(key
) & (x4a
->size
-1);
5720 if( Configcmp((const char *) np
->data
,(const char *) key
)==0 ) break;
5723 return np
? np
->data
: 0;
5726 /* Remove all data from the table. Pass each data to the function "f"
5727 ** as it is removed. ("f" may be null to avoid this step.) */
5728 void Configtable_clear(int(*f
)(struct config
*))
5731 if( x4a
==0 || x4a
->count
==0 ) return;
5732 if( f
) for(i
=0; i
<x4a
->count
; i
++) (*f
)(x4a
->tbl
[i
].data
);
5733 for(i
=0; i
<x4a
->size
; i
++) x4a
->ht
[i
] = 0;