Snapshot of upstream SQLite check-in 5a877221
[sqlcipher.git] / src / wherecode.c
blobe2e10f7615b638875040ad996bd3c68f1737759b
1 /*
2 ** 2015-06-06
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
15 ** This file was split off from where.c on 2015-06-06 in order to reduce the
16 ** size of where.c and make it easier to edit. This file contains the routines
17 ** that actually generate the bulk of the WHERE loop code. The original where.c
18 ** file retains the code that does query planning and analysis.
20 #include "sqliteInt.h"
21 #include "whereInt.h"
23 #ifndef SQLITE_OMIT_EXPLAIN
26 ** Return the name of the i-th column of the pIdx index.
28 static const char *explainIndexColumnName(Index *pIdx, int i){
29 i = pIdx->aiColumn[i];
30 if( i==XN_EXPR ) return "<expr>";
31 if( i==XN_ROWID ) return "rowid";
32 return pIdx->pTable->aCol[i].zName;
36 ** This routine is a helper for explainIndexRange() below
38 ** pStr holds the text of an expression that we are building up one term
39 ** at a time. This routine adds a new term to the end of the expression.
40 ** Terms are separated by AND so add the "AND" text for second and subsequent
41 ** terms only.
43 static void explainAppendTerm(
44 StrAccum *pStr, /* The text expression being built */
45 Index *pIdx, /* Index to read column names from */
46 int nTerm, /* Number of terms */
47 int iTerm, /* Zero-based index of first term. */
48 int bAnd, /* Non-zero to append " AND " */
49 const char *zOp /* Name of the operator */
51 int i;
53 assert( nTerm>=1 );
54 if( bAnd ) sqlite3_str_append(pStr, " AND ", 5);
56 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
57 for(i=0; i<nTerm; i++){
58 if( i ) sqlite3_str_append(pStr, ",", 1);
59 sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i));
61 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
63 sqlite3_str_append(pStr, zOp, 1);
65 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
66 for(i=0; i<nTerm; i++){
67 if( i ) sqlite3_str_append(pStr, ",", 1);
68 sqlite3_str_append(pStr, "?", 1);
70 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
74 ** Argument pLevel describes a strategy for scanning table pTab. This
75 ** function appends text to pStr that describes the subset of table
76 ** rows scanned by the strategy in the form of an SQL expression.
78 ** For example, if the query:
80 ** SELECT * FROM t1 WHERE a=1 AND b>2;
82 ** is run and there is an index on (a, b), then this function returns a
83 ** string similar to:
85 ** "a=? AND b>?"
87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
88 Index *pIndex = pLoop->u.btree.pIndex;
89 u16 nEq = pLoop->u.btree.nEq;
90 u16 nSkip = pLoop->nSkip;
91 int i, j;
93 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
94 sqlite3_str_append(pStr, " (", 2);
95 for(i=0; i<nEq; i++){
96 const char *z = explainIndexColumnName(pIndex, i);
97 if( i ) sqlite3_str_append(pStr, " AND ", 5);
98 sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
101 j = i;
102 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
103 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">");
104 i = 1;
106 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
107 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<");
109 sqlite3_str_append(pStr, ")", 1);
113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
116 ** is added to the output to describe the table scan strategy in pLevel.
118 ** If an OP_Explain opcode is added to the VM, its address is returned.
119 ** Otherwise, if no OP_Explain is coded, zero is returned.
121 int sqlite3WhereExplainOneScan(
122 Parse *pParse, /* Parse context */
123 SrcList *pTabList, /* Table list this loop refers to */
124 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */
125 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */
127 int ret = 0;
128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
129 if( sqlite3ParseToplevel(pParse)->explain==2 )
130 #endif
132 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
133 Vdbe *v = pParse->pVdbe; /* VM being constructed */
134 sqlite3 *db = pParse->db; /* Database handle */
135 int isSearch; /* True for a SEARCH. False for SCAN. */
136 WhereLoop *pLoop; /* The controlling WhereLoop object */
137 u32 flags; /* Flags that describe this loop */
138 char *zMsg; /* Text to add to EQP output */
139 StrAccum str; /* EQP output string */
140 char zBuf[100]; /* Initial space for EQP output string */
142 pLoop = pLevel->pWLoop;
143 flags = pLoop->wsFlags;
144 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;
146 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
147 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
148 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
150 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
151 sqlite3_str_appendall(&str, isSearch ? "SEARCH" : "SCAN");
152 if( pItem->pSelect ){
153 sqlite3_str_appendf(&str, " SUBQUERY %u", pItem->pSelect->selId);
154 }else{
155 sqlite3_str_appendf(&str, " TABLE %s", pItem->zName);
158 if( pItem->zAlias ){
159 sqlite3_str_appendf(&str, " AS %s", pItem->zAlias);
161 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
162 const char *zFmt = 0;
163 Index *pIdx;
165 assert( pLoop->u.btree.pIndex!=0 );
166 pIdx = pLoop->u.btree.pIndex;
167 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
168 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
169 if( isSearch ){
170 zFmt = "PRIMARY KEY";
172 }else if( flags & WHERE_PARTIALIDX ){
173 zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
174 }else if( flags & WHERE_AUTO_INDEX ){
175 zFmt = "AUTOMATIC COVERING INDEX";
176 }else if( flags & WHERE_IDX_ONLY ){
177 zFmt = "COVERING INDEX %s";
178 }else{
179 zFmt = "INDEX %s";
181 if( zFmt ){
182 sqlite3_str_append(&str, " USING ", 7);
183 sqlite3_str_appendf(&str, zFmt, pIdx->zName);
184 explainIndexRange(&str, pLoop);
186 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
187 const char *zRangeOp;
188 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
189 zRangeOp = "=";
190 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
191 zRangeOp = ">? AND rowid<";
192 }else if( flags&WHERE_BTM_LIMIT ){
193 zRangeOp = ">";
194 }else{
195 assert( flags&WHERE_TOP_LIMIT);
196 zRangeOp = "<";
198 sqlite3_str_appendf(&str,
199 " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp);
201 #ifndef SQLITE_OMIT_VIRTUALTABLE
202 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
203 sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s",
204 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
206 #endif
207 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
208 if( pLoop->nOut>=10 ){
209 sqlite3_str_appendf(&str, " (~%llu rows)",
210 sqlite3LogEstToInt(pLoop->nOut));
211 }else{
212 sqlite3_str_append(&str, " (~1 row)", 9);
214 #endif
215 zMsg = sqlite3StrAccumFinish(&str);
216 sqlite3ExplainBreakpoint("",zMsg);
217 ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
218 pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
220 return ret;
222 #endif /* SQLITE_OMIT_EXPLAIN */
224 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
226 ** Configure the VM passed as the first argument with an
227 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
228 ** implement level pLvl. Argument pSrclist is a pointer to the FROM
229 ** clause that the scan reads data from.
231 ** If argument addrExplain is not 0, it must be the address of an
232 ** OP_Explain instruction that describes the same loop.
234 void sqlite3WhereAddScanStatus(
235 Vdbe *v, /* Vdbe to add scanstatus entry to */
236 SrcList *pSrclist, /* FROM clause pLvl reads data from */
237 WhereLevel *pLvl, /* Level to add scanstatus() entry for */
238 int addrExplain /* Address of OP_Explain (or 0) */
240 const char *zObj = 0;
241 WhereLoop *pLoop = pLvl->pWLoop;
242 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){
243 zObj = pLoop->u.btree.pIndex->zName;
244 }else{
245 zObj = pSrclist->a[pLvl->iFrom].zName;
247 sqlite3VdbeScanStatus(
248 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
251 #endif
255 ** Disable a term in the WHERE clause. Except, do not disable the term
256 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
257 ** or USING clause of that join.
259 ** Consider the term t2.z='ok' in the following queries:
261 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
262 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
263 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
265 ** The t2.z='ok' is disabled in the in (2) because it originates
266 ** in the ON clause. The term is disabled in (3) because it is not part
267 ** of a LEFT OUTER JOIN. In (1), the term is not disabled.
269 ** Disabling a term causes that term to not be tested in the inner loop
270 ** of the join. Disabling is an optimization. When terms are satisfied
271 ** by indices, we disable them to prevent redundant tests in the inner
272 ** loop. We would get the correct results if nothing were ever disabled,
273 ** but joins might run a little slower. The trick is to disable as much
274 ** as we can without disabling too much. If we disabled in (1), we'd get
275 ** the wrong answer. See ticket #813.
277 ** If all the children of a term are disabled, then that term is also
278 ** automatically disabled. In this way, terms get disabled if derived
279 ** virtual terms are tested first. For example:
281 ** x GLOB 'abc*' AND x>='abc' AND x<'acd'
282 ** \___________/ \______/ \_____/
283 ** parent child1 child2
285 ** Only the parent term was in the original WHERE clause. The child1
286 ** and child2 terms were added by the LIKE optimization. If both of
287 ** the virtual child terms are valid, then testing of the parent can be
288 ** skipped.
290 ** Usually the parent term is marked as TERM_CODED. But if the parent
291 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
292 ** The TERM_LIKECOND marking indicates that the term should be coded inside
293 ** a conditional such that is only evaluated on the second pass of a
294 ** LIKE-optimization loop, when scanning BLOBs instead of strings.
296 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
297 int nLoop = 0;
298 assert( pTerm!=0 );
299 while( (pTerm->wtFlags & TERM_CODED)==0
300 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
301 && (pLevel->notReady & pTerm->prereqAll)==0
303 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
304 pTerm->wtFlags |= TERM_LIKECOND;
305 }else{
306 pTerm->wtFlags |= TERM_CODED;
308 if( pTerm->iParent<0 ) break;
309 pTerm = &pTerm->pWC->a[pTerm->iParent];
310 assert( pTerm!=0 );
311 pTerm->nChild--;
312 if( pTerm->nChild!=0 ) break;
313 nLoop++;
318 ** Code an OP_Affinity opcode to apply the column affinity string zAff
319 ** to the n registers starting at base.
321 ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which
322 ** are no-ops) at the beginning and end of zAff are ignored. If all entries
323 ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated.
325 ** This routine makes its own copy of zAff so that the caller is free
326 ** to modify zAff after this routine returns.
328 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
329 Vdbe *v = pParse->pVdbe;
330 if( zAff==0 ){
331 assert( pParse->db->mallocFailed );
332 return;
334 assert( v!=0 );
336 /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE
337 ** entries at the beginning and end of the affinity string.
339 assert( SQLITE_AFF_NONE<SQLITE_AFF_BLOB );
340 while( n>0 && zAff[0]<=SQLITE_AFF_BLOB ){
341 n--;
342 base++;
343 zAff++;
345 while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){
346 n--;
349 /* Code the OP_Affinity opcode if there is anything left to do. */
350 if( n>0 ){
351 sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
356 ** Expression pRight, which is the RHS of a comparison operation, is
357 ** either a vector of n elements or, if n==1, a scalar expression.
358 ** Before the comparison operation, affinity zAff is to be applied
359 ** to the pRight values. This function modifies characters within the
360 ** affinity string to SQLITE_AFF_BLOB if either:
362 ** * the comparison will be performed with no affinity, or
363 ** * the affinity change in zAff is guaranteed not to change the value.
365 static void updateRangeAffinityStr(
366 Expr *pRight, /* RHS of comparison */
367 int n, /* Number of vector elements in comparison */
368 char *zAff /* Affinity string to modify */
370 int i;
371 for(i=0; i<n; i++){
372 Expr *p = sqlite3VectorFieldSubexpr(pRight, i);
373 if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB
374 || sqlite3ExprNeedsNoAffinityChange(p, zAff[i])
376 zAff[i] = SQLITE_AFF_BLOB;
383 ** pX is an expression of the form: (vector) IN (SELECT ...)
384 ** In other words, it is a vector IN operator with a SELECT clause on the
385 ** LHS. But not all terms in the vector are indexable and the terms might
386 ** not be in the correct order for indexing.
388 ** This routine makes a copy of the input pX expression and then adjusts
389 ** the vector on the LHS with corresponding changes to the SELECT so that
390 ** the vector contains only index terms and those terms are in the correct
391 ** order. The modified IN expression is returned. The caller is responsible
392 ** for deleting the returned expression.
394 ** Example:
396 ** CREATE TABLE t1(a,b,c,d,e,f);
397 ** CREATE INDEX t1x1 ON t1(e,c);
398 ** SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2)
399 ** \_______________________________________/
400 ** The pX expression
402 ** Since only columns e and c can be used with the index, in that order,
403 ** the modified IN expression that is returned will be:
405 ** (e,c) IN (SELECT z,x FROM t2)
407 ** The reduced pX is different from the original (obviously) and thus is
408 ** only used for indexing, to improve performance. The original unaltered
409 ** IN expression must also be run on each output row for correctness.
411 static Expr *removeUnindexableInClauseTerms(
412 Parse *pParse, /* The parsing context */
413 int iEq, /* Look at loop terms starting here */
414 WhereLoop *pLoop, /* The current loop */
415 Expr *pX /* The IN expression to be reduced */
417 sqlite3 *db = pParse->db;
418 Expr *pNew;
419 pNew = sqlite3ExprDup(db, pX, 0);
420 if( db->mallocFailed==0 ){
421 ExprList *pOrigRhs = pNew->x.pSelect->pEList; /* Original unmodified RHS */
422 ExprList *pOrigLhs = pNew->pLeft->x.pList; /* Original unmodified LHS */
423 ExprList *pRhs = 0; /* New RHS after modifications */
424 ExprList *pLhs = 0; /* New LHS after mods */
425 int i; /* Loop counter */
426 Select *pSelect; /* Pointer to the SELECT on the RHS */
428 for(i=iEq; i<pLoop->nLTerm; i++){
429 if( pLoop->aLTerm[i]->pExpr==pX ){
430 int iField = pLoop->aLTerm[i]->iField - 1;
431 if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */
432 pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr);
433 pOrigRhs->a[iField].pExpr = 0;
434 assert( pOrigLhs->a[iField].pExpr!=0 );
435 pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr);
436 pOrigLhs->a[iField].pExpr = 0;
439 sqlite3ExprListDelete(db, pOrigRhs);
440 sqlite3ExprListDelete(db, pOrigLhs);
441 pNew->pLeft->x.pList = pLhs;
442 pNew->x.pSelect->pEList = pRhs;
443 if( pLhs && pLhs->nExpr==1 ){
444 /* Take care here not to generate a TK_VECTOR containing only a
445 ** single value. Since the parser never creates such a vector, some
446 ** of the subroutines do not handle this case. */
447 Expr *p = pLhs->a[0].pExpr;
448 pLhs->a[0].pExpr = 0;
449 sqlite3ExprDelete(db, pNew->pLeft);
450 pNew->pLeft = p;
452 pSelect = pNew->x.pSelect;
453 if( pSelect->pOrderBy ){
454 /* If the SELECT statement has an ORDER BY clause, zero the
455 ** iOrderByCol variables. These are set to non-zero when an
456 ** ORDER BY term exactly matches one of the terms of the
457 ** result-set. Since the result-set of the SELECT statement may
458 ** have been modified or reordered, these variables are no longer
459 ** set correctly. Since setting them is just an optimization,
460 ** it's easiest just to zero them here. */
461 ExprList *pOrderBy = pSelect->pOrderBy;
462 for(i=0; i<pOrderBy->nExpr; i++){
463 pOrderBy->a[i].u.x.iOrderByCol = 0;
467 #if 0
468 printf("For indexing, change the IN expr:\n");
469 sqlite3TreeViewExpr(0, pX, 0);
470 printf("Into:\n");
471 sqlite3TreeViewExpr(0, pNew, 0);
472 #endif
474 return pNew;
479 ** Generate code for a single equality term of the WHERE clause. An equality
480 ** term can be either X=expr or X IN (...). pTerm is the term to be
481 ** coded.
483 ** The current value for the constraint is left in a register, the index
484 ** of which is returned. An attempt is made store the result in iTarget but
485 ** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the
486 ** constraint is a TK_EQ or TK_IS, then the current value might be left in
487 ** some other register and it is the caller's responsibility to compensate.
489 ** For a constraint of the form X=expr, the expression is evaluated in
490 ** straight-line code. For constraints of the form X IN (...)
491 ** this routine sets up a loop that will iterate over all values of X.
493 static int codeEqualityTerm(
494 Parse *pParse, /* The parsing context */
495 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
496 WhereLevel *pLevel, /* The level of the FROM clause we are working on */
497 int iEq, /* Index of the equality term within this level */
498 int bRev, /* True for reverse-order IN operations */
499 int iTarget /* Attempt to leave results in this register */
501 Expr *pX = pTerm->pExpr;
502 Vdbe *v = pParse->pVdbe;
503 int iReg; /* Register holding results */
505 assert( pLevel->pWLoop->aLTerm[iEq]==pTerm );
506 assert( iTarget>0 );
507 if( pX->op==TK_EQ || pX->op==TK_IS ){
508 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
509 }else if( pX->op==TK_ISNULL ){
510 iReg = iTarget;
511 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
512 #ifndef SQLITE_OMIT_SUBQUERY
513 }else{
514 int eType = IN_INDEX_NOOP;
515 int iTab;
516 struct InLoop *pIn;
517 WhereLoop *pLoop = pLevel->pWLoop;
518 int i;
519 int nEq = 0;
520 int *aiMap = 0;
522 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
523 && pLoop->u.btree.pIndex!=0
524 && pLoop->u.btree.pIndex->aSortOrder[iEq]
526 testcase( iEq==0 );
527 testcase( bRev );
528 bRev = !bRev;
530 assert( pX->op==TK_IN );
531 iReg = iTarget;
533 for(i=0; i<iEq; i++){
534 if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){
535 disableTerm(pLevel, pTerm);
536 return iTarget;
539 for(i=iEq;i<pLoop->nLTerm; i++){
540 assert( pLoop->aLTerm[i]!=0 );
541 if( pLoop->aLTerm[i]->pExpr==pX ) nEq++;
544 iTab = 0;
545 if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){
546 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab);
547 }else{
548 sqlite3 *db = pParse->db;
549 pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX);
551 if( !db->mallocFailed ){
552 aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq);
553 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab);
554 pTerm->pExpr->iTable = iTab;
556 sqlite3ExprDelete(db, pX);
557 pX = pTerm->pExpr;
560 if( eType==IN_INDEX_INDEX_DESC ){
561 testcase( bRev );
562 bRev = !bRev;
564 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
565 VdbeCoverageIf(v, bRev);
566 VdbeCoverageIf(v, !bRev);
567 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
569 pLoop->wsFlags |= WHERE_IN_ABLE;
570 if( pLevel->u.in.nIn==0 ){
571 pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
574 i = pLevel->u.in.nIn;
575 pLevel->u.in.nIn += nEq;
576 pLevel->u.in.aInLoop =
577 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
578 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
579 pIn = pLevel->u.in.aInLoop;
580 if( pIn ){
581 int iMap = 0; /* Index in aiMap[] */
582 pIn += i;
583 for(i=iEq;i<pLoop->nLTerm; i++){
584 if( pLoop->aLTerm[i]->pExpr==pX ){
585 int iOut = iReg + i - iEq;
586 if( eType==IN_INDEX_ROWID ){
587 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut);
588 }else{
589 int iCol = aiMap ? aiMap[iMap++] : 0;
590 pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut);
592 sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v);
593 if( i==iEq ){
594 pIn->iCur = iTab;
595 pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next;
596 if( iEq>0 ){
597 pIn->iBase = iReg - i;
598 pIn->nPrefix = i;
599 pLoop->wsFlags |= WHERE_IN_EARLYOUT;
600 }else{
601 pIn->nPrefix = 0;
603 }else{
604 pIn->eEndLoopOp = OP_Noop;
606 pIn++;
609 }else{
610 pLevel->u.in.nIn = 0;
612 sqlite3DbFree(pParse->db, aiMap);
613 #endif
615 disableTerm(pLevel, pTerm);
616 return iReg;
620 ** Generate code that will evaluate all == and IN constraints for an
621 ** index scan.
623 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
624 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
625 ** The index has as many as three equality constraints, but in this
626 ** example, the third "c" value is an inequality. So only two
627 ** constraints are coded. This routine will generate code to evaluate
628 ** a==5 and b IN (1,2,3). The current values for a and b will be stored
629 ** in consecutive registers and the index of the first register is returned.
631 ** In the example above nEq==2. But this subroutine works for any value
632 ** of nEq including 0. If nEq==0, this routine is nearly a no-op.
633 ** The only thing it does is allocate the pLevel->iMem memory cell and
634 ** compute the affinity string.
636 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints
637 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is
638 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
639 ** occurs after the nEq quality constraints.
641 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
642 ** the index of the first memory cell in that range. The code that
643 ** calls this routine will use that memory range to store keys for
644 ** start and termination conditions of the loop.
645 ** key value of the loop. If one or more IN operators appear, then
646 ** this routine allocates an additional nEq memory cells for internal
647 ** use.
649 ** Before returning, *pzAff is set to point to a buffer containing a
650 ** copy of the column affinity string of the index allocated using
651 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
652 ** with equality constraints that use BLOB or NONE affinity are set to
653 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
655 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b);
656 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
658 ** In the example above, the index on t1(a) has TEXT affinity. But since
659 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
660 ** no conversion should be attempted before using a t2.b value as part of
661 ** a key to search the index. Hence the first byte in the returned affinity
662 ** string in this example would be set to SQLITE_AFF_BLOB.
664 static int codeAllEqualityTerms(
665 Parse *pParse, /* Parsing context */
666 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
667 int bRev, /* Reverse the order of IN operators */
668 int nExtraReg, /* Number of extra registers to allocate */
669 char **pzAff /* OUT: Set to point to affinity string */
671 u16 nEq; /* The number of == or IN constraints to code */
672 u16 nSkip; /* Number of left-most columns to skip */
673 Vdbe *v = pParse->pVdbe; /* The vm under construction */
674 Index *pIdx; /* The index being used for this loop */
675 WhereTerm *pTerm; /* A single constraint term */
676 WhereLoop *pLoop; /* The WhereLoop object */
677 int j; /* Loop counter */
678 int regBase; /* Base register */
679 int nReg; /* Number of registers to allocate */
680 char *zAff; /* Affinity string to return */
682 /* This module is only called on query plans that use an index. */
683 pLoop = pLevel->pWLoop;
684 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
685 nEq = pLoop->u.btree.nEq;
686 nSkip = pLoop->nSkip;
687 pIdx = pLoop->u.btree.pIndex;
688 assert( pIdx!=0 );
690 /* Figure out how many memory cells we will need then allocate them.
692 regBase = pParse->nMem + 1;
693 nReg = pLoop->u.btree.nEq + nExtraReg;
694 pParse->nMem += nReg;
696 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
697 assert( zAff!=0 || pParse->db->mallocFailed );
699 if( nSkip ){
700 int iIdxCur = pLevel->iIdxCur;
701 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
702 VdbeCoverageIf(v, bRev==0);
703 VdbeCoverageIf(v, bRev!=0);
704 VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
705 j = sqlite3VdbeAddOp0(v, OP_Goto);
706 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
707 iIdxCur, 0, regBase, nSkip);
708 VdbeCoverageIf(v, bRev==0);
709 VdbeCoverageIf(v, bRev!=0);
710 sqlite3VdbeJumpHere(v, j);
711 for(j=0; j<nSkip; j++){
712 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
713 testcase( pIdx->aiColumn[j]==XN_EXPR );
714 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
718 /* Evaluate the equality constraints
720 assert( zAff==0 || (int)strlen(zAff)>=nEq );
721 for(j=nSkip; j<nEq; j++){
722 int r1;
723 pTerm = pLoop->aLTerm[j];
724 assert( pTerm!=0 );
725 /* The following testcase is true for indices with redundant columns.
726 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
727 testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
728 testcase( pTerm->wtFlags & TERM_VIRTUAL );
729 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
730 if( r1!=regBase+j ){
731 if( nReg==1 ){
732 sqlite3ReleaseTempReg(pParse, regBase);
733 regBase = r1;
734 }else{
735 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
738 if( pTerm->eOperator & WO_IN ){
739 if( pTerm->pExpr->flags & EP_xIsSelect ){
740 /* No affinity ever needs to be (or should be) applied to a value
741 ** from the RHS of an "? IN (SELECT ...)" expression. The
742 ** sqlite3FindInIndex() routine has already ensured that the
743 ** affinity of the comparison has been applied to the value. */
744 if( zAff ) zAff[j] = SQLITE_AFF_BLOB;
746 }else if( (pTerm->eOperator & WO_ISNULL)==0 ){
747 Expr *pRight = pTerm->pExpr->pRight;
748 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
749 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
750 VdbeCoverage(v);
752 if( zAff ){
753 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
754 zAff[j] = SQLITE_AFF_BLOB;
756 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
757 zAff[j] = SQLITE_AFF_BLOB;
762 *pzAff = zAff;
763 return regBase;
766 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
768 ** If the most recently coded instruction is a constant range constraint
769 ** (a string literal) that originated from the LIKE optimization, then
770 ** set P3 and P5 on the OP_String opcode so that the string will be cast
771 ** to a BLOB at appropriate times.
773 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
774 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range
775 ** scan loop run twice, once for strings and a second time for BLOBs.
776 ** The OP_String opcodes on the second pass convert the upper and lower
777 ** bound string constants to blobs. This routine makes the necessary changes
778 ** to the OP_String opcodes for that to happen.
780 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
781 ** only the one pass through the string space is required, so this routine
782 ** becomes a no-op.
784 static void whereLikeOptimizationStringFixup(
785 Vdbe *v, /* prepared statement under construction */
786 WhereLevel *pLevel, /* The loop that contains the LIKE operator */
787 WhereTerm *pTerm /* The upper or lower bound just coded */
789 if( pTerm->wtFlags & TERM_LIKEOPT ){
790 VdbeOp *pOp;
791 assert( pLevel->iLikeRepCntr>0 );
792 pOp = sqlite3VdbeGetOp(v, -1);
793 assert( pOp!=0 );
794 assert( pOp->opcode==OP_String8
795 || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
796 pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */
797 pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */
800 #else
801 # define whereLikeOptimizationStringFixup(A,B,C)
802 #endif
804 #ifdef SQLITE_ENABLE_CURSOR_HINTS
806 ** Information is passed from codeCursorHint() down to individual nodes of
807 ** the expression tree (by sqlite3WalkExpr()) using an instance of this
808 ** structure.
810 struct CCurHint {
811 int iTabCur; /* Cursor for the main table */
812 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */
813 Index *pIdx; /* The index used to access the table */
817 ** This function is called for every node of an expression that is a candidate
818 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference
819 ** the table CCurHint.iTabCur, verify that the same column can be
820 ** accessed through the index. If it cannot, then set pWalker->eCode to 1.
822 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
823 struct CCurHint *pHint = pWalker->u.pCCurHint;
824 assert( pHint->pIdx!=0 );
825 if( pExpr->op==TK_COLUMN
826 && pExpr->iTable==pHint->iTabCur
827 && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0
829 pWalker->eCode = 1;
831 return WRC_Continue;
835 ** Test whether or not expression pExpr, which was part of a WHERE clause,
836 ** should be included in the cursor-hint for a table that is on the rhs
837 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the
838 ** expression is not suitable.
840 ** An expression is unsuitable if it might evaluate to non NULL even if
841 ** a TK_COLUMN node that does affect the value of the expression is set
842 ** to NULL. For example:
844 ** col IS NULL
845 ** col IS NOT NULL
846 ** coalesce(col, 1)
847 ** CASE WHEN col THEN 0 ELSE 1 END
849 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){
850 if( pExpr->op==TK_IS
851 || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT
852 || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE
854 pWalker->eCode = 1;
855 }else if( pExpr->op==TK_FUNCTION ){
856 int d1;
857 char d2[4];
858 if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){
859 pWalker->eCode = 1;
863 return WRC_Continue;
868 ** This function is called on every node of an expression tree used as an
869 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
870 ** that accesses any table other than the one identified by
871 ** CCurHint.iTabCur, then do the following:
873 ** 1) allocate a register and code an OP_Column instruction to read
874 ** the specified column into the new register, and
876 ** 2) transform the expression node to a TK_REGISTER node that reads
877 ** from the newly populated register.
879 ** Also, if the node is a TK_COLUMN that does access the table idenified
880 ** by pCCurHint.iTabCur, and an index is being used (which we will
881 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
882 ** an access of the index rather than the original table.
884 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
885 int rc = WRC_Continue;
886 struct CCurHint *pHint = pWalker->u.pCCurHint;
887 if( pExpr->op==TK_COLUMN ){
888 if( pExpr->iTable!=pHint->iTabCur ){
889 int reg = ++pWalker->pParse->nMem; /* Register for column value */
890 sqlite3ExprCode(pWalker->pParse, pExpr, reg);
891 pExpr->op = TK_REGISTER;
892 pExpr->iTable = reg;
893 }else if( pHint->pIdx!=0 ){
894 pExpr->iTable = pHint->iIdxCur;
895 pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn);
896 assert( pExpr->iColumn>=0 );
898 }else if( pExpr->op==TK_AGG_FUNCTION ){
899 /* An aggregate function in the WHERE clause of a query means this must
900 ** be a correlated sub-query, and expression pExpr is an aggregate from
901 ** the parent context. Do not walk the function arguments in this case.
903 ** todo: It should be possible to replace this node with a TK_REGISTER
904 ** expression, as the result of the expression must be stored in a
905 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
906 rc = WRC_Prune;
908 return rc;
912 ** Insert an OP_CursorHint instruction if it is appropriate to do so.
914 static void codeCursorHint(
915 struct SrcList_item *pTabItem, /* FROM clause item */
916 WhereInfo *pWInfo, /* The where clause */
917 WhereLevel *pLevel, /* Which loop to provide hints for */
918 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */
920 Parse *pParse = pWInfo->pParse;
921 sqlite3 *db = pParse->db;
922 Vdbe *v = pParse->pVdbe;
923 Expr *pExpr = 0;
924 WhereLoop *pLoop = pLevel->pWLoop;
925 int iCur;
926 WhereClause *pWC;
927 WhereTerm *pTerm;
928 int i, j;
929 struct CCurHint sHint;
930 Walker sWalker;
932 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
933 iCur = pLevel->iTabCur;
934 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
935 sHint.iTabCur = iCur;
936 sHint.iIdxCur = pLevel->iIdxCur;
937 sHint.pIdx = pLoop->u.btree.pIndex;
938 memset(&sWalker, 0, sizeof(sWalker));
939 sWalker.pParse = pParse;
940 sWalker.u.pCCurHint = &sHint;
941 pWC = &pWInfo->sWC;
942 for(i=0; i<pWC->nTerm; i++){
943 pTerm = &pWC->a[i];
944 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
945 if( pTerm->prereqAll & pLevel->notReady ) continue;
947 /* Any terms specified as part of the ON(...) clause for any LEFT
948 ** JOIN for which the current table is not the rhs are omitted
949 ** from the cursor-hint.
951 ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms
952 ** that were specified as part of the WHERE clause must be excluded.
953 ** This is to address the following:
955 ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL;
957 ** Say there is a single row in t2 that matches (t1.a=t2.b), but its
958 ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is
959 ** pushed down to the cursor, this row is filtered out, causing
960 ** SQLite to synthesize a row of NULL values. Which does match the
961 ** WHERE clause, and so the query returns a row. Which is incorrect.
963 ** For the same reason, WHERE terms such as:
965 ** WHERE 1 = (t2.c IS NULL)
967 ** are also excluded. See codeCursorHintIsOrFunction() for details.
969 if( pTabItem->fg.jointype & JT_LEFT ){
970 Expr *pExpr = pTerm->pExpr;
971 if( !ExprHasProperty(pExpr, EP_FromJoin)
972 || pExpr->iRightJoinTable!=pTabItem->iCursor
974 sWalker.eCode = 0;
975 sWalker.xExprCallback = codeCursorHintIsOrFunction;
976 sqlite3WalkExpr(&sWalker, pTerm->pExpr);
977 if( sWalker.eCode ) continue;
979 }else{
980 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue;
983 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
984 ** the cursor. These terms are not needed as hints for a pure range
985 ** scan (that has no == terms) so omit them. */
986 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
987 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
988 if( j<pLoop->nLTerm ) continue;
991 /* No subqueries or non-deterministic functions allowed */
992 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
994 /* For an index scan, make sure referenced columns are actually in
995 ** the index. */
996 if( sHint.pIdx!=0 ){
997 sWalker.eCode = 0;
998 sWalker.xExprCallback = codeCursorHintCheckExpr;
999 sqlite3WalkExpr(&sWalker, pTerm->pExpr);
1000 if( sWalker.eCode ) continue;
1003 /* If we survive all prior tests, that means this term is worth hinting */
1004 pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
1006 if( pExpr!=0 ){
1007 sWalker.xExprCallback = codeCursorHintFixExpr;
1008 sqlite3WalkExpr(&sWalker, pExpr);
1009 sqlite3VdbeAddOp4(v, OP_CursorHint,
1010 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
1011 (const char*)pExpr, P4_EXPR);
1014 #else
1015 # define codeCursorHint(A,B,C,D) /* No-op */
1016 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
1019 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
1020 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This
1021 ** function generates code to do a deferred seek of cursor iCur to the
1022 ** rowid stored in register iRowid.
1024 ** Normally, this is just:
1026 ** OP_DeferredSeek $iCur $iRowid
1028 ** However, if the scan currently being coded is a branch of an OR-loop and
1029 ** the statement currently being coded is a SELECT, then P3 of OP_DeferredSeek
1030 ** is set to iIdxCur and P4 is set to point to an array of integers
1031 ** containing one entry for each column of the table cursor iCur is open
1032 ** on. For each table column, if the column is the i'th column of the
1033 ** index, then the corresponding array entry is set to (i+1). If the column
1034 ** does not appear in the index at all, the array entry is set to 0.
1036 static void codeDeferredSeek(
1037 WhereInfo *pWInfo, /* Where clause context */
1038 Index *pIdx, /* Index scan is using */
1039 int iCur, /* Cursor for IPK b-tree */
1040 int iIdxCur /* Index cursor */
1042 Parse *pParse = pWInfo->pParse; /* Parse context */
1043 Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */
1045 assert( iIdxCur>0 );
1046 assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 );
1048 pWInfo->bDeferredSeek = 1;
1049 sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur);
1050 if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
1051 && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
1053 int i;
1054 Table *pTab = pIdx->pTable;
1055 int *ai = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*(pTab->nCol+1));
1056 if( ai ){
1057 ai[0] = pTab->nCol;
1058 for(i=0; i<pIdx->nColumn-1; i++){
1059 int x1, x2;
1060 assert( pIdx->aiColumn[i]<pTab->nCol );
1061 x1 = pIdx->aiColumn[i];
1062 x2 = sqlite3TableColumnToStorage(pTab, x1);
1063 testcase( x1!=x2 );
1064 if( x1>=0 ) ai[x2+1] = i+1;
1066 sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
1072 ** If the expression passed as the second argument is a vector, generate
1073 ** code to write the first nReg elements of the vector into an array
1074 ** of registers starting with iReg.
1076 ** If the expression is not a vector, then nReg must be passed 1. In
1077 ** this case, generate code to evaluate the expression and leave the
1078 ** result in register iReg.
1080 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){
1081 assert( nReg>0 );
1082 if( p && sqlite3ExprIsVector(p) ){
1083 #ifndef SQLITE_OMIT_SUBQUERY
1084 if( (p->flags & EP_xIsSelect) ){
1085 Vdbe *v = pParse->pVdbe;
1086 int iSelect;
1087 assert( p->op==TK_SELECT );
1088 iSelect = sqlite3CodeSubselect(pParse, p);
1089 sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1);
1090 }else
1091 #endif
1093 int i;
1094 ExprList *pList = p->x.pList;
1095 assert( nReg<=pList->nExpr );
1096 for(i=0; i<nReg; i++){
1097 sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i);
1100 }else{
1101 assert( nReg==1 );
1102 sqlite3ExprCode(pParse, p, iReg);
1106 /* An instance of the IdxExprTrans object carries information about a
1107 ** mapping from an expression on table columns into a column in an index
1108 ** down through the Walker.
1110 typedef struct IdxExprTrans {
1111 Expr *pIdxExpr; /* The index expression */
1112 int iTabCur; /* The cursor of the corresponding table */
1113 int iIdxCur; /* The cursor for the index */
1114 int iIdxCol; /* The column for the index */
1115 int iTabCol; /* The column for the table */
1116 WhereInfo *pWInfo; /* Complete WHERE clause information */
1117 sqlite3 *db; /* Database connection (for malloc()) */
1118 } IdxExprTrans;
1121 ** Preserve pExpr on the WhereETrans list of the WhereInfo.
1123 static void preserveExpr(IdxExprTrans *pTrans, Expr *pExpr){
1124 WhereExprMod *pNew;
1125 pNew = sqlite3DbMallocRaw(pTrans->db, sizeof(*pNew));
1126 if( pNew==0 ) return;
1127 pNew->pNext = pTrans->pWInfo->pExprMods;
1128 pTrans->pWInfo->pExprMods = pNew;
1129 pNew->pExpr = pExpr;
1130 memcpy(&pNew->orig, pExpr, sizeof(*pExpr));
1133 /* The walker node callback used to transform matching expressions into
1134 ** a reference to an index column for an index on an expression.
1136 ** If pExpr matches, then transform it into a reference to the index column
1137 ** that contains the value of pExpr.
1139 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){
1140 IdxExprTrans *pX = p->u.pIdxTrans;
1141 if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){
1142 preserveExpr(pX, pExpr);
1143 pExpr->affExpr = sqlite3ExprAffinity(pExpr);
1144 pExpr->op = TK_COLUMN;
1145 pExpr->iTable = pX->iIdxCur;
1146 pExpr->iColumn = pX->iIdxCol;
1147 pExpr->y.pTab = 0;
1148 testcase( ExprHasProperty(pExpr, EP_Skip) );
1149 testcase( ExprHasProperty(pExpr, EP_Unlikely) );
1150 ExprClearProperty(pExpr, EP_Skip|EP_Unlikely);
1151 return WRC_Prune;
1152 }else{
1153 return WRC_Continue;
1157 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1158 /* A walker node callback that translates a column reference to a table
1159 ** into a corresponding column reference of an index.
1161 static int whereIndexExprTransColumn(Walker *p, Expr *pExpr){
1162 if( pExpr->op==TK_COLUMN ){
1163 IdxExprTrans *pX = p->u.pIdxTrans;
1164 if( pExpr->iTable==pX->iTabCur && pExpr->iColumn==pX->iTabCol ){
1165 assert( pExpr->y.pTab!=0 );
1166 preserveExpr(pX, pExpr);
1167 pExpr->affExpr = sqlite3TableColumnAffinity(pExpr->y.pTab,pExpr->iColumn);
1168 pExpr->iTable = pX->iIdxCur;
1169 pExpr->iColumn = pX->iIdxCol;
1170 pExpr->y.pTab = 0;
1173 return WRC_Continue;
1175 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1178 ** For an indexes on expression X, locate every instance of expression X
1179 ** in pExpr and change that subexpression into a reference to the appropriate
1180 ** column of the index.
1182 ** 2019-10-24: Updated to also translate references to a VIRTUAL column in
1183 ** the table into references to the corresponding (stored) column of the
1184 ** index.
1186 static void whereIndexExprTrans(
1187 Index *pIdx, /* The Index */
1188 int iTabCur, /* Cursor of the table that is being indexed */
1189 int iIdxCur, /* Cursor of the index itself */
1190 WhereInfo *pWInfo /* Transform expressions in this WHERE clause */
1192 int iIdxCol; /* Column number of the index */
1193 ExprList *aColExpr; /* Expressions that are indexed */
1194 Table *pTab;
1195 Walker w;
1196 IdxExprTrans x;
1197 aColExpr = pIdx->aColExpr;
1198 if( aColExpr==0 && !pIdx->bHasVCol ){
1199 /* The index does not reference any expressions or virtual columns
1200 ** so no translations are needed. */
1201 return;
1203 pTab = pIdx->pTable;
1204 memset(&w, 0, sizeof(w));
1205 w.u.pIdxTrans = &x;
1206 x.iTabCur = iTabCur;
1207 x.iIdxCur = iIdxCur;
1208 x.pWInfo = pWInfo;
1209 x.db = pWInfo->pParse->db;
1210 for(iIdxCol=0; iIdxCol<pIdx->nColumn; iIdxCol++){
1211 i16 iRef = pIdx->aiColumn[iIdxCol];
1212 if( iRef==XN_EXPR ){
1213 assert( aColExpr->a[iIdxCol].pExpr!=0 );
1214 x.pIdxExpr = aColExpr->a[iIdxCol].pExpr;
1215 if( sqlite3ExprIsConstant(x.pIdxExpr) ) continue;
1216 w.xExprCallback = whereIndexExprTransNode;
1217 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1218 }else if( iRef>=0
1219 && (pTab->aCol[iRef].colFlags & COLFLAG_VIRTUAL)!=0
1220 && (pTab->aCol[iRef].zColl==0
1221 || sqlite3StrICmp(pTab->aCol[iRef].zColl, sqlite3StrBINARY)==0)
1223 /* Check to see if there are direct references to generated columns
1224 ** that are contained in the index. Pulling the generated column
1225 ** out of the index is an optimization only - the main table is always
1226 ** available if the index cannot be used. To avoid unnecessary
1227 ** complication, omit this optimization if the collating sequence for
1228 ** the column is non-standard */
1229 x.iTabCol = iRef;
1230 w.xExprCallback = whereIndexExprTransColumn;
1231 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1232 }else{
1233 continue;
1235 x.iIdxCol = iIdxCol;
1236 sqlite3WalkExpr(&w, pWInfo->pWhere);
1237 sqlite3WalkExprList(&w, pWInfo->pOrderBy);
1238 sqlite3WalkExprList(&w, pWInfo->pResultSet);
1243 ** The pTruth expression is always true because it is the WHERE clause
1244 ** a partial index that is driving a query loop. Look through all of the
1245 ** WHERE clause terms on the query, and if any of those terms must be
1246 ** true because pTruth is true, then mark those WHERE clause terms as
1247 ** coded.
1249 static void whereApplyPartialIndexConstraints(
1250 Expr *pTruth,
1251 int iTabCur,
1252 WhereClause *pWC
1254 int i;
1255 WhereTerm *pTerm;
1256 while( pTruth->op==TK_AND ){
1257 whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC);
1258 pTruth = pTruth->pRight;
1260 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1261 Expr *pExpr;
1262 if( pTerm->wtFlags & TERM_CODED ) continue;
1263 pExpr = pTerm->pExpr;
1264 if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){
1265 pTerm->wtFlags |= TERM_CODED;
1271 ** Generate code for the start of the iLevel-th loop in the WHERE clause
1272 ** implementation described by pWInfo.
1274 Bitmask sqlite3WhereCodeOneLoopStart(
1275 Parse *pParse, /* Parsing context */
1276 Vdbe *v, /* Prepared statement under construction */
1277 WhereInfo *pWInfo, /* Complete information about the WHERE clause */
1278 int iLevel, /* Which level of pWInfo->a[] should be coded */
1279 WhereLevel *pLevel, /* The current level pointer */
1280 Bitmask notReady /* Which tables are currently available */
1282 int j, k; /* Loop counters */
1283 int iCur; /* The VDBE cursor for the table */
1284 int addrNxt; /* Where to jump to continue with the next IN case */
1285 int bRev; /* True if we need to scan in reverse order */
1286 WhereLoop *pLoop; /* The WhereLoop object being coded */
1287 WhereClause *pWC; /* Decomposition of the entire WHERE clause */
1288 WhereTerm *pTerm; /* A WHERE clause term */
1289 sqlite3 *db; /* Database connection */
1290 struct SrcList_item *pTabItem; /* FROM clause term being coded */
1291 int addrBrk; /* Jump here to break out of the loop */
1292 int addrHalt; /* addrBrk for the outermost loop */
1293 int addrCont; /* Jump here to continue with next cycle */
1294 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */
1295 int iReleaseReg = 0; /* Temp register to free before returning */
1296 Index *pIdx = 0; /* Index used by loop (if any) */
1297 int iLoop; /* Iteration of constraint generator loop */
1299 pWC = &pWInfo->sWC;
1300 db = pParse->db;
1301 pLoop = pLevel->pWLoop;
1302 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
1303 iCur = pTabItem->iCursor;
1304 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
1305 bRev = (pWInfo->revMask>>iLevel)&1;
1306 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
1307 #if WHERETRACE_ENABLED /* 0x20800 */
1308 if( sqlite3WhereTrace & 0x800 ){
1309 sqlite3DebugPrintf("Coding level %d of %d: notReady=%llx iFrom=%d\n",
1310 iLevel, pWInfo->nLevel, (u64)notReady, pLevel->iFrom);
1311 sqlite3WhereLoopPrint(pLoop, pWC);
1313 if( sqlite3WhereTrace & 0x20000 ){
1314 if( iLevel==0 ){
1315 sqlite3DebugPrintf("WHERE clause being coded:\n");
1316 sqlite3TreeViewExpr(0, pWInfo->pWhere, 0);
1318 sqlite3DebugPrintf("All WHERE-clause terms before coding:\n");
1319 sqlite3WhereClausePrint(pWC);
1321 #endif
1323 /* Create labels for the "break" and "continue" instructions
1324 ** for the current loop. Jump to addrBrk to break out of a loop.
1325 ** Jump to cont to go immediately to the next iteration of the
1326 ** loop.
1328 ** When there is an IN operator, we also have a "addrNxt" label that
1329 ** means to continue with the next IN value combination. When
1330 ** there are no IN operators in the constraints, the "addrNxt" label
1331 ** is the same as "addrBrk".
1333 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
1334 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse);
1336 /* If this is the right table of a LEFT OUTER JOIN, allocate and
1337 ** initialize a memory cell that records if this table matches any
1338 ** row of the left table of the join.
1340 assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
1341 || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0
1343 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
1344 pLevel->iLeftJoin = ++pParse->nMem;
1345 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
1346 VdbeComment((v, "init LEFT JOIN no-match flag"));
1349 /* Compute a safe address to jump to if we discover that the table for
1350 ** this loop is empty and can never contribute content. */
1351 for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){}
1352 addrHalt = pWInfo->a[j].addrBrk;
1354 /* Special case of a FROM clause subquery implemented as a co-routine */
1355 if( pTabItem->fg.viaCoroutine ){
1356 int regYield = pTabItem->regReturn;
1357 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
1358 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
1359 VdbeCoverage(v);
1360 VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
1361 pLevel->op = OP_Goto;
1362 }else
1364 #ifndef SQLITE_OMIT_VIRTUALTABLE
1365 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
1366 /* Case 1: The table is a virtual-table. Use the VFilter and VNext
1367 ** to access the data.
1369 int iReg; /* P3 Value for OP_VFilter */
1370 int addrNotFound;
1371 int nConstraint = pLoop->nLTerm;
1372 int iIn; /* Counter for IN constraints */
1374 iReg = sqlite3GetTempRange(pParse, nConstraint+2);
1375 addrNotFound = pLevel->addrBrk;
1376 for(j=0; j<nConstraint; j++){
1377 int iTarget = iReg+j+2;
1378 pTerm = pLoop->aLTerm[j];
1379 if( NEVER(pTerm==0) ) continue;
1380 if( pTerm->eOperator & WO_IN ){
1381 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
1382 addrNotFound = pLevel->addrNxt;
1383 }else{
1384 Expr *pRight = pTerm->pExpr->pRight;
1385 codeExprOrVector(pParse, pRight, iTarget, 1);
1388 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
1389 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
1390 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
1391 pLoop->u.vtab.idxStr,
1392 pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC);
1393 VdbeCoverage(v);
1394 pLoop->u.vtab.needFree = 0;
1395 pLevel->p1 = iCur;
1396 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
1397 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1398 iIn = pLevel->u.in.nIn;
1399 for(j=nConstraint-1; j>=0; j--){
1400 pTerm = pLoop->aLTerm[j];
1401 if( (pTerm->eOperator & WO_IN)!=0 ) iIn--;
1402 if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){
1403 disableTerm(pLevel, pTerm);
1404 }else if( (pTerm->eOperator & WO_IN)!=0
1405 && sqlite3ExprVectorSize(pTerm->pExpr->pLeft)==1
1407 Expr *pCompare; /* The comparison operator */
1408 Expr *pRight; /* RHS of the comparison */
1409 VdbeOp *pOp; /* Opcode to access the value of the IN constraint */
1411 /* Reload the constraint value into reg[iReg+j+2]. The same value
1412 ** was loaded into the same register prior to the OP_VFilter, but
1413 ** the xFilter implementation might have changed the datatype or
1414 ** encoding of the value in the register, so it *must* be reloaded. */
1415 assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed );
1416 if( !db->mallocFailed ){
1417 assert( iIn>=0 && iIn<pLevel->u.in.nIn );
1418 pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop);
1419 assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid );
1420 assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 );
1421 assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 );
1422 testcase( pOp->opcode==OP_Rowid );
1423 sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3);
1426 /* Generate code that will continue to the next row if
1427 ** the IN constraint is not satisfied */
1428 pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0);
1429 assert( pCompare!=0 || db->mallocFailed );
1430 if( pCompare ){
1431 pCompare->pLeft = pTerm->pExpr->pLeft;
1432 pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0);
1433 if( pRight ){
1434 pRight->iTable = iReg+j+2;
1435 sqlite3ExprIfFalse(
1436 pParse, pCompare, pLevel->addrCont, SQLITE_JUMPIFNULL
1439 pCompare->pLeft = 0;
1440 sqlite3ExprDelete(db, pCompare);
1444 assert( iIn==0 || db->mallocFailed );
1445 /* These registers need to be preserved in case there is an IN operator
1446 ** loop. So we could deallocate the registers here (and potentially
1447 ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems
1448 ** simpler and safer to simply not reuse the registers.
1450 ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
1452 }else
1453 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1455 if( (pLoop->wsFlags & WHERE_IPK)!=0
1456 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
1458 /* Case 2: We can directly reference a single row using an
1459 ** equality comparison against the ROWID field. Or
1460 ** we reference multiple rows using a "rowid IN (...)"
1461 ** construct.
1463 assert( pLoop->u.btree.nEq==1 );
1464 pTerm = pLoop->aLTerm[0];
1465 assert( pTerm!=0 );
1466 assert( pTerm->pExpr!=0 );
1467 testcase( pTerm->wtFlags & TERM_VIRTUAL );
1468 iReleaseReg = ++pParse->nMem;
1469 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
1470 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
1471 addrNxt = pLevel->addrNxt;
1472 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg);
1473 VdbeCoverage(v);
1474 pLevel->op = OP_Noop;
1475 if( (pTerm->prereqAll & pLevel->notReady)==0 ){
1476 pTerm->wtFlags |= TERM_CODED;
1478 }else if( (pLoop->wsFlags & WHERE_IPK)!=0
1479 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
1481 /* Case 3: We have an inequality comparison against the ROWID field.
1483 int testOp = OP_Noop;
1484 int start;
1485 int memEndValue = 0;
1486 WhereTerm *pStart, *pEnd;
1488 j = 0;
1489 pStart = pEnd = 0;
1490 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
1491 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
1492 assert( pStart!=0 || pEnd!=0 );
1493 if( bRev ){
1494 pTerm = pStart;
1495 pStart = pEnd;
1496 pEnd = pTerm;
1498 codeCursorHint(pTabItem, pWInfo, pLevel, pEnd);
1499 if( pStart ){
1500 Expr *pX; /* The expression that defines the start bound */
1501 int r1, rTemp; /* Registers for holding the start boundary */
1502 int op; /* Cursor seek operation */
1504 /* The following constant maps TK_xx codes into corresponding
1505 ** seek opcodes. It depends on a particular ordering of TK_xx
1507 const u8 aMoveOp[] = {
1508 /* TK_GT */ OP_SeekGT,
1509 /* TK_LE */ OP_SeekLE,
1510 /* TK_LT */ OP_SeekLT,
1511 /* TK_GE */ OP_SeekGE
1513 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */
1514 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */
1515 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */
1517 assert( (pStart->wtFlags & TERM_VNULL)==0 );
1518 testcase( pStart->wtFlags & TERM_VIRTUAL );
1519 pX = pStart->pExpr;
1520 assert( pX!=0 );
1521 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
1522 if( sqlite3ExprIsVector(pX->pRight) ){
1523 r1 = rTemp = sqlite3GetTempReg(pParse);
1524 codeExprOrVector(pParse, pX->pRight, r1, 1);
1525 testcase( pX->op==TK_GT );
1526 testcase( pX->op==TK_GE );
1527 testcase( pX->op==TK_LT );
1528 testcase( pX->op==TK_LE );
1529 op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1];
1530 assert( pX->op!=TK_GT || op==OP_SeekGE );
1531 assert( pX->op!=TK_GE || op==OP_SeekGE );
1532 assert( pX->op!=TK_LT || op==OP_SeekLE );
1533 assert( pX->op!=TK_LE || op==OP_SeekLE );
1534 }else{
1535 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
1536 disableTerm(pLevel, pStart);
1537 op = aMoveOp[(pX->op - TK_GT)];
1539 sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1);
1540 VdbeComment((v, "pk"));
1541 VdbeCoverageIf(v, pX->op==TK_GT);
1542 VdbeCoverageIf(v, pX->op==TK_LE);
1543 VdbeCoverageIf(v, pX->op==TK_LT);
1544 VdbeCoverageIf(v, pX->op==TK_GE);
1545 sqlite3ReleaseTempReg(pParse, rTemp);
1546 }else{
1547 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt);
1548 VdbeCoverageIf(v, bRev==0);
1549 VdbeCoverageIf(v, bRev!=0);
1551 if( pEnd ){
1552 Expr *pX;
1553 pX = pEnd->pExpr;
1554 assert( pX!=0 );
1555 assert( (pEnd->wtFlags & TERM_VNULL)==0 );
1556 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
1557 testcase( pEnd->wtFlags & TERM_VIRTUAL );
1558 memEndValue = ++pParse->nMem;
1559 codeExprOrVector(pParse, pX->pRight, memEndValue, 1);
1560 if( 0==sqlite3ExprIsVector(pX->pRight)
1561 && (pX->op==TK_LT || pX->op==TK_GT)
1563 testOp = bRev ? OP_Le : OP_Ge;
1564 }else{
1565 testOp = bRev ? OP_Lt : OP_Gt;
1567 if( 0==sqlite3ExprIsVector(pX->pRight) ){
1568 disableTerm(pLevel, pEnd);
1571 start = sqlite3VdbeCurrentAddr(v);
1572 pLevel->op = bRev ? OP_Prev : OP_Next;
1573 pLevel->p1 = iCur;
1574 pLevel->p2 = start;
1575 assert( pLevel->p5==0 );
1576 if( testOp!=OP_Noop ){
1577 iRowidReg = ++pParse->nMem;
1578 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
1579 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
1580 VdbeCoverageIf(v, testOp==OP_Le);
1581 VdbeCoverageIf(v, testOp==OP_Lt);
1582 VdbeCoverageIf(v, testOp==OP_Ge);
1583 VdbeCoverageIf(v, testOp==OP_Gt);
1584 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
1586 }else if( pLoop->wsFlags & WHERE_INDEXED ){
1587 /* Case 4: A scan using an index.
1589 ** The WHERE clause may contain zero or more equality
1590 ** terms ("==" or "IN" operators) that refer to the N
1591 ** left-most columns of the index. It may also contain
1592 ** inequality constraints (>, <, >= or <=) on the indexed
1593 ** column that immediately follows the N equalities. Only
1594 ** the right-most column can be an inequality - the rest must
1595 ** use the "==" and "IN" operators. For example, if the
1596 ** index is on (x,y,z), then the following clauses are all
1597 ** optimized:
1599 ** x=5
1600 ** x=5 AND y=10
1601 ** x=5 AND y<10
1602 ** x=5 AND y>5 AND y<10
1603 ** x=5 AND y=5 AND z<=10
1605 ** The z<10 term of the following cannot be used, only
1606 ** the x=5 term:
1608 ** x=5 AND z<10
1610 ** N may be zero if there are inequality constraints.
1611 ** If there are no inequality constraints, then N is at
1612 ** least one.
1614 ** This case is also used when there are no WHERE clause
1615 ** constraints but an index is selected anyway, in order
1616 ** to force the output order to conform to an ORDER BY.
1618 static const u8 aStartOp[] = {
1621 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
1622 OP_Last, /* 3: (!start_constraints && startEq && bRev) */
1623 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */
1624 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */
1625 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */
1626 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */
1628 static const u8 aEndOp[] = {
1629 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */
1630 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */
1631 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */
1632 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */
1634 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */
1635 u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */
1636 u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */
1637 int regBase; /* Base register holding constraint values */
1638 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
1639 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */
1640 int startEq; /* True if range start uses ==, >= or <= */
1641 int endEq; /* True if range end uses ==, >= or <= */
1642 int start_constraints; /* Start of range is constrained */
1643 int nConstraint; /* Number of constraint terms */
1644 int iIdxCur; /* The VDBE cursor for the index */
1645 int nExtraReg = 0; /* Number of extra registers needed */
1646 int op; /* Instruction opcode */
1647 char *zStartAff; /* Affinity for start of range constraint */
1648 char *zEndAff = 0; /* Affinity for end of range constraint */
1649 u8 bSeekPastNull = 0; /* True to seek past initial nulls */
1650 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */
1651 int omitTable; /* True if we use the index only */
1652 int regBignull = 0; /* big-null flag register */
1654 pIdx = pLoop->u.btree.pIndex;
1655 iIdxCur = pLevel->iIdxCur;
1656 assert( nEq>=pLoop->nSkip );
1658 /* Find any inequality constraint terms for the start and end
1659 ** of the range.
1661 j = nEq;
1662 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
1663 pRangeStart = pLoop->aLTerm[j++];
1664 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm);
1665 /* Like optimization range constraints always occur in pairs */
1666 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
1667 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
1669 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
1670 pRangeEnd = pLoop->aLTerm[j++];
1671 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop);
1672 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1673 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
1674 assert( pRangeStart!=0 ); /* LIKE opt constraints */
1675 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */
1676 pLevel->iLikeRepCntr = (u32)++pParse->nMem;
1677 sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr);
1678 VdbeComment((v, "LIKE loop counter"));
1679 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
1680 /* iLikeRepCntr actually stores 2x the counter register number. The
1681 ** bottom bit indicates whether the search order is ASC or DESC. */
1682 testcase( bRev );
1683 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
1684 assert( (bRev & ~1)==0 );
1685 pLevel->iLikeRepCntr <<=1;
1686 pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC);
1688 #endif
1689 if( pRangeStart==0 ){
1690 j = pIdx->aiColumn[nEq];
1691 if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){
1692 bSeekPastNull = 1;
1696 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
1698 /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses
1699 ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS
1700 ** FIRST). In both cases separate ordered scans are made of those
1701 ** index entries for which the column is null and for those for which
1702 ** it is not. For an ASC sort, the non-NULL entries are scanned first.
1703 ** For DESC, NULL entries are scanned first.
1705 if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0
1706 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0
1708 assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 );
1709 assert( pRangeEnd==0 && pRangeStart==0 );
1710 testcase( pLoop->nSkip>0 );
1711 nExtraReg = 1;
1712 bSeekPastNull = 1;
1713 pLevel->regBignull = regBignull = ++pParse->nMem;
1714 pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse);
1717 /* If we are doing a reverse order scan on an ascending index, or
1718 ** a forward order scan on a descending index, interchange the
1719 ** start and end terms (pRangeStart and pRangeEnd).
1721 if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
1722 || (bRev && pIdx->nKeyCol==nEq)
1724 SWAP(WhereTerm *, pRangeEnd, pRangeStart);
1725 SWAP(u8, bSeekPastNull, bStopAtNull);
1726 SWAP(u8, nBtm, nTop);
1729 /* Generate code to evaluate all constraint terms using == or IN
1730 ** and store the values of those terms in an array of registers
1731 ** starting at regBase.
1733 codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd);
1734 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
1735 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
1736 if( zStartAff && nTop ){
1737 zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]);
1739 addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt);
1741 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
1742 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
1743 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
1744 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
1745 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
1746 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
1747 start_constraints = pRangeStart || nEq>0;
1749 /* Seek the index cursor to the start of the range. */
1750 nConstraint = nEq;
1751 if( pRangeStart ){
1752 Expr *pRight = pRangeStart->pExpr->pRight;
1753 codeExprOrVector(pParse, pRight, regBase+nEq, nBtm);
1754 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
1755 if( (pRangeStart->wtFlags & TERM_VNULL)==0
1756 && sqlite3ExprCanBeNull(pRight)
1758 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1759 VdbeCoverage(v);
1761 if( zStartAff ){
1762 updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]);
1764 nConstraint += nBtm;
1765 testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
1766 if( sqlite3ExprIsVector(pRight)==0 ){
1767 disableTerm(pLevel, pRangeStart);
1768 }else{
1769 startEq = 1;
1771 bSeekPastNull = 0;
1772 }else if( bSeekPastNull ){
1773 startEq = 0;
1774 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1775 start_constraints = 1;
1776 nConstraint++;
1777 }else if( regBignull ){
1778 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1779 start_constraints = 1;
1780 nConstraint++;
1782 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
1783 if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){
1784 /* The skip-scan logic inside the call to codeAllEqualityConstraints()
1785 ** above has already left the cursor sitting on the correct row,
1786 ** so no further seeking is needed */
1787 }else{
1788 if( pLoop->wsFlags & WHERE_IN_EARLYOUT ){
1789 sqlite3VdbeAddOp1(v, OP_SeekHit, iIdxCur);
1791 if( regBignull ){
1792 sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull);
1793 VdbeComment((v, "NULL-scan pass ctr"));
1796 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
1797 assert( op!=0 );
1798 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1799 VdbeCoverage(v);
1800 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind );
1801 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last );
1802 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT );
1803 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE );
1804 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE );
1805 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT );
1807 assert( bSeekPastNull==0 || bStopAtNull==0 );
1808 if( regBignull ){
1809 assert( bSeekPastNull==1 || bStopAtNull==1 );
1810 assert( bSeekPastNull==!bStopAtNull );
1811 assert( bStopAtNull==startEq );
1812 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2);
1813 op = aStartOp[(nConstraint>1)*4 + 2 + bRev];
1814 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
1815 nConstraint-startEq);
1816 VdbeCoverage(v);
1817 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind );
1818 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last );
1819 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE );
1820 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE );
1821 assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE);
1825 /* Load the value for the inequality constraint at the end of the
1826 ** range (if any).
1828 nConstraint = nEq;
1829 if( pRangeEnd ){
1830 Expr *pRight = pRangeEnd->pExpr->pRight;
1831 codeExprOrVector(pParse, pRight, regBase+nEq, nTop);
1832 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
1833 if( (pRangeEnd->wtFlags & TERM_VNULL)==0
1834 && sqlite3ExprCanBeNull(pRight)
1836 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1837 VdbeCoverage(v);
1839 if( zEndAff ){
1840 updateRangeAffinityStr(pRight, nTop, zEndAff);
1841 codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff);
1842 }else{
1843 assert( pParse->db->mallocFailed );
1845 nConstraint += nTop;
1846 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
1848 if( sqlite3ExprIsVector(pRight)==0 ){
1849 disableTerm(pLevel, pRangeEnd);
1850 }else{
1851 endEq = 1;
1853 }else if( bStopAtNull ){
1854 if( regBignull==0 ){
1855 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1856 endEq = 0;
1858 nConstraint++;
1860 sqlite3DbFree(db, zStartAff);
1861 sqlite3DbFree(db, zEndAff);
1863 /* Top of the loop body */
1864 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1866 /* Check if the index cursor is past the end of the range. */
1867 if( nConstraint ){
1868 if( regBignull ){
1869 /* Except, skip the end-of-range check while doing the NULL-scan */
1870 sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3);
1871 VdbeComment((v, "If NULL-scan 2nd pass"));
1872 VdbeCoverage(v);
1874 op = aEndOp[bRev*2 + endEq];
1875 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1876 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT );
1877 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE );
1878 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT );
1879 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE );
1881 if( regBignull ){
1882 /* During a NULL-scan, check to see if we have reached the end of
1883 ** the NULLs */
1884 assert( bSeekPastNull==!bStopAtNull );
1885 assert( bSeekPastNull+bStopAtNull==1 );
1886 assert( nConstraint+bSeekPastNull>0 );
1887 sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2);
1888 VdbeComment((v, "If NULL-scan 1st pass"));
1889 VdbeCoverage(v);
1890 op = aEndOp[bRev*2 + bSeekPastNull];
1891 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
1892 nConstraint+bSeekPastNull);
1893 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT );
1894 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE );
1895 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT );
1896 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE );
1899 if( pLoop->wsFlags & WHERE_IN_EARLYOUT ){
1900 sqlite3VdbeAddOp2(v, OP_SeekHit, iIdxCur, 1);
1903 /* Seek the table cursor, if required */
1904 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
1905 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0;
1906 if( omitTable ){
1907 /* pIdx is a covering index. No need to access the main table. */
1908 }else if( HasRowid(pIdx->pTable) ){
1909 if( (pWInfo->wctrlFlags & WHERE_SEEK_TABLE)
1910 || ( (pWInfo->wctrlFlags & WHERE_SEEK_UNIQ_TABLE)!=0
1911 && (pWInfo->eOnePass==ONEPASS_SINGLE || pLoop->nLTerm==0) )
1913 iRowidReg = ++pParse->nMem;
1914 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
1915 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg);
1916 VdbeCoverage(v);
1917 }else{
1918 codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
1920 }else if( iCur!=iIdxCur ){
1921 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1922 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1923 for(j=0; j<pPk->nKeyCol; j++){
1924 k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]);
1925 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
1927 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
1928 iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
1931 if( pLevel->iLeftJoin==0 ){
1932 /* If pIdx is an index on one or more expressions, then look through
1933 ** all the expressions in pWInfo and try to transform matching expressions
1934 ** into reference to index columns. Also attempt to translate references
1935 ** to virtual columns in the table into references to (stored) columns
1936 ** of the index.
1938 ** Do not do this for the RHS of a LEFT JOIN. This is because the
1939 ** expression may be evaluated after OP_NullRow has been executed on
1940 ** the cursor. In this case it is important to do the full evaluation,
1941 ** as the result of the expression may not be NULL, even if all table
1942 ** column values are. https://www.sqlite.org/src/info/7fa8049685b50b5a
1944 ** Also, do not do this when processing one index an a multi-index
1945 ** OR clause, since the transformation will become invalid once we
1946 ** move forward to the next index.
1947 ** https://sqlite.org/src/info/4e8e4857d32d401f
1949 if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
1950 whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo);
1953 /* If a partial index is driving the loop, try to eliminate WHERE clause
1954 ** terms from the query that must be true due to the WHERE clause of
1955 ** the partial index.
1957 ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work
1958 ** for a LEFT JOIN.
1960 if( pIdx->pPartIdxWhere ){
1961 whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC);
1963 }else{
1964 testcase( pIdx->pPartIdxWhere );
1965 /* The following assert() is not a requirement, merely an observation:
1966 ** The OR-optimization doesn't work for the right hand table of
1967 ** a LEFT JOIN: */
1968 assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 );
1971 /* Record the instruction used to terminate the loop. */
1972 if( pLoop->wsFlags & WHERE_ONEROW ){
1973 pLevel->op = OP_Noop;
1974 }else if( bRev ){
1975 pLevel->op = OP_Prev;
1976 }else{
1977 pLevel->op = OP_Next;
1979 pLevel->p1 = iIdxCur;
1980 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
1981 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
1982 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
1983 }else{
1984 assert( pLevel->p5==0 );
1986 if( omitTable ) pIdx = 0;
1987 }else
1989 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
1990 if( pLoop->wsFlags & WHERE_MULTI_OR ){
1991 /* Case 5: Two or more separately indexed terms connected by OR
1993 ** Example:
1995 ** CREATE TABLE t1(a,b,c,d);
1996 ** CREATE INDEX i1 ON t1(a);
1997 ** CREATE INDEX i2 ON t1(b);
1998 ** CREATE INDEX i3 ON t1(c);
2000 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
2002 ** In the example, there are three indexed terms connected by OR.
2003 ** The top of the loop looks like this:
2005 ** Null 1 # Zero the rowset in reg 1
2007 ** Then, for each indexed term, the following. The arguments to
2008 ** RowSetTest are such that the rowid of the current row is inserted
2009 ** into the RowSet. If it is already present, control skips the
2010 ** Gosub opcode and jumps straight to the code generated by WhereEnd().
2012 ** sqlite3WhereBegin(<term>)
2013 ** RowSetTest # Insert rowid into rowset
2014 ** Gosub 2 A
2015 ** sqlite3WhereEnd()
2017 ** Following the above, code to terminate the loop. Label A, the target
2018 ** of the Gosub above, jumps to the instruction right after the Goto.
2020 ** Null 1 # Zero the rowset in reg 1
2021 ** Goto B # The loop is finished.
2023 ** A: <loop body> # Return data, whatever.
2025 ** Return 2 # Jump back to the Gosub
2027 ** B: <after the loop>
2029 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
2030 ** use an ephemeral index instead of a RowSet to record the primary
2031 ** keys of the rows we have already seen.
2034 WhereClause *pOrWc; /* The OR-clause broken out into subterms */
2035 SrcList *pOrTab; /* Shortened table list or OR-clause generation */
2036 Index *pCov = 0; /* Potential covering index (or NULL) */
2037 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */
2039 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */
2040 int regRowset = 0; /* Register for RowSet object */
2041 int regRowid = 0; /* Register holding rowid */
2042 int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */
2043 int iRetInit; /* Address of regReturn init */
2044 int untestedTerms = 0; /* Some terms not completely tested */
2045 int ii; /* Loop counter */
2046 u16 wctrlFlags; /* Flags for sub-WHERE clause */
2047 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */
2048 Table *pTab = pTabItem->pTab;
2050 pTerm = pLoop->aLTerm[0];
2051 assert( pTerm!=0 );
2052 assert( pTerm->eOperator & WO_OR );
2053 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
2054 pOrWc = &pTerm->u.pOrInfo->wc;
2055 pLevel->op = OP_Return;
2056 pLevel->p1 = regReturn;
2058 /* Set up a new SrcList in pOrTab containing the table being scanned
2059 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
2060 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
2062 if( pWInfo->nLevel>1 ){
2063 int nNotReady; /* The number of notReady tables */
2064 struct SrcList_item *origSrc; /* Original list of tables */
2065 nNotReady = pWInfo->nLevel - iLevel - 1;
2066 pOrTab = sqlite3StackAllocRaw(db,
2067 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
2068 if( pOrTab==0 ) return notReady;
2069 pOrTab->nAlloc = (u8)(nNotReady + 1);
2070 pOrTab->nSrc = pOrTab->nAlloc;
2071 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
2072 origSrc = pWInfo->pTabList->a;
2073 for(k=1; k<=nNotReady; k++){
2074 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
2076 }else{
2077 pOrTab = pWInfo->pTabList;
2080 /* Initialize the rowset register to contain NULL. An SQL NULL is
2081 ** equivalent to an empty rowset. Or, create an ephemeral index
2082 ** capable of holding primary keys in the case of a WITHOUT ROWID.
2084 ** Also initialize regReturn to contain the address of the instruction
2085 ** immediately following the OP_Return at the bottom of the loop. This
2086 ** is required in a few obscure LEFT JOIN cases where control jumps
2087 ** over the top of the loop into the body of it. In this case the
2088 ** correct response for the end-of-loop code (the OP_Return) is to
2089 ** fall through to the next instruction, just as an OP_Next does if
2090 ** called on an uninitialized cursor.
2092 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2093 if( HasRowid(pTab) ){
2094 regRowset = ++pParse->nMem;
2095 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
2096 }else{
2097 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2098 regRowset = pParse->nTab++;
2099 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
2100 sqlite3VdbeSetP4KeyInfo(pParse, pPk);
2102 regRowid = ++pParse->nMem;
2104 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
2106 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y
2107 ** Then for every term xN, evaluate as the subexpression: xN AND z
2108 ** That way, terms in y that are factored into the disjunction will
2109 ** be picked up by the recursive calls to sqlite3WhereBegin() below.
2111 ** Actually, each subexpression is converted to "xN AND w" where w is
2112 ** the "interesting" terms of z - terms that did not originate in the
2113 ** ON or USING clause of a LEFT JOIN, and terms that are usable as
2114 ** indices.
2116 ** This optimization also only applies if the (x1 OR x2 OR ...) term
2117 ** is not contained in the ON clause of a LEFT JOIN.
2118 ** See ticket http://www.sqlite.org/src/info/f2369304e4
2120 if( pWC->nTerm>1 ){
2121 int iTerm;
2122 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
2123 Expr *pExpr = pWC->a[iTerm].pExpr;
2124 if( &pWC->a[iTerm] == pTerm ) continue;
2125 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
2126 testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
2127 if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue;
2128 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
2129 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
2130 pExpr = sqlite3ExprDup(db, pExpr, 0);
2131 pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr);
2133 if( pAndExpr ){
2134 /* The extra 0x10000 bit on the opcode is masked off and does not
2135 ** become part of the new Expr.op. However, it does make the
2136 ** op==TK_AND comparison inside of sqlite3PExpr() false, and this
2137 ** prevents sqlite3PExpr() from implementing AND short-circuit
2138 ** optimization, which we do not want here. */
2139 pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr);
2143 /* Run a separate WHERE clause for each term of the OR clause. After
2144 ** eliminating duplicates from other WHERE clauses, the action for each
2145 ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
2147 wctrlFlags = WHERE_OR_SUBCLAUSE | (pWInfo->wctrlFlags & WHERE_SEEK_TABLE);
2148 ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR"));
2149 for(ii=0; ii<pOrWc->nTerm; ii++){
2150 WhereTerm *pOrTerm = &pOrWc->a[ii];
2151 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
2152 WhereInfo *pSubWInfo; /* Info for single OR-term scan */
2153 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
2154 int jmp1 = 0; /* Address of jump operation */
2155 testcase( (pTabItem[0].fg.jointype & JT_LEFT)!=0
2156 && !ExprHasProperty(pOrExpr, EP_FromJoin)
2157 ); /* See TH3 vtab25.400 and ticket 614b25314c766238 */
2158 if( pAndExpr ){
2159 pAndExpr->pLeft = pOrExpr;
2160 pOrExpr = pAndExpr;
2162 /* Loop through table entries that match term pOrTerm. */
2163 ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1));
2164 WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
2165 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
2166 wctrlFlags, iCovCur);
2167 assert( pSubWInfo || pParse->nErr || db->mallocFailed );
2168 if( pSubWInfo ){
2169 WhereLoop *pSubLoop;
2170 int addrExplain = sqlite3WhereExplainOneScan(
2171 pParse, pOrTab, &pSubWInfo->a[0], 0
2173 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
2175 /* This is the sub-WHERE clause body. First skip over
2176 ** duplicate rows from prior sub-WHERE clauses, and record the
2177 ** rowid (or PRIMARY KEY) for the current row so that the same
2178 ** row will be skipped in subsequent sub-WHERE clauses.
2180 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2181 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
2182 if( HasRowid(pTab) ){
2183 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid);
2184 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
2185 regRowid, iSet);
2186 VdbeCoverage(v);
2187 }else{
2188 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2189 int nPk = pPk->nKeyCol;
2190 int iPk;
2191 int r;
2193 /* Read the PK into an array of temp registers. */
2194 r = sqlite3GetTempRange(pParse, nPk);
2195 for(iPk=0; iPk<nPk; iPk++){
2196 int iCol = pPk->aiColumn[iPk];
2197 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk);
2200 /* Check if the temp table already contains this key. If so,
2201 ** the row has already been included in the result set and
2202 ** can be ignored (by jumping past the Gosub below). Otherwise,
2203 ** insert the key into the temp table and proceed with processing
2204 ** the row.
2206 ** Use some of the same optimizations as OP_RowSetTest: If iSet
2207 ** is zero, assume that the key cannot already be present in
2208 ** the temp table. And if iSet is -1, assume that there is no
2209 ** need to insert the key into the temp table, as it will never
2210 ** be tested for. */
2211 if( iSet ){
2212 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
2213 VdbeCoverage(v);
2215 if( iSet>=0 ){
2216 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
2217 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid,
2218 r, nPk);
2219 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2222 /* Release the array of temp registers */
2223 sqlite3ReleaseTempRange(pParse, r, nPk);
2227 /* Invoke the main loop body as a subroutine */
2228 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
2230 /* Jump here (skipping the main loop body subroutine) if the
2231 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
2232 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
2234 /* The pSubWInfo->untestedTerms flag means that this OR term
2235 ** contained one or more AND term from a notReady table. The
2236 ** terms from the notReady table could not be tested and will
2237 ** need to be tested later.
2239 if( pSubWInfo->untestedTerms ) untestedTerms = 1;
2241 /* If all of the OR-connected terms are optimized using the same
2242 ** index, and the index is opened using the same cursor number
2243 ** by each call to sqlite3WhereBegin() made by this loop, it may
2244 ** be possible to use that index as a covering index.
2246 ** If the call to sqlite3WhereBegin() above resulted in a scan that
2247 ** uses an index, and this is either the first OR-connected term
2248 ** processed or the index is the same as that used by all previous
2249 ** terms, set pCov to the candidate covering index. Otherwise, set
2250 ** pCov to NULL to indicate that no candidate covering index will
2251 ** be available.
2253 pSubLoop = pSubWInfo->a[0].pWLoop;
2254 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2255 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
2256 && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
2257 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
2259 assert( pSubWInfo->a[0].iIdxCur==iCovCur );
2260 pCov = pSubLoop->u.btree.pIndex;
2261 }else{
2262 pCov = 0;
2265 /* Finish the loop through table entries that match term pOrTerm. */
2266 sqlite3WhereEnd(pSubWInfo);
2267 ExplainQueryPlanPop(pParse);
2271 ExplainQueryPlanPop(pParse);
2272 pLevel->u.pCovidx = pCov;
2273 if( pCov ) pLevel->iIdxCur = iCovCur;
2274 if( pAndExpr ){
2275 pAndExpr->pLeft = 0;
2276 sqlite3ExprDelete(db, pAndExpr);
2278 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
2279 sqlite3VdbeGoto(v, pLevel->addrBrk);
2280 sqlite3VdbeResolveLabel(v, iLoopBody);
2282 if( pWInfo->nLevel>1 ){ sqlite3StackFree(db, pOrTab); }
2283 if( !untestedTerms ) disableTerm(pLevel, pTerm);
2284 }else
2285 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
2288 /* Case 6: There is no usable index. We must do a complete
2289 ** scan of the entire table.
2291 static const u8 aStep[] = { OP_Next, OP_Prev };
2292 static const u8 aStart[] = { OP_Rewind, OP_Last };
2293 assert( bRev==0 || bRev==1 );
2294 if( pTabItem->fg.isRecursive ){
2295 /* Tables marked isRecursive have only a single row that is stored in
2296 ** a pseudo-cursor. No need to Rewind or Next such cursors. */
2297 pLevel->op = OP_Noop;
2298 }else{
2299 codeCursorHint(pTabItem, pWInfo, pLevel, 0);
2300 pLevel->op = aStep[bRev];
2301 pLevel->p1 = iCur;
2302 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt);
2303 VdbeCoverageIf(v, bRev==0);
2304 VdbeCoverageIf(v, bRev!=0);
2305 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2309 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2310 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
2311 #endif
2313 /* Insert code to test every subexpression that can be completely
2314 ** computed using the current set of tables.
2316 ** This loop may run between one and three times, depending on the
2317 ** constraints to be generated. The value of stack variable iLoop
2318 ** determines the constraints coded by each iteration, as follows:
2320 ** iLoop==1: Code only expressions that are entirely covered by pIdx.
2321 ** iLoop==2: Code remaining expressions that do not contain correlated
2322 ** sub-queries.
2323 ** iLoop==3: Code all remaining expressions.
2325 ** An effort is made to skip unnecessary iterations of the loop.
2327 iLoop = (pIdx ? 1 : 2);
2329 int iNext = 0; /* Next value for iLoop */
2330 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2331 Expr *pE;
2332 int skipLikeAddr = 0;
2333 testcase( pTerm->wtFlags & TERM_VIRTUAL );
2334 testcase( pTerm->wtFlags & TERM_CODED );
2335 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2336 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2337 testcase( pWInfo->untestedTerms==0
2338 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
2339 pWInfo->untestedTerms = 1;
2340 continue;
2342 pE = pTerm->pExpr;
2343 assert( pE!=0 );
2344 if( (pTabItem->fg.jointype&JT_LEFT) && !ExprHasProperty(pE,EP_FromJoin) ){
2345 continue;
2348 if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){
2349 iNext = 2;
2350 continue;
2352 if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){
2353 if( iNext==0 ) iNext = 3;
2354 continue;
2357 if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){
2358 /* If the TERM_LIKECOND flag is set, that means that the range search
2359 ** is sufficient to guarantee that the LIKE operator is true, so we
2360 ** can skip the call to the like(A,B) function. But this only works
2361 ** for strings. So do not skip the call to the function on the pass
2362 ** that compares BLOBs. */
2363 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
2364 continue;
2365 #else
2366 u32 x = pLevel->iLikeRepCntr;
2367 if( x>0 ){
2368 skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1));
2369 VdbeCoverageIf(v, (x&1)==1);
2370 VdbeCoverageIf(v, (x&1)==0);
2372 #endif
2374 #ifdef WHERETRACE_ENABLED /* 0xffff */
2375 if( sqlite3WhereTrace ){
2376 VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d",
2377 pWC->nTerm-j, pTerm, iLoop));
2379 if( sqlite3WhereTrace & 0x800 ){
2380 sqlite3DebugPrintf("Coding auxiliary constraint:\n");
2381 sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
2383 #endif
2384 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
2385 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
2386 pTerm->wtFlags |= TERM_CODED;
2388 iLoop = iNext;
2389 }while( iLoop>0 );
2391 /* Insert code to test for implied constraints based on transitivity
2392 ** of the "==" operator.
2394 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
2395 ** and we are coding the t1 loop and the t2 loop has not yet coded,
2396 ** then we cannot use the "t1.a=t2.b" constraint, but we can code
2397 ** the implied "t1.a=123" constraint.
2399 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2400 Expr *pE, sEAlt;
2401 WhereTerm *pAlt;
2402 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2403 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
2404 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
2405 if( pTerm->leftCursor!=iCur ) continue;
2406 if( pTabItem->fg.jointype & JT_LEFT ) continue;
2407 pE = pTerm->pExpr;
2408 #ifdef WHERETRACE_ENABLED /* 0x800 */
2409 if( sqlite3WhereTrace & 0x800 ){
2410 sqlite3DebugPrintf("Coding transitive constraint:\n");
2411 sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
2413 #endif
2414 assert( !ExprHasProperty(pE, EP_FromJoin) );
2415 assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
2416 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady,
2417 WO_EQ|WO_IN|WO_IS, 0);
2418 if( pAlt==0 ) continue;
2419 if( pAlt->wtFlags & (TERM_CODED) ) continue;
2420 if( (pAlt->eOperator & WO_IN)
2421 && (pAlt->pExpr->flags & EP_xIsSelect)
2422 && (pAlt->pExpr->x.pSelect->pEList->nExpr>1)
2424 continue;
2426 testcase( pAlt->eOperator & WO_EQ );
2427 testcase( pAlt->eOperator & WO_IS );
2428 testcase( pAlt->eOperator & WO_IN );
2429 VdbeModuleComment((v, "begin transitive constraint"));
2430 sEAlt = *pAlt->pExpr;
2431 sEAlt.pLeft = pE->pLeft;
2432 sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL);
2435 /* For a LEFT OUTER JOIN, generate code that will record the fact that
2436 ** at least one row of the right table has matched the left table.
2438 if( pLevel->iLeftJoin ){
2439 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
2440 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
2441 VdbeComment((v, "record LEFT JOIN hit"));
2442 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
2443 testcase( pTerm->wtFlags & TERM_VIRTUAL );
2444 testcase( pTerm->wtFlags & TERM_CODED );
2445 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2446 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2447 assert( pWInfo->untestedTerms );
2448 continue;
2450 assert( pTerm->pExpr );
2451 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
2452 pTerm->wtFlags |= TERM_CODED;
2456 #if WHERETRACE_ENABLED /* 0x20800 */
2457 if( sqlite3WhereTrace & 0x20000 ){
2458 sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n",
2459 iLevel);
2460 sqlite3WhereClausePrint(pWC);
2462 if( sqlite3WhereTrace & 0x800 ){
2463 sqlite3DebugPrintf("End Coding level %d: notReady=%llx\n",
2464 iLevel, (u64)pLevel->notReady);
2466 #endif
2467 return pLevel->notReady;