Snapshot of upstream SQLite check-in 5a877221
[sqlcipher.git] / src / vdbemem.c
blob27f1c7dce3a9a26e66572697943f39b5640825b5
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to manipulate "Mem" structure. A "Mem"
14 ** stores a single value in the VDBE. Mem is an opaque structure visible
15 ** only within the VDBE. Interface routines refer to a Mem using the
16 ** name sqlite_value
18 #include "sqliteInt.h"
19 #include "vdbeInt.h"
21 /* True if X is a power of two. 0 is considered a power of two here.
22 ** In other words, return true if X has at most one bit set.
24 #define ISPOWEROF2(X) (((X)&((X)-1))==0)
26 #ifdef SQLITE_DEBUG
28 ** Check invariants on a Mem object.
30 ** This routine is intended for use inside of assert() statements, like
31 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) );
33 int sqlite3VdbeCheckMemInvariants(Mem *p){
34 /* If MEM_Dyn is set then Mem.xDel!=0.
35 ** Mem.xDel might not be initialized if MEM_Dyn is clear.
37 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );
39 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we
40 ** ensure that if Mem.szMalloc>0 then it is safe to do
41 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
42 ** That saves a few cycles in inner loops. */
43 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );
45 /* Cannot have more than one of MEM_Int, MEM_Real, or MEM_IntReal */
46 assert( ISPOWEROF2(p->flags & (MEM_Int|MEM_Real|MEM_IntReal)) );
48 if( p->flags & MEM_Null ){
49 /* Cannot be both MEM_Null and some other type */
50 assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob|MEM_Agg))==0 );
52 /* If MEM_Null is set, then either the value is a pure NULL (the usual
53 ** case) or it is a pointer set using sqlite3_bind_pointer() or
54 ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be
55 ** set.
57 if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){
58 /* This is a pointer type. There may be a flag to indicate what to
59 ** do with the pointer. */
60 assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
61 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
62 ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 );
64 /* No other bits set */
65 assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype|MEM_FromBind
66 |MEM_Dyn|MEM_Ephem|MEM_Static))==0 );
67 }else{
68 /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn,
69 ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */
71 }else{
72 /* The MEM_Cleared bit is only allowed on NULLs */
73 assert( (p->flags & MEM_Cleared)==0 );
76 /* The szMalloc field holds the correct memory allocation size */
77 assert( p->szMalloc==0
78 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) );
80 /* If p holds a string or blob, the Mem.z must point to exactly
81 ** one of the following:
83 ** (1) Memory in Mem.zMalloc and managed by the Mem object
84 ** (2) Memory to be freed using Mem.xDel
85 ** (3) An ephemeral string or blob
86 ** (4) A static string or blob
88 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){
89 assert(
90 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) +
91 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
92 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
93 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
96 return 1;
98 #endif
101 ** Render a Mem object which is one of MEM_Int, MEM_Real, or MEM_IntReal
102 ** into a buffer.
104 static void vdbeMemRenderNum(int sz, char *zBuf, Mem *p){
105 StrAccum acc;
106 assert( p->flags & (MEM_Int|MEM_Real|MEM_IntReal) );
107 sqlite3StrAccumInit(&acc, 0, zBuf, sz, 0);
108 if( p->flags & MEM_Int ){
109 sqlite3_str_appendf(&acc, "%lld", p->u.i);
110 }else if( p->flags & MEM_IntReal ){
111 sqlite3_str_appendf(&acc, "%!.15g", (double)p->u.i);
112 }else{
113 sqlite3_str_appendf(&acc, "%!.15g", p->u.r);
115 assert( acc.zText==zBuf && acc.mxAlloc<=0 );
116 zBuf[acc.nChar] = 0; /* Fast version of sqlite3StrAccumFinish(&acc) */
119 #ifdef SQLITE_DEBUG
121 ** Validity checks on pMem. pMem holds a string.
123 ** (1) Check that string value of pMem agrees with its integer or real value.
124 ** (2) Check that the string is correctly zero terminated
126 ** A single int or real value always converts to the same strings. But
127 ** many different strings can be converted into the same int or real.
128 ** If a table contains a numeric value and an index is based on the
129 ** corresponding string value, then it is important that the string be
130 ** derived from the numeric value, not the other way around, to ensure
131 ** that the index and table are consistent. See ticket
132 ** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for
133 ** an example.
135 ** This routine looks at pMem to verify that if it has both a numeric
136 ** representation and a string representation then the string rep has
137 ** been derived from the numeric and not the other way around. It returns
138 ** true if everything is ok and false if there is a problem.
140 ** This routine is for use inside of assert() statements only.
142 int sqlite3VdbeMemValidStrRep(Mem *p){
143 char zBuf[100];
144 char *z;
145 int i, j, incr;
146 if( (p->flags & MEM_Str)==0 ) return 1;
147 if( p->flags & MEM_Term ){
148 /* Insure that the string is properly zero-terminated. Pay particular
149 ** attention to the case where p->n is odd */
150 if( p->szMalloc>0 && p->z==p->zMalloc ){
151 assert( p->enc==SQLITE_UTF8 || p->szMalloc >= ((p->n+1)&~1)+2 );
152 assert( p->enc!=SQLITE_UTF8 || p->szMalloc >= p->n+1 );
154 assert( p->z[p->n]==0 );
155 assert( p->enc==SQLITE_UTF8 || p->z[(p->n+1)&~1]==0 );
156 assert( p->enc==SQLITE_UTF8 || p->z[((p->n+1)&~1)+1]==0 );
158 if( (p->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ) return 1;
159 vdbeMemRenderNum(sizeof(zBuf), zBuf, p);
160 z = p->z;
161 i = j = 0;
162 incr = 1;
163 if( p->enc!=SQLITE_UTF8 ){
164 incr = 2;
165 if( p->enc==SQLITE_UTF16BE ) z++;
167 while( zBuf[j] ){
168 if( zBuf[j++]!=z[i] ) return 0;
169 i += incr;
171 return 1;
173 #endif /* SQLITE_DEBUG */
176 ** If pMem is an object with a valid string representation, this routine
177 ** ensures the internal encoding for the string representation is
178 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
180 ** If pMem is not a string object, or the encoding of the string
181 ** representation is already stored using the requested encoding, then this
182 ** routine is a no-op.
184 ** SQLITE_OK is returned if the conversion is successful (or not required).
185 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
186 ** between formats.
188 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
189 #ifndef SQLITE_OMIT_UTF16
190 int rc;
191 #endif
192 assert( !sqlite3VdbeMemIsRowSet(pMem) );
193 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
194 || desiredEnc==SQLITE_UTF16BE );
195 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
196 return SQLITE_OK;
198 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
199 #ifdef SQLITE_OMIT_UTF16
200 return SQLITE_ERROR;
201 #else
203 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
204 ** then the encoding of the value may not have changed.
206 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
207 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
208 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
209 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
210 return rc;
211 #endif
215 ** Make sure pMem->z points to a writable allocation of at least n bytes.
217 ** If the bPreserve argument is true, then copy of the content of
218 ** pMem->z into the new allocation. pMem must be either a string or
219 ** blob if bPreserve is true. If bPreserve is false, any prior content
220 ** in pMem->z is discarded.
222 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
223 assert( sqlite3VdbeCheckMemInvariants(pMem) );
224 assert( !sqlite3VdbeMemIsRowSet(pMem) );
225 testcase( pMem->db==0 );
227 /* If the bPreserve flag is set to true, then the memory cell must already
228 ** contain a valid string or blob value. */
229 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
230 testcase( bPreserve && pMem->z==0 );
232 assert( pMem->szMalloc==0
233 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) );
234 if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){
235 if( pMem->db ){
236 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
237 }else{
238 pMem->zMalloc = sqlite3Realloc(pMem->z, n);
239 if( pMem->zMalloc==0 ) sqlite3_free(pMem->z);
240 pMem->z = pMem->zMalloc;
242 bPreserve = 0;
243 }else{
244 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
245 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
247 if( pMem->zMalloc==0 ){
248 sqlite3VdbeMemSetNull(pMem);
249 pMem->z = 0;
250 pMem->szMalloc = 0;
251 return SQLITE_NOMEM_BKPT;
252 }else{
253 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
256 if( bPreserve && pMem->z ){
257 assert( pMem->z!=pMem->zMalloc );
258 memcpy(pMem->zMalloc, pMem->z, pMem->n);
260 if( (pMem->flags&MEM_Dyn)!=0 ){
261 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
262 pMem->xDel((void *)(pMem->z));
265 pMem->z = pMem->zMalloc;
266 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
267 return SQLITE_OK;
271 ** Change the pMem->zMalloc allocation to be at least szNew bytes.
272 ** If pMem->zMalloc already meets or exceeds the requested size, this
273 ** routine is a no-op.
275 ** Any prior string or blob content in the pMem object may be discarded.
276 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str
277 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, MEM_IntReal,
278 ** and MEM_Null values are preserved.
280 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
281 ** if unable to complete the resizing.
283 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){
284 assert( CORRUPT_DB || szNew>0 );
285 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 );
286 if( pMem->szMalloc<szNew ){
287 return sqlite3VdbeMemGrow(pMem, szNew, 0);
289 assert( (pMem->flags & MEM_Dyn)==0 );
290 pMem->z = pMem->zMalloc;
291 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real|MEM_IntReal);
292 return SQLITE_OK;
296 ** It is already known that pMem contains an unterminated string.
297 ** Add the zero terminator.
299 ** Three bytes of zero are added. In this way, there is guaranteed
300 ** to be a double-zero byte at an even byte boundary in order to
301 ** terminate a UTF16 string, even if the initial size of the buffer
302 ** is an odd number of bytes.
304 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){
305 if( sqlite3VdbeMemGrow(pMem, pMem->n+3, 1) ){
306 return SQLITE_NOMEM_BKPT;
308 pMem->z[pMem->n] = 0;
309 pMem->z[pMem->n+1] = 0;
310 pMem->z[pMem->n+2] = 0;
311 pMem->flags |= MEM_Term;
312 return SQLITE_OK;
316 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in
317 ** MEM.zMalloc, where it can be safely written.
319 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
321 int sqlite3VdbeMemMakeWriteable(Mem *pMem){
322 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
323 assert( !sqlite3VdbeMemIsRowSet(pMem) );
324 if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){
325 if( ExpandBlob(pMem) ) return SQLITE_NOMEM;
326 if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){
327 int rc = vdbeMemAddTerminator(pMem);
328 if( rc ) return rc;
331 pMem->flags &= ~MEM_Ephem;
332 #ifdef SQLITE_DEBUG
333 pMem->pScopyFrom = 0;
334 #endif
336 return SQLITE_OK;
340 ** If the given Mem* has a zero-filled tail, turn it into an ordinary
341 ** blob stored in dynamically allocated space.
343 #ifndef SQLITE_OMIT_INCRBLOB
344 int sqlite3VdbeMemExpandBlob(Mem *pMem){
345 int nByte;
346 assert( pMem->flags & MEM_Zero );
347 assert( (pMem->flags&MEM_Blob)!=0 || MemNullNochng(pMem) );
348 testcase( sqlite3_value_nochange(pMem) );
349 assert( !sqlite3VdbeMemIsRowSet(pMem) );
350 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
352 /* Set nByte to the number of bytes required to store the expanded blob. */
353 nByte = pMem->n + pMem->u.nZero;
354 if( nByte<=0 ){
355 if( (pMem->flags & MEM_Blob)==0 ) return SQLITE_OK;
356 nByte = 1;
358 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
359 return SQLITE_NOMEM_BKPT;
362 memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
363 pMem->n += pMem->u.nZero;
364 pMem->flags &= ~(MEM_Zero|MEM_Term);
365 return SQLITE_OK;
367 #endif
370 ** Make sure the given Mem is \u0000 terminated.
372 int sqlite3VdbeMemNulTerminate(Mem *pMem){
373 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
374 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) );
375 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 );
376 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){
377 return SQLITE_OK; /* Nothing to do */
378 }else{
379 return vdbeMemAddTerminator(pMem);
384 ** Add MEM_Str to the set of representations for the given Mem. This
385 ** routine is only called if pMem is a number of some kind, not a NULL
386 ** or a BLOB.
388 ** Existing representations MEM_Int, MEM_Real, or MEM_IntReal are invalidated
389 ** if bForce is true but are retained if bForce is false.
391 ** A MEM_Null value will never be passed to this function. This function is
392 ** used for converting values to text for returning to the user (i.e. via
393 ** sqlite3_value_text()), or for ensuring that values to be used as btree
394 ** keys are strings. In the former case a NULL pointer is returned the
395 ** user and the latter is an internal programming error.
397 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){
398 const int nByte = 32;
400 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
401 assert( !(pMem->flags&MEM_Zero) );
402 assert( !(pMem->flags&(MEM_Str|MEM_Blob)) );
403 assert( pMem->flags&(MEM_Int|MEM_Real|MEM_IntReal) );
404 assert( !sqlite3VdbeMemIsRowSet(pMem) );
405 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
408 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){
409 pMem->enc = 0;
410 return SQLITE_NOMEM_BKPT;
413 vdbeMemRenderNum(nByte, pMem->z, pMem);
414 assert( pMem->z!=0 );
415 pMem->n = sqlite3Strlen30NN(pMem->z);
416 pMem->enc = SQLITE_UTF8;
417 pMem->flags |= MEM_Str|MEM_Term;
418 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal);
419 sqlite3VdbeChangeEncoding(pMem, enc);
420 return SQLITE_OK;
424 ** Memory cell pMem contains the context of an aggregate function.
425 ** This routine calls the finalize method for that function. The
426 ** result of the aggregate is stored back into pMem.
428 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
429 ** otherwise.
431 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
432 sqlite3_context ctx;
433 Mem t;
434 assert( pFunc!=0 );
435 assert( pFunc->xFinalize!=0 );
436 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
437 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
438 memset(&ctx, 0, sizeof(ctx));
439 memset(&t, 0, sizeof(t));
440 t.flags = MEM_Null;
441 t.db = pMem->db;
442 ctx.pOut = &t;
443 ctx.pMem = pMem;
444 ctx.pFunc = pFunc;
445 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
446 assert( (pMem->flags & MEM_Dyn)==0 );
447 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
448 memcpy(pMem, &t, sizeof(t));
449 return ctx.isError;
453 ** Memory cell pAccum contains the context of an aggregate function.
454 ** This routine calls the xValue method for that function and stores
455 ** the results in memory cell pMem.
457 ** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK
458 ** otherwise.
460 #ifndef SQLITE_OMIT_WINDOWFUNC
461 int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){
462 sqlite3_context ctx;
463 assert( pFunc!=0 );
464 assert( pFunc->xValue!=0 );
465 assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef );
466 assert( pAccum->db==0 || sqlite3_mutex_held(pAccum->db->mutex) );
467 memset(&ctx, 0, sizeof(ctx));
468 sqlite3VdbeMemSetNull(pOut);
469 ctx.pOut = pOut;
470 ctx.pMem = pAccum;
471 ctx.pFunc = pFunc;
472 pFunc->xValue(&ctx);
473 return ctx.isError;
475 #endif /* SQLITE_OMIT_WINDOWFUNC */
478 ** If the memory cell contains a value that must be freed by
479 ** invoking the external callback in Mem.xDel, then this routine
480 ** will free that value. It also sets Mem.flags to MEM_Null.
482 ** This is a helper routine for sqlite3VdbeMemSetNull() and
483 ** for sqlite3VdbeMemRelease(). Use those other routines as the
484 ** entry point for releasing Mem resources.
486 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){
487 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
488 assert( VdbeMemDynamic(p) );
489 if( p->flags&MEM_Agg ){
490 sqlite3VdbeMemFinalize(p, p->u.pDef);
491 assert( (p->flags & MEM_Agg)==0 );
492 testcase( p->flags & MEM_Dyn );
494 if( p->flags&MEM_Dyn ){
495 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
496 p->xDel((void *)p->z);
498 p->flags = MEM_Null;
502 ** Release memory held by the Mem p, both external memory cleared
503 ** by p->xDel and memory in p->zMalloc.
505 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in
506 ** the unusual case where there really is memory in p that needs
507 ** to be freed.
509 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
510 if( VdbeMemDynamic(p) ){
511 vdbeMemClearExternAndSetNull(p);
513 if( p->szMalloc ){
514 sqlite3DbFreeNN(p->db, p->zMalloc);
515 p->szMalloc = 0;
517 p->z = 0;
521 ** Release any memory resources held by the Mem. Both the memory that is
522 ** free by Mem.xDel and the Mem.zMalloc allocation are freed.
524 ** Use this routine prior to clean up prior to abandoning a Mem, or to
525 ** reset a Mem back to its minimum memory utilization.
527 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
528 ** prior to inserting new content into the Mem.
530 void sqlite3VdbeMemRelease(Mem *p){
531 assert( sqlite3VdbeCheckMemInvariants(p) );
532 if( VdbeMemDynamic(p) || p->szMalloc ){
533 vdbeMemClear(p);
538 ** Convert a 64-bit IEEE double into a 64-bit signed integer.
539 ** If the double is out of range of a 64-bit signed integer then
540 ** return the closest available 64-bit signed integer.
542 static SQLITE_NOINLINE i64 doubleToInt64(double r){
543 #ifdef SQLITE_OMIT_FLOATING_POINT
544 /* When floating-point is omitted, double and int64 are the same thing */
545 return r;
546 #else
548 ** Many compilers we encounter do not define constants for the
549 ** minimum and maximum 64-bit integers, or they define them
550 ** inconsistently. And many do not understand the "LL" notation.
551 ** So we define our own static constants here using nothing
552 ** larger than a 32-bit integer constant.
554 static const i64 maxInt = LARGEST_INT64;
555 static const i64 minInt = SMALLEST_INT64;
557 if( r<=(double)minInt ){
558 return minInt;
559 }else if( r>=(double)maxInt ){
560 return maxInt;
561 }else{
562 return (i64)r;
564 #endif
568 ** Return some kind of integer value which is the best we can do
569 ** at representing the value that *pMem describes as an integer.
570 ** If pMem is an integer, then the value is exact. If pMem is
571 ** a floating-point then the value returned is the integer part.
572 ** If pMem is a string or blob, then we make an attempt to convert
573 ** it into an integer and return that. If pMem represents an
574 ** an SQL-NULL value, return 0.
576 ** If pMem represents a string value, its encoding might be changed.
578 static SQLITE_NOINLINE i64 memIntValue(Mem *pMem){
579 i64 value = 0;
580 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
581 return value;
583 i64 sqlite3VdbeIntValue(Mem *pMem){
584 int flags;
585 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
586 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
587 flags = pMem->flags;
588 if( flags & (MEM_Int|MEM_IntReal) ){
589 testcase( flags & MEM_IntReal );
590 return pMem->u.i;
591 }else if( flags & MEM_Real ){
592 return doubleToInt64(pMem->u.r);
593 }else if( (flags & (MEM_Str|MEM_Blob))!=0 && pMem->z!=0 ){
594 return memIntValue(pMem);
595 }else{
596 return 0;
601 ** Return the best representation of pMem that we can get into a
602 ** double. If pMem is already a double or an integer, return its
603 ** value. If it is a string or blob, try to convert it to a double.
604 ** If it is a NULL, return 0.0.
606 static SQLITE_NOINLINE double memRealValue(Mem *pMem){
607 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
608 double val = (double)0;
609 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
610 return val;
612 double sqlite3VdbeRealValue(Mem *pMem){
613 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
614 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
615 if( pMem->flags & MEM_Real ){
616 return pMem->u.r;
617 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
618 testcase( pMem->flags & MEM_IntReal );
619 return (double)pMem->u.i;
620 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
621 return memRealValue(pMem);
622 }else{
623 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
624 return (double)0;
629 ** Return 1 if pMem represents true, and return 0 if pMem represents false.
630 ** Return the value ifNull if pMem is NULL.
632 int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){
633 testcase( pMem->flags & MEM_IntReal );
634 if( pMem->flags & (MEM_Int|MEM_IntReal) ) return pMem->u.i!=0;
635 if( pMem->flags & MEM_Null ) return ifNull;
636 return sqlite3VdbeRealValue(pMem)!=0.0;
640 ** The MEM structure is already a MEM_Real. Try to also make it a
641 ** MEM_Int if we can.
643 void sqlite3VdbeIntegerAffinity(Mem *pMem){
644 i64 ix;
645 assert( pMem->flags & MEM_Real );
646 assert( !sqlite3VdbeMemIsRowSet(pMem) );
647 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
648 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
650 ix = doubleToInt64(pMem->u.r);
652 /* Only mark the value as an integer if
654 ** (1) the round-trip conversion real->int->real is a no-op, and
655 ** (2) The integer is neither the largest nor the smallest
656 ** possible integer (ticket #3922)
658 ** The second and third terms in the following conditional enforces
659 ** the second condition under the assumption that addition overflow causes
660 ** values to wrap around.
662 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){
663 pMem->u.i = ix;
664 MemSetTypeFlag(pMem, MEM_Int);
669 ** Convert pMem to type integer. Invalidate any prior representations.
671 int sqlite3VdbeMemIntegerify(Mem *pMem){
672 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
673 assert( !sqlite3VdbeMemIsRowSet(pMem) );
674 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
676 pMem->u.i = sqlite3VdbeIntValue(pMem);
677 MemSetTypeFlag(pMem, MEM_Int);
678 return SQLITE_OK;
682 ** Convert pMem so that it is of type MEM_Real.
683 ** Invalidate any prior representations.
685 int sqlite3VdbeMemRealify(Mem *pMem){
686 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
687 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
689 pMem->u.r = sqlite3VdbeRealValue(pMem);
690 MemSetTypeFlag(pMem, MEM_Real);
691 return SQLITE_OK;
694 /* Compare a floating point value to an integer. Return true if the two
695 ** values are the same within the precision of the floating point value.
697 ** This function assumes that i was obtained by assignment from r1.
699 ** For some versions of GCC on 32-bit machines, if you do the more obvious
700 ** comparison of "r1==(double)i" you sometimes get an answer of false even
701 ** though the r1 and (double)i values are bit-for-bit the same.
703 int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){
704 double r2 = (double)i;
705 return r1==0.0
706 || (memcmp(&r1, &r2, sizeof(r1))==0
707 && i >= -2251799813685248LL && i < 2251799813685248LL);
711 ** Convert pMem so that it has type MEM_Real or MEM_Int.
712 ** Invalidate any prior representations.
714 ** Every effort is made to force the conversion, even if the input
715 ** is a string that does not look completely like a number. Convert
716 ** as much of the string as we can and ignore the rest.
718 int sqlite3VdbeMemNumerify(Mem *pMem){
719 testcase( pMem->flags & MEM_Int );
720 testcase( pMem->flags & MEM_Real );
721 testcase( pMem->flags & MEM_IntReal );
722 testcase( pMem->flags & MEM_Null );
723 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))==0 ){
724 int rc;
725 sqlite3_int64 ix;
726 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
727 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
728 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
729 if( ((rc==0 || rc==1) && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1)
730 || sqlite3RealSameAsInt(pMem->u.r, (ix = (i64)pMem->u.r))
732 pMem->u.i = ix;
733 MemSetTypeFlag(pMem, MEM_Int);
734 }else{
735 MemSetTypeFlag(pMem, MEM_Real);
738 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))!=0 );
739 pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero);
740 return SQLITE_OK;
744 ** Cast the datatype of the value in pMem according to the affinity
745 ** "aff". Casting is different from applying affinity in that a cast
746 ** is forced. In other words, the value is converted into the desired
747 ** affinity even if that results in loss of data. This routine is
748 ** used (for example) to implement the SQL "cast()" operator.
750 int sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){
751 if( pMem->flags & MEM_Null ) return SQLITE_OK;
752 switch( aff ){
753 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */
754 if( (pMem->flags & MEM_Blob)==0 ){
755 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
756 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
757 if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob);
758 }else{
759 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob);
761 break;
763 case SQLITE_AFF_NUMERIC: {
764 sqlite3VdbeMemNumerify(pMem);
765 break;
767 case SQLITE_AFF_INTEGER: {
768 sqlite3VdbeMemIntegerify(pMem);
769 break;
771 case SQLITE_AFF_REAL: {
772 sqlite3VdbeMemRealify(pMem);
773 break;
775 default: {
776 assert( aff==SQLITE_AFF_TEXT );
777 assert( MEM_Str==(MEM_Blob>>3) );
778 pMem->flags |= (pMem->flags&MEM_Blob)>>3;
779 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
780 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
781 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal|MEM_Blob|MEM_Zero);
782 return sqlite3VdbeChangeEncoding(pMem, encoding);
785 return SQLITE_OK;
789 ** Initialize bulk memory to be a consistent Mem object.
791 ** The minimum amount of initialization feasible is performed.
793 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
794 assert( (flags & ~MEM_TypeMask)==0 );
795 pMem->flags = flags;
796 pMem->db = db;
797 pMem->szMalloc = 0;
802 ** Delete any previous value and set the value stored in *pMem to NULL.
804 ** This routine calls the Mem.xDel destructor to dispose of values that
805 ** require the destructor. But it preserves the Mem.zMalloc memory allocation.
806 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
807 ** routine to invoke the destructor and deallocates Mem.zMalloc.
809 ** Use this routine to reset the Mem prior to insert a new value.
811 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
813 void sqlite3VdbeMemSetNull(Mem *pMem){
814 if( VdbeMemDynamic(pMem) ){
815 vdbeMemClearExternAndSetNull(pMem);
816 }else{
817 pMem->flags = MEM_Null;
820 void sqlite3ValueSetNull(sqlite3_value *p){
821 sqlite3VdbeMemSetNull((Mem*)p);
825 ** Delete any previous value and set the value to be a BLOB of length
826 ** n containing all zeros.
828 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
829 sqlite3VdbeMemRelease(pMem);
830 pMem->flags = MEM_Blob|MEM_Zero;
831 pMem->n = 0;
832 if( n<0 ) n = 0;
833 pMem->u.nZero = n;
834 pMem->enc = SQLITE_UTF8;
835 pMem->z = 0;
839 ** The pMem is known to contain content that needs to be destroyed prior
840 ** to a value change. So invoke the destructor, then set the value to
841 ** a 64-bit integer.
843 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){
844 sqlite3VdbeMemSetNull(pMem);
845 pMem->u.i = val;
846 pMem->flags = MEM_Int;
850 ** Delete any previous value and set the value stored in *pMem to val,
851 ** manifest type INTEGER.
853 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
854 if( VdbeMemDynamic(pMem) ){
855 vdbeReleaseAndSetInt64(pMem, val);
856 }else{
857 pMem->u.i = val;
858 pMem->flags = MEM_Int;
862 /* A no-op destructor */
863 void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); }
866 ** Set the value stored in *pMem should already be a NULL.
867 ** Also store a pointer to go with it.
869 void sqlite3VdbeMemSetPointer(
870 Mem *pMem,
871 void *pPtr,
872 const char *zPType,
873 void (*xDestructor)(void*)
875 assert( pMem->flags==MEM_Null );
876 pMem->u.zPType = zPType ? zPType : "";
877 pMem->z = pPtr;
878 pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term;
879 pMem->eSubtype = 'p';
880 pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor;
883 #ifndef SQLITE_OMIT_FLOATING_POINT
885 ** Delete any previous value and set the value stored in *pMem to val,
886 ** manifest type REAL.
888 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
889 sqlite3VdbeMemSetNull(pMem);
890 if( !sqlite3IsNaN(val) ){
891 pMem->u.r = val;
892 pMem->flags = MEM_Real;
895 #endif
897 #ifdef SQLITE_DEBUG
899 ** Return true if the Mem holds a RowSet object. This routine is intended
900 ** for use inside of assert() statements.
902 int sqlite3VdbeMemIsRowSet(const Mem *pMem){
903 return (pMem->flags&(MEM_Blob|MEM_Dyn))==(MEM_Blob|MEM_Dyn)
904 && pMem->xDel==sqlite3RowSetDelete;
906 #endif
909 ** Delete any previous value and set the value of pMem to be an
910 ** empty boolean index.
912 ** Return SQLITE_OK on success and SQLITE_NOMEM if a memory allocation
913 ** error occurs.
915 int sqlite3VdbeMemSetRowSet(Mem *pMem){
916 sqlite3 *db = pMem->db;
917 RowSet *p;
918 assert( db!=0 );
919 assert( !sqlite3VdbeMemIsRowSet(pMem) );
920 sqlite3VdbeMemRelease(pMem);
921 p = sqlite3RowSetInit(db);
922 if( p==0 ) return SQLITE_NOMEM;
923 pMem->z = (char*)p;
924 pMem->flags = MEM_Blob|MEM_Dyn;
925 pMem->xDel = sqlite3RowSetDelete;
926 return SQLITE_OK;
930 ** Return true if the Mem object contains a TEXT or BLOB that is
931 ** too large - whose size exceeds SQLITE_MAX_LENGTH.
933 int sqlite3VdbeMemTooBig(Mem *p){
934 assert( p->db!=0 );
935 if( p->flags & (MEM_Str|MEM_Blob) ){
936 int n = p->n;
937 if( p->flags & MEM_Zero ){
938 n += p->u.nZero;
940 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
942 return 0;
945 #ifdef SQLITE_DEBUG
947 ** This routine prepares a memory cell for modification by breaking
948 ** its link to a shallow copy and by marking any current shallow
949 ** copies of this cell as invalid.
951 ** This is used for testing and debugging only - to help ensure that shallow
952 ** copies (created by OP_SCopy) are not misused.
954 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){
955 int i;
956 Mem *pX;
957 for(i=1, pX=pVdbe->aMem+1; i<pVdbe->nMem; i++, pX++){
958 if( pX->pScopyFrom==pMem ){
959 u16 mFlags;
960 if( pVdbe->db->flags & SQLITE_VdbeTrace ){
961 sqlite3DebugPrintf("Invalidate R[%d] due to change in R[%d]\n",
962 (int)(pX - pVdbe->aMem), (int)(pMem - pVdbe->aMem));
964 /* If pX is marked as a shallow copy of pMem, then verify that
965 ** no significant changes have been made to pX since the OP_SCopy.
966 ** A significant change would indicated a missed call to this
967 ** function for pX. Minor changes, such as adding or removing a
968 ** dual type, are allowed, as long as the underlying value is the
969 ** same. */
970 mFlags = pMem->flags & pX->flags & pX->mScopyFlags;
971 assert( (mFlags&(MEM_Int|MEM_IntReal))==0 || pMem->u.i==pX->u.i );
972 /* assert( (mFlags&MEM_Real)==0 || pMem->u.r==pX->u.r ); */
973 /* ^^ */
974 /* Cannot reliably compare doubles for equality */
975 assert( (mFlags&MEM_Str)==0 || (pMem->n==pX->n && pMem->z==pX->z) );
976 assert( (mFlags&MEM_Blob)==0 || sqlite3BlobCompare(pMem,pX)==0 );
978 /* pMem is the register that is changing. But also mark pX as
979 ** undefined so that we can quickly detect the shallow-copy error */
980 pX->flags = MEM_Undefined;
981 pX->pScopyFrom = 0;
984 pMem->pScopyFrom = 0;
986 #endif /* SQLITE_DEBUG */
989 ** Make an shallow copy of pFrom into pTo. Prior contents of
990 ** pTo are freed. The pFrom->z field is not duplicated. If
991 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
992 ** and flags gets srcType (either MEM_Ephem or MEM_Static).
994 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){
995 vdbeMemClearExternAndSetNull(pTo);
996 assert( !VdbeMemDynamic(pTo) );
997 sqlite3VdbeMemShallowCopy(pTo, pFrom, eType);
999 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
1000 assert( !sqlite3VdbeMemIsRowSet(pFrom) );
1001 assert( pTo->db==pFrom->db );
1002 if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; }
1003 memcpy(pTo, pFrom, MEMCELLSIZE);
1004 if( (pFrom->flags&MEM_Static)==0 ){
1005 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
1006 assert( srcType==MEM_Ephem || srcType==MEM_Static );
1007 pTo->flags |= srcType;
1012 ** Make a full copy of pFrom into pTo. Prior contents of pTo are
1013 ** freed before the copy is made.
1015 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
1016 int rc = SQLITE_OK;
1018 assert( !sqlite3VdbeMemIsRowSet(pFrom) );
1019 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
1020 memcpy(pTo, pFrom, MEMCELLSIZE);
1021 pTo->flags &= ~MEM_Dyn;
1022 if( pTo->flags&(MEM_Str|MEM_Blob) ){
1023 if( 0==(pFrom->flags&MEM_Static) ){
1024 pTo->flags |= MEM_Ephem;
1025 rc = sqlite3VdbeMemMakeWriteable(pTo);
1029 return rc;
1033 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
1034 ** freed. If pFrom contains ephemeral data, a copy is made.
1036 ** pFrom contains an SQL NULL when this routine returns.
1038 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
1039 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
1040 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
1041 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
1043 sqlite3VdbeMemRelease(pTo);
1044 memcpy(pTo, pFrom, sizeof(Mem));
1045 pFrom->flags = MEM_Null;
1046 pFrom->szMalloc = 0;
1050 ** Change the value of a Mem to be a string or a BLOB.
1052 ** The memory management strategy depends on the value of the xDel
1053 ** parameter. If the value passed is SQLITE_TRANSIENT, then the
1054 ** string is copied into a (possibly existing) buffer managed by the
1055 ** Mem structure. Otherwise, any existing buffer is freed and the
1056 ** pointer copied.
1058 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
1059 ** size limit) then no memory allocation occurs. If the string can be
1060 ** stored without allocating memory, then it is. If a memory allocation
1061 ** is required to store the string, then value of pMem is unchanged. In
1062 ** either case, SQLITE_TOOBIG is returned.
1064 int sqlite3VdbeMemSetStr(
1065 Mem *pMem, /* Memory cell to set to string value */
1066 const char *z, /* String pointer */
1067 int n, /* Bytes in string, or negative */
1068 u8 enc, /* Encoding of z. 0 for BLOBs */
1069 void (*xDel)(void*) /* Destructor function */
1071 int nByte = n; /* New value for pMem->n */
1072 int iLimit; /* Maximum allowed string or blob size */
1073 u16 flags = 0; /* New value for pMem->flags */
1075 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
1076 assert( !sqlite3VdbeMemIsRowSet(pMem) );
1078 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
1079 if( !z ){
1080 sqlite3VdbeMemSetNull(pMem);
1081 return SQLITE_OK;
1084 if( pMem->db ){
1085 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
1086 }else{
1087 iLimit = SQLITE_MAX_LENGTH;
1089 flags = (enc==0?MEM_Blob:MEM_Str);
1090 if( nByte<0 ){
1091 assert( enc!=0 );
1092 if( enc==SQLITE_UTF8 ){
1093 nByte = 0x7fffffff & (int)strlen(z);
1094 }else{
1095 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
1097 flags |= MEM_Term;
1100 /* The following block sets the new values of Mem.z and Mem.xDel. It
1101 ** also sets a flag in local variable "flags" to indicate the memory
1102 ** management (one of MEM_Dyn or MEM_Static).
1104 if( xDel==SQLITE_TRANSIENT ){
1105 u32 nAlloc = nByte;
1106 if( flags&MEM_Term ){
1107 nAlloc += (enc==SQLITE_UTF8?1:2);
1109 if( nByte>iLimit ){
1110 return sqlite3ErrorToParser(pMem->db, SQLITE_TOOBIG);
1112 testcase( nAlloc==0 );
1113 testcase( nAlloc==31 );
1114 testcase( nAlloc==32 );
1115 if( sqlite3VdbeMemClearAndResize(pMem, (int)MAX(nAlloc,32)) ){
1116 return SQLITE_NOMEM_BKPT;
1118 memcpy(pMem->z, z, nAlloc);
1119 }else{
1120 sqlite3VdbeMemRelease(pMem);
1121 pMem->z = (char *)z;
1122 if( xDel==SQLITE_DYNAMIC ){
1123 pMem->zMalloc = pMem->z;
1124 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
1125 }else{
1126 pMem->xDel = xDel;
1127 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
1131 pMem->n = nByte;
1132 pMem->flags = flags;
1133 if( enc ){
1134 pMem->enc = enc;
1135 #ifdef SQLITE_ENABLE_SESSION
1136 }else if( pMem->db==0 ){
1137 pMem->enc = SQLITE_UTF8;
1138 #endif
1139 }else{
1140 assert( pMem->db!=0 );
1141 pMem->enc = ENC(pMem->db);
1144 #ifndef SQLITE_OMIT_UTF16
1145 if( enc>SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
1146 return SQLITE_NOMEM_BKPT;
1148 #endif
1150 if( nByte>iLimit ){
1151 return SQLITE_TOOBIG;
1154 return SQLITE_OK;
1158 ** Move data out of a btree key or data field and into a Mem structure.
1159 ** The data is payload from the entry that pCur is currently pointing
1160 ** to. offset and amt determine what portion of the data or key to retrieve.
1161 ** The result is written into the pMem element.
1163 ** The pMem object must have been initialized. This routine will use
1164 ** pMem->zMalloc to hold the content from the btree, if possible. New
1165 ** pMem->zMalloc space will be allocated if necessary. The calling routine
1166 ** is responsible for making sure that the pMem object is eventually
1167 ** destroyed.
1169 ** If this routine fails for any reason (malloc returns NULL or unable
1170 ** to read from the disk) then the pMem is left in an inconsistent state.
1172 int sqlite3VdbeMemFromBtree(
1173 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
1174 u32 offset, /* Offset from the start of data to return bytes from. */
1175 u32 amt, /* Number of bytes to return. */
1176 Mem *pMem /* OUT: Return data in this Mem structure. */
1178 int rc;
1179 pMem->flags = MEM_Null;
1180 if( sqlite3BtreeMaxRecordSize(pCur)<offset+amt ){
1181 return SQLITE_CORRUPT_BKPT;
1183 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){
1184 rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z);
1185 if( rc==SQLITE_OK ){
1186 pMem->z[amt] = 0; /* Overrun area used when reading malformed records */
1187 pMem->flags = MEM_Blob;
1188 pMem->n = (int)amt;
1189 }else{
1190 sqlite3VdbeMemRelease(pMem);
1193 return rc;
1195 int sqlite3VdbeMemFromBtreeZeroOffset(
1196 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
1197 u32 amt, /* Number of bytes to return. */
1198 Mem *pMem /* OUT: Return data in this Mem structure. */
1200 u32 available = 0; /* Number of bytes available on the local btree page */
1201 int rc = SQLITE_OK; /* Return code */
1203 assert( sqlite3BtreeCursorIsValid(pCur) );
1204 assert( !VdbeMemDynamic(pMem) );
1206 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
1207 ** that both the BtShared and database handle mutexes are held. */
1208 assert( !sqlite3VdbeMemIsRowSet(pMem) );
1209 pMem->z = (char *)sqlite3BtreePayloadFetch(pCur, &available);
1210 assert( pMem->z!=0 );
1212 if( amt<=available ){
1213 pMem->flags = MEM_Blob|MEM_Ephem;
1214 pMem->n = (int)amt;
1215 }else{
1216 rc = sqlite3VdbeMemFromBtree(pCur, 0, amt, pMem);
1219 return rc;
1223 ** The pVal argument is known to be a value other than NULL.
1224 ** Convert it into a string with encoding enc and return a pointer
1225 ** to a zero-terminated version of that string.
1227 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){
1228 assert( pVal!=0 );
1229 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1230 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1231 assert( !sqlite3VdbeMemIsRowSet(pVal) );
1232 assert( (pVal->flags & (MEM_Null))==0 );
1233 if( pVal->flags & (MEM_Blob|MEM_Str) ){
1234 if( ExpandBlob(pVal) ) return 0;
1235 pVal->flags |= MEM_Str;
1236 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){
1237 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
1239 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
1240 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
1241 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
1242 return 0;
1245 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */
1246 }else{
1247 sqlite3VdbeMemStringify(pVal, enc, 0);
1248 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
1250 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
1251 || pVal->db->mallocFailed );
1252 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
1253 assert( sqlite3VdbeMemValidStrRep(pVal) );
1254 return pVal->z;
1255 }else{
1256 return 0;
1260 /* This function is only available internally, it is not part of the
1261 ** external API. It works in a similar way to sqlite3_value_text(),
1262 ** except the data returned is in the encoding specified by the second
1263 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
1264 ** SQLITE_UTF8.
1266 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
1267 ** If that is the case, then the result must be aligned on an even byte
1268 ** boundary.
1270 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
1271 if( !pVal ) return 0;
1272 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1273 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1274 assert( !sqlite3VdbeMemIsRowSet(pVal) );
1275 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){
1276 assert( sqlite3VdbeMemValidStrRep(pVal) );
1277 return pVal->z;
1279 if( pVal->flags&MEM_Null ){
1280 return 0;
1282 return valueToText(pVal, enc);
1286 ** Create a new sqlite3_value object.
1288 sqlite3_value *sqlite3ValueNew(sqlite3 *db){
1289 Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
1290 if( p ){
1291 p->flags = MEM_Null;
1292 p->db = db;
1294 return p;
1298 ** Context object passed by sqlite3Stat4ProbeSetValue() through to
1299 ** valueNew(). See comments above valueNew() for details.
1301 struct ValueNewStat4Ctx {
1302 Parse *pParse;
1303 Index *pIdx;
1304 UnpackedRecord **ppRec;
1305 int iVal;
1309 ** Allocate and return a pointer to a new sqlite3_value object. If
1310 ** the second argument to this function is NULL, the object is allocated
1311 ** by calling sqlite3ValueNew().
1313 ** Otherwise, if the second argument is non-zero, then this function is
1314 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
1315 ** already been allocated, allocate the UnpackedRecord structure that
1316 ** that function will return to its caller here. Then return a pointer to
1317 ** an sqlite3_value within the UnpackedRecord.a[] array.
1319 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){
1320 #ifdef SQLITE_ENABLE_STAT4
1321 if( p ){
1322 UnpackedRecord *pRec = p->ppRec[0];
1324 if( pRec==0 ){
1325 Index *pIdx = p->pIdx; /* Index being probed */
1326 int nByte; /* Bytes of space to allocate */
1327 int i; /* Counter variable */
1328 int nCol = pIdx->nColumn; /* Number of index columns including rowid */
1330 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord));
1331 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
1332 if( pRec ){
1333 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx);
1334 if( pRec->pKeyInfo ){
1335 assert( pRec->pKeyInfo->nAllField==nCol );
1336 assert( pRec->pKeyInfo->enc==ENC(db) );
1337 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
1338 for(i=0; i<nCol; i++){
1339 pRec->aMem[i].flags = MEM_Null;
1340 pRec->aMem[i].db = db;
1342 }else{
1343 sqlite3DbFreeNN(db, pRec);
1344 pRec = 0;
1347 if( pRec==0 ) return 0;
1348 p->ppRec[0] = pRec;
1351 pRec->nField = p->iVal+1;
1352 return &pRec->aMem[p->iVal];
1354 #else
1355 UNUSED_PARAMETER(p);
1356 #endif /* defined(SQLITE_ENABLE_STAT4) */
1357 return sqlite3ValueNew(db);
1361 ** The expression object indicated by the second argument is guaranteed
1362 ** to be a scalar SQL function. If
1364 ** * all function arguments are SQL literals,
1365 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and
1366 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set,
1368 ** then this routine attempts to invoke the SQL function. Assuming no
1369 ** error occurs, output parameter (*ppVal) is set to point to a value
1370 ** object containing the result before returning SQLITE_OK.
1372 ** Affinity aff is applied to the result of the function before returning.
1373 ** If the result is a text value, the sqlite3_value object uses encoding
1374 ** enc.
1376 ** If the conditions above are not met, this function returns SQLITE_OK
1377 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
1378 ** NULL and an SQLite error code returned.
1380 #ifdef SQLITE_ENABLE_STAT4
1381 static int valueFromFunction(
1382 sqlite3 *db, /* The database connection */
1383 Expr *p, /* The expression to evaluate */
1384 u8 enc, /* Encoding to use */
1385 u8 aff, /* Affinity to use */
1386 sqlite3_value **ppVal, /* Write the new value here */
1387 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
1389 sqlite3_context ctx; /* Context object for function invocation */
1390 sqlite3_value **apVal = 0; /* Function arguments */
1391 int nVal = 0; /* Size of apVal[] array */
1392 FuncDef *pFunc = 0; /* Function definition */
1393 sqlite3_value *pVal = 0; /* New value */
1394 int rc = SQLITE_OK; /* Return code */
1395 ExprList *pList = 0; /* Function arguments */
1396 int i; /* Iterator variable */
1398 assert( pCtx!=0 );
1399 assert( (p->flags & EP_TokenOnly)==0 );
1400 pList = p->x.pList;
1401 if( pList ) nVal = pList->nExpr;
1402 pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0);
1403 assert( pFunc );
1404 if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0
1405 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
1407 return SQLITE_OK;
1410 if( pList ){
1411 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal);
1412 if( apVal==0 ){
1413 rc = SQLITE_NOMEM_BKPT;
1414 goto value_from_function_out;
1416 for(i=0; i<nVal; i++){
1417 rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]);
1418 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out;
1422 pVal = valueNew(db, pCtx);
1423 if( pVal==0 ){
1424 rc = SQLITE_NOMEM_BKPT;
1425 goto value_from_function_out;
1428 assert( pCtx->pParse->rc==SQLITE_OK );
1429 memset(&ctx, 0, sizeof(ctx));
1430 ctx.pOut = pVal;
1431 ctx.pFunc = pFunc;
1432 pFunc->xSFunc(&ctx, nVal, apVal);
1433 if( ctx.isError ){
1434 rc = ctx.isError;
1435 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal));
1436 }else{
1437 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8);
1438 assert( rc==SQLITE_OK );
1439 rc = sqlite3VdbeChangeEncoding(pVal, enc);
1440 if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){
1441 rc = SQLITE_TOOBIG;
1442 pCtx->pParse->nErr++;
1445 pCtx->pParse->rc = rc;
1447 value_from_function_out:
1448 if( rc!=SQLITE_OK ){
1449 pVal = 0;
1451 if( apVal ){
1452 for(i=0; i<nVal; i++){
1453 sqlite3ValueFree(apVal[i]);
1455 sqlite3DbFreeNN(db, apVal);
1458 *ppVal = pVal;
1459 return rc;
1461 #else
1462 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
1463 #endif /* defined(SQLITE_ENABLE_STAT4) */
1466 ** Extract a value from the supplied expression in the manner described
1467 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
1468 ** using valueNew().
1470 ** If pCtx is NULL and an error occurs after the sqlite3_value object
1471 ** has been allocated, it is freed before returning. Or, if pCtx is not
1472 ** NULL, it is assumed that the caller will free any allocated object
1473 ** in all cases.
1475 static int valueFromExpr(
1476 sqlite3 *db, /* The database connection */
1477 Expr *pExpr, /* The expression to evaluate */
1478 u8 enc, /* Encoding to use */
1479 u8 affinity, /* Affinity to use */
1480 sqlite3_value **ppVal, /* Write the new value here */
1481 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
1483 int op;
1484 char *zVal = 0;
1485 sqlite3_value *pVal = 0;
1486 int negInt = 1;
1487 const char *zNeg = "";
1488 int rc = SQLITE_OK;
1490 assert( pExpr!=0 );
1491 while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft;
1492 #if defined(SQLITE_ENABLE_STAT4)
1493 if( op==TK_REGISTER ) op = pExpr->op2;
1494 #else
1495 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
1496 #endif
1498 /* Compressed expressions only appear when parsing the DEFAULT clause
1499 ** on a table column definition, and hence only when pCtx==0. This
1500 ** check ensures that an EP_TokenOnly expression is never passed down
1501 ** into valueFromFunction(). */
1502 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 );
1504 if( op==TK_CAST ){
1505 u8 aff = sqlite3AffinityType(pExpr->u.zToken,0);
1506 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx);
1507 testcase( rc!=SQLITE_OK );
1508 if( *ppVal ){
1509 sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8);
1510 sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8);
1512 return rc;
1515 /* Handle negative integers in a single step. This is needed in the
1516 ** case when the value is -9223372036854775808.
1518 if( op==TK_UMINUS
1519 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
1520 pExpr = pExpr->pLeft;
1521 op = pExpr->op;
1522 negInt = -1;
1523 zNeg = "-";
1526 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
1527 pVal = valueNew(db, pCtx);
1528 if( pVal==0 ) goto no_mem;
1529 if( ExprHasProperty(pExpr, EP_IntValue) ){
1530 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
1531 }else{
1532 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
1533 if( zVal==0 ) goto no_mem;
1534 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
1536 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){
1537 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
1538 }else{
1539 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
1541 assert( (pVal->flags & MEM_IntReal)==0 );
1542 if( pVal->flags & (MEM_Int|MEM_IntReal|MEM_Real) ){
1543 testcase( pVal->flags & MEM_Int );
1544 testcase( pVal->flags & MEM_Real );
1545 pVal->flags &= ~MEM_Str;
1547 if( enc!=SQLITE_UTF8 ){
1548 rc = sqlite3VdbeChangeEncoding(pVal, enc);
1550 }else if( op==TK_UMINUS ) {
1551 /* This branch happens for multiple negative signs. Ex: -(-5) */
1552 if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx)
1553 && pVal!=0
1555 sqlite3VdbeMemNumerify(pVal);
1556 if( pVal->flags & MEM_Real ){
1557 pVal->u.r = -pVal->u.r;
1558 }else if( pVal->u.i==SMALLEST_INT64 ){
1559 #ifndef SQLITE_OMIT_FLOATING_POINT
1560 pVal->u.r = -(double)SMALLEST_INT64;
1561 #else
1562 pVal->u.r = LARGEST_INT64;
1563 #endif
1564 MemSetTypeFlag(pVal, MEM_Real);
1565 }else{
1566 pVal->u.i = -pVal->u.i;
1568 sqlite3ValueApplyAffinity(pVal, affinity, enc);
1570 }else if( op==TK_NULL ){
1571 pVal = valueNew(db, pCtx);
1572 if( pVal==0 ) goto no_mem;
1573 sqlite3VdbeMemSetNull(pVal);
1575 #ifndef SQLITE_OMIT_BLOB_LITERAL
1576 else if( op==TK_BLOB ){
1577 int nVal;
1578 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
1579 assert( pExpr->u.zToken[1]=='\'' );
1580 pVal = valueNew(db, pCtx);
1581 if( !pVal ) goto no_mem;
1582 zVal = &pExpr->u.zToken[2];
1583 nVal = sqlite3Strlen30(zVal)-1;
1584 assert( zVal[nVal]=='\'' );
1585 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
1586 0, SQLITE_DYNAMIC);
1588 #endif
1589 #ifdef SQLITE_ENABLE_STAT4
1590 else if( op==TK_FUNCTION && pCtx!=0 ){
1591 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx);
1593 #endif
1594 else if( op==TK_TRUEFALSE ){
1595 pVal = valueNew(db, pCtx);
1596 if( pVal ){
1597 pVal->flags = MEM_Int;
1598 pVal->u.i = pExpr->u.zToken[4]==0;
1602 *ppVal = pVal;
1603 return rc;
1605 no_mem:
1606 #ifdef SQLITE_ENABLE_STAT4
1607 if( pCtx==0 || pCtx->pParse->nErr==0 )
1608 #endif
1609 sqlite3OomFault(db);
1610 sqlite3DbFree(db, zVal);
1611 assert( *ppVal==0 );
1612 #ifdef SQLITE_ENABLE_STAT4
1613 if( pCtx==0 ) sqlite3ValueFree(pVal);
1614 #else
1615 assert( pCtx==0 ); sqlite3ValueFree(pVal);
1616 #endif
1617 return SQLITE_NOMEM_BKPT;
1621 ** Create a new sqlite3_value object, containing the value of pExpr.
1623 ** This only works for very simple expressions that consist of one constant
1624 ** token (i.e. "5", "5.1", "'a string'"). If the expression can
1625 ** be converted directly into a value, then the value is allocated and
1626 ** a pointer written to *ppVal. The caller is responsible for deallocating
1627 ** the value by passing it to sqlite3ValueFree() later on. If the expression
1628 ** cannot be converted to a value, then *ppVal is set to NULL.
1630 int sqlite3ValueFromExpr(
1631 sqlite3 *db, /* The database connection */
1632 Expr *pExpr, /* The expression to evaluate */
1633 u8 enc, /* Encoding to use */
1634 u8 affinity, /* Affinity to use */
1635 sqlite3_value **ppVal /* Write the new value here */
1637 return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0;
1640 #ifdef SQLITE_ENABLE_STAT4
1642 ** Attempt to extract a value from pExpr and use it to construct *ppVal.
1644 ** If pAlloc is not NULL, then an UnpackedRecord object is created for
1645 ** pAlloc if one does not exist and the new value is added to the
1646 ** UnpackedRecord object.
1648 ** A value is extracted in the following cases:
1650 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1652 ** * The expression is a bound variable, and this is a reprepare, or
1654 ** * The expression is a literal value.
1656 ** On success, *ppVal is made to point to the extracted value. The caller
1657 ** is responsible for ensuring that the value is eventually freed.
1659 static int stat4ValueFromExpr(
1660 Parse *pParse, /* Parse context */
1661 Expr *pExpr, /* The expression to extract a value from */
1662 u8 affinity, /* Affinity to use */
1663 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */
1664 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1666 int rc = SQLITE_OK;
1667 sqlite3_value *pVal = 0;
1668 sqlite3 *db = pParse->db;
1670 /* Skip over any TK_COLLATE nodes */
1671 pExpr = sqlite3ExprSkipCollate(pExpr);
1673 assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE );
1674 if( !pExpr ){
1675 pVal = valueNew(db, pAlloc);
1676 if( pVal ){
1677 sqlite3VdbeMemSetNull((Mem*)pVal);
1679 }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){
1680 Vdbe *v;
1681 int iBindVar = pExpr->iColumn;
1682 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar);
1683 if( (v = pParse->pReprepare)!=0 ){
1684 pVal = valueNew(db, pAlloc);
1685 if( pVal ){
1686 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
1687 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db));
1688 pVal->db = pParse->db;
1691 }else{
1692 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc);
1695 assert( pVal==0 || pVal->db==db );
1696 *ppVal = pVal;
1697 return rc;
1701 ** This function is used to allocate and populate UnpackedRecord
1702 ** structures intended to be compared against sample index keys stored
1703 ** in the sqlite_stat4 table.
1705 ** A single call to this function populates zero or more fields of the
1706 ** record starting with field iVal (fields are numbered from left to
1707 ** right starting with 0). A single field is populated if:
1709 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1711 ** * The expression is a bound variable, and this is a reprepare, or
1713 ** * The sqlite3ValueFromExpr() function is able to extract a value
1714 ** from the expression (i.e. the expression is a literal value).
1716 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the
1717 ** vector components that match either of the two latter criteria listed
1718 ** above.
1720 ** Before any value is appended to the record, the affinity of the
1721 ** corresponding column within index pIdx is applied to it. Before
1722 ** this function returns, output parameter *pnExtract is set to the
1723 ** number of values appended to the record.
1725 ** When this function is called, *ppRec must either point to an object
1726 ** allocated by an earlier call to this function, or must be NULL. If it
1727 ** is NULL and a value can be successfully extracted, a new UnpackedRecord
1728 ** is allocated (and *ppRec set to point to it) before returning.
1730 ** Unless an error is encountered, SQLITE_OK is returned. It is not an
1731 ** error if a value cannot be extracted from pExpr. If an error does
1732 ** occur, an SQLite error code is returned.
1734 int sqlite3Stat4ProbeSetValue(
1735 Parse *pParse, /* Parse context */
1736 Index *pIdx, /* Index being probed */
1737 UnpackedRecord **ppRec, /* IN/OUT: Probe record */
1738 Expr *pExpr, /* The expression to extract a value from */
1739 int nElem, /* Maximum number of values to append */
1740 int iVal, /* Array element to populate */
1741 int *pnExtract /* OUT: Values appended to the record */
1743 int rc = SQLITE_OK;
1744 int nExtract = 0;
1746 if( pExpr==0 || pExpr->op!=TK_SELECT ){
1747 int i;
1748 struct ValueNewStat4Ctx alloc;
1750 alloc.pParse = pParse;
1751 alloc.pIdx = pIdx;
1752 alloc.ppRec = ppRec;
1754 for(i=0; i<nElem; i++){
1755 sqlite3_value *pVal = 0;
1756 Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0);
1757 u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i);
1758 alloc.iVal = iVal+i;
1759 rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal);
1760 if( !pVal ) break;
1761 nExtract++;
1765 *pnExtract = nExtract;
1766 return rc;
1770 ** Attempt to extract a value from expression pExpr using the methods
1771 ** as described for sqlite3Stat4ProbeSetValue() above.
1773 ** If successful, set *ppVal to point to a new value object and return
1774 ** SQLITE_OK. If no value can be extracted, but no other error occurs
1775 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
1776 ** does occur, return an SQLite error code. The final value of *ppVal
1777 ** is undefined in this case.
1779 int sqlite3Stat4ValueFromExpr(
1780 Parse *pParse, /* Parse context */
1781 Expr *pExpr, /* The expression to extract a value from */
1782 u8 affinity, /* Affinity to use */
1783 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1785 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal);
1789 ** Extract the iCol-th column from the nRec-byte record in pRec. Write
1790 ** the column value into *ppVal. If *ppVal is initially NULL then a new
1791 ** sqlite3_value object is allocated.
1793 ** If *ppVal is initially NULL then the caller is responsible for
1794 ** ensuring that the value written into *ppVal is eventually freed.
1796 int sqlite3Stat4Column(
1797 sqlite3 *db, /* Database handle */
1798 const void *pRec, /* Pointer to buffer containing record */
1799 int nRec, /* Size of buffer pRec in bytes */
1800 int iCol, /* Column to extract */
1801 sqlite3_value **ppVal /* OUT: Extracted value */
1803 u32 t = 0; /* a column type code */
1804 int nHdr; /* Size of the header in the record */
1805 int iHdr; /* Next unread header byte */
1806 int iField; /* Next unread data byte */
1807 int szField = 0; /* Size of the current data field */
1808 int i; /* Column index */
1809 u8 *a = (u8*)pRec; /* Typecast byte array */
1810 Mem *pMem = *ppVal; /* Write result into this Mem object */
1812 assert( iCol>0 );
1813 iHdr = getVarint32(a, nHdr);
1814 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT;
1815 iField = nHdr;
1816 for(i=0; i<=iCol; i++){
1817 iHdr += getVarint32(&a[iHdr], t);
1818 testcase( iHdr==nHdr );
1819 testcase( iHdr==nHdr+1 );
1820 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT;
1821 szField = sqlite3VdbeSerialTypeLen(t);
1822 iField += szField;
1824 testcase( iField==nRec );
1825 testcase( iField==nRec+1 );
1826 if( iField>nRec ) return SQLITE_CORRUPT_BKPT;
1827 if( pMem==0 ){
1828 pMem = *ppVal = sqlite3ValueNew(db);
1829 if( pMem==0 ) return SQLITE_NOMEM_BKPT;
1831 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem);
1832 pMem->enc = ENC(db);
1833 return SQLITE_OK;
1837 ** Unless it is NULL, the argument must be an UnpackedRecord object returned
1838 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
1839 ** the object.
1841 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
1842 if( pRec ){
1843 int i;
1844 int nCol = pRec->pKeyInfo->nAllField;
1845 Mem *aMem = pRec->aMem;
1846 sqlite3 *db = aMem[0].db;
1847 for(i=0; i<nCol; i++){
1848 sqlite3VdbeMemRelease(&aMem[i]);
1850 sqlite3KeyInfoUnref(pRec->pKeyInfo);
1851 sqlite3DbFreeNN(db, pRec);
1854 #endif /* ifdef SQLITE_ENABLE_STAT4 */
1857 ** Change the string value of an sqlite3_value object
1859 void sqlite3ValueSetStr(
1860 sqlite3_value *v, /* Value to be set */
1861 int n, /* Length of string z */
1862 const void *z, /* Text of the new string */
1863 u8 enc, /* Encoding to use */
1864 void (*xDel)(void*) /* Destructor for the string */
1866 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
1870 ** Free an sqlite3_value object
1872 void sqlite3ValueFree(sqlite3_value *v){
1873 if( !v ) return;
1874 sqlite3VdbeMemRelease((Mem *)v);
1875 sqlite3DbFreeNN(((Mem*)v)->db, v);
1879 ** The sqlite3ValueBytes() routine returns the number of bytes in the
1880 ** sqlite3_value object assuming that it uses the encoding "enc".
1881 ** The valueBytes() routine is a helper function.
1883 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){
1884 return valueToText(pVal, enc)!=0 ? pVal->n : 0;
1886 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
1887 Mem *p = (Mem*)pVal;
1888 assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 );
1889 if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){
1890 return p->n;
1892 if( (p->flags & MEM_Blob)!=0 ){
1893 if( p->flags & MEM_Zero ){
1894 return p->n + p->u.nZero;
1895 }else{
1896 return p->n;
1899 if( p->flags & MEM_Null ) return 0;
1900 return valueBytes(pVal, enc);