Snapshot of upstream SQLite check-in 5a877221
[sqlcipher.git] / src / pragma.c
blob60e18e7f04583cd0c8b363186e07c5ed4b7f69ba
1 /*
2 ** 2003 April 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used to implement the PRAGMA command.
14 #include "sqliteInt.h"
16 #if !defined(SQLITE_ENABLE_LOCKING_STYLE)
17 # if defined(__APPLE__)
18 # define SQLITE_ENABLE_LOCKING_STYLE 1
19 # else
20 # define SQLITE_ENABLE_LOCKING_STYLE 0
21 # endif
22 #endif
24 /***************************************************************************
25 ** The "pragma.h" include file is an automatically generated file that
26 ** that includes the PragType_XXXX macro definitions and the aPragmaName[]
27 ** object. This ensures that the aPragmaName[] table is arranged in
28 ** lexicographical order to facility a binary search of the pragma name.
29 ** Do not edit pragma.h directly. Edit and rerun the script in at
30 ** ../tool/mkpragmatab.tcl. */
31 #include "pragma.h"
34 ** Interpret the given string as a safety level. Return 0 for OFF,
35 ** 1 for ON or NORMAL, 2 for FULL, and 3 for EXTRA. Return 1 for an empty or
36 ** unrecognized string argument. The FULL and EXTRA option is disallowed
37 ** if the omitFull parameter it 1.
39 ** Note that the values returned are one less that the values that
40 ** should be passed into sqlite3BtreeSetSafetyLevel(). The is done
41 ** to support legacy SQL code. The safety level used to be boolean
42 ** and older scripts may have used numbers 0 for OFF and 1 for ON.
44 static u8 getSafetyLevel(const char *z, int omitFull, u8 dflt){
45 /* 123456789 123456789 123 */
46 static const char zText[] = "onoffalseyestruextrafull";
47 static const u8 iOffset[] = {0, 1, 2, 4, 9, 12, 15, 20};
48 static const u8 iLength[] = {2, 2, 3, 5, 3, 4, 5, 4};
49 static const u8 iValue[] = {1, 0, 0, 0, 1, 1, 3, 2};
50 /* on no off false yes true extra full */
51 int i, n;
52 if( sqlite3Isdigit(*z) ){
53 return (u8)sqlite3Atoi(z);
55 n = sqlite3Strlen30(z);
56 for(i=0; i<ArraySize(iLength); i++){
57 if( iLength[i]==n && sqlite3StrNICmp(&zText[iOffset[i]],z,n)==0
58 && (!omitFull || iValue[i]<=1)
60 return iValue[i];
63 return dflt;
67 ** Interpret the given string as a boolean value.
69 u8 sqlite3GetBoolean(const char *z, u8 dflt){
70 return getSafetyLevel(z,1,dflt)!=0;
73 /* The sqlite3GetBoolean() function is used by other modules but the
74 ** remainder of this file is specific to PRAGMA processing. So omit
75 ** the rest of the file if PRAGMAs are omitted from the build.
77 #if !defined(SQLITE_OMIT_PRAGMA)
80 ** Interpret the given string as a locking mode value.
82 static int getLockingMode(const char *z){
83 if( z ){
84 if( 0==sqlite3StrICmp(z, "exclusive") ) return PAGER_LOCKINGMODE_EXCLUSIVE;
85 if( 0==sqlite3StrICmp(z, "normal") ) return PAGER_LOCKINGMODE_NORMAL;
87 return PAGER_LOCKINGMODE_QUERY;
90 #ifndef SQLITE_OMIT_AUTOVACUUM
92 ** Interpret the given string as an auto-vacuum mode value.
94 ** The following strings, "none", "full" and "incremental" are
95 ** acceptable, as are their numeric equivalents: 0, 1 and 2 respectively.
97 static int getAutoVacuum(const char *z){
98 int i;
99 if( 0==sqlite3StrICmp(z, "none") ) return BTREE_AUTOVACUUM_NONE;
100 if( 0==sqlite3StrICmp(z, "full") ) return BTREE_AUTOVACUUM_FULL;
101 if( 0==sqlite3StrICmp(z, "incremental") ) return BTREE_AUTOVACUUM_INCR;
102 i = sqlite3Atoi(z);
103 return (u8)((i>=0&&i<=2)?i:0);
105 #endif /* ifndef SQLITE_OMIT_AUTOVACUUM */
107 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
109 ** Interpret the given string as a temp db location. Return 1 for file
110 ** backed temporary databases, 2 for the Red-Black tree in memory database
111 ** and 0 to use the compile-time default.
113 static int getTempStore(const char *z){
114 if( z[0]>='0' && z[0]<='2' ){
115 return z[0] - '0';
116 }else if( sqlite3StrICmp(z, "file")==0 ){
117 return 1;
118 }else if( sqlite3StrICmp(z, "memory")==0 ){
119 return 2;
120 }else{
121 return 0;
124 #endif /* SQLITE_PAGER_PRAGMAS */
126 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
128 ** Invalidate temp storage, either when the temp storage is changed
129 ** from default, or when 'file' and the temp_store_directory has changed
131 static int invalidateTempStorage(Parse *pParse){
132 sqlite3 *db = pParse->db;
133 if( db->aDb[1].pBt!=0 ){
134 if( !db->autoCommit || sqlite3BtreeIsInReadTrans(db->aDb[1].pBt) ){
135 sqlite3ErrorMsg(pParse, "temporary storage cannot be changed "
136 "from within a transaction");
137 return SQLITE_ERROR;
139 sqlite3BtreeClose(db->aDb[1].pBt);
140 db->aDb[1].pBt = 0;
141 sqlite3ResetAllSchemasOfConnection(db);
143 return SQLITE_OK;
145 #endif /* SQLITE_PAGER_PRAGMAS */
147 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
149 ** If the TEMP database is open, close it and mark the database schema
150 ** as needing reloading. This must be done when using the SQLITE_TEMP_STORE
151 ** or DEFAULT_TEMP_STORE pragmas.
153 static int changeTempStorage(Parse *pParse, const char *zStorageType){
154 int ts = getTempStore(zStorageType);
155 sqlite3 *db = pParse->db;
156 if( db->temp_store==ts ) return SQLITE_OK;
157 if( invalidateTempStorage( pParse ) != SQLITE_OK ){
158 return SQLITE_ERROR;
160 db->temp_store = (u8)ts;
161 return SQLITE_OK;
163 #endif /* SQLITE_PAGER_PRAGMAS */
166 ** Set result column names for a pragma.
168 static void setPragmaResultColumnNames(
169 Vdbe *v, /* The query under construction */
170 const PragmaName *pPragma /* The pragma */
172 u8 n = pPragma->nPragCName;
173 sqlite3VdbeSetNumCols(v, n==0 ? 1 : n);
174 if( n==0 ){
175 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, pPragma->zName, SQLITE_STATIC);
176 }else{
177 int i, j;
178 for(i=0, j=pPragma->iPragCName; i<n; i++, j++){
179 sqlite3VdbeSetColName(v, i, COLNAME_NAME, pragCName[j], SQLITE_STATIC);
185 ** Generate code to return a single integer value.
187 static void returnSingleInt(Vdbe *v, i64 value){
188 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, 1, 0, (const u8*)&value, P4_INT64);
189 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
193 ** Generate code to return a single text value.
195 static void returnSingleText(
196 Vdbe *v, /* Prepared statement under construction */
197 const char *zValue /* Value to be returned */
199 if( zValue ){
200 sqlite3VdbeLoadString(v, 1, (const char*)zValue);
201 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
207 ** Set the safety_level and pager flags for pager iDb. Or if iDb<0
208 ** set these values for all pagers.
210 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
211 static void setAllPagerFlags(sqlite3 *db){
212 if( db->autoCommit ){
213 Db *pDb = db->aDb;
214 int n = db->nDb;
215 assert( SQLITE_FullFSync==PAGER_FULLFSYNC );
216 assert( SQLITE_CkptFullFSync==PAGER_CKPT_FULLFSYNC );
217 assert( SQLITE_CacheSpill==PAGER_CACHESPILL );
218 assert( (PAGER_FULLFSYNC | PAGER_CKPT_FULLFSYNC | PAGER_CACHESPILL)
219 == PAGER_FLAGS_MASK );
220 assert( (pDb->safety_level & PAGER_SYNCHRONOUS_MASK)==pDb->safety_level );
221 while( (n--) > 0 ){
222 if( pDb->pBt ){
223 sqlite3BtreeSetPagerFlags(pDb->pBt,
224 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK) );
226 pDb++;
230 #else
231 # define setAllPagerFlags(X) /* no-op */
232 #endif
236 ** Return a human-readable name for a constraint resolution action.
238 #ifndef SQLITE_OMIT_FOREIGN_KEY
239 static const char *actionName(u8 action){
240 const char *zName;
241 switch( action ){
242 case OE_SetNull: zName = "SET NULL"; break;
243 case OE_SetDflt: zName = "SET DEFAULT"; break;
244 case OE_Cascade: zName = "CASCADE"; break;
245 case OE_Restrict: zName = "RESTRICT"; break;
246 default: zName = "NO ACTION";
247 assert( action==OE_None ); break;
249 return zName;
251 #endif
255 ** Parameter eMode must be one of the PAGER_JOURNALMODE_XXX constants
256 ** defined in pager.h. This function returns the associated lowercase
257 ** journal-mode name.
259 const char *sqlite3JournalModename(int eMode){
260 static char * const azModeName[] = {
261 "delete", "persist", "off", "truncate", "memory"
262 #ifndef SQLITE_OMIT_WAL
263 , "wal"
264 #endif
266 assert( PAGER_JOURNALMODE_DELETE==0 );
267 assert( PAGER_JOURNALMODE_PERSIST==1 );
268 assert( PAGER_JOURNALMODE_OFF==2 );
269 assert( PAGER_JOURNALMODE_TRUNCATE==3 );
270 assert( PAGER_JOURNALMODE_MEMORY==4 );
271 assert( PAGER_JOURNALMODE_WAL==5 );
272 assert( eMode>=0 && eMode<=ArraySize(azModeName) );
274 if( eMode==ArraySize(azModeName) ) return 0;
275 return azModeName[eMode];
279 ** Locate a pragma in the aPragmaName[] array.
281 static const PragmaName *pragmaLocate(const char *zName){
282 int upr, lwr, mid = 0, rc;
283 lwr = 0;
284 upr = ArraySize(aPragmaName)-1;
285 while( lwr<=upr ){
286 mid = (lwr+upr)/2;
287 rc = sqlite3_stricmp(zName, aPragmaName[mid].zName);
288 if( rc==0 ) break;
289 if( rc<0 ){
290 upr = mid - 1;
291 }else{
292 lwr = mid + 1;
295 return lwr>upr ? 0 : &aPragmaName[mid];
299 ** Create zero or more entries in the output for the SQL functions
300 ** defined by FuncDef p.
302 static void pragmaFunclistLine(
303 Vdbe *v, /* The prepared statement being created */
304 FuncDef *p, /* A particular function definition */
305 int isBuiltin, /* True if this is a built-in function */
306 int showInternFuncs /* True if showing internal functions */
308 for(; p; p=p->pNext){
309 const char *zType;
310 static const u32 mask =
311 SQLITE_DETERMINISTIC |
312 SQLITE_DIRECTONLY |
313 SQLITE_SUBTYPE |
314 SQLITE_INNOCUOUS |
315 SQLITE_FUNC_INTERNAL
317 static const char *azEnc[] = { 0, "utf8", "utf16le", "utf16be" };
319 assert( SQLITE_FUNC_ENCMASK==0x3 );
320 assert( strcmp(azEnc[SQLITE_UTF8],"utf8")==0 );
321 assert( strcmp(azEnc[SQLITE_UTF16LE],"utf16le")==0 );
322 assert( strcmp(azEnc[SQLITE_UTF16BE],"utf16be")==0 );
324 if( p->xSFunc==0 ) continue;
325 if( (p->funcFlags & SQLITE_FUNC_INTERNAL)!=0
326 && showInternFuncs==0
328 continue;
330 if( p->xValue!=0 ){
331 zType = "w";
332 }else if( p->xFinalize!=0 ){
333 zType = "a";
334 }else{
335 zType = "s";
337 sqlite3VdbeMultiLoad(v, 1, "sissii",
338 p->zName, isBuiltin,
339 zType, azEnc[p->funcFlags&SQLITE_FUNC_ENCMASK],
340 p->nArg,
341 (p->funcFlags & mask) ^ SQLITE_INNOCUOUS
348 ** Helper subroutine for PRAGMA integrity_check:
350 ** Generate code to output a single-column result row with a value of the
351 ** string held in register 3. Decrement the result count in register 1
352 ** and halt if the maximum number of result rows have been issued.
354 static int integrityCheckResultRow(Vdbe *v){
355 int addr;
356 sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1);
357 addr = sqlite3VdbeAddOp3(v, OP_IfPos, 1, sqlite3VdbeCurrentAddr(v)+2, 1);
358 VdbeCoverage(v);
359 sqlite3VdbeAddOp0(v, OP_Halt);
360 return addr;
364 ** Process a pragma statement.
366 ** Pragmas are of this form:
368 ** PRAGMA [schema.]id [= value]
370 ** The identifier might also be a string. The value is a string, and
371 ** identifier, or a number. If minusFlag is true, then the value is
372 ** a number that was preceded by a minus sign.
374 ** If the left side is "database.id" then pId1 is the database name
375 ** and pId2 is the id. If the left side is just "id" then pId1 is the
376 ** id and pId2 is any empty string.
378 void sqlite3Pragma(
379 Parse *pParse,
380 Token *pId1, /* First part of [schema.]id field */
381 Token *pId2, /* Second part of [schema.]id field, or NULL */
382 Token *pValue, /* Token for <value>, or NULL */
383 int minusFlag /* True if a '-' sign preceded <value> */
385 char *zLeft = 0; /* Nul-terminated UTF-8 string <id> */
386 char *zRight = 0; /* Nul-terminated UTF-8 string <value>, or NULL */
387 const char *zDb = 0; /* The database name */
388 Token *pId; /* Pointer to <id> token */
389 char *aFcntl[4]; /* Argument to SQLITE_FCNTL_PRAGMA */
390 int iDb; /* Database index for <database> */
391 int rc; /* return value form SQLITE_FCNTL_PRAGMA */
392 sqlite3 *db = pParse->db; /* The database connection */
393 Db *pDb; /* The specific database being pragmaed */
394 Vdbe *v = sqlite3GetVdbe(pParse); /* Prepared statement */
395 const PragmaName *pPragma; /* The pragma */
397 if( v==0 ) return;
398 sqlite3VdbeRunOnlyOnce(v);
399 pParse->nMem = 2;
401 /* Interpret the [schema.] part of the pragma statement. iDb is the
402 ** index of the database this pragma is being applied to in db.aDb[]. */
403 iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId);
404 if( iDb<0 ) return;
405 pDb = &db->aDb[iDb];
407 /* If the temp database has been explicitly named as part of the
408 ** pragma, make sure it is open.
410 if( iDb==1 && sqlite3OpenTempDatabase(pParse) ){
411 return;
414 zLeft = sqlite3NameFromToken(db, pId);
415 if( !zLeft ) return;
416 if( minusFlag ){
417 zRight = sqlite3MPrintf(db, "-%T", pValue);
418 }else{
419 zRight = sqlite3NameFromToken(db, pValue);
422 assert( pId2 );
423 zDb = pId2->n>0 ? pDb->zDbSName : 0;
424 if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){
425 goto pragma_out;
428 /* Send an SQLITE_FCNTL_PRAGMA file-control to the underlying VFS
429 ** connection. If it returns SQLITE_OK, then assume that the VFS
430 ** handled the pragma and generate a no-op prepared statement.
432 ** IMPLEMENTATION-OF: R-12238-55120 Whenever a PRAGMA statement is parsed,
433 ** an SQLITE_FCNTL_PRAGMA file control is sent to the open sqlite3_file
434 ** object corresponding to the database file to which the pragma
435 ** statement refers.
437 ** IMPLEMENTATION-OF: R-29875-31678 The argument to the SQLITE_FCNTL_PRAGMA
438 ** file control is an array of pointers to strings (char**) in which the
439 ** second element of the array is the name of the pragma and the third
440 ** element is the argument to the pragma or NULL if the pragma has no
441 ** argument.
443 aFcntl[0] = 0;
444 aFcntl[1] = zLeft;
445 aFcntl[2] = zRight;
446 aFcntl[3] = 0;
447 db->busyHandler.nBusy = 0;
448 rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_PRAGMA, (void*)aFcntl);
449 if( rc==SQLITE_OK ){
450 sqlite3VdbeSetNumCols(v, 1);
451 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, aFcntl[0], SQLITE_TRANSIENT);
452 returnSingleText(v, aFcntl[0]);
453 sqlite3_free(aFcntl[0]);
454 goto pragma_out;
456 if( rc!=SQLITE_NOTFOUND ){
457 if( aFcntl[0] ){
458 sqlite3ErrorMsg(pParse, "%s", aFcntl[0]);
459 sqlite3_free(aFcntl[0]);
461 pParse->nErr++;
462 pParse->rc = rc;
463 goto pragma_out;
466 /* Locate the pragma in the lookup table */
467 pPragma = pragmaLocate(zLeft);
468 if( pPragma==0 ) goto pragma_out;
470 /* Make sure the database schema is loaded if the pragma requires that */
471 if( (pPragma->mPragFlg & PragFlg_NeedSchema)!=0 ){
472 if( sqlite3ReadSchema(pParse) ) goto pragma_out;
475 /* Register the result column names for pragmas that return results */
476 if( (pPragma->mPragFlg & PragFlg_NoColumns)==0
477 && ((pPragma->mPragFlg & PragFlg_NoColumns1)==0 || zRight==0)
479 setPragmaResultColumnNames(v, pPragma);
482 /* Jump to the appropriate pragma handler */
483 switch( pPragma->ePragTyp ){
485 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED)
487 ** PRAGMA [schema.]default_cache_size
488 ** PRAGMA [schema.]default_cache_size=N
490 ** The first form reports the current persistent setting for the
491 ** page cache size. The value returned is the maximum number of
492 ** pages in the page cache. The second form sets both the current
493 ** page cache size value and the persistent page cache size value
494 ** stored in the database file.
496 ** Older versions of SQLite would set the default cache size to a
497 ** negative number to indicate synchronous=OFF. These days, synchronous
498 ** is always on by default regardless of the sign of the default cache
499 ** size. But continue to take the absolute value of the default cache
500 ** size of historical compatibility.
502 case PragTyp_DEFAULT_CACHE_SIZE: {
503 static const int iLn = VDBE_OFFSET_LINENO(2);
504 static const VdbeOpList getCacheSize[] = {
505 { OP_Transaction, 0, 0, 0}, /* 0 */
506 { OP_ReadCookie, 0, 1, BTREE_DEFAULT_CACHE_SIZE}, /* 1 */
507 { OP_IfPos, 1, 8, 0},
508 { OP_Integer, 0, 2, 0},
509 { OP_Subtract, 1, 2, 1},
510 { OP_IfPos, 1, 8, 0},
511 { OP_Integer, 0, 1, 0}, /* 6 */
512 { OP_Noop, 0, 0, 0},
513 { OP_ResultRow, 1, 1, 0},
515 VdbeOp *aOp;
516 sqlite3VdbeUsesBtree(v, iDb);
517 if( !zRight ){
518 pParse->nMem += 2;
519 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(getCacheSize));
520 aOp = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize, iLn);
521 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
522 aOp[0].p1 = iDb;
523 aOp[1].p1 = iDb;
524 aOp[6].p1 = SQLITE_DEFAULT_CACHE_SIZE;
525 }else{
526 int size = sqlite3AbsInt32(sqlite3Atoi(zRight));
527 sqlite3BeginWriteOperation(pParse, 0, iDb);
528 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_DEFAULT_CACHE_SIZE, size);
529 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
530 pDb->pSchema->cache_size = size;
531 sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
533 break;
535 #endif /* !SQLITE_OMIT_PAGER_PRAGMAS && !SQLITE_OMIT_DEPRECATED */
537 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
539 ** PRAGMA [schema.]page_size
540 ** PRAGMA [schema.]page_size=N
542 ** The first form reports the current setting for the
543 ** database page size in bytes. The second form sets the
544 ** database page size value. The value can only be set if
545 ** the database has not yet been created.
547 case PragTyp_PAGE_SIZE: {
548 Btree *pBt = pDb->pBt;
549 assert( pBt!=0 );
550 if( !zRight ){
551 int size = ALWAYS(pBt) ? sqlite3BtreeGetPageSize(pBt) : 0;
552 returnSingleInt(v, size);
553 }else{
554 /* Malloc may fail when setting the page-size, as there is an internal
555 ** buffer that the pager module resizes using sqlite3_realloc().
557 db->nextPagesize = sqlite3Atoi(zRight);
558 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize,-1,0) ){
559 sqlite3OomFault(db);
562 break;
566 ** PRAGMA [schema.]secure_delete
567 ** PRAGMA [schema.]secure_delete=ON/OFF/FAST
569 ** The first form reports the current setting for the
570 ** secure_delete flag. The second form changes the secure_delete
571 ** flag setting and reports the new value.
573 case PragTyp_SECURE_DELETE: {
574 Btree *pBt = pDb->pBt;
575 int b = -1;
576 assert( pBt!=0 );
577 if( zRight ){
578 if( sqlite3_stricmp(zRight, "fast")==0 ){
579 b = 2;
580 }else{
581 b = sqlite3GetBoolean(zRight, 0);
584 if( pId2->n==0 && b>=0 ){
585 int ii;
586 for(ii=0; ii<db->nDb; ii++){
587 sqlite3BtreeSecureDelete(db->aDb[ii].pBt, b);
590 b = sqlite3BtreeSecureDelete(pBt, b);
591 returnSingleInt(v, b);
592 break;
596 ** PRAGMA [schema.]max_page_count
597 ** PRAGMA [schema.]max_page_count=N
599 ** The first form reports the current setting for the
600 ** maximum number of pages in the database file. The
601 ** second form attempts to change this setting. Both
602 ** forms return the current setting.
604 ** The absolute value of N is used. This is undocumented and might
605 ** change. The only purpose is to provide an easy way to test
606 ** the sqlite3AbsInt32() function.
608 ** PRAGMA [schema.]page_count
610 ** Return the number of pages in the specified database.
612 case PragTyp_PAGE_COUNT: {
613 int iReg;
614 sqlite3CodeVerifySchema(pParse, iDb);
615 iReg = ++pParse->nMem;
616 if( sqlite3Tolower(zLeft[0])=='p' ){
617 sqlite3VdbeAddOp2(v, OP_Pagecount, iDb, iReg);
618 }else{
619 sqlite3VdbeAddOp3(v, OP_MaxPgcnt, iDb, iReg,
620 sqlite3AbsInt32(sqlite3Atoi(zRight)));
622 sqlite3VdbeAddOp2(v, OP_ResultRow, iReg, 1);
623 break;
627 ** PRAGMA [schema.]locking_mode
628 ** PRAGMA [schema.]locking_mode = (normal|exclusive)
630 case PragTyp_LOCKING_MODE: {
631 const char *zRet = "normal";
632 int eMode = getLockingMode(zRight);
634 if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){
635 /* Simple "PRAGMA locking_mode;" statement. This is a query for
636 ** the current default locking mode (which may be different to
637 ** the locking-mode of the main database).
639 eMode = db->dfltLockMode;
640 }else{
641 Pager *pPager;
642 if( pId2->n==0 ){
643 /* This indicates that no database name was specified as part
644 ** of the PRAGMA command. In this case the locking-mode must be
645 ** set on all attached databases, as well as the main db file.
647 ** Also, the sqlite3.dfltLockMode variable is set so that
648 ** any subsequently attached databases also use the specified
649 ** locking mode.
651 int ii;
652 assert(pDb==&db->aDb[0]);
653 for(ii=2; ii<db->nDb; ii++){
654 pPager = sqlite3BtreePager(db->aDb[ii].pBt);
655 sqlite3PagerLockingMode(pPager, eMode);
657 db->dfltLockMode = (u8)eMode;
659 pPager = sqlite3BtreePager(pDb->pBt);
660 eMode = sqlite3PagerLockingMode(pPager, eMode);
663 assert( eMode==PAGER_LOCKINGMODE_NORMAL
664 || eMode==PAGER_LOCKINGMODE_EXCLUSIVE );
665 if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){
666 zRet = "exclusive";
668 returnSingleText(v, zRet);
669 break;
673 ** PRAGMA [schema.]journal_mode
674 ** PRAGMA [schema.]journal_mode =
675 ** (delete|persist|off|truncate|memory|wal|off)
677 case PragTyp_JOURNAL_MODE: {
678 int eMode; /* One of the PAGER_JOURNALMODE_XXX symbols */
679 int ii; /* Loop counter */
681 if( zRight==0 ){
682 /* If there is no "=MODE" part of the pragma, do a query for the
683 ** current mode */
684 eMode = PAGER_JOURNALMODE_QUERY;
685 }else{
686 const char *zMode;
687 int n = sqlite3Strlen30(zRight);
688 for(eMode=0; (zMode = sqlite3JournalModename(eMode))!=0; eMode++){
689 if( sqlite3StrNICmp(zRight, zMode, n)==0 ) break;
691 if( !zMode ){
692 /* If the "=MODE" part does not match any known journal mode,
693 ** then do a query */
694 eMode = PAGER_JOURNALMODE_QUERY;
696 if( eMode==PAGER_JOURNALMODE_OFF && (db->flags & SQLITE_Defensive)!=0 ){
697 /* Do not allow journal-mode "OFF" in defensive since the database
698 ** can become corrupted using ordinary SQL when the journal is off */
699 eMode = PAGER_JOURNALMODE_QUERY;
702 if( eMode==PAGER_JOURNALMODE_QUERY && pId2->n==0 ){
703 /* Convert "PRAGMA journal_mode" into "PRAGMA main.journal_mode" */
704 iDb = 0;
705 pId2->n = 1;
707 for(ii=db->nDb-1; ii>=0; ii--){
708 if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
709 sqlite3VdbeUsesBtree(v, ii);
710 sqlite3VdbeAddOp3(v, OP_JournalMode, ii, 1, eMode);
713 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
714 break;
718 ** PRAGMA [schema.]journal_size_limit
719 ** PRAGMA [schema.]journal_size_limit=N
721 ** Get or set the size limit on rollback journal files.
723 case PragTyp_JOURNAL_SIZE_LIMIT: {
724 Pager *pPager = sqlite3BtreePager(pDb->pBt);
725 i64 iLimit = -2;
726 if( zRight ){
727 sqlite3DecOrHexToI64(zRight, &iLimit);
728 if( iLimit<-1 ) iLimit = -1;
730 iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit);
731 returnSingleInt(v, iLimit);
732 break;
735 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */
738 ** PRAGMA [schema.]auto_vacuum
739 ** PRAGMA [schema.]auto_vacuum=N
741 ** Get or set the value of the database 'auto-vacuum' parameter.
742 ** The value is one of: 0 NONE 1 FULL 2 INCREMENTAL
744 #ifndef SQLITE_OMIT_AUTOVACUUM
745 case PragTyp_AUTO_VACUUM: {
746 Btree *pBt = pDb->pBt;
747 assert( pBt!=0 );
748 if( !zRight ){
749 returnSingleInt(v, sqlite3BtreeGetAutoVacuum(pBt));
750 }else{
751 int eAuto = getAutoVacuum(zRight);
752 assert( eAuto>=0 && eAuto<=2 );
753 db->nextAutovac = (u8)eAuto;
754 /* Call SetAutoVacuum() to set initialize the internal auto and
755 ** incr-vacuum flags. This is required in case this connection
756 ** creates the database file. It is important that it is created
757 ** as an auto-vacuum capable db.
759 rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto);
760 if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){
761 /* When setting the auto_vacuum mode to either "full" or
762 ** "incremental", write the value of meta[6] in the database
763 ** file. Before writing to meta[6], check that meta[3] indicates
764 ** that this really is an auto-vacuum capable database.
766 static const int iLn = VDBE_OFFSET_LINENO(2);
767 static const VdbeOpList setMeta6[] = {
768 { OP_Transaction, 0, 1, 0}, /* 0 */
769 { OP_ReadCookie, 0, 1, BTREE_LARGEST_ROOT_PAGE},
770 { OP_If, 1, 0, 0}, /* 2 */
771 { OP_Halt, SQLITE_OK, OE_Abort, 0}, /* 3 */
772 { OP_SetCookie, 0, BTREE_INCR_VACUUM, 0}, /* 4 */
774 VdbeOp *aOp;
775 int iAddr = sqlite3VdbeCurrentAddr(v);
776 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setMeta6));
777 aOp = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6, iLn);
778 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
779 aOp[0].p1 = iDb;
780 aOp[1].p1 = iDb;
781 aOp[2].p2 = iAddr+4;
782 aOp[4].p1 = iDb;
783 aOp[4].p3 = eAuto - 1;
784 sqlite3VdbeUsesBtree(v, iDb);
787 break;
789 #endif
792 ** PRAGMA [schema.]incremental_vacuum(N)
794 ** Do N steps of incremental vacuuming on a database.
796 #ifndef SQLITE_OMIT_AUTOVACUUM
797 case PragTyp_INCREMENTAL_VACUUM: {
798 int iLimit, addr;
799 if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){
800 iLimit = 0x7fffffff;
802 sqlite3BeginWriteOperation(pParse, 0, iDb);
803 sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1);
804 addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb); VdbeCoverage(v);
805 sqlite3VdbeAddOp1(v, OP_ResultRow, 1);
806 sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1);
807 sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr); VdbeCoverage(v);
808 sqlite3VdbeJumpHere(v, addr);
809 break;
811 #endif
813 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
815 ** PRAGMA [schema.]cache_size
816 ** PRAGMA [schema.]cache_size=N
818 ** The first form reports the current local setting for the
819 ** page cache size. The second form sets the local
820 ** page cache size value. If N is positive then that is the
821 ** number of pages in the cache. If N is negative, then the
822 ** number of pages is adjusted so that the cache uses -N kibibytes
823 ** of memory.
825 case PragTyp_CACHE_SIZE: {
826 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
827 if( !zRight ){
828 returnSingleInt(v, pDb->pSchema->cache_size);
829 }else{
830 int size = sqlite3Atoi(zRight);
831 pDb->pSchema->cache_size = size;
832 sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
834 break;
838 ** PRAGMA [schema.]cache_spill
839 ** PRAGMA cache_spill=BOOLEAN
840 ** PRAGMA [schema.]cache_spill=N
842 ** The first form reports the current local setting for the
843 ** page cache spill size. The second form turns cache spill on
844 ** or off. When turnning cache spill on, the size is set to the
845 ** current cache_size. The third form sets a spill size that
846 ** may be different form the cache size.
847 ** If N is positive then that is the
848 ** number of pages in the cache. If N is negative, then the
849 ** number of pages is adjusted so that the cache uses -N kibibytes
850 ** of memory.
852 ** If the number of cache_spill pages is less then the number of
853 ** cache_size pages, no spilling occurs until the page count exceeds
854 ** the number of cache_size pages.
856 ** The cache_spill=BOOLEAN setting applies to all attached schemas,
857 ** not just the schema specified.
859 case PragTyp_CACHE_SPILL: {
860 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
861 if( !zRight ){
862 returnSingleInt(v,
863 (db->flags & SQLITE_CacheSpill)==0 ? 0 :
864 sqlite3BtreeSetSpillSize(pDb->pBt,0));
865 }else{
866 int size = 1;
867 if( sqlite3GetInt32(zRight, &size) ){
868 sqlite3BtreeSetSpillSize(pDb->pBt, size);
870 if( sqlite3GetBoolean(zRight, size!=0) ){
871 db->flags |= SQLITE_CacheSpill;
872 }else{
873 db->flags &= ~(u64)SQLITE_CacheSpill;
875 setAllPagerFlags(db);
877 break;
881 ** PRAGMA [schema.]mmap_size(N)
883 ** Used to set mapping size limit. The mapping size limit is
884 ** used to limit the aggregate size of all memory mapped regions of the
885 ** database file. If this parameter is set to zero, then memory mapping
886 ** is not used at all. If N is negative, then the default memory map
887 ** limit determined by sqlite3_config(SQLITE_CONFIG_MMAP_SIZE) is set.
888 ** The parameter N is measured in bytes.
890 ** This value is advisory. The underlying VFS is free to memory map
891 ** as little or as much as it wants. Except, if N is set to 0 then the
892 ** upper layers will never invoke the xFetch interfaces to the VFS.
894 case PragTyp_MMAP_SIZE: {
895 sqlite3_int64 sz;
896 #if SQLITE_MAX_MMAP_SIZE>0
897 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
898 if( zRight ){
899 int ii;
900 sqlite3DecOrHexToI64(zRight, &sz);
901 if( sz<0 ) sz = sqlite3GlobalConfig.szMmap;
902 if( pId2->n==0 ) db->szMmap = sz;
903 for(ii=db->nDb-1; ii>=0; ii--){
904 if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
905 sqlite3BtreeSetMmapLimit(db->aDb[ii].pBt, sz);
909 sz = -1;
910 rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_MMAP_SIZE, &sz);
911 #else
912 sz = 0;
913 rc = SQLITE_OK;
914 #endif
915 if( rc==SQLITE_OK ){
916 returnSingleInt(v, sz);
917 }else if( rc!=SQLITE_NOTFOUND ){
918 pParse->nErr++;
919 pParse->rc = rc;
921 break;
925 ** PRAGMA temp_store
926 ** PRAGMA temp_store = "default"|"memory"|"file"
928 ** Return or set the local value of the temp_store flag. Changing
929 ** the local value does not make changes to the disk file and the default
930 ** value will be restored the next time the database is opened.
932 ** Note that it is possible for the library compile-time options to
933 ** override this setting
935 case PragTyp_TEMP_STORE: {
936 if( !zRight ){
937 returnSingleInt(v, db->temp_store);
938 }else{
939 changeTempStorage(pParse, zRight);
941 break;
945 ** PRAGMA temp_store_directory
946 ** PRAGMA temp_store_directory = ""|"directory_name"
948 ** Return or set the local value of the temp_store_directory flag. Changing
949 ** the value sets a specific directory to be used for temporary files.
950 ** Setting to a null string reverts to the default temporary directory search.
951 ** If temporary directory is changed, then invalidateTempStorage.
954 case PragTyp_TEMP_STORE_DIRECTORY: {
955 if( !zRight ){
956 returnSingleText(v, sqlite3_temp_directory);
957 }else{
958 #ifndef SQLITE_OMIT_WSD
959 if( zRight[0] ){
960 int res;
961 rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
962 if( rc!=SQLITE_OK || res==0 ){
963 sqlite3ErrorMsg(pParse, "not a writable directory");
964 goto pragma_out;
967 if( SQLITE_TEMP_STORE==0
968 || (SQLITE_TEMP_STORE==1 && db->temp_store<=1)
969 || (SQLITE_TEMP_STORE==2 && db->temp_store==1)
971 invalidateTempStorage(pParse);
973 sqlite3_free(sqlite3_temp_directory);
974 if( zRight[0] ){
975 sqlite3_temp_directory = sqlite3_mprintf("%s", zRight);
976 }else{
977 sqlite3_temp_directory = 0;
979 #endif /* SQLITE_OMIT_WSD */
981 break;
984 #if SQLITE_OS_WIN
986 ** PRAGMA data_store_directory
987 ** PRAGMA data_store_directory = ""|"directory_name"
989 ** Return or set the local value of the data_store_directory flag. Changing
990 ** the value sets a specific directory to be used for database files that
991 ** were specified with a relative pathname. Setting to a null string reverts
992 ** to the default database directory, which for database files specified with
993 ** a relative path will probably be based on the current directory for the
994 ** process. Database file specified with an absolute path are not impacted
995 ** by this setting, regardless of its value.
998 case PragTyp_DATA_STORE_DIRECTORY: {
999 if( !zRight ){
1000 returnSingleText(v, sqlite3_data_directory);
1001 }else{
1002 #ifndef SQLITE_OMIT_WSD
1003 if( zRight[0] ){
1004 int res;
1005 rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
1006 if( rc!=SQLITE_OK || res==0 ){
1007 sqlite3ErrorMsg(pParse, "not a writable directory");
1008 goto pragma_out;
1011 sqlite3_free(sqlite3_data_directory);
1012 if( zRight[0] ){
1013 sqlite3_data_directory = sqlite3_mprintf("%s", zRight);
1014 }else{
1015 sqlite3_data_directory = 0;
1017 #endif /* SQLITE_OMIT_WSD */
1019 break;
1021 #endif
1023 #if SQLITE_ENABLE_LOCKING_STYLE
1025 ** PRAGMA [schema.]lock_proxy_file
1026 ** PRAGMA [schema.]lock_proxy_file = ":auto:"|"lock_file_path"
1028 ** Return or set the value of the lock_proxy_file flag. Changing
1029 ** the value sets a specific file to be used for database access locks.
1032 case PragTyp_LOCK_PROXY_FILE: {
1033 if( !zRight ){
1034 Pager *pPager = sqlite3BtreePager(pDb->pBt);
1035 char *proxy_file_path = NULL;
1036 sqlite3_file *pFile = sqlite3PagerFile(pPager);
1037 sqlite3OsFileControlHint(pFile, SQLITE_GET_LOCKPROXYFILE,
1038 &proxy_file_path);
1039 returnSingleText(v, proxy_file_path);
1040 }else{
1041 Pager *pPager = sqlite3BtreePager(pDb->pBt);
1042 sqlite3_file *pFile = sqlite3PagerFile(pPager);
1043 int res;
1044 if( zRight[0] ){
1045 res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE,
1046 zRight);
1047 } else {
1048 res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE,
1049 NULL);
1051 if( res!=SQLITE_OK ){
1052 sqlite3ErrorMsg(pParse, "failed to set lock proxy file");
1053 goto pragma_out;
1056 break;
1058 #endif /* SQLITE_ENABLE_LOCKING_STYLE */
1061 ** PRAGMA [schema.]synchronous
1062 ** PRAGMA [schema.]synchronous=OFF|ON|NORMAL|FULL|EXTRA
1064 ** Return or set the local value of the synchronous flag. Changing
1065 ** the local value does not make changes to the disk file and the
1066 ** default value will be restored the next time the database is
1067 ** opened.
1069 case PragTyp_SYNCHRONOUS: {
1070 if( !zRight ){
1071 returnSingleInt(v, pDb->safety_level-1);
1072 }else{
1073 if( !db->autoCommit ){
1074 sqlite3ErrorMsg(pParse,
1075 "Safety level may not be changed inside a transaction");
1076 }else if( iDb!=1 ){
1077 int iLevel = (getSafetyLevel(zRight,0,1)+1) & PAGER_SYNCHRONOUS_MASK;
1078 if( iLevel==0 ) iLevel = 1;
1079 pDb->safety_level = iLevel;
1080 pDb->bSyncSet = 1;
1081 setAllPagerFlags(db);
1084 break;
1086 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */
1088 #ifndef SQLITE_OMIT_FLAG_PRAGMAS
1089 case PragTyp_FLAG: {
1090 if( zRight==0 ){
1091 setPragmaResultColumnNames(v, pPragma);
1092 returnSingleInt(v, (db->flags & pPragma->iArg)!=0 );
1093 }else{
1094 u64 mask = pPragma->iArg; /* Mask of bits to set or clear. */
1095 if( db->autoCommit==0 ){
1096 /* Foreign key support may not be enabled or disabled while not
1097 ** in auto-commit mode. */
1098 mask &= ~(SQLITE_ForeignKeys);
1100 #if SQLITE_USER_AUTHENTICATION
1101 if( db->auth.authLevel==UAUTH_User ){
1102 /* Do not allow non-admin users to modify the schema arbitrarily */
1103 mask &= ~(SQLITE_WriteSchema);
1105 #endif
1107 if( sqlite3GetBoolean(zRight, 0) ){
1108 db->flags |= mask;
1109 }else{
1110 db->flags &= ~mask;
1111 if( mask==SQLITE_DeferFKs ) db->nDeferredImmCons = 0;
1114 /* Many of the flag-pragmas modify the code generated by the SQL
1115 ** compiler (eg. count_changes). So add an opcode to expire all
1116 ** compiled SQL statements after modifying a pragma value.
1118 sqlite3VdbeAddOp0(v, OP_Expire);
1119 setAllPagerFlags(db);
1121 break;
1123 #endif /* SQLITE_OMIT_FLAG_PRAGMAS */
1125 #ifndef SQLITE_OMIT_SCHEMA_PRAGMAS
1127 ** PRAGMA table_info(<table>)
1129 ** Return a single row for each column of the named table. The columns of
1130 ** the returned data set are:
1132 ** cid: Column id (numbered from left to right, starting at 0)
1133 ** name: Column name
1134 ** type: Column declaration type.
1135 ** notnull: True if 'NOT NULL' is part of column declaration
1136 ** dflt_value: The default value for the column, if any.
1137 ** pk: Non-zero for PK fields.
1139 case PragTyp_TABLE_INFO: if( zRight ){
1140 Table *pTab;
1141 pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb);
1142 if( pTab ){
1143 int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1144 int i, k;
1145 int nHidden = 0;
1146 Column *pCol;
1147 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1148 pParse->nMem = 7;
1149 sqlite3CodeVerifySchema(pParse, iTabDb);
1150 sqlite3ViewGetColumnNames(pParse, pTab);
1151 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1152 int isHidden = 0;
1153 if( pCol->colFlags & COLFLAG_NOINSERT ){
1154 if( pPragma->iArg==0 ){
1155 nHidden++;
1156 continue;
1158 if( pCol->colFlags & COLFLAG_VIRTUAL ){
1159 isHidden = 2; /* GENERATED ALWAYS AS ... VIRTUAL */
1160 }else if( pCol->colFlags & COLFLAG_STORED ){
1161 isHidden = 3; /* GENERATED ALWAYS AS ... STORED */
1162 }else{ assert( pCol->colFlags & COLFLAG_HIDDEN );
1163 isHidden = 1; /* HIDDEN */
1166 if( (pCol->colFlags & COLFLAG_PRIMKEY)==0 ){
1167 k = 0;
1168 }else if( pPk==0 ){
1169 k = 1;
1170 }else{
1171 for(k=1; k<=pTab->nCol && pPk->aiColumn[k-1]!=i; k++){}
1173 assert( pCol->pDflt==0 || pCol->pDflt->op==TK_SPAN || isHidden>=2 );
1174 sqlite3VdbeMultiLoad(v, 1, pPragma->iArg ? "issisii" : "issisi",
1175 i-nHidden,
1176 pCol->zName,
1177 sqlite3ColumnType(pCol,""),
1178 pCol->notNull ? 1 : 0,
1179 pCol->pDflt && isHidden<2 ? pCol->pDflt->u.zToken : 0,
1181 isHidden);
1185 break;
1187 #ifdef SQLITE_DEBUG
1188 case PragTyp_STATS: {
1189 Index *pIdx;
1190 HashElem *i;
1191 pParse->nMem = 5;
1192 sqlite3CodeVerifySchema(pParse, iDb);
1193 for(i=sqliteHashFirst(&pDb->pSchema->tblHash); i; i=sqliteHashNext(i)){
1194 Table *pTab = sqliteHashData(i);
1195 sqlite3VdbeMultiLoad(v, 1, "ssiii",
1196 pTab->zName,
1198 pTab->szTabRow,
1199 pTab->nRowLogEst,
1200 pTab->tabFlags);
1201 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1202 sqlite3VdbeMultiLoad(v, 2, "siiiX",
1203 pIdx->zName,
1204 pIdx->szIdxRow,
1205 pIdx->aiRowLogEst[0],
1206 pIdx->hasStat1);
1207 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 5);
1211 break;
1212 #endif
1214 case PragTyp_INDEX_INFO: if( zRight ){
1215 Index *pIdx;
1216 Table *pTab;
1217 pIdx = sqlite3FindIndex(db, zRight, zDb);
1218 if( pIdx==0 ){
1219 /* If there is no index named zRight, check to see if there is a
1220 ** WITHOUT ROWID table named zRight, and if there is, show the
1221 ** structure of the PRIMARY KEY index for that table. */
1222 pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb);
1223 if( pTab && !HasRowid(pTab) ){
1224 pIdx = sqlite3PrimaryKeyIndex(pTab);
1227 if( pIdx ){
1228 int iIdxDb = sqlite3SchemaToIndex(db, pIdx->pSchema);
1229 int i;
1230 int mx;
1231 if( pPragma->iArg ){
1232 /* PRAGMA index_xinfo (newer version with more rows and columns) */
1233 mx = pIdx->nColumn;
1234 pParse->nMem = 6;
1235 }else{
1236 /* PRAGMA index_info (legacy version) */
1237 mx = pIdx->nKeyCol;
1238 pParse->nMem = 3;
1240 pTab = pIdx->pTable;
1241 sqlite3CodeVerifySchema(pParse, iIdxDb);
1242 assert( pParse->nMem<=pPragma->nPragCName );
1243 for(i=0; i<mx; i++){
1244 i16 cnum = pIdx->aiColumn[i];
1245 sqlite3VdbeMultiLoad(v, 1, "iisX", i, cnum,
1246 cnum<0 ? 0 : pTab->aCol[cnum].zName);
1247 if( pPragma->iArg ){
1248 sqlite3VdbeMultiLoad(v, 4, "isiX",
1249 pIdx->aSortOrder[i],
1250 pIdx->azColl[i],
1251 i<pIdx->nKeyCol);
1253 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, pParse->nMem);
1257 break;
1259 case PragTyp_INDEX_LIST: if( zRight ){
1260 Index *pIdx;
1261 Table *pTab;
1262 int i;
1263 pTab = sqlite3FindTable(db, zRight, zDb);
1264 if( pTab ){
1265 int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1266 pParse->nMem = 5;
1267 sqlite3CodeVerifySchema(pParse, iTabDb);
1268 for(pIdx=pTab->pIndex, i=0; pIdx; pIdx=pIdx->pNext, i++){
1269 const char *azOrigin[] = { "c", "u", "pk" };
1270 sqlite3VdbeMultiLoad(v, 1, "isisi",
1272 pIdx->zName,
1273 IsUniqueIndex(pIdx),
1274 azOrigin[pIdx->idxType],
1275 pIdx->pPartIdxWhere!=0);
1279 break;
1281 case PragTyp_DATABASE_LIST: {
1282 int i;
1283 pParse->nMem = 3;
1284 for(i=0; i<db->nDb; i++){
1285 if( db->aDb[i].pBt==0 ) continue;
1286 assert( db->aDb[i].zDbSName!=0 );
1287 sqlite3VdbeMultiLoad(v, 1, "iss",
1289 db->aDb[i].zDbSName,
1290 sqlite3BtreeGetFilename(db->aDb[i].pBt));
1293 break;
1295 case PragTyp_COLLATION_LIST: {
1296 int i = 0;
1297 HashElem *p;
1298 pParse->nMem = 2;
1299 for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){
1300 CollSeq *pColl = (CollSeq *)sqliteHashData(p);
1301 sqlite3VdbeMultiLoad(v, 1, "is", i++, pColl->zName);
1304 break;
1306 #ifndef SQLITE_OMIT_INTROSPECTION_PRAGMAS
1307 case PragTyp_FUNCTION_LIST: {
1308 int i;
1309 HashElem *j;
1310 FuncDef *p;
1311 int showInternFunc = (db->mDbFlags & DBFLAG_InternalFunc)!=0;
1312 pParse->nMem = 6;
1313 for(i=0; i<SQLITE_FUNC_HASH_SZ; i++){
1314 for(p=sqlite3BuiltinFunctions.a[i]; p; p=p->u.pHash ){
1315 pragmaFunclistLine(v, p, 1, showInternFunc);
1318 for(j=sqliteHashFirst(&db->aFunc); j; j=sqliteHashNext(j)){
1319 p = (FuncDef*)sqliteHashData(j);
1320 pragmaFunclistLine(v, p, 0, showInternFunc);
1323 break;
1325 #ifndef SQLITE_OMIT_VIRTUALTABLE
1326 case PragTyp_MODULE_LIST: {
1327 HashElem *j;
1328 pParse->nMem = 1;
1329 for(j=sqliteHashFirst(&db->aModule); j; j=sqliteHashNext(j)){
1330 Module *pMod = (Module*)sqliteHashData(j);
1331 sqlite3VdbeMultiLoad(v, 1, "s", pMod->zName);
1334 break;
1335 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1337 case PragTyp_PRAGMA_LIST: {
1338 int i;
1339 for(i=0; i<ArraySize(aPragmaName); i++){
1340 sqlite3VdbeMultiLoad(v, 1, "s", aPragmaName[i].zName);
1343 break;
1344 #endif /* SQLITE_INTROSPECTION_PRAGMAS */
1346 #endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */
1348 #ifndef SQLITE_OMIT_FOREIGN_KEY
1349 case PragTyp_FOREIGN_KEY_LIST: if( zRight ){
1350 FKey *pFK;
1351 Table *pTab;
1352 pTab = sqlite3FindTable(db, zRight, zDb);
1353 if( pTab ){
1354 pFK = pTab->pFKey;
1355 if( pFK ){
1356 int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1357 int i = 0;
1358 pParse->nMem = 8;
1359 sqlite3CodeVerifySchema(pParse, iTabDb);
1360 while(pFK){
1361 int j;
1362 for(j=0; j<pFK->nCol; j++){
1363 sqlite3VdbeMultiLoad(v, 1, "iissssss",
1366 pFK->zTo,
1367 pTab->aCol[pFK->aCol[j].iFrom].zName,
1368 pFK->aCol[j].zCol,
1369 actionName(pFK->aAction[1]), /* ON UPDATE */
1370 actionName(pFK->aAction[0]), /* ON DELETE */
1371 "NONE");
1373 ++i;
1374 pFK = pFK->pNextFrom;
1379 break;
1380 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
1382 #ifndef SQLITE_OMIT_FOREIGN_KEY
1383 #ifndef SQLITE_OMIT_TRIGGER
1384 case PragTyp_FOREIGN_KEY_CHECK: {
1385 FKey *pFK; /* A foreign key constraint */
1386 Table *pTab; /* Child table contain "REFERENCES" keyword */
1387 Table *pParent; /* Parent table that child points to */
1388 Index *pIdx; /* Index in the parent table */
1389 int i; /* Loop counter: Foreign key number for pTab */
1390 int j; /* Loop counter: Field of the foreign key */
1391 HashElem *k; /* Loop counter: Next table in schema */
1392 int x; /* result variable */
1393 int regResult; /* 3 registers to hold a result row */
1394 int regKey; /* Register to hold key for checking the FK */
1395 int regRow; /* Registers to hold a row from pTab */
1396 int addrTop; /* Top of a loop checking foreign keys */
1397 int addrOk; /* Jump here if the key is OK */
1398 int *aiCols; /* child to parent column mapping */
1400 regResult = pParse->nMem+1;
1401 pParse->nMem += 4;
1402 regKey = ++pParse->nMem;
1403 regRow = ++pParse->nMem;
1404 k = sqliteHashFirst(&db->aDb[iDb].pSchema->tblHash);
1405 while( k ){
1406 int iTabDb;
1407 if( zRight ){
1408 pTab = sqlite3LocateTable(pParse, 0, zRight, zDb);
1409 k = 0;
1410 }else{
1411 pTab = (Table*)sqliteHashData(k);
1412 k = sqliteHashNext(k);
1414 if( pTab==0 || pTab->pFKey==0 ) continue;
1415 iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1416 sqlite3CodeVerifySchema(pParse, iTabDb);
1417 sqlite3TableLock(pParse, iTabDb, pTab->tnum, 0, pTab->zName);
1418 if( pTab->nCol+regRow>pParse->nMem ) pParse->nMem = pTab->nCol + regRow;
1419 sqlite3OpenTable(pParse, 0, iTabDb, pTab, OP_OpenRead);
1420 sqlite3VdbeLoadString(v, regResult, pTab->zName);
1421 for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){
1422 pParent = sqlite3FindTable(db, pFK->zTo, zDb);
1423 if( pParent==0 ) continue;
1424 pIdx = 0;
1425 sqlite3TableLock(pParse, iTabDb, pParent->tnum, 0, pParent->zName);
1426 x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, 0);
1427 if( x==0 ){
1428 if( pIdx==0 ){
1429 sqlite3OpenTable(pParse, i, iTabDb, pParent, OP_OpenRead);
1430 }else{
1431 sqlite3VdbeAddOp3(v, OP_OpenRead, i, pIdx->tnum, iTabDb);
1432 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1434 }else{
1435 k = 0;
1436 break;
1439 assert( pParse->nErr>0 || pFK==0 );
1440 if( pFK ) break;
1441 if( pParse->nTab<i ) pParse->nTab = i;
1442 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, 0); VdbeCoverage(v);
1443 for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){
1444 pParent = sqlite3FindTable(db, pFK->zTo, zDb);
1445 pIdx = 0;
1446 aiCols = 0;
1447 if( pParent ){
1448 x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols);
1449 assert( x==0 );
1451 addrOk = sqlite3VdbeMakeLabel(pParse);
1453 /* Generate code to read the child key values into registers
1454 ** regRow..regRow+n. If any of the child key values are NULL, this
1455 ** row cannot cause an FK violation. Jump directly to addrOk in
1456 ** this case. */
1457 for(j=0; j<pFK->nCol; j++){
1458 int iCol = aiCols ? aiCols[j] : pFK->aCol[j].iFrom;
1459 sqlite3ExprCodeGetColumnOfTable(v, pTab, 0, iCol, regRow+j);
1460 sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk); VdbeCoverage(v);
1463 /* Generate code to query the parent index for a matching parent
1464 ** key. If a match is found, jump to addrOk. */
1465 if( pIdx ){
1466 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, pFK->nCol, regKey,
1467 sqlite3IndexAffinityStr(db,pIdx), pFK->nCol);
1468 sqlite3VdbeAddOp4Int(v, OP_Found, i, addrOk, regKey, 0);
1469 VdbeCoverage(v);
1470 }else if( pParent ){
1471 int jmp = sqlite3VdbeCurrentAddr(v)+2;
1472 sqlite3VdbeAddOp3(v, OP_SeekRowid, i, jmp, regRow); VdbeCoverage(v);
1473 sqlite3VdbeGoto(v, addrOk);
1474 assert( pFK->nCol==1 );
1477 /* Generate code to report an FK violation to the caller. */
1478 if( HasRowid(pTab) ){
1479 sqlite3VdbeAddOp2(v, OP_Rowid, 0, regResult+1);
1480 }else{
1481 sqlite3VdbeAddOp2(v, OP_Null, 0, regResult+1);
1483 sqlite3VdbeMultiLoad(v, regResult+2, "siX", pFK->zTo, i-1);
1484 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 4);
1485 sqlite3VdbeResolveLabel(v, addrOk);
1486 sqlite3DbFree(db, aiCols);
1488 sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1); VdbeCoverage(v);
1489 sqlite3VdbeJumpHere(v, addrTop);
1492 break;
1493 #endif /* !defined(SQLITE_OMIT_TRIGGER) */
1494 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
1496 #ifndef SQLITE_OMIT_CASE_SENSITIVE_LIKE_PRAGMA
1497 /* Reinstall the LIKE and GLOB functions. The variant of LIKE
1498 ** used will be case sensitive or not depending on the RHS.
1500 case PragTyp_CASE_SENSITIVE_LIKE: {
1501 if( zRight ){
1502 sqlite3RegisterLikeFunctions(db, sqlite3GetBoolean(zRight, 0));
1505 break;
1506 #endif /* SQLITE_OMIT_CASE_SENSITIVE_LIKE_PRAGMA */
1508 #ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX
1509 # define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100
1510 #endif
1512 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
1513 /* PRAGMA integrity_check
1514 ** PRAGMA integrity_check(N)
1515 ** PRAGMA quick_check
1516 ** PRAGMA quick_check(N)
1518 ** Verify the integrity of the database.
1520 ** The "quick_check" is reduced version of
1521 ** integrity_check designed to detect most database corruption
1522 ** without the overhead of cross-checking indexes. Quick_check
1523 ** is linear time wherease integrity_check is O(NlogN).
1525 case PragTyp_INTEGRITY_CHECK: {
1526 int i, j, addr, mxErr;
1528 int isQuick = (sqlite3Tolower(zLeft[0])=='q');
1530 /* If the PRAGMA command was of the form "PRAGMA <db>.integrity_check",
1531 ** then iDb is set to the index of the database identified by <db>.
1532 ** In this case, the integrity of database iDb only is verified by
1533 ** the VDBE created below.
1535 ** Otherwise, if the command was simply "PRAGMA integrity_check" (or
1536 ** "PRAGMA quick_check"), then iDb is set to 0. In this case, set iDb
1537 ** to -1 here, to indicate that the VDBE should verify the integrity
1538 ** of all attached databases. */
1539 assert( iDb>=0 );
1540 assert( iDb==0 || pId2->z );
1541 if( pId2->z==0 ) iDb = -1;
1543 /* Initialize the VDBE program */
1544 pParse->nMem = 6;
1546 /* Set the maximum error count */
1547 mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
1548 if( zRight ){
1549 sqlite3GetInt32(zRight, &mxErr);
1550 if( mxErr<=0 ){
1551 mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
1554 sqlite3VdbeAddOp2(v, OP_Integer, mxErr-1, 1); /* reg[1] holds errors left */
1556 /* Do an integrity check on each database file */
1557 for(i=0; i<db->nDb; i++){
1558 HashElem *x; /* For looping over tables in the schema */
1559 Hash *pTbls; /* Set of all tables in the schema */
1560 int *aRoot; /* Array of root page numbers of all btrees */
1561 int cnt = 0; /* Number of entries in aRoot[] */
1562 int mxIdx = 0; /* Maximum number of indexes for any table */
1564 if( OMIT_TEMPDB && i==1 ) continue;
1565 if( iDb>=0 && i!=iDb ) continue;
1567 sqlite3CodeVerifySchema(pParse, i);
1569 /* Do an integrity check of the B-Tree
1571 ** Begin by finding the root pages numbers
1572 ** for all tables and indices in the database.
1574 assert( sqlite3SchemaMutexHeld(db, i, 0) );
1575 pTbls = &db->aDb[i].pSchema->tblHash;
1576 for(cnt=0, x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
1577 Table *pTab = sqliteHashData(x); /* Current table */
1578 Index *pIdx; /* An index on pTab */
1579 int nIdx; /* Number of indexes on pTab */
1580 if( HasRowid(pTab) ) cnt++;
1581 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ cnt++; }
1582 if( nIdx>mxIdx ) mxIdx = nIdx;
1584 aRoot = sqlite3DbMallocRawNN(db, sizeof(int)*(cnt+1));
1585 if( aRoot==0 ) break;
1586 for(cnt=0, x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
1587 Table *pTab = sqliteHashData(x);
1588 Index *pIdx;
1589 if( HasRowid(pTab) ) aRoot[++cnt] = pTab->tnum;
1590 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1591 aRoot[++cnt] = pIdx->tnum;
1594 aRoot[0] = cnt;
1596 /* Make sure sufficient number of registers have been allocated */
1597 pParse->nMem = MAX( pParse->nMem, 8+mxIdx );
1598 sqlite3ClearTempRegCache(pParse);
1600 /* Do the b-tree integrity checks */
1601 sqlite3VdbeAddOp4(v, OP_IntegrityCk, 2, cnt, 1, (char*)aRoot,P4_INTARRAY);
1602 sqlite3VdbeChangeP5(v, (u8)i);
1603 addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2); VdbeCoverage(v);
1604 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
1605 sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zDbSName),
1606 P4_DYNAMIC);
1607 sqlite3VdbeAddOp3(v, OP_Concat, 2, 3, 3);
1608 integrityCheckResultRow(v);
1609 sqlite3VdbeJumpHere(v, addr);
1611 /* Make sure all the indices are constructed correctly.
1613 for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
1614 Table *pTab = sqliteHashData(x);
1615 Index *pIdx, *pPk;
1616 Index *pPrior = 0;
1617 int loopTop;
1618 int iDataCur, iIdxCur;
1619 int r1 = -1;
1621 if( pTab->tnum<1 ) continue; /* Skip VIEWs or VIRTUAL TABLEs */
1622 pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab);
1623 sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenRead, 0,
1624 1, 0, &iDataCur, &iIdxCur);
1625 /* reg[7] counts the number of entries in the table.
1626 ** reg[8+i] counts the number of entries in the i-th index
1628 sqlite3VdbeAddOp2(v, OP_Integer, 0, 7);
1629 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
1630 sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */
1632 assert( pParse->nMem>=8+j );
1633 assert( sqlite3NoTempsInRange(pParse,1,7+j) );
1634 sqlite3VdbeAddOp2(v, OP_Rewind, iDataCur, 0); VdbeCoverage(v);
1635 loopTop = sqlite3VdbeAddOp2(v, OP_AddImm, 7, 1);
1636 if( !isQuick ){
1637 /* Sanity check on record header decoding */
1638 sqlite3VdbeAddOp3(v, OP_Column, iDataCur, pTab->nNVCol-1,3);
1639 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1641 /* Verify that all NOT NULL columns really are NOT NULL */
1642 for(j=0; j<pTab->nCol; j++){
1643 char *zErr;
1644 int jmp2;
1645 if( j==pTab->iPKey ) continue;
1646 if( pTab->aCol[j].notNull==0 ) continue;
1647 sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, j, 3);
1648 if( sqlite3VdbeGetOp(v,-1)->opcode==OP_Column ){
1649 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1651 jmp2 = sqlite3VdbeAddOp1(v, OP_NotNull, 3); VdbeCoverage(v);
1652 zErr = sqlite3MPrintf(db, "NULL value in %s.%s", pTab->zName,
1653 pTab->aCol[j].zName);
1654 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
1655 integrityCheckResultRow(v);
1656 sqlite3VdbeJumpHere(v, jmp2);
1658 /* Verify CHECK constraints */
1659 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
1660 ExprList *pCheck = sqlite3ExprListDup(db, pTab->pCheck, 0);
1661 if( db->mallocFailed==0 ){
1662 int addrCkFault = sqlite3VdbeMakeLabel(pParse);
1663 int addrCkOk = sqlite3VdbeMakeLabel(pParse);
1664 char *zErr;
1665 int k;
1666 pParse->iSelfTab = iDataCur + 1;
1667 for(k=pCheck->nExpr-1; k>0; k--){
1668 sqlite3ExprIfFalse(pParse, pCheck->a[k].pExpr, addrCkFault, 0);
1670 sqlite3ExprIfTrue(pParse, pCheck->a[0].pExpr, addrCkOk,
1671 SQLITE_JUMPIFNULL);
1672 sqlite3VdbeResolveLabel(v, addrCkFault);
1673 pParse->iSelfTab = 0;
1674 zErr = sqlite3MPrintf(db, "CHECK constraint failed in %s",
1675 pTab->zName);
1676 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
1677 integrityCheckResultRow(v);
1678 sqlite3VdbeResolveLabel(v, addrCkOk);
1680 sqlite3ExprListDelete(db, pCheck);
1682 if( !isQuick ){ /* Omit the remaining tests for quick_check */
1683 /* Validate index entries for the current row */
1684 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
1685 int jmp2, jmp3, jmp4, jmp5;
1686 int ckUniq = sqlite3VdbeMakeLabel(pParse);
1687 if( pPk==pIdx ) continue;
1688 r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 0, &jmp3,
1689 pPrior, r1);
1690 pPrior = pIdx;
1691 sqlite3VdbeAddOp2(v, OP_AddImm, 8+j, 1);/* increment entry count */
1692 /* Verify that an index entry exists for the current table row */
1693 jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, iIdxCur+j, ckUniq, r1,
1694 pIdx->nColumn); VdbeCoverage(v);
1695 sqlite3VdbeLoadString(v, 3, "row ");
1696 sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3);
1697 sqlite3VdbeLoadString(v, 4, " missing from index ");
1698 sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3);
1699 jmp5 = sqlite3VdbeLoadString(v, 4, pIdx->zName);
1700 sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3);
1701 jmp4 = integrityCheckResultRow(v);
1702 sqlite3VdbeJumpHere(v, jmp2);
1703 /* For UNIQUE indexes, verify that only one entry exists with the
1704 ** current key. The entry is unique if (1) any column is NULL
1705 ** or (2) the next entry has a different key */
1706 if( IsUniqueIndex(pIdx) ){
1707 int uniqOk = sqlite3VdbeMakeLabel(pParse);
1708 int jmp6;
1709 int kk;
1710 for(kk=0; kk<pIdx->nKeyCol; kk++){
1711 int iCol = pIdx->aiColumn[kk];
1712 assert( iCol!=XN_ROWID && iCol<pTab->nCol );
1713 if( iCol>=0 && pTab->aCol[iCol].notNull ) continue;
1714 sqlite3VdbeAddOp2(v, OP_IsNull, r1+kk, uniqOk);
1715 VdbeCoverage(v);
1717 jmp6 = sqlite3VdbeAddOp1(v, OP_Next, iIdxCur+j); VdbeCoverage(v);
1718 sqlite3VdbeGoto(v, uniqOk);
1719 sqlite3VdbeJumpHere(v, jmp6);
1720 sqlite3VdbeAddOp4Int(v, OP_IdxGT, iIdxCur+j, uniqOk, r1,
1721 pIdx->nKeyCol); VdbeCoverage(v);
1722 sqlite3VdbeLoadString(v, 3, "non-unique entry in index ");
1723 sqlite3VdbeGoto(v, jmp5);
1724 sqlite3VdbeResolveLabel(v, uniqOk);
1726 sqlite3VdbeJumpHere(v, jmp4);
1727 sqlite3ResolvePartIdxLabel(pParse, jmp3);
1730 sqlite3VdbeAddOp2(v, OP_Next, iDataCur, loopTop); VdbeCoverage(v);
1731 sqlite3VdbeJumpHere(v, loopTop-1);
1732 #ifndef SQLITE_OMIT_BTREECOUNT
1733 if( !isQuick ){
1734 sqlite3VdbeLoadString(v, 2, "wrong # of entries in index ");
1735 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
1736 if( pPk==pIdx ) continue;
1737 sqlite3VdbeAddOp2(v, OP_Count, iIdxCur+j, 3);
1738 addr = sqlite3VdbeAddOp3(v, OP_Eq, 8+j, 0, 3); VdbeCoverage(v);
1739 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1740 sqlite3VdbeLoadString(v, 4, pIdx->zName);
1741 sqlite3VdbeAddOp3(v, OP_Concat, 4, 2, 3);
1742 integrityCheckResultRow(v);
1743 sqlite3VdbeJumpHere(v, addr);
1746 #endif /* SQLITE_OMIT_BTREECOUNT */
1750 static const int iLn = VDBE_OFFSET_LINENO(2);
1751 static const VdbeOpList endCode[] = {
1752 { OP_AddImm, 1, 0, 0}, /* 0 */
1753 { OP_IfNotZero, 1, 4, 0}, /* 1 */
1754 { OP_String8, 0, 3, 0}, /* 2 */
1755 { OP_ResultRow, 3, 1, 0}, /* 3 */
1756 { OP_Halt, 0, 0, 0}, /* 4 */
1757 { OP_String8, 0, 3, 0}, /* 5 */
1758 { OP_Goto, 0, 3, 0}, /* 6 */
1760 VdbeOp *aOp;
1762 aOp = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode, iLn);
1763 if( aOp ){
1764 aOp[0].p2 = 1-mxErr;
1765 aOp[2].p4type = P4_STATIC;
1766 aOp[2].p4.z = "ok";
1767 aOp[5].p4type = P4_STATIC;
1768 aOp[5].p4.z = (char*)sqlite3ErrStr(SQLITE_CORRUPT);
1770 sqlite3VdbeChangeP3(v, 0, sqlite3VdbeCurrentAddr(v)-2);
1773 break;
1774 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
1776 #ifndef SQLITE_OMIT_UTF16
1778 ** PRAGMA encoding
1779 ** PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be"
1781 ** In its first form, this pragma returns the encoding of the main
1782 ** database. If the database is not initialized, it is initialized now.
1784 ** The second form of this pragma is a no-op if the main database file
1785 ** has not already been initialized. In this case it sets the default
1786 ** encoding that will be used for the main database file if a new file
1787 ** is created. If an existing main database file is opened, then the
1788 ** default text encoding for the existing database is used.
1790 ** In all cases new databases created using the ATTACH command are
1791 ** created to use the same default text encoding as the main database. If
1792 ** the main database has not been initialized and/or created when ATTACH
1793 ** is executed, this is done before the ATTACH operation.
1795 ** In the second form this pragma sets the text encoding to be used in
1796 ** new database files created using this database handle. It is only
1797 ** useful if invoked immediately after the main database i
1799 case PragTyp_ENCODING: {
1800 static const struct EncName {
1801 char *zName;
1802 u8 enc;
1803 } encnames[] = {
1804 { "UTF8", SQLITE_UTF8 },
1805 { "UTF-8", SQLITE_UTF8 }, /* Must be element [1] */
1806 { "UTF-16le", SQLITE_UTF16LE }, /* Must be element [2] */
1807 { "UTF-16be", SQLITE_UTF16BE }, /* Must be element [3] */
1808 { "UTF16le", SQLITE_UTF16LE },
1809 { "UTF16be", SQLITE_UTF16BE },
1810 { "UTF-16", 0 }, /* SQLITE_UTF16NATIVE */
1811 { "UTF16", 0 }, /* SQLITE_UTF16NATIVE */
1812 { 0, 0 }
1814 const struct EncName *pEnc;
1815 if( !zRight ){ /* "PRAGMA encoding" */
1816 if( sqlite3ReadSchema(pParse) ) goto pragma_out;
1817 assert( encnames[SQLITE_UTF8].enc==SQLITE_UTF8 );
1818 assert( encnames[SQLITE_UTF16LE].enc==SQLITE_UTF16LE );
1819 assert( encnames[SQLITE_UTF16BE].enc==SQLITE_UTF16BE );
1820 returnSingleText(v, encnames[ENC(pParse->db)].zName);
1821 }else{ /* "PRAGMA encoding = XXX" */
1822 /* Only change the value of sqlite.enc if the database handle is not
1823 ** initialized. If the main database exists, the new sqlite.enc value
1824 ** will be overwritten when the schema is next loaded. If it does not
1825 ** already exists, it will be created to use the new encoding value.
1827 int canChangeEnc = 1; /* True if allowed to change the encoding */
1828 int i; /* For looping over all attached databases */
1829 for(i=0; i<db->nDb; i++){
1830 if( db->aDb[i].pBt!=0
1831 && DbHasProperty(db,i,DB_SchemaLoaded)
1832 && !DbHasProperty(db,i,DB_Empty)
1834 canChangeEnc = 0;
1837 if( canChangeEnc ){
1838 for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
1839 if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){
1840 SCHEMA_ENC(db) = ENC(db) =
1841 pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE;
1842 break;
1845 if( !pEnc->zName ){
1846 sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight);
1851 break;
1852 #endif /* SQLITE_OMIT_UTF16 */
1854 #ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
1856 ** PRAGMA [schema.]schema_version
1857 ** PRAGMA [schema.]schema_version = <integer>
1859 ** PRAGMA [schema.]user_version
1860 ** PRAGMA [schema.]user_version = <integer>
1862 ** PRAGMA [schema.]freelist_count
1864 ** PRAGMA [schema.]data_version
1866 ** PRAGMA [schema.]application_id
1867 ** PRAGMA [schema.]application_id = <integer>
1869 ** The pragma's schema_version and user_version are used to set or get
1870 ** the value of the schema-version and user-version, respectively. Both
1871 ** the schema-version and the user-version are 32-bit signed integers
1872 ** stored in the database header.
1874 ** The schema-cookie is usually only manipulated internally by SQLite. It
1875 ** is incremented by SQLite whenever the database schema is modified (by
1876 ** creating or dropping a table or index). The schema version is used by
1877 ** SQLite each time a query is executed to ensure that the internal cache
1878 ** of the schema used when compiling the SQL query matches the schema of
1879 ** the database against which the compiled query is actually executed.
1880 ** Subverting this mechanism by using "PRAGMA schema_version" to modify
1881 ** the schema-version is potentially dangerous and may lead to program
1882 ** crashes or database corruption. Use with caution!
1884 ** The user-version is not used internally by SQLite. It may be used by
1885 ** applications for any purpose.
1887 case PragTyp_HEADER_VALUE: {
1888 int iCookie = pPragma->iArg; /* Which cookie to read or write */
1889 sqlite3VdbeUsesBtree(v, iDb);
1890 if( zRight && (pPragma->mPragFlg & PragFlg_ReadOnly)==0 ){
1891 /* Write the specified cookie value */
1892 static const VdbeOpList setCookie[] = {
1893 { OP_Transaction, 0, 1, 0}, /* 0 */
1894 { OP_SetCookie, 0, 0, 0}, /* 1 */
1896 VdbeOp *aOp;
1897 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setCookie));
1898 aOp = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie, 0);
1899 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
1900 aOp[0].p1 = iDb;
1901 aOp[1].p1 = iDb;
1902 aOp[1].p2 = iCookie;
1903 aOp[1].p3 = sqlite3Atoi(zRight);
1904 }else{
1905 /* Read the specified cookie value */
1906 static const VdbeOpList readCookie[] = {
1907 { OP_Transaction, 0, 0, 0}, /* 0 */
1908 { OP_ReadCookie, 0, 1, 0}, /* 1 */
1909 { OP_ResultRow, 1, 1, 0}
1911 VdbeOp *aOp;
1912 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(readCookie));
1913 aOp = sqlite3VdbeAddOpList(v, ArraySize(readCookie),readCookie,0);
1914 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
1915 aOp[0].p1 = iDb;
1916 aOp[1].p1 = iDb;
1917 aOp[1].p3 = iCookie;
1918 sqlite3VdbeReusable(v);
1921 break;
1922 #endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */
1924 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
1926 ** PRAGMA compile_options
1928 ** Return the names of all compile-time options used in this build,
1929 ** one option per row.
1931 case PragTyp_COMPILE_OPTIONS: {
1932 int i = 0;
1933 const char *zOpt;
1934 pParse->nMem = 1;
1935 while( (zOpt = sqlite3_compileoption_get(i++))!=0 ){
1936 sqlite3VdbeLoadString(v, 1, zOpt);
1937 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
1939 sqlite3VdbeReusable(v);
1941 break;
1942 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
1944 #ifndef SQLITE_OMIT_WAL
1946 ** PRAGMA [schema.]wal_checkpoint = passive|full|restart|truncate
1948 ** Checkpoint the database.
1950 case PragTyp_WAL_CHECKPOINT: {
1951 int iBt = (pId2->z?iDb:SQLITE_MAX_ATTACHED);
1952 int eMode = SQLITE_CHECKPOINT_PASSIVE;
1953 if( zRight ){
1954 if( sqlite3StrICmp(zRight, "full")==0 ){
1955 eMode = SQLITE_CHECKPOINT_FULL;
1956 }else if( sqlite3StrICmp(zRight, "restart")==0 ){
1957 eMode = SQLITE_CHECKPOINT_RESTART;
1958 }else if( sqlite3StrICmp(zRight, "truncate")==0 ){
1959 eMode = SQLITE_CHECKPOINT_TRUNCATE;
1962 pParse->nMem = 3;
1963 sqlite3VdbeAddOp3(v, OP_Checkpoint, iBt, eMode, 1);
1964 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
1966 break;
1969 ** PRAGMA wal_autocheckpoint
1970 ** PRAGMA wal_autocheckpoint = N
1972 ** Configure a database connection to automatically checkpoint a database
1973 ** after accumulating N frames in the log. Or query for the current value
1974 ** of N.
1976 case PragTyp_WAL_AUTOCHECKPOINT: {
1977 if( zRight ){
1978 sqlite3_wal_autocheckpoint(db, sqlite3Atoi(zRight));
1980 returnSingleInt(v,
1981 db->xWalCallback==sqlite3WalDefaultHook ?
1982 SQLITE_PTR_TO_INT(db->pWalArg) : 0);
1984 break;
1985 #endif
1988 ** PRAGMA shrink_memory
1990 ** IMPLEMENTATION-OF: R-23445-46109 This pragma causes the database
1991 ** connection on which it is invoked to free up as much memory as it
1992 ** can, by calling sqlite3_db_release_memory().
1994 case PragTyp_SHRINK_MEMORY: {
1995 sqlite3_db_release_memory(db);
1996 break;
2000 ** PRAGMA optimize
2001 ** PRAGMA optimize(MASK)
2002 ** PRAGMA schema.optimize
2003 ** PRAGMA schema.optimize(MASK)
2005 ** Attempt to optimize the database. All schemas are optimized in the first
2006 ** two forms, and only the specified schema is optimized in the latter two.
2008 ** The details of optimizations performed by this pragma are expected
2009 ** to change and improve over time. Applications should anticipate that
2010 ** this pragma will perform new optimizations in future releases.
2012 ** The optional argument is a bitmask of optimizations to perform:
2014 ** 0x0001 Debugging mode. Do not actually perform any optimizations
2015 ** but instead return one line of text for each optimization
2016 ** that would have been done. Off by default.
2018 ** 0x0002 Run ANALYZE on tables that might benefit. On by default.
2019 ** See below for additional information.
2021 ** 0x0004 (Not yet implemented) Record usage and performance
2022 ** information from the current session in the
2023 ** database file so that it will be available to "optimize"
2024 ** pragmas run by future database connections.
2026 ** 0x0008 (Not yet implemented) Create indexes that might have
2027 ** been helpful to recent queries
2029 ** The default MASK is and always shall be 0xfffe. 0xfffe means perform all
2030 ** of the optimizations listed above except Debug Mode, including new
2031 ** optimizations that have not yet been invented. If new optimizations are
2032 ** ever added that should be off by default, those off-by-default
2033 ** optimizations will have bitmasks of 0x10000 or larger.
2035 ** DETERMINATION OF WHEN TO RUN ANALYZE
2037 ** In the current implementation, a table is analyzed if only if all of
2038 ** the following are true:
2040 ** (1) MASK bit 0x02 is set.
2042 ** (2) The query planner used sqlite_stat1-style statistics for one or
2043 ** more indexes of the table at some point during the lifetime of
2044 ** the current connection.
2046 ** (3) One or more indexes of the table are currently unanalyzed OR
2047 ** the number of rows in the table has increased by 25 times or more
2048 ** since the last time ANALYZE was run.
2050 ** The rules for when tables are analyzed are likely to change in
2051 ** future releases.
2053 case PragTyp_OPTIMIZE: {
2054 int iDbLast; /* Loop termination point for the schema loop */
2055 int iTabCur; /* Cursor for a table whose size needs checking */
2056 HashElem *k; /* Loop over tables of a schema */
2057 Schema *pSchema; /* The current schema */
2058 Table *pTab; /* A table in the schema */
2059 Index *pIdx; /* An index of the table */
2060 LogEst szThreshold; /* Size threshold above which reanalysis is needd */
2061 char *zSubSql; /* SQL statement for the OP_SqlExec opcode */
2062 u32 opMask; /* Mask of operations to perform */
2064 if( zRight ){
2065 opMask = (u32)sqlite3Atoi(zRight);
2066 if( (opMask & 0x02)==0 ) break;
2067 }else{
2068 opMask = 0xfffe;
2070 iTabCur = pParse->nTab++;
2071 for(iDbLast = zDb?iDb:db->nDb-1; iDb<=iDbLast; iDb++){
2072 if( iDb==1 ) continue;
2073 sqlite3CodeVerifySchema(pParse, iDb);
2074 pSchema = db->aDb[iDb].pSchema;
2075 for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
2076 pTab = (Table*)sqliteHashData(k);
2078 /* If table pTab has not been used in a way that would benefit from
2079 ** having analysis statistics during the current session, then skip it.
2080 ** This also has the effect of skipping virtual tables and views */
2081 if( (pTab->tabFlags & TF_StatsUsed)==0 ) continue;
2083 /* Reanalyze if the table is 25 times larger than the last analysis */
2084 szThreshold = pTab->nRowLogEst + 46; assert( sqlite3LogEst(25)==46 );
2085 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2086 if( !pIdx->hasStat1 ){
2087 szThreshold = 0; /* Always analyze if any index lacks statistics */
2088 break;
2091 if( szThreshold ){
2092 sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
2093 sqlite3VdbeAddOp3(v, OP_IfSmaller, iTabCur,
2094 sqlite3VdbeCurrentAddr(v)+2+(opMask&1), szThreshold);
2095 VdbeCoverage(v);
2097 zSubSql = sqlite3MPrintf(db, "ANALYZE \"%w\".\"%w\"",
2098 db->aDb[iDb].zDbSName, pTab->zName);
2099 if( opMask & 0x01 ){
2100 int r1 = sqlite3GetTempReg(pParse);
2101 sqlite3VdbeAddOp4(v, OP_String8, 0, r1, 0, zSubSql, P4_DYNAMIC);
2102 sqlite3VdbeAddOp2(v, OP_ResultRow, r1, 1);
2103 }else{
2104 sqlite3VdbeAddOp4(v, OP_SqlExec, 0, 0, 0, zSubSql, P4_DYNAMIC);
2108 sqlite3VdbeAddOp0(v, OP_Expire);
2109 break;
2113 ** PRAGMA busy_timeout
2114 ** PRAGMA busy_timeout = N
2116 ** Call sqlite3_busy_timeout(db, N). Return the current timeout value
2117 ** if one is set. If no busy handler or a different busy handler is set
2118 ** then 0 is returned. Setting the busy_timeout to 0 or negative
2119 ** disables the timeout.
2121 /*case PragTyp_BUSY_TIMEOUT*/ default: {
2122 assert( pPragma->ePragTyp==PragTyp_BUSY_TIMEOUT );
2123 if( zRight ){
2124 sqlite3_busy_timeout(db, sqlite3Atoi(zRight));
2126 returnSingleInt(v, db->busyTimeout);
2127 break;
2131 ** PRAGMA soft_heap_limit
2132 ** PRAGMA soft_heap_limit = N
2134 ** IMPLEMENTATION-OF: R-26343-45930 This pragma invokes the
2135 ** sqlite3_soft_heap_limit64() interface with the argument N, if N is
2136 ** specified and is a non-negative integer.
2137 ** IMPLEMENTATION-OF: R-64451-07163 The soft_heap_limit pragma always
2138 ** returns the same integer that would be returned by the
2139 ** sqlite3_soft_heap_limit64(-1) C-language function.
2141 case PragTyp_SOFT_HEAP_LIMIT: {
2142 sqlite3_int64 N;
2143 if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){
2144 sqlite3_soft_heap_limit64(N);
2146 returnSingleInt(v, sqlite3_soft_heap_limit64(-1));
2147 break;
2151 ** PRAGMA hard_heap_limit
2152 ** PRAGMA hard_heap_limit = N
2154 ** Invoke sqlite3_hard_heap_limit64() to query or set the hard heap
2155 ** limit. The hard heap limit can be activated or lowered by this
2156 ** pragma, but not raised or deactivated. Only the
2157 ** sqlite3_hard_heap_limit64() C-language API can raise or deactivate
2158 ** the hard heap limit. This allows an application to set a heap limit
2159 ** constraint that cannot be relaxed by an untrusted SQL script.
2161 case PragTyp_HARD_HEAP_LIMIT: {
2162 sqlite3_int64 N;
2163 if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){
2164 sqlite3_int64 iPrior = sqlite3_hard_heap_limit64(-1);
2165 if( N>0 && (iPrior==0 || iPrior>N) ) sqlite3_hard_heap_limit64(N);
2167 returnSingleInt(v, sqlite3_hard_heap_limit64(-1));
2168 break;
2172 ** PRAGMA threads
2173 ** PRAGMA threads = N
2175 ** Configure the maximum number of worker threads. Return the new
2176 ** maximum, which might be less than requested.
2178 case PragTyp_THREADS: {
2179 sqlite3_int64 N;
2180 if( zRight
2181 && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK
2182 && N>=0
2184 sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, (int)(N&0x7fffffff));
2186 returnSingleInt(v, sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, -1));
2187 break;
2190 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
2192 ** Report the current state of file logs for all databases
2194 case PragTyp_LOCK_STATUS: {
2195 static const char *const azLockName[] = {
2196 "unlocked", "shared", "reserved", "pending", "exclusive"
2198 int i;
2199 pParse->nMem = 2;
2200 for(i=0; i<db->nDb; i++){
2201 Btree *pBt;
2202 const char *zState = "unknown";
2203 int j;
2204 if( db->aDb[i].zDbSName==0 ) continue;
2205 pBt = db->aDb[i].pBt;
2206 if( pBt==0 || sqlite3BtreePager(pBt)==0 ){
2207 zState = "closed";
2208 }else if( sqlite3_file_control(db, i ? db->aDb[i].zDbSName : 0,
2209 SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){
2210 zState = azLockName[j];
2212 sqlite3VdbeMultiLoad(v, 1, "ss", db->aDb[i].zDbSName, zState);
2214 break;
2216 #endif
2218 #if defined(SQLITE_ENABLE_CEROD)
2219 case PragTyp_ACTIVATE_EXTENSIONS: if( zRight ){
2220 if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){
2221 sqlite3_activate_cerod(&zRight[6]);
2224 break;
2225 #endif
2227 } /* End of the PRAGMA switch */
2229 /* The following block is a no-op unless SQLITE_DEBUG is defined. Its only
2230 ** purpose is to execute assert() statements to verify that if the
2231 ** PragFlg_NoColumns1 flag is set and the caller specified an argument
2232 ** to the PRAGMA, the implementation has not added any OP_ResultRow
2233 ** instructions to the VM. */
2234 if( (pPragma->mPragFlg & PragFlg_NoColumns1) && zRight ){
2235 sqlite3VdbeVerifyNoResultRow(v);
2238 pragma_out:
2239 sqlite3DbFree(db, zLeft);
2240 sqlite3DbFree(db, zRight);
2242 #ifndef SQLITE_OMIT_VIRTUALTABLE
2243 /*****************************************************************************
2244 ** Implementation of an eponymous virtual table that runs a pragma.
2247 typedef struct PragmaVtab PragmaVtab;
2248 typedef struct PragmaVtabCursor PragmaVtabCursor;
2249 struct PragmaVtab {
2250 sqlite3_vtab base; /* Base class. Must be first */
2251 sqlite3 *db; /* The database connection to which it belongs */
2252 const PragmaName *pName; /* Name of the pragma */
2253 u8 nHidden; /* Number of hidden columns */
2254 u8 iHidden; /* Index of the first hidden column */
2256 struct PragmaVtabCursor {
2257 sqlite3_vtab_cursor base; /* Base class. Must be first */
2258 sqlite3_stmt *pPragma; /* The pragma statement to run */
2259 sqlite_int64 iRowid; /* Current rowid */
2260 char *azArg[2]; /* Value of the argument and schema */
2264 ** Pragma virtual table module xConnect method.
2266 static int pragmaVtabConnect(
2267 sqlite3 *db,
2268 void *pAux,
2269 int argc, const char *const*argv,
2270 sqlite3_vtab **ppVtab,
2271 char **pzErr
2273 const PragmaName *pPragma = (const PragmaName*)pAux;
2274 PragmaVtab *pTab = 0;
2275 int rc;
2276 int i, j;
2277 char cSep = '(';
2278 StrAccum acc;
2279 char zBuf[200];
2281 UNUSED_PARAMETER(argc);
2282 UNUSED_PARAMETER(argv);
2283 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
2284 sqlite3_str_appendall(&acc, "CREATE TABLE x");
2285 for(i=0, j=pPragma->iPragCName; i<pPragma->nPragCName; i++, j++){
2286 sqlite3_str_appendf(&acc, "%c\"%s\"", cSep, pragCName[j]);
2287 cSep = ',';
2289 if( i==0 ){
2290 sqlite3_str_appendf(&acc, "(\"%s\"", pPragma->zName);
2291 i++;
2293 j = 0;
2294 if( pPragma->mPragFlg & PragFlg_Result1 ){
2295 sqlite3_str_appendall(&acc, ",arg HIDDEN");
2296 j++;
2298 if( pPragma->mPragFlg & (PragFlg_SchemaOpt|PragFlg_SchemaReq) ){
2299 sqlite3_str_appendall(&acc, ",schema HIDDEN");
2300 j++;
2302 sqlite3_str_append(&acc, ")", 1);
2303 sqlite3StrAccumFinish(&acc);
2304 assert( strlen(zBuf) < sizeof(zBuf)-1 );
2305 rc = sqlite3_declare_vtab(db, zBuf);
2306 if( rc==SQLITE_OK ){
2307 pTab = (PragmaVtab*)sqlite3_malloc(sizeof(PragmaVtab));
2308 if( pTab==0 ){
2309 rc = SQLITE_NOMEM;
2310 }else{
2311 memset(pTab, 0, sizeof(PragmaVtab));
2312 pTab->pName = pPragma;
2313 pTab->db = db;
2314 pTab->iHidden = i;
2315 pTab->nHidden = j;
2317 }else{
2318 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
2321 *ppVtab = (sqlite3_vtab*)pTab;
2322 return rc;
2326 ** Pragma virtual table module xDisconnect method.
2328 static int pragmaVtabDisconnect(sqlite3_vtab *pVtab){
2329 PragmaVtab *pTab = (PragmaVtab*)pVtab;
2330 sqlite3_free(pTab);
2331 return SQLITE_OK;
2334 /* Figure out the best index to use to search a pragma virtual table.
2336 ** There are not really any index choices. But we want to encourage the
2337 ** query planner to give == constraints on as many hidden parameters as
2338 ** possible, and especially on the first hidden parameter. So return a
2339 ** high cost if hidden parameters are unconstrained.
2341 static int pragmaVtabBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
2342 PragmaVtab *pTab = (PragmaVtab*)tab;
2343 const struct sqlite3_index_constraint *pConstraint;
2344 int i, j;
2345 int seen[2];
2347 pIdxInfo->estimatedCost = (double)1;
2348 if( pTab->nHidden==0 ){ return SQLITE_OK; }
2349 pConstraint = pIdxInfo->aConstraint;
2350 seen[0] = 0;
2351 seen[1] = 0;
2352 for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
2353 if( pConstraint->usable==0 ) continue;
2354 if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
2355 if( pConstraint->iColumn < pTab->iHidden ) continue;
2356 j = pConstraint->iColumn - pTab->iHidden;
2357 assert( j < 2 );
2358 seen[j] = i+1;
2360 if( seen[0]==0 ){
2361 pIdxInfo->estimatedCost = (double)2147483647;
2362 pIdxInfo->estimatedRows = 2147483647;
2363 return SQLITE_OK;
2365 j = seen[0]-1;
2366 pIdxInfo->aConstraintUsage[j].argvIndex = 1;
2367 pIdxInfo->aConstraintUsage[j].omit = 1;
2368 if( seen[1]==0 ) return SQLITE_OK;
2369 pIdxInfo->estimatedCost = (double)20;
2370 pIdxInfo->estimatedRows = 20;
2371 j = seen[1]-1;
2372 pIdxInfo->aConstraintUsage[j].argvIndex = 2;
2373 pIdxInfo->aConstraintUsage[j].omit = 1;
2374 return SQLITE_OK;
2377 /* Create a new cursor for the pragma virtual table */
2378 static int pragmaVtabOpen(sqlite3_vtab *pVtab, sqlite3_vtab_cursor **ppCursor){
2379 PragmaVtabCursor *pCsr;
2380 pCsr = (PragmaVtabCursor*)sqlite3_malloc(sizeof(*pCsr));
2381 if( pCsr==0 ) return SQLITE_NOMEM;
2382 memset(pCsr, 0, sizeof(PragmaVtabCursor));
2383 pCsr->base.pVtab = pVtab;
2384 *ppCursor = &pCsr->base;
2385 return SQLITE_OK;
2388 /* Clear all content from pragma virtual table cursor. */
2389 static void pragmaVtabCursorClear(PragmaVtabCursor *pCsr){
2390 int i;
2391 sqlite3_finalize(pCsr->pPragma);
2392 pCsr->pPragma = 0;
2393 for(i=0; i<ArraySize(pCsr->azArg); i++){
2394 sqlite3_free(pCsr->azArg[i]);
2395 pCsr->azArg[i] = 0;
2399 /* Close a pragma virtual table cursor */
2400 static int pragmaVtabClose(sqlite3_vtab_cursor *cur){
2401 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)cur;
2402 pragmaVtabCursorClear(pCsr);
2403 sqlite3_free(pCsr);
2404 return SQLITE_OK;
2407 /* Advance the pragma virtual table cursor to the next row */
2408 static int pragmaVtabNext(sqlite3_vtab_cursor *pVtabCursor){
2409 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2410 int rc = SQLITE_OK;
2412 /* Increment the xRowid value */
2413 pCsr->iRowid++;
2414 assert( pCsr->pPragma );
2415 if( SQLITE_ROW!=sqlite3_step(pCsr->pPragma) ){
2416 rc = sqlite3_finalize(pCsr->pPragma);
2417 pCsr->pPragma = 0;
2418 pragmaVtabCursorClear(pCsr);
2420 return rc;
2424 ** Pragma virtual table module xFilter method.
2426 static int pragmaVtabFilter(
2427 sqlite3_vtab_cursor *pVtabCursor,
2428 int idxNum, const char *idxStr,
2429 int argc, sqlite3_value **argv
2431 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2432 PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab);
2433 int rc;
2434 int i, j;
2435 StrAccum acc;
2436 char *zSql;
2438 UNUSED_PARAMETER(idxNum);
2439 UNUSED_PARAMETER(idxStr);
2440 pragmaVtabCursorClear(pCsr);
2441 j = (pTab->pName->mPragFlg & PragFlg_Result1)!=0 ? 0 : 1;
2442 for(i=0; i<argc; i++, j++){
2443 const char *zText = (const char*)sqlite3_value_text(argv[i]);
2444 assert( j<ArraySize(pCsr->azArg) );
2445 assert( pCsr->azArg[j]==0 );
2446 if( zText ){
2447 pCsr->azArg[j] = sqlite3_mprintf("%s", zText);
2448 if( pCsr->azArg[j]==0 ){
2449 return SQLITE_NOMEM;
2453 sqlite3StrAccumInit(&acc, 0, 0, 0, pTab->db->aLimit[SQLITE_LIMIT_SQL_LENGTH]);
2454 sqlite3_str_appendall(&acc, "PRAGMA ");
2455 if( pCsr->azArg[1] ){
2456 sqlite3_str_appendf(&acc, "%Q.", pCsr->azArg[1]);
2458 sqlite3_str_appendall(&acc, pTab->pName->zName);
2459 if( pCsr->azArg[0] ){
2460 sqlite3_str_appendf(&acc, "=%Q", pCsr->azArg[0]);
2462 zSql = sqlite3StrAccumFinish(&acc);
2463 if( zSql==0 ) return SQLITE_NOMEM;
2464 rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pPragma, 0);
2465 sqlite3_free(zSql);
2466 if( rc!=SQLITE_OK ){
2467 pTab->base.zErrMsg = sqlite3_mprintf("%s", sqlite3_errmsg(pTab->db));
2468 return rc;
2470 return pragmaVtabNext(pVtabCursor);
2474 ** Pragma virtual table module xEof method.
2476 static int pragmaVtabEof(sqlite3_vtab_cursor *pVtabCursor){
2477 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2478 return (pCsr->pPragma==0);
2481 /* The xColumn method simply returns the corresponding column from
2482 ** the PRAGMA.
2484 static int pragmaVtabColumn(
2485 sqlite3_vtab_cursor *pVtabCursor,
2486 sqlite3_context *ctx,
2487 int i
2489 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2490 PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab);
2491 if( i<pTab->iHidden ){
2492 sqlite3_result_value(ctx, sqlite3_column_value(pCsr->pPragma, i));
2493 }else{
2494 sqlite3_result_text(ctx, pCsr->azArg[i-pTab->iHidden],-1,SQLITE_TRANSIENT);
2496 return SQLITE_OK;
2500 ** Pragma virtual table module xRowid method.
2502 static int pragmaVtabRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *p){
2503 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2504 *p = pCsr->iRowid;
2505 return SQLITE_OK;
2508 /* The pragma virtual table object */
2509 static const sqlite3_module pragmaVtabModule = {
2510 0, /* iVersion */
2511 0, /* xCreate - create a table */
2512 pragmaVtabConnect, /* xConnect - connect to an existing table */
2513 pragmaVtabBestIndex, /* xBestIndex - Determine search strategy */
2514 pragmaVtabDisconnect, /* xDisconnect - Disconnect from a table */
2515 0, /* xDestroy - Drop a table */
2516 pragmaVtabOpen, /* xOpen - open a cursor */
2517 pragmaVtabClose, /* xClose - close a cursor */
2518 pragmaVtabFilter, /* xFilter - configure scan constraints */
2519 pragmaVtabNext, /* xNext - advance a cursor */
2520 pragmaVtabEof, /* xEof */
2521 pragmaVtabColumn, /* xColumn - read data */
2522 pragmaVtabRowid, /* xRowid - read data */
2523 0, /* xUpdate - write data */
2524 0, /* xBegin - begin transaction */
2525 0, /* xSync - sync transaction */
2526 0, /* xCommit - commit transaction */
2527 0, /* xRollback - rollback transaction */
2528 0, /* xFindFunction - function overloading */
2529 0, /* xRename - rename the table */
2530 0, /* xSavepoint */
2531 0, /* xRelease */
2532 0, /* xRollbackTo */
2533 0 /* xShadowName */
2537 ** Check to see if zTabName is really the name of a pragma. If it is,
2538 ** then register an eponymous virtual table for that pragma and return
2539 ** a pointer to the Module object for the new virtual table.
2541 Module *sqlite3PragmaVtabRegister(sqlite3 *db, const char *zName){
2542 const PragmaName *pName;
2543 assert( sqlite3_strnicmp(zName, "pragma_", 7)==0 );
2544 pName = pragmaLocate(zName+7);
2545 if( pName==0 ) return 0;
2546 if( (pName->mPragFlg & (PragFlg_Result0|PragFlg_Result1))==0 ) return 0;
2547 assert( sqlite3HashFind(&db->aModule, zName)==0 );
2548 return sqlite3VtabCreateModule(db, zName, &pragmaVtabModule, (void*)pName, 0);
2551 #endif /* SQLITE_OMIT_VIRTUALTABLE */
2553 #endif /* SQLITE_OMIT_PRAGMA */