use euclidean distance to decide whether an observed point is close enough
[sparrow.git] / edges.c
blob39ba541206b7d6c463c9c1696012577c2b362395
1 /* Copyright (C) <2010> Douglas Bagnall <douglas@halo.gen.nz>
3 * This library is free software; you can redistribute it and/or
4 * modify it under the terms of the GNU Library General Public
5 * License as published by the Free Software Foundation; either
6 * version 2 of the License, or (at your option) any later version.
8 * This library is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * Library General Public License for more details.
13 * You should have received a copy of the GNU Library General Public
14 * License along with this library; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 02111-1307, USA.
20 #include "sparrow.h"
21 #include "gstsparrow.h"
22 #include "edges.h"
24 #include <string.h>
25 #include <math.h>
26 #include <unistd.h>
28 #include "cv.h"
29 #include "median.h"
31 static int global_number_of_edge_finders = 0;
33 static void dump_edges_info(GstSparrow *sparrow, sparrow_find_lines_t *fl, const char *filename){
34 GST_DEBUG("about to save to %s\n", filename);
35 FILE *f = fopen(filename, "w");
36 sparrow_fl_condensed_t condensed;
37 condensed.n_vlines = fl->n_vlines;
38 condensed.n_hlines = fl->n_hlines;
40 /* simply write fl, map, clusters and mesh in sequence */
41 GST_DEBUG("fl is %p, file is %p\n", fl, f);
42 GST_DEBUG("fl: %d x %d\n", sizeof(sparrow_find_lines_t), 1);
43 fwrite(&condensed, sizeof(sparrow_fl_condensed_t), 1, f);
44 GST_DEBUG("fl->map %d x %d\n", sizeof(sparrow_intersect_t), sparrow->in.pixcount);
45 fwrite(fl->map, sizeof(sparrow_intersect_t), sparrow->in.pixcount, f);
46 GST_DEBUG("fl->clusters %d x %d\n", sizeof(sparrow_cluster_t), fl->n_hlines * fl->n_vlines);
47 fwrite(fl->clusters, sizeof(sparrow_cluster_t), fl->n_hlines * fl->n_vlines, f);
48 GST_DEBUG("fl->mesh %d x %d\n", sizeof(sparrow_corner_t), fl->n_hlines * fl->n_vlines);
49 fwrite(fl->mesh, sizeof(sparrow_corner_t), fl->n_hlines * fl->n_vlines, f);
50 /*and write the mask too */
51 GST_DEBUG("sparrow->screenmask\n");
52 fwrite(sparrow->screenmask, 1, sparrow->in.pixcount, f);
53 fclose(f);
56 static void read_edges_info(GstSparrow *sparrow, sparrow_find_lines_t *fl, const char *filename){
57 FILE *f = fopen(filename, "r");
58 sparrow_fl_condensed_t condensed;
59 size_t read = fread(&condensed, sizeof(sparrow_fl_condensed_t), 1, f);
60 assert(condensed.n_hlines == fl->n_hlines);
61 assert(condensed.n_vlines == fl->n_vlines);
63 guint n_corners = fl->n_hlines * fl->n_vlines;
64 read += fread(fl->map, sizeof(sparrow_intersect_t), sparrow->in.pixcount, f);
65 read += fread(fl->clusters, sizeof(sparrow_cluster_t), n_corners, f);
66 read += fread(fl->mesh, sizeof(sparrow_corner_t), n_corners, f);
67 read += fread(sparrow->screenmask, 1, sparrow->in.pixcount, f);
68 fclose(f);
71 static void
72 debug_map_lut(GstSparrow *sparrow, sparrow_find_lines_t *fl){
73 sparrow_map_lut_t *map_lut = sparrow->map_lut;
74 if (sparrow->debug){
75 debug_frame(sparrow, (guint8*)map_lut, sparrow->out.width, sparrow->out.height, PIXSIZE);
79 #if USE_FLOAT_COORDS
81 #define COORD_TO_INT(x)((int)((x) + 0.5))
82 #define COORD_TO_FLOAT(x)((double)(x))
83 #define INT_TO_COORD(x)((coord_t)(x))
85 static inline int
86 coord_to_int_clamp(coord_t x, const int max_plus_one){
87 if (x < 0)
88 return 0;
89 if (x >= max_plus_one - 1.5)
90 return max_plus_one - 1;
91 return (int)(x + 0.5);
94 static inline int
95 coord_to_int_clamp_dither(sparrow_find_lines_t *fl, coord_t x,
96 const int max_plus_one, const int i){
97 if (x < 0)
98 return 0;
99 x += fl->dither[i];
100 if (x >= max_plus_one)
101 return max_plus_one - 1;
102 return (int)x;
106 static inline int
107 coord_in_range(coord_t x, const int max_plus_one){
108 return x >= 0 && (x + 0.5 < max_plus_one);
111 #else
113 #define COORD_TO_INT(x)((x) / (1 << SPARROW_FIXED_POINT))
114 #define COORD_TO_FLOAT(x)(((double)(x)) / (1 << SPARROW_FIXED_POINT))
115 #define INT_TO_COORD(x)((x) * (1 << SPARROW_FIXED_POINT))
117 static inline int
118 coord_to_int_clamp(coord_t x, const int max_plus_one){
119 if (x < 0)
120 return 0;
121 x >>= SPARROW_FIXED_POINT;
122 if (x >= max_plus_one)
123 return max_plus_one - 1;
124 return x;
127 static inline int
128 coord_in_range(coord_t x, const int max_plus_one){
129 return x >= 0 && (x < max_plus_one << SPARROW_FIXED_POINT);
132 #endif
134 //these ones are common
135 static inline int
136 coords_to_index(coord_t x, coord_t y, int w, int h){
137 int iy = coord_to_int_clamp(y, h);
138 int ix = coord_to_int_clamp(x, w);
139 return iy * w + ix;
142 #define C2I COORD_TO_INT
143 #define C2F COORD_TO_FLOAT
145 /********************************************/
147 static void
148 corners_to_full_lut(GstSparrow *sparrow, sparrow_find_lines_t *fl){
149 DEBUG_FIND_LINES(fl);
150 sparrow_corner_t *mesh = fl->mesh; /*maps regular points in ->out to points in ->in */
151 sparrow_map_lut_t *map_lut = sparrow->map_lut;
152 int mesh_w = fl->n_vlines;
153 int mesh_h = fl->n_hlines;
154 int mcy, mmy, mcx, mmx; /*Mesh Corner|Modulus X|Y*/
155 int y = H_LINE_OFFSET;
156 sparrow_corner_t *mesh_row = mesh;
158 for(mcy = 0; mcy < mesh_h - 1; mcy++){
159 for (mmy = 0; mmy < LINE_PERIOD; mmy++, y++){
160 sparrow_corner_t *mesh_square = mesh_row;
161 int i = y * sparrow->out.width + V_LINE_OFFSET;
162 for(mcx = 0; mcx < mesh_w - 1; mcx++){
163 coord_t iy = mesh_square->y + mmy * mesh_square->dyd;
164 coord_t ix = mesh_square->x + mmy * mesh_square->dxd;
165 for (mmx = 0; mmx < LINE_PERIOD; mmx++, i++){
166 int ixx = coord_to_int_clamp_dither(fl, ix, sparrow->in.width, i);
167 int iyy = coord_to_int_clamp_dither(fl, iy, sparrow->in.height, i);
168 if(sparrow->screenmask[iyy * sparrow->in.width + ixx]){
169 map_lut[i].x = ixx;
170 map_lut[i].y = iyy;
172 ix += mesh_square->dxr;
173 iy += mesh_square->dyr;
175 mesh_square++;
178 mesh_row += mesh_w;
180 sparrow->map_lut = map_lut;
181 debug_map_lut(sparrow, fl);
184 static void
185 debug_corners_image(GstSparrow *sparrow, sparrow_find_lines_t *fl){
186 sparrow_corner_t *mesh = fl->mesh;
187 guint32 *data = (guint32*)fl->debug->imageData;
188 guint w = fl->debug->width;
189 guint h = fl->debug->height;
190 memset(data, 0, sparrow->in.size);
191 guint32 colours[4] = {0xff0000ff, 0x00ff0000, 0x0000ff00, 0xffffffff};
192 for (int i = 0; i < fl->n_vlines * fl->n_hlines; i++){
193 sparrow_corner_t *c = &mesh[i];
194 coord_t x = c->x;
195 coord_t y = c->y;
196 coord_t txr = x;
197 coord_t txd = x;
198 coord_t tyr = y;
199 coord_t tyd = y;
200 for (int j = 1; j < LINE_PERIOD; j+= 2){
201 txr += c->dxr * 2;
202 txd += c->dxd * 2;
203 tyr += c->dyr * 2;
204 tyd += c->dyd * 2;
205 guint hl = coords_to_index(txr, tyr, w, h);
206 data[hl] = 0x88000088;
207 guint vl = coords_to_index(txd, tyd, w, h);
208 data[vl] = 0x00663300;
210 data[coords_to_index(x, y, w, h)] = colours[c->status];
212 MAYBE_DEBUG_IPL(fl->debug);
216 static void
217 debug_clusters(GstSparrow *sparrow, sparrow_find_lines_t *fl){
218 guint32 *data = (guint32*)fl->debug->imageData;
219 memset(data, 0, sparrow->in.size);
220 int width = fl->n_vlines;
221 int height = fl->n_hlines;
222 sparrow_cluster_t *clusters = fl->clusters;
223 int i, j;
224 guint32 colour;
225 guint32 colours[4] = {0xff0000ff, 0x0000ff00, 0x00ff0000,
226 0x00ff00ff};
227 for (i = 0; i < width * height; i++){
228 colour = colours[i % 5];
229 sparrow_voter_t *v = clusters[i].voters;
230 for (j = 0; j < clusters[i].n; j++){
231 data[coords_to_index(v[j].x, v[j].y,
232 sparrow->in.width, sparrow->in.height)] = (colour * (v[j].signal / 2)) / 256;
235 MAYBE_DEBUG_IPL(fl->debug);
239 #define SIGNAL_QUANT 1
241 /*maximum number of pixels in a cluster */
242 #define CLUSTER_SIZE 8
245 /*find map points with common intersection data, and collect them into clusters */
246 static void
247 make_clusters(GstSparrow *sparrow, sparrow_find_lines_t *fl){
248 sparrow_cluster_t *clusters = fl->clusters;
249 int x, y;
250 /*special case: spurious values collect up at 0,0 */
251 fl->map[0].signal[SPARROW_VERTICAL] = 0;
252 fl->map[0].signal[SPARROW_HORIZONTAL] = 0;
253 /*each point in fl->map is in a vertical line, a horizontal line, both, or
254 neither. Only the "both" case matters. */
255 for (y = 0; y < sparrow->in.height; y++){
256 for (x = 0; x < sparrow->in.width; x++){
257 sparrow_intersect_t *p = &fl->map[y * sparrow->in.width + x];
258 guint vsig = p->signal[SPARROW_VERTICAL];
259 guint hsig = p->signal[SPARROW_HORIZONTAL];
260 /*remembering that 0 is valid as a line number, but not as a signal */
261 if (! (vsig && hsig)){
262 continue;
264 /*This one is lobbying for the position of a corner.*/
265 int vline = p->lines[SPARROW_VERTICAL];
266 int hline = p->lines[SPARROW_HORIZONTAL];
267 if (vline == BAD_PIXEL || hline == BAD_PIXEL){
268 GST_DEBUG("ignoring bad pixel %d, %d\n", x, y);
269 continue;
271 sparrow_cluster_t *cluster = &clusters[hline * fl->n_vlines + vline];
272 sparrow_voter_t *voters = cluster->voters;
273 int n = cluster->n;
274 guint signal = (vsig * hsig) / SIGNAL_QUANT;
275 GST_DEBUG("signal at %p (%d, %d): %dv %dh, product %u, lines: %dv %dh\n"
276 "cluster is %p, n is %d\n", p, x, y,
277 vsig, hsig, signal, vline, hline, cluster, n);
278 if (signal == 0){
279 GST_WARNING("signal at %p (%d, %d) is %d following quantisation!\n",
280 p, x, y, signal);
283 if (n < CLUSTER_SIZE){
284 voters[n].x = INT_TO_COORD(x);
285 voters[n].y = INT_TO_COORD(y);
286 voters[n].signal = signal;
287 cluster->n++;
289 else {
290 /*duplicate x, y, signal, so they aren't mucked up */
291 guint ts = signal;
292 coord_t tx = x;
293 coord_t ty = y;
294 /*replaced one ends up here */
295 guint ts2;
296 coord_t tx2;
297 coord_t ty2;
298 for (int j = 0; j < CLUSTER_SIZE; j++){
299 if (voters[j].signal < ts){
300 ts2 = voters[j].signal;
301 tx2 = voters[j].x;
302 ty2 = voters[j].y;
303 voters[j].signal = ts;
304 voters[j].x = tx;
305 voters[j].y = ty;
306 ts = ts2;
307 tx = tx2;
308 ty = ty2;
311 GST_DEBUG("more than %d pixels at cluster for corner %d, %d."
312 "Dropped %u for %u\n",
313 CLUSTER_SIZE, vline, hline, ts2, signal);
317 if (sparrow->debug){
318 debug_clusters(sparrow, fl);
323 static inline int
324 drop_cluster_voter(sparrow_voter_t *voters, int n, int k)
326 int i;
327 if (k < n){
328 n--;
329 for (i = k; i < n; i++){
330 voters[i] = voters[i + 1];
333 return n;
336 static inline int sort_median(coord_t *a, guint n)
338 guint i, j;
339 /*stupid sort, but n is very small*/
340 for (i = 0; i < n; i++){
341 for (j = i + 1; j < n; j++){
342 if (a[i] > a[j]){
343 coord_t tmp = a[j];
344 a[j] = a[i];
345 a[i] = tmp;
349 guint middle = n / 2;
350 coord_t answer = a[middle];
352 if ((n & 1) == 0){
353 answer += a[middle - 1];
354 answer /= 2;
356 return answer;
359 #define EUCLIDEAN_D2(ax, ay, bx, by)((ax - bx) * (ax - bx) + (ay - by) * (ay - by))
360 #define EUCLIDEAN_THRESHOLD 7
362 static inline int
363 euclidean_discard_cluster_outliers(sparrow_voter_t *voters, int n)
365 /* Calculate distance between each pair. Discard points with maximum sum,
366 then recalculate until all are within threshold.
368 GST_DEBUG("cleansing a cluster of size %d using sum of distances", n);
369 int i, j;
370 coord_t dsums[n];
371 for (i = 0; i < n; i++){
372 dsums[i] = 0;
373 for (j = i + 1; j < n; j++){
374 coord_t d = EUCLIDEAN_D2(voters[i].x, voters[i].y,
375 voters[j].x, voters[j].y);
376 dsums[i] += d;
377 dsums[j] += d;
381 int worst_i;
382 coord_t worst_d, threshold;
383 while (n > 1){
384 threshold = EUCLIDEAN_THRESHOLD * n;
385 worst_i = 0;
386 worst_d = 0;
387 for (i = 0; i < n; i++){
388 if (dsums[i] > worst_d){
389 worst_d = dsums[i];
390 worst_i = i;
393 if (worst_d > threshold){
394 GST_DEBUG("failing point %d, distance sq %d, threshold %d\n",
395 worst_i, C2I(worst_d), C2I(threshold));
396 //subtract this one from the sums, or they'll all go
397 for (i = 0; i < n; i++){
398 dsums[i] -= EUCLIDEAN_D2(voters[i].x, voters[i].y,
399 voters[worst_i].x, voters[worst_i].y);
401 n = drop_cluster_voter(voters, n, worst_i);
403 else{
404 GST_DEBUG("worst %d, was only %d, threshold %d\n",
405 worst_i, C2I(worst_d), C2I(threshold));
406 break;
409 return n;
412 static inline int
413 median_discard_cluster_outliers(sparrow_voter_t *voters, int n)
415 coord_t xvals[n];
416 coord_t yvals[n];
417 int i;
418 for (i = 0; i < n; i++){
419 /*XXX could sort here*/
420 xvals[i] = voters[i].x;
421 yvals[i] = voters[i].y;
423 const coord_t xmed = sort_median(xvals, n);
424 const coord_t ymed = sort_median(yvals, n);
426 for (i = 0; i < n; i++){
427 coord_t dx = voters[i].x - xmed;
428 coord_t dy = voters[i].y - ymed;
429 if (dx * dx + dy * dy > OUTLIER_THRESHOLD){
430 n = drop_cluster_voter(voters, n, i);
433 return n;
436 /* */
437 static inline void
438 make_corners(GstSparrow *sparrow, sparrow_find_lines_t *fl){
439 //DEBUG_FIND_LINES(fl);
440 int width = fl->n_vlines;
441 int height = fl->n_hlines;
442 sparrow_cluster_t *clusters = fl->clusters;
443 sparrow_corner_t *mesh = fl->mesh;
444 int x, y, i;
446 i = 0;
447 for (y = 0; y < height; y++){
448 for (x = 0; x < width; x++, i++){
449 sparrow_cluster_t *cluster = clusters + i;
450 if (cluster->n == 0){
451 continue;
453 #if 1
454 /*discard outliers based on sum of squared distances: good points should
455 be in a cluster, and have lowest sum*/
456 cluster->n = euclidean_discard_cluster_outliers(cluster->voters, cluster->n);
457 #else
458 /*discard values away from median x, y values.
459 (each dimension is calculated independently)*/
460 cluster->n = median_discard_cluster_outliers(cluster->voters, cluster->n);
461 #endif
462 /* now find a weighted average position */
463 /*With int coord_t, coord_sum_t is
464 64 bit to avoid overflow -- should probably just use floating point
465 (or reduce signal)*/
466 coord_sum_t xsum, ysum;
467 coord_t xmean, ymean;
468 guint64 votes;
469 int j;
470 xsum = 0;
471 ysum = 0;
472 votes = 0;
473 for (j = 0; j < cluster->n; j++){
474 votes += cluster->voters[j].signal;
475 ysum += cluster->voters[j].y * cluster->voters[j].signal;
476 xsum += cluster->voters[j].x * cluster->voters[j].signal;
478 if (votes){
479 xmean = xsum / votes;
480 ymean = ysum / votes;
482 else {
483 GST_WARNING("corner %d, %d voters, sum %d,%d, somehow has no votes\n",
484 i, cluster->n, xsum, ysum);
487 GST_DEBUG("corner %d: %d voters, %d votes, sum %d,%d, mean %d,%d\n",
488 i, cluster->n, votes, C2I(xsum), C2I(ysum), C2I(xmean), C2I(ymean));
490 mesh[i].x = xmean;
491 mesh[i].y = ymean;
492 mesh[i].status = CORNER_EXACT;
493 GST_DEBUG("found corner %d at (%3f, %3f)\n",
494 i, COORD_TO_FLOAT(xmean), COORD_TO_FLOAT(ymean));
499 static sparrow_point_t
500 median_centre(sparrow_voter_t *estimates, int n){
501 /*X and Y arevcalculated independently, which is really not right.
502 on the other hand, it probably works. */
503 int i;
504 sparrow_point_t result;
505 coord_t vals[n];
506 for (i = 0; i < n; i++){
507 vals[i] = estimates[i].x;
509 result.x = coord_median(vals, n);
511 for (i = 0; i < n; i++){
512 vals[i] = estimates[i].y;
514 result.y = coord_median(vals, n);
515 return result;
518 static const sparrow_estimator_t base_estimators[] = {
519 { 0, 1, 0, 2, 0, 3},
520 { 0, 2, 0, 4, 0, 6},
521 { 1, 0, 2, 0, 3, 0},
522 { 1, 1, 2, 2, 3, 3},
523 { 1, 2, 2, 4, 3, 6},
524 { 1, 3, 2, 6, 3, 9},
525 { 2, 0, 4, 0, 6, 0},
526 { 2, 1, 4, 2, 6, 3},
527 { 2, 2, 4, 4, 6, 6},
528 { 2, 3, 4, 6, 6, 9},
529 { 3, 1, 6, 2, 9, 3},
530 { 3, 2, 6, 4, 9, 6},
533 #define BASE_ESTIMATORS (sizeof(base_estimators) / sizeof(sparrow_estimator_t))
534 #define ESTIMATORS (BASE_ESTIMATORS * 4)
536 static inline void
537 calculate_estimator_tables(sparrow_estimator_t *estimators){
538 guint i, j;
539 sparrow_estimator_t *e = estimators;
540 for (i = 0; i < BASE_ESTIMATORS; i++){
541 for (j = 0; j < 4; j++){
542 *e = base_estimators[i];
543 if (j & 1){
544 if (! e->x1){
545 continue;
547 e->x1 = -e->x1;
548 e->x2 = -e->x2;
549 e->x3 = -e->x3;
551 if (j & 2){
552 if (! e->y1){
553 continue;
555 e->y1 = -e->y1;
556 e->y2 = -e->y2;
557 e->y3 = -e->y3;
559 GST_DEBUG("estimator: %-d,%-d %-d,%-d %-d,%-d",
560 e->x1, e->y1, e->x2, e->y2, e->x3, e->y3);
561 e++;
567 /*the map made above is likely to be full of errors. Fix them, and add in
568 missing points */
569 static void
570 complete_map(GstSparrow *sparrow, sparrow_find_lines_t *fl){
571 sparrow_voter_t estimates[ESTIMATORS + 1]; /* 1 extra for trick simplifying median */
572 sparrow_estimator_t estimators[ESTIMATORS];
573 calculate_estimator_tables(estimators);
575 guint32 *debug = NULL;
576 if (sparrow->debug){
577 debug = (guint32*)fl->debug->imageData;
578 memset(debug, 0, sparrow->in.size);
581 int x, y;
582 int width = fl->n_vlines;
583 int height = fl->n_hlines;
584 int screen_width = sparrow->in.width;
585 int screen_height = sparrow->in.height;
586 sparrow_corner_t *mesh = fl->mesh;
587 sparrow_corner_t *mesh_next = fl->mesh_next;
589 memset(estimates, 0, sizeof(estimates)); /*just for clarity in debugging */
590 int prev_settled = 0;
591 while (1){
592 memcpy(mesh_next, mesh, width * height * sizeof(sparrow_corner_t));
593 int settled = 0;
594 for (y = 0; y < height; y++){
595 for (x = 0; x < width; x++){
596 sparrow_corner_t *corner = &mesh[y * width + x];
597 if (corner->status == CORNER_SETTLED){
598 settled ++;
599 GST_DEBUG("ignoring settled corner %d, %d", x, y);
600 continue;
602 int k = 0;
603 for (guint j = 0; j < ESTIMATORS; j++){
604 sparrow_estimator_t *e = &estimators[j];
605 int x3, y3, x2, y2, x1, y1;
606 y3 = y + e->y3;
607 x3 = x + e->x3;
608 if (!(y3 >= 0 && y3 < height &&
609 x3 >= 0 && x3 < width &&
610 mesh[y3 * width + x3].status != CORNER_UNUSED
612 GST_DEBUG("not using estimator %d because corners aren't used, or are off screen\n"
613 "x3 %d, y3 %d", j, x3, y3);
614 continue;
616 y2 = y + e->y2;
617 x2 = x + e->x2;
618 y1 = y + e->y1;
619 x1 = x + e->x1;
620 if (mesh[y2 * width + x2].status == CORNER_UNUSED ||
621 mesh[y1 * width + x1].status == CORNER_UNUSED){
622 GST_DEBUG("not using estimator %d because corners aren't used", j);
623 continue;
625 /*there are 3 points, and the unknown one.
626 They should all be in a line.
627 The ratio of the p3-p2:p2-p1 sould be the same as
628 p2-p1:p1:p0.
630 This really has to be done in floating point.
632 collinearity, no division, but no useful error metric
633 x[0] * (y[1]-y[2]) + x[1] * (y[2]-y[0]) + x[2] * (y[0]-y[1]) == 0
634 (at least not without further division)
636 This way:
638 cos angle = dot product / product of euclidean lengths
640 (dx12 * dx23 + dy12 * dy23) /
641 (sqrt(dx12 * dx12 + dy12 * dy12) * sqrt(dx23 * dx23 + dy23 * dy23))
643 is costly up front (sqrt), but those distances need to be
644 calculated anyway (or at least they are handy). Not much gained by
645 short-circuiting on bad collinearity, though.
647 It also handlily catches all the division by zeros in one meaningful
650 sparrow_corner_t *c1 = &mesh[y1 * width + x1];
651 sparrow_corner_t *c2 = &mesh[y2 * width + x2];
652 sparrow_corner_t *c3 = &mesh[y3 * width + x3];
654 double dx12 = c1->x - c2->x;
655 double dy12 = c1->y - c2->y;
656 double dx23 = c2->x - c3->x;
657 double dy23 = c2->y - c3->y;
658 double distance12 = sqrt(dx12 * dx12 + dy12 * dy12);
659 double distance23 = sqrt(dx23 * dx23 + dy23 * dy23);
661 double dp = dx12 * dx23 + dy12 * dy23;
663 double distances = distance12 * distance23;
665 GST_LOG("mesh points: %d,%d, %d,%d, %d,%d\n"
666 "map points: %d,%d, %d,%d, %d,%d\n"
667 "diffs: 12: %0.3f,%0.3f, 23: %0.3f,%0.3f, \n"
668 "distances: 12: %0.3f, 32: %0.3f\n",
669 x1, y1, x2, y2, x3, y3,
670 C2I(c1->x), C2I(c1->y), C2I(c2->x), C2I(c2->y), C2I(c3->x), C2I(c3->y),
671 dx12, dy12, dx23, dy23, distance12, distance23
674 if (distances == 0.0){
675 GST_INFO("at least two points out of %d,%d, %d,%d, %d,%d are the same!",
676 x1, y1, x2, y2, x3, y3);
677 continue;
679 double line_error = 1.0 - dp / distances;
680 if (line_error > MAX_NONCOLLINEARITY){
681 GST_DEBUG("Points %d,%d, %d,%d, %d,%d are not in a line: non-collinearity: %3f",
682 x1, y1, x2, y2, x3, y3, line_error);
683 continue;
685 GST_LOG("GOOD collinearity: %3f", line_error);
688 double ratio = distance12 / distance23;
689 /*so here's the estimate!*/
690 coord_t dx = dx12 * ratio;
691 coord_t dy = dy12 * ratio;
692 coord_t ex = c1->x + dx;
693 coord_t ey = c1->y + dy;
695 GST_LOG("dx, dy: %d,%d, ex, ey: %d,%d\n"
696 "dx raw: %0.3f,%0.3f, x1, x2: %0.3f,%0.3f,\n"
697 "distances: 12: %0.3f, 32: %0.3f\n"
698 "ratio: %0.3f\n",
699 C2I(dx), C2I(dy), C2I(ex), C2I(ey),
700 dx, dy, ex, ey, ratio
703 if (! coord_in_range(ey, screen_height) ||
704 ! coord_in_range(ex, screen_width)){
705 GST_DEBUG("rejecting estimate for %d, %d, due to ex, ey being %d, %d",
706 x, y, C2I(ex), C2I(ey));
707 continue;
710 GST_LOG("estimator %d,%d SUCCESSFULLY estimated that %d, %d will be %d, %d",
711 x1, x2, x, y, C2I(ex), C2I(ey));
713 estimates[k].x = ex;
714 estimates[k].y = ey;
715 if (sparrow->debug){
716 debug[coords_to_index(ex, ey, sparrow->in.width, sparrow->in.height)] = 0x00aa7700;
718 k++;
720 /*now there is an array of estimates.
721 The *_discard_cluster_outliers functions should fit here */
722 GST_INFO("got %d estimates for %d,%d", k, x, y);
723 if(! k){
724 continue;
726 coord_t guess_x;
727 coord_t guess_y;
729 #if 1
730 /*now find median values. If the number is even, add a copy of either
731 the original value, or a random element. */
732 if (! k & 1){
733 if (corner->status != CORNER_UNUSED){
734 estimates[k].x = corner->x;
735 estimates[k].y = corner->y;
737 else {
738 int r = RANDINT(sparrow, 0, r);
739 estimates[k].x = estimates[r].x;
740 estimates[k].y = estimates[r].y;
742 k++;
744 sparrow_point_t centre = median_centre(estimates, k);
745 guess_x = centre.x;
746 guess_y = centre.y;
748 #else
749 k = euclidean_discard_cluster_outliers(estimates, k);
750 if (sparrow->debug){
751 for (int j = 0; j < k; j++){
752 debug[coords_to_index(estimates[j].x, estimates[j].y,
753 sparrow->in.width, sparrow->in.height)] = 0x00ffff00;
756 GST_INFO("After discard, left with %d estimates", k);
757 /*now what? the mean? yes.*/
758 coord_t sumx = 0;
759 coord_t sumy = 0;
760 for (int j = 0; j < k; j++){
761 sumx += estimates[j].x;
762 sumy += estimates[j].y;
764 guess_x = sumx / k;
765 guess_y = sumy / k;
766 #endif
768 GST_INFO("estimating %d,%d", C2I(guess_x), C2I(guess_y));
770 if (corner->status == CORNER_EXACT){
771 if (sparrow->debug){
772 debug[coords_to_index(corner->x, corner->y,
773 sparrow->in.width, sparrow->in.height)] = 0xffff3300;
775 if ((guess_x - corner->x) * (guess_x - corner->x) +
776 (guess_y - corner->y) * (guess_y - corner->y)
777 < CORNER_EXACT_THRESHOLD){
778 guess_x = corner->x;
779 guess_y = corner->y;
780 corner->status = CORNER_SETTLED;
781 GST_INFO("using exact reading %0.3f, %0.3f", C2F(corner->x), C2F(corner->y));
783 else{
784 GST_INFO("REJECTING exact reading %0.3f,%0.3f: too far from median %0.3f,%0.3f",
785 C2F(corner->x), C2F(corner->y), C2F(corner->x), C2F(corner->y));
786 corner->status = CORNER_PROJECTED;
789 else if (k < MIN_CORNER_ESTIMATES){
790 GST_INFO("weak evidence (%d estimates) for corner %d,%d, marking it PROJECTED",
791 k, x, y);
792 corner->status = CORNER_PROJECTED;
793 if (sparrow->debug){
794 debug[coords_to_index(guess_x, guess_y,
795 sparrow->in.width, sparrow->in.height)] = 0xff0000ff;
798 else{
799 GST_DEBUG("corner %d, %d is SETTLED", x, y);
800 corner->status = CORNER_SETTLED;
801 settled ++;
802 if (sparrow->debug){
803 debug[coords_to_index(guess_x, guess_y,
804 sparrow->in.width, sparrow->in.height)] = 0xffffffff;
807 corner->x = guess_x;
808 corner->y = guess_y;
811 GST_INFO("settled %d in that round. %d left to go",
812 settled - prev_settled, width * height - settled);
813 if (settled == width * height || settled == prev_settled){
814 break;
816 prev_settled = settled;
817 sparrow_corner_t *tmp = mesh_next;
818 mesh_next = mesh;
819 mesh = tmp;
821 fl->mesh = mesh;
822 fl->mesh_next = mesh_next;
823 MAYBE_DEBUG_IPL(fl->debug);
827 static void
828 calculate_deltas(GstSparrow *sparrow, sparrow_find_lines_t *fl){
829 int i;
830 int width = fl->n_vlines;
831 int height = fl->n_hlines;
832 sparrow_corner_t *mesh = fl->mesh;
833 gint x, y;
835 //DEBUG_FIND_LINES(fl);
836 /* calculate deltas toward adjacent corners */
837 /* try to extrapolate left and up, if possible, so need to go backwards. */
838 i = width * height - 1;
839 for (y = height - 1; y >= 0; y--){
840 for (x = width - 1; x >= 0; x--, i--){
841 sparrow_corner_t *corner = &mesh[i];
842 /* calculate the delta to next corner. If this corner is on edge, delta is
843 0 and next is this.*/
844 sparrow_corner_t *right = (x == width - 1) ? corner : corner + 1;
845 sparrow_corner_t *down = (y == height - 1) ? corner : corner + width;
846 GST_DEBUG("i %d xy %d,%d width %d. in_xy %d,%d; down in_xy %d,%d; right in_xy %d,%d\n",
847 i, x, y, width, C2I(corner->x), C2I(corner->y), C2I(down->x),
848 C2I(down->y), C2I(right->x), C2I(right->y));
849 if (corner->status != CORNER_UNUSED){
850 if (right->status != CORNER_UNUSED){
851 corner->dxr = QUANTISE_DELTA(right->x - corner->x);
852 corner->dyr = QUANTISE_DELTA(right->y - corner->y);
854 if (down->status != CORNER_UNUSED){
855 corner->dxd = QUANTISE_DELTA(down->x - corner->x);
856 corner->dyd = QUANTISE_DELTA(down->y - corner->y);
861 if (sparrow->debug){
862 debug_corners_image(sparrow, fl);
867 static void
868 look_for_line(GstSparrow *sparrow, guint8 *in, sparrow_find_lines_t *fl,
869 sparrow_line_t *line){
870 guint i;
871 guint32 colour;
872 guint32 cmask = sparrow->out.colours[sparrow->colour];
873 int signal;
875 /* subtract background noise */
876 fl->input->imageData = (char *)in;
877 cvSub(fl->input, fl->threshold, fl->working, NULL);
878 guint32 *in32 = (guint32 *)fl->working->imageData;
880 for (i = 0; i < sparrow->in.pixcount; i++){
881 colour = in32[i] & cmask;
882 signal = (((colour >> fl->shift1) & COLOUR_MASK) +
883 ((colour >> fl->shift2) & COLOUR_MASK));
884 if (signal){
885 if (fl->map[i].lines[line->dir]){
886 /*assume the pixel is on for everyone and will just confuse
887 matters. ignore it.
890 if (fl->map[i].lines[line->dir] != BAD_PIXEL){
892 GST_DEBUG("HEY, expected point %d to be in line %d (dir %d) "
893 "and thus empty, but it is also in line %d\n"
894 "old signal %d, new signal %d, marking as BAD\n",
895 i, line->index, line->dir, fl->map[i].lines[line->dir],
896 fl->map[i].signal[line->dir], signal);
898 fl->map[i].lines[line->dir] = BAD_PIXEL;
899 fl->map[i].signal[line->dir] = 0;
902 else{
903 fl->map[i].lines[line->dir] = line->index;
904 fl->map[i].signal[line->dir] = signal;
910 static void
911 debug_map_image(GstSparrow *sparrow, sparrow_find_lines_t *fl){
912 guint32 *data = (guint32*)fl->debug->imageData;
913 memset(data, 0, sparrow->in.size);
914 for (guint i = 0; i < sparrow->in.pixcount; i++){
915 data[i] |= fl->map[i].signal[SPARROW_HORIZONTAL] << sparrow->in.gshift;
916 data[i] |= fl->map[i].signal[SPARROW_VERTICAL] << sparrow->in.rshift;
917 data[i] |= ((fl->map[i].lines[SPARROW_VERTICAL] == BAD_PIXEL) ||
918 (fl->map[i].lines[SPARROW_HORIZONTAL] == BAD_PIXEL)) ? 255 << sparrow->in.bshift : 0;
920 MAYBE_DEBUG_IPL(fl->debug);
923 /* draw the line (in sparrow->colour) */
924 static inline void
925 draw_line(GstSparrow * sparrow, sparrow_line_t *line, guint8 *out){
926 guint32 *p = (guint32 *)out;
927 guint32 colour = sparrow->out.colours[sparrow->colour];
928 int i;
929 if (line->dir == SPARROW_HORIZONTAL){
930 p += line->offset * sparrow->out.width;
931 for (i = 0; i < sparrow->out.width; i++){
932 p[i] = colour;
935 else {
936 guint32 *p = (guint32 *)out;
937 p += line->offset;
938 for(i = 0; i < sparrow->out.height; i++){
939 *p = colour;
940 p += sparrow->out.width;
945 static void
946 jump_state(GstSparrow *sparrow, sparrow_find_lines_t *fl, edges_state_t state){
947 if (state == EDGES_NEXT_STATE){
948 fl->state++;
950 else {
951 fl->state = state;
953 switch (fl->state){
954 case EDGES_FIND_NOISE:
955 sparrow->countdown = MAX(sparrow->lag, 1) + SAFETY_LAG;
956 break;
957 case EDGES_FIND_LINES:
958 sparrow->countdown = MAX(sparrow->lag, 1) + SAFETY_LAG;
959 break;
960 case EDGES_FIND_CORNERS:
961 sparrow->countdown = 7;
962 break;
963 case EDGES_WAIT_FOR_PLAY:
964 global_number_of_edge_finders--;
965 sparrow->countdown = 300;
966 break;
967 default:
968 GST_DEBUG("jumped to non-existent state %d\n", fl->state);
969 break;
973 /* show each line for 2 frames, then wait sparrow->lag frames, leaving line on
974 until last one.
976 static inline void
977 draw_lines(GstSparrow *sparrow, sparrow_find_lines_t *fl, guint8 *in, guint8 *out)
979 sparrow_line_t *line = fl->shuffled_lines[fl->current];
980 sparrow->countdown--;
981 memset(out, 0, sparrow->out.size);
982 if (sparrow->countdown){
983 draw_line(sparrow, line, out);
985 else{
986 /*show nothing, look for result */
987 look_for_line(sparrow, in, fl, line);
988 if (sparrow->debug){
989 debug_map_image(sparrow, fl);
991 fl->current++;
992 if (fl->current == fl->n_lines){
993 jump_state(sparrow, fl, EDGES_NEXT_STATE);
995 else{
996 sparrow->countdown = MAX(sparrow->lag, 1) + SAFETY_LAG;
1001 #define LINE_THRESHOLD 32
1003 static inline void
1004 find_threshold(GstSparrow *sparrow, sparrow_find_lines_t *fl, guint8 *in, guint8 *out)
1006 memset(out, 0, sparrow->out.size);
1007 /*XXX should average/median over a range of frames */
1008 if (sparrow->countdown == 0){
1009 memcpy(fl->threshold->imageData, in, sparrow->in.size);
1010 /*add a constant, and smooth */
1011 cvAddS(fl->threshold, cvScalarAll(LINE_THRESHOLD), fl->working, NULL);
1012 cvSmooth(fl->working, fl->threshold, CV_GAUSSIAN, 3, 0, 0, 0);
1013 //cvSmooth(fl->working, fl->threshold, CV_MEDIAN, 3, 0, 0, 0);
1014 jump_state(sparrow, fl, EDGES_NEXT_STATE);
1016 sparrow->countdown--;
1019 /*match up lines and find corners */
1020 static inline int
1021 find_corners(GstSparrow *sparrow, sparrow_find_lines_t *fl)
1023 sparrow->countdown--;
1024 switch(sparrow->countdown){
1025 case 4:
1026 make_clusters(sparrow, fl);
1027 break;
1028 case 3:
1029 make_corners(sparrow, fl);
1030 break;
1031 case 2:
1032 complete_map(sparrow, fl);
1033 break;
1034 case 1:
1035 calculate_deltas(sparrow, fl);
1036 break;
1037 case 0:
1038 #if USE_FULL_LUT
1039 corners_to_full_lut(sparrow, fl);
1040 #else
1041 corners_to_lut(sparrow, fl);
1042 #endif
1043 jump_state(sparrow, fl, EDGES_NEXT_STATE);
1044 break;
1045 default:
1046 GST_DEBUG("how did sparrow->countdown get to be %d?", sparrow->countdown);
1047 sparrow->countdown = 5;
1049 return sparrow->countdown;
1052 /*use a dirty shared variable*/
1053 static gboolean
1054 wait_for_play(GstSparrow *sparrow, sparrow_find_lines_t *fl){
1055 if (global_number_of_edge_finders == 0 ||
1056 sparrow->countdown == 0){
1057 return TRUE;
1059 sparrow->countdown--;
1060 return FALSE;
1063 INVISIBLE sparrow_state
1064 mode_find_edges(GstSparrow *sparrow, guint8 *in, guint8 *out){
1065 sparrow_find_lines_t *fl = (sparrow_find_lines_t *)sparrow->helper_struct;
1066 switch (fl->state){
1067 case EDGES_FIND_NOISE:
1068 find_threshold(sparrow, fl, in, out);
1069 break;
1070 case EDGES_FIND_LINES:
1071 draw_lines(sparrow, fl, in, out);
1072 break;
1073 case EDGES_FIND_CORNERS:
1074 memset(out, 0, sparrow->out.size);
1075 find_corners(sparrow, fl);
1076 break;
1077 case EDGES_WAIT_FOR_PLAY:
1078 memset(out, 0, sparrow->out.size);
1079 if (wait_for_play(sparrow, fl)){
1080 return SPARROW_NEXT_STATE;
1082 break;
1083 default:
1084 GST_WARNING("strange state in mode_find_edges: %d", fl->state);
1085 memset(out, 0, sparrow->out.size);
1087 return SPARROW_STATUS_QUO;
1090 INVISIBLE void
1091 finalise_find_edges(GstSparrow *sparrow){
1092 sparrow_find_lines_t *fl = (sparrow_find_lines_t *)sparrow->helper_struct;
1093 //DEBUG_FIND_LINES(fl);
1094 if (sparrow->save && *(sparrow->save)){
1095 GST_DEBUG("about to save to %s\n", sparrow->save);
1096 dump_edges_info(sparrow, fl, sparrow->save);
1098 if (sparrow->debug){
1099 cvReleaseImage(&fl->debug);
1101 free(fl->h_lines);
1102 free(fl->shuffled_lines);
1103 free(fl->map);
1104 free(fl->mesh_mem);
1105 free(fl->clusters);
1106 free(fl->dither);
1107 cvReleaseImage(&fl->threshold);
1108 cvReleaseImage(&fl->working);
1109 cvReleaseImageHeader(&fl->input);
1110 free(fl);
1111 GST_DEBUG("freed everything\n");
1112 sparrow->helper_struct = NULL;
1115 static void
1116 setup_colour_shifts(GstSparrow *sparrow, sparrow_find_lines_t *fl){
1117 /*COLOUR_QUANT reduces the signal a little bit more, avoiding overflow
1118 later */
1119 switch (sparrow->colour){
1120 case SPARROW_WHITE:
1121 case SPARROW_GREEN:
1122 fl->shift1 = sparrow->in.gshift + COLOUR_QUANT;
1123 fl->shift2 = sparrow->in.gshift + COLOUR_QUANT;
1124 break;
1125 case SPARROW_MAGENTA:
1126 fl->shift1 = sparrow->in.rshift + COLOUR_QUANT;
1127 fl->shift2 = sparrow->in.bshift + COLOUR_QUANT;
1128 break;
1132 INVISIBLE void
1133 init_find_edges(GstSparrow *sparrow){
1134 gint i;
1135 sparrow_find_lines_t *fl = zalloc_aligned_or_die(sizeof(sparrow_find_lines_t));
1136 sparrow->helper_struct = (void *)fl;
1138 gint h_lines = (sparrow->out.height + LINE_PERIOD - 1) / LINE_PERIOD;
1139 gint v_lines = (sparrow->out.width + LINE_PERIOD - 1) / LINE_PERIOD;
1140 gint n_lines_max = (h_lines + v_lines);
1141 gint n_corners = (h_lines * v_lines);
1143 /*set up dither here, rather than in the busy time */
1144 fl->dither = malloc_aligned_or_die(sparrow->out.pixcount * sizeof(double));
1145 dsfmt_fill_array_close_open(sparrow->dsfmt, fl->dither, sparrow->out.pixcount);
1147 fl->n_hlines = h_lines;
1148 fl->n_vlines = v_lines;
1150 fl->h_lines = malloc_aligned_or_die(sizeof(sparrow_line_t) * n_lines_max);
1151 fl->shuffled_lines = malloc_aligned_or_die(sizeof(sparrow_line_t *) * n_lines_max);
1152 GST_DEBUG("shuffled lines, malloced %p\n", fl->shuffled_lines);
1154 GST_DEBUG("map is going to be %d * %d \n", sizeof(sparrow_intersect_t), sparrow->in.pixcount);
1155 fl->map = zalloc_aligned_or_die(sizeof(sparrow_intersect_t) * sparrow->in.pixcount);
1156 fl->clusters = zalloc_or_die(n_corners * sizeof(sparrow_cluster_t));
1157 fl->mesh_mem = zalloc_aligned_or_die(n_corners * sizeof(sparrow_corner_t) * 2);
1158 fl->mesh = fl->mesh_mem;
1159 fl->mesh_next = fl->mesh + n_corners;
1161 sparrow_line_t *line = fl->h_lines;
1162 sparrow_line_t **sline = fl->shuffled_lines;
1163 int offset;
1165 for (i = 0, offset = H_LINE_OFFSET; offset < sparrow->out.height;
1166 i++, offset += LINE_PERIOD){
1167 line->offset = offset;
1168 line->dir = SPARROW_HORIZONTAL;
1169 line->index = i;
1170 *sline = line;
1171 line++;
1172 sline++;
1173 //GST_DEBUG("line %d h has offset %d\n", i, offset);
1176 /*now add the vertical lines */
1177 fl->v_lines = line;
1178 for (i = 0, offset = V_LINE_OFFSET; offset < sparrow->out.width;
1179 i++, offset += LINE_PERIOD){
1180 line->offset = offset;
1181 line->dir = SPARROW_VERTICAL;
1182 line->index = i;
1183 *sline = line;
1184 line++;
1185 sline++;
1186 //GST_DEBUG("line %d v has offset %d\n", i, offset);
1188 //DEBUG_FIND_LINES(fl);
1189 fl->n_lines = line - fl->h_lines;
1190 GST_DEBUG("allocated %d lines, made %d\n", n_lines_max, fl->n_lines);
1192 /*now shuffle */
1193 for (i = 0; i < fl->n_lines; i++){
1194 int j = RANDINT(sparrow, 0, fl->n_lines);
1195 sparrow_line_t *tmp = fl->shuffled_lines[j];
1196 fl->shuffled_lines[j] = fl->shuffled_lines[i];
1197 fl->shuffled_lines[i] = tmp;
1200 setup_colour_shifts(sparrow, fl);
1202 /* opencv images for threshold finding */
1203 CvSize size = {sparrow->in.width, sparrow->in.height};
1204 fl->working = cvCreateImage(size, IPL_DEPTH_8U, PIXSIZE);
1205 fl->threshold = cvCreateImage(size, IPL_DEPTH_8U, PIXSIZE);
1207 /*input has no data allocated -- it uses latest frame*/
1208 fl->input = init_ipl_image(&sparrow->in, PIXSIZE);
1209 //DEBUG_FIND_LINES(fl);
1210 if (sparrow->debug){
1211 fl->debug = cvCreateImage(size, IPL_DEPTH_8U, PIXSIZE);
1214 if (sparrow->reload){
1215 if (access(sparrow->reload, R_OK)){
1216 GST_DEBUG("sparrow->reload is '%s' and it is UNREADABLE\n", sparrow->reload);
1217 exit(1);
1219 read_edges_info(sparrow, fl, sparrow->reload);
1220 memset(fl->map, 0, sizeof(sparrow_intersect_t) * sparrow->in.pixcount);
1221 //memset(fl->clusters, 0, n_corners * sizeof(sparrow_cluster_t));
1222 memset(fl->mesh, 0, n_corners * sizeof(sparrow_corner_t));
1223 jump_state(sparrow, fl, EDGES_FIND_CORNERS);
1225 else {
1226 jump_state(sparrow, fl, EDGES_FIND_NOISE);
1229 global_number_of_edge_finders++;