fix a few more int-isms around coord_t
[sparrow.git] / edges.c
blobe8aaae849094603b781410adf2d7f09e4e34f7b6
1 /* Copyright (C) <2010> Douglas Bagnall <douglas@halo.gen.nz>
3 * This library is free software; you can redistribute it and/or
4 * modify it under the terms of the GNU Library General Public
5 * License as published by the Free Software Foundation; either
6 * version 2 of the License, or (at your option) any later version.
8 * This library is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * Library General Public License for more details.
13 * You should have received a copy of the GNU Library General Public
14 * License along with this library; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 02111-1307, USA.
20 #include "sparrow.h"
21 #include "gstsparrow.h"
22 #include "edges.h"
24 #include <string.h>
25 #include <math.h>
26 #include <unistd.h>
28 #include "cv.h"
29 #include "median.h"
31 static int global_number_of_edge_finders = 0;
33 static void dump_edges_info(GstSparrow *sparrow, sparrow_find_lines_t *fl, const char *filename){
34 GST_DEBUG("about to save to %s\n", filename);
35 FILE *f = fopen(filename, "w");
36 sparrow_fl_condensed_t condensed;
37 condensed.n_vlines = fl->n_vlines;
38 condensed.n_hlines = fl->n_hlines;
40 /* simply write fl, map, clusters and mesh in sequence */
41 GST_DEBUG("fl is %p, file is %p\n", fl, f);
42 GST_DEBUG("fl: %d x %d\n", sizeof(sparrow_find_lines_t), 1);
43 fwrite(&condensed, sizeof(sparrow_fl_condensed_t), 1, f);
44 GST_DEBUG("fl->map %d x %d\n", sizeof(sparrow_intersect_t), sparrow->in.pixcount);
45 fwrite(fl->map, sizeof(sparrow_intersect_t), sparrow->in.pixcount, f);
46 GST_DEBUG("fl->clusters %d x %d\n", sizeof(sparrow_cluster_t), fl->n_hlines * fl->n_vlines);
47 fwrite(fl->clusters, sizeof(sparrow_cluster_t), fl->n_hlines * fl->n_vlines, f);
48 GST_DEBUG("fl->mesh %d x %d\n", sizeof(sparrow_corner_t), fl->n_hlines * fl->n_vlines);
49 fwrite(fl->mesh, sizeof(sparrow_corner_t), fl->n_hlines * fl->n_vlines, f);
50 /*and write the mask too */
51 GST_DEBUG("sparrow->screenmask\n");
52 fwrite(sparrow->screenmask, 1, sparrow->in.pixcount, f);
53 fclose(f);
56 static void read_edges_info(GstSparrow *sparrow, sparrow_find_lines_t *fl, const char *filename){
57 FILE *f = fopen(filename, "r");
58 sparrow_fl_condensed_t condensed;
59 size_t read = fread(&condensed, sizeof(sparrow_fl_condensed_t), 1, f);
60 assert(condensed.n_hlines == fl->n_hlines);
61 assert(condensed.n_vlines == fl->n_vlines);
63 guint n_corners = fl->n_hlines * fl->n_vlines;
64 read += fread(fl->map, sizeof(sparrow_intersect_t), sparrow->in.pixcount, f);
65 read += fread(fl->clusters, sizeof(sparrow_cluster_t), n_corners, f);
66 read += fread(fl->mesh, sizeof(sparrow_corner_t), n_corners, f);
67 read += fread(sparrow->screenmask, 1, sparrow->in.pixcount, f);
68 fclose(f);
71 static void
72 debug_map_lut(GstSparrow *sparrow, sparrow_find_lines_t *fl){
73 sparrow_map_lut_t *map_lut = sparrow->map_lut;
74 if (sparrow->debug){
75 debug_frame(sparrow, (guint8*)map_lut, sparrow->out.width, sparrow->out.height, PIXSIZE);
79 #if USE_FLOAT_COORDS
81 #define COORD_TO_INT(x)((int)((x) + 0.5))
82 #define COORD_TO_FLOAT(x)((double)(x))
83 #define INT_TO_COORD(x)((coord_t)(x))
85 static inline int
86 coord_to_int_clamp(coord_t x, const int max_plus_one){
87 if (x < 0)
88 return 0;
89 if (x >= max_plus_one - 1.5)
90 return max_plus_one - 1;
91 return (int)(x);
94 static inline int
95 coord_in_range(coord_t x, const int max_plus_one){
96 return x >= 0 && (x + 0.5 < max_plus_one);
99 #else
101 #define COORD_TO_INT(x)((x) / (1 << SPARROW_FIXED_POINT))
102 #define COORD_TO_FLOAT(x)(((double)(x)) / (1 << SPARROW_FIXED_POINT))
103 #define INT_TO_COORD(x)((x) * (1 << SPARROW_FIXED_POINT))
105 static inline int
106 coord_to_int_clamp(coord_t x, const int max_plus_one){
107 if (x < 0)
108 return 0;
109 x >>= SPARROW_FIXED_POINT;
110 if (x >= max_plus_one)
111 return max_plus_one - 1;
112 return x;
115 static inline int
116 coord_in_range(coord_t x, const int max_plus_one){
117 return x >= 0 && (x < max_plus_one << SPARROW_FIXED_POINT);
120 #endif
122 //these ones are common
123 static inline int
124 coords_to_index(coord_t x, coord_t y, int w, int h){
125 int iy = coord_to_int_clamp(y, h);
126 int ix = coord_to_int_clamp(x, w);
127 return iy * w + ix;
130 #define C2I COORD_TO_INT
132 /********************************************/
134 static void
135 corners_to_full_lut(GstSparrow *sparrow, sparrow_find_lines_t *fl){
136 DEBUG_FIND_LINES(fl);
137 sparrow_corner_t *mesh = fl->mesh; /*maps regular points in ->out to points in ->in */
138 sparrow_map_lut_t *map_lut = sparrow->map_lut;
139 int mesh_w = fl->n_vlines;
140 int mesh_h = fl->n_hlines;
141 int mcy, mmy, mcx, mmx; /*Mesh Corner|Modulus X|Y*/
142 int y = H_LINE_OFFSET;
143 sparrow_corner_t *mesh_row = mesh;
145 for(mcy = 0; mcy < mesh_h - 1; mcy++){
146 for (mmy = 0; mmy < LINE_PERIOD; mmy++, y++){
147 sparrow_corner_t *mesh_square = mesh_row;
148 int i = y * sparrow->out.width + V_LINE_OFFSET;
149 for(mcx = 0; mcx < mesh_w - 1; mcx++){
150 coord_t iy = mesh_square->y + mmy * mesh_square->dyd;
151 coord_t ix = mesh_square->x + mmy * mesh_square->dxd;
152 for (mmx = 0; mmx < LINE_PERIOD; mmx++, i++){
153 int ixx = coord_to_int_clamp(iy, sparrow->in.width);
154 int iyy = coord_to_int_clamp(iy, sparrow->in.height);
155 if(sparrow->screenmask[iyy * sparrow->in.width + ixx]){
156 map_lut[i].x = ixx;
157 map_lut[i].y = iyy;
159 ix += mesh_square->dxr;
160 iy += mesh_square->dyr;
162 mesh_square++;
165 mesh_row += mesh_w;
167 sparrow->map_lut = map_lut;
168 debug_map_lut(sparrow, fl);
171 static void
172 debug_corners_image(GstSparrow *sparrow, sparrow_find_lines_t *fl){
173 sparrow_corner_t *mesh = fl->mesh;
174 guint32 *data = (guint32*)fl->debug->imageData;
175 guint w = fl->debug->width;
176 guint h = fl->debug->height;
177 memset(data, 0, sparrow->in.size);
178 guint32 colours[4] = {0xff0000ff, 0x00ff0000, 0x0000ff00, 0xffffffff};
179 for (int i = 0; i < fl->n_vlines * fl->n_hlines; i++){
180 sparrow_corner_t *c = &mesh[i];
181 coord_t x = c->x;
182 coord_t y = c->y;
183 coord_t txr = x;
184 coord_t txd = x;
185 coord_t tyr = y;
186 coord_t tyd = y;
187 for (int j = 1; j < LINE_PERIOD; j+= 2){
188 txr += c->dxr * 2;
189 txd += c->dxd * 2;
190 tyr += c->dyr * 2;
191 tyd += c->dyd * 2;
192 guint hl = coords_to_index(txr, tyr, w, h);
193 data[hl] = 0x88000088;
194 guint vl = coords_to_index(txd, tyd, w, h);
195 data[vl] = 0x00663300;
197 data[coords_to_index(x, y, w, h)] = colours[c->status];
199 MAYBE_DEBUG_IPL(fl->debug);
203 static void
204 debug_clusters(GstSparrow *sparrow, sparrow_find_lines_t *fl){
205 guint32 *data = (guint32*)fl->debug->imageData;
206 memset(data, 0, sparrow->in.size);
207 int width = fl->n_vlines;
208 int height = fl->n_hlines;
209 sparrow_cluster_t *clusters = fl->clusters;
210 int i, j;
211 guint32 colour;
212 guint32 colours[4] = {0xff0000ff, 0x0000ff00, 0x00ff0000,
213 0x00ff00ff};
214 for (i = 0; i < width * height; i++){
215 colour = colours[i % 5];
216 sparrow_voter_t *v = clusters[i].voters;
217 for (j = 0; j < clusters[i].n; j++){
218 data[coords_to_index(v[j].x, v[j].y,
219 sparrow->in.width, sparrow->in.height)] = (colour * (v[j].signal / 2)) / 256;
222 MAYBE_DEBUG_IPL(fl->debug);
226 #define SIGNAL_QUANT 1
228 /*maximum number of pixels in a cluster */
229 #define CLUSTER_SIZE 8
232 /*find map points with common intersection data, and collect them into clusters */
233 static void
234 make_clusters(GstSparrow *sparrow, sparrow_find_lines_t *fl){
235 sparrow_cluster_t *clusters = fl->clusters;
236 int x, y;
237 /*special case: spurious values collect up at 0,0 */
238 fl->map[0].signal[SPARROW_VERTICAL] = 0;
239 fl->map[0].signal[SPARROW_HORIZONTAL] = 0;
240 /*each point in fl->map is in a vertical line, a horizontal line, both, or
241 neither. Only the "both" case matters. */
242 for (y = 0; y < sparrow->in.height; y++){
243 for (x = 0; x < sparrow->in.width; x++){
244 sparrow_intersect_t *p = &fl->map[y * sparrow->in.width + x];
245 guint vsig = p->signal[SPARROW_VERTICAL];
246 guint hsig = p->signal[SPARROW_HORIZONTAL];
247 /*remembering that 0 is valid as a line number, but not as a signal */
248 if (! (vsig && hsig)){
249 continue;
251 /*This one is lobbying for the position of a corner.*/
252 int vline = p->lines[SPARROW_VERTICAL];
253 int hline = p->lines[SPARROW_HORIZONTAL];
254 if (vline == BAD_PIXEL || hline == BAD_PIXEL){
255 GST_DEBUG("ignoring bad pixel %d, %d\n", x, y);
256 continue;
258 sparrow_cluster_t *cluster = &clusters[hline * fl->n_vlines + vline];
259 sparrow_voter_t *voters = cluster->voters;
260 int n = cluster->n;
261 guint signal = (vsig * hsig) / SIGNAL_QUANT;
262 GST_DEBUG("signal at %p (%d, %d): %dv %dh, product %u, lines: %dv %dh\n"
263 "cluster is %p, n is %d\n", p, x, y,
264 vsig, hsig, signal, vline, hline, cluster, n);
265 if (signal == 0){
266 GST_WARNING("signal at %p (%d, %d) is %d following quantisation!\n",
267 p, x, y, signal);
270 if (n < CLUSTER_SIZE){
271 voters[n].x = INT_TO_COORD(x);
272 voters[n].y = INT_TO_COORD(y);
273 voters[n].signal = signal;
274 cluster->n++;
276 else {
277 /*duplicate x, y, signal, so they aren't mucked up */
278 guint ts = signal;
279 coord_t tx = x;
280 coord_t ty = y;
281 /*replaced one ends up here */
282 guint ts2;
283 coord_t tx2;
284 coord_t ty2;
285 for (int j = 0; j < CLUSTER_SIZE; j++){
286 if (voters[j].signal < ts){
287 ts2 = voters[j].signal;
288 tx2 = voters[j].x;
289 ty2 = voters[j].y;
290 voters[j].signal = ts;
291 voters[j].x = tx;
292 voters[j].y = ty;
293 ts = ts2;
294 tx = tx2;
295 ty = ty2;
298 GST_DEBUG("more than %d pixels at cluster for corner %d, %d."
299 "Dropped %u for %u\n",
300 CLUSTER_SIZE, vline, hline, ts2, signal);
304 if (sparrow->debug){
305 debug_clusters(sparrow, fl);
310 static inline int
311 drop_cluster_voter(sparrow_voter_t *voters, int n, int k)
313 int i;
314 if (k < n){
315 n--;
316 for (i = k; i < n; i++){
317 voters[i] = voters[i + 1];
320 return n;
323 static inline int sort_median(coord_t *a, guint n)
325 guint i, j;
326 /*stupid sort, but n is very small*/
327 for (i = 0; i < n; i++){
328 for (j = i + 1; j < n; j++){
329 if (a[i] > a[j]){
330 coord_t tmp = a[j];
331 a[j] = a[i];
332 a[i] = tmp;
336 guint middle = n / 2;
337 coord_t answer = a[middle];
339 if ((n & 1) == 0){
340 answer += a[middle - 1];
341 answer /= 2;
343 return answer;
346 #define EUCLIDEAN_D2(ax, ay, bx, by)((ax - bx) * (ax - bx) + (ay - by) * (ay - by))
347 #define EUCLIDEAN_THRESHOLD 7
349 static inline int
350 euclidean_discard_cluster_outliers(sparrow_voter_t *voters, int n)
352 /* Calculate distance between each pair. Discard points with maximum sum,
353 then recalculate until all are within threshold.
355 GST_DEBUG("cleansing a cluster of size %d using sum of distances", n);
356 int i, j;
357 coord_t dsums[n];
358 for (i = 0; i < n; i++){
359 dsums[i] = 0;
360 for (j = i + 1; j < n; j++){
361 coord_t d = EUCLIDEAN_D2(voters[i].x, voters[i].y,
362 voters[j].x, voters[j].y);
363 dsums[i] += d;
364 dsums[j] += d;
368 int worst_i;
369 coord_t worst_d, threshold;
370 while (n > 1){
371 threshold = EUCLIDEAN_THRESHOLD * n;
372 worst_i = 0;
373 worst_d = 0;
374 for (i = 0; i < n; i++){
375 if (dsums[i] > worst_d){
376 worst_d = dsums[i];
377 worst_i = i;
380 if (worst_d > threshold){
381 GST_DEBUG("failing point %d, distance sq %d, threshold %d\n",
382 worst_i, C2I(worst_d), C2I(threshold));
383 //subtract this one from the sums, or they'll all go
384 for (i = 0; i < n; i++){
385 dsums[i] -= EUCLIDEAN_D2(voters[i].x, voters[i].y,
386 voters[worst_i].x, voters[worst_i].y);
388 n = drop_cluster_voter(voters, n, worst_i);
390 else{
391 GST_DEBUG("worst %d, was only %d, threshold %d\n",
392 worst_i, C2I(worst_d), C2I(threshold));
393 break;
396 return n;
399 static inline int
400 median_discard_cluster_outliers(sparrow_voter_t *voters, int n)
402 coord_t xvals[n];
403 coord_t yvals[n];
404 int i;
405 for (i = 0; i < n; i++){
406 /*XXX could sort here*/
407 xvals[i] = voters[i].x;
408 yvals[i] = voters[i].y;
410 const coord_t xmed = sort_median(xvals, n);
411 const coord_t ymed = sort_median(yvals, n);
413 for (i = 0; i < n; i++){
414 coord_t dx = voters[i].x - xmed;
415 coord_t dy = voters[i].y - ymed;
416 if (dx * dx + dy * dy > OUTLIER_THRESHOLD){
417 n = drop_cluster_voter(voters, n, i);
420 return n;
423 /* */
424 static inline void
425 make_corners(GstSparrow *sparrow, sparrow_find_lines_t *fl){
426 //DEBUG_FIND_LINES(fl);
427 int width = fl->n_vlines;
428 int height = fl->n_hlines;
429 sparrow_cluster_t *clusters = fl->clusters;
430 sparrow_corner_t *mesh = fl->mesh;
431 int x, y, i;
433 i = 0;
434 for (y = 0; y < height; y++){
435 for (x = 0; x < width; x++, i++){
436 sparrow_cluster_t *cluster = clusters + i;
437 if (cluster->n == 0){
438 continue;
440 #if 1
441 /*discard outliers based on sum of squared distances: good points should
442 be in a cluster, and have lowest sum*/
443 cluster->n = euclidean_discard_cluster_outliers(cluster->voters, cluster->n);
444 #else
445 /*discard values away from median x, y values.
446 (each dimension is calculated independently)*/
447 cluster->n = median_discard_cluster_outliers(cluster->voters, cluster->n);
448 #endif
449 /* now find a weighted average position */
450 /*With int coord_t, coord_sum_t is
451 64 bit to avoid overflow -- should probably just use floating point
452 (or reduce signal)*/
453 coord_sum_t xsum, ysum;
454 coord_t xmean, ymean;
455 guint64 votes;
456 int j;
457 xsum = 0;
458 ysum = 0;
459 votes = 0;
460 for (j = 0; j < cluster->n; j++){
461 votes += cluster->voters[j].signal;
462 ysum += cluster->voters[j].y * cluster->voters[j].signal;
463 xsum += cluster->voters[j].x * cluster->voters[j].signal;
465 if (votes){
466 xmean = xsum / votes;
467 ymean = ysum / votes;
469 else {
470 GST_WARNING("corner %d, %d voters, sum %d,%d, somehow has no votes\n",
471 i, cluster->n, xsum, ysum);
474 GST_DEBUG("corner %d: %d voters, %d votes, sum %d,%d, mean %d,%d\n",
475 i, cluster->n, votes, C2I(xsum), C2I(ysum), C2I(xmean), C2I(ymean));
477 mesh[i].x = xmean;
478 mesh[i].y = ymean;
479 mesh[i].status = CORNER_EXACT;
480 GST_DEBUG("found corner %d at (%3f, %3f)\n",
481 i, COORD_TO_FLOAT(xmean), COORD_TO_FLOAT(ymean));
486 static sparrow_voter_t
487 median_centre(sparrow_voter_t *estimates, int n){
488 /*X and Y arevcalculated independently, which is really not right.
489 on the other hand, it probably works. */
490 int i;
491 sparrow_voter_t result;
492 coord_t vals[n];
493 for (i = 0; i < n; i++){
494 vals[i] = estimates[i].x;
496 result.x = coord_median(vals, n);
498 for (i = 0; i < n; i++){
499 vals[i] = estimates[i].y;
501 result.y = coord_median(vals, n);
502 return result;
505 static const sparrow_estimator_t base_estimators[] = {
506 { 0, 1, 0, 2, 0, 3},
507 { 0, 2, 0, 4, 0, 6},
508 { 1, 0, 2, 0, 3, 0},
509 { 1, 1, 2, 2, 3, 3},
510 { 1, 2, 2, 4, 3, 6},
511 { 1, 3, 2, 6, 3, 9},
512 { 2, 0, 4, 0, 6, 0},
513 { 2, 1, 4, 2, 6, 3},
514 { 2, 2, 4, 4, 6, 6},
515 { 2, 3, 4, 6, 6, 9},
516 { 3, 1, 6, 2, 9, 3},
517 { 3, 2, 6, 4, 9, 6},
520 #define BASE_ESTIMATORS (sizeof(base_estimators) / sizeof(sparrow_estimator_t))
521 #define ESTIMATORS (BASE_ESTIMATORS * 4)
523 static inline void
524 calculate_estimator_tables(sparrow_estimator_t *estimators){
525 guint i, j;
526 sparrow_estimator_t *e = estimators;
527 for (i = 0; i < BASE_ESTIMATORS; i++){
528 for (j = 0; j < 4; j++){
529 *e = base_estimators[i];
530 if (j & 1){
531 if (! e->x1){
532 continue;
534 e->x1 = -e->x1;
535 e->x2 = -e->x2;
536 e->x3 = -e->x3;
538 if (j & 2){
539 if (! e->y1){
540 continue;
542 e->y1 = -e->y1;
543 e->y2 = -e->y2;
544 e->y3 = -e->y3;
546 GST_DEBUG("estimator: %-d,%-d %-d,%-d %-d,%-d",
547 e->x1, e->y1, e->x2, e->y2, e->x3, e->y3);
548 e++;
553 /* nice big word. acos(1.0 - MAX_NONCOLLINEARITY) = angle of deviation.
554 0.005: 5.7 degrees, 0.01: 8.1, 0.02: 11.5, 0.04: 16.3, 0.08: 23.1
555 1 pixel deviation in 32 -> ~ 1/33 == 0.03 (if I understand correctly)
557 #define MAX_NONCOLLINEARITY 0.02
559 /*the map made above is likely to be full of errors. Fix them, and add in
560 missing points */
561 static void
562 complete_map(GstSparrow *sparrow, sparrow_find_lines_t *fl){
563 sparrow_voter_t estimates[ESTIMATORS + 1];
564 sparrow_estimator_t estimators[ESTIMATORS];
565 calculate_estimator_tables(estimators);
567 guint32 *debug = NULL;
568 if (sparrow->debug){
569 debug = (guint32*)fl->debug->imageData;
570 memset(debug, 0, sparrow->in.size);
573 int x, y;
574 int width = fl->n_vlines;
575 int height = fl->n_hlines;
576 int screen_width = sparrow->in.width;
577 int screen_height = sparrow->in.height;
578 sparrow_corner_t *mesh = fl->mesh;
580 int prev_settled = 0;
581 while (1){
582 int settled = 0;
583 for (y = 0; y < height; y++){
584 for (x = 0; x < width; x++){
585 sparrow_corner_t *corner = &mesh[y * width + x];
586 if (corner->status == CORNER_SETTLED){
587 settled ++;
588 GST_DEBUG("ignoring settled corner %d, %d", x, y);
589 continue;
591 //memset(estimates, 0, sizeof(estimates));
592 int k = 0;
593 for (guint j = 0; j < ESTIMATORS; j++){
594 sparrow_estimator_t *e = &estimators[j];
595 int x3, y3, x2, y2, x1, y1;
596 y3 = y + e->y3;
597 x3 = x + e->x3;
598 if (!(y3 >= 0 && y3 < height &&
599 x3 >= 0 && x3 < width &&
600 mesh[y3 * width + x3].status != CORNER_UNUSED
602 GST_DEBUG("not using estimator %d because corners aren't used, or are off screen\n"
603 "x3 %d, y3 %d", j, x3, y3);
604 continue;
606 y2 = y + e->y2;
607 x2 = x + e->x2;
608 y1 = y + e->y1;
609 x1 = x + e->x1;
610 if (mesh[y2 * width + x2].status == CORNER_UNUSED ||
611 mesh[y1 * width + x1].status == CORNER_UNUSED){
612 GST_DEBUG("not using estimator %d because corners aren't used", j);
613 continue;
615 /*there are 3 points, and the unknown one.
616 They should all be in a line.
617 The ratio of the p3-p2:p2-p1 sould be the same as
618 p2-p1:p1:p0.
620 This really has to be done in floating point.
622 collinearity, no division, but no useful error metric
623 x[0] * (y[1]-y[2]) + x[1] * (y[2]-y[0]) + x[2] * (y[0]-y[1]) == 0
624 (at least not without further division)
626 This way:
628 cos angle = dot product / product of euclidean lengths
630 (dx12 * dx23 + dy12 * dy23) /
631 (sqrt(dx12 * dx12 + dy12 * dy12) * sqrt(dx23 * dx23 + dy23 * dy23))
633 is costly up front (sqrt), but those distances need to be
634 calculated anyway (or at least they are handy). Not much gained by
635 short-circuiting on bad collinearity, though.
637 It also handlily catches all the division by zeros in one meaningful
640 sparrow_corner_t *c1 = &mesh[y1 * width + x1];
641 sparrow_corner_t *c2 = &mesh[y2 * width + x2];
642 sparrow_corner_t *c3 = &mesh[y3 * width + x3];
644 double dx12 = c1->x - c2->x;
645 double dy12 = c1->y - c2->y;
646 double dx23 = c2->x - c3->x;
647 double dy23 = c2->y - c3->y;
648 double distance12 = sqrt(dx12 * dx12 + dy12 * dy12);
649 double distance23 = sqrt(dx23 * dx23 + dy23 * dy23);
651 double dp = dx12 * dx23 + dy12 * dy23;
653 double distances = distance12 * distance23;
654 #if 0
655 GST_DEBUG("mesh points: %d,%d, %d,%d, %d,%d\n"
656 "map points: %d,%d, %d,%d, %d,%d\n"
657 "diffs: 12: %0.3f,%0.3f, 23: %0.3f,%0.3f, \n"
658 "distances: 12: %0.3f, 32: %0.3f\n",
659 x1, y1, x2, y2, x3, y3,
660 C2I(c1->x), C2I(c1->y), C2I(c2->x), C2I(c2->y), C2I(c3->x), C2I(c3->y),
661 dx12, dy12, dx23, dy23, distance12, distance23
665 #endif
667 if (distances == 0.0){
668 GST_INFO("at least two points out of %d,%d, %d,%d, %d,%d are the same!",
669 x1, y1, x2, y2, x3, y3);
670 continue;
672 double line_error = 1.0 - dp / distances;
673 if (line_error > MAX_NONCOLLINEARITY){
674 GST_DEBUG("Points %d,%d, %d,%d, %d,%d are not in a line: non-collinearity: %3f",
675 x1, y1, x2, y2, x3, y3, line_error);
676 continue;
678 //GST_DEBUG("GOOD collinearity: %3f", line_error);
681 double ratio = distance12 / distance23;
682 /*so here's the estimate!*/
683 coord_t dx = dx12 * ratio;
684 coord_t dy = dy12 * ratio;
685 coord_t ex = c1->x + dx;
686 coord_t ey = c1->y + dy;
688 #if 0
689 GST_DEBUG("dx, dy: %d,%d, ex, ey: %d,%d\n"
690 "dx raw: %0.3f,%0.3f, x1, x2: %0.3f,%0.3f,\n"
691 "distances: 12: %0.3f, 32: %0.3f\n"
692 "ratio: %0.3f\n",
693 C2I(dx), C2I(dy), C2I(ex), C2I(ey),
694 dx, dy, ex, ey, ratio
696 #endif
698 if (! coord_in_range(ey, screen_height) ||
699 ! coord_in_range(ex, screen_width)){
700 GST_DEBUG("rejecting estimate for %d, %d, due to ex, ey being %d, %d",
701 x, y, C2I(ex), C2I(ey));
702 continue;
705 GST_DEBUG("estimator %d,%d SUCCESSFULLY estimated that %d, %d will be %d, %d",
706 x1, x2, x, y, C2I(ex), C2I(ey));
708 estimates[k].x = ex;
709 estimates[k].y = ey;
710 if (sparrow->debug){
711 debug[coords_to_index(ex, ey, sparrow->in.width, sparrow->in.height)] = 0x00aa7700;
713 k++;
715 /*now there is an array of estimates.
716 The *_discard_cluster_outliers functions should fit here */
717 GST_INFO("got %d estimates for %d,%d", k, x, y);
718 if(! k){
719 continue;
721 coord_t guess_x;
722 coord_t guess_y;
724 #if 1
725 /*now find median values. If the number is even, add a copy of either
726 the original value, or a random element. */
727 if (! k & 1){
728 if (corner->status != CORNER_UNUSED){
729 estimates[k].x = corner->x;
730 estimates[k].y = corner->y;
732 else {
733 int r = RANDINT(sparrow, 0, r);
734 estimates[k].x = estimates[r].x;
735 estimates[k].y = estimates[r].y;
737 k++;
739 sparrow_voter_t centre = median_centre(estimates, k);
740 guess_x = centre.x;
741 guess_y = centre.y;
743 #else
745 k = euclidean_discard_cluster_outliers(estimates, k);
746 if (sparrow->debug){
747 for (int j = 0; j < k; j++){
748 debug[coords_to_index(estimates[j].x, estimates[j].y,
749 sparrow->in.width, sparrow->in.height)] = 0x00ffff00;
752 GST_INFO("After discard, left with %d estimates", k);
753 /*now what? the mean? yes.*/
754 coord_t sumx = 0;
755 coord_t sumy = 0;
756 for (int j = 0; j < k; j++){
757 sumx += estimates[j].x;
758 sumy += estimates[j].y;
760 guess_x = sumx / k;
761 guess_y = sumy / k;
763 #endif
765 GST_INFO("estimating %d,%d", C2I(guess_x), C2I(guess_y));
767 if (corner->status == CORNER_EXACT){
768 GST_INFO("using exact reading %d,%d", C2I(corner->x), C2I(corner->y));
769 if (sparrow->debug){
770 debug[coords_to_index(corner->x, corner->y,
771 sparrow->in.width, sparrow->in.height)] = 0xffff3300;
773 GST_DEBUG("exact corner");
774 if (abs(corner->x - guess_x) < 2){
775 guess_x = corner->x;
777 if (abs(corner->y - guess_y) < 2){
778 guess_y = corner->y;
781 if (k < 5){
782 GST_DEBUG("weak evidence, mark corner PROJECTED");
783 corner->status = CORNER_PROJECTED;
784 if (sparrow->debug){
785 debug[coords_to_index(guess_x, guess_y,
786 sparrow->in.width, sparrow->in.height)] = 0xff0000ff;
789 else{
790 GST_DEBUG("corner is SETTLED");
791 corner->status = CORNER_SETTLED;
792 settled ++;
793 if (sparrow->debug){
794 debug[coords_to_index(guess_x, guess_y,
795 sparrow->in.width, sparrow->in.height)] = 0xffffffff;
798 corner->x = guess_x;
799 corner->y = guess_y;
802 GST_INFO("settled %d in that round. %d left to go",
803 settled - prev_settled, width * height - settled);
804 if (settled == width * height || settled == prev_settled){
805 break;
807 prev_settled = settled;
809 MAYBE_DEBUG_IPL(fl->debug);
813 static void
814 calculate_deltas(GstSparrow *sparrow, sparrow_find_lines_t *fl){
815 int i;
816 int width = fl->n_vlines;
817 int height = fl->n_hlines;
818 sparrow_corner_t *mesh = fl->mesh;
819 gint x, y;
821 //DEBUG_FIND_LINES(fl);
822 /* calculate deltas toward adjacent corners */
823 /* try to extrapolate left and up, if possible, so need to go backwards. */
824 i = width * height - 1;
825 for (y = height - 1; y >= 0; y--){
826 for (x = width - 1; x >= 0; x--, i--){
827 sparrow_corner_t *corner = &mesh[i];
828 /* calculate the delta to next corner. If this corner is on edge, delta is
829 0 and next is this.*/
830 sparrow_corner_t *right = (x == width - 1) ? corner : corner + 1;
831 sparrow_corner_t *down = (y == height - 1) ? corner : corner + width;
832 GST_DEBUG("i %d xy %d,%d width %d. in_xy %d,%d; down in_xy %d,%d; right in_xy %d,%d\n",
833 i, x, y, width, C2I(corner->x), C2I(corner->y), C2I(down->x),
834 C2I(down->y), C2I(right->x), C2I(right->y));
835 if (corner->status != CORNER_UNUSED){
836 corner->dxr = QUANTISE_DELTA(right->x - corner->x);
837 corner->dyr = QUANTISE_DELTA(right->y - corner->y);
838 corner->dxd = QUANTISE_DELTA(down->x - corner->x);
839 corner->dyd = QUANTISE_DELTA(down->y - corner->y);
843 if (sparrow->debug){
844 debug_corners_image(sparrow, fl);
849 static void
850 look_for_line(GstSparrow *sparrow, guint8 *in, sparrow_find_lines_t *fl,
851 sparrow_line_t *line){
852 guint i;
853 guint32 colour;
854 guint32 cmask = sparrow->out.colours[sparrow->colour];
855 int signal;
857 /* subtract background noise */
858 fl->input->imageData = (char *)in;
859 cvSub(fl->input, fl->threshold, fl->working, NULL);
860 guint32 *in32 = (guint32 *)fl->working->imageData;
862 for (i = 0; i < sparrow->in.pixcount; i++){
863 colour = in32[i] & cmask;
864 signal = (((colour >> fl->shift1) & COLOUR_MASK) +
865 ((colour >> fl->shift2) & COLOUR_MASK));
866 if (signal){
867 if (fl->map[i].lines[line->dir]){
868 /*assume the pixel is on for everyone and will just confuse
869 matters. ignore it.
872 if (fl->map[i].lines[line->dir] != BAD_PIXEL){
874 GST_DEBUG("HEY, expected point %d to be in line %d (dir %d) "
875 "and thus empty, but it is also in line %d\n"
876 "old signal %d, new signal %d, marking as BAD\n",
877 i, line->index, line->dir, fl->map[i].lines[line->dir],
878 fl->map[i].signal[line->dir], signal);
880 fl->map[i].lines[line->dir] = BAD_PIXEL;
881 fl->map[i].signal[line->dir] = 0;
884 else{
885 fl->map[i].lines[line->dir] = line->index;
886 fl->map[i].signal[line->dir] = signal;
892 static void
893 debug_map_image(GstSparrow *sparrow, sparrow_find_lines_t *fl){
894 guint32 *data = (guint32*)fl->debug->imageData;
895 memset(data, 0, sparrow->in.size);
896 for (guint i = 0; i < sparrow->in.pixcount; i++){
897 data[i] |= fl->map[i].signal[SPARROW_HORIZONTAL] << sparrow->in.gshift;
898 data[i] |= fl->map[i].signal[SPARROW_VERTICAL] << sparrow->in.rshift;
899 data[i] |= ((fl->map[i].lines[SPARROW_VERTICAL] == BAD_PIXEL) ||
900 (fl->map[i].lines[SPARROW_HORIZONTAL] == BAD_PIXEL)) ? 255 << sparrow->in.bshift : 0;
902 MAYBE_DEBUG_IPL(fl->debug);
905 /* draw the line (in sparrow->colour) */
906 static inline void
907 draw_line(GstSparrow * sparrow, sparrow_line_t *line, guint8 *out){
908 guint32 *p = (guint32 *)out;
909 guint32 colour = sparrow->out.colours[sparrow->colour];
910 int i;
911 if (line->dir == SPARROW_HORIZONTAL){
912 p += line->offset * sparrow->out.width;
913 for (i = 0; i < sparrow->out.width; i++){
914 p[i] = colour;
917 else {
918 guint32 *p = (guint32 *)out;
919 p += line->offset;
920 for(i = 0; i < sparrow->out.height; i++){
921 *p = colour;
922 p += sparrow->out.width;
927 static void
928 jump_state(GstSparrow *sparrow, sparrow_find_lines_t *fl, edges_state_t state){
929 if (state == EDGES_NEXT_STATE){
930 fl->state++;
932 else {
933 fl->state = state;
935 switch (fl->state){
936 case EDGES_FIND_NOISE:
937 sparrow->countdown = MAX(sparrow->lag, 1) + SAFETY_LAG;
938 break;
939 case EDGES_FIND_LINES:
940 sparrow->countdown = MAX(sparrow->lag, 1) + SAFETY_LAG;
941 break;
942 case EDGES_FIND_CORNERS:
943 sparrow->countdown = 7;
944 break;
945 case EDGES_WAIT_FOR_PLAY:
946 global_number_of_edge_finders--;
947 sparrow->countdown = 300;
948 break;
949 default:
950 GST_DEBUG("jumped to non-existent state %d\n", fl->state);
951 break;
955 /* show each line for 2 frames, then wait sparrow->lag frames, leaving line on
956 until last one.
958 static inline void
959 draw_lines(GstSparrow *sparrow, sparrow_find_lines_t *fl, guint8 *in, guint8 *out)
961 sparrow_line_t *line = fl->shuffled_lines[fl->current];
962 sparrow->countdown--;
963 memset(out, 0, sparrow->out.size);
964 if (sparrow->countdown){
965 draw_line(sparrow, line, out);
967 else{
968 /*show nothing, look for result */
969 look_for_line(sparrow, in, fl, line);
970 if (sparrow->debug){
971 debug_map_image(sparrow, fl);
973 fl->current++;
974 if (fl->current == fl->n_lines){
975 jump_state(sparrow, fl, EDGES_NEXT_STATE);
977 else{
978 sparrow->countdown = MAX(sparrow->lag, 1) + SAFETY_LAG;
983 #define LINE_THRESHOLD 32
985 static inline void
986 find_threshold(GstSparrow *sparrow, sparrow_find_lines_t *fl, guint8 *in, guint8 *out)
988 memset(out, 0, sparrow->out.size);
989 /*XXX should average/median over a range of frames */
990 if (sparrow->countdown == 0){
991 memcpy(fl->threshold->imageData, in, sparrow->in.size);
992 /*add a constant, and smooth */
993 cvAddS(fl->threshold, cvScalarAll(LINE_THRESHOLD), fl->working, NULL);
994 cvSmooth(fl->working, fl->threshold, CV_GAUSSIAN, 3, 0, 0, 0);
995 //cvSmooth(fl->working, fl->threshold, CV_MEDIAN, 3, 0, 0, 0);
996 jump_state(sparrow, fl, EDGES_NEXT_STATE);
998 sparrow->countdown--;
1001 /*match up lines and find corners */
1002 static inline int
1003 find_corners(GstSparrow *sparrow, sparrow_find_lines_t *fl)
1005 sparrow->countdown--;
1006 switch(sparrow->countdown){
1007 case 4:
1008 make_clusters(sparrow, fl);
1009 break;
1010 case 3:
1011 make_corners(sparrow, fl);
1012 break;
1013 case 2:
1014 complete_map(sparrow, fl);
1015 break;
1016 case 1:
1017 calculate_deltas(sparrow, fl);
1018 break;
1019 case 0:
1020 #if USE_FULL_LUT
1021 corners_to_full_lut(sparrow, fl);
1022 #else
1023 corners_to_lut(sparrow, fl);
1024 #endif
1025 jump_state(sparrow, fl, EDGES_NEXT_STATE);
1026 break;
1027 default:
1028 GST_DEBUG("how did sparrow->countdown get to be %d?", sparrow->countdown);
1029 sparrow->countdown = 5;
1031 return sparrow->countdown;
1034 /*use a dirty shared variable*/
1035 static gboolean
1036 wait_for_play(GstSparrow *sparrow, sparrow_find_lines_t *fl){
1037 if (global_number_of_edge_finders == 0 ||
1038 sparrow->countdown == 0){
1039 return TRUE;
1041 sparrow->countdown--;
1042 return FALSE;
1045 INVISIBLE sparrow_state
1046 mode_find_edges(GstSparrow *sparrow, guint8 *in, guint8 *out){
1047 sparrow_find_lines_t *fl = (sparrow_find_lines_t *)sparrow->helper_struct;
1048 switch (fl->state){
1049 case EDGES_FIND_NOISE:
1050 find_threshold(sparrow, fl, in, out);
1051 break;
1052 case EDGES_FIND_LINES:
1053 draw_lines(sparrow, fl, in, out);
1054 break;
1055 case EDGES_FIND_CORNERS:
1056 memset(out, 0, sparrow->out.size);
1057 find_corners(sparrow, fl);
1058 break;
1059 case EDGES_WAIT_FOR_PLAY:
1060 memset(out, 0, sparrow->out.size);
1061 if (wait_for_play(sparrow, fl)){
1062 return SPARROW_NEXT_STATE;
1064 break;
1065 default:
1066 GST_WARNING("strange state in mode_find_edges: %d", fl->state);
1067 memset(out, 0, sparrow->out.size);
1069 return SPARROW_STATUS_QUO;
1072 INVISIBLE void
1073 finalise_find_edges(GstSparrow *sparrow){
1074 sparrow_find_lines_t *fl = (sparrow_find_lines_t *)sparrow->helper_struct;
1075 //DEBUG_FIND_LINES(fl);
1076 if (sparrow->save && *(sparrow->save)){
1077 GST_DEBUG("about to save to %s\n", sparrow->save);
1078 dump_edges_info(sparrow, fl, sparrow->save);
1080 if (sparrow->debug){
1081 cvReleaseImage(&fl->debug);
1083 free(fl->h_lines);
1084 free(fl->shuffled_lines);
1085 free(fl->map);
1086 free(fl->mesh);
1087 free(fl->clusters);
1088 cvReleaseImage(&fl->threshold);
1089 cvReleaseImage(&fl->working);
1090 cvReleaseImageHeader(&fl->input);
1091 free(fl);
1092 GST_DEBUG("freed everything\n");
1093 sparrow->helper_struct = NULL;
1096 static void
1097 setup_colour_shifts(GstSparrow *sparrow, sparrow_find_lines_t *fl){
1098 /*COLOUR_QUANT reduces the signal a little bit more, avoiding overflow
1099 later */
1100 switch (sparrow->colour){
1101 case SPARROW_WHITE:
1102 case SPARROW_GREEN:
1103 fl->shift1 = sparrow->in.gshift + COLOUR_QUANT;
1104 fl->shift2 = sparrow->in.gshift + COLOUR_QUANT;
1105 break;
1106 case SPARROW_MAGENTA:
1107 fl->shift1 = sparrow->in.rshift + COLOUR_QUANT;
1108 fl->shift2 = sparrow->in.bshift + COLOUR_QUANT;
1109 break;
1113 INVISIBLE void
1114 init_find_edges(GstSparrow *sparrow){
1115 gint i;
1116 sparrow_find_lines_t *fl = zalloc_aligned_or_die(sizeof(sparrow_find_lines_t));
1117 sparrow->helper_struct = (void *)fl;
1119 gint h_lines = (sparrow->out.height + LINE_PERIOD - 1) / LINE_PERIOD;
1120 gint v_lines = (sparrow->out.width + LINE_PERIOD - 1) / LINE_PERIOD;
1121 gint n_lines_max = (h_lines + v_lines);
1122 gint n_corners = (h_lines * v_lines);
1123 fl->n_hlines = h_lines;
1124 fl->n_vlines = v_lines;
1126 fl->h_lines = malloc_aligned_or_die(sizeof(sparrow_line_t) * n_lines_max);
1127 fl->shuffled_lines = malloc_aligned_or_die(sizeof(sparrow_line_t *) * n_lines_max);
1128 GST_DEBUG("shuffled lines, malloced %p\n", fl->shuffled_lines);
1130 GST_DEBUG("map is going to be %d * %d \n", sizeof(sparrow_intersect_t), sparrow->in.pixcount);
1131 fl->map = zalloc_aligned_or_die(sizeof(sparrow_intersect_t) * sparrow->in.pixcount);
1132 fl->clusters = zalloc_or_die(n_corners * sizeof(sparrow_cluster_t));
1133 fl->mesh = zalloc_aligned_or_die(n_corners * sizeof(sparrow_corner_t));
1135 sparrow_line_t *line = fl->h_lines;
1136 sparrow_line_t **sline = fl->shuffled_lines;
1137 int offset;
1139 for (i = 0, offset = H_LINE_OFFSET; offset < sparrow->out.height;
1140 i++, offset += LINE_PERIOD){
1141 line->offset = offset;
1142 line->dir = SPARROW_HORIZONTAL;
1143 line->index = i;
1144 *sline = line;
1145 line++;
1146 sline++;
1147 //GST_DEBUG("line %d h has offset %d\n", i, offset);
1150 /*now add the vertical lines */
1151 fl->v_lines = line;
1152 for (i = 0, offset = V_LINE_OFFSET; offset < sparrow->out.width;
1153 i++, offset += LINE_PERIOD){
1154 line->offset = offset;
1155 line->dir = SPARROW_VERTICAL;
1156 line->index = i;
1157 *sline = line;
1158 line++;
1159 sline++;
1160 //GST_DEBUG("line %d v has offset %d\n", i, offset);
1162 //DEBUG_FIND_LINES(fl);
1163 fl->n_lines = line - fl->h_lines;
1164 GST_DEBUG("allocated %d lines, made %d\n", n_lines_max, fl->n_lines);
1166 /*now shuffle */
1167 for (i = 0; i < fl->n_lines; i++){
1168 int j = RANDINT(sparrow, 0, fl->n_lines);
1169 sparrow_line_t *tmp = fl->shuffled_lines[j];
1170 fl->shuffled_lines[j] = fl->shuffled_lines[i];
1171 fl->shuffled_lines[i] = tmp;
1174 setup_colour_shifts(sparrow, fl);
1176 /* opencv images for threshold finding */
1177 CvSize size = {sparrow->in.width, sparrow->in.height};
1178 fl->working = cvCreateImage(size, IPL_DEPTH_8U, PIXSIZE);
1179 fl->threshold = cvCreateImage(size, IPL_DEPTH_8U, PIXSIZE);
1181 /*input has no data allocated -- it uses latest frame*/
1182 fl->input = init_ipl_image(&sparrow->in, PIXSIZE);
1183 //DEBUG_FIND_LINES(fl);
1184 if (sparrow->debug){
1185 fl->debug = cvCreateImage(size, IPL_DEPTH_8U, PIXSIZE);
1188 if (sparrow->reload){
1189 if (access(sparrow->reload, R_OK)){
1190 GST_DEBUG("sparrow->reload is '%s' and it is UNREADABLE\n", sparrow->reload);
1191 exit(1);
1193 read_edges_info(sparrow, fl, sparrow->reload);
1194 memset(fl->map, 0, sizeof(sparrow_intersect_t) * sparrow->in.pixcount);
1195 //memset(fl->clusters, 0, n_corners * sizeof(sparrow_cluster_t));
1196 memset(fl->mesh, 0, n_corners * sizeof(sparrow_corner_t));
1197 jump_state(sparrow, fl, EDGES_FIND_CORNERS);
1199 else {
1200 jump_state(sparrow, fl, EDGES_FIND_NOISE);
1203 global_number_of_edge_finders++;