1.0.22.13: fixed bug 426: nested inline expansion failure
[sbcl/tcr.git] / src / runtime / x86-darwin-os.c
blobbb9212ed5c5b721bb06cef69acb11151b79b2013
3 #ifdef LISP_FEATURE_SB_THREAD
4 #include <architecture/i386/table.h>
5 #include <i386/user_ldt.h>
6 #include <mach/mach_init.h>
7 #endif
9 #include "thread.h"
10 #include "validate.h"
11 #include "runtime.h"
12 #include "interrupt.h"
13 #include "x86-darwin-os.h"
14 #include "genesis/fdefn.h"
16 #include <mach/mach.h>
17 #include <mach/mach_error.h>
18 #include <mach/mach_types.h>
19 #include <mach/sync_policy.h>
20 #include <mach/vm_region.h>
21 #include <mach/machine/thread_state.h>
22 #include <mach/machine/thread_status.h>
23 #include <sys/_types.h>
24 #include <sys/ucontext.h>
25 #include <pthread.h>
26 #include <assert.h>
27 #include <stdlib.h>
29 #ifdef LISP_FEATURE_SB_THREAD
31 pthread_mutex_t modify_ldt_lock = PTHREAD_MUTEX_INITIALIZER;
33 void set_data_desc_size(data_desc_t* desc, unsigned long size)
35 desc->limit00 = (size - 1) & 0xffff;
36 desc->limit16 = ((size - 1) >> 16) &0xf;
39 void set_data_desc_addr(data_desc_t* desc, void* addr)
41 desc->base00 = (unsigned int)addr & 0xffff;
42 desc->base16 = ((unsigned int)addr & 0xff0000) >> 16;
43 desc->base24 = ((unsigned int)addr & 0xff000000) >> 24;
46 #endif
48 #ifdef LISP_FEATURE_MACH_EXCEPTION_HANDLER
49 kern_return_t mach_thread_init(mach_port_t thread_exception_port);
50 #endif
52 int arch_os_thread_init(struct thread *thread) {
53 #ifdef LISP_FEATURE_SB_THREAD
54 int n;
55 sel_t sel;
57 data_desc_t ldt_entry = { 0, 0, 0, DESC_DATA_WRITE,
58 3, 1, 0, DESC_DATA_32B, DESC_GRAN_BYTE, 0 };
60 set_data_desc_addr(&ldt_entry, thread);
61 set_data_desc_size(&ldt_entry, dynamic_values_bytes);
63 thread_mutex_lock(&modify_ldt_lock);
64 n = i386_set_ldt(LDT_AUTO_ALLOC, (union ldt_entry*) &ldt_entry, 1);
66 if (n < 0) {
67 perror("i386_set_ldt");
68 lose("unexpected i386_set_ldt(..) failure\n");
70 thread_mutex_unlock(&modify_ldt_lock);
72 FSHOW_SIGNAL((stderr, "/ TLS: Allocated LDT %x\n", n));
73 sel.index = n;
74 sel.rpl = USER_PRIV;
75 sel.ti = SEL_LDT;
77 __asm__ __volatile__ ("mov %0, %%fs" : : "r"(sel));
79 thread->tls_cookie=n;
80 pthread_setspecific(specials,thread);
81 #endif
82 #ifdef LISP_FEATURE_MACH_EXCEPTION_HANDLER
83 mach_thread_init(THREAD_STRUCT_TO_EXCEPTION_PORT(thread));
84 #endif
86 #ifdef LISP_FEATURE_C_STACK_IS_CONTROL_STACK
87 stack_t sigstack;
89 /* Signal handlers are run on the control stack, so if it is exhausted
90 * we had better use an alternate stack for whatever signal tells us
91 * we've exhausted it */
92 sigstack.ss_sp=((void *) thread)+dynamic_values_bytes;
93 sigstack.ss_flags=0;
94 sigstack.ss_size = 32*SIGSTKSZ;
95 sigaltstack(&sigstack,0);
96 #endif
97 return 1; /* success */
100 int arch_os_thread_cleanup(struct thread *thread) {
101 #if defined(LISP_FEATURE_SB_THREAD)
102 int n = thread->tls_cookie;
104 /* Set the %%fs register back to 0 and free the ldt by setting it
105 * to NULL.
107 FSHOW_SIGNAL((stderr, "/ TLS: Freeing LDT %x\n", n));
109 __asm__ __volatile__ ("mov %0, %%fs" : : "r"(0));
110 thread_mutex_lock(&modify_ldt_lock);
111 i386_set_ldt(n, NULL, 1);
112 thread_mutex_unlock(&modify_ldt_lock);
113 #endif
114 return 1; /* success */
117 #ifdef LISP_FEATURE_MACH_EXCEPTION_HANDLER
119 void sigill_handler(int signal, siginfo_t *siginfo, void *void_context);
120 void sigtrap_handler(int signal, siginfo_t *siginfo, void *void_context);
121 void memory_fault_handler(int signal, siginfo_t *siginfo, void *void_context);
123 /* exc_server handles mach exception messages from the kernel and
124 * calls catch exception raise. We use the system-provided
125 * mach_msg_server, which, I assume, calls exc_server in a loop.
128 extern boolean_t exc_server();
130 /* This executes in the faulting thread as part of the signal
131 * emulation. It is passed a context with the uc_mcontext field
132 * pointing to a valid block of memory. */
133 void build_fake_signal_context(os_context_t *context,
134 x86_thread_state32_t *thread_state,
135 x86_float_state32_t *float_state) {
136 pthread_sigmask(0, NULL, &context->uc_sigmask);
137 context->uc_mcontext->SS = *thread_state;
138 context->uc_mcontext->FS = *float_state;
141 /* This executes in the faulting thread as part of the signal
142 * emulation. It is effectively the inverse operation from above. */
143 void update_thread_state_from_context(x86_thread_state32_t *thread_state,
144 x86_float_state32_t *float_state,
145 os_context_t *context) {
146 *thread_state = context->uc_mcontext->SS;
147 *float_state = context->uc_mcontext->FS;
148 pthread_sigmask(SIG_SETMASK, &context->uc_sigmask, NULL);
151 /* Modify a context to push new data on its stack. */
152 void push_context(u32 data, x86_thread_state32_t *thread_state)
154 u32 *stack_pointer;
156 stack_pointer = (u32*) thread_state->ESP;
157 *(--stack_pointer) = data;
158 thread_state->ESP = (unsigned int) stack_pointer;
161 void align_context_stack(x86_thread_state32_t *thread_state)
163 /* 16byte align the stack (provided that the stack is, as it
164 * should be, 4byte aligned. */
165 while (thread_state->ESP & 15) push_context(0, thread_state);
168 /* Stack allocation starts with a context that has a mod-4 ESP value
169 * and needs to leave a context with a mod-16 ESP that will restore
170 * the old ESP value and other register state when activated. The
171 * first part of this is the recovery trampoline, which loads ESP from
172 * EBP, pops EBP, and returns. */
173 asm("_stack_allocation_recover: movl %ebp, %esp; popl %ebp; ret;");
175 void open_stack_allocation(x86_thread_state32_t *thread_state)
177 void stack_allocation_recover(void);
179 push_context(thread_state->EIP, thread_state);
180 push_context(thread_state->EBP, thread_state);
181 thread_state->EBP = thread_state->ESP;
182 thread_state->EIP = (unsigned int) stack_allocation_recover;
184 align_context_stack(thread_state);
187 /* Stack allocation of data starts with a context with a mod-16 ESP
188 * value and reserves some space on it by manipulating the ESP
189 * register. */
190 void *stack_allocate(x86_thread_state32_t *thread_state, size_t size)
192 /* round up size to 16byte multiple */
193 size = (size + 15) & -16;
195 thread_state->ESP = ((u32)thread_state->ESP) - size;
197 return (void *)thread_state->ESP;
200 /* Arranging to invoke a C function is tricky, as we have to assume
201 * cdecl calling conventions (caller removes args) and x86/darwin
202 * alignment requirements. The simplest way to arrange this,
203 * actually, is to open a new stack allocation.
204 * WARNING!!! THIS DOES NOT PRESERVE REGISTERS! */
205 void call_c_function_in_context(x86_thread_state32_t *thread_state,
206 void *function,
207 int nargs,
208 ...)
210 va_list ap;
211 int i;
212 u32 *stack_pointer;
214 /* Set up to restore stack on exit. */
215 open_stack_allocation(thread_state);
217 /* Have to keep stack 16byte aligned on x86/darwin. */
218 for (i = (3 & -nargs); i; i--) {
219 push_context(0, thread_state);
222 thread_state->ESP = ((u32)thread_state->ESP) - nargs * 4;
223 stack_pointer = (u32 *)thread_state->ESP;
225 va_start(ap, nargs);
226 for (i = 0; i < nargs; i++) {
227 //push_context(va_arg(ap, u32), thread_state);
228 stack_pointer[i] = va_arg(ap, u32);
230 va_end(ap);
232 push_context(thread_state->EIP, thread_state);
233 thread_state->EIP = (unsigned int) function;
236 void signal_emulation_wrapper(x86_thread_state32_t *thread_state,
237 x86_float_state32_t *float_state,
238 int signal,
239 siginfo_t *siginfo,
240 void (*handler)(int, siginfo_t *, void *))
243 /* CLH: FIXME **NOTE: HACK ALERT!** Ideally, we would allocate
244 * context and regs on the stack as local variables, but this
245 * causes problems for the lisp debugger. When it walks the stack
246 * for a back trace, it sees the 1) address of the local variable
247 * on the stack and thinks that is a frame pointer to a lisp
248 * frame, and, 2) the address of the sap that we alloc'ed in
249 * dynamic space and thinks that is a return address, so it,
250 * heuristicly (and wrongly), chooses that this should be
251 * interpreted as a lisp frame instead of as a C frame.
252 * We can work around this in this case by os_validating the
253 * context (and regs just for symmetry).
256 os_context_t *context;
257 mcontext_t *regs;
259 context = (os_context_t*) os_validate(0, sizeof(os_context_t));
260 regs = (mcontext_t*) os_validate(0, sizeof(mcontext_t));
261 context->uc_mcontext = regs;
263 /* when BSD signals are fired, they mask they signals in sa_mask
264 which always seem to be the blockable_sigset, for us, so we
265 need to:
266 1) save the current sigmask
267 2) block blockable signals
268 3) call the signal handler
269 4) restore the sigmask */
271 build_fake_signal_context(context, thread_state, float_state);
273 block_blockable_signals();
275 handler(signal, siginfo, context);
277 update_thread_state_from_context(thread_state, float_state, context);
279 os_invalidate((os_vm_address_t)context, sizeof(os_context_t));
280 os_invalidate((os_vm_address_t)regs, sizeof(mcontext_t));
282 /* Trap to restore the signal context. */
283 asm volatile ("movl %0, %%eax; movl %1, %%ebx; .long 0xffff0b0f"
284 : : "r" (thread_state), "r" (float_state));
287 /* Convenience wrapper for the above */
288 void call_handler_on_thread(mach_port_t thread,
289 x86_thread_state32_t *thread_state,
290 int signal,
291 siginfo_t *siginfo,
292 void (*handler)(int, siginfo_t *, void *))
294 x86_thread_state32_t new_state;
295 x86_thread_state32_t *save_thread_state;
296 x86_float_state32_t *save_float_state;
297 mach_msg_type_number_t state_count;
298 siginfo_t *save_siginfo;
299 kern_return_t ret;
300 /* Initialize the new state */
301 new_state = *thread_state;
302 open_stack_allocation(&new_state);
303 stack_allocate(&new_state, 256);
304 /* Save old state */
305 save_thread_state = (x86_thread_state32_t *)stack_allocate(&new_state, sizeof(*save_thread_state));
306 *save_thread_state = *thread_state;
307 /* Save float state */
308 save_float_state = (x86_float_state32_t *)stack_allocate(&new_state, sizeof(*save_float_state));
309 state_count = x86_FLOAT_STATE32_COUNT;
310 if ((ret = thread_get_state(thread,
311 x86_FLOAT_STATE32,
312 (thread_state_t)save_float_state,
313 &state_count)) != KERN_SUCCESS)
314 lose("thread_get_state (x86_THREAD_STATE32) failed %d\n", ret);
315 /* Set up siginfo */
316 save_siginfo = stack_allocate(&new_state, sizeof(*siginfo));
317 if (siginfo == NULL)
318 save_siginfo = siginfo;
319 else
320 *save_siginfo = *siginfo;
321 /* Prepare to call */
322 call_c_function_in_context(&new_state,
323 signal_emulation_wrapper,
325 save_thread_state,
326 save_float_state,
327 signal,
328 save_siginfo,
329 handler);
330 /* Update the thread state */
331 state_count = x86_THREAD_STATE32_COUNT;
332 if ((ret = thread_set_state(thread,
333 x86_THREAD_STATE32,
334 (thread_state_t)&new_state,
335 state_count)) != KERN_SUCCESS)
336 lose("thread_set_state (x86_FLOAT_STATE32) failed %d\n", ret);
340 #if defined DUMP_CONTEXT
341 void dump_context(x86_thread_state32_t *thread_state)
343 int i;
344 u32 *stack_pointer;
346 printf("eax: %08lx ecx: %08lx edx: %08lx ebx: %08lx\n",
347 thread_state->EAX, thread_state->ECX, thread_state->EDX, thread_state->EAX);
348 printf("esp: %08lx ebp: %08lx esi: %08lx edi: %08lx\n",
349 thread_state->ESP, thread_state->EBP, thread_state->ESI, thread_state->EDI);
350 printf("eip: %08lx eflags: %08lx\n",
351 thread_state->EIP, thread_state->EFLAGS);
352 printf("cs: %04hx ds: %04hx es: %04hx "
353 "ss: %04hx fs: %04hx gs: %04hx\n",
354 thread_state->CS,
355 thread_state->DS,
356 thread_state->ES,
357 thread_state->SS,
358 thread_state->FS,
359 thread_state->GS);
361 stack_pointer = (u32 *)thread_state->ESP;
362 for (i = 0; i < 48; i+=4) {
363 printf("%08x: %08x %08x %08x %08x\n",
364 thread_state->ESP + (i * 4),
365 stack_pointer[i],
366 stack_pointer[i+1],
367 stack_pointer[i+2],
368 stack_pointer[i+3]);
371 #endif
373 void
374 control_stack_exhausted_handler(int signal, siginfo_t *siginfo, void *void_context) {
375 os_context_t *context = arch_os_get_context(&void_context);
377 arrange_return_to_lisp_function
378 (context, StaticSymbolFunction(CONTROL_STACK_EXHAUSTED_ERROR));
381 void
382 undefined_alien_handler(int signal, siginfo_t *siginfo, void *void_context) {
383 os_context_t *context = arch_os_get_context(&void_context);
385 arrange_return_to_lisp_function
386 (context, StaticSymbolFunction(UNDEFINED_ALIEN_VARIABLE_ERROR));
389 kern_return_t
390 catch_exception_raise(mach_port_t exception_port,
391 mach_port_t thread,
392 mach_port_t task,
393 exception_type_t exception,
394 exception_data_t code_vector,
395 mach_msg_type_number_t code_count)
397 struct thread *th = (struct thread*) exception_port;
398 x86_thread_state32_t thread_state;
399 mach_msg_type_number_t state_count;
400 vm_address_t region_addr;
401 vm_size_t region_size;
402 vm_region_basic_info_data_t region_info;
403 mach_msg_type_number_t info_count;
404 mach_port_t region_name;
405 void *addr = NULL;
406 int signal = 0;
407 void (*handler)(int, siginfo_t *, void *) = NULL;
408 siginfo_t siginfo;
409 kern_return_t ret;
411 /* Get state and info */
412 state_count = x86_THREAD_STATE32_COUNT;
413 if ((ret = thread_get_state(thread,
414 x86_THREAD_STATE32,
415 (thread_state_t)&thread_state,
416 &state_count)) != KERN_SUCCESS)
417 lose("thread_get_state (x86_THREAD_STATE32) failed %d\n", ret);
418 switch (exception) {
419 case EXC_BAD_ACCESS:
420 signal = SIGBUS;
421 /* Check if write protection fault */
422 if ((code_vector[0] & OS_VM_PROT_ALL) == 0) {
423 ret = KERN_INVALID_RIGHT;
424 break;
426 addr = (void*)code_vector[1];
427 /* Undefined alien */
428 if (os_trunc_to_page(addr) == undefined_alien_address) {
429 handler = undefined_alien_handler;
430 break;
432 /* At stack guard */
433 if (os_trunc_to_page(addr) == CONTROL_STACK_GUARD_PAGE(th)) {
434 protect_control_stack_guard_page_thread(0, th);
435 protect_control_stack_return_guard_page_thread(1, th);
436 handler = control_stack_exhausted_handler;
437 break;
439 /* Return from stack guard */
440 if (os_trunc_to_page(addr) == CONTROL_STACK_RETURN_GUARD_PAGE(th)) {
441 protect_control_stack_guard_page_thread(1, th);
442 protect_control_stack_return_guard_page_thread(0, th);
443 break;
445 /* Regular memory fault */
446 handler = memory_fault_handler;
447 break;
448 case EXC_BAD_INSTRUCTION:
449 signal = SIGTRAP;
450 /* Check if illegal instruction trap */
451 if (code_vector[0] != EXC_I386_INVOP) {
452 ret = KERN_INVALID_RIGHT;
453 break;
455 /* Check if UD2 instruction */
456 if (*(unsigned short *)thread_state.EIP != 0x0b0f) {
457 /* KLUDGE: There are two ways we could get here:
458 * 1) We're executing data and we've hit some truly
459 * illegal opcode, of which there are a few, see
460 * Intel 64 and IA-32 Architectures
461 * Sofware Developer's Manual
462 * Volume 3A page 5-34)
463 * 2) The kernel started an unrelated signal handler
464 * before we got a chance to run. The context that
465 * caused the exception is saved in a stack frame
466 * somewhere down below.
467 * In either case we rely on the exception to retrigger,
468 * eventually bailing out if we're spinning on case 2).
470 static mach_port_t last_thread;
471 static unsigned int last_eip;
472 if (last_thread == thread && last_eip == thread_state.EIP)
473 ret = KERN_INVALID_RIGHT;
474 else
475 ret = KERN_SUCCESS;
476 last_thread = thread;
477 last_eip = thread_state.EIP;
478 break;
480 /* Skip the trap code */
481 thread_state.EIP += 2;
482 /* Return from handler? */
483 if (*(unsigned short *)thread_state.EIP == 0xffff) {
484 if ((ret = thread_set_state(thread,
485 x86_THREAD_STATE32,
486 (thread_state_t)thread_state.EAX,
487 x86_THREAD_STATE32_COUNT)) != KERN_SUCCESS)
488 lose("thread_set_state (x86_THREAD_STATE32) failed %d\n", ret);
489 if ((ret = thread_set_state(thread,
490 x86_FLOAT_STATE32,
491 (thread_state_t)thread_state.EBX,
492 x86_FLOAT_STATE32_COUNT)) != KERN_SUCCESS)
493 lose("thread_set_state (x86_FLOAT_STATE32) failed %d\n", ret);
494 break;
496 /* Trap call */
497 handler = sigtrap_handler;
498 break;
499 default:
500 ret = KERN_INVALID_RIGHT;
502 /* Call handler */
503 if (handler != 0) {
504 siginfo.si_signo = signal;
505 siginfo.si_addr = addr;
506 call_handler_on_thread(thread, &thread_state, signal, &siginfo, handler);
508 return ret;
511 void *
512 mach_exception_handler(void *port)
514 mach_msg_server(exc_server, 2048, (mach_port_t) port, 0);
515 /* mach_msg_server should never return, but it should dispatch mach
516 * exceptions to our catch_exception_raise function
518 abort();
521 #endif
523 #ifdef LISP_FEATURE_MACH_EXCEPTION_HANDLER
525 /* Sets up the thread that will listen for mach exceptions. note that
526 the exception handlers will be run on this thread. This is
527 different from the BSD-style signal handling situation in which the
528 signal handlers run in the relevant thread directly. */
530 mach_port_t mach_exception_handler_port_set = MACH_PORT_NULL;
532 pthread_t
533 setup_mach_exception_handling_thread()
535 kern_return_t ret;
536 pthread_t mach_exception_handling_thread = NULL;
537 pthread_attr_t attr;
539 /* allocate a mach_port for this process */
540 ret = mach_port_allocate(mach_task_self(),
541 MACH_PORT_RIGHT_PORT_SET,
542 &mach_exception_handler_port_set);
544 /* create the thread that will receive the mach exceptions */
546 FSHOW((stderr, "Creating mach_exception_handler thread!\n"));
548 pthread_attr_init(&attr);
549 pthread_create(&mach_exception_handling_thread,
550 &attr,
551 mach_exception_handler,
552 (void*) mach_exception_handler_port_set);
553 pthread_attr_destroy(&attr);
555 return mach_exception_handling_thread;
558 /* tell the kernel that we want EXC_BAD_ACCESS exceptions sent to the
559 exception port (which is being listened to do by the mach
560 exception handling thread). */
561 kern_return_t
562 mach_thread_init(mach_port_t thread_exception_port)
564 kern_return_t ret;
565 /* allocate a named port for the thread */
567 FSHOW((stderr, "Allocating mach port %x\n", thread_exception_port));
569 ret = mach_port_allocate_name(mach_task_self(),
570 MACH_PORT_RIGHT_RECEIVE,
571 thread_exception_port);
572 if (ret) {
573 lose("mach_port_allocate_name failed with return_code %d\n", ret);
576 /* establish the right for the thread_exception_port to send messages */
577 ret = mach_port_insert_right(mach_task_self(),
578 thread_exception_port,
579 thread_exception_port,
580 MACH_MSG_TYPE_MAKE_SEND);
581 if (ret) {
582 lose("mach_port_insert_right failed with return_code %d\n", ret);
585 ret = thread_set_exception_ports(mach_thread_self(),
586 EXC_MASK_BAD_ACCESS | EXC_MASK_BAD_INSTRUCTION,
587 thread_exception_port,
588 EXCEPTION_DEFAULT,
589 THREAD_STATE_NONE);
590 if (ret) {
591 lose("thread_set_exception_port failed with return_code %d\n", ret);
594 ret = mach_port_move_member(mach_task_self(),
595 thread_exception_port,
596 mach_exception_handler_port_set);
597 if (ret) {
598 lose("mach_port_ failed with return_code %d\n", ret);
601 return ret;
604 void
605 setup_mach_exceptions() {
606 setup_mach_exception_handling_thread();
607 mach_thread_init(THREAD_STRUCT_TO_EXCEPTION_PORT(all_threads));
610 pid_t
611 mach_fork() {
612 pid_t pid = fork();
613 if (pid == 0) {
614 setup_mach_exceptions();
615 return pid;
616 } else {
617 return pid;
621 #endif