1.0.22.13: fixed bug 426: nested inline expansion failure
[sbcl/tcr.git] / src / code / late-type.lisp
blobe41201c921dfa0f0051ef9d67ad4d941281fed76
1 ;;;; This file contains the definition of non-CLASS types (e.g.
2 ;;;; subtypes of interesting BUILT-IN-CLASSes) and the interfaces to
3 ;;;; the type system. Common Lisp type specifiers are parsed into a
4 ;;;; somewhat canonical internal type representation that supports
5 ;;;; type union, intersection, etc. (Except that ALIEN types have
6 ;;;; moved out..)
8 ;;;; This software is part of the SBCL system. See the README file for
9 ;;;; more information.
10 ;;;;
11 ;;;; This software is derived from the CMU CL system, which was
12 ;;;; written at Carnegie Mellon University and released into the
13 ;;;; public domain. The software is in the public domain and is
14 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
15 ;;;; files for more information.
17 (in-package "SB!KERNEL")
19 (/show0 "late-type.lisp 19")
21 (!begin-collecting-cold-init-forms)
23 ;;; ### Remaining incorrectnesses:
24 ;;;
25 ;;; There are all sorts of nasty problems with open bounds on FLOAT
26 ;;; types (and probably FLOAT types in general.)
28 ;;; This condition is signalled whenever we make a UNKNOWN-TYPE so that
29 ;;; compiler warnings can be emitted as appropriate.
30 (define-condition parse-unknown-type (condition)
31 ((specifier :reader parse-unknown-type-specifier :initarg :specifier)))
33 ;;; These functions are used as method for types which need a complex
34 ;;; subtypep method to handle some superclasses, but cover a subtree
35 ;;; of the type graph (i.e. there is no simple way for any other type
36 ;;; class to be a subtype.) There are always still complex ways,
37 ;;; namely UNION and MEMBER types, so we must give TYPE1's method a
38 ;;; chance to run, instead of immediately returning NIL, T.
39 (defun delegate-complex-subtypep-arg2 (type1 type2)
40 (let ((subtypep-arg1
41 (type-class-complex-subtypep-arg1
42 (type-class-info type1))))
43 (if subtypep-arg1
44 (funcall subtypep-arg1 type1 type2)
45 (values nil t))))
46 (defun delegate-complex-intersection2 (type1 type2)
47 (let ((method (type-class-complex-intersection2 (type-class-info type1))))
48 (if (and method (not (eq method #'delegate-complex-intersection2)))
49 (funcall method type2 type1)
50 (hierarchical-intersection2 type1 type2))))
52 ;;; This is used by !DEFINE-SUPERCLASSES to define the SUBTYPE-ARG1
53 ;;; method. INFO is a list of conses
54 ;;; (SUPERCLASS-CLASS . {GUARD-TYPE-SPECIFIER | NIL}).
55 (defun !has-superclasses-complex-subtypep-arg1 (type1 type2 info)
56 ;; If TYPE2 might be concealing something related to our class
57 ;; hierarchy
58 (if (type-might-contain-other-types-p type2)
59 ;; too confusing, gotta punt
60 (values nil nil)
61 ;; ordinary case expected by old CMU CL code, where the taxonomy
62 ;; of TYPE2's representation accurately reflects the taxonomy of
63 ;; the underlying set
64 (values
65 ;; FIXME: This old CMU CL code probably deserves a comment
66 ;; explaining to us mere mortals how it works...
67 (and (sb!xc:typep type2 'classoid)
68 (dolist (x info nil)
69 (when (or (not (cdr x))
70 (csubtypep type1 (specifier-type (cdr x))))
71 (return
72 (or (eq type2 (car x))
73 (let ((inherits (layout-inherits
74 (classoid-layout (car x)))))
75 (dotimes (i (length inherits) nil)
76 (when (eq type2 (layout-classoid (svref inherits i)))
77 (return t)))))))))
78 t)))
80 ;;; This function takes a list of specs, each of the form
81 ;;; (SUPERCLASS-NAME &OPTIONAL GUARD).
82 ;;; Consider one spec (with no guard): any instance of the named
83 ;;; TYPE-CLASS is also a subtype of the named superclass and of any of
84 ;;; its superclasses. If there are multiple specs, then some will have
85 ;;; guards. We choose the first spec whose guard is a supertype of
86 ;;; TYPE1 and use its superclass. In effect, a sequence of guards
87 ;;; G0, G1, G2
88 ;;; is actually
89 ;;; G0,(and G1 (not G0)), (and G2 (not (or G0 G1))).
90 ;;;
91 ;;; WHEN controls when the forms are executed.
92 (defmacro !define-superclasses (type-class-name specs when)
93 (with-unique-names (type-class info)
94 `(,when
95 (let ((,type-class (type-class-or-lose ',type-class-name))
96 (,info (mapcar (lambda (spec)
97 (destructuring-bind
98 (super &optional guard)
99 spec
100 (cons (find-classoid super) guard)))
101 ',specs)))
102 (setf (type-class-complex-subtypep-arg1 ,type-class)
103 (lambda (type1 type2)
104 (!has-superclasses-complex-subtypep-arg1 type1 type2 ,info)))
105 (setf (type-class-complex-subtypep-arg2 ,type-class)
106 #'delegate-complex-subtypep-arg2)
107 (setf (type-class-complex-intersection2 ,type-class)
108 #'delegate-complex-intersection2)))))
110 ;;;; FUNCTION and VALUES types
111 ;;;;
112 ;;;; Pretty much all of the general type operations are illegal on
113 ;;;; VALUES types, since we can't discriminate using them, do
114 ;;;; SUBTYPEP, etc. FUNCTION types are acceptable to the normal type
115 ;;;; operations, but are generally considered to be equivalent to
116 ;;;; FUNCTION. These really aren't true types in any type theoretic
117 ;;;; sense, but we still parse them into CTYPE structures for two
118 ;;;; reasons:
120 ;;;; -- Parsing and unparsing work the same way, and indeed we can't
121 ;;;; tell whether a type is a function or values type without
122 ;;;; parsing it.
123 ;;;; -- Many of the places that can be annotated with real types can
124 ;;;; also be annotated with function or values types.
126 ;;; the description of a &KEY argument
127 (defstruct (key-info #-sb-xc-host (:pure t)
128 (:copier nil))
129 ;; the key (not necessarily a keyword in ANSI Common Lisp)
130 (name (missing-arg) :type symbol)
131 ;; the type of the argument value
132 (type (missing-arg) :type ctype))
134 (!define-type-method (values :simple-subtypep :complex-subtypep-arg1)
135 (type1 type2)
136 (declare (ignore type2))
137 ;; FIXME: should be TYPE-ERROR, here and in next method
138 (error "SUBTYPEP is illegal on this type:~% ~S" (type-specifier type1)))
140 (!define-type-method (values :complex-subtypep-arg2)
141 (type1 type2)
142 (declare (ignore type1))
143 (error "SUBTYPEP is illegal on this type:~% ~S" (type-specifier type2)))
145 (!define-type-method (values :negate) (type)
146 (error "NOT VALUES too confusing on ~S" (type-specifier type)))
148 (!define-type-method (values :unparse) (type)
149 (cons 'values
150 (let ((unparsed (unparse-args-types type)))
151 (if (or (values-type-optional type)
152 (values-type-rest type)
153 (values-type-allowp type))
154 unparsed
155 (nconc unparsed '(&optional))))))
157 ;;; Return true if LIST1 and LIST2 have the same elements in the same
158 ;;; positions according to TYPE=. We return NIL, NIL if there is an
159 ;;; uncertain comparison.
160 (defun type=-list (list1 list2)
161 (declare (list list1 list2))
162 (do ((types1 list1 (cdr types1))
163 (types2 list2 (cdr types2)))
164 ((or (null types1) (null types2))
165 (if (or types1 types2)
166 (values nil t)
167 (values t t)))
168 (multiple-value-bind (val win)
169 (type= (first types1) (first types2))
170 (unless win
171 (return (values nil nil)))
172 (unless val
173 (return (values nil t))))))
175 (!define-type-method (values :simple-=) (type1 type2)
176 (type=-args type1 type2))
178 (!define-type-class function)
180 ;;; a flag that we can bind to cause complex function types to be
181 ;;; unparsed as FUNCTION. This is useful when we want a type that we
182 ;;; can pass to TYPEP.
183 (defvar *unparse-fun-type-simplify*)
184 (!cold-init-forms (setq *unparse-fun-type-simplify* nil))
186 (!define-type-method (function :negate) (type)
187 (make-negation-type :type type))
189 (!define-type-method (function :unparse) (type)
190 (if *unparse-fun-type-simplify*
191 'function
192 (list 'function
193 (if (fun-type-wild-args type)
195 (unparse-args-types type))
196 (type-specifier
197 (fun-type-returns type)))))
199 ;;; The meaning of this is a little confused. On the one hand, all
200 ;;; function objects are represented the same way regardless of the
201 ;;; arglists and return values, and apps don't get to ask things like
202 ;;; (TYPEP #'FOO (FUNCTION (FIXNUM) *)) in any meaningful way. On the
203 ;;; other hand, Python wants to reason about function types. So...
204 (!define-type-method (function :simple-subtypep) (type1 type2)
205 (flet ((fun-type-simple-p (type)
206 (not (or (fun-type-rest type)
207 (fun-type-keyp type))))
208 (every-csubtypep (types1 types2)
209 (loop
210 for a1 in types1
211 for a2 in types2
212 do (multiple-value-bind (res sure-p)
213 (csubtypep a1 a2)
214 (unless res (return (values res sure-p))))
215 finally (return (values t t)))))
216 (and/type (values-subtypep (fun-type-returns type1)
217 (fun-type-returns type2))
218 (cond ((fun-type-wild-args type2) (values t t))
219 ((fun-type-wild-args type1)
220 (cond ((fun-type-keyp type2) (values nil nil))
221 ((not (fun-type-rest type2)) (values nil t))
222 ((not (null (fun-type-required type2)))
223 (values nil t))
224 (t (and/type (type= *universal-type*
225 (fun-type-rest type2))
226 (every/type #'type=
227 *universal-type*
228 (fun-type-optional
229 type2))))))
230 ((not (and (fun-type-simple-p type1)
231 (fun-type-simple-p type2)))
232 (values nil nil))
233 (t (multiple-value-bind (min1 max1) (fun-type-nargs type1)
234 (multiple-value-bind (min2 max2) (fun-type-nargs type2)
235 (cond ((or (> max1 max2) (< min1 min2))
236 (values nil t))
237 ((and (= min1 min2) (= max1 max2))
238 (and/type (every-csubtypep
239 (fun-type-required type1)
240 (fun-type-required type2))
241 (every-csubtypep
242 (fun-type-optional type1)
243 (fun-type-optional type2))))
244 (t (every-csubtypep
245 (concatenate 'list
246 (fun-type-required type1)
247 (fun-type-optional type1))
248 (concatenate 'list
249 (fun-type-required type2)
250 (fun-type-optional type2))))))))))))
252 (!define-superclasses function ((function)) !cold-init-forms)
254 ;;; The union or intersection of two FUNCTION types is FUNCTION.
255 (!define-type-method (function :simple-union2) (type1 type2)
256 (declare (ignore type1 type2))
257 (specifier-type 'function))
258 (!define-type-method (function :simple-intersection2) (type1 type2)
259 (let ((ftype (specifier-type 'function)))
260 (cond ((eq type1 ftype) type2)
261 ((eq type2 ftype) type1)
262 (t (let ((rtype (values-type-intersection (fun-type-returns type1)
263 (fun-type-returns type2))))
264 (flet ((change-returns (ftype rtype)
265 (declare (type fun-type ftype) (type ctype rtype))
266 (make-fun-type :required (fun-type-required ftype)
267 :optional (fun-type-optional ftype)
268 :keyp (fun-type-keyp ftype)
269 :keywords (fun-type-keywords ftype)
270 :allowp (fun-type-allowp ftype)
271 :returns rtype)))
272 (cond
273 ((fun-type-wild-args type1)
274 (if (fun-type-wild-args type2)
275 (make-fun-type :wild-args t
276 :returns rtype)
277 (change-returns type2 rtype)))
278 ((fun-type-wild-args type2)
279 (change-returns type1 rtype))
280 (t (multiple-value-bind (req opt rest)
281 (args-type-op type1 type2 #'type-intersection #'max)
282 (make-fun-type :required req
283 :optional opt
284 :rest rest
285 ;; FIXME: :keys
286 :allowp (and (fun-type-allowp type1)
287 (fun-type-allowp type2))
288 :returns rtype))))))))))
290 ;;; The union or intersection of a subclass of FUNCTION with a
291 ;;; FUNCTION type is somewhat complicated.
292 (!define-type-method (function :complex-intersection2) (type1 type2)
293 (cond
294 ((type= type1 (specifier-type 'function)) type2)
295 ((csubtypep type1 (specifier-type 'function)) nil)
296 (t :call-other-method)))
297 (!define-type-method (function :complex-union2) (type1 type2)
298 (declare (ignore type2))
299 ;; TYPE2 is a FUNCTION type. If TYPE1 is a classoid type naming
300 ;; FUNCTION, then it is the union of the two; otherwise, there is no
301 ;; special union.
302 (cond
303 ((type= type1 (specifier-type 'function)) type1)
304 (t nil)))
306 (!define-type-method (function :simple-=) (type1 type2)
307 (macrolet ((compare (comparator field)
308 (let ((reader (symbolicate '#:fun-type- field)))
309 `(,comparator (,reader type1) (,reader type2)))))
310 (and/type (compare type= returns)
311 (cond ((neq (fun-type-wild-args type1) (fun-type-wild-args type2))
312 (values nil t))
313 ((eq (fun-type-wild-args type1) t)
314 (values t t))
315 (t (type=-args type1 type2))))))
317 (!define-type-class constant :inherits values)
319 (!define-type-method (constant :negate) (type)
320 (error "NOT CONSTANT too confusing on ~S" (type-specifier type)))
322 (!define-type-method (constant :unparse) (type)
323 `(constant-arg ,(type-specifier (constant-type-type type))))
325 (!define-type-method (constant :simple-=) (type1 type2)
326 (type= (constant-type-type type1) (constant-type-type type2)))
328 (!def-type-translator constant-arg (type)
329 (make-constant-type :type (single-value-specifier-type type)))
331 ;;; Return the lambda-list-like type specification corresponding
332 ;;; to an ARGS-TYPE.
333 (declaim (ftype (function (args-type) list) unparse-args-types))
334 (defun unparse-args-types (type)
335 (collect ((result))
337 (dolist (arg (args-type-required type))
338 (result (type-specifier arg)))
340 (when (args-type-optional type)
341 (result '&optional)
342 (dolist (arg (args-type-optional type))
343 (result (type-specifier arg))))
345 (when (args-type-rest type)
346 (result '&rest)
347 (result (type-specifier (args-type-rest type))))
349 (when (args-type-keyp type)
350 (result '&key)
351 (dolist (key (args-type-keywords type))
352 (result (list (key-info-name key)
353 (type-specifier (key-info-type key))))))
355 (when (args-type-allowp type)
356 (result '&allow-other-keys))
358 (result)))
360 (!def-type-translator function (&optional (args '*) (result '*))
361 (make-fun-type :args args
362 :returns (coerce-to-values (values-specifier-type result))))
364 (!def-type-translator values (&rest values)
365 (make-values-type :args values))
367 ;;;; VALUES types interfaces
368 ;;;;
369 ;;;; We provide a few special operations that can be meaningfully used
370 ;;;; on VALUES types (as well as on any other type).
372 (defun type-single-value-p (type)
373 (and (values-type-p type)
374 (not (values-type-rest type))
375 (null (values-type-optional type))
376 (singleton-p (values-type-required type))))
378 ;;; Return the type of the first value indicated by TYPE. This is used
379 ;;; by people who don't want to have to deal with VALUES types.
380 #!-sb-fluid (declaim (freeze-type values-type))
381 ; (inline single-value-type))
382 (defun single-value-type (type)
383 (declare (type ctype type))
384 (cond ((eq type *wild-type*)
385 *universal-type*)
386 ((eq type *empty-type*)
387 *empty-type*)
388 ((not (values-type-p type))
389 type)
390 (t (or (car (args-type-required type))
391 (car (args-type-optional type))
392 (args-type-rest type)
393 (specifier-type 'null)))))
395 ;;; Return the minimum number of arguments that a function can be
396 ;;; called with, and the maximum number or NIL. If not a function
397 ;;; type, return NIL, NIL.
398 (defun fun-type-nargs (type)
399 (declare (type ctype type))
400 (if (and (fun-type-p type) (not (fun-type-wild-args type)))
401 (let ((fixed (length (args-type-required type))))
402 (if (or (args-type-rest type)
403 (args-type-keyp type)
404 (args-type-allowp type))
405 (values fixed nil)
406 (values fixed (+ fixed (length (args-type-optional type))))))
407 (values nil nil)))
409 ;;; Determine whether TYPE corresponds to a definite number of values.
410 ;;; The first value is a list of the types for each value, and the
411 ;;; second value is the number of values. If the number of values is
412 ;;; not fixed, then return NIL and :UNKNOWN.
413 (defun values-types (type)
414 (declare (type ctype type))
415 (cond ((or (eq type *wild-type*) (eq type *empty-type*))
416 (values nil :unknown))
417 ((or (args-type-optional type)
418 (args-type-rest type))
419 (values nil :unknown))
421 (let ((req (args-type-required type)))
422 (values req (length req))))))
424 ;;; Return two values:
425 ;;; 1. A list of all the positional (fixed and optional) types.
426 ;;; 2. The &REST type (if any). If no &REST, then the DEFAULT-TYPE.
427 (defun values-type-types (type &optional (default-type *empty-type*))
428 (declare (type ctype type))
429 (if (eq type *wild-type*)
430 (values nil *universal-type*)
431 (values (append (args-type-required type)
432 (args-type-optional type))
433 (cond ((args-type-rest type))
434 (t default-type)))))
436 ;;; types of values in (the <type> (values o_1 ... o_n))
437 (defun values-type-out (type count)
438 (declare (type ctype type) (type unsigned-byte count))
439 (if (eq type *wild-type*)
440 (make-list count :initial-element *universal-type*)
441 (collect ((res))
442 (flet ((process-types (types)
443 (loop for type in types
444 while (plusp count)
445 do (decf count)
446 do (res type))))
447 (process-types (values-type-required type))
448 (process-types (values-type-optional type))
449 (when (plusp count)
450 (loop with rest = (the ctype (values-type-rest type))
451 repeat count
452 do (res rest))))
453 (res))))
455 ;;; types of variable in (m-v-bind (v_1 ... v_n) (the <type> ...
456 (defun values-type-in (type count)
457 (declare (type ctype type) (type unsigned-byte count))
458 (if (eq type *wild-type*)
459 (make-list count :initial-element *universal-type*)
460 (collect ((res))
461 (let ((null-type (specifier-type 'null)))
462 (loop for type in (values-type-required type)
463 while (plusp count)
464 do (decf count)
465 do (res type))
466 (loop for type in (values-type-optional type)
467 while (plusp count)
468 do (decf count)
469 do (res (type-union type null-type)))
470 (when (plusp count)
471 (loop with rest = (acond ((values-type-rest type)
472 (type-union it null-type))
473 (t null-type))
474 repeat count
475 do (res rest))))
476 (res))))
478 ;;; Return a list of OPERATION applied to the types in TYPES1 and
479 ;;; TYPES2, padding with REST2 as needed. TYPES1 must not be shorter
480 ;;; than TYPES2. The second value is T if OPERATION always returned a
481 ;;; true second value.
482 (defun fixed-values-op (types1 types2 rest2 operation)
483 (declare (list types1 types2) (type ctype rest2) (type function operation))
484 (let ((exact t))
485 (values (mapcar (lambda (t1 t2)
486 (multiple-value-bind (res win)
487 (funcall operation t1 t2)
488 (unless win
489 (setq exact nil))
490 res))
491 types1
492 (append types2
493 (make-list (- (length types1) (length types2))
494 :initial-element rest2)))
495 exact)))
497 ;;; If TYPE isn't a values type, then make it into one.
498 (defun-cached (%coerce-to-values
499 :hash-bits 8
500 :hash-function (lambda (type)
501 (logand (type-hash-value type)
502 #xff)))
503 ((type eq))
504 (cond ((multiple-value-bind (res sure)
505 (csubtypep (specifier-type 'null) type)
506 (and (not res) sure))
507 ;; FIXME: What should we do with (NOT SURE)?
508 (make-values-type :required (list type) :rest *universal-type*))
510 (make-values-type :optional (list type) :rest *universal-type*))))
512 (defun coerce-to-values (type)
513 (declare (type ctype type))
514 (cond ((or (eq type *universal-type*)
515 (eq type *wild-type*))
516 *wild-type*)
517 ((values-type-p type)
518 type)
519 (t (%coerce-to-values type))))
521 ;;; Return type, corresponding to ANSI short form of VALUES type
522 ;;; specifier.
523 (defun make-short-values-type (types)
524 (declare (list types))
525 (let ((last-required (position-if
526 (lambda (type)
527 (not/type (csubtypep (specifier-type 'null) type)))
528 types
529 :from-end t)))
530 (if last-required
531 (make-values-type :required (subseq types 0 (1+ last-required))
532 :optional (subseq types (1+ last-required))
533 :rest *universal-type*)
534 (make-values-type :optional types :rest *universal-type*))))
536 (defun make-single-value-type (type)
537 (make-values-type :required (list type)))
539 ;;; Do the specified OPERATION on TYPE1 and TYPE2, which may be any
540 ;;; type, including VALUES types. With VALUES types such as:
541 ;;; (VALUES a0 a1)
542 ;;; (VALUES b0 b1)
543 ;;; we compute the more useful result
544 ;;; (VALUES (<operation> a0 b0) (<operation> a1 b1))
545 ;;; rather than the precise result
546 ;;; (<operation> (values a0 a1) (values b0 b1))
547 ;;; This has the virtue of always keeping the VALUES type specifier
548 ;;; outermost, and retains all of the information that is really
549 ;;; useful for static type analysis. We want to know what is always
550 ;;; true of each value independently. It is worthless to know that if
551 ;;; the first value is B0 then the second will be B1.
553 ;;; If the VALUES count signatures differ, then we produce a result with
554 ;;; the required VALUE count chosen by NREQ when applied to the number
555 ;;; of required values in TYPE1 and TYPE2. Any &KEY values become
556 ;;; &REST T (anyone who uses keyword values deserves to lose.)
558 ;;; The second value is true if the result is definitely empty or if
559 ;;; OPERATION returned true as its second value each time we called
560 ;;; it. Since we approximate the intersection of VALUES types, the
561 ;;; second value being true doesn't mean the result is exact.
562 (defun args-type-op (type1 type2 operation nreq)
563 (declare (type ctype type1 type2)
564 (type function operation nreq))
565 (when (eq type1 type2)
566 (values type1 t))
567 (multiple-value-bind (types1 rest1)
568 (values-type-types type1)
569 (multiple-value-bind (types2 rest2)
570 (values-type-types type2)
571 (multiple-value-bind (rest rest-exact)
572 (funcall operation rest1 rest2)
573 (multiple-value-bind (res res-exact)
574 (if (< (length types1) (length types2))
575 (fixed-values-op types2 types1 rest1 operation)
576 (fixed-values-op types1 types2 rest2 operation))
577 (let* ((req (funcall nreq
578 (length (args-type-required type1))
579 (length (args-type-required type2))))
580 (required (subseq res 0 req))
581 (opt (subseq res req)))
582 (values required opt rest
583 (and rest-exact res-exact))))))))
585 (defun values-type-op (type1 type2 operation nreq)
586 (multiple-value-bind (required optional rest exactp)
587 (args-type-op type1 type2 operation nreq)
588 (values (make-values-type :required required
589 :optional optional
590 :rest rest)
591 exactp)))
593 (defun type=-args (type1 type2)
594 (macrolet ((compare (comparator field)
595 (let ((reader (symbolicate '#:args-type- field)))
596 `(,comparator (,reader type1) (,reader type2)))))
597 (and/type
598 (cond ((null (args-type-rest type1))
599 (values (null (args-type-rest type2)) t))
600 ((null (args-type-rest type2))
601 (values nil t))
603 (compare type= rest)))
604 (and/type (and/type (compare type=-list required)
605 (compare type=-list optional))
606 (if (or (args-type-keyp type1) (args-type-keyp type2))
607 (values nil nil)
608 (values t t))))))
610 ;;; Do a union or intersection operation on types that might be values
611 ;;; types. The result is optimized for utility rather than exactness,
612 ;;; but it is guaranteed that it will be no smaller (more restrictive)
613 ;;; than the precise result.
615 ;;; The return convention seems to be analogous to
616 ;;; TYPES-EQUAL-OR-INTERSECT. -- WHN 19990910.
617 (defun-cached (values-type-union :hash-function type-cache-hash
618 :hash-bits 8
619 :default nil
620 :init-wrapper !cold-init-forms)
621 ((type1 eq) (type2 eq))
622 (declare (type ctype type1 type2))
623 (cond ((or (eq type1 *wild-type*) (eq type2 *wild-type*)) *wild-type*)
624 ((eq type1 *empty-type*) type2)
625 ((eq type2 *empty-type*) type1)
627 (values (values-type-op type1 type2 #'type-union #'min)))))
629 (defun-cached (values-type-intersection :hash-function type-cache-hash
630 :hash-bits 8
631 :default (values nil)
632 :init-wrapper !cold-init-forms)
633 ((type1 eq) (type2 eq))
634 (declare (type ctype type1 type2))
635 (cond ((eq type1 *wild-type*)
636 (coerce-to-values type2))
637 ((or (eq type2 *wild-type*) (eq type2 *universal-type*))
638 type1)
639 ((or (eq type1 *empty-type*) (eq type2 *empty-type*))
640 *empty-type*)
641 ((and (not (values-type-p type2))
642 (values-type-required type1))
643 (let ((req1 (values-type-required type1)))
644 (make-values-type :required (cons (type-intersection (first req1) type2)
645 (rest req1))
646 :optional (values-type-optional type1)
647 :rest (values-type-rest type1)
648 :allowp (values-type-allowp type1))))
650 (values (values-type-op type1 (coerce-to-values type2)
651 #'type-intersection
652 #'max)))))
654 ;;; This is like TYPES-EQUAL-OR-INTERSECT, except that it sort of
655 ;;; works on VALUES types. Note that due to the semantics of
656 ;;; VALUES-TYPE-INTERSECTION, this might return (VALUES T T) when
657 ;;; there isn't really any intersection.
658 (defun values-types-equal-or-intersect (type1 type2)
659 (cond ((or (eq type1 *empty-type*) (eq type2 *empty-type*))
660 (values t t))
661 ((or (eq type1 *wild-type*) (eq type2 *wild-type*))
662 (values t t))
664 (let ((res (values-type-intersection type1 type2)))
665 (values (not (eq res *empty-type*))
666 t)))))
668 ;;; a SUBTYPEP-like operation that can be used on any types, including
669 ;;; VALUES types
670 (defun-cached (values-subtypep :hash-function type-cache-hash
671 :hash-bits 8
672 :values 2
673 :default (values nil :empty)
674 :init-wrapper !cold-init-forms)
675 ((type1 eq) (type2 eq))
676 (declare (type ctype type1 type2))
677 (cond ((or (eq type2 *wild-type*) (eq type2 *universal-type*)
678 (eq type1 *empty-type*))
679 (values t t))
680 ((eq type1 *wild-type*)
681 (values (eq type2 *wild-type*) t))
682 ((or (eq type2 *empty-type*)
683 (not (values-types-equal-or-intersect type1 type2)))
684 (values nil t))
685 ((and (not (values-type-p type2))
686 (values-type-required type1))
687 (csubtypep (first (values-type-required type1))
688 type2))
689 (t (setq type2 (coerce-to-values type2))
690 (multiple-value-bind (types1 rest1) (values-type-types type1)
691 (multiple-value-bind (types2 rest2) (values-type-types type2)
692 (cond ((< (length (values-type-required type1))
693 (length (values-type-required type2)))
694 (values nil t))
695 ((< (length types1) (length types2))
696 (values nil nil))
698 (do ((t1 types1 (rest t1))
699 (t2 types2 (rest t2)))
700 ((null t2)
701 (csubtypep rest1 rest2))
702 (multiple-value-bind (res win-p)
703 (csubtypep (first t1) (first t2))
704 (unless win-p
705 (return (values nil nil)))
706 (unless res
707 (return (values nil t))))))))))))
709 ;;;; type method interfaces
711 ;;; like SUBTYPEP, only works on CTYPE structures
712 (defun-cached (csubtypep :hash-function type-cache-hash
713 :hash-bits 8
714 :values 2
715 :default (values nil :empty)
716 :init-wrapper !cold-init-forms)
717 ((type1 eq) (type2 eq))
718 (declare (type ctype type1 type2))
719 (cond ((or (eq type1 type2)
720 (eq type1 *empty-type*)
721 (eq type2 *universal-type*))
722 (values t t))
723 #+nil
724 ((eq type1 *universal-type*)
725 (values nil t))
727 (!invoke-type-method :simple-subtypep :complex-subtypep-arg2
728 type1 type2
729 :complex-arg1 :complex-subtypep-arg1))))
731 ;;; Just parse the type specifiers and call CSUBTYPE.
732 (defun sb!xc:subtypep (type1 type2 &optional environment)
733 #!+sb-doc
734 "Return two values indicating the relationship between type1 and type2.
735 If values are T and T, type1 definitely is a subtype of type2.
736 If values are NIL and T, type1 definitely is not a subtype of type2.
737 If values are NIL and NIL, it couldn't be determined."
738 (declare (ignore environment))
739 (csubtypep (specifier-type type1) (specifier-type type2)))
741 ;;; If two types are definitely equivalent, return true. The second
742 ;;; value indicates whether the first value is definitely correct.
743 ;;; This should only fail in the presence of HAIRY types.
744 (defun-cached (type= :hash-function type-cache-hash
745 :hash-bits 8
746 :values 2
747 :default (values nil :empty)
748 :init-wrapper !cold-init-forms)
749 ((type1 eq) (type2 eq))
750 (declare (type ctype type1 type2))
751 (if (eq type1 type2)
752 (values t t)
753 (!invoke-type-method :simple-= :complex-= type1 type2)))
755 ;;; Not exactly the negation of TYPE=, since when the relationship is
756 ;;; uncertain, we still return NIL, NIL. This is useful in cases where
757 ;;; the conservative assumption is =.
758 (defun type/= (type1 type2)
759 (declare (type ctype type1 type2))
760 (multiple-value-bind (res win) (type= type1 type2)
761 (if win
762 (values (not res) t)
763 (values nil nil))))
765 ;;; the type method dispatch case of TYPE-UNION2
766 (defun %type-union2 (type1 type2)
767 ;; As in %TYPE-INTERSECTION2, it seems to be a good idea to give
768 ;; both argument orders a chance at COMPLEX-INTERSECTION2. Unlike
769 ;; %TYPE-INTERSECTION2, though, I don't have a specific case which
770 ;; demonstrates this is actually necessary. Also unlike
771 ;; %TYPE-INTERSECTION2, there seems to be no need to distinguish
772 ;; between not finding a method and having a method return NIL.
773 (flet ((1way (x y)
774 (!invoke-type-method :simple-union2 :complex-union2
776 :default nil)))
777 (declare (inline 1way))
778 (or (1way type1 type2)
779 (1way type2 type1))))
781 ;;; Find a type which includes both types. Any inexactness is
782 ;;; represented by the fuzzy element types; we return a single value
783 ;;; that is precise to the best of our knowledge. This result is
784 ;;; simplified into the canonical form, thus is not a UNION-TYPE
785 ;;; unless we find no other way to represent the result.
786 (defun-cached (type-union2 :hash-function type-cache-hash
787 :hash-bits 8
788 :init-wrapper !cold-init-forms)
789 ((type1 eq) (type2 eq))
790 ;; KLUDGE: This was generated from TYPE-INTERSECTION2 by Ye Olde Cut And
791 ;; Paste technique of programming. If it stays around (as opposed to
792 ;; e.g. fading away in favor of some CLOS solution) the shared logic
793 ;; should probably become shared code. -- WHN 2001-03-16
794 (declare (type ctype type1 type2))
795 (let ((t2 nil))
796 (cond ((eq type1 type2)
797 type1)
798 ;; CSUBTYPEP for array-types answers questions about the
799 ;; specialized type, yet for union we want to take the
800 ;; expressed type in account too.
801 ((and (not (and (array-type-p type1) (array-type-p type2)))
802 (or (setf t2 (csubtypep type1 type2))
803 (csubtypep type2 type1)))
804 (if t2 type2 type1))
805 ((or (union-type-p type1)
806 (union-type-p type2))
807 ;; Unions of UNION-TYPE should have the UNION-TYPE-TYPES
808 ;; values broken out and united separately. The full TYPE-UNION
809 ;; function knows how to do this, so let it handle it.
810 (type-union type1 type2))
812 ;; the ordinary case: we dispatch to type methods
813 (%type-union2 type1 type2)))))
815 ;;; the type method dispatch case of TYPE-INTERSECTION2
816 (defun %type-intersection2 (type1 type2)
817 ;; We want to give both argument orders a chance at
818 ;; COMPLEX-INTERSECTION2. Without that, the old CMU CL type
819 ;; methods could give noncommutative results, e.g.
820 ;; (TYPE-INTERSECTION2 *EMPTY-TYPE* SOME-HAIRY-TYPE)
821 ;; => NIL, NIL
822 ;; (TYPE-INTERSECTION2 SOME-HAIRY-TYPE *EMPTY-TYPE*)
823 ;; => #<NAMED-TYPE NIL>, T
824 ;; We also need to distinguish between the case where we found a
825 ;; type method, and it returned NIL, and the case where we fell
826 ;; through without finding any type method. An example of the first
827 ;; case is the intersection of a HAIRY-TYPE with some ordinary type.
828 ;; An example of the second case is the intersection of two
829 ;; completely-unrelated types, e.g. CONS and NUMBER, or SYMBOL and
830 ;; ARRAY.
832 ;; (Why yes, CLOS probably *would* be nicer..)
833 (flet ((1way (x y)
834 (!invoke-type-method :simple-intersection2 :complex-intersection2
836 :default :call-other-method)))
837 (declare (inline 1way))
838 (let ((xy (1way type1 type2)))
839 (or (and (not (eql xy :call-other-method)) xy)
840 (let ((yx (1way type2 type1)))
841 (or (and (not (eql yx :call-other-method)) yx)
842 (cond ((and (eql xy :call-other-method)
843 (eql yx :call-other-method))
844 *empty-type*)
846 nil))))))))
848 (defun-cached (type-intersection2 :hash-function type-cache-hash
849 :hash-bits 8
850 :values 1
851 :default nil
852 :init-wrapper !cold-init-forms)
853 ((type1 eq) (type2 eq))
854 (declare (type ctype type1 type2))
855 (cond ((eq type1 type2)
856 ;; FIXME: For some reason, this doesn't catch e.g. type1 =
857 ;; type2 = (SPECIFIER-TYPE
858 ;; 'SOME-UNKNOWN-TYPE). Investigate. - CSR, 2002-04-10
859 type1)
860 ((or (intersection-type-p type1)
861 (intersection-type-p type2))
862 ;; Intersections of INTERSECTION-TYPE should have the
863 ;; INTERSECTION-TYPE-TYPES values broken out and intersected
864 ;; separately. The full TYPE-INTERSECTION function knows how
865 ;; to do that, so let it handle it.
866 (type-intersection type1 type2))
868 ;; the ordinary case: we dispatch to type methods
869 (%type-intersection2 type1 type2))))
871 ;;; Return as restrictive and simple a type as we can discover that is
872 ;;; no more restrictive than the intersection of TYPE1 and TYPE2. At
873 ;;; worst, we arbitrarily return one of the arguments as the first
874 ;;; value (trying not to return a hairy type).
875 (defun type-approx-intersection2 (type1 type2)
876 (cond ((type-intersection2 type1 type2))
877 ((hairy-type-p type1) type2)
878 (t type1)))
880 ;;; a test useful for checking whether a derived type matches a
881 ;;; declared type
883 ;;; The first value is true unless the types don't intersect and
884 ;;; aren't equal. The second value is true if the first value is
885 ;;; definitely correct. NIL is considered to intersect with any type.
886 ;;; If T is a subtype of either type, then we also return T, T. This
887 ;;; way we recognize that hairy types might intersect with T.
888 (defun types-equal-or-intersect (type1 type2)
889 (declare (type ctype type1 type2))
890 (if (or (eq type1 *empty-type*) (eq type2 *empty-type*))
891 (values t t)
892 (let ((intersection2 (type-intersection2 type1 type2)))
893 (cond ((not intersection2)
894 (if (or (csubtypep *universal-type* type1)
895 (csubtypep *universal-type* type2))
896 (values t t)
897 (values t nil)))
898 ((eq intersection2 *empty-type*) (values nil t))
899 (t (values t t))))))
901 ;;; Return a Common Lisp type specifier corresponding to the TYPE
902 ;;; object.
903 (defun type-specifier (type)
904 (declare (type ctype type))
905 (funcall (type-class-unparse (type-class-info type)) type))
907 (defun-cached (type-negation :hash-function (lambda (type)
908 (logand (type-hash-value type)
909 #xff))
910 :hash-bits 8
911 :values 1
912 :default nil
913 :init-wrapper !cold-init-forms)
914 ((type eq))
915 (declare (type ctype type))
916 (funcall (type-class-negate (type-class-info type)) type))
918 ;;; (VALUES-SPECIFIER-TYPE and SPECIFIER-TYPE moved from here to
919 ;;; early-type.lisp by WHN ca. 19990201.)
921 ;;; Take a list of type specifiers, computing the translation of each
922 ;;; specifier and defining it as a builtin type.
923 (declaim (ftype (function (list) (values)) precompute-types))
924 (defun precompute-types (specs)
925 (dolist (spec specs)
926 (let ((res (specifier-type spec)))
927 (unless (unknown-type-p res)
928 (setf (info :type :builtin spec) res)
929 ;; KLUDGE: the three copies of this idiom in this file (and
930 ;; the one in class.lisp as at sbcl-0.7.4.1x) should be
931 ;; coalesced, or perhaps the error-detecting code that
932 ;; disallows redefinition of :PRIMITIVE types should be
933 ;; rewritten to use *TYPE-SYSTEM-FINALIZED* (rather than
934 ;; *TYPE-SYSTEM-INITIALIZED*). The effect of this is not to
935 ;; cause redefinition errors when precompute-types is called
936 ;; for a second time while building the target compiler using
937 ;; the cross-compiler. -- CSR, trying to explain why this
938 ;; isn't completely wrong, 2002-06-07
939 (setf (info :type :kind spec) #+sb-xc-host :defined #-sb-xc-host :primitive))))
940 (values))
942 ;;;; general TYPE-UNION and TYPE-INTERSECTION operations
943 ;;;;
944 ;;;; These are fully general operations on CTYPEs: they'll always
945 ;;;; return a CTYPE representing the result.
947 ;;; shared logic for unions and intersections: Return a list of
948 ;;; types representing the same types as INPUT-TYPES, but with
949 ;;; COMPOUND-TYPEs satisfying %COMPOUND-TYPE-P broken up into their
950 ;;; component types, and with any SIMPLY2 simplifications applied.
951 (macrolet
952 ((def (name compound-type-p simplify2)
953 `(defun ,name (types)
954 (when types
955 (multiple-value-bind (first rest)
956 (if (,compound-type-p (car types))
957 (values (car (compound-type-types (car types)))
958 (append (cdr (compound-type-types (car types)))
959 (cdr types)))
960 (values (car types) (cdr types)))
961 (let ((rest (,name rest)) u)
962 (dolist (r rest (cons first rest))
963 (when (setq u (,simplify2 first r))
964 (return (,name (nsubstitute u r rest)))))))))))
965 (def simplify-intersections intersection-type-p type-intersection2)
966 (def simplify-unions union-type-p type-union2))
968 (defun maybe-distribute-one-union (union-type types)
969 (let* ((intersection (apply #'type-intersection types))
970 (union (mapcar (lambda (x) (type-intersection x intersection))
971 (union-type-types union-type))))
972 (if (notany (lambda (x) (or (hairy-type-p x)
973 (intersection-type-p x)))
974 union)
975 union
976 nil)))
978 (defun type-intersection (&rest input-types)
979 (%type-intersection input-types))
980 (defun-cached (%type-intersection :hash-bits 8
981 :hash-function (lambda (x)
982 (logand (sxhash x) #xff)))
983 ((input-types equal))
984 (let ((simplified-types (simplify-intersections input-types)))
985 (declare (type list simplified-types))
986 ;; We want to have a canonical representation of types (or failing
987 ;; that, punt to HAIRY-TYPE). Canonical representation would have
988 ;; intersections inside unions but not vice versa, since you can
989 ;; always achieve that by the distributive rule. But we don't want
990 ;; to just apply the distributive rule, since it would be too easy
991 ;; to end up with unreasonably huge type expressions. So instead
992 ;; we try to generate a simple type by distributing the union; if
993 ;; the type can't be made simple, we punt to HAIRY-TYPE.
994 (if (and (cdr simplified-types) (some #'union-type-p simplified-types))
995 (let* ((first-union (find-if #'union-type-p simplified-types))
996 (other-types (coerce (remove first-union simplified-types)
997 'list))
998 (distributed (maybe-distribute-one-union first-union
999 other-types)))
1000 (if distributed
1001 (apply #'type-union distributed)
1002 (make-hairy-type
1003 :specifier `(and ,@(map 'list
1004 #'type-specifier
1005 simplified-types)))))
1006 (cond
1007 ((null simplified-types) *universal-type*)
1008 ((null (cdr simplified-types)) (car simplified-types))
1009 (t (%make-intersection-type
1010 (some #'type-enumerable simplified-types)
1011 simplified-types))))))
1013 (defun type-union (&rest input-types)
1014 (%type-union input-types))
1015 (defun-cached (%type-union :hash-bits 8
1016 :hash-function (lambda (x)
1017 (logand (sxhash x) #xff)))
1018 ((input-types equal))
1019 (let ((simplified-types (simplify-unions input-types)))
1020 (cond
1021 ((null simplified-types) *empty-type*)
1022 ((null (cdr simplified-types)) (car simplified-types))
1023 (t (make-union-type
1024 (every #'type-enumerable simplified-types)
1025 simplified-types)))))
1027 ;;;; built-in types
1029 (!define-type-class named)
1031 (!cold-init-forms
1032 (macrolet ((frob (name var)
1033 `(progn
1034 (setq ,var (make-named-type :name ',name))
1035 (setf (info :type :kind ',name)
1036 #+sb-xc-host :defined #-sb-xc-host :primitive)
1037 (setf (info :type :builtin ',name) ,var))))
1038 ;; KLUDGE: In ANSI, * isn't really the name of a type, it's just a
1039 ;; special symbol which can be stuck in some places where an
1040 ;; ordinary type can go, e.g. (ARRAY * 1) instead of (ARRAY T 1).
1041 ;; In SBCL it also used to denote universal VALUES type.
1042 (frob * *wild-type*)
1043 (frob nil *empty-type*)
1044 (frob t *universal-type*)
1045 ;; new in sbcl-0.9.5: these used to be CLASSOID types, but that
1046 ;; view of them was incompatible with requirements on the MOP
1047 ;; metaobject class hierarchy: the INSTANCE and
1048 ;; FUNCALLABLE-INSTANCE types are disjoint (instances have
1049 ;; instance-pointer-lowtag; funcallable-instances have
1050 ;; fun-pointer-lowtag), while FUNCALLABLE-STANDARD-OBJECT is
1051 ;; required to be a subclass of STANDARD-OBJECT. -- CSR,
1052 ;; 2005-09-09
1053 (frob instance *instance-type*)
1054 (frob funcallable-instance *funcallable-instance-type*)
1055 ;; new in sbcl-1.0.3.3: necessary to act as a join point for the
1056 ;; extended sequence hierarchy. (Might be removed later if we use
1057 ;; a dedicated FUNDAMENTAL-SEQUENCE class for this.)
1058 (frob extended-sequence *extended-sequence-type*))
1059 (setf *universal-fun-type*
1060 (make-fun-type :wild-args t
1061 :returns *wild-type*)))
1063 (!define-type-method (named :simple-=) (type1 type2)
1064 ;;(aver (not (eq type1 *wild-type*))) ; * isn't really a type.
1065 (values (eq type1 type2) t))
1067 (defun cons-type-might-be-empty-type (type)
1068 (declare (type cons-type type))
1069 (let ((car-type (cons-type-car-type type))
1070 (cdr-type (cons-type-cdr-type type)))
1072 (if (cons-type-p car-type)
1073 (cons-type-might-be-empty-type car-type)
1074 (multiple-value-bind (yes surep)
1075 (type= car-type *empty-type*)
1076 (aver (not yes))
1077 (not surep)))
1078 (if (cons-type-p cdr-type)
1079 (cons-type-might-be-empty-type cdr-type)
1080 (multiple-value-bind (yes surep)
1081 (type= cdr-type *empty-type*)
1082 (aver (not yes))
1083 (not surep))))))
1085 (!define-type-method (named :complex-=) (type1 type2)
1086 (cond
1087 ((and (eq type2 *empty-type*)
1088 (or (and (intersection-type-p type1)
1089 ;; not allowed to be unsure on these... FIXME: keep
1090 ;; the list of CL types that are intersection types
1091 ;; once and only once.
1092 (not (or (type= type1 (specifier-type 'ratio))
1093 (type= type1 (specifier-type 'keyword)))))
1094 (and (cons-type-p type1)
1095 (cons-type-might-be-empty-type type1))))
1096 ;; things like (AND (EQL 0) (SATISFIES ODDP)) or (AND FUNCTION
1097 ;; STREAM) can get here. In general, we can't really tell
1098 ;; whether these are equal to NIL or not, so
1099 (values nil nil))
1100 ((type-might-contain-other-types-p type1)
1101 (invoke-complex-=-other-method type1 type2))
1102 (t (values nil t))))
1104 (!define-type-method (named :simple-subtypep) (type1 type2)
1105 (aver (not (eq type1 *wild-type*))) ; * isn't really a type.
1106 (aver (not (eq type1 type2)))
1107 (values (or (eq type1 *empty-type*)
1108 (eq type2 *wild-type*)
1109 (eq type2 *universal-type*)) t))
1111 (!define-type-method (named :complex-subtypep-arg1) (type1 type2)
1112 ;; This AVER causes problems if we write accurate methods for the
1113 ;; union (and possibly intersection) types which then delegate to
1114 ;; us; while a user shouldn't get here, because of the odd status of
1115 ;; *wild-type* a type-intersection executed by the compiler can. -
1116 ;; CSR, 2002-04-10
1118 ;; (aver (not (eq type1 *wild-type*))) ; * isn't really a type.
1119 (cond ((eq type1 *empty-type*)
1121 (;; When TYPE2 might be the universal type in disguise
1122 (type-might-contain-other-types-p type2)
1123 ;; Now that the UNION and HAIRY COMPLEX-SUBTYPEP-ARG2 methods
1124 ;; can delegate to us (more or less as CALL-NEXT-METHOD) when
1125 ;; they're uncertain, we can't just barf on COMPOUND-TYPE and
1126 ;; HAIRY-TYPEs as we used to. Instead we deal with the
1127 ;; problem (where at least part of the problem is cases like
1128 ;; (SUBTYPEP T '(SATISFIES FOO))
1129 ;; or
1130 ;; (SUBTYPEP T '(AND (SATISFIES FOO) (SATISFIES BAR)))
1131 ;; where the second type is a hairy type like SATISFIES, or
1132 ;; is a compound type which might contain a hairy type) by
1133 ;; returning uncertainty.
1134 (values nil nil))
1135 ((eq type1 *funcallable-instance-type*)
1136 (values (eq type2 (specifier-type 'function)) t))
1138 ;; This case would have been picked off by the SIMPLE-SUBTYPEP
1139 ;; method, and so shouldn't appear here.
1140 (aver (not (named-type-p type2)))
1141 ;; Since TYPE2 is not EQ *UNIVERSAL-TYPE* and is not another
1142 ;; named type in disguise, TYPE2 is not a superset of TYPE1.
1143 (values nil t))))
1145 (!define-type-method (named :complex-subtypep-arg2) (type1 type2)
1146 (aver (not (eq type2 *wild-type*))) ; * isn't really a type.
1147 (cond ((eq type2 *universal-type*)
1148 (values t t))
1149 ;; some CONS types can conceal danger
1150 ((and (cons-type-p type1) (cons-type-might-be-empty-type type1))
1151 (values nil nil))
1152 ((type-might-contain-other-types-p type1)
1153 ;; those types can be other types in disguise. So we'd
1154 ;; better delegate.
1155 (invoke-complex-subtypep-arg1-method type1 type2))
1156 ((and (or (eq type2 *instance-type*)
1157 (eq type2 *funcallable-instance-type*))
1158 (member-type-p type1))
1159 ;; member types can be subtypep INSTANCE and
1160 ;; FUNCALLABLE-INSTANCE in surprising ways.
1161 (invoke-complex-subtypep-arg1-method type1 type2))
1162 ((and (eq type2 *extended-sequence-type*) (classoid-p type1))
1163 (let* ((layout (classoid-layout type1))
1164 (inherits (layout-inherits layout))
1165 (sequencep (find (classoid-layout (find-classoid 'sequence))
1166 inherits)))
1167 (values (if sequencep t nil) t)))
1168 ((and (eq type2 *instance-type*) (classoid-p type1))
1169 (if (member type1 *non-instance-classoid-types* :key #'find-classoid)
1170 (values nil t)
1171 (let* ((layout (classoid-layout type1))
1172 (inherits (layout-inherits layout))
1173 (functionp (find (classoid-layout (find-classoid 'function))
1174 inherits)))
1175 (cond
1176 (functionp
1177 (values nil t))
1178 ((eq type1 (find-classoid 'function))
1179 (values nil t))
1180 ((or (structure-classoid-p type1)
1181 #+nil
1182 (condition-classoid-p type1))
1183 (values t t))
1184 (t (values nil nil))))))
1185 ((and (eq type2 *funcallable-instance-type*) (classoid-p type1))
1186 (if (member type1 *non-instance-classoid-types* :key #'find-classoid)
1187 (values nil t)
1188 (let* ((layout (classoid-layout type1))
1189 (inherits (layout-inherits layout))
1190 (functionp (find (classoid-layout (find-classoid 'function))
1191 inherits)))
1192 (values (if functionp t nil) t))))
1194 ;; FIXME: This seems to rely on there only being 4 or 5
1195 ;; NAMED-TYPE values, and the exclusion of various
1196 ;; possibilities above. It would be good to explain it and/or
1197 ;; rewrite it so that it's clearer.
1198 (values nil t))))
1200 (!define-type-method (named :complex-intersection2) (type1 type2)
1201 ;; FIXME: This assertion failed when I added it in sbcl-0.6.11.13.
1202 ;; Perhaps when bug 85 is fixed it can be reenabled.
1203 ;;(aver (not (eq type2 *wild-type*))) ; * isn't really a type.
1204 (cond
1205 ((eq type2 *extended-sequence-type*)
1206 (typecase type1
1207 (structure-classoid *empty-type*)
1208 (classoid
1209 (if (member type1 *non-instance-classoid-types* :key #'find-classoid)
1210 *empty-type*
1211 (if (find (classoid-layout (find-classoid 'sequence))
1212 (layout-inherits (classoid-layout type1)))
1213 type1
1214 nil)))
1216 (if (or (type-might-contain-other-types-p type1)
1217 (member-type-p type1))
1219 *empty-type*))))
1220 ((eq type2 *instance-type*)
1221 (typecase type1
1222 (structure-classoid type1)
1223 (classoid
1224 (if (and (not (member type1 *non-instance-classoid-types*
1225 :key #'find-classoid))
1226 (not (eq type1 (find-classoid 'function)))
1227 (not (find (classoid-layout (find-classoid 'function))
1228 (layout-inherits (classoid-layout type1)))))
1230 *empty-type*))
1232 (if (or (type-might-contain-other-types-p type1)
1233 (member-type-p type1))
1235 *empty-type*))))
1236 ((eq type2 *funcallable-instance-type*)
1237 (typecase type1
1238 (structure-classoid *empty-type*)
1239 (classoid
1240 (if (member type1 *non-instance-classoid-types* :key #'find-classoid)
1241 *empty-type*
1242 (if (find (classoid-layout (find-classoid 'function))
1243 (layout-inherits (classoid-layout type1)))
1244 type1
1245 (if (type= type1 (find-classoid 'function))
1246 type2
1247 nil))))
1248 (fun-type nil)
1250 (if (or (type-might-contain-other-types-p type1)
1251 (member-type-p type1))
1253 *empty-type*))))
1254 (t (hierarchical-intersection2 type1 type2))))
1256 (!define-type-method (named :complex-union2) (type1 type2)
1257 ;; Perhaps when bug 85 is fixed this can be reenabled.
1258 ;;(aver (not (eq type2 *wild-type*))) ; * isn't really a type.
1259 (cond
1260 ((eq type2 *extended-sequence-type*)
1261 (if (classoid-p type1)
1262 (if (or (member type1 *non-instance-classoid-types*
1263 :key #'find-classoid)
1264 (not (find (classoid-layout (find-classoid 'sequence))
1265 (layout-inherits (classoid-layout type1)))))
1267 type2)
1268 nil))
1269 ((eq type2 *instance-type*)
1270 (if (classoid-p type1)
1271 (if (or (member type1 *non-instance-classoid-types*
1272 :key #'find-classoid)
1273 (find (classoid-layout (find-classoid 'function))
1274 (layout-inherits (classoid-layout type1))))
1276 type2)
1277 nil))
1278 ((eq type2 *funcallable-instance-type*)
1279 (if (classoid-p type1)
1280 (if (or (member type1 *non-instance-classoid-types*
1281 :key #'find-classoid)
1282 (not (find (classoid-layout (find-classoid 'function))
1283 (layout-inherits (classoid-layout type1)))))
1285 (if (eq type1 (specifier-type 'function))
1286 type1
1287 type2))
1288 nil))
1289 (t (hierarchical-union2 type1 type2))))
1291 (!define-type-method (named :negate) (x)
1292 (aver (not (eq x *wild-type*)))
1293 (cond
1294 ((eq x *universal-type*) *empty-type*)
1295 ((eq x *empty-type*) *universal-type*)
1296 ((or (eq x *instance-type*)
1297 (eq x *funcallable-instance-type*)
1298 (eq x *extended-sequence-type*))
1299 (make-negation-type :type x))
1300 (t (bug "NAMED type unexpected: ~S" x))))
1302 (!define-type-method (named :unparse) (x)
1303 (named-type-name x))
1305 ;;;; hairy and unknown types
1307 (!define-type-method (hairy :negate) (x)
1308 (make-negation-type :type x))
1310 (!define-type-method (hairy :unparse) (x)
1311 (hairy-type-specifier x))
1313 (!define-type-method (hairy :simple-subtypep) (type1 type2)
1314 (let ((hairy-spec1 (hairy-type-specifier type1))
1315 (hairy-spec2 (hairy-type-specifier type2)))
1316 (cond ((equal-but-no-car-recursion hairy-spec1 hairy-spec2)
1317 (values t t))
1319 (values nil nil)))))
1321 (!define-type-method (hairy :complex-subtypep-arg2) (type1 type2)
1322 (invoke-complex-subtypep-arg1-method type1 type2))
1324 (!define-type-method (hairy :complex-subtypep-arg1) (type1 type2)
1325 (declare (ignore type1 type2))
1326 (values nil nil))
1328 (!define-type-method (hairy :complex-=) (type1 type2)
1329 (if (and (unknown-type-p type2)
1330 (let* ((specifier2 (unknown-type-specifier type2))
1331 (name2 (if (consp specifier2)
1332 (car specifier2)
1333 specifier2)))
1334 (info :type :kind name2)))
1335 (let ((type2 (specifier-type (unknown-type-specifier type2))))
1336 (if (unknown-type-p type2)
1337 (values nil nil)
1338 (type= type1 type2)))
1339 (values nil nil)))
1341 (!define-type-method (hairy :simple-intersection2 :complex-intersection2)
1342 (type1 type2)
1343 (if (type= type1 type2)
1344 type1
1345 nil))
1347 (!define-type-method (hairy :simple-union2)
1348 (type1 type2)
1349 (if (type= type1 type2)
1350 type1
1351 nil))
1353 (!define-type-method (hairy :simple-=) (type1 type2)
1354 (if (equal-but-no-car-recursion (hairy-type-specifier type1)
1355 (hairy-type-specifier type2))
1356 (values t t)
1357 (values nil nil)))
1359 (!def-type-translator satisfies (&whole whole fun)
1360 (declare (ignore fun))
1361 ;; Check legality of arguments.
1362 (destructuring-bind (satisfies predicate-name) whole
1363 (declare (ignore satisfies))
1364 (unless (symbolp predicate-name)
1365 (error 'simple-type-error
1366 :datum predicate-name
1367 :expected-type 'symbol
1368 :format-control "The SATISFIES predicate name is not a symbol: ~S"
1369 :format-arguments (list predicate-name))))
1370 ;; Create object.
1371 (make-hairy-type :specifier whole))
1373 ;;;; negation types
1375 (!define-type-method (negation :negate) (x)
1376 (negation-type-type x))
1378 (!define-type-method (negation :unparse) (x)
1379 (if (type= (negation-type-type x) (specifier-type 'cons))
1380 'atom
1381 `(not ,(type-specifier (negation-type-type x)))))
1383 (!define-type-method (negation :simple-subtypep) (type1 type2)
1384 (csubtypep (negation-type-type type2) (negation-type-type type1)))
1386 (!define-type-method (negation :complex-subtypep-arg2) (type1 type2)
1387 (let* ((complement-type2 (negation-type-type type2))
1388 (intersection2 (type-intersection2 type1
1389 complement-type2)))
1390 (if intersection2
1391 ;; FIXME: if uncertain, maybe try arg1?
1392 (type= intersection2 *empty-type*)
1393 (invoke-complex-subtypep-arg1-method type1 type2))))
1395 (!define-type-method (negation :complex-subtypep-arg1) (type1 type2)
1396 ;; "Incrementally extended heuristic algorithms tend inexorably toward the
1397 ;; incomprehensible." -- http://www.unlambda.com/~james/lambda/lambda.txt
1399 ;; You may not believe this. I couldn't either. But then I sat down
1400 ;; and drew lots of Venn diagrams. Comments involving a and b refer
1401 ;; to the call (subtypep '(not a) 'b) -- CSR, 2002-02-27.
1402 (block nil
1403 ;; (Several logical truths in this block are true as long as
1404 ;; b/=T. As of sbcl-0.7.1.28, it seems impossible to construct a
1405 ;; case with b=T where we actually reach this type method, but
1406 ;; we'll test for and exclude this case anyway, since future
1407 ;; maintenance might make it possible for it to end up in this
1408 ;; code.)
1409 (multiple-value-bind (equal certain)
1410 (type= type2 *universal-type*)
1411 (unless certain
1412 (return (values nil nil)))
1413 (when equal
1414 (return (values t t))))
1415 (let ((complement-type1 (negation-type-type type1)))
1416 ;; Do the special cases first, in order to give us a chance if
1417 ;; subtype/supertype relationships are hairy.
1418 (multiple-value-bind (equal certain)
1419 (type= complement-type1 type2)
1420 ;; If a = b, ~a is not a subtype of b (unless b=T, which was
1421 ;; excluded above).
1422 (unless certain
1423 (return (values nil nil)))
1424 (when equal
1425 (return (values nil t))))
1426 ;; KLUDGE: ANSI requires that the SUBTYPEP result between any
1427 ;; two built-in atomic type specifiers never be uncertain. This
1428 ;; is hard to do cleanly for the built-in types whose
1429 ;; definitions include (NOT FOO), i.e. CONS and RATIO. However,
1430 ;; we can do it with this hack, which uses our global knowledge
1431 ;; that our implementation of the type system uses disjoint
1432 ;; implementation types to represent disjoint sets (except when
1433 ;; types are contained in other types). (This is a KLUDGE
1434 ;; because it's fragile. Various changes in internal
1435 ;; representation in the type system could make it start
1436 ;; confidently returning incorrect results.) -- WHN 2002-03-08
1437 (unless (or (type-might-contain-other-types-p complement-type1)
1438 (type-might-contain-other-types-p type2))
1439 ;; Because of the way our types which don't contain other
1440 ;; types are disjoint subsets of the space of possible values,
1441 ;; (SUBTYPEP '(NOT AA) 'B)=NIL when AA and B are simple (and B
1442 ;; is not T, as checked above).
1443 (return (values nil t)))
1444 ;; The old (TYPE= TYPE1 TYPE2) branch would never be taken, as
1445 ;; TYPE1 and TYPE2 will only be equal if they're both NOT types,
1446 ;; and then the :SIMPLE-SUBTYPEP method would be used instead.
1447 ;; But a CSUBTYPEP relationship might still hold:
1448 (multiple-value-bind (equal certain)
1449 (csubtypep complement-type1 type2)
1450 ;; If a is a subtype of b, ~a is not a subtype of b (unless
1451 ;; b=T, which was excluded above).
1452 (unless certain
1453 (return (values nil nil)))
1454 (when equal
1455 (return (values nil t))))
1456 (multiple-value-bind (equal certain)
1457 (csubtypep type2 complement-type1)
1458 ;; If b is a subtype of a, ~a is not a subtype of b. (FIXME:
1459 ;; That's not true if a=T. Do we know at this point that a is
1460 ;; not T?)
1461 (unless certain
1462 (return (values nil nil)))
1463 (when equal
1464 (return (values nil t))))
1465 ;; old CSR comment ca. 0.7.2, now obsoleted by the SIMPLE-CTYPE?
1466 ;; KLUDGE case above: Other cases here would rely on being able
1467 ;; to catch all possible cases, which the fragility of this type
1468 ;; system doesn't inspire me; for instance, if a is type= to ~b,
1469 ;; then we want T, T; if this is not the case and the types are
1470 ;; disjoint (have an intersection of *empty-type*) then we want
1471 ;; NIL, T; else if the union of a and b is the *universal-type*
1472 ;; then we want T, T. So currently we still claim to be unsure
1473 ;; about e.g. (subtypep '(not fixnum) 'single-float).
1475 ;; OTOH we might still get here:
1476 (values nil nil))))
1478 (!define-type-method (negation :complex-=) (type1 type2)
1479 ;; (NOT FOO) isn't equivalent to anything that's not a negation
1480 ;; type, except possibly a type that might contain it in disguise.
1481 (declare (ignore type2))
1482 (if (type-might-contain-other-types-p type1)
1483 (values nil nil)
1484 (values nil t)))
1486 (!define-type-method (negation :simple-intersection2) (type1 type2)
1487 (let ((not1 (negation-type-type type1))
1488 (not2 (negation-type-type type2)))
1489 (cond
1490 ((csubtypep not1 not2) type2)
1491 ((csubtypep not2 not1) type1)
1492 ;; Why no analagous clause to the disjoint in the SIMPLE-UNION2
1493 ;; method, below? The clause would read
1495 ;; ((EQ (TYPE-UNION NOT1 NOT2) *UNIVERSAL-TYPE*) *EMPTY-TYPE*)
1497 ;; but with proper canonicalization of negation types, there's
1498 ;; no way of constructing two negation types with union of their
1499 ;; negations being the universal type.
1501 (aver (not (eq (type-union not1 not2) *universal-type*)))
1502 nil))))
1504 (!define-type-method (negation :complex-intersection2) (type1 type2)
1505 (cond
1506 ((csubtypep type1 (negation-type-type type2)) *empty-type*)
1507 ((eq (type-intersection type1 (negation-type-type type2)) *empty-type*)
1508 type1)
1509 (t nil)))
1511 (!define-type-method (negation :simple-union2) (type1 type2)
1512 (let ((not1 (negation-type-type type1))
1513 (not2 (negation-type-type type2)))
1514 (cond
1515 ((csubtypep not1 not2) type1)
1516 ((csubtypep not2 not1) type2)
1517 ((eq (type-intersection not1 not2) *empty-type*)
1518 *universal-type*)
1519 (t nil))))
1521 (!define-type-method (negation :complex-union2) (type1 type2)
1522 (cond
1523 ((csubtypep (negation-type-type type2) type1) *universal-type*)
1524 ((eq (type-intersection type1 (negation-type-type type2)) *empty-type*)
1525 type2)
1526 (t nil)))
1528 (!define-type-method (negation :simple-=) (type1 type2)
1529 (type= (negation-type-type type1) (negation-type-type type2)))
1531 (!def-type-translator not (typespec)
1532 (type-negation (specifier-type typespec)))
1534 ;;;; numeric types
1536 (!define-type-class number)
1538 (declaim (inline numeric-type-equal))
1539 (defun numeric-type-equal (type1 type2)
1540 (and (eq (numeric-type-class type1) (numeric-type-class type2))
1541 (eq (numeric-type-format type1) (numeric-type-format type2))
1542 (eq (numeric-type-complexp type1) (numeric-type-complexp type2))))
1544 (!define-type-method (number :simple-=) (type1 type2)
1545 (values
1546 (and (numeric-type-equal type1 type2)
1547 (equalp (numeric-type-low type1) (numeric-type-low type2))
1548 (equalp (numeric-type-high type1) (numeric-type-high type2)))
1551 (!define-type-method (number :negate) (type)
1552 (if (and (null (numeric-type-low type)) (null (numeric-type-high type)))
1553 (make-negation-type :type type)
1554 (type-union
1555 (make-negation-type
1556 :type (modified-numeric-type type :low nil :high nil))
1557 (cond
1558 ((null (numeric-type-low type))
1559 (modified-numeric-type
1560 type
1561 :low (let ((h (numeric-type-high type)))
1562 (if (consp h) (car h) (list h)))
1563 :high nil))
1564 ((null (numeric-type-high type))
1565 (modified-numeric-type
1566 type
1567 :low nil
1568 :high (let ((l (numeric-type-low type)))
1569 (if (consp l) (car l) (list l)))))
1570 (t (type-union
1571 (modified-numeric-type
1572 type
1573 :low nil
1574 :high (let ((l (numeric-type-low type)))
1575 (if (consp l) (car l) (list l))))
1576 (modified-numeric-type
1577 type
1578 :low (let ((h (numeric-type-high type)))
1579 (if (consp h) (car h) (list h)))
1580 :high nil)))))))
1582 (!define-type-method (number :unparse) (type)
1583 (let* ((complexp (numeric-type-complexp type))
1584 (low (numeric-type-low type))
1585 (high (numeric-type-high type))
1586 (base (case (numeric-type-class type)
1587 (integer 'integer)
1588 (rational 'rational)
1589 (float (or (numeric-type-format type) 'float))
1590 (t 'real))))
1591 (let ((base+bounds
1592 (cond ((and (eq base 'integer) high low)
1593 (let ((high-count (logcount high))
1594 (high-length (integer-length high)))
1595 (cond ((= low 0)
1596 (cond ((= high 0) '(integer 0 0))
1597 ((= high 1) 'bit)
1598 ((and (= high-count high-length)
1599 (plusp high-length))
1600 `(unsigned-byte ,high-length))
1602 `(mod ,(1+ high)))))
1603 ((and (= low sb!xc:most-negative-fixnum)
1604 (= high sb!xc:most-positive-fixnum))
1605 'fixnum)
1606 ((and (= low (lognot high))
1607 (= high-count high-length)
1608 (> high-count 0))
1609 `(signed-byte ,(1+ high-length)))
1611 `(integer ,low ,high)))))
1612 (high `(,base ,(or low '*) ,high))
1613 (low
1614 (if (and (eq base 'integer) (= low 0))
1615 'unsigned-byte
1616 `(,base ,low)))
1617 (t base))))
1618 (ecase complexp
1619 (:real
1620 base+bounds)
1621 (:complex
1622 (aver (neq base+bounds 'real))
1623 `(complex ,base+bounds))
1624 ((nil)
1625 (aver (eq base+bounds 'real))
1626 'number)))))
1628 ;;; Return true if X is "less than or equal" to Y, taking open bounds
1629 ;;; into consideration. CLOSED is the predicate used to test the bound
1630 ;;; on a closed interval (e.g. <=), and OPEN is the predicate used on
1631 ;;; open bounds (e.g. <). Y is considered to be the outside bound, in
1632 ;;; the sense that if it is infinite (NIL), then the test succeeds,
1633 ;;; whereas if X is infinite, then the test fails (unless Y is also
1634 ;;; infinite).
1636 ;;; This is for comparing bounds of the same kind, e.g. upper and
1637 ;;; upper. Use NUMERIC-BOUND-TEST* for different kinds of bounds.
1638 (defmacro numeric-bound-test (x y closed open)
1639 `(cond ((not ,y) t)
1640 ((not ,x) nil)
1641 ((consp ,x)
1642 (if (consp ,y)
1643 (,closed (car ,x) (car ,y))
1644 (,closed (car ,x) ,y)))
1646 (if (consp ,y)
1647 (,open ,x (car ,y))
1648 (,closed ,x ,y)))))
1650 ;;; This is used to compare upper and lower bounds. This is different
1651 ;;; from the same-bound case:
1652 ;;; -- Since X = NIL is -infinity, whereas y = NIL is +infinity, we
1653 ;;; return true if *either* arg is NIL.
1654 ;;; -- an open inner bound is "greater" and also squeezes the interval,
1655 ;;; causing us to use the OPEN test for those cases as well.
1656 (defmacro numeric-bound-test* (x y closed open)
1657 `(cond ((not ,y) t)
1658 ((not ,x) t)
1659 ((consp ,x)
1660 (if (consp ,y)
1661 (,open (car ,x) (car ,y))
1662 (,open (car ,x) ,y)))
1664 (if (consp ,y)
1665 (,open ,x (car ,y))
1666 (,closed ,x ,y)))))
1668 ;;; Return whichever of the numeric bounds X and Y is "maximal"
1669 ;;; according to the predicates CLOSED (e.g. >=) and OPEN (e.g. >).
1670 ;;; This is only meaningful for maximizing like bounds, i.e. upper and
1671 ;;; upper. If MAX-P is true, then we return NIL if X or Y is NIL,
1672 ;;; otherwise we return the other arg.
1673 (defmacro numeric-bound-max (x y closed open max-p)
1674 (once-only ((n-x x)
1675 (n-y y))
1676 `(cond ((not ,n-x) ,(if max-p nil n-y))
1677 ((not ,n-y) ,(if max-p nil n-x))
1678 ((consp ,n-x)
1679 (if (consp ,n-y)
1680 (if (,closed (car ,n-x) (car ,n-y)) ,n-x ,n-y)
1681 (if (,open (car ,n-x) ,n-y) ,n-x ,n-y)))
1683 (if (consp ,n-y)
1684 (if (,open (car ,n-y) ,n-x) ,n-y ,n-x)
1685 (if (,closed ,n-y ,n-x) ,n-y ,n-x))))))
1687 (!define-type-method (number :simple-subtypep) (type1 type2)
1688 (let ((class1 (numeric-type-class type1))
1689 (class2 (numeric-type-class type2))
1690 (complexp2 (numeric-type-complexp type2))
1691 (format2 (numeric-type-format type2))
1692 (low1 (numeric-type-low type1))
1693 (high1 (numeric-type-high type1))
1694 (low2 (numeric-type-low type2))
1695 (high2 (numeric-type-high type2)))
1696 ;; If one is complex and the other isn't, they are disjoint.
1697 (cond ((not (or (eq (numeric-type-complexp type1) complexp2)
1698 (null complexp2)))
1699 (values nil t))
1700 ;; If the classes are specified and different, the types are
1701 ;; disjoint unless type2 is RATIONAL and type1 is INTEGER.
1702 ;; [ or type1 is INTEGER and type2 is of the form (RATIONAL
1703 ;; X X) for integral X, but this is dealt with in the
1704 ;; canonicalization inside MAKE-NUMERIC-TYPE ]
1705 ((not (or (eq class1 class2)
1706 (null class2)
1707 (and (eq class1 'integer) (eq class2 'rational))))
1708 (values nil t))
1709 ;; If the float formats are specified and different, the types
1710 ;; are disjoint.
1711 ((not (or (eq (numeric-type-format type1) format2)
1712 (null format2)))
1713 (values nil t))
1714 ;; Check the bounds.
1715 ((and (numeric-bound-test low1 low2 >= >)
1716 (numeric-bound-test high1 high2 <= <))
1717 (values t t))
1719 (values nil t)))))
1721 (!define-superclasses number ((number)) !cold-init-forms)
1723 ;;; If the high bound of LOW is adjacent to the low bound of HIGH,
1724 ;;; then return true, otherwise NIL.
1725 (defun numeric-types-adjacent (low high)
1726 (let ((low-bound (numeric-type-high low))
1727 (high-bound (numeric-type-low high)))
1728 (cond ((not (and low-bound high-bound)) nil)
1729 ((and (consp low-bound) (consp high-bound)) nil)
1730 ((consp low-bound)
1731 (let ((low-value (car low-bound)))
1732 (or (eql low-value high-bound)
1733 (and (eql low-value
1734 (load-time-value (make-unportable-float
1735 :single-float-negative-zero)))
1736 (eql high-bound 0f0))
1737 (and (eql low-value 0f0)
1738 (eql high-bound
1739 (load-time-value (make-unportable-float
1740 :single-float-negative-zero))))
1741 (and (eql low-value
1742 (load-time-value (make-unportable-float
1743 :double-float-negative-zero)))
1744 (eql high-bound 0d0))
1745 (and (eql low-value 0d0)
1746 (eql high-bound
1747 (load-time-value (make-unportable-float
1748 :double-float-negative-zero)))))))
1749 ((consp high-bound)
1750 (let ((high-value (car high-bound)))
1751 (or (eql high-value low-bound)
1752 (and (eql high-value
1753 (load-time-value (make-unportable-float
1754 :single-float-negative-zero)))
1755 (eql low-bound 0f0))
1756 (and (eql high-value 0f0)
1757 (eql low-bound
1758 (load-time-value (make-unportable-float
1759 :single-float-negative-zero))))
1760 (and (eql high-value
1761 (load-time-value (make-unportable-float
1762 :double-float-negative-zero)))
1763 (eql low-bound 0d0))
1764 (and (eql high-value 0d0)
1765 (eql low-bound
1766 (load-time-value (make-unportable-float
1767 :double-float-negative-zero)))))))
1768 ((and (eq (numeric-type-class low) 'integer)
1769 (eq (numeric-type-class high) 'integer))
1770 (eql (1+ low-bound) high-bound))
1772 nil))))
1774 ;;; Return a numeric type that is a supertype for both TYPE1 and TYPE2.
1776 ;;; Old comment, probably no longer applicable:
1778 ;;; ### Note: we give up early to keep from dropping lots of
1779 ;;; information on the floor by returning overly general types.
1780 (!define-type-method (number :simple-union2) (type1 type2)
1781 (declare (type numeric-type type1 type2))
1782 (cond ((csubtypep type1 type2) type2)
1783 ((csubtypep type2 type1) type1)
1785 (let ((class1 (numeric-type-class type1))
1786 (format1 (numeric-type-format type1))
1787 (complexp1 (numeric-type-complexp type1))
1788 (class2 (numeric-type-class type2))
1789 (format2 (numeric-type-format type2))
1790 (complexp2 (numeric-type-complexp type2)))
1791 (cond
1792 ((and (eq class1 class2)
1793 (eq format1 format2)
1794 (eq complexp1 complexp2)
1795 (or (numeric-types-intersect type1 type2)
1796 (numeric-types-adjacent type1 type2)
1797 (numeric-types-adjacent type2 type1)))
1798 (make-numeric-type
1799 :class class1
1800 :format format1
1801 :complexp complexp1
1802 :low (numeric-bound-max (numeric-type-low type1)
1803 (numeric-type-low type2)
1804 <= < t)
1805 :high (numeric-bound-max (numeric-type-high type1)
1806 (numeric-type-high type2)
1807 >= > t)))
1808 ;; FIXME: These two clauses are almost identical, and the
1809 ;; consequents are in fact identical in every respect.
1810 ((and (eq class1 'rational)
1811 (eq class2 'integer)
1812 (eq format1 format2)
1813 (eq complexp1 complexp2)
1814 (integerp (numeric-type-low type2))
1815 (integerp (numeric-type-high type2))
1816 (= (numeric-type-low type2) (numeric-type-high type2))
1817 (or (numeric-types-adjacent type1 type2)
1818 (numeric-types-adjacent type2 type1)))
1819 (make-numeric-type
1820 :class 'rational
1821 :format format1
1822 :complexp complexp1
1823 :low (numeric-bound-max (numeric-type-low type1)
1824 (numeric-type-low type2)
1825 <= < t)
1826 :high (numeric-bound-max (numeric-type-high type1)
1827 (numeric-type-high type2)
1828 >= > t)))
1829 ((and (eq class1 'integer)
1830 (eq class2 'rational)
1831 (eq format1 format2)
1832 (eq complexp1 complexp2)
1833 (integerp (numeric-type-low type1))
1834 (integerp (numeric-type-high type1))
1835 (= (numeric-type-low type1) (numeric-type-high type1))
1836 (or (numeric-types-adjacent type1 type2)
1837 (numeric-types-adjacent type2 type1)))
1838 (make-numeric-type
1839 :class 'rational
1840 :format format1
1841 :complexp complexp1
1842 :low (numeric-bound-max (numeric-type-low type1)
1843 (numeric-type-low type2)
1844 <= < t)
1845 :high (numeric-bound-max (numeric-type-high type1)
1846 (numeric-type-high type2)
1847 >= > t)))
1848 (t nil))))))
1851 (!cold-init-forms
1852 (setf (info :type :kind 'number)
1853 #+sb-xc-host :defined #-sb-xc-host :primitive)
1854 (setf (info :type :builtin 'number)
1855 (make-numeric-type :complexp nil)))
1857 (!def-type-translator complex (&optional (typespec '*))
1858 (if (eq typespec '*)
1859 (specifier-type '(complex real))
1860 (labels ((not-numeric ()
1861 (error "The component type for COMPLEX is not numeric: ~S"
1862 typespec))
1863 (not-real ()
1864 (error "The component type for COMPLEX is not a subtype of REAL: ~S"
1865 typespec))
1866 (complex1 (component-type)
1867 (unless (numeric-type-p component-type)
1868 (not-numeric))
1869 (when (eq (numeric-type-complexp component-type) :complex)
1870 (not-real))
1871 (if (csubtypep component-type (specifier-type '(eql 0)))
1872 *empty-type*
1873 (modified-numeric-type component-type
1874 :complexp :complex)))
1875 (do-complex (ctype)
1876 (cond
1877 ((eq ctype *empty-type*) *empty-type*)
1878 ((eq ctype *universal-type*) (not-real))
1879 ((typep ctype 'numeric-type) (complex1 ctype))
1880 ((typep ctype 'union-type)
1881 (apply #'type-union
1882 (mapcar #'do-complex (union-type-types ctype))))
1883 ((typep ctype 'member-type)
1884 (apply #'type-union
1885 (mapcar-member-type-members
1886 (lambda (x) (do-complex (ctype-of x)))
1887 ctype)))
1888 ((and (typep ctype 'intersection-type)
1889 ;; FIXME: This is very much a
1890 ;; not-quite-worst-effort, but we are required to do
1891 ;; something here because of our representation of
1892 ;; RATIO as (AND RATIONAL (NOT INTEGER)): we must
1893 ;; allow users to ask about (COMPLEX RATIO). This
1894 ;; will of course fail to work right on such types
1895 ;; as (AND INTEGER (SATISFIES ZEROP))...
1896 (let ((numbers (remove-if-not
1897 #'numeric-type-p
1898 (intersection-type-types ctype))))
1899 (and (car numbers)
1900 (null (cdr numbers))
1901 (eq (numeric-type-complexp (car numbers)) :real)
1902 (complex1 (car numbers))))))
1904 (multiple-value-bind (subtypep certainly)
1905 (csubtypep ctype (specifier-type 'real))
1906 (if (and (not subtypep) certainly)
1907 (not-real)
1908 ;; ANSI just says that TYPESPEC is any subtype of
1909 ;; type REAL, not necessarily a NUMERIC-TYPE. In
1910 ;; particular, at this point TYPESPEC could legally
1911 ;; be a hairy type like (AND NUMBER (SATISFIES
1912 ;; REALP) (SATISFIES ZEROP)), in which case we fall
1913 ;; through the logic above and end up here,
1914 ;; stumped.
1915 (bug "~@<(known bug #145): The type ~S is too hairy to be ~
1916 used for a COMPLEX component.~:@>"
1917 typespec)))))))
1918 (let ((ctype (specifier-type typespec)))
1919 (do-complex ctype)))))
1921 ;;; If X is *, return NIL, otherwise return the bound, which must be a
1922 ;;; member of TYPE or a one-element list of a member of TYPE.
1923 #!-sb-fluid (declaim (inline canonicalized-bound))
1924 (defun canonicalized-bound (bound type)
1925 (cond ((eq bound '*) nil)
1926 ((or (sb!xc:typep bound type)
1927 (and (consp bound)
1928 (sb!xc:typep (car bound) type)
1929 (null (cdr bound))))
1930 bound)
1932 (error "Bound is not ~S, a ~S or a list of a ~S: ~S"
1934 type
1935 type
1936 bound))))
1938 (!def-type-translator integer (&optional (low '*) (high '*))
1939 (let* ((l (canonicalized-bound low 'integer))
1940 (lb (if (consp l) (1+ (car l)) l))
1941 (h (canonicalized-bound high 'integer))
1942 (hb (if (consp h) (1- (car h)) h)))
1943 (if (and hb lb (< hb lb))
1944 *empty-type*
1945 (make-numeric-type :class 'integer
1946 :complexp :real
1947 :enumerable (not (null (and l h)))
1948 :low lb
1949 :high hb))))
1951 (defmacro !def-bounded-type (type class format)
1952 `(!def-type-translator ,type (&optional (low '*) (high '*))
1953 (let ((lb (canonicalized-bound low ',type))
1954 (hb (canonicalized-bound high ',type)))
1955 (if (not (numeric-bound-test* lb hb <= <))
1956 *empty-type*
1957 (make-numeric-type :class ',class
1958 :format ',format
1959 :low lb
1960 :high hb)))))
1962 (!def-bounded-type rational rational nil)
1964 ;;; Unlike CMU CL, we represent the types FLOAT and REAL as
1965 ;;; UNION-TYPEs of more primitive types, in order to make
1966 ;;; type representation more unique, avoiding problems in the
1967 ;;; simplification of things like
1968 ;;; (subtypep '(or (single-float -1.0 1.0) (single-float 0.1))
1969 ;;; '(or (real -1 7) (single-float 0.1) (single-float -1.0 1.0)))
1970 ;;; When we allowed REAL to remain as a separate NUMERIC-TYPE,
1971 ;;; it was too easy for the first argument to be simplified to
1972 ;;; '(SINGLE-FLOAT -1.0), and for the second argument to be simplified
1973 ;;; to '(OR (REAL -1 7) (SINGLE-FLOAT 0.1)) and then for the
1974 ;;; SUBTYPEP to fail (returning NIL,T instead of T,T) because
1975 ;;; the first argument can't be seen to be a subtype of any of the
1976 ;;; terms in the second argument.
1978 ;;; The old CMU CL way was:
1979 ;;; (!def-bounded-type float float nil)
1980 ;;; (!def-bounded-type real nil nil)
1982 ;;; FIXME: If this new way works for a while with no weird new
1983 ;;; problems, we can go back and rip out support for separate FLOAT
1984 ;;; and REAL flavors of NUMERIC-TYPE. The new way was added in
1985 ;;; sbcl-0.6.11.22, 2001-03-21.
1987 ;;; FIXME: It's probably necessary to do something to fix the
1988 ;;; analogous problem with INTEGER and RATIONAL types. Perhaps
1989 ;;; bounded RATIONAL types should be represented as (OR RATIO INTEGER).
1990 (defun coerce-bound (bound type upperp inner-coerce-bound-fun)
1991 (declare (type function inner-coerce-bound-fun))
1992 (if (eql bound '*)
1993 bound
1994 (funcall inner-coerce-bound-fun bound type upperp)))
1995 (defun inner-coerce-real-bound (bound type upperp)
1996 #+sb-xc-host (declare (ignore upperp))
1997 (let #+sb-xc-host ()
1998 #-sb-xc-host
1999 ((nl (load-time-value (symbol-value 'sb!xc:most-negative-long-float)))
2000 (pl (load-time-value (symbol-value 'sb!xc:most-positive-long-float))))
2001 (let ((nbound (if (consp bound) (car bound) bound))
2002 (consp (consp bound)))
2003 (ecase type
2004 (rational
2005 (if consp
2006 (list (rational nbound))
2007 (rational nbound)))
2008 (float
2009 (cond
2010 ((floatp nbound) bound)
2012 ;; Coerce to the widest float format available, to avoid
2013 ;; unnecessary loss of precision, but don't coerce
2014 ;; unrepresentable numbers, except on the host where we
2015 ;; shouldn't be making these types (but KLUDGE: can't even
2016 ;; assert portably that we're not).
2017 #-sb-xc-host
2018 (ecase upperp
2019 ((nil)
2020 (when (< nbound nl) (return-from inner-coerce-real-bound nl)))
2021 ((t)
2022 (when (> nbound pl) (return-from inner-coerce-real-bound pl))))
2023 (let ((result (coerce nbound 'long-float)))
2024 (if consp (list result) result)))))))))
2025 (defun inner-coerce-float-bound (bound type upperp)
2026 #+sb-xc-host (declare (ignore upperp))
2027 (let #+sb-xc-host ()
2028 #-sb-xc-host
2029 ((nd (load-time-value (symbol-value 'sb!xc:most-negative-double-float)))
2030 (pd (load-time-value (symbol-value 'sb!xc:most-positive-double-float)))
2031 (ns (load-time-value (symbol-value 'sb!xc:most-negative-single-float)))
2032 (ps (load-time-value
2033 (symbol-value 'sb!xc:most-positive-single-float))))
2034 (let ((nbound (if (consp bound) (car bound) bound))
2035 (consp (consp bound)))
2036 (ecase type
2037 (single-float
2038 (cond
2039 ((typep nbound 'single-float) bound)
2041 #-sb-xc-host
2042 (ecase upperp
2043 ((nil)
2044 (when (< nbound ns) (return-from inner-coerce-float-bound ns)))
2045 ((t)
2046 (when (> nbound ps) (return-from inner-coerce-float-bound ps))))
2047 (let ((result (coerce nbound 'single-float)))
2048 (if consp (list result) result)))))
2049 (double-float
2050 (cond
2051 ((typep nbound 'double-float) bound)
2053 #-sb-xc-host
2054 (ecase upperp
2055 ((nil)
2056 (when (< nbound nd) (return-from inner-coerce-float-bound nd)))
2057 ((t)
2058 (when (> nbound pd) (return-from inner-coerce-float-bound pd))))
2059 (let ((result (coerce nbound 'double-float)))
2060 (if consp (list result) result)))))))))
2061 (defun coerced-real-bound (bound type upperp)
2062 (coerce-bound bound type upperp #'inner-coerce-real-bound))
2063 (defun coerced-float-bound (bound type upperp)
2064 (coerce-bound bound type upperp #'inner-coerce-float-bound))
2065 (!def-type-translator real (&optional (low '*) (high '*))
2066 (specifier-type `(or (float ,(coerced-real-bound low 'float nil)
2067 ,(coerced-real-bound high 'float t))
2068 (rational ,(coerced-real-bound low 'rational nil)
2069 ,(coerced-real-bound high 'rational t)))))
2070 (!def-type-translator float (&optional (low '*) (high '*))
2071 (specifier-type
2072 `(or (single-float ,(coerced-float-bound low 'single-float nil)
2073 ,(coerced-float-bound high 'single-float t))
2074 (double-float ,(coerced-float-bound low 'double-float nil)
2075 ,(coerced-float-bound high 'double-float t))
2076 #!+long-float ,(error "stub: no long float support yet"))))
2078 (defmacro !define-float-format (f)
2079 `(!def-bounded-type ,f float ,f))
2081 (!define-float-format short-float)
2082 (!define-float-format single-float)
2083 (!define-float-format double-float)
2084 (!define-float-format long-float)
2086 (defun numeric-types-intersect (type1 type2)
2087 (declare (type numeric-type type1 type2))
2088 (let* ((class1 (numeric-type-class type1))
2089 (class2 (numeric-type-class type2))
2090 (complexp1 (numeric-type-complexp type1))
2091 (complexp2 (numeric-type-complexp type2))
2092 (format1 (numeric-type-format type1))
2093 (format2 (numeric-type-format type2))
2094 (low1 (numeric-type-low type1))
2095 (high1 (numeric-type-high type1))
2096 (low2 (numeric-type-low type2))
2097 (high2 (numeric-type-high type2)))
2098 ;; If one is complex and the other isn't, then they are disjoint.
2099 (cond ((not (or (eq complexp1 complexp2)
2100 (null complexp1) (null complexp2)))
2101 nil)
2102 ;; If either type is a float, then the other must either be
2103 ;; specified to be a float or unspecified. Otherwise, they
2104 ;; are disjoint.
2105 ((and (eq class1 'float)
2106 (not (member class2 '(float nil)))) nil)
2107 ((and (eq class2 'float)
2108 (not (member class1 '(float nil)))) nil)
2109 ;; If the float formats are specified and different, the
2110 ;; types are disjoint.
2111 ((not (or (eq format1 format2) (null format1) (null format2)))
2112 nil)
2114 ;; Check the bounds. This is a bit odd because we must
2115 ;; always have the outer bound of the interval as the
2116 ;; second arg.
2117 (if (numeric-bound-test high1 high2 <= <)
2118 (or (and (numeric-bound-test low1 low2 >= >)
2119 (numeric-bound-test* low1 high2 <= <))
2120 (and (numeric-bound-test low2 low1 >= >)
2121 (numeric-bound-test* low2 high1 <= <)))
2122 (or (and (numeric-bound-test* low2 high1 <= <)
2123 (numeric-bound-test low2 low1 >= >))
2124 (and (numeric-bound-test high2 high1 <= <)
2125 (numeric-bound-test* high2 low1 >= >))))))))
2127 ;;; Take the numeric bound X and convert it into something that can be
2128 ;;; used as a bound in a numeric type with the specified CLASS and
2129 ;;; FORMAT. If UP-P is true, then we round up as needed, otherwise we
2130 ;;; round down. UP-P true implies that X is a lower bound, i.e. (N) > N.
2132 ;;; This is used by NUMERIC-TYPE-INTERSECTION to mash the bound into
2133 ;;; the appropriate type number. X may only be a float when CLASS is
2134 ;;; FLOAT.
2136 ;;; ### Note: it is possible for the coercion to a float to overflow
2137 ;;; or underflow. This happens when the bound doesn't fit in the
2138 ;;; specified format. In this case, we should really return the
2139 ;;; appropriate {Most | Least}-{Positive | Negative}-XXX-Float float
2140 ;;; of desired format. But these conditions aren't currently signalled
2141 ;;; in any useful way.
2143 ;;; Also, when converting an open rational bound into a float we
2144 ;;; should probably convert it to a closed bound of the closest float
2145 ;;; in the specified format. KLUDGE: In general, open float bounds are
2146 ;;; screwed up. -- (comment from original CMU CL)
2147 (defun round-numeric-bound (x class format up-p)
2148 (if x
2149 (let ((cx (if (consp x) (car x) x)))
2150 (ecase class
2151 ((nil rational) x)
2152 (integer
2153 (if (and (consp x) (integerp cx))
2154 (if up-p (1+ cx) (1- cx))
2155 (if up-p (ceiling cx) (floor cx))))
2156 (float
2157 (let ((res
2158 (cond
2159 ((and format (subtypep format 'double-float))
2160 (if (<= most-negative-double-float cx most-positive-double-float)
2161 (coerce cx format)
2162 nil))
2164 (if (<= most-negative-single-float cx most-positive-single-float)
2165 ;; FIXME: bug #389
2166 (coerce cx (or format 'single-float))
2167 nil)))))
2168 (if (consp x) (list res) res)))))
2169 nil))
2171 ;;; Handle the case of type intersection on two numeric types. We use
2172 ;;; TYPES-EQUAL-OR-INTERSECT to throw out the case of types with no
2173 ;;; intersection. If an attribute in TYPE1 is unspecified, then we use
2174 ;;; TYPE2's attribute, which must be at least as restrictive. If the
2175 ;;; types intersect, then the only attributes that can be specified
2176 ;;; and different are the class and the bounds.
2178 ;;; When the class differs, we use the more restrictive class. The
2179 ;;; only interesting case is RATIONAL/INTEGER, since RATIONAL includes
2180 ;;; INTEGER.
2182 ;;; We make the result lower (upper) bound the maximum (minimum) of
2183 ;;; the argument lower (upper) bounds. We convert the bounds into the
2184 ;;; appropriate numeric type before maximizing. This avoids possible
2185 ;;; confusion due to mixed-type comparisons (but I think the result is
2186 ;;; the same).
2187 (!define-type-method (number :simple-intersection2) (type1 type2)
2188 (declare (type numeric-type type1 type2))
2189 (if (numeric-types-intersect type1 type2)
2190 (let* ((class1 (numeric-type-class type1))
2191 (class2 (numeric-type-class type2))
2192 (class (ecase class1
2193 ((nil) class2)
2194 ((integer float) class1)
2195 (rational (if (eq class2 'integer)
2196 'integer
2197 'rational))))
2198 (format (or (numeric-type-format type1)
2199 (numeric-type-format type2))))
2200 (make-numeric-type
2201 :class class
2202 :format format
2203 :complexp (or (numeric-type-complexp type1)
2204 (numeric-type-complexp type2))
2205 :low (numeric-bound-max
2206 (round-numeric-bound (numeric-type-low type1)
2207 class format t)
2208 (round-numeric-bound (numeric-type-low type2)
2209 class format t)
2210 > >= nil)
2211 :high (numeric-bound-max
2212 (round-numeric-bound (numeric-type-high type1)
2213 class format nil)
2214 (round-numeric-bound (numeric-type-high type2)
2215 class format nil)
2216 < <= nil)))
2217 *empty-type*))
2219 ;;; Given two float formats, return the one with more precision. If
2220 ;;; either one is null, return NIL.
2221 (defun float-format-max (f1 f2)
2222 (when (and f1 f2)
2223 (dolist (f *float-formats* (error "bad float format: ~S" f1))
2224 (when (or (eq f f1) (eq f f2))
2225 (return f)))))
2227 ;;; Return the result of an operation on TYPE1 and TYPE2 according to
2228 ;;; the rules of numeric contagion. This is always NUMBER, some float
2229 ;;; format (possibly complex) or RATIONAL. Due to rational
2230 ;;; canonicalization, there isn't much we can do here with integers or
2231 ;;; rational complex numbers.
2233 ;;; If either argument is not a NUMERIC-TYPE, then return NUMBER. This
2234 ;;; is useful mainly for allowing types that are technically numbers,
2235 ;;; but not a NUMERIC-TYPE.
2236 (defun numeric-contagion (type1 type2)
2237 (if (and (numeric-type-p type1) (numeric-type-p type2))
2238 (let ((class1 (numeric-type-class type1))
2239 (class2 (numeric-type-class type2))
2240 (format1 (numeric-type-format type1))
2241 (format2 (numeric-type-format type2))
2242 (complexp1 (numeric-type-complexp type1))
2243 (complexp2 (numeric-type-complexp type2)))
2244 (cond ((or (null complexp1)
2245 (null complexp2))
2246 (specifier-type 'number))
2247 ((eq class1 'float)
2248 (make-numeric-type
2249 :class 'float
2250 :format (ecase class2
2251 (float (float-format-max format1 format2))
2252 ((integer rational) format1)
2253 ((nil)
2254 ;; A double-float with any real number is a
2255 ;; double-float.
2256 #!-long-float
2257 (if (eq format1 'double-float)
2258 'double-float
2259 nil)
2260 ;; A long-float with any real number is a
2261 ;; long-float.
2262 #!+long-float
2263 (if (eq format1 'long-float)
2264 'long-float
2265 nil)))
2266 :complexp (if (or (eq complexp1 :complex)
2267 (eq complexp2 :complex))
2268 :complex
2269 :real)))
2270 ((eq class2 'float) (numeric-contagion type2 type1))
2271 ((and (eq complexp1 :real) (eq complexp2 :real))
2272 (make-numeric-type
2273 :class (and class1 class2 'rational)
2274 :complexp :real))
2276 (specifier-type 'number))))
2277 (specifier-type 'number)))
2279 ;;;; array types
2281 (!define-type-class array)
2283 (!define-type-method (array :simple-=) (type1 type2)
2284 (cond ((not (and (equal (array-type-dimensions type1)
2285 (array-type-dimensions type2))
2286 (eq (array-type-complexp type1)
2287 (array-type-complexp type2))))
2288 (values nil t))
2289 ((or (unknown-type-p (array-type-element-type type1))
2290 (unknown-type-p (array-type-element-type type2)))
2291 (multiple-value-bind (equalp certainp)
2292 (type= (array-type-element-type type1)
2293 (array-type-element-type type2))
2294 ;; By its nature, the call to TYPE= should never return
2295 ;; NIL, T, as we don't know what the UNKNOWN-TYPE will grow
2296 ;; up to be. -- CSR, 2002-08-19
2297 (aver (not (and (not equalp) certainp)))
2298 (values equalp certainp)))
2300 (values (type= (array-type-specialized-element-type type1)
2301 (array-type-specialized-element-type type2))
2302 t))))
2304 (!define-type-method (array :negate) (type)
2305 ;; FIXME (and hint to PFD): we're vulnerable here to attacks of the
2306 ;; form "are (AND ARRAY (NOT (ARRAY T))) and (OR (ARRAY BIT) (ARRAY
2307 ;; NIL) (ARRAY CHAR) ...) equivalent?" -- CSR, 2003-12-10
2308 (make-negation-type :type type))
2310 (!define-type-method (array :unparse) (type)
2311 (let ((dims (array-type-dimensions type))
2312 (eltype (type-specifier (array-type-element-type type)))
2313 (complexp (array-type-complexp type)))
2314 (cond ((eq dims '*)
2315 (if (eq eltype '*)
2316 (if complexp 'array 'simple-array)
2317 (if complexp `(array ,eltype) `(simple-array ,eltype))))
2318 ((= (length dims) 1)
2319 (if complexp
2320 (if (eq (car dims) '*)
2321 (case eltype
2322 (bit 'bit-vector)
2323 ((base-char #!-sb-unicode character) 'base-string)
2324 (* 'vector)
2325 (t `(vector ,eltype)))
2326 (case eltype
2327 (bit `(bit-vector ,(car dims)))
2328 ((base-char #!-sb-unicode character)
2329 `(base-string ,(car dims)))
2330 (t `(vector ,eltype ,(car dims)))))
2331 (if (eq (car dims) '*)
2332 (case eltype
2333 (bit 'simple-bit-vector)
2334 ((base-char #!-sb-unicode character) 'simple-base-string)
2335 ((t) 'simple-vector)
2336 (t `(simple-array ,eltype (*))))
2337 (case eltype
2338 (bit `(simple-bit-vector ,(car dims)))
2339 ((base-char #!-sb-unicode character)
2340 `(simple-base-string ,(car dims)))
2341 ((t) `(simple-vector ,(car dims)))
2342 (t `(simple-array ,eltype ,dims))))))
2344 (if complexp
2345 `(array ,eltype ,dims)
2346 `(simple-array ,eltype ,dims))))))
2348 (!define-type-method (array :simple-subtypep) (type1 type2)
2349 (let ((dims1 (array-type-dimensions type1))
2350 (dims2 (array-type-dimensions type2))
2351 (complexp2 (array-type-complexp type2)))
2352 (cond (;; not subtypep unless dimensions are compatible
2353 (not (or (eq dims2 '*)
2354 (and (not (eq dims1 '*))
2355 ;; (sbcl-0.6.4 has trouble figuring out that
2356 ;; DIMS1 and DIMS2 must be lists at this
2357 ;; point, and knowing that is important to
2358 ;; compiling EVERY efficiently.)
2359 (= (length (the list dims1))
2360 (length (the list dims2)))
2361 (every (lambda (x y)
2362 (or (eq y '*) (eql x y)))
2363 (the list dims1)
2364 (the list dims2)))))
2365 (values nil t))
2366 ;; not subtypep unless complexness is compatible
2367 ((not (or (eq complexp2 :maybe)
2368 (eq (array-type-complexp type1) complexp2)))
2369 (values nil t))
2370 ;; Since we didn't fail any of the tests above, we win
2371 ;; if the TYPE2 element type is wild.
2372 ((eq (array-type-element-type type2) *wild-type*)
2373 (values t t))
2374 (;; Since we didn't match any of the special cases above, if
2375 ;; either element type is unknown we can only give a good
2376 ;; answer if they are the same.
2377 (or (unknown-type-p (array-type-element-type type1))
2378 (unknown-type-p (array-type-element-type type2)))
2379 (if (type= (array-type-element-type type1)
2380 (array-type-element-type type2))
2381 (values t t)
2382 (values nil nil)))
2383 (;; Otherwise, the subtype relationship holds iff the
2384 ;; types are equal, and they're equal iff the specialized
2385 ;; element types are identical.
2387 (values (type= (array-type-specialized-element-type type1)
2388 (array-type-specialized-element-type type2))
2389 t)))))
2391 (!define-superclasses array
2392 ((vector vector) (array))
2393 !cold-init-forms)
2395 (defun array-types-intersect (type1 type2)
2396 (declare (type array-type type1 type2))
2397 (let ((dims1 (array-type-dimensions type1))
2398 (dims2 (array-type-dimensions type2))
2399 (complexp1 (array-type-complexp type1))
2400 (complexp2 (array-type-complexp type2)))
2401 ;; See whether dimensions are compatible.
2402 (cond ((not (or (eq dims1 '*) (eq dims2 '*)
2403 (and (= (length dims1) (length dims2))
2404 (every (lambda (x y)
2405 (or (eq x '*) (eq y '*) (= x y)))
2406 dims1 dims2))))
2407 (values nil t))
2408 ;; See whether complexpness is compatible.
2409 ((not (or (eq complexp1 :maybe)
2410 (eq complexp2 :maybe)
2411 (eq complexp1 complexp2)))
2412 (values nil t))
2413 ;; Old comment:
2415 ;; If either element type is wild, then they intersect.
2416 ;; Otherwise, the types must be identical.
2418 ;; FIXME: There seems to have been a fair amount of
2419 ;; confusion about the distinction between requested element
2420 ;; type and specialized element type; here is one of
2421 ;; them. If we request an array to hold objects of an
2422 ;; unknown type, we can do no better than represent that
2423 ;; type as an array specialized on wild-type. We keep the
2424 ;; requested element-type in the -ELEMENT-TYPE slot, and
2425 ;; *WILD-TYPE* in the -SPECIALIZED-ELEMENT-TYPE. So, here,
2426 ;; we must test for the SPECIALIZED slot being *WILD-TYPE*,
2427 ;; not just the ELEMENT-TYPE slot. Maybe the return value
2428 ;; in that specific case should be T, NIL? Or maybe this
2429 ;; function should really be called
2430 ;; ARRAY-TYPES-COULD-POSSIBLY-INTERSECT? In any case, this
2431 ;; was responsible for bug #123, and this whole issue could
2432 ;; do with a rethink and/or a rewrite. -- CSR, 2002-08-21
2433 ((or (eq (array-type-specialized-element-type type1) *wild-type*)
2434 (eq (array-type-specialized-element-type type2) *wild-type*)
2435 (type= (array-type-specialized-element-type type1)
2436 (array-type-specialized-element-type type2)))
2438 (values t t))
2440 (values nil t)))))
2442 (!define-type-method (array :simple-union2) (type1 type2)
2443 (let* ((dims1 (array-type-dimensions type1))
2444 (dims2 (array-type-dimensions type2))
2445 (complexp1 (array-type-complexp type1))
2446 (complexp2 (array-type-complexp type2))
2447 (eltype1 (array-type-element-type type1))
2448 (eltype2 (array-type-element-type type2))
2449 (stype1 (array-type-specialized-element-type type1))
2450 (stype2 (array-type-specialized-element-type type2))
2451 (wild1 (eq eltype1 *wild-type*))
2452 (wild2 (eq eltype2 *wild-type*))
2453 (e2 nil))
2454 (when (or wild1 wild2
2455 (and (or (setf e2 (csubtypep eltype1 eltype2))
2456 (csubtypep eltype2 eltype1))
2457 (type= stype1 stype2)))
2458 (make-array-type
2459 :dimensions (cond ((or (eq dims1 '*) (eq dims2 '*))
2461 ((equal dims1 dims2)
2462 dims1)
2463 ((= (length dims1) (length dims2))
2464 (mapcar (lambda (x y) (if (eq x y) x '*))
2465 dims1 dims2))
2467 '*))
2468 :complexp (if (eq complexp1 complexp2) complexp1 :maybe)
2469 :element-type (if (or wild2 e2) eltype2 eltype1)
2470 :specialized-element-type (if wild2 stype2 stype1)))))
2472 (!define-type-method (array :simple-intersection2) (type1 type2)
2473 (declare (type array-type type1 type2))
2474 (if (array-types-intersect type1 type2)
2475 (let ((dims1 (array-type-dimensions type1))
2476 (dims2 (array-type-dimensions type2))
2477 (complexp1 (array-type-complexp type1))
2478 (complexp2 (array-type-complexp type2))
2479 (eltype1 (array-type-element-type type1))
2480 (eltype2 (array-type-element-type type2))
2481 (stype1 (array-type-specialized-element-type type1))
2482 (stype2 (array-type-specialized-element-type type2)))
2483 (flet ((intersect ()
2484 (make-array-type
2485 :dimensions (cond ((eq dims1 '*) dims2)
2486 ((eq dims2 '*) dims1)
2488 (mapcar (lambda (x y) (if (eq x '*) y x))
2489 dims1 dims2)))
2490 :complexp (if (eq complexp1 :maybe) complexp2 complexp1)
2491 :element-type (cond
2492 ((eq eltype1 *wild-type*) eltype2)
2493 ((eq eltype2 *wild-type*) eltype1)
2494 (t (type-intersection eltype1 eltype2))))))
2495 (if (or (eq stype1 *wild-type*) (eq stype2 *wild-type*))
2496 (specialize-array-type (intersect))
2497 (let ((type (intersect)))
2498 (aver (type= stype1 stype2))
2499 (setf (array-type-specialized-element-type type) stype1)
2500 type))))
2501 *empty-type*))
2503 ;;; Check a supplied dimension list to determine whether it is legal,
2504 ;;; and return it in canonical form (as either '* or a list).
2505 (defun canonical-array-dimensions (dims)
2506 (typecase dims
2507 ((member *) dims)
2508 (integer
2509 (when (minusp dims)
2510 (error "Arrays can't have a negative number of dimensions: ~S" dims))
2511 (when (>= dims sb!xc:array-rank-limit)
2512 (error "array type with too many dimensions: ~S" dims))
2513 (make-list dims :initial-element '*))
2514 (list
2515 (when (>= (length dims) sb!xc:array-rank-limit)
2516 (error "array type with too many dimensions: ~S" dims))
2517 (dolist (dim dims)
2518 (unless (eq dim '*)
2519 (unless (and (integerp dim)
2520 (>= dim 0)
2521 (< dim sb!xc:array-dimension-limit))
2522 (error "bad dimension in array type: ~S" dim))))
2523 dims)
2525 (error "Array dimensions is not a list, integer or *:~% ~S" dims))))
2527 ;;;; MEMBER types
2529 (!define-type-class member)
2531 (!define-type-method (member :negate) (type)
2532 (let ((xset (member-type-xset type))
2533 (fp-zeroes (member-type-fp-zeroes type)))
2534 (if fp-zeroes
2535 ;; Hairy case, which needs to do a bit of float type
2536 ;; canonicalization.
2537 (apply #'type-intersection
2538 (if (xset-empty-p xset)
2539 *universal-type*
2540 (make-negation-type
2541 :type (make-member-type :xset xset)))
2542 (mapcar
2543 (lambda (x)
2544 (let* ((opposite (neg-fp-zero x))
2545 (type (ctype-of opposite)))
2546 (type-union
2547 (make-negation-type
2548 :type (modified-numeric-type type :low nil :high nil))
2549 (modified-numeric-type type :low nil :high (list opposite))
2550 (make-member-type :members (list opposite))
2551 (modified-numeric-type type :low (list opposite) :high nil))))
2552 fp-zeroes))
2553 ;; Easy case
2554 (make-negation-type :type type))))
2556 (!define-type-method (member :unparse) (type)
2557 (let ((members (member-type-members type)))
2558 (cond
2559 ((equal members '(nil)) 'null)
2560 ((type= type (specifier-type 'standard-char)) 'standard-char)
2561 (t `(member ,@members)))))
2563 (!define-type-method (member :simple-subtypep) (type1 type2)
2564 (values (and (xset-subset-p (member-type-xset type1)
2565 (member-type-xset type2))
2566 (subsetp (member-type-fp-zeroes type1)
2567 (member-type-fp-zeroes type2)))
2570 (!define-type-method (member :complex-subtypep-arg1) (type1 type2)
2571 (block punt
2572 (mapc-member-type-members
2573 (lambda (elt)
2574 (multiple-value-bind (ok surep) (ctypep elt type2)
2575 (unless surep
2576 (return-from punt (values nil nil)))
2577 (unless ok
2578 (return-from punt (values nil t)))))
2579 type1)
2580 (values t t)))
2582 ;;; We punt if the odd type is enumerable and intersects with the
2583 ;;; MEMBER type. If not enumerable, then it is definitely not a
2584 ;;; subtype of the MEMBER type.
2585 (!define-type-method (member :complex-subtypep-arg2) (type1 type2)
2586 (cond ((not (type-enumerable type1)) (values nil t))
2587 ((types-equal-or-intersect type1 type2)
2588 (invoke-complex-subtypep-arg1-method type1 type2))
2589 (t (values nil t))))
2591 (!define-type-method (member :simple-intersection2) (type1 type2)
2592 (make-member-type :xset (xset-intersection (member-type-xset type1)
2593 (member-type-xset type2))
2594 :fp-zeroes (intersection (member-type-fp-zeroes type1)
2595 (member-type-fp-zeroes type2))))
2597 (!define-type-method (member :complex-intersection2) (type1 type2)
2598 (block punt
2599 (let ((xset (alloc-xset))
2600 (fp-zeroes nil))
2601 (mapc-member-type-members
2602 (lambda (member)
2603 (multiple-value-bind (ok sure) (ctypep member type1)
2604 (unless sure
2605 (return-from punt nil))
2606 (when ok
2607 (if (fp-zero-p member)
2608 (pushnew member fp-zeroes)
2609 (add-to-xset member xset)))))
2610 type2)
2611 (if (and (xset-empty-p xset) (not fp-zeroes))
2612 *empty-type*
2613 (make-member-type :xset xset :fp-zeroes fp-zeroes)))))
2615 ;;; We don't need a :COMPLEX-UNION2, since the only interesting case is
2616 ;;; a union type, and the member/union interaction is handled by the
2617 ;;; union type method.
2618 (!define-type-method (member :simple-union2) (type1 type2)
2619 (make-member-type :xset (xset-union (member-type-xset type1)
2620 (member-type-xset type2))
2621 :fp-zeroes (union (member-type-fp-zeroes type1)
2622 (member-type-fp-zeroes type2))))
2624 (!define-type-method (member :simple-=) (type1 type2)
2625 (let ((xset1 (member-type-xset type1))
2626 (xset2 (member-type-xset type2))
2627 (l1 (member-type-fp-zeroes type1))
2628 (l2 (member-type-fp-zeroes type2)))
2629 (values (and (eql (xset-count xset1) (xset-count xset2))
2630 (xset-subset-p xset1 xset2)
2631 (xset-subset-p xset2 xset1)
2632 (subsetp l1 l2)
2633 (subsetp l2 l1))
2634 t)))
2636 (!define-type-method (member :complex-=) (type1 type2)
2637 (if (type-enumerable type1)
2638 (multiple-value-bind (val win) (csubtypep type2 type1)
2639 (if (or val (not win))
2640 (values nil nil)
2641 (values nil t)))
2642 (values nil t)))
2644 (!def-type-translator member (&rest members)
2645 (if members
2646 (let (ms numbers char-codes)
2647 (dolist (m (remove-duplicates members))
2648 (typecase m
2649 (float (if (zerop m)
2650 (push m ms)
2651 (push (ctype-of m) numbers)))
2652 (real (push (ctype-of m) numbers))
2653 (character (push (sb!xc:char-code m) char-codes))
2654 (t (push m ms))))
2655 (apply #'type-union
2656 (if ms
2657 (make-member-type :members ms)
2658 *empty-type*)
2659 (if char-codes
2660 (make-character-set-type
2661 :pairs (mapcar (lambda (x) (cons x x))
2662 (sort char-codes #'<)))
2663 *empty-type*)
2664 (nreverse numbers)))
2665 *empty-type*))
2667 ;;;; intersection types
2668 ;;;;
2669 ;;;; Until version 0.6.10.6, SBCL followed the original CMU CL approach
2670 ;;;; of punting on all AND types, not just the unreasonably complicated
2671 ;;;; ones. The change was motivated by trying to get the KEYWORD type
2672 ;;;; to behave sensibly:
2673 ;;;; ;; reasonable definition
2674 ;;;; (DEFTYPE KEYWORD () '(AND SYMBOL (SATISFIES KEYWORDP)))
2675 ;;;; ;; reasonable behavior
2676 ;;;; (AVER (SUBTYPEP 'KEYWORD 'SYMBOL))
2677 ;;;; Without understanding a little about the semantics of AND, we'd
2678 ;;;; get (SUBTYPEP 'KEYWORD 'SYMBOL)=>NIL,NIL and, for entirely
2679 ;;;; parallel reasons, (SUBTYPEP 'RATIO 'NUMBER)=>NIL,NIL. That's
2680 ;;;; not so good..)
2681 ;;;;
2682 ;;;; We still follow the example of CMU CL to some extent, by punting
2683 ;;;; (to the opaque HAIRY-TYPE) on sufficiently complicated types
2684 ;;;; involving AND.
2686 (!define-type-class intersection)
2688 (!define-type-method (intersection :negate) (type)
2689 (apply #'type-union
2690 (mapcar #'type-negation (intersection-type-types type))))
2692 ;;; A few intersection types have special names. The others just get
2693 ;;; mechanically unparsed.
2694 (!define-type-method (intersection :unparse) (type)
2695 (declare (type ctype type))
2696 (or (find type '(ratio keyword compiled-function) :key #'specifier-type :test #'type=)
2697 `(and ,@(mapcar #'type-specifier (intersection-type-types type)))))
2699 ;;; shared machinery for type equality: true if every type in the set
2700 ;;; TYPES1 matches a type in the set TYPES2 and vice versa
2701 (defun type=-set (types1 types2)
2702 (flet ((type<=-set (x y)
2703 (declare (type list x y))
2704 (every/type (lambda (x y-element)
2705 (any/type #'type= y-element x))
2706 x y)))
2707 (and/type (type<=-set types1 types2)
2708 (type<=-set types2 types1))))
2710 ;;; Two intersection types are equal if their subtypes are equal sets.
2712 ;;; FIXME: Might it be better to use
2713 ;;; (AND (SUBTYPEP X Y) (SUBTYPEP Y X))
2714 ;;; instead, since SUBTYPEP is the usual relationship that we care
2715 ;;; most about, so it would be good to leverage any ingenuity there
2716 ;;; in this more obscure method?
2717 (!define-type-method (intersection :simple-=) (type1 type2)
2718 (type=-set (intersection-type-types type1)
2719 (intersection-type-types type2)))
2721 (defun %intersection-complex-subtypep-arg1 (type1 type2)
2722 (type= type1 (type-intersection type1 type2)))
2724 (defun %intersection-simple-subtypep (type1 type2)
2725 (every/type #'%intersection-complex-subtypep-arg1
2726 type1
2727 (intersection-type-types type2)))
2729 (!define-type-method (intersection :simple-subtypep) (type1 type2)
2730 (%intersection-simple-subtypep type1 type2))
2732 (!define-type-method (intersection :complex-subtypep-arg1) (type1 type2)
2733 (%intersection-complex-subtypep-arg1 type1 type2))
2735 (defun %intersection-complex-subtypep-arg2 (type1 type2)
2736 (every/type #'csubtypep type1 (intersection-type-types type2)))
2738 (!define-type-method (intersection :complex-subtypep-arg2) (type1 type2)
2739 (%intersection-complex-subtypep-arg2 type1 type2))
2741 ;;; FIXME: This will look eeriely familiar to readers of the UNION
2742 ;;; :SIMPLE-INTERSECTION2 :COMPLEX-INTERSECTION2 method. That's
2743 ;;; because it was generated by cut'n'paste methods. Given that
2744 ;;; intersections and unions have all sorts of symmetries known to
2745 ;;; mathematics, it shouldn't be beyond the ken of some programmers to
2746 ;;; reflect those symmetries in code in a way that ties them together
2747 ;;; more strongly than having two independent near-copies :-/
2748 (!define-type-method (intersection :simple-union2 :complex-union2)
2749 (type1 type2)
2750 ;; Within this method, type2 is guaranteed to be an intersection
2751 ;; type:
2752 (aver (intersection-type-p type2))
2753 ;; Make sure to call only the applicable methods...
2754 (cond ((and (intersection-type-p type1)
2755 (%intersection-simple-subtypep type1 type2)) type2)
2756 ((and (intersection-type-p type1)
2757 (%intersection-simple-subtypep type2 type1)) type1)
2758 ((and (not (intersection-type-p type1))
2759 (%intersection-complex-subtypep-arg2 type1 type2))
2760 type2)
2761 ((and (not (intersection-type-p type1))
2762 (%intersection-complex-subtypep-arg1 type2 type1))
2763 type1)
2764 ;; KLUDGE: This special (and somewhat hairy) magic is required
2765 ;; to deal with the RATIONAL/INTEGER special case. The UNION
2766 ;; of (INTEGER * -1) and (AND (RATIONAL * -1/2) (NOT INTEGER))
2767 ;; should be (RATIONAL * -1/2) -- CSR, 2003-02-28
2768 ((and (csubtypep type2 (specifier-type 'ratio))
2769 (numeric-type-p type1)
2770 (csubtypep type1 (specifier-type 'integer))
2771 (csubtypep type2
2772 (make-numeric-type
2773 :class 'rational
2774 :complexp nil
2775 :low (if (null (numeric-type-low type1))
2777 (list (1- (numeric-type-low type1))))
2778 :high (if (null (numeric-type-high type1))
2780 (list (1+ (numeric-type-high type1)))))))
2781 (type-union type1
2782 (apply #'type-intersection
2783 (remove (specifier-type '(not integer))
2784 (intersection-type-types type2)
2785 :test #'type=))))
2787 (let ((accumulator *universal-type*))
2788 (do ((t2s (intersection-type-types type2) (cdr t2s)))
2789 ((null t2s) accumulator)
2790 (let ((union (type-union type1 (car t2s))))
2791 (when (union-type-p union)
2792 ;; we have to give up here -- there are all sorts of
2793 ;; ordering worries, but it's better than before.
2794 ;; Doing exactly the same as in the UNION
2795 ;; :SIMPLE/:COMPLEX-INTERSECTION2 method causes stack
2796 ;; overflow with the mutual recursion never bottoming
2797 ;; out.
2798 (if (and (eq accumulator *universal-type*)
2799 (null (cdr t2s)))
2800 ;; KLUDGE: if we get here, we have a partially
2801 ;; simplified result. While this isn't by any
2802 ;; means a universal simplification, including
2803 ;; this logic here means that we can get (OR
2804 ;; KEYWORD (NOT KEYWORD)) canonicalized to T.
2805 (return union)
2806 (return nil)))
2807 (setf accumulator
2808 (type-intersection accumulator union))))))))
2810 (!def-type-translator and (&whole whole &rest type-specifiers)
2811 (apply #'type-intersection
2812 (mapcar #'specifier-type type-specifiers)))
2814 ;;;; union types
2816 (!define-type-class union)
2818 (!define-type-method (union :negate) (type)
2819 (declare (type ctype type))
2820 (apply #'type-intersection
2821 (mapcar #'type-negation (union-type-types type))))
2823 ;;; The LIST, FLOAT and REAL types have special names. Other union
2824 ;;; types just get mechanically unparsed.
2825 (!define-type-method (union :unparse) (type)
2826 (declare (type ctype type))
2827 (cond
2828 ((type= type (specifier-type 'list)) 'list)
2829 ((type= type (specifier-type 'float)) 'float)
2830 ((type= type (specifier-type 'real)) 'real)
2831 ((type= type (specifier-type 'sequence)) 'sequence)
2832 ((type= type (specifier-type 'bignum)) 'bignum)
2833 ((type= type (specifier-type 'simple-string)) 'simple-string)
2834 ((type= type (specifier-type 'string)) 'string)
2835 ((type= type (specifier-type 'complex)) 'complex)
2836 ((type= type (specifier-type 'standard-char)) 'standard-char)
2837 (t `(or ,@(mapcar #'type-specifier (union-type-types type))))))
2839 ;;; Two union types are equal if they are each subtypes of each
2840 ;;; other. We need to be this clever because our complex subtypep
2841 ;;; methods are now more accurate; we don't get infinite recursion
2842 ;;; because the simple-subtypep method delegates to complex-subtypep
2843 ;;; of the individual types of type1. - CSR, 2002-04-09
2845 ;;; Previous comment, now obsolete, but worth keeping around because
2846 ;;; it is true, though too strong a condition:
2848 ;;; Two union types are equal if their subtypes are equal sets.
2849 (!define-type-method (union :simple-=) (type1 type2)
2850 (multiple-value-bind (subtype certain?)
2851 (csubtypep type1 type2)
2852 (if subtype
2853 (csubtypep type2 type1)
2854 ;; we might as well become as certain as possible.
2855 (if certain?
2856 (values nil t)
2857 (multiple-value-bind (subtype certain?)
2858 (csubtypep type2 type1)
2859 (declare (ignore subtype))
2860 (values nil certain?))))))
2862 (!define-type-method (union :complex-=) (type1 type2)
2863 (declare (ignore type1))
2864 (if (some #'type-might-contain-other-types-p
2865 (union-type-types type2))
2866 (values nil nil)
2867 (values nil t)))
2869 ;;; Similarly, a union type is a subtype of another if and only if
2870 ;;; every element of TYPE1 is a subtype of TYPE2.
2871 (defun union-simple-subtypep (type1 type2)
2872 (every/type (swapped-args-fun #'union-complex-subtypep-arg2)
2873 type2
2874 (union-type-types type1)))
2876 (!define-type-method (union :simple-subtypep) (type1 type2)
2877 (union-simple-subtypep type1 type2))
2879 (defun union-complex-subtypep-arg1 (type1 type2)
2880 (every/type (swapped-args-fun #'csubtypep)
2881 type2
2882 (union-type-types type1)))
2884 (!define-type-method (union :complex-subtypep-arg1) (type1 type2)
2885 (union-complex-subtypep-arg1 type1 type2))
2887 (defun union-complex-subtypep-arg2 (type1 type2)
2888 ;; At this stage, we know that type2 is a union type and type1
2889 ;; isn't. We might as well check this, though:
2890 (aver (union-type-p type2))
2891 (aver (not (union-type-p type1)))
2892 ;; was: (any/type #'csubtypep type1 (union-type-types type2)), which
2893 ;; turns out to be too restrictive, causing bug 91.
2895 ;; the following reimplementation might look dodgy. It is dodgy. It
2896 ;; depends on the union :complex-= method not doing very much work
2897 ;; -- certainly, not using subtypep. Reasoning:
2899 ;; A is a subset of (B1 u B2)
2900 ;; <=> A n (B1 u B2) = A
2901 ;; <=> (A n B1) u (A n B2) = A
2903 ;; But, we have to be careful not to delegate this type= to
2904 ;; something that could invoke subtypep, which might get us back
2905 ;; here -> stack explosion. We therefore ensure that the second type
2906 ;; (which is the one that's dispatched on) is either a union type
2907 ;; (where we've ensured that the complex-= method will not call
2908 ;; subtypep) or something with no union types involved, in which
2909 ;; case we'll never come back here.
2911 ;; If we don't do this, then e.g.
2912 ;; (SUBTYPEP '(MEMBER 3) '(OR (SATISFIES FOO) (SATISFIES BAR)))
2913 ;; would loop infinitely, as the member :complex-= method is
2914 ;; implemented in terms of subtypep.
2916 ;; Ouch. - CSR, 2002-04-10
2917 (multiple-value-bind (sub-value sub-certain?)
2918 (type= type1
2919 (apply #'type-union
2920 (mapcar (lambda (x) (type-intersection type1 x))
2921 (union-type-types type2))))
2922 (if sub-certain?
2923 (values sub-value sub-certain?)
2924 ;; The ANY/TYPE expression above is a sufficient condition for
2925 ;; subsetness, but not a necessary one, so we might get a more
2926 ;; certain answer by this CALL-NEXT-METHOD-ish step when the
2927 ;; ANY/TYPE expression is uncertain.
2928 (invoke-complex-subtypep-arg1-method type1 type2))))
2930 (!define-type-method (union :complex-subtypep-arg2) (type1 type2)
2931 (union-complex-subtypep-arg2 type1 type2))
2933 (!define-type-method (union :simple-intersection2 :complex-intersection2)
2934 (type1 type2)
2935 ;; The CSUBTYPEP clauses here let us simplify e.g.
2936 ;; (TYPE-INTERSECTION2 (SPECIFIER-TYPE 'LIST)
2937 ;; (SPECIFIER-TYPE '(OR LIST VECTOR)))
2938 ;; (where LIST is (OR CONS NULL)).
2940 ;; The tests are more or less (CSUBTYPEP TYPE1 TYPE2) and vice
2941 ;; versa, but it's important that we pre-expand them into
2942 ;; specialized operations on individual elements of
2943 ;; UNION-TYPE-TYPES, instead of using the ordinary call to
2944 ;; CSUBTYPEP, in order to avoid possibly invoking any methods which
2945 ;; might in turn invoke (TYPE-INTERSECTION2 TYPE1 TYPE2) and thus
2946 ;; cause infinite recursion.
2948 ;; Within this method, type2 is guaranteed to be a union type:
2949 (aver (union-type-p type2))
2950 ;; Make sure to call only the applicable methods...
2951 (cond ((and (union-type-p type1)
2952 (union-simple-subtypep type1 type2)) type1)
2953 ((and (union-type-p type1)
2954 (union-simple-subtypep type2 type1)) type2)
2955 ((and (not (union-type-p type1))
2956 (union-complex-subtypep-arg2 type1 type2))
2957 type1)
2958 ((and (not (union-type-p type1))
2959 (union-complex-subtypep-arg1 type2 type1))
2960 type2)
2962 ;; KLUDGE: This code accumulates a sequence of TYPE-UNION2
2963 ;; operations in a particular order, and gives up if any of
2964 ;; the sub-unions turn out not to be simple. In other cases
2965 ;; ca. sbcl-0.6.11.15, that approach to taking a union was a
2966 ;; bad idea, since it can overlook simplifications which
2967 ;; might occur if the terms were accumulated in a different
2968 ;; order. It's possible that that will be a problem here too.
2969 ;; However, I can't think of a good example to demonstrate
2970 ;; it, and without an example to demonstrate it I can't write
2971 ;; test cases, and without test cases I don't want to
2972 ;; complicate the code to address what's still a hypothetical
2973 ;; problem. So I punted. -- WHN 2001-03-20
2974 (let ((accumulator *empty-type*))
2975 (dolist (t2 (union-type-types type2) accumulator)
2976 (setf accumulator
2977 (type-union accumulator
2978 (type-intersection type1 t2))))))))
2980 (!def-type-translator or (&rest type-specifiers)
2981 (apply #'type-union
2982 (mapcar #'specifier-type
2983 type-specifiers)))
2985 ;;;; CONS types
2987 (!define-type-class cons)
2989 (!def-type-translator cons (&optional (car-type-spec '*) (cdr-type-spec '*))
2990 (let ((car-type (single-value-specifier-type car-type-spec))
2991 (cdr-type (single-value-specifier-type cdr-type-spec)))
2992 (make-cons-type car-type cdr-type)))
2994 (!define-type-method (cons :negate) (type)
2995 (if (and (eq (cons-type-car-type type) *universal-type*)
2996 (eq (cons-type-cdr-type type) *universal-type*))
2997 (make-negation-type :type type)
2998 (type-union
2999 (make-negation-type :type (specifier-type 'cons))
3000 (cond
3001 ((and (not (eq (cons-type-car-type type) *universal-type*))
3002 (not (eq (cons-type-cdr-type type) *universal-type*)))
3003 (type-union
3004 (make-cons-type
3005 (type-negation (cons-type-car-type type))
3006 *universal-type*)
3007 (make-cons-type
3008 *universal-type*
3009 (type-negation (cons-type-cdr-type type)))))
3010 ((not (eq (cons-type-car-type type) *universal-type*))
3011 (make-cons-type
3012 (type-negation (cons-type-car-type type))
3013 *universal-type*))
3014 ((not (eq (cons-type-cdr-type type) *universal-type*))
3015 (make-cons-type
3016 *universal-type*
3017 (type-negation (cons-type-cdr-type type))))
3018 (t (bug "Weird CONS type ~S" type))))))
3020 (!define-type-method (cons :unparse) (type)
3021 (let ((car-eltype (type-specifier (cons-type-car-type type)))
3022 (cdr-eltype (type-specifier (cons-type-cdr-type type))))
3023 (if (and (member car-eltype '(t *))
3024 (member cdr-eltype '(t *)))
3025 'cons
3026 `(cons ,car-eltype ,cdr-eltype))))
3028 (!define-type-method (cons :simple-=) (type1 type2)
3029 (declare (type cons-type type1 type2))
3030 (multiple-value-bind (car-match car-win)
3031 (type= (cons-type-car-type type1) (cons-type-car-type type2))
3032 (multiple-value-bind (cdr-match cdr-win)
3033 (type= (cons-type-cdr-type type1) (cons-type-cdr-type type2))
3034 (cond ((and car-match cdr-match)
3035 (aver (and car-win cdr-win))
3036 (values t t))
3038 (values nil
3039 ;; FIXME: Ideally we would like to detect and handle
3040 ;; (CONS UNKNOWN INTEGER) (CONS UNKNOWN SYMBOL) => NIL, T
3041 ;; but just returning a secondary true on (and car-win cdr-win)
3042 ;; unfortunately breaks other things. --NS 2006-08-16
3043 (and (or (and (not car-match) car-win)
3044 (and (not cdr-match) cdr-win))
3045 (not (and (cons-type-might-be-empty-type type1)
3046 (cons-type-might-be-empty-type type2))))))))))
3048 (!define-type-method (cons :simple-subtypep) (type1 type2)
3049 (declare (type cons-type type1 type2))
3050 (multiple-value-bind (val-car win-car)
3051 (csubtypep (cons-type-car-type type1) (cons-type-car-type type2))
3052 (multiple-value-bind (val-cdr win-cdr)
3053 (csubtypep (cons-type-cdr-type type1) (cons-type-cdr-type type2))
3054 (if (and val-car val-cdr)
3055 (values t (and win-car win-cdr))
3056 (values nil (or (and (not val-car) win-car)
3057 (and (not val-cdr) win-cdr)))))))
3059 ;;; Give up if a precise type is not possible, to avoid returning
3060 ;;; overly general types.
3061 (!define-type-method (cons :simple-union2) (type1 type2)
3062 (declare (type cons-type type1 type2))
3063 (let ((car-type1 (cons-type-car-type type1))
3064 (car-type2 (cons-type-car-type type2))
3065 (cdr-type1 (cons-type-cdr-type type1))
3066 (cdr-type2 (cons-type-cdr-type type2))
3067 car-not1
3068 car-not2)
3069 ;; UGH. -- CSR, 2003-02-24
3070 (macrolet ((frob-car (car1 car2 cdr1 cdr2
3071 &optional (not1 nil not1p))
3072 `(type-union
3073 (make-cons-type ,car1 (type-union ,cdr1 ,cdr2))
3074 (make-cons-type
3075 (type-intersection ,car2
3076 ,(if not1p
3077 not1
3078 `(type-negation ,car1)))
3079 ,cdr2))))
3080 (cond ((type= car-type1 car-type2)
3081 (make-cons-type car-type1
3082 (type-union cdr-type1 cdr-type2)))
3083 ((type= cdr-type1 cdr-type2)
3084 (make-cons-type (type-union car-type1 car-type2)
3085 cdr-type1))
3086 ((csubtypep car-type1 car-type2)
3087 (frob-car car-type1 car-type2 cdr-type1 cdr-type2))
3088 ((csubtypep car-type2 car-type1)
3089 (frob-car car-type2 car-type1 cdr-type2 cdr-type1))
3090 ;; more general case of the above, but harder to compute
3091 ((progn
3092 (setf car-not1 (type-negation car-type1))
3093 (multiple-value-bind (yes win)
3094 (csubtypep car-type2 car-not1)
3095 (and (not yes) win)))
3096 (frob-car car-type1 car-type2 cdr-type1 cdr-type2 car-not1))
3097 ((progn
3098 (setf car-not2 (type-negation car-type2))
3099 (multiple-value-bind (yes win)
3100 (csubtypep car-type1 car-not2)
3101 (and (not yes) win)))
3102 (frob-car car-type2 car-type1 cdr-type2 cdr-type1 car-not2))
3103 ;; Don't put these in -- consider the effect of taking the
3104 ;; union of (CONS (INTEGER 0 2) (INTEGER 5 7)) and
3105 ;; (CONS (INTEGER 0 3) (INTEGER 5 6)).
3106 #+nil
3107 ((csubtypep cdr-type1 cdr-type2)
3108 (frob-cdr car-type1 car-type2 cdr-type1 cdr-type2))
3109 #+nil
3110 ((csubtypep cdr-type2 cdr-type1)
3111 (frob-cdr car-type2 car-type1 cdr-type2 cdr-type1))))))
3113 (!define-type-method (cons :simple-intersection2) (type1 type2)
3114 (declare (type cons-type type1 type2))
3115 (let ((car-int2 (type-intersection2 (cons-type-car-type type1)
3116 (cons-type-car-type type2)))
3117 (cdr-int2 (type-intersection2 (cons-type-cdr-type type1)
3118 (cons-type-cdr-type type2))))
3119 (cond
3120 ((and car-int2 cdr-int2) (make-cons-type car-int2 cdr-int2))
3121 (car-int2 (make-cons-type car-int2
3122 (type-intersection
3123 (cons-type-cdr-type type1)
3124 (cons-type-cdr-type type2))))
3125 (cdr-int2 (make-cons-type
3126 (type-intersection (cons-type-car-type type1)
3127 (cons-type-car-type type2))
3128 cdr-int2)))))
3130 (!define-superclasses cons ((cons)) !cold-init-forms)
3132 ;;;; CHARACTER-SET types
3134 (!define-type-class character-set)
3136 (!def-type-translator character-set
3137 (&optional (pairs '((0 . #.(1- sb!xc:char-code-limit)))))
3138 (make-character-set-type :pairs pairs))
3140 (!define-type-method (character-set :negate) (type)
3141 (let ((pairs (character-set-type-pairs type)))
3142 (if (and (= (length pairs) 1)
3143 (= (caar pairs) 0)
3144 (= (cdar pairs) (1- sb!xc:char-code-limit)))
3145 (make-negation-type :type type)
3146 (let ((not-character
3147 (make-negation-type
3148 :type (make-character-set-type
3149 :pairs '((0 . #.(1- sb!xc:char-code-limit)))))))
3150 (type-union
3151 not-character
3152 (make-character-set-type
3153 :pairs (let (not-pairs)
3154 (when (> (caar pairs) 0)
3155 (push (cons 0 (1- (caar pairs))) not-pairs))
3156 (do* ((tail pairs (cdr tail))
3157 (high1 (cdar tail) (cdar tail))
3158 (low2 (caadr tail) (caadr tail)))
3159 ((null (cdr tail))
3160 (when (< (cdar tail) (1- sb!xc:char-code-limit))
3161 (push (cons (1+ (cdar tail))
3162 (1- sb!xc:char-code-limit))
3163 not-pairs))
3164 (nreverse not-pairs))
3165 (push (cons (1+ high1) (1- low2)) not-pairs)))))))))
3167 (!define-type-method (character-set :unparse) (type)
3168 (cond
3169 ((type= type (specifier-type 'character)) 'character)
3170 ((type= type (specifier-type 'base-char)) 'base-char)
3171 ((type= type (specifier-type 'extended-char)) 'extended-char)
3172 ((type= type (specifier-type 'standard-char)) 'standard-char)
3173 (t (let ((pairs (character-set-type-pairs type)))
3174 `(member ,@(loop for (low . high) in pairs
3175 nconc (loop for code from low upto high
3176 collect (sb!xc:code-char code))))))))
3178 (!define-type-method (character-set :simple-=) (type1 type2)
3179 (let ((pairs1 (character-set-type-pairs type1))
3180 (pairs2 (character-set-type-pairs type2)))
3181 (values (equal pairs1 pairs2) t)))
3183 (!define-type-method (character-set :simple-subtypep) (type1 type2)
3184 (values
3185 (dolist (pair (character-set-type-pairs type1) t)
3186 (unless (position pair (character-set-type-pairs type2)
3187 :test (lambda (x y) (and (>= (car x) (car y))
3188 (<= (cdr x) (cdr y)))))
3189 (return nil)))
3192 (!define-type-method (character-set :simple-union2) (type1 type2)
3193 ;; KLUDGE: the canonizing in the MAKE-CHARACTER-SET-TYPE function
3194 ;; actually does the union for us. It might be a little fragile to
3195 ;; rely on it.
3196 (make-character-set-type
3197 :pairs (merge 'list
3198 (copy-alist (character-set-type-pairs type1))
3199 (copy-alist (character-set-type-pairs type2))
3200 #'< :key #'car)))
3202 (!define-type-method (character-set :simple-intersection2) (type1 type2)
3203 ;; KLUDGE: brute force.
3205 (let (pairs)
3206 (dolist (pair1 (character-set-type-pairs type1)
3207 (make-character-set-type
3208 :pairs (sort pairs #'< :key #'car)))
3209 (dolist (pair2 (character-set-type-pairs type2))
3210 (cond
3211 ((<= (car pair1) (car pair2) (cdr pair1))
3212 (push (cons (car pair2) (min (cdr pair1) (cdr pair2))) pairs))
3213 ((<= (car pair2) (car pair1) (cdr pair2))
3214 (push (cons (car pair1) (min (cdr pair1) (cdr pair2))) pairs))))))
3216 (make-character-set-type
3217 :pairs (intersect-type-pairs
3218 (character-set-type-pairs type1)
3219 (character-set-type-pairs type2))))
3222 ;;; Intersect two ordered lists of pairs
3223 ;;; Each list is of the form ((start1 . end1) ... (startn . endn)),
3224 ;;; where start1 <= end1 < start2 <= end2 < ... < startn <= endn.
3225 ;;; Each pair represents the integer interval start..end.
3227 (defun intersect-type-pairs (alist1 alist2)
3228 (if (and alist1 alist2)
3229 (let ((res nil)
3230 (pair1 (pop alist1))
3231 (pair2 (pop alist2)))
3232 (loop
3233 (when (> (car pair1) (car pair2))
3234 (rotatef pair1 pair2)
3235 (rotatef alist1 alist2))
3236 (let ((pair1-cdr (cdr pair1)))
3237 (cond
3238 ((> (car pair2) pair1-cdr)
3239 ;; No over lap -- discard pair1
3240 (unless alist1 (return))
3241 (setq pair1 (pop alist1)))
3242 ((<= (cdr pair2) pair1-cdr)
3243 (push (cons (car pair2) (cdr pair2)) res)
3244 (cond
3245 ((= (cdr pair2) pair1-cdr)
3246 (unless alist1 (return))
3247 (unless alist2 (return))
3248 (setq pair1 (pop alist1)
3249 pair2 (pop alist2)))
3250 (t ;; (< (cdr pair2) pair1-cdr)
3251 (unless alist2 (return))
3252 (setq pair1 (cons (1+ (cdr pair2)) pair1-cdr))
3253 (setq pair2 (pop alist2)))))
3254 (t ;; (> (cdr pair2) (cdr pair1))
3255 (push (cons (car pair2) pair1-cdr) res)
3256 (unless alist1 (return))
3257 (setq pair2 (cons (1+ pair1-cdr) (cdr pair2)))
3258 (setq pair1 (pop alist1))))))
3259 (nreverse res))
3260 nil))
3263 ;;; Return the type that describes all objects that are in X but not
3264 ;;; in Y. If we can't determine this type, then return NIL.
3266 ;;; For now, we only are clever dealing with union and member types.
3267 ;;; If either type is not a union type, then we pretend that it is a
3268 ;;; union of just one type. What we do is remove from X all the types
3269 ;;; that are a subtype any type in Y. If any type in X intersects with
3270 ;;; a type in Y but is not a subtype, then we give up.
3272 ;;; We must also special-case any member type that appears in the
3273 ;;; union. We remove from X's members all objects that are TYPEP to Y.
3274 ;;; If Y has any members, we must be careful that none of those
3275 ;;; members are CTYPEP to any of Y's non-member types. We give up in
3276 ;;; this case, since to compute that difference we would have to break
3277 ;;; the type from X into some collection of types that represents the
3278 ;;; type without that particular element. This seems too hairy to be
3279 ;;; worthwhile, given its low utility.
3280 (defun type-difference (x y)
3281 (let ((x-types (if (union-type-p x) (union-type-types x) (list x)))
3282 (y-types (if (union-type-p y) (union-type-types y) (list y))))
3283 (collect ((res))
3284 (dolist (x-type x-types)
3285 (if (member-type-p x-type)
3286 (let ((xset (alloc-xset))
3287 (fp-zeroes nil))
3288 (mapc-member-type-members
3289 (lambda (elt)
3290 (multiple-value-bind (ok sure) (ctypep elt y)
3291 (unless sure
3292 (return-from type-difference nil))
3293 (unless ok
3294 (if (fp-zero-p elt)
3295 (pushnew elt fp-zeroes)
3296 (add-to-xset elt xset)))))
3297 x-type)
3298 (unless (and (xset-empty-p xset) (not fp-zeroes))
3299 (res (make-member-type :xset xset :fp-zeroes fp-zeroes))))
3300 (dolist (y-type y-types (res x-type))
3301 (multiple-value-bind (val win) (csubtypep x-type y-type)
3302 (unless win (return-from type-difference nil))
3303 (when val (return))
3304 (when (types-equal-or-intersect x-type y-type)
3305 (return-from type-difference nil))))))
3306 (let ((y-mem (find-if #'member-type-p y-types)))
3307 (when y-mem
3308 (dolist (x-type x-types)
3309 (unless (member-type-p x-type)
3310 (mapc-member-type-members
3311 (lambda (member)
3312 (multiple-value-bind (ok sure) (ctypep member x-type)
3313 (when (or (not sure) ok)
3314 (return-from type-difference nil))))
3315 y-mem)))))
3316 (apply #'type-union (res)))))
3318 (!def-type-translator array (&optional (element-type '*)
3319 (dimensions '*))
3320 (specialize-array-type
3321 (make-array-type :dimensions (canonical-array-dimensions dimensions)
3322 :complexp :maybe
3323 :element-type (if (eq element-type '*)
3324 *wild-type*
3325 (specifier-type element-type)))))
3327 (!def-type-translator simple-array (&optional (element-type '*)
3328 (dimensions '*))
3329 (specialize-array-type
3330 (make-array-type :dimensions (canonical-array-dimensions dimensions)
3331 :complexp nil
3332 :element-type (if (eq element-type '*)
3333 *wild-type*
3334 (specifier-type element-type)))))
3336 ;;;; utilities shared between cross-compiler and target system
3338 ;;; Does the type derived from compilation of an actual function
3339 ;;; definition satisfy declarations of a function's type?
3340 (defun defined-ftype-matches-declared-ftype-p (defined-ftype declared-ftype)
3341 (declare (type ctype defined-ftype declared-ftype))
3342 (flet ((is-built-in-class-function-p (ctype)
3343 (and (built-in-classoid-p ctype)
3344 (eq (built-in-classoid-name ctype) 'function))))
3345 (cond (;; DECLARED-FTYPE could certainly be #<BUILT-IN-CLASS FUNCTION>;
3346 ;; that's what happens when we (DECLAIM (FTYPE FUNCTION FOO)).
3347 (is-built-in-class-function-p declared-ftype)
3348 ;; In that case, any definition satisfies the declaration.
3350 (;; It's not clear whether or how DEFINED-FTYPE might be
3351 ;; #<BUILT-IN-CLASS FUNCTION>, but it's not obviously
3352 ;; invalid, so let's handle that case too, just in case.
3353 (is-built-in-class-function-p defined-ftype)
3354 ;; No matter what DECLARED-FTYPE might be, we can't prove
3355 ;; that an object of type FUNCTION doesn't satisfy it, so
3356 ;; we return success no matter what.
3358 (;; Otherwise both of them must be FUN-TYPE objects.
3360 ;; FIXME: For now we only check compatibility of the return
3361 ;; type, not argument types, and we don't even check the
3362 ;; return type very precisely (as per bug 94a). It would be
3363 ;; good to do a better job. Perhaps to check the
3364 ;; compatibility of the arguments, we should (1) redo
3365 ;; VALUES-TYPES-EQUAL-OR-INTERSECT as
3366 ;; ARGS-TYPES-EQUAL-OR-INTERSECT, and then (2) apply it to
3367 ;; the ARGS-TYPE slices of the FUN-TYPEs. (ARGS-TYPE
3368 ;; is a base class both of VALUES-TYPE and of FUN-TYPE.)
3369 (values-types-equal-or-intersect
3370 (fun-type-returns defined-ftype)
3371 (fun-type-returns declared-ftype))))))
3373 ;;; This messy case of CTYPE for NUMBER is shared between the
3374 ;;; cross-compiler and the target system.
3375 (defun ctype-of-number (x)
3376 (let ((num (if (complexp x) (realpart x) x)))
3377 (multiple-value-bind (complexp low high)
3378 (if (complexp x)
3379 (let ((imag (imagpart x)))
3380 (values :complex (min num imag) (max num imag)))
3381 (values :real num num))
3382 (make-numeric-type :class (etypecase num
3383 (integer (if (complexp x)
3384 (if (integerp (imagpart x))
3385 'integer
3386 'rational)
3387 'integer))
3388 (rational 'rational)
3389 (float 'float))
3390 :format (and (floatp num) (float-format-name num))
3391 :complexp complexp
3392 :low low
3393 :high high))))
3395 (locally
3396 ;; Why SAFETY 0? To suppress the is-it-the-right-structure-type
3397 ;; checking for declarations in structure accessors. Otherwise we
3398 ;; can get caught in a chicken-and-egg bootstrapping problem, whose
3399 ;; symptom on x86 OpenBSD sbcl-0.pre7.37.flaky5.22 is an illegal
3400 ;; instruction trap. I haven't tracked it down, but I'm guessing it
3401 ;; has to do with setting LAYOUTs when the LAYOUT hasn't been set
3402 ;; yet. -- WHN
3403 (declare (optimize (safety 0)))
3404 (!defun-from-collected-cold-init-forms !late-type-cold-init))
3406 (/show0 "late-type.lisp end of file")