1.0.23.59: bug 3b has been fixed a while now
[sbcl/tcr.git] / src / runtime / gencgc.c
bloba13bbebb4fd852ddd56710ec7fb11d87d2d5f4d4
1 /*
2 * GENerational Conservative Garbage Collector for SBCL
3 */
5 /*
6 * This software is part of the SBCL system. See the README file for
7 * more information.
9 * This software is derived from the CMU CL system, which was
10 * written at Carnegie Mellon University and released into the
11 * public domain. The software is in the public domain and is
12 * provided with absolutely no warranty. See the COPYING and CREDITS
13 * files for more information.
17 * For a review of garbage collection techniques (e.g. generational
18 * GC) and terminology (e.g. "scavenging") see Paul R. Wilson,
19 * "Uniprocessor Garbage Collection Techniques". As of 20000618, this
20 * had been accepted for _ACM Computing Surveys_ and was available
21 * as a PostScript preprint through
22 * <http://www.cs.utexas.edu/users/oops/papers.html>
23 * as
24 * <ftp://ftp.cs.utexas.edu/pub/garbage/bigsurv.ps>.
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <signal.h>
30 #include <errno.h>
31 #include <string.h>
32 #include "sbcl.h"
33 #include "runtime.h"
34 #include "os.h"
35 #include "interr.h"
36 #include "globals.h"
37 #include "interrupt.h"
38 #include "validate.h"
39 #include "lispregs.h"
40 #include "arch.h"
41 #include "gc.h"
42 #include "gc-internal.h"
43 #include "thread.h"
44 #include "alloc.h"
45 #include "genesis/vector.h"
46 #include "genesis/weak-pointer.h"
47 #include "genesis/fdefn.h"
48 #include "genesis/simple-fun.h"
49 #include "save.h"
50 #include "genesis/hash-table.h"
51 #include "genesis/instance.h"
52 #include "genesis/layout.h"
53 #include "gencgc.h"
54 #if defined(LUTEX_WIDETAG)
55 #include "pthread-lutex.h"
56 #endif
58 /* forward declarations */
59 page_index_t gc_find_freeish_pages(long *restart_page_ptr, long nbytes,
60 int page_type_flag);
64 * GC parameters
67 /* Generations 0-5 are normal collected generations, 6 is only used as
68 * scratch space by the collector, and should never get collected.
70 enum {
71 HIGHEST_NORMAL_GENERATION = 5,
72 PSEUDO_STATIC_GENERATION,
73 SCRATCH_GENERATION,
74 NUM_GENERATIONS
77 /* Should we use page protection to help avoid the scavenging of pages
78 * that don't have pointers to younger generations? */
79 boolean enable_page_protection = 1;
81 /* the minimum size (in bytes) for a large object*/
82 long large_object_size = 4 * PAGE_BYTES;
86 * debugging
89 /* the verbosity level. All non-error messages are disabled at level 0;
90 * and only a few rare messages are printed at level 1. */
91 #ifdef QSHOW
92 boolean gencgc_verbose = 1;
93 #else
94 boolean gencgc_verbose = 0;
95 #endif
97 /* FIXME: At some point enable the various error-checking things below
98 * and see what they say. */
100 /* We hunt for pointers to old-space, when GCing generations >= verify_gen.
101 * Set verify_gens to HIGHEST_NORMAL_GENERATION + 1 to disable this kind of
102 * check. */
103 generation_index_t verify_gens = HIGHEST_NORMAL_GENERATION + 1;
105 /* Should we do a pre-scan verify of generation 0 before it's GCed? */
106 boolean pre_verify_gen_0 = 0;
108 /* Should we check for bad pointers after gc_free_heap is called
109 * from Lisp PURIFY? */
110 boolean verify_after_free_heap = 0;
112 /* Should we print a note when code objects are found in the dynamic space
113 * during a heap verify? */
114 boolean verify_dynamic_code_check = 0;
116 /* Should we check code objects for fixup errors after they are transported? */
117 boolean check_code_fixups = 0;
119 /* Should we check that newly allocated regions are zero filled? */
120 boolean gencgc_zero_check = 0;
122 /* Should we check that the free space is zero filled? */
123 boolean gencgc_enable_verify_zero_fill = 0;
125 /* Should we check that free pages are zero filled during gc_free_heap
126 * called after Lisp PURIFY? */
127 boolean gencgc_zero_check_during_free_heap = 0;
129 /* When loading a core, don't do a full scan of the memory for the
130 * memory region boundaries. (Set to true by coreparse.c if the core
131 * contained a pagetable entry).
133 boolean gencgc_partial_pickup = 0;
135 /* If defined, free pages are read-protected to ensure that nothing
136 * accesses them.
139 /* #define READ_PROTECT_FREE_PAGES */
143 * GC structures and variables
146 /* the total bytes allocated. These are seen by Lisp DYNAMIC-USAGE. */
147 unsigned long bytes_allocated = 0;
148 unsigned long auto_gc_trigger = 0;
150 /* the source and destination generations. These are set before a GC starts
151 * scavenging. */
152 generation_index_t from_space;
153 generation_index_t new_space;
155 /* Set to 1 when in GC */
156 boolean gc_active_p = 0;
158 /* should the GC be conservative on stack. If false (only right before
159 * saving a core), don't scan the stack / mark pages dont_move. */
160 static boolean conservative_stack = 1;
162 /* An array of page structures is allocated on gc initialization.
163 * This helps quickly map between an address its page structure.
164 * page_table_pages is set from the size of the dynamic space. */
165 page_index_t page_table_pages;
166 struct page *page_table;
168 static inline boolean page_allocated_p(page_index_t page) {
169 return (page_table[page].allocated != FREE_PAGE_FLAG);
172 static inline boolean page_no_region_p(page_index_t page) {
173 return !(page_table[page].allocated & OPEN_REGION_PAGE_FLAG);
176 static inline boolean page_allocated_no_region_p(page_index_t page) {
177 return ((page_table[page].allocated & (UNBOXED_PAGE_FLAG | BOXED_PAGE_FLAG))
178 && page_no_region_p(page));
181 static inline boolean page_free_p(page_index_t page) {
182 return (page_table[page].allocated == FREE_PAGE_FLAG);
185 static inline boolean page_boxed_p(page_index_t page) {
186 return (page_table[page].allocated & BOXED_PAGE_FLAG);
189 static inline boolean code_page_p(page_index_t page) {
190 return (page_table[page].allocated & CODE_PAGE_FLAG);
193 static inline boolean page_boxed_no_region_p(page_index_t page) {
194 return page_boxed_p(page) && page_no_region_p(page);
197 static inline boolean page_unboxed_p(page_index_t page) {
198 /* Both flags set == boxed code page */
199 return ((page_table[page].allocated & UNBOXED_PAGE_FLAG)
200 && !page_boxed_p(page));
203 static inline boolean protect_page_p(page_index_t page, generation_index_t generation) {
204 return (page_boxed_no_region_p(page)
205 && (page_table[page].bytes_used != 0)
206 && !page_table[page].dont_move
207 && (page_table[page].gen == generation));
210 /* To map addresses to page structures the address of the first page
211 * is needed. */
212 static void *heap_base = NULL;
214 /* Calculate the start address for the given page number. */
215 inline void *
216 page_address(page_index_t page_num)
218 return (heap_base + (page_num * PAGE_BYTES));
221 /* Calculate the address where the allocation region associated with
222 * the page starts. */
223 static inline void *
224 page_region_start(page_index_t page_index)
226 return page_address(page_index)-page_table[page_index].region_start_offset;
229 /* Find the page index within the page_table for the given
230 * address. Return -1 on failure. */
231 inline page_index_t
232 find_page_index(void *addr)
234 if (addr >= heap_base) {
235 page_index_t index = ((pointer_sized_uint_t)addr -
236 (pointer_sized_uint_t)heap_base) / PAGE_BYTES;
237 if (index < page_table_pages)
238 return (index);
240 return (-1);
243 static size_t
244 npage_bytes(long npages)
246 gc_assert(npages>=0);
247 return ((unsigned long)npages)*PAGE_BYTES;
250 /* Check that X is a higher address than Y and return offset from Y to
251 * X in bytes. */
252 static inline
253 size_t void_diff(void *x, void *y)
255 gc_assert(x >= y);
256 return (pointer_sized_uint_t)x - (pointer_sized_uint_t)y;
259 /* a structure to hold the state of a generation */
260 struct generation {
262 /* the first page that gc_alloc() checks on its next call */
263 page_index_t alloc_start_page;
265 /* the first page that gc_alloc_unboxed() checks on its next call */
266 page_index_t alloc_unboxed_start_page;
268 /* the first page that gc_alloc_large (boxed) considers on its next
269 * call. (Although it always allocates after the boxed_region.) */
270 page_index_t alloc_large_start_page;
272 /* the first page that gc_alloc_large (unboxed) considers on its
273 * next call. (Although it always allocates after the
274 * current_unboxed_region.) */
275 page_index_t alloc_large_unboxed_start_page;
277 /* the bytes allocated to this generation */
278 unsigned long bytes_allocated;
280 /* the number of bytes at which to trigger a GC */
281 unsigned long gc_trigger;
283 /* to calculate a new level for gc_trigger */
284 unsigned long bytes_consed_between_gc;
286 /* the number of GCs since the last raise */
287 int num_gc;
289 /* the average age after which a GC will raise objects to the
290 * next generation */
291 int trigger_age;
293 /* the cumulative sum of the bytes allocated to this generation. It is
294 * cleared after a GC on this generations, and update before new
295 * objects are added from a GC of a younger generation. Dividing by
296 * the bytes_allocated will give the average age of the memory in
297 * this generation since its last GC. */
298 unsigned long cum_sum_bytes_allocated;
300 /* a minimum average memory age before a GC will occur helps
301 * prevent a GC when a large number of new live objects have been
302 * added, in which case a GC could be a waste of time */
303 double min_av_mem_age;
305 /* A linked list of lutex structures in this generation, used for
306 * implementing lutex finalization. */
307 #ifdef LUTEX_WIDETAG
308 struct lutex *lutexes;
309 #else
310 void *lutexes;
311 #endif
314 /* an array of generation structures. There needs to be one more
315 * generation structure than actual generations as the oldest
316 * generation is temporarily raised then lowered. */
317 struct generation generations[NUM_GENERATIONS];
319 /* the oldest generation that is will currently be GCed by default.
320 * Valid values are: 0, 1, ... HIGHEST_NORMAL_GENERATION
322 * The default of HIGHEST_NORMAL_GENERATION enables GC on all generations.
324 * Setting this to 0 effectively disables the generational nature of
325 * the GC. In some applications generational GC may not be useful
326 * because there are no long-lived objects.
328 * An intermediate value could be handy after moving long-lived data
329 * into an older generation so an unnecessary GC of this long-lived
330 * data can be avoided. */
331 generation_index_t gencgc_oldest_gen_to_gc = HIGHEST_NORMAL_GENERATION;
333 /* The maximum free page in the heap is maintained and used to update
334 * ALLOCATION_POINTER which is used by the room function to limit its
335 * search of the heap. XX Gencgc obviously needs to be better
336 * integrated with the Lisp code. */
337 page_index_t last_free_page;
339 #ifdef LISP_FEATURE_SB_THREAD
340 /* This lock is to prevent multiple threads from simultaneously
341 * allocating new regions which overlap each other. Note that the
342 * majority of GC is single-threaded, but alloc() may be called from
343 * >1 thread at a time and must be thread-safe. This lock must be
344 * seized before all accesses to generations[] or to parts of
345 * page_table[] that other threads may want to see */
346 static pthread_mutex_t free_pages_lock = PTHREAD_MUTEX_INITIALIZER;
347 /* This lock is used to protect non-thread-local allocation. */
348 static pthread_mutex_t allocation_lock = PTHREAD_MUTEX_INITIALIZER;
349 #endif
353 * miscellaneous heap functions
356 /* Count the number of pages which are write-protected within the
357 * given generation. */
358 static long
359 count_write_protect_generation_pages(generation_index_t generation)
361 page_index_t i;
362 unsigned long count = 0;
364 for (i = 0; i < last_free_page; i++)
365 if (page_allocated_p(i)
366 && (page_table[i].gen == generation)
367 && (page_table[i].write_protected == 1))
368 count++;
369 return count;
372 /* Count the number of pages within the given generation. */
373 static long
374 count_generation_pages(generation_index_t generation)
376 page_index_t i;
377 long count = 0;
379 for (i = 0; i < last_free_page; i++)
380 if (page_allocated_p(i)
381 && (page_table[i].gen == generation))
382 count++;
383 return count;
386 #ifdef QSHOW
387 static long
388 count_dont_move_pages(void)
390 page_index_t i;
391 long count = 0;
392 for (i = 0; i < last_free_page; i++) {
393 if (page_allocated_p(i)
394 && (page_table[i].dont_move != 0)) {
395 ++count;
398 return count;
400 #endif /* QSHOW */
402 /* Work through the pages and add up the number of bytes used for the
403 * given generation. */
404 static unsigned long
405 count_generation_bytes_allocated (generation_index_t gen)
407 page_index_t i;
408 unsigned long result = 0;
409 for (i = 0; i < last_free_page; i++) {
410 if (page_allocated_p(i)
411 && (page_table[i].gen == gen))
412 result += page_table[i].bytes_used;
414 return result;
417 /* Return the average age of the memory in a generation. */
418 static double
419 gen_av_mem_age(generation_index_t gen)
421 if (generations[gen].bytes_allocated == 0)
422 return 0.0;
424 return
425 ((double)generations[gen].cum_sum_bytes_allocated)
426 / ((double)generations[gen].bytes_allocated);
429 /* The verbose argument controls how much to print: 0 for normal
430 * level of detail; 1 for debugging. */
431 static void
432 print_generation_stats(int verbose) /* FIXME: should take FILE argument */
434 generation_index_t i, gens;
436 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
437 #define FPU_STATE_SIZE 27
438 int fpu_state[FPU_STATE_SIZE];
439 #elif defined(LISP_FEATURE_PPC)
440 #define FPU_STATE_SIZE 32
441 long long fpu_state[FPU_STATE_SIZE];
442 #endif
444 /* This code uses the FP instructions which may be set up for Lisp
445 * so they need to be saved and reset for C. */
446 fpu_save(fpu_state);
448 /* highest generation to print */
449 if (verbose)
450 gens = SCRATCH_GENERATION;
451 else
452 gens = PSEUDO_STATIC_GENERATION;
454 /* Print the heap stats. */
455 fprintf(stderr,
456 " Gen StaPg UbSta LaSta LUbSt Boxed Unboxed LB LUB !move Alloc Waste Trig WP GCs Mem-age\n");
458 for (i = 0; i < gens; i++) {
459 page_index_t j;
460 long boxed_cnt = 0;
461 long unboxed_cnt = 0;
462 long large_boxed_cnt = 0;
463 long large_unboxed_cnt = 0;
464 long pinned_cnt=0;
466 for (j = 0; j < last_free_page; j++)
467 if (page_table[j].gen == i) {
469 /* Count the number of boxed pages within the given
470 * generation. */
471 if (page_boxed_p(j)) {
472 if (page_table[j].large_object)
473 large_boxed_cnt++;
474 else
475 boxed_cnt++;
477 if(page_table[j].dont_move) pinned_cnt++;
478 /* Count the number of unboxed pages within the given
479 * generation. */
480 if (page_unboxed_p(j)) {
481 if (page_table[j].large_object)
482 large_unboxed_cnt++;
483 else
484 unboxed_cnt++;
488 gc_assert(generations[i].bytes_allocated
489 == count_generation_bytes_allocated(i));
490 fprintf(stderr,
491 " %1d: %5ld %5ld %5ld %5ld %5ld %5ld %5ld %5ld %5ld %8ld %5ld %8ld %4ld %3d %7.4f\n",
493 generations[i].alloc_start_page,
494 generations[i].alloc_unboxed_start_page,
495 generations[i].alloc_large_start_page,
496 generations[i].alloc_large_unboxed_start_page,
497 boxed_cnt,
498 unboxed_cnt,
499 large_boxed_cnt,
500 large_unboxed_cnt,
501 pinned_cnt,
502 generations[i].bytes_allocated,
503 (npage_bytes(count_generation_pages(i))
504 - generations[i].bytes_allocated),
505 generations[i].gc_trigger,
506 count_write_protect_generation_pages(i),
507 generations[i].num_gc,
508 gen_av_mem_age(i));
510 fprintf(stderr," Total bytes allocated = %lu\n", bytes_allocated);
511 fprintf(stderr," Dynamic-space-size bytes = %lu\n", dynamic_space_size);
513 fpu_restore(fpu_state);
517 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
518 void fast_bzero(void*, size_t); /* in <arch>-assem.S */
519 #endif
521 /* Zero the pages from START to END (inclusive), but use mmap/munmap instead
522 * if zeroing it ourselves, i.e. in practice give the memory back to the
523 * OS. Generally done after a large GC.
525 void zero_pages_with_mmap(page_index_t start, page_index_t end) {
526 int i;
527 void *addr = page_address(start), *new_addr;
528 size_t length = npage_bytes(1+end-start);
530 if (start > end)
531 return;
533 os_invalidate(addr, length);
534 new_addr = os_validate(addr, length);
535 if (new_addr == NULL || new_addr != addr) {
536 lose("remap_free_pages: page moved, 0x%08x ==> 0x%08x",
537 start, new_addr);
540 for (i = start; i <= end; i++) {
541 page_table[i].need_to_zero = 0;
545 /* Zero the pages from START to END (inclusive). Generally done just after
546 * a new region has been allocated.
548 static void
549 zero_pages(page_index_t start, page_index_t end) {
550 if (start > end)
551 return;
553 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
554 fast_bzero(page_address(start), npage_bytes(1+end-start));
555 #else
556 bzero(page_address(start), npage_bytes(1+end-start));
557 #endif
561 /* Zero the pages from START to END (inclusive), except for those
562 * pages that are known to already zeroed. Mark all pages in the
563 * ranges as non-zeroed.
565 static void
566 zero_dirty_pages(page_index_t start, page_index_t end) {
567 page_index_t i;
569 for (i = start; i <= end; i++) {
570 if (page_table[i].need_to_zero == 1) {
571 zero_pages(start, end);
572 break;
576 for (i = start; i <= end; i++) {
577 page_table[i].need_to_zero = 1;
583 * To support quick and inline allocation, regions of memory can be
584 * allocated and then allocated from with just a free pointer and a
585 * check against an end address.
587 * Since objects can be allocated to spaces with different properties
588 * e.g. boxed/unboxed, generation, ages; there may need to be many
589 * allocation regions.
591 * Each allocation region may start within a partly used page. Many
592 * features of memory use are noted on a page wise basis, e.g. the
593 * generation; so if a region starts within an existing allocated page
594 * it must be consistent with this page.
596 * During the scavenging of the newspace, objects will be transported
597 * into an allocation region, and pointers updated to point to this
598 * allocation region. It is possible that these pointers will be
599 * scavenged again before the allocation region is closed, e.g. due to
600 * trans_list which jumps all over the place to cleanup the list. It
601 * is important to be able to determine properties of all objects
602 * pointed to when scavenging, e.g to detect pointers to the oldspace.
603 * Thus it's important that the allocation regions have the correct
604 * properties set when allocated, and not just set when closed. The
605 * region allocation routines return regions with the specified
606 * properties, and grab all the pages, setting their properties
607 * appropriately, except that the amount used is not known.
609 * These regions are used to support quicker allocation using just a
610 * free pointer. The actual space used by the region is not reflected
611 * in the pages tables until it is closed. It can't be scavenged until
612 * closed.
614 * When finished with the region it should be closed, which will
615 * update the page tables for the actual space used returning unused
616 * space. Further it may be noted in the new regions which is
617 * necessary when scavenging the newspace.
619 * Large objects may be allocated directly without an allocation
620 * region, the page tables are updated immediately.
622 * Unboxed objects don't contain pointers to other objects and so
623 * don't need scavenging. Further they can't contain pointers to
624 * younger generations so WP is not needed. By allocating pages to
625 * unboxed objects the whole page never needs scavenging or
626 * write-protecting. */
628 /* We are only using two regions at present. Both are for the current
629 * newspace generation. */
630 struct alloc_region boxed_region;
631 struct alloc_region unboxed_region;
633 /* The generation currently being allocated to. */
634 static generation_index_t gc_alloc_generation;
636 static inline page_index_t
637 generation_alloc_start_page(generation_index_t generation, int page_type_flag, int large)
639 if (large) {
640 if (UNBOXED_PAGE_FLAG == page_type_flag) {
641 return generations[generation].alloc_large_unboxed_start_page;
642 } else if (BOXED_PAGE_FLAG & page_type_flag) {
643 /* Both code and data. */
644 return generations[generation].alloc_large_start_page;
645 } else {
646 lose("bad page type flag: %d", page_type_flag);
648 } else {
649 if (UNBOXED_PAGE_FLAG == page_type_flag) {
650 return generations[generation].alloc_unboxed_start_page;
651 } else if (BOXED_PAGE_FLAG & page_type_flag) {
652 /* Both code and data. */
653 return generations[generation].alloc_start_page;
654 } else {
655 lose("bad page_type_flag: %d", page_type_flag);
660 static inline void
661 set_generation_alloc_start_page(generation_index_t generation, int page_type_flag, int large,
662 page_index_t page)
664 if (large) {
665 if (UNBOXED_PAGE_FLAG == page_type_flag) {
666 generations[generation].alloc_large_unboxed_start_page = page;
667 } else if (BOXED_PAGE_FLAG & page_type_flag) {
668 /* Both code and data. */
669 generations[generation].alloc_large_start_page = page;
670 } else {
671 lose("bad page type flag: %d", page_type_flag);
673 } else {
674 if (UNBOXED_PAGE_FLAG == page_type_flag) {
675 generations[generation].alloc_unboxed_start_page = page;
676 } else if (BOXED_PAGE_FLAG & page_type_flag) {
677 /* Both code and data. */
678 generations[generation].alloc_start_page = page;
679 } else {
680 lose("bad page type flag: %d", page_type_flag);
685 /* Find a new region with room for at least the given number of bytes.
687 * It starts looking at the current generation's alloc_start_page. So
688 * may pick up from the previous region if there is enough space. This
689 * keeps the allocation contiguous when scavenging the newspace.
691 * The alloc_region should have been closed by a call to
692 * gc_alloc_update_page_tables(), and will thus be in an empty state.
694 * To assist the scavenging functions write-protected pages are not
695 * used. Free pages should not be write-protected.
697 * It is critical to the conservative GC that the start of regions be
698 * known. To help achieve this only small regions are allocated at a
699 * time.
701 * During scavenging, pointers may be found to within the current
702 * region and the page generation must be set so that pointers to the
703 * from space can be recognized. Therefore the generation of pages in
704 * the region are set to gc_alloc_generation. To prevent another
705 * allocation call using the same pages, all the pages in the region
706 * are allocated, although they will initially be empty.
708 static void
709 gc_alloc_new_region(long nbytes, int page_type_flag, struct alloc_region *alloc_region)
711 page_index_t first_page;
712 page_index_t last_page;
713 unsigned long bytes_found;
714 page_index_t i;
715 int ret;
718 FSHOW((stderr,
719 "/alloc_new_region for %d bytes from gen %d\n",
720 nbytes, gc_alloc_generation));
723 /* Check that the region is in a reset state. */
724 gc_assert((alloc_region->first_page == 0)
725 && (alloc_region->last_page == -1)
726 && (alloc_region->free_pointer == alloc_region->end_addr));
727 ret = thread_mutex_lock(&free_pages_lock);
728 gc_assert(ret == 0);
729 first_page = generation_alloc_start_page(gc_alloc_generation, page_type_flag, 0);
730 last_page=gc_find_freeish_pages(&first_page, nbytes, page_type_flag);
731 bytes_found=(PAGE_BYTES - page_table[first_page].bytes_used)
732 + npage_bytes(last_page-first_page);
734 /* Set up the alloc_region. */
735 alloc_region->first_page = first_page;
736 alloc_region->last_page = last_page;
737 alloc_region->start_addr = page_table[first_page].bytes_used
738 + page_address(first_page);
739 alloc_region->free_pointer = alloc_region->start_addr;
740 alloc_region->end_addr = alloc_region->start_addr + bytes_found;
742 /* Set up the pages. */
744 /* The first page may have already been in use. */
745 if (page_table[first_page].bytes_used == 0) {
746 page_table[first_page].allocated = page_type_flag;
747 page_table[first_page].gen = gc_alloc_generation;
748 page_table[first_page].large_object = 0;
749 page_table[first_page].region_start_offset = 0;
752 gc_assert(page_table[first_page].allocated == page_type_flag);
753 page_table[first_page].allocated |= OPEN_REGION_PAGE_FLAG;
755 gc_assert(page_table[first_page].gen == gc_alloc_generation);
756 gc_assert(page_table[first_page].large_object == 0);
758 for (i = first_page+1; i <= last_page; i++) {
759 page_table[i].allocated = page_type_flag;
760 page_table[i].gen = gc_alloc_generation;
761 page_table[i].large_object = 0;
762 /* This may not be necessary for unboxed regions (think it was
763 * broken before!) */
764 page_table[i].region_start_offset =
765 void_diff(page_address(i),alloc_region->start_addr);
766 page_table[i].allocated |= OPEN_REGION_PAGE_FLAG ;
768 /* Bump up last_free_page. */
769 if (last_page+1 > last_free_page) {
770 last_free_page = last_page+1;
771 /* do we only want to call this on special occasions? like for
772 * boxed_region? */
773 set_alloc_pointer((lispobj)page_address(last_free_page));
775 ret = thread_mutex_unlock(&free_pages_lock);
776 gc_assert(ret == 0);
778 #ifdef READ_PROTECT_FREE_PAGES
779 os_protect(page_address(first_page),
780 npage_bytes(1+last_page-first_page),
781 OS_VM_PROT_ALL);
782 #endif
784 /* If the first page was only partial, don't check whether it's
785 * zeroed (it won't be) and don't zero it (since the parts that
786 * we're interested in are guaranteed to be zeroed).
788 if (page_table[first_page].bytes_used) {
789 first_page++;
792 zero_dirty_pages(first_page, last_page);
794 /* we can do this after releasing free_pages_lock */
795 if (gencgc_zero_check) {
796 long *p;
797 for (p = (long *)alloc_region->start_addr;
798 p < (long *)alloc_region->end_addr; p++) {
799 if (*p != 0) {
800 /* KLUDGE: It would be nice to use %lx and explicit casts
801 * (long) in code like this, so that it is less likely to
802 * break randomly when running on a machine with different
803 * word sizes. -- WHN 19991129 */
804 lose("The new region at %x is not zero (start=%p, end=%p).\n",
805 p, alloc_region->start_addr, alloc_region->end_addr);
811 /* If the record_new_objects flag is 2 then all new regions created
812 * are recorded.
814 * If it's 1 then then it is only recorded if the first page of the
815 * current region is <= new_areas_ignore_page. This helps avoid
816 * unnecessary recording when doing full scavenge pass.
818 * The new_object structure holds the page, byte offset, and size of
819 * new regions of objects. Each new area is placed in the array of
820 * these structures pointer to by new_areas. new_areas_index holds the
821 * offset into new_areas.
823 * If new_area overflows NUM_NEW_AREAS then it stops adding them. The
824 * later code must detect this and handle it, probably by doing a full
825 * scavenge of a generation. */
826 #define NUM_NEW_AREAS 512
827 static int record_new_objects = 0;
828 static page_index_t new_areas_ignore_page;
829 struct new_area {
830 page_index_t page;
831 size_t offset;
832 size_t size;
834 static struct new_area (*new_areas)[];
835 static long new_areas_index;
836 long max_new_areas;
838 /* Add a new area to new_areas. */
839 static void
840 add_new_area(page_index_t first_page, size_t offset, size_t size)
842 unsigned long new_area_start,c;
843 long i;
845 /* Ignore if full. */
846 if (new_areas_index >= NUM_NEW_AREAS)
847 return;
849 switch (record_new_objects) {
850 case 0:
851 return;
852 case 1:
853 if (first_page > new_areas_ignore_page)
854 return;
855 break;
856 case 2:
857 break;
858 default:
859 gc_abort();
862 new_area_start = npage_bytes(first_page) + offset;
864 /* Search backwards for a prior area that this follows from. If
865 found this will save adding a new area. */
866 for (i = new_areas_index-1, c = 0; (i >= 0) && (c < 8); i--, c++) {
867 unsigned long area_end =
868 npage_bytes((*new_areas)[i].page)
869 + (*new_areas)[i].offset
870 + (*new_areas)[i].size;
871 /*FSHOW((stderr,
872 "/add_new_area S1 %d %d %d %d\n",
873 i, c, new_area_start, area_end));*/
874 if (new_area_start == area_end) {
875 /*FSHOW((stderr,
876 "/adding to [%d] %d %d %d with %d %d %d:\n",
878 (*new_areas)[i].page,
879 (*new_areas)[i].offset,
880 (*new_areas)[i].size,
881 first_page,
882 offset,
883 size);*/
884 (*new_areas)[i].size += size;
885 return;
889 (*new_areas)[new_areas_index].page = first_page;
890 (*new_areas)[new_areas_index].offset = offset;
891 (*new_areas)[new_areas_index].size = size;
892 /*FSHOW((stderr,
893 "/new_area %d page %d offset %d size %d\n",
894 new_areas_index, first_page, offset, size));*/
895 new_areas_index++;
897 /* Note the max new_areas used. */
898 if (new_areas_index > max_new_areas)
899 max_new_areas = new_areas_index;
902 /* Update the tables for the alloc_region. The region may be added to
903 * the new_areas.
905 * When done the alloc_region is set up so that the next quick alloc
906 * will fail safely and thus a new region will be allocated. Further
907 * it is safe to try to re-update the page table of this reset
908 * alloc_region. */
909 void
910 gc_alloc_update_page_tables(int page_type_flag, struct alloc_region *alloc_region)
912 int more;
913 page_index_t first_page;
914 page_index_t next_page;
915 unsigned long bytes_used;
916 unsigned long orig_first_page_bytes_used;
917 unsigned long region_size;
918 unsigned long byte_cnt;
919 int ret;
922 first_page = alloc_region->first_page;
924 /* Catch an unused alloc_region. */
925 if ((first_page == 0) && (alloc_region->last_page == -1))
926 return;
928 next_page = first_page+1;
930 ret = thread_mutex_lock(&free_pages_lock);
931 gc_assert(ret == 0);
932 if (alloc_region->free_pointer != alloc_region->start_addr) {
933 /* some bytes were allocated in the region */
934 orig_first_page_bytes_used = page_table[first_page].bytes_used;
936 gc_assert(alloc_region->start_addr ==
937 (page_address(first_page)
938 + page_table[first_page].bytes_used));
940 /* All the pages used need to be updated */
942 /* Update the first page. */
944 /* If the page was free then set up the gen, and
945 * region_start_offset. */
946 if (page_table[first_page].bytes_used == 0)
947 gc_assert(page_table[first_page].region_start_offset == 0);
948 page_table[first_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
950 gc_assert(page_table[first_page].allocated & page_type_flag);
951 gc_assert(page_table[first_page].gen == gc_alloc_generation);
952 gc_assert(page_table[first_page].large_object == 0);
954 byte_cnt = 0;
956 /* Calculate the number of bytes used in this page. This is not
957 * always the number of new bytes, unless it was free. */
958 more = 0;
959 if ((bytes_used = void_diff(alloc_region->free_pointer,
960 page_address(first_page)))
961 >PAGE_BYTES) {
962 bytes_used = PAGE_BYTES;
963 more = 1;
965 page_table[first_page].bytes_used = bytes_used;
966 byte_cnt += bytes_used;
969 /* All the rest of the pages should be free. We need to set
970 * their region_start_offset pointer to the start of the
971 * region, and set the bytes_used. */
972 while (more) {
973 page_table[next_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
974 gc_assert(page_table[next_page].allocated & page_type_flag);
975 gc_assert(page_table[next_page].bytes_used == 0);
976 gc_assert(page_table[next_page].gen == gc_alloc_generation);
977 gc_assert(page_table[next_page].large_object == 0);
979 gc_assert(page_table[next_page].region_start_offset ==
980 void_diff(page_address(next_page),
981 alloc_region->start_addr));
983 /* Calculate the number of bytes used in this page. */
984 more = 0;
985 if ((bytes_used = void_diff(alloc_region->free_pointer,
986 page_address(next_page)))>PAGE_BYTES) {
987 bytes_used = PAGE_BYTES;
988 more = 1;
990 page_table[next_page].bytes_used = bytes_used;
991 byte_cnt += bytes_used;
993 next_page++;
996 region_size = void_diff(alloc_region->free_pointer,
997 alloc_region->start_addr);
998 bytes_allocated += region_size;
999 generations[gc_alloc_generation].bytes_allocated += region_size;
1001 gc_assert((byte_cnt- orig_first_page_bytes_used) == region_size);
1003 /* Set the generations alloc restart page to the last page of
1004 * the region. */
1005 set_generation_alloc_start_page(gc_alloc_generation, page_type_flag, 0, next_page-1);
1007 /* Add the region to the new_areas if requested. */
1008 if (BOXED_PAGE_FLAG & page_type_flag)
1009 add_new_area(first_page,orig_first_page_bytes_used, region_size);
1012 FSHOW((stderr,
1013 "/gc_alloc_update_page_tables update %d bytes to gen %d\n",
1014 region_size,
1015 gc_alloc_generation));
1017 } else {
1018 /* There are no bytes allocated. Unallocate the first_page if
1019 * there are 0 bytes_used. */
1020 page_table[first_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
1021 if (page_table[first_page].bytes_used == 0)
1022 page_table[first_page].allocated = FREE_PAGE_FLAG;
1025 /* Unallocate any unused pages. */
1026 while (next_page <= alloc_region->last_page) {
1027 gc_assert(page_table[next_page].bytes_used == 0);
1028 page_table[next_page].allocated = FREE_PAGE_FLAG;
1029 next_page++;
1031 ret = thread_mutex_unlock(&free_pages_lock);
1032 gc_assert(ret == 0);
1034 /* alloc_region is per-thread, we're ok to do this unlocked */
1035 gc_set_region_empty(alloc_region);
1038 static inline void *gc_quick_alloc(long nbytes);
1040 /* Allocate a possibly large object. */
1041 void *
1042 gc_alloc_large(long nbytes, int page_type_flag, struct alloc_region *alloc_region)
1044 page_index_t first_page;
1045 page_index_t last_page;
1046 int orig_first_page_bytes_used;
1047 long byte_cnt;
1048 int more;
1049 long bytes_used;
1050 page_index_t next_page;
1051 int ret;
1053 ret = thread_mutex_lock(&free_pages_lock);
1054 gc_assert(ret == 0);
1056 first_page = generation_alloc_start_page(gc_alloc_generation, page_type_flag, 1);
1057 if (first_page <= alloc_region->last_page) {
1058 first_page = alloc_region->last_page+1;
1061 last_page=gc_find_freeish_pages(&first_page,nbytes, page_type_flag);
1063 gc_assert(first_page > alloc_region->last_page);
1065 set_generation_alloc_start_page(gc_alloc_generation, page_type_flag, 1, last_page);
1067 /* Set up the pages. */
1068 orig_first_page_bytes_used = page_table[first_page].bytes_used;
1070 /* If the first page was free then set up the gen, and
1071 * region_start_offset. */
1072 if (page_table[first_page].bytes_used == 0) {
1073 page_table[first_page].allocated = page_type_flag;
1074 page_table[first_page].gen = gc_alloc_generation;
1075 page_table[first_page].region_start_offset = 0;
1076 page_table[first_page].large_object = 1;
1079 gc_assert(page_table[first_page].allocated == page_type_flag);
1080 gc_assert(page_table[first_page].gen == gc_alloc_generation);
1081 gc_assert(page_table[first_page].large_object == 1);
1083 byte_cnt = 0;
1085 /* Calc. the number of bytes used in this page. This is not
1086 * always the number of new bytes, unless it was free. */
1087 more = 0;
1088 if ((bytes_used = nbytes+orig_first_page_bytes_used) > PAGE_BYTES) {
1089 bytes_used = PAGE_BYTES;
1090 more = 1;
1092 page_table[first_page].bytes_used = bytes_used;
1093 byte_cnt += bytes_used;
1095 next_page = first_page+1;
1097 /* All the rest of the pages should be free. We need to set their
1098 * region_start_offset pointer to the start of the region, and set
1099 * the bytes_used. */
1100 while (more) {
1101 gc_assert(page_free_p(next_page));
1102 gc_assert(page_table[next_page].bytes_used == 0);
1103 page_table[next_page].allocated = page_type_flag;
1104 page_table[next_page].gen = gc_alloc_generation;
1105 page_table[next_page].large_object = 1;
1107 page_table[next_page].region_start_offset =
1108 npage_bytes(next_page-first_page) - orig_first_page_bytes_used;
1110 /* Calculate the number of bytes used in this page. */
1111 more = 0;
1112 bytes_used=(nbytes+orig_first_page_bytes_used)-byte_cnt;
1113 if (bytes_used > PAGE_BYTES) {
1114 bytes_used = PAGE_BYTES;
1115 more = 1;
1117 page_table[next_page].bytes_used = bytes_used;
1118 page_table[next_page].write_protected=0;
1119 page_table[next_page].dont_move=0;
1120 byte_cnt += bytes_used;
1121 next_page++;
1124 gc_assert((byte_cnt-orig_first_page_bytes_used) == nbytes);
1126 bytes_allocated += nbytes;
1127 generations[gc_alloc_generation].bytes_allocated += nbytes;
1129 /* Add the region to the new_areas if requested. */
1130 if (BOXED_PAGE_FLAG & page_type_flag)
1131 add_new_area(first_page,orig_first_page_bytes_used,nbytes);
1133 /* Bump up last_free_page */
1134 if (last_page+1 > last_free_page) {
1135 last_free_page = last_page+1;
1136 set_alloc_pointer((lispobj)(page_address(last_free_page)));
1138 ret = thread_mutex_unlock(&free_pages_lock);
1139 gc_assert(ret == 0);
1141 #ifdef READ_PROTECT_FREE_PAGES
1142 os_protect(page_address(first_page),
1143 npage_bytes(1+last_page-first_page),
1144 OS_VM_PROT_ALL);
1145 #endif
1147 zero_dirty_pages(first_page, last_page);
1149 return page_address(first_page);
1152 static page_index_t gencgc_alloc_start_page = -1;
1154 void
1155 gc_heap_exhausted_error_or_lose (long available, long requested)
1157 /* Write basic information before doing anything else: if we don't
1158 * call to lisp this is a must, and even if we do there is always
1159 * the danger that we bounce back here before the error has been
1160 * handled, or indeed even printed.
1162 fprintf(stderr, "Heap exhausted during %s: %ld bytes available, %ld requested.\n",
1163 gc_active_p ? "garbage collection" : "allocation",
1164 available, requested);
1165 if (gc_active_p || (available == 0)) {
1166 /* If we are in GC, or totally out of memory there is no way
1167 * to sanely transfer control to the lisp-side of things.
1169 struct thread *thread = arch_os_get_current_thread();
1170 print_generation_stats(1);
1171 fprintf(stderr, "GC control variables:\n");
1172 fprintf(stderr, " *GC-INHIBIT* = %s\n *GC-PENDING* = %s\n",
1173 SymbolValue(GC_INHIBIT,thread)==NIL ? "false" : "true",
1174 SymbolValue(GC_PENDING,thread)==NIL ? "false" : "true");
1175 #ifdef LISP_FEATURE_SB_THREAD
1176 fprintf(stderr, " *STOP-FOR-GC-PENDING* = %s\n",
1177 SymbolValue(STOP_FOR_GC_PENDING,thread)==NIL ? "false" : "true");
1178 #endif
1179 lose("Heap exhausted, game over.");
1181 else {
1182 /* FIXME: assert free_pages_lock held */
1183 (void)thread_mutex_unlock(&free_pages_lock);
1184 funcall2(StaticSymbolFunction(HEAP_EXHAUSTED_ERROR),
1185 alloc_number(available), alloc_number(requested));
1186 lose("HEAP-EXHAUSTED-ERROR fell through");
1190 page_index_t
1191 gc_find_freeish_pages(page_index_t *restart_page_ptr, long nbytes, int page_type_flag)
1193 page_index_t first_page, last_page;
1194 page_index_t restart_page = *restart_page_ptr;
1195 long bytes_found = 0;
1196 long most_bytes_found = 0;
1197 /* FIXME: assert(free_pages_lock is held); */
1199 /* Toggled by gc_and_save for heap compaction, normally -1. */
1200 if (gencgc_alloc_start_page != -1) {
1201 restart_page = gencgc_alloc_start_page;
1204 if (nbytes>=PAGE_BYTES) {
1205 /* Search for a contiguous free space of at least nbytes,
1206 * aligned on a page boundary. The page-alignment is strictly
1207 * speaking needed only for objects at least large_object_size
1208 * bytes in size. */
1209 do {
1210 first_page = restart_page;
1211 while ((first_page < page_table_pages) &&
1212 page_allocated_p(first_page))
1213 first_page++;
1215 last_page = first_page;
1216 bytes_found = PAGE_BYTES;
1217 while ((bytes_found < nbytes) &&
1218 (last_page < (page_table_pages-1)) &&
1219 page_free_p(last_page+1)) {
1220 last_page++;
1221 bytes_found += PAGE_BYTES;
1222 gc_assert(0 == page_table[last_page].bytes_used);
1223 gc_assert(0 == page_table[last_page].write_protected);
1225 if (bytes_found > most_bytes_found)
1226 most_bytes_found = bytes_found;
1227 restart_page = last_page + 1;
1228 } while ((restart_page < page_table_pages) && (bytes_found < nbytes));
1230 } else {
1231 /* Search for a page with at least nbytes of space. We prefer
1232 * not to split small objects on multiple pages, to reduce the
1233 * number of contiguous allocation regions spaning multiple
1234 * pages: this helps avoid excessive conservativism. */
1235 first_page = restart_page;
1236 while (first_page < page_table_pages) {
1237 if (page_free_p(first_page))
1239 gc_assert(0 == page_table[first_page].bytes_used);
1240 bytes_found = PAGE_BYTES;
1241 break;
1243 else if ((page_table[first_page].allocated == page_type_flag) &&
1244 (page_table[first_page].large_object == 0) &&
1245 (page_table[first_page].gen == gc_alloc_generation) &&
1246 (page_table[first_page].write_protected == 0) &&
1247 (page_table[first_page].dont_move == 0))
1249 bytes_found = PAGE_BYTES
1250 - page_table[first_page].bytes_used;
1251 if (bytes_found > most_bytes_found)
1252 most_bytes_found = bytes_found;
1253 if (bytes_found >= nbytes)
1254 break;
1256 first_page++;
1258 last_page = first_page;
1259 restart_page = first_page + 1;
1262 /* Check for a failure */
1263 if (bytes_found < nbytes) {
1264 gc_assert(restart_page >= page_table_pages);
1265 gc_heap_exhausted_error_or_lose(most_bytes_found, nbytes);
1268 gc_assert(page_table[first_page].write_protected == 0);
1270 *restart_page_ptr = first_page;
1271 return last_page;
1274 /* Allocate bytes. All the rest of the special-purpose allocation
1275 * functions will eventually call this */
1277 void *
1278 gc_alloc_with_region(long nbytes,int page_type_flag, struct alloc_region *my_region,
1279 int quick_p)
1281 void *new_free_pointer;
1283 if (nbytes>=large_object_size)
1284 return gc_alloc_large(nbytes, page_type_flag, my_region);
1286 /* Check whether there is room in the current alloc region. */
1287 new_free_pointer = my_region->free_pointer + nbytes;
1289 /* fprintf(stderr, "alloc %d bytes from %p to %p\n", nbytes,
1290 my_region->free_pointer, new_free_pointer); */
1292 if (new_free_pointer <= my_region->end_addr) {
1293 /* If so then allocate from the current alloc region. */
1294 void *new_obj = my_region->free_pointer;
1295 my_region->free_pointer = new_free_pointer;
1297 /* Unless a `quick' alloc was requested, check whether the
1298 alloc region is almost empty. */
1299 if (!quick_p &&
1300 void_diff(my_region->end_addr,my_region->free_pointer) <= 32) {
1301 /* If so, finished with the current region. */
1302 gc_alloc_update_page_tables(page_type_flag, my_region);
1303 /* Set up a new region. */
1304 gc_alloc_new_region(32 /*bytes*/, page_type_flag, my_region);
1307 return((void *)new_obj);
1310 /* Else not enough free space in the current region: retry with a
1311 * new region. */
1313 gc_alloc_update_page_tables(page_type_flag, my_region);
1314 gc_alloc_new_region(nbytes, page_type_flag, my_region);
1315 return gc_alloc_with_region(nbytes, page_type_flag, my_region,0);
1318 /* these are only used during GC: all allocation from the mutator calls
1319 * alloc() -> gc_alloc_with_region() with the appropriate per-thread
1320 * region */
1322 static inline void *
1323 gc_quick_alloc(long nbytes)
1325 return gc_general_alloc(nbytes, BOXED_PAGE_FLAG, ALLOC_QUICK);
1328 static inline void *
1329 gc_quick_alloc_large(long nbytes)
1331 return gc_general_alloc(nbytes, BOXED_PAGE_FLAG ,ALLOC_QUICK);
1334 static inline void *
1335 gc_alloc_unboxed(long nbytes)
1337 return gc_general_alloc(nbytes, UNBOXED_PAGE_FLAG, 0);
1340 static inline void *
1341 gc_quick_alloc_unboxed(long nbytes)
1343 return gc_general_alloc(nbytes, UNBOXED_PAGE_FLAG, ALLOC_QUICK);
1346 static inline void *
1347 gc_quick_alloc_large_unboxed(long nbytes)
1349 return gc_general_alloc(nbytes, UNBOXED_PAGE_FLAG, ALLOC_QUICK);
1353 /* Copy a large boxed object. If the object is in a large object
1354 * region then it is simply promoted, else it is copied. If it's large
1355 * enough then it's copied to a large object region.
1357 * Vectors may have shrunk. If the object is not copied the space
1358 * needs to be reclaimed, and the page_tables corrected. */
1359 lispobj
1360 copy_large_object(lispobj object, long nwords)
1362 int tag;
1363 lispobj *new;
1364 page_index_t first_page;
1366 gc_assert(is_lisp_pointer(object));
1367 gc_assert(from_space_p(object));
1368 gc_assert((nwords & 0x01) == 0);
1371 /* Check whether it's in a large object region. */
1372 first_page = find_page_index((void *)object);
1373 gc_assert(first_page >= 0);
1375 if (page_table[first_page].large_object) {
1377 /* Promote the object. */
1379 unsigned long remaining_bytes;
1380 page_index_t next_page;
1381 unsigned long bytes_freed;
1382 unsigned long old_bytes_used;
1384 /* Note: Any page write-protection must be removed, else a
1385 * later scavenge_newspace may incorrectly not scavenge these
1386 * pages. This would not be necessary if they are added to the
1387 * new areas, but let's do it for them all (they'll probably
1388 * be written anyway?). */
1390 gc_assert(page_table[first_page].region_start_offset == 0);
1392 next_page = first_page;
1393 remaining_bytes = nwords*N_WORD_BYTES;
1394 while (remaining_bytes > PAGE_BYTES) {
1395 gc_assert(page_table[next_page].gen == from_space);
1396 gc_assert(page_boxed_p(next_page));
1397 gc_assert(page_table[next_page].large_object);
1398 gc_assert(page_table[next_page].region_start_offset ==
1399 npage_bytes(next_page-first_page));
1400 gc_assert(page_table[next_page].bytes_used == PAGE_BYTES);
1402 page_table[next_page].gen = new_space;
1404 /* Remove any write-protection. We should be able to rely
1405 * on the write-protect flag to avoid redundant calls. */
1406 if (page_table[next_page].write_protected) {
1407 os_protect(page_address(next_page), PAGE_BYTES, OS_VM_PROT_ALL);
1408 page_table[next_page].write_protected = 0;
1410 remaining_bytes -= PAGE_BYTES;
1411 next_page++;
1414 /* Now only one page remains, but the object may have shrunk
1415 * so there may be more unused pages which will be freed. */
1417 /* The object may have shrunk but shouldn't have grown. */
1418 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
1420 page_table[next_page].gen = new_space;
1421 gc_assert(page_boxed_p(next_page));
1423 /* Adjust the bytes_used. */
1424 old_bytes_used = page_table[next_page].bytes_used;
1425 page_table[next_page].bytes_used = remaining_bytes;
1427 bytes_freed = old_bytes_used - remaining_bytes;
1429 /* Free any remaining pages; needs care. */
1430 next_page++;
1431 while ((old_bytes_used == PAGE_BYTES) &&
1432 (page_table[next_page].gen == from_space) &&
1433 page_boxed_p(next_page) &&
1434 page_table[next_page].large_object &&
1435 (page_table[next_page].region_start_offset ==
1436 npage_bytes(next_page - first_page))) {
1437 /* Checks out OK, free the page. Don't need to bother zeroing
1438 * pages as this should have been done before shrinking the
1439 * object. These pages shouldn't be write-protected as they
1440 * should be zero filled. */
1441 gc_assert(page_table[next_page].write_protected == 0);
1443 old_bytes_used = page_table[next_page].bytes_used;
1444 page_table[next_page].allocated = FREE_PAGE_FLAG;
1445 page_table[next_page].bytes_used = 0;
1446 bytes_freed += old_bytes_used;
1447 next_page++;
1450 generations[from_space].bytes_allocated -= N_WORD_BYTES*nwords
1451 + bytes_freed;
1452 generations[new_space].bytes_allocated += N_WORD_BYTES*nwords;
1453 bytes_allocated -= bytes_freed;
1455 /* Add the region to the new_areas if requested. */
1456 add_new_area(first_page,0,nwords*N_WORD_BYTES);
1458 return(object);
1459 } else {
1460 /* Get tag of object. */
1461 tag = lowtag_of(object);
1463 /* Allocate space. */
1464 new = gc_quick_alloc_large(nwords*N_WORD_BYTES);
1466 memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
1468 /* Return Lisp pointer of new object. */
1469 return ((lispobj) new) | tag;
1473 /* to copy unboxed objects */
1474 lispobj
1475 copy_unboxed_object(lispobj object, long nwords)
1477 long tag;
1478 lispobj *new;
1480 gc_assert(is_lisp_pointer(object));
1481 gc_assert(from_space_p(object));
1482 gc_assert((nwords & 0x01) == 0);
1484 /* Get tag of object. */
1485 tag = lowtag_of(object);
1487 /* Allocate space. */
1488 new = gc_quick_alloc_unboxed(nwords*N_WORD_BYTES);
1490 memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
1492 /* Return Lisp pointer of new object. */
1493 return ((lispobj) new) | tag;
1496 /* to copy large unboxed objects
1498 * If the object is in a large object region then it is simply
1499 * promoted, else it is copied. If it's large enough then it's copied
1500 * to a large object region.
1502 * Bignums and vectors may have shrunk. If the object is not copied
1503 * the space needs to be reclaimed, and the page_tables corrected.
1505 * KLUDGE: There's a lot of cut-and-paste duplication between this
1506 * function and copy_large_object(..). -- WHN 20000619 */
1507 lispobj
1508 copy_large_unboxed_object(lispobj object, long nwords)
1510 int tag;
1511 lispobj *new;
1512 page_index_t first_page;
1514 gc_assert(is_lisp_pointer(object));
1515 gc_assert(from_space_p(object));
1516 gc_assert((nwords & 0x01) == 0);
1518 if ((nwords > 1024*1024) && gencgc_verbose)
1519 FSHOW((stderr, "/copy_large_unboxed_object: %d bytes\n",
1520 nwords*N_WORD_BYTES));
1522 /* Check whether it's a large object. */
1523 first_page = find_page_index((void *)object);
1524 gc_assert(first_page >= 0);
1526 if (page_table[first_page].large_object) {
1527 /* Promote the object. Note: Unboxed objects may have been
1528 * allocated to a BOXED region so it may be necessary to
1529 * change the region to UNBOXED. */
1530 unsigned long remaining_bytes;
1531 page_index_t next_page;
1532 unsigned long bytes_freed;
1533 unsigned long old_bytes_used;
1535 gc_assert(page_table[first_page].region_start_offset == 0);
1537 next_page = first_page;
1538 remaining_bytes = nwords*N_WORD_BYTES;
1539 while (remaining_bytes > PAGE_BYTES) {
1540 gc_assert(page_table[next_page].gen == from_space);
1541 gc_assert(page_allocated_no_region_p(next_page));
1542 gc_assert(page_table[next_page].large_object);
1543 gc_assert(page_table[next_page].region_start_offset ==
1544 npage_bytes(next_page-first_page));
1545 gc_assert(page_table[next_page].bytes_used == PAGE_BYTES);
1547 page_table[next_page].gen = new_space;
1548 page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
1549 remaining_bytes -= PAGE_BYTES;
1550 next_page++;
1553 /* Now only one page remains, but the object may have shrunk so
1554 * there may be more unused pages which will be freed. */
1556 /* Object may have shrunk but shouldn't have grown - check. */
1557 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
1559 page_table[next_page].gen = new_space;
1560 page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
1562 /* Adjust the bytes_used. */
1563 old_bytes_used = page_table[next_page].bytes_used;
1564 page_table[next_page].bytes_used = remaining_bytes;
1566 bytes_freed = old_bytes_used - remaining_bytes;
1568 /* Free any remaining pages; needs care. */
1569 next_page++;
1570 while ((old_bytes_used == PAGE_BYTES) &&
1571 (page_table[next_page].gen == from_space) &&
1572 page_allocated_no_region_p(next_page) &&
1573 page_table[next_page].large_object &&
1574 (page_table[next_page].region_start_offset ==
1575 npage_bytes(next_page - first_page))) {
1576 /* Checks out OK, free the page. Don't need to both zeroing
1577 * pages as this should have been done before shrinking the
1578 * object. These pages shouldn't be write-protected, even if
1579 * boxed they should be zero filled. */
1580 gc_assert(page_table[next_page].write_protected == 0);
1582 old_bytes_used = page_table[next_page].bytes_used;
1583 page_table[next_page].allocated = FREE_PAGE_FLAG;
1584 page_table[next_page].bytes_used = 0;
1585 bytes_freed += old_bytes_used;
1586 next_page++;
1589 if ((bytes_freed > 0) && gencgc_verbose)
1590 FSHOW((stderr,
1591 "/copy_large_unboxed bytes_freed=%d\n",
1592 bytes_freed));
1594 generations[from_space].bytes_allocated -=
1595 nwords*N_WORD_BYTES + bytes_freed;
1596 generations[new_space].bytes_allocated += nwords*N_WORD_BYTES;
1597 bytes_allocated -= bytes_freed;
1599 return(object);
1601 else {
1602 /* Get tag of object. */
1603 tag = lowtag_of(object);
1605 /* Allocate space. */
1606 new = gc_quick_alloc_large_unboxed(nwords*N_WORD_BYTES);
1608 /* Copy the object. */
1609 memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
1611 /* Return Lisp pointer of new object. */
1612 return ((lispobj) new) | tag;
1621 * code and code-related objects
1624 static lispobj trans_fun_header(lispobj object);
1625 static lispobj trans_boxed(lispobj object);
1628 /* Scan a x86 compiled code object, looking for possible fixups that
1629 * have been missed after a move.
1631 * Two types of fixups are needed:
1632 * 1. Absolute fixups to within the code object.
1633 * 2. Relative fixups to outside the code object.
1635 * Currently only absolute fixups to the constant vector, or to the
1636 * code area are checked. */
1637 void
1638 sniff_code_object(struct code *code, unsigned long displacement)
1640 #ifdef LISP_FEATURE_X86
1641 long nheader_words, ncode_words, nwords;
1642 void *p;
1643 void *constants_start_addr = NULL, *constants_end_addr;
1644 void *code_start_addr, *code_end_addr;
1645 int fixup_found = 0;
1647 if (!check_code_fixups)
1648 return;
1650 FSHOW((stderr, "/sniffing code: %p, %lu\n", code, displacement));
1652 ncode_words = fixnum_value(code->code_size);
1653 nheader_words = HeaderValue(*(lispobj *)code);
1654 nwords = ncode_words + nheader_words;
1656 constants_start_addr = (void *)code + 5*N_WORD_BYTES;
1657 constants_end_addr = (void *)code + nheader_words*N_WORD_BYTES;
1658 code_start_addr = (void *)code + nheader_words*N_WORD_BYTES;
1659 code_end_addr = (void *)code + nwords*N_WORD_BYTES;
1661 /* Work through the unboxed code. */
1662 for (p = code_start_addr; p < code_end_addr; p++) {
1663 void *data = *(void **)p;
1664 unsigned d1 = *((unsigned char *)p - 1);
1665 unsigned d2 = *((unsigned char *)p - 2);
1666 unsigned d3 = *((unsigned char *)p - 3);
1667 unsigned d4 = *((unsigned char *)p - 4);
1668 #ifdef QSHOW
1669 unsigned d5 = *((unsigned char *)p - 5);
1670 unsigned d6 = *((unsigned char *)p - 6);
1671 #endif
1673 /* Check for code references. */
1674 /* Check for a 32 bit word that looks like an absolute
1675 reference to within the code adea of the code object. */
1676 if ((data >= (code_start_addr-displacement))
1677 && (data < (code_end_addr-displacement))) {
1678 /* function header */
1679 if ((d4 == 0x5e)
1680 && (((unsigned)p - 4 - 4*HeaderValue(*((unsigned *)p-1))) ==
1681 (unsigned)code)) {
1682 /* Skip the function header */
1683 p += 6*4 - 4 - 1;
1684 continue;
1686 /* the case of PUSH imm32 */
1687 if (d1 == 0x68) {
1688 fixup_found = 1;
1689 FSHOW((stderr,
1690 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1691 p, d6, d5, d4, d3, d2, d1, data));
1692 FSHOW((stderr, "/PUSH $0x%.8x\n", data));
1694 /* the case of MOV [reg-8],imm32 */
1695 if ((d3 == 0xc7)
1696 && (d2==0x40 || d2==0x41 || d2==0x42 || d2==0x43
1697 || d2==0x45 || d2==0x46 || d2==0x47)
1698 && (d1 == 0xf8)) {
1699 fixup_found = 1;
1700 FSHOW((stderr,
1701 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1702 p, d6, d5, d4, d3, d2, d1, data));
1703 FSHOW((stderr, "/MOV [reg-8],$0x%.8x\n", data));
1705 /* the case of LEA reg,[disp32] */
1706 if ((d2 == 0x8d) && ((d1 & 0xc7) == 5)) {
1707 fixup_found = 1;
1708 FSHOW((stderr,
1709 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1710 p, d6, d5, d4, d3, d2, d1, data));
1711 FSHOW((stderr,"/LEA reg,[$0x%.8x]\n", data));
1715 /* Check for constant references. */
1716 /* Check for a 32 bit word that looks like an absolute
1717 reference to within the constant vector. Constant references
1718 will be aligned. */
1719 if ((data >= (constants_start_addr-displacement))
1720 && (data < (constants_end_addr-displacement))
1721 && (((unsigned)data & 0x3) == 0)) {
1722 /* Mov eax,m32 */
1723 if (d1 == 0xa1) {
1724 fixup_found = 1;
1725 FSHOW((stderr,
1726 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1727 p, d6, d5, d4, d3, d2, d1, data));
1728 FSHOW((stderr,"/MOV eax,0x%.8x\n", data));
1731 /* the case of MOV m32,EAX */
1732 if (d1 == 0xa3) {
1733 fixup_found = 1;
1734 FSHOW((stderr,
1735 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1736 p, d6, d5, d4, d3, d2, d1, data));
1737 FSHOW((stderr, "/MOV 0x%.8x,eax\n", data));
1740 /* the case of CMP m32,imm32 */
1741 if ((d1 == 0x3d) && (d2 == 0x81)) {
1742 fixup_found = 1;
1743 FSHOW((stderr,
1744 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1745 p, d6, d5, d4, d3, d2, d1, data));
1746 /* XX Check this */
1747 FSHOW((stderr, "/CMP 0x%.8x,immed32\n", data));
1750 /* Check for a mod=00, r/m=101 byte. */
1751 if ((d1 & 0xc7) == 5) {
1752 /* Cmp m32,reg */
1753 if (d2 == 0x39) {
1754 fixup_found = 1;
1755 FSHOW((stderr,
1756 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1757 p, d6, d5, d4, d3, d2, d1, data));
1758 FSHOW((stderr,"/CMP 0x%.8x,reg\n", data));
1760 /* the case of CMP reg32,m32 */
1761 if (d2 == 0x3b) {
1762 fixup_found = 1;
1763 FSHOW((stderr,
1764 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1765 p, d6, d5, d4, d3, d2, d1, data));
1766 FSHOW((stderr, "/CMP reg32,0x%.8x\n", data));
1768 /* the case of MOV m32,reg32 */
1769 if (d2 == 0x89) {
1770 fixup_found = 1;
1771 FSHOW((stderr,
1772 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1773 p, d6, d5, d4, d3, d2, d1, data));
1774 FSHOW((stderr, "/MOV 0x%.8x,reg32\n", data));
1776 /* the case of MOV reg32,m32 */
1777 if (d2 == 0x8b) {
1778 fixup_found = 1;
1779 FSHOW((stderr,
1780 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1781 p, d6, d5, d4, d3, d2, d1, data));
1782 FSHOW((stderr, "/MOV reg32,0x%.8x\n", data));
1784 /* the case of LEA reg32,m32 */
1785 if (d2 == 0x8d) {
1786 fixup_found = 1;
1787 FSHOW((stderr,
1788 "abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1789 p, d6, d5, d4, d3, d2, d1, data));
1790 FSHOW((stderr, "/LEA reg32,0x%.8x\n", data));
1796 /* If anything was found, print some information on the code
1797 * object. */
1798 if (fixup_found) {
1799 FSHOW((stderr,
1800 "/compiled code object at %x: header words = %d, code words = %d\n",
1801 code, nheader_words, ncode_words));
1802 FSHOW((stderr,
1803 "/const start = %x, end = %x\n",
1804 constants_start_addr, constants_end_addr));
1805 FSHOW((stderr,
1806 "/code start = %x, end = %x\n",
1807 code_start_addr, code_end_addr));
1809 #endif
1812 void
1813 gencgc_apply_code_fixups(struct code *old_code, struct code *new_code)
1815 /* x86-64 uses pc-relative addressing instead of this kludge */
1816 #ifndef LISP_FEATURE_X86_64
1817 long nheader_words, ncode_words, nwords;
1818 void *constants_start_addr, *constants_end_addr;
1819 void *code_start_addr, *code_end_addr;
1820 lispobj fixups = NIL;
1821 unsigned long displacement =
1822 (unsigned long)new_code - (unsigned long)old_code;
1823 struct vector *fixups_vector;
1825 ncode_words = fixnum_value(new_code->code_size);
1826 nheader_words = HeaderValue(*(lispobj *)new_code);
1827 nwords = ncode_words + nheader_words;
1828 /* FSHOW((stderr,
1829 "/compiled code object at %x: header words = %d, code words = %d\n",
1830 new_code, nheader_words, ncode_words)); */
1831 constants_start_addr = (void *)new_code + 5*N_WORD_BYTES;
1832 constants_end_addr = (void *)new_code + nheader_words*N_WORD_BYTES;
1833 code_start_addr = (void *)new_code + nheader_words*N_WORD_BYTES;
1834 code_end_addr = (void *)new_code + nwords*N_WORD_BYTES;
1836 FSHOW((stderr,
1837 "/const start = %x, end = %x\n",
1838 constants_start_addr,constants_end_addr));
1839 FSHOW((stderr,
1840 "/code start = %x; end = %x\n",
1841 code_start_addr,code_end_addr));
1844 /* The first constant should be a pointer to the fixups for this
1845 code objects. Check. */
1846 fixups = new_code->constants[0];
1848 /* It will be 0 or the unbound-marker if there are no fixups (as
1849 * will be the case if the code object has been purified, for
1850 * example) and will be an other pointer if it is valid. */
1851 if ((fixups == 0) || (fixups == UNBOUND_MARKER_WIDETAG) ||
1852 !is_lisp_pointer(fixups)) {
1853 /* Check for possible errors. */
1854 if (check_code_fixups)
1855 sniff_code_object(new_code, displacement);
1857 return;
1860 fixups_vector = (struct vector *)native_pointer(fixups);
1862 /* Could be pointing to a forwarding pointer. */
1863 /* FIXME is this always in from_space? if so, could replace this code with
1864 * forwarding_pointer_p/forwarding_pointer_value */
1865 if (is_lisp_pointer(fixups) &&
1866 (find_page_index((void*)fixups_vector) != -1) &&
1867 (fixups_vector->header == 0x01)) {
1868 /* If so, then follow it. */
1869 /*SHOW("following pointer to a forwarding pointer");*/
1870 fixups_vector =
1871 (struct vector *)native_pointer((lispobj)fixups_vector->length);
1874 /*SHOW("got fixups");*/
1876 if (widetag_of(fixups_vector->header) == SIMPLE_ARRAY_WORD_WIDETAG) {
1877 /* Got the fixups for the code block. Now work through the vector,
1878 and apply a fixup at each address. */
1879 long length = fixnum_value(fixups_vector->length);
1880 long i;
1881 for (i = 0; i < length; i++) {
1882 unsigned long offset = fixups_vector->data[i];
1883 /* Now check the current value of offset. */
1884 unsigned long old_value =
1885 *(unsigned long *)((unsigned long)code_start_addr + offset);
1887 /* If it's within the old_code object then it must be an
1888 * absolute fixup (relative ones are not saved) */
1889 if ((old_value >= (unsigned long)old_code)
1890 && (old_value < ((unsigned long)old_code
1891 + nwords*N_WORD_BYTES)))
1892 /* So add the dispacement. */
1893 *(unsigned long *)((unsigned long)code_start_addr + offset) =
1894 old_value + displacement;
1895 else
1896 /* It is outside the old code object so it must be a
1897 * relative fixup (absolute fixups are not saved). So
1898 * subtract the displacement. */
1899 *(unsigned long *)((unsigned long)code_start_addr + offset) =
1900 old_value - displacement;
1902 } else {
1903 /* This used to just print a note to stderr, but a bogus fixup seems to
1904 * indicate real heap corruption, so a hard hailure is in order. */
1905 lose("fixup vector %p has a bad widetag: %d\n",
1906 fixups_vector, widetag_of(fixups_vector->header));
1909 /* Check for possible errors. */
1910 if (check_code_fixups) {
1911 sniff_code_object(new_code,displacement);
1913 #endif
1917 static lispobj
1918 trans_boxed_large(lispobj object)
1920 lispobj header;
1921 unsigned long length;
1923 gc_assert(is_lisp_pointer(object));
1925 header = *((lispobj *) native_pointer(object));
1926 length = HeaderValue(header) + 1;
1927 length = CEILING(length, 2);
1929 return copy_large_object(object, length);
1932 /* Doesn't seem to be used, delete it after the grace period. */
1933 #if 0
1934 static lispobj
1935 trans_unboxed_large(lispobj object)
1937 lispobj header;
1938 unsigned long length;
1940 gc_assert(is_lisp_pointer(object));
1942 header = *((lispobj *) native_pointer(object));
1943 length = HeaderValue(header) + 1;
1944 length = CEILING(length, 2);
1946 return copy_large_unboxed_object(object, length);
1948 #endif
1952 * Lutexes. Using the normal finalization machinery for finalizing
1953 * lutexes is tricky, since the finalization depends on working lutexes.
1954 * So we track the lutexes in the GC and finalize them manually.
1957 #if defined(LUTEX_WIDETAG)
1960 * Start tracking LUTEX in the GC, by adding it to the linked list of
1961 * lutexes in the nursery generation. The caller is responsible for
1962 * locking, and GCs must be inhibited until the registration is
1963 * complete.
1965 void
1966 gencgc_register_lutex (struct lutex *lutex) {
1967 int index = find_page_index(lutex);
1968 generation_index_t gen;
1969 struct lutex *head;
1971 /* This lutex is in static space, so we don't need to worry about
1972 * finalizing it.
1974 if (index == -1)
1975 return;
1977 gen = page_table[index].gen;
1979 gc_assert(gen >= 0);
1980 gc_assert(gen < NUM_GENERATIONS);
1982 head = generations[gen].lutexes;
1984 lutex->gen = gen;
1985 lutex->next = head;
1986 lutex->prev = NULL;
1987 if (head)
1988 head->prev = lutex;
1989 generations[gen].lutexes = lutex;
1993 * Stop tracking LUTEX in the GC by removing it from the appropriate
1994 * linked lists. This will only be called during GC, so no locking is
1995 * needed.
1997 void
1998 gencgc_unregister_lutex (struct lutex *lutex) {
1999 if (lutex->prev) {
2000 lutex->prev->next = lutex->next;
2001 } else {
2002 generations[lutex->gen].lutexes = lutex->next;
2005 if (lutex->next) {
2006 lutex->next->prev = lutex->prev;
2009 lutex->next = NULL;
2010 lutex->prev = NULL;
2011 lutex->gen = -1;
2015 * Mark all lutexes in generation GEN as not live.
2017 static void
2018 unmark_lutexes (generation_index_t gen) {
2019 struct lutex *lutex = generations[gen].lutexes;
2021 while (lutex) {
2022 lutex->live = 0;
2023 lutex = lutex->next;
2028 * Finalize all lutexes in generation GEN that have not been marked live.
2030 static void
2031 reap_lutexes (generation_index_t gen) {
2032 struct lutex *lutex = generations[gen].lutexes;
2034 while (lutex) {
2035 struct lutex *next = lutex->next;
2036 if (!lutex->live) {
2037 lutex_destroy((tagged_lutex_t) lutex);
2038 gencgc_unregister_lutex(lutex);
2040 lutex = next;
2045 * Mark LUTEX as live.
2047 static void
2048 mark_lutex (lispobj tagged_lutex) {
2049 struct lutex *lutex = (struct lutex*) native_pointer(tagged_lutex);
2051 lutex->live = 1;
2055 * Move all lutexes in generation FROM to generation TO.
2057 static void
2058 move_lutexes (generation_index_t from, generation_index_t to) {
2059 struct lutex *tail = generations[from].lutexes;
2061 /* Nothing to move */
2062 if (!tail)
2063 return;
2065 /* Change the generation of the lutexes in FROM. */
2066 while (tail->next) {
2067 tail->gen = to;
2068 tail = tail->next;
2070 tail->gen = to;
2072 /* Link the last lutex in the FROM list to the start of the TO list */
2073 tail->next = generations[to].lutexes;
2075 /* And vice versa */
2076 if (generations[to].lutexes) {
2077 generations[to].lutexes->prev = tail;
2080 /* And update the generations structures to match this */
2081 generations[to].lutexes = generations[from].lutexes;
2082 generations[from].lutexes = NULL;
2085 static long
2086 scav_lutex(lispobj *where, lispobj object)
2088 mark_lutex((lispobj) where);
2090 return CEILING(sizeof(struct lutex)/sizeof(lispobj), 2);
2093 static lispobj
2094 trans_lutex(lispobj object)
2096 struct lutex *lutex = (struct lutex *) native_pointer(object);
2097 lispobj copied;
2098 size_t words = CEILING(sizeof(struct lutex)/sizeof(lispobj), 2);
2099 gc_assert(is_lisp_pointer(object));
2100 copied = copy_object(object, words);
2102 /* Update the links, since the lutex moved in memory. */
2103 if (lutex->next) {
2104 lutex->next->prev = (struct lutex *) native_pointer(copied);
2107 if (lutex->prev) {
2108 lutex->prev->next = (struct lutex *) native_pointer(copied);
2109 } else {
2110 generations[lutex->gen].lutexes =
2111 (struct lutex *) native_pointer(copied);
2114 return copied;
2117 static long
2118 size_lutex(lispobj *where)
2120 return CEILING(sizeof(struct lutex)/sizeof(lispobj), 2);
2122 #endif /* LUTEX_WIDETAG */
2126 * weak pointers
2129 /* XX This is a hack adapted from cgc.c. These don't work too
2130 * efficiently with the gencgc as a list of the weak pointers is
2131 * maintained within the objects which causes writes to the pages. A
2132 * limited attempt is made to avoid unnecessary writes, but this needs
2133 * a re-think. */
2134 #define WEAK_POINTER_NWORDS \
2135 CEILING((sizeof(struct weak_pointer) / sizeof(lispobj)), 2)
2137 static long
2138 scav_weak_pointer(lispobj *where, lispobj object)
2140 /* Since we overwrite the 'next' field, we have to make
2141 * sure not to do so for pointers already in the list.
2142 * Instead of searching the list of weak_pointers each
2143 * time, we ensure that next is always NULL when the weak
2144 * pointer isn't in the list, and not NULL otherwise.
2145 * Since we can't use NULL to denote end of list, we
2146 * use a pointer back to the same weak_pointer.
2148 struct weak_pointer * wp = (struct weak_pointer*)where;
2150 if (NULL == wp->next) {
2151 wp->next = weak_pointers;
2152 weak_pointers = wp;
2153 if (NULL == wp->next)
2154 wp->next = wp;
2157 /* Do not let GC scavenge the value slot of the weak pointer.
2158 * (That is why it is a weak pointer.) */
2160 return WEAK_POINTER_NWORDS;
2164 lispobj *
2165 search_read_only_space(void *pointer)
2167 lispobj *start = (lispobj *) READ_ONLY_SPACE_START;
2168 lispobj *end = (lispobj *) SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0);
2169 if ((pointer < (void *)start) || (pointer >= (void *)end))
2170 return NULL;
2171 return (gc_search_space(start,
2172 (((lispobj *)pointer)+2)-start,
2173 (lispobj *) pointer));
2176 lispobj *
2177 search_static_space(void *pointer)
2179 lispobj *start = (lispobj *)STATIC_SPACE_START;
2180 lispobj *end = (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0);
2181 if ((pointer < (void *)start) || (pointer >= (void *)end))
2182 return NULL;
2183 return (gc_search_space(start,
2184 (((lispobj *)pointer)+2)-start,
2185 (lispobj *) pointer));
2188 /* a faster version for searching the dynamic space. This will work even
2189 * if the object is in a current allocation region. */
2190 lispobj *
2191 search_dynamic_space(void *pointer)
2193 page_index_t page_index = find_page_index(pointer);
2194 lispobj *start;
2196 /* The address may be invalid, so do some checks. */
2197 if ((page_index == -1) || page_free_p(page_index))
2198 return NULL;
2199 start = (lispobj *)page_region_start(page_index);
2200 return (gc_search_space(start,
2201 (((lispobj *)pointer)+2)-start,
2202 (lispobj *)pointer));
2205 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
2207 /* Helper for valid_lisp_pointer_p and
2208 * possibly_valid_dynamic_space_pointer.
2210 * pointer is the pointer to validate, and start_addr is the address
2211 * of the enclosing object.
2213 static int
2214 looks_like_valid_lisp_pointer_p(lispobj *pointer, lispobj *start_addr)
2216 if (!is_lisp_pointer((lispobj)pointer)) {
2217 return 0;
2220 /* Check that the object pointed to is consistent with the pointer
2221 * low tag. */
2222 switch (lowtag_of((lispobj)pointer)) {
2223 case FUN_POINTER_LOWTAG:
2224 /* Start_addr should be the enclosing code object, or a closure
2225 * header. */
2226 switch (widetag_of(*start_addr)) {
2227 case CODE_HEADER_WIDETAG:
2228 /* This case is probably caught above. */
2229 break;
2230 case CLOSURE_HEADER_WIDETAG:
2231 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
2232 if ((unsigned long)pointer !=
2233 ((unsigned long)start_addr+FUN_POINTER_LOWTAG)) {
2234 if (gencgc_verbose)
2235 FSHOW((stderr,
2236 "/Wf2: %x %x %x\n",
2237 pointer, start_addr, *start_addr));
2238 return 0;
2240 break;
2241 default:
2242 if (gencgc_verbose)
2243 FSHOW((stderr,
2244 "/Wf3: %x %x %x\n",
2245 pointer, start_addr, *start_addr));
2246 return 0;
2248 break;
2249 case LIST_POINTER_LOWTAG:
2250 if ((unsigned long)pointer !=
2251 ((unsigned long)start_addr+LIST_POINTER_LOWTAG)) {
2252 if (gencgc_verbose)
2253 FSHOW((stderr,
2254 "/Wl1: %x %x %x\n",
2255 pointer, start_addr, *start_addr));
2256 return 0;
2258 /* Is it plausible cons? */
2259 if ((is_lisp_pointer(start_addr[0]) ||
2260 is_lisp_immediate(start_addr[0])) &&
2261 (is_lisp_pointer(start_addr[1]) ||
2262 is_lisp_immediate(start_addr[1])))
2263 break;
2264 else {
2265 if (gencgc_verbose)
2266 FSHOW((stderr,
2267 "/Wl2: %x %x %x\n",
2268 pointer, start_addr, *start_addr));
2269 return 0;
2271 case INSTANCE_POINTER_LOWTAG:
2272 if ((unsigned long)pointer !=
2273 ((unsigned long)start_addr+INSTANCE_POINTER_LOWTAG)) {
2274 if (gencgc_verbose)
2275 FSHOW((stderr,
2276 "/Wi1: %x %x %x\n",
2277 pointer, start_addr, *start_addr));
2278 return 0;
2280 if (widetag_of(start_addr[0]) != INSTANCE_HEADER_WIDETAG) {
2281 if (gencgc_verbose)
2282 FSHOW((stderr,
2283 "/Wi2: %x %x %x\n",
2284 pointer, start_addr, *start_addr));
2285 return 0;
2287 break;
2288 case OTHER_POINTER_LOWTAG:
2289 if ((unsigned long)pointer !=
2290 ((unsigned long)start_addr+OTHER_POINTER_LOWTAG)) {
2291 if (gencgc_verbose)
2292 FSHOW((stderr,
2293 "/Wo1: %x %x %x\n",
2294 pointer, start_addr, *start_addr));
2295 return 0;
2297 /* Is it plausible? Not a cons. XXX should check the headers. */
2298 if (is_lisp_pointer(start_addr[0]) || ((start_addr[0] & 3) == 0)) {
2299 if (gencgc_verbose)
2300 FSHOW((stderr,
2301 "/Wo2: %x %x %x\n",
2302 pointer, start_addr, *start_addr));
2303 return 0;
2305 switch (widetag_of(start_addr[0])) {
2306 case UNBOUND_MARKER_WIDETAG:
2307 case NO_TLS_VALUE_MARKER_WIDETAG:
2308 case CHARACTER_WIDETAG:
2309 #if N_WORD_BITS == 64
2310 case SINGLE_FLOAT_WIDETAG:
2311 #endif
2312 if (gencgc_verbose)
2313 FSHOW((stderr,
2314 "*Wo3: %x %x %x\n",
2315 pointer, start_addr, *start_addr));
2316 return 0;
2318 /* only pointed to by function pointers? */
2319 case CLOSURE_HEADER_WIDETAG:
2320 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
2321 if (gencgc_verbose)
2322 FSHOW((stderr,
2323 "*Wo4: %x %x %x\n",
2324 pointer, start_addr, *start_addr));
2325 return 0;
2327 case INSTANCE_HEADER_WIDETAG:
2328 if (gencgc_verbose)
2329 FSHOW((stderr,
2330 "*Wo5: %x %x %x\n",
2331 pointer, start_addr, *start_addr));
2332 return 0;
2334 /* the valid other immediate pointer objects */
2335 case SIMPLE_VECTOR_WIDETAG:
2336 case RATIO_WIDETAG:
2337 case COMPLEX_WIDETAG:
2338 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
2339 case COMPLEX_SINGLE_FLOAT_WIDETAG:
2340 #endif
2341 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
2342 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
2343 #endif
2344 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
2345 case COMPLEX_LONG_FLOAT_WIDETAG:
2346 #endif
2347 case SIMPLE_ARRAY_WIDETAG:
2348 case COMPLEX_BASE_STRING_WIDETAG:
2349 #ifdef COMPLEX_CHARACTER_STRING_WIDETAG
2350 case COMPLEX_CHARACTER_STRING_WIDETAG:
2351 #endif
2352 case COMPLEX_VECTOR_NIL_WIDETAG:
2353 case COMPLEX_BIT_VECTOR_WIDETAG:
2354 case COMPLEX_VECTOR_WIDETAG:
2355 case COMPLEX_ARRAY_WIDETAG:
2356 case VALUE_CELL_HEADER_WIDETAG:
2357 case SYMBOL_HEADER_WIDETAG:
2358 case FDEFN_WIDETAG:
2359 case CODE_HEADER_WIDETAG:
2360 case BIGNUM_WIDETAG:
2361 #if N_WORD_BITS != 64
2362 case SINGLE_FLOAT_WIDETAG:
2363 #endif
2364 case DOUBLE_FLOAT_WIDETAG:
2365 #ifdef LONG_FLOAT_WIDETAG
2366 case LONG_FLOAT_WIDETAG:
2367 #endif
2368 case SIMPLE_BASE_STRING_WIDETAG:
2369 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
2370 case SIMPLE_CHARACTER_STRING_WIDETAG:
2371 #endif
2372 case SIMPLE_BIT_VECTOR_WIDETAG:
2373 case SIMPLE_ARRAY_NIL_WIDETAG:
2374 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
2375 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
2376 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
2377 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
2378 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
2379 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
2380 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
2381 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
2382 #endif
2383 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
2384 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
2385 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
2386 case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
2387 #endif
2388 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
2389 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
2390 #endif
2391 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
2392 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
2393 #endif
2394 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
2395 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
2396 #endif
2397 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
2398 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
2399 #endif
2400 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
2401 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
2402 #endif
2403 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
2404 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
2405 #endif
2406 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
2407 case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
2408 #endif
2409 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
2410 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
2411 #endif
2412 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
2413 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
2414 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
2415 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
2416 #endif
2417 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
2418 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
2419 #endif
2420 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
2421 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
2422 #endif
2423 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
2424 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
2425 #endif
2426 case SAP_WIDETAG:
2427 case WEAK_POINTER_WIDETAG:
2428 #ifdef LUTEX_WIDETAG
2429 case LUTEX_WIDETAG:
2430 #endif
2431 break;
2433 default:
2434 if (gencgc_verbose)
2435 FSHOW((stderr,
2436 "/Wo6: %x %x %x\n",
2437 pointer, start_addr, *start_addr));
2438 return 0;
2440 break;
2441 default:
2442 if (gencgc_verbose)
2443 FSHOW((stderr,
2444 "*W?: %x %x %x\n",
2445 pointer, start_addr, *start_addr));
2446 return 0;
2449 /* looks good */
2450 return 1;
2453 /* Used by the debugger to validate possibly bogus pointers before
2454 * calling MAKE-LISP-OBJ on them.
2456 * FIXME: We would like to make this perfect, because if the debugger
2457 * constructs a reference to a bugs lisp object, and it ends up in a
2458 * location scavenged by the GC all hell breaks loose.
2460 * Whereas possibly_valid_dynamic_space_pointer has to be conservative
2461 * and return true for all valid pointers, this could actually be eager
2462 * and lie about a few pointers without bad results... but that should
2463 * be reflected in the name.
2466 valid_lisp_pointer_p(lispobj *pointer)
2468 lispobj *start;
2469 if (((start=search_dynamic_space(pointer))!=NULL) ||
2470 ((start=search_static_space(pointer))!=NULL) ||
2471 ((start=search_read_only_space(pointer))!=NULL))
2472 return looks_like_valid_lisp_pointer_p(pointer, start);
2473 else
2474 return 0;
2477 /* Is there any possibility that pointer is a valid Lisp object
2478 * reference, and/or something else (e.g. subroutine call return
2479 * address) which should prevent us from moving the referred-to thing?
2480 * This is called from preserve_pointers() */
2481 static int
2482 possibly_valid_dynamic_space_pointer(lispobj *pointer)
2484 lispobj *start_addr;
2486 /* Find the object start address. */
2487 if ((start_addr = search_dynamic_space(pointer)) == NULL) {
2488 return 0;
2491 return looks_like_valid_lisp_pointer_p(pointer, start_addr);
2494 /* Adjust large bignum and vector objects. This will adjust the
2495 * allocated region if the size has shrunk, and move unboxed objects
2496 * into unboxed pages. The pages are not promoted here, and the
2497 * promoted region is not added to the new_regions; this is really
2498 * only designed to be called from preserve_pointer(). Shouldn't fail
2499 * if this is missed, just may delay the moving of objects to unboxed
2500 * pages, and the freeing of pages. */
2501 static void
2502 maybe_adjust_large_object(lispobj *where)
2504 page_index_t first_page;
2505 page_index_t next_page;
2506 long nwords;
2508 unsigned long remaining_bytes;
2509 unsigned long bytes_freed;
2510 unsigned long old_bytes_used;
2512 int boxed;
2514 /* Check whether it's a vector or bignum object. */
2515 switch (widetag_of(where[0])) {
2516 case SIMPLE_VECTOR_WIDETAG:
2517 boxed = BOXED_PAGE_FLAG;
2518 break;
2519 case BIGNUM_WIDETAG:
2520 case SIMPLE_BASE_STRING_WIDETAG:
2521 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
2522 case SIMPLE_CHARACTER_STRING_WIDETAG:
2523 #endif
2524 case SIMPLE_BIT_VECTOR_WIDETAG:
2525 case SIMPLE_ARRAY_NIL_WIDETAG:
2526 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
2527 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
2528 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
2529 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
2530 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
2531 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
2532 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
2533 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
2534 #endif
2535 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
2536 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
2537 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
2538 case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
2539 #endif
2540 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
2541 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
2542 #endif
2543 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
2544 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
2545 #endif
2546 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
2547 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
2548 #endif
2549 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
2550 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
2551 #endif
2552 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
2553 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
2554 #endif
2555 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
2556 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
2557 #endif
2558 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
2559 case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
2560 #endif
2561 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
2562 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
2563 #endif
2564 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
2565 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
2566 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
2567 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
2568 #endif
2569 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
2570 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
2571 #endif
2572 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
2573 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
2574 #endif
2575 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
2576 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
2577 #endif
2578 boxed = UNBOXED_PAGE_FLAG;
2579 break;
2580 default:
2581 return;
2584 /* Find its current size. */
2585 nwords = (sizetab[widetag_of(where[0])])(where);
2587 first_page = find_page_index((void *)where);
2588 gc_assert(first_page >= 0);
2590 /* Note: Any page write-protection must be removed, else a later
2591 * scavenge_newspace may incorrectly not scavenge these pages.
2592 * This would not be necessary if they are added to the new areas,
2593 * but lets do it for them all (they'll probably be written
2594 * anyway?). */
2596 gc_assert(page_table[first_page].region_start_offset == 0);
2598 next_page = first_page;
2599 remaining_bytes = nwords*N_WORD_BYTES;
2600 while (remaining_bytes > PAGE_BYTES) {
2601 gc_assert(page_table[next_page].gen == from_space);
2602 gc_assert(page_allocated_no_region_p(next_page));
2603 gc_assert(page_table[next_page].large_object);
2604 gc_assert(page_table[next_page].region_start_offset ==
2605 npage_bytes(next_page-first_page));
2606 gc_assert(page_table[next_page].bytes_used == PAGE_BYTES);
2608 page_table[next_page].allocated = boxed;
2610 /* Shouldn't be write-protected at this stage. Essential that the
2611 * pages aren't. */
2612 gc_assert(!page_table[next_page].write_protected);
2613 remaining_bytes -= PAGE_BYTES;
2614 next_page++;
2617 /* Now only one page remains, but the object may have shrunk so
2618 * there may be more unused pages which will be freed. */
2620 /* Object may have shrunk but shouldn't have grown - check. */
2621 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
2623 page_table[next_page].allocated = boxed;
2624 gc_assert(page_table[next_page].allocated ==
2625 page_table[first_page].allocated);
2627 /* Adjust the bytes_used. */
2628 old_bytes_used = page_table[next_page].bytes_used;
2629 page_table[next_page].bytes_used = remaining_bytes;
2631 bytes_freed = old_bytes_used - remaining_bytes;
2633 /* Free any remaining pages; needs care. */
2634 next_page++;
2635 while ((old_bytes_used == PAGE_BYTES) &&
2636 (page_table[next_page].gen == from_space) &&
2637 page_allocated_no_region_p(next_page) &&
2638 page_table[next_page].large_object &&
2639 (page_table[next_page].region_start_offset ==
2640 npage_bytes(next_page - first_page))) {
2641 /* It checks out OK, free the page. We don't need to both zeroing
2642 * pages as this should have been done before shrinking the
2643 * object. These pages shouldn't be write protected as they
2644 * should be zero filled. */
2645 gc_assert(page_table[next_page].write_protected == 0);
2647 old_bytes_used = page_table[next_page].bytes_used;
2648 page_table[next_page].allocated = FREE_PAGE_FLAG;
2649 page_table[next_page].bytes_used = 0;
2650 bytes_freed += old_bytes_used;
2651 next_page++;
2654 if ((bytes_freed > 0) && gencgc_verbose) {
2655 FSHOW((stderr,
2656 "/maybe_adjust_large_object() freed %d\n",
2657 bytes_freed));
2660 generations[from_space].bytes_allocated -= bytes_freed;
2661 bytes_allocated -= bytes_freed;
2663 return;
2666 /* Take a possible pointer to a Lisp object and mark its page in the
2667 * page_table so that it will not be relocated during a GC.
2669 * This involves locating the page it points to, then backing up to
2670 * the start of its region, then marking all pages dont_move from there
2671 * up to the first page that's not full or has a different generation
2673 * It is assumed that all the page static flags have been cleared at
2674 * the start of a GC.
2676 * It is also assumed that the current gc_alloc() region has been
2677 * flushed and the tables updated. */
2679 static void
2680 preserve_pointer(void *addr)
2682 page_index_t addr_page_index = find_page_index(addr);
2683 page_index_t first_page;
2684 page_index_t i;
2685 unsigned int region_allocation;
2687 /* quick check 1: Address is quite likely to have been invalid. */
2688 if ((addr_page_index == -1)
2689 || page_free_p(addr_page_index)
2690 || (page_table[addr_page_index].bytes_used == 0)
2691 || (page_table[addr_page_index].gen != from_space)
2692 /* Skip if already marked dont_move. */
2693 || (page_table[addr_page_index].dont_move != 0))
2694 return;
2695 gc_assert(!(page_table[addr_page_index].allocated&OPEN_REGION_PAGE_FLAG));
2696 /* (Now that we know that addr_page_index is in range, it's
2697 * safe to index into page_table[] with it.) */
2698 region_allocation = page_table[addr_page_index].allocated;
2700 /* quick check 2: Check the offset within the page.
2703 if (((unsigned long)addr & (PAGE_BYTES - 1)) >
2704 page_table[addr_page_index].bytes_used)
2705 return;
2707 /* Filter out anything which can't be a pointer to a Lisp object
2708 * (or, as a special case which also requires dont_move, a return
2709 * address referring to something in a CodeObject). This is
2710 * expensive but important, since it vastly reduces the
2711 * probability that random garbage will be bogusly interpreted as
2712 * a pointer which prevents a page from moving. */
2713 if (!(code_page_p(addr_page_index)
2714 || (is_lisp_pointer(addr) &&
2715 possibly_valid_dynamic_space_pointer(addr))))
2716 return;
2718 /* Find the beginning of the region. Note that there may be
2719 * objects in the region preceding the one that we were passed a
2720 * pointer to: if this is the case, we will write-protect all the
2721 * previous objects' pages too. */
2723 #if 0
2724 /* I think this'd work just as well, but without the assertions.
2725 * -dan 2004.01.01 */
2726 first_page = find_page_index(page_region_start(addr_page_index))
2727 #else
2728 first_page = addr_page_index;
2729 while (page_table[first_page].region_start_offset != 0) {
2730 --first_page;
2731 /* Do some checks. */
2732 gc_assert(page_table[first_page].bytes_used == PAGE_BYTES);
2733 gc_assert(page_table[first_page].gen == from_space);
2734 gc_assert(page_table[first_page].allocated == region_allocation);
2736 #endif
2738 /* Adjust any large objects before promotion as they won't be
2739 * copied after promotion. */
2740 if (page_table[first_page].large_object) {
2741 maybe_adjust_large_object(page_address(first_page));
2742 /* If a large object has shrunk then addr may now point to a
2743 * free area in which case it's ignored here. Note it gets
2744 * through the valid pointer test above because the tail looks
2745 * like conses. */
2746 if (page_free_p(addr_page_index)
2747 || (page_table[addr_page_index].bytes_used == 0)
2748 /* Check the offset within the page. */
2749 || (((unsigned long)addr & (PAGE_BYTES - 1))
2750 > page_table[addr_page_index].bytes_used)) {
2751 FSHOW((stderr,
2752 "weird? ignore ptr 0x%x to freed area of large object\n",
2753 addr));
2754 return;
2756 /* It may have moved to unboxed pages. */
2757 region_allocation = page_table[first_page].allocated;
2760 /* Now work forward until the end of this contiguous area is found,
2761 * marking all pages as dont_move. */
2762 for (i = first_page; ;i++) {
2763 gc_assert(page_table[i].allocated == region_allocation);
2765 /* Mark the page static. */
2766 page_table[i].dont_move = 1;
2768 /* Move the page to the new_space. XX I'd rather not do this
2769 * but the GC logic is not quite able to copy with the static
2770 * pages remaining in the from space. This also requires the
2771 * generation bytes_allocated counters be updated. */
2772 page_table[i].gen = new_space;
2773 generations[new_space].bytes_allocated += page_table[i].bytes_used;
2774 generations[from_space].bytes_allocated -= page_table[i].bytes_used;
2776 /* It is essential that the pages are not write protected as
2777 * they may have pointers into the old-space which need
2778 * scavenging. They shouldn't be write protected at this
2779 * stage. */
2780 gc_assert(!page_table[i].write_protected);
2782 /* Check whether this is the last page in this contiguous block.. */
2783 if ((page_table[i].bytes_used < PAGE_BYTES)
2784 /* ..or it is PAGE_BYTES and is the last in the block */
2785 || page_free_p(i+1)
2786 || (page_table[i+1].bytes_used == 0) /* next page free */
2787 || (page_table[i+1].gen != from_space) /* diff. gen */
2788 || (page_table[i+1].region_start_offset == 0))
2789 break;
2792 /* Check that the page is now static. */
2793 gc_assert(page_table[addr_page_index].dont_move != 0);
2796 #endif // defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
2799 /* If the given page is not write-protected, then scan it for pointers
2800 * to younger generations or the top temp. generation, if no
2801 * suspicious pointers are found then the page is write-protected.
2803 * Care is taken to check for pointers to the current gc_alloc()
2804 * region if it is a younger generation or the temp. generation. This
2805 * frees the caller from doing a gc_alloc_update_page_tables(). Actually
2806 * the gc_alloc_generation does not need to be checked as this is only
2807 * called from scavenge_generation() when the gc_alloc generation is
2808 * younger, so it just checks if there is a pointer to the current
2809 * region.
2811 * We return 1 if the page was write-protected, else 0. */
2812 static int
2813 update_page_write_prot(page_index_t page)
2815 generation_index_t gen = page_table[page].gen;
2816 long j;
2817 int wp_it = 1;
2818 void **page_addr = (void **)page_address(page);
2819 long num_words = page_table[page].bytes_used / N_WORD_BYTES;
2821 /* Shouldn't be a free page. */
2822 gc_assert(page_allocated_p(page));
2823 gc_assert(page_table[page].bytes_used != 0);
2825 /* Skip if it's already write-protected, pinned, or unboxed */
2826 if (page_table[page].write_protected
2827 /* FIXME: What's the reason for not write-protecting pinned pages? */
2828 || page_table[page].dont_move
2829 || page_unboxed_p(page))
2830 return (0);
2832 /* Scan the page for pointers to younger generations or the
2833 * top temp. generation. */
2835 for (j = 0; j < num_words; j++) {
2836 void *ptr = *(page_addr+j);
2837 page_index_t index = find_page_index(ptr);
2839 /* Check that it's in the dynamic space */
2840 if (index != -1)
2841 if (/* Does it point to a younger or the temp. generation? */
2842 (page_allocated_p(index)
2843 && (page_table[index].bytes_used != 0)
2844 && ((page_table[index].gen < gen)
2845 || (page_table[index].gen == SCRATCH_GENERATION)))
2847 /* Or does it point within a current gc_alloc() region? */
2848 || ((boxed_region.start_addr <= ptr)
2849 && (ptr <= boxed_region.free_pointer))
2850 || ((unboxed_region.start_addr <= ptr)
2851 && (ptr <= unboxed_region.free_pointer))) {
2852 wp_it = 0;
2853 break;
2857 if (wp_it == 1) {
2858 /* Write-protect the page. */
2859 /*FSHOW((stderr, "/write-protecting page %d gen %d\n", page, gen));*/
2861 os_protect((void *)page_addr,
2862 PAGE_BYTES,
2863 OS_VM_PROT_READ|OS_VM_PROT_EXECUTE);
2865 /* Note the page as protected in the page tables. */
2866 page_table[page].write_protected = 1;
2869 return (wp_it);
2872 /* Scavenge all generations from FROM to TO, inclusive, except for
2873 * new_space which needs special handling, as new objects may be
2874 * added which are not checked here - use scavenge_newspace generation.
2876 * Write-protected pages should not have any pointers to the
2877 * from_space so do need scavenging; thus write-protected pages are
2878 * not always scavenged. There is some code to check that these pages
2879 * are not written; but to check fully the write-protected pages need
2880 * to be scavenged by disabling the code to skip them.
2882 * Under the current scheme when a generation is GCed the younger
2883 * generations will be empty. So, when a generation is being GCed it
2884 * is only necessary to scavenge the older generations for pointers
2885 * not the younger. So a page that does not have pointers to younger
2886 * generations does not need to be scavenged.
2888 * The write-protection can be used to note pages that don't have
2889 * pointers to younger pages. But pages can be written without having
2890 * pointers to younger generations. After the pages are scavenged here
2891 * they can be scanned for pointers to younger generations and if
2892 * there are none the page can be write-protected.
2894 * One complication is when the newspace is the top temp. generation.
2896 * Enabling SC_GEN_CK scavenges the write-protected pages and checks
2897 * that none were written, which they shouldn't be as they should have
2898 * no pointers to younger generations. This breaks down for weak
2899 * pointers as the objects contain a link to the next and are written
2900 * if a weak pointer is scavenged. Still it's a useful check. */
2901 static void
2902 scavenge_generations(generation_index_t from, generation_index_t to)
2904 page_index_t i;
2905 int num_wp = 0;
2907 #define SC_GEN_CK 0
2908 #if SC_GEN_CK
2909 /* Clear the write_protected_cleared flags on all pages. */
2910 for (i = 0; i < page_table_pages; i++)
2911 page_table[i].write_protected_cleared = 0;
2912 #endif
2914 for (i = 0; i < last_free_page; i++) {
2915 generation_index_t generation = page_table[i].gen;
2916 if (page_boxed_p(i)
2917 && (page_table[i].bytes_used != 0)
2918 && (generation != new_space)
2919 && (generation >= from)
2920 && (generation <= to)) {
2921 page_index_t last_page,j;
2922 int write_protected=1;
2924 /* This should be the start of a region */
2925 gc_assert(page_table[i].region_start_offset == 0);
2927 /* Now work forward until the end of the region */
2928 for (last_page = i; ; last_page++) {
2929 write_protected =
2930 write_protected && page_table[last_page].write_protected;
2931 if ((page_table[last_page].bytes_used < PAGE_BYTES)
2932 /* Or it is PAGE_BYTES and is the last in the block */
2933 || (!page_boxed_p(last_page+1))
2934 || (page_table[last_page+1].bytes_used == 0)
2935 || (page_table[last_page+1].gen != generation)
2936 || (page_table[last_page+1].region_start_offset == 0))
2937 break;
2939 if (!write_protected) {
2940 scavenge(page_address(i),
2941 ((unsigned long)(page_table[last_page].bytes_used
2942 + npage_bytes(last_page-i)))
2943 /N_WORD_BYTES);
2945 /* Now scan the pages and write protect those that
2946 * don't have pointers to younger generations. */
2947 if (enable_page_protection) {
2948 for (j = i; j <= last_page; j++) {
2949 num_wp += update_page_write_prot(j);
2952 if ((gencgc_verbose > 1) && (num_wp != 0)) {
2953 FSHOW((stderr,
2954 "/write protected %d pages within generation %d\n",
2955 num_wp, generation));
2958 i = last_page;
2962 #if SC_GEN_CK
2963 /* Check that none of the write_protected pages in this generation
2964 * have been written to. */
2965 for (i = 0; i < page_table_pages; i++) {
2966 if (page_allocated_p(i)
2967 && (page_table[i].bytes_used != 0)
2968 && (page_table[i].gen == generation)
2969 && (page_table[i].write_protected_cleared != 0)) {
2970 FSHOW((stderr, "/scavenge_generation() %d\n", generation));
2971 FSHOW((stderr,
2972 "/page bytes_used=%d region_start_offset=%lu dont_move=%d\n",
2973 page_table[i].bytes_used,
2974 page_table[i].region_start_offset,
2975 page_table[i].dont_move));
2976 lose("write to protected page %d in scavenge_generation()\n", i);
2979 #endif
2983 /* Scavenge a newspace generation. As it is scavenged new objects may
2984 * be allocated to it; these will also need to be scavenged. This
2985 * repeats until there are no more objects unscavenged in the
2986 * newspace generation.
2988 * To help improve the efficiency, areas written are recorded by
2989 * gc_alloc() and only these scavenged. Sometimes a little more will be
2990 * scavenged, but this causes no harm. An easy check is done that the
2991 * scavenged bytes equals the number allocated in the previous
2992 * scavenge.
2994 * Write-protected pages are not scanned except if they are marked
2995 * dont_move in which case they may have been promoted and still have
2996 * pointers to the from space.
2998 * Write-protected pages could potentially be written by alloc however
2999 * to avoid having to handle re-scavenging of write-protected pages
3000 * gc_alloc() does not write to write-protected pages.
3002 * New areas of objects allocated are recorded alternatively in the two
3003 * new_areas arrays below. */
3004 static struct new_area new_areas_1[NUM_NEW_AREAS];
3005 static struct new_area new_areas_2[NUM_NEW_AREAS];
3007 /* Do one full scan of the new space generation. This is not enough to
3008 * complete the job as new objects may be added to the generation in
3009 * the process which are not scavenged. */
3010 static void
3011 scavenge_newspace_generation_one_scan(generation_index_t generation)
3013 page_index_t i;
3015 FSHOW((stderr,
3016 "/starting one full scan of newspace generation %d\n",
3017 generation));
3018 for (i = 0; i < last_free_page; i++) {
3019 /* Note that this skips over open regions when it encounters them. */
3020 if (page_boxed_p(i)
3021 && (page_table[i].bytes_used != 0)
3022 && (page_table[i].gen == generation)
3023 && ((page_table[i].write_protected == 0)
3024 /* (This may be redundant as write_protected is now
3025 * cleared before promotion.) */
3026 || (page_table[i].dont_move == 1))) {
3027 page_index_t last_page;
3028 int all_wp=1;
3030 /* The scavenge will start at the region_start_offset of
3031 * page i.
3033 * We need to find the full extent of this contiguous
3034 * block in case objects span pages.
3036 * Now work forward until the end of this contiguous area
3037 * is found. A small area is preferred as there is a
3038 * better chance of its pages being write-protected. */
3039 for (last_page = i; ;last_page++) {
3040 /* If all pages are write-protected and movable,
3041 * then no need to scavenge */
3042 all_wp=all_wp && page_table[last_page].write_protected &&
3043 !page_table[last_page].dont_move;
3045 /* Check whether this is the last page in this
3046 * contiguous block */
3047 if ((page_table[last_page].bytes_used < PAGE_BYTES)
3048 /* Or it is PAGE_BYTES and is the last in the block */
3049 || (!page_boxed_p(last_page+1))
3050 || (page_table[last_page+1].bytes_used == 0)
3051 || (page_table[last_page+1].gen != generation)
3052 || (page_table[last_page+1].region_start_offset == 0))
3053 break;
3056 /* Do a limited check for write-protected pages. */
3057 if (!all_wp) {
3058 long nwords = (((unsigned long)
3059 (page_table[last_page].bytes_used
3060 + npage_bytes(last_page-i)
3061 + page_table[i].region_start_offset))
3062 / N_WORD_BYTES);
3063 new_areas_ignore_page = last_page;
3065 scavenge(page_region_start(i), nwords);
3068 i = last_page;
3071 FSHOW((stderr,
3072 "/done with one full scan of newspace generation %d\n",
3073 generation));
3076 /* Do a complete scavenge of the newspace generation. */
3077 static void
3078 scavenge_newspace_generation(generation_index_t generation)
3080 long i;
3082 /* the new_areas array currently being written to by gc_alloc() */
3083 struct new_area (*current_new_areas)[] = &new_areas_1;
3084 long current_new_areas_index;
3086 /* the new_areas created by the previous scavenge cycle */
3087 struct new_area (*previous_new_areas)[] = NULL;
3088 long previous_new_areas_index;
3090 /* Flush the current regions updating the tables. */
3091 gc_alloc_update_all_page_tables();
3093 /* Turn on the recording of new areas by gc_alloc(). */
3094 new_areas = current_new_areas;
3095 new_areas_index = 0;
3097 /* Don't need to record new areas that get scavenged anyway during
3098 * scavenge_newspace_generation_one_scan. */
3099 record_new_objects = 1;
3101 /* Start with a full scavenge. */
3102 scavenge_newspace_generation_one_scan(generation);
3104 /* Record all new areas now. */
3105 record_new_objects = 2;
3107 /* Give a chance to weak hash tables to make other objects live.
3108 * FIXME: The algorithm implemented here for weak hash table gcing
3109 * is O(W^2+N) as Bruno Haible warns in
3110 * http://www.haible.de/bruno/papers/cs/weak/WeakDatastructures-writeup.html
3111 * see "Implementation 2". */
3112 scav_weak_hash_tables();
3114 /* Flush the current regions updating the tables. */
3115 gc_alloc_update_all_page_tables();
3117 /* Grab new_areas_index. */
3118 current_new_areas_index = new_areas_index;
3120 /*FSHOW((stderr,
3121 "The first scan is finished; current_new_areas_index=%d.\n",
3122 current_new_areas_index));*/
3124 while (current_new_areas_index > 0) {
3125 /* Move the current to the previous new areas */
3126 previous_new_areas = current_new_areas;
3127 previous_new_areas_index = current_new_areas_index;
3129 /* Scavenge all the areas in previous new areas. Any new areas
3130 * allocated are saved in current_new_areas. */
3132 /* Allocate an array for current_new_areas; alternating between
3133 * new_areas_1 and 2 */
3134 if (previous_new_areas == &new_areas_1)
3135 current_new_areas = &new_areas_2;
3136 else
3137 current_new_areas = &new_areas_1;
3139 /* Set up for gc_alloc(). */
3140 new_areas = current_new_areas;
3141 new_areas_index = 0;
3143 /* Check whether previous_new_areas had overflowed. */
3144 if (previous_new_areas_index >= NUM_NEW_AREAS) {
3146 /* New areas of objects allocated have been lost so need to do a
3147 * full scan to be sure! If this becomes a problem try
3148 * increasing NUM_NEW_AREAS. */
3149 if (gencgc_verbose)
3150 SHOW("new_areas overflow, doing full scavenge");
3152 /* Don't need to record new areas that get scavenged
3153 * anyway during scavenge_newspace_generation_one_scan. */
3154 record_new_objects = 1;
3156 scavenge_newspace_generation_one_scan(generation);
3158 /* Record all new areas now. */
3159 record_new_objects = 2;
3161 scav_weak_hash_tables();
3163 /* Flush the current regions updating the tables. */
3164 gc_alloc_update_all_page_tables();
3166 } else {
3168 /* Work through previous_new_areas. */
3169 for (i = 0; i < previous_new_areas_index; i++) {
3170 page_index_t page = (*previous_new_areas)[i].page;
3171 size_t offset = (*previous_new_areas)[i].offset;
3172 size_t size = (*previous_new_areas)[i].size / N_WORD_BYTES;
3173 gc_assert((*previous_new_areas)[i].size % N_WORD_BYTES == 0);
3174 scavenge(page_address(page)+offset, size);
3177 scav_weak_hash_tables();
3179 /* Flush the current regions updating the tables. */
3180 gc_alloc_update_all_page_tables();
3183 current_new_areas_index = new_areas_index;
3185 /*FSHOW((stderr,
3186 "The re-scan has finished; current_new_areas_index=%d.\n",
3187 current_new_areas_index));*/
3190 /* Turn off recording of areas allocated by gc_alloc(). */
3191 record_new_objects = 0;
3193 #if SC_NS_GEN_CK
3194 /* Check that none of the write_protected pages in this generation
3195 * have been written to. */
3196 for (i = 0; i < page_table_pages; i++) {
3197 if (page_allocated_p(i)
3198 && (page_table[i].bytes_used != 0)
3199 && (page_table[i].gen == generation)
3200 && (page_table[i].write_protected_cleared != 0)
3201 && (page_table[i].dont_move == 0)) {
3202 lose("write protected page %d written to in scavenge_newspace_generation\ngeneration=%d dont_move=%d\n",
3203 i, generation, page_table[i].dont_move);
3206 #endif
3209 /* Un-write-protect all the pages in from_space. This is done at the
3210 * start of a GC else there may be many page faults while scavenging
3211 * the newspace (I've seen drive the system time to 99%). These pages
3212 * would need to be unprotected anyway before unmapping in
3213 * free_oldspace; not sure what effect this has on paging.. */
3214 static void
3215 unprotect_oldspace(void)
3217 page_index_t i;
3219 for (i = 0; i < last_free_page; i++) {
3220 if (page_allocated_p(i)
3221 && (page_table[i].bytes_used != 0)
3222 && (page_table[i].gen == from_space)) {
3223 void *page_start;
3225 page_start = (void *)page_address(i);
3227 /* Remove any write-protection. We should be able to rely
3228 * on the write-protect flag to avoid redundant calls. */
3229 if (page_table[i].write_protected) {
3230 os_protect(page_start, PAGE_BYTES, OS_VM_PROT_ALL);
3231 page_table[i].write_protected = 0;
3237 /* Work through all the pages and free any in from_space. This
3238 * assumes that all objects have been copied or promoted to an older
3239 * generation. Bytes_allocated and the generation bytes_allocated
3240 * counter are updated. The number of bytes freed is returned. */
3241 static unsigned long
3242 free_oldspace(void)
3244 unsigned long bytes_freed = 0;
3245 page_index_t first_page, last_page;
3247 first_page = 0;
3249 do {
3250 /* Find a first page for the next region of pages. */
3251 while ((first_page < last_free_page)
3252 && (page_free_p(first_page)
3253 || (page_table[first_page].bytes_used == 0)
3254 || (page_table[first_page].gen != from_space)))
3255 first_page++;
3257 if (first_page >= last_free_page)
3258 break;
3260 /* Find the last page of this region. */
3261 last_page = first_page;
3263 do {
3264 /* Free the page. */
3265 bytes_freed += page_table[last_page].bytes_used;
3266 generations[page_table[last_page].gen].bytes_allocated -=
3267 page_table[last_page].bytes_used;
3268 page_table[last_page].allocated = FREE_PAGE_FLAG;
3269 page_table[last_page].bytes_used = 0;
3271 /* Remove any write-protection. We should be able to rely
3272 * on the write-protect flag to avoid redundant calls. */
3274 void *page_start = (void *)page_address(last_page);
3276 if (page_table[last_page].write_protected) {
3277 os_protect(page_start, PAGE_BYTES, OS_VM_PROT_ALL);
3278 page_table[last_page].write_protected = 0;
3281 last_page++;
3283 while ((last_page < last_free_page)
3284 && page_allocated_p(last_page)
3285 && (page_table[last_page].bytes_used != 0)
3286 && (page_table[last_page].gen == from_space));
3288 #ifdef READ_PROTECT_FREE_PAGES
3289 os_protect(page_address(first_page),
3290 npage_bytes(last_page-first_page),
3291 OS_VM_PROT_NONE);
3292 #endif
3293 first_page = last_page;
3294 } while (first_page < last_free_page);
3296 bytes_allocated -= bytes_freed;
3297 return bytes_freed;
3300 #if 0
3301 /* Print some information about a pointer at the given address. */
3302 static void
3303 print_ptr(lispobj *addr)
3305 /* If addr is in the dynamic space then out the page information. */
3306 page_index_t pi1 = find_page_index((void*)addr);
3308 if (pi1 != -1)
3309 fprintf(stderr," %x: page %d alloc %d gen %d bytes_used %d offset %lu dont_move %d\n",
3310 (unsigned long) addr,
3311 pi1,
3312 page_table[pi1].allocated,
3313 page_table[pi1].gen,
3314 page_table[pi1].bytes_used,
3315 page_table[pi1].region_start_offset,
3316 page_table[pi1].dont_move);
3317 fprintf(stderr," %x %x %x %x (%x) %x %x %x %x\n",
3318 *(addr-4),
3319 *(addr-3),
3320 *(addr-2),
3321 *(addr-1),
3322 *(addr-0),
3323 *(addr+1),
3324 *(addr+2),
3325 *(addr+3),
3326 *(addr+4));
3328 #endif
3330 static void
3331 verify_space(lispobj *start, size_t words)
3333 int is_in_dynamic_space = (find_page_index((void*)start) != -1);
3334 int is_in_readonly_space =
3335 (READ_ONLY_SPACE_START <= (unsigned long)start &&
3336 (unsigned long)start < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
3338 while (words > 0) {
3339 size_t count = 1;
3340 lispobj thing = *(lispobj*)start;
3342 if (is_lisp_pointer(thing)) {
3343 page_index_t page_index = find_page_index((void*)thing);
3344 long to_readonly_space =
3345 (READ_ONLY_SPACE_START <= thing &&
3346 thing < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
3347 long to_static_space =
3348 (STATIC_SPACE_START <= thing &&
3349 thing < SymbolValue(STATIC_SPACE_FREE_POINTER,0));
3351 /* Does it point to the dynamic space? */
3352 if (page_index != -1) {
3353 /* If it's within the dynamic space it should point to a used
3354 * page. XX Could check the offset too. */
3355 if (page_allocated_p(page_index)
3356 && (page_table[page_index].bytes_used == 0))
3357 lose ("Ptr %x @ %x sees free page.\n", thing, start);
3358 /* Check that it doesn't point to a forwarding pointer! */
3359 if (*((lispobj *)native_pointer(thing)) == 0x01) {
3360 lose("Ptr %x @ %x sees forwarding ptr.\n", thing, start);
3362 /* Check that its not in the RO space as it would then be a
3363 * pointer from the RO to the dynamic space. */
3364 if (is_in_readonly_space) {
3365 lose("ptr to dynamic space %x from RO space %x\n",
3366 thing, start);
3368 /* Does it point to a plausible object? This check slows
3369 * it down a lot (so it's commented out).
3371 * "a lot" is serious: it ate 50 minutes cpu time on
3372 * my duron 950 before I came back from lunch and
3373 * killed it.
3375 * FIXME: Add a variable to enable this
3376 * dynamically. */
3378 if (!possibly_valid_dynamic_space_pointer((lispobj *)thing)) {
3379 lose("ptr %x to invalid object %x\n", thing, start);
3382 } else {
3383 /* Verify that it points to another valid space. */
3384 if (!to_readonly_space && !to_static_space) {
3385 lose("Ptr %x @ %x sees junk.\n", thing, start);
3388 } else {
3389 if (!(fixnump(thing))) {
3390 /* skip fixnums */
3391 switch(widetag_of(*start)) {
3393 /* boxed objects */
3394 case SIMPLE_VECTOR_WIDETAG:
3395 case RATIO_WIDETAG:
3396 case COMPLEX_WIDETAG:
3397 case SIMPLE_ARRAY_WIDETAG:
3398 case COMPLEX_BASE_STRING_WIDETAG:
3399 #ifdef COMPLEX_CHARACTER_STRING_WIDETAG
3400 case COMPLEX_CHARACTER_STRING_WIDETAG:
3401 #endif
3402 case COMPLEX_VECTOR_NIL_WIDETAG:
3403 case COMPLEX_BIT_VECTOR_WIDETAG:
3404 case COMPLEX_VECTOR_WIDETAG:
3405 case COMPLEX_ARRAY_WIDETAG:
3406 case CLOSURE_HEADER_WIDETAG:
3407 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
3408 case VALUE_CELL_HEADER_WIDETAG:
3409 case SYMBOL_HEADER_WIDETAG:
3410 case CHARACTER_WIDETAG:
3411 #if N_WORD_BITS == 64
3412 case SINGLE_FLOAT_WIDETAG:
3413 #endif
3414 case UNBOUND_MARKER_WIDETAG:
3415 case FDEFN_WIDETAG:
3416 count = 1;
3417 break;
3419 case INSTANCE_HEADER_WIDETAG:
3421 lispobj nuntagged;
3422 long ntotal = HeaderValue(thing);
3423 lispobj layout = ((struct instance *)start)->slots[0];
3424 if (!layout) {
3425 count = 1;
3426 break;
3428 nuntagged = ((struct layout *)
3429 native_pointer(layout))->n_untagged_slots;
3430 verify_space(start + 1,
3431 ntotal - fixnum_value(nuntagged));
3432 count = ntotal + 1;
3433 break;
3435 case CODE_HEADER_WIDETAG:
3437 lispobj object = *start;
3438 struct code *code;
3439 long nheader_words, ncode_words, nwords;
3440 lispobj fheaderl;
3441 struct simple_fun *fheaderp;
3443 code = (struct code *) start;
3445 /* Check that it's not in the dynamic space.
3446 * FIXME: Isn't is supposed to be OK for code
3447 * objects to be in the dynamic space these days? */
3448 if (is_in_dynamic_space
3449 /* It's ok if it's byte compiled code. The trace
3450 * table offset will be a fixnum if it's x86
3451 * compiled code - check.
3453 * FIXME: #^#@@! lack of abstraction here..
3454 * This line can probably go away now that
3455 * there's no byte compiler, but I've got
3456 * too much to worry about right now to try
3457 * to make sure. -- WHN 2001-10-06 */
3458 && fixnump(code->trace_table_offset)
3459 /* Only when enabled */
3460 && verify_dynamic_code_check) {
3461 FSHOW((stderr,
3462 "/code object at %x in the dynamic space\n",
3463 start));
3466 ncode_words = fixnum_value(code->code_size);
3467 nheader_words = HeaderValue(object);
3468 nwords = ncode_words + nheader_words;
3469 nwords = CEILING(nwords, 2);
3470 /* Scavenge the boxed section of the code data block */
3471 verify_space(start + 1, nheader_words - 1);
3473 /* Scavenge the boxed section of each function
3474 * object in the code data block. */
3475 fheaderl = code->entry_points;
3476 while (fheaderl != NIL) {
3477 fheaderp =
3478 (struct simple_fun *) native_pointer(fheaderl);
3479 gc_assert(widetag_of(fheaderp->header) ==
3480 SIMPLE_FUN_HEADER_WIDETAG);
3481 verify_space(&fheaderp->name, 1);
3482 verify_space(&fheaderp->arglist, 1);
3483 verify_space(&fheaderp->type, 1);
3484 fheaderl = fheaderp->next;
3486 count = nwords;
3487 break;
3490 /* unboxed objects */
3491 case BIGNUM_WIDETAG:
3492 #if N_WORD_BITS != 64
3493 case SINGLE_FLOAT_WIDETAG:
3494 #endif
3495 case DOUBLE_FLOAT_WIDETAG:
3496 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
3497 case LONG_FLOAT_WIDETAG:
3498 #endif
3499 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
3500 case COMPLEX_SINGLE_FLOAT_WIDETAG:
3501 #endif
3502 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
3503 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
3504 #endif
3505 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
3506 case COMPLEX_LONG_FLOAT_WIDETAG:
3507 #endif
3508 case SIMPLE_BASE_STRING_WIDETAG:
3509 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
3510 case SIMPLE_CHARACTER_STRING_WIDETAG:
3511 #endif
3512 case SIMPLE_BIT_VECTOR_WIDETAG:
3513 case SIMPLE_ARRAY_NIL_WIDETAG:
3514 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
3515 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
3516 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
3517 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
3518 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
3519 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
3520 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
3521 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
3522 #endif
3523 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
3524 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
3525 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
3526 case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
3527 #endif
3528 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
3529 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
3530 #endif
3531 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
3532 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
3533 #endif
3534 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
3535 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
3536 #endif
3537 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
3538 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
3539 #endif
3540 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
3541 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
3542 #endif
3543 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
3544 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
3545 #endif
3546 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
3547 case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
3548 #endif
3549 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
3550 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
3551 #endif
3552 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
3553 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
3554 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
3555 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
3556 #endif
3557 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
3558 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
3559 #endif
3560 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
3561 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
3562 #endif
3563 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
3564 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
3565 #endif
3566 case SAP_WIDETAG:
3567 case WEAK_POINTER_WIDETAG:
3568 #ifdef LUTEX_WIDETAG
3569 case LUTEX_WIDETAG:
3570 #endif
3571 #ifdef NO_TLS_VALUE_MARKER_WIDETAG
3572 case NO_TLS_VALUE_MARKER_WIDETAG:
3573 #endif
3574 count = (sizetab[widetag_of(*start)])(start);
3575 break;
3577 default:
3578 lose("Unhandled widetag 0x%x at 0x%x\n",
3579 widetag_of(*start), start);
3583 start += count;
3584 words -= count;
3588 static void
3589 verify_gc(void)
3591 /* FIXME: It would be nice to make names consistent so that
3592 * foo_size meant size *in* *bytes* instead of size in some
3593 * arbitrary units. (Yes, this caused a bug, how did you guess?:-)
3594 * Some counts of lispobjs are called foo_count; it might be good
3595 * to grep for all foo_size and rename the appropriate ones to
3596 * foo_count. */
3597 long read_only_space_size =
3598 (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0)
3599 - (lispobj*)READ_ONLY_SPACE_START;
3600 long static_space_size =
3601 (lispobj*)SymbolValue(STATIC_SPACE_FREE_POINTER,0)
3602 - (lispobj*)STATIC_SPACE_START;
3603 struct thread *th;
3604 for_each_thread(th) {
3605 long binding_stack_size =
3606 (lispobj*)get_binding_stack_pointer(th)
3607 - (lispobj*)th->binding_stack_start;
3608 verify_space(th->binding_stack_start, binding_stack_size);
3610 verify_space((lispobj*)READ_ONLY_SPACE_START, read_only_space_size);
3611 verify_space((lispobj*)STATIC_SPACE_START , static_space_size);
3614 static void
3615 verify_generation(generation_index_t generation)
3617 page_index_t i;
3619 for (i = 0; i < last_free_page; i++) {
3620 if (page_allocated_p(i)
3621 && (page_table[i].bytes_used != 0)
3622 && (page_table[i].gen == generation)) {
3623 page_index_t last_page;
3624 int region_allocation = page_table[i].allocated;
3626 /* This should be the start of a contiguous block */
3627 gc_assert(page_table[i].region_start_offset == 0);
3629 /* Need to find the full extent of this contiguous block in case
3630 objects span pages. */
3632 /* Now work forward until the end of this contiguous area is
3633 found. */
3634 for (last_page = i; ;last_page++)
3635 /* Check whether this is the last page in this contiguous
3636 * block. */
3637 if ((page_table[last_page].bytes_used < PAGE_BYTES)
3638 /* Or it is PAGE_BYTES and is the last in the block */
3639 || (page_table[last_page+1].allocated != region_allocation)
3640 || (page_table[last_page+1].bytes_used == 0)
3641 || (page_table[last_page+1].gen != generation)
3642 || (page_table[last_page+1].region_start_offset == 0))
3643 break;
3645 verify_space(page_address(i),
3646 ((unsigned long)
3647 (page_table[last_page].bytes_used
3648 + npage_bytes(last_page-i)))
3649 / N_WORD_BYTES);
3650 i = last_page;
3655 /* Check that all the free space is zero filled. */
3656 static void
3657 verify_zero_fill(void)
3659 page_index_t page;
3661 for (page = 0; page < last_free_page; page++) {
3662 if (page_free_p(page)) {
3663 /* The whole page should be zero filled. */
3664 long *start_addr = (long *)page_address(page);
3665 long size = 1024;
3666 long i;
3667 for (i = 0; i < size; i++) {
3668 if (start_addr[i] != 0) {
3669 lose("free page not zero at %x\n", start_addr + i);
3672 } else {
3673 long free_bytes = PAGE_BYTES - page_table[page].bytes_used;
3674 if (free_bytes > 0) {
3675 long *start_addr = (long *)((unsigned long)page_address(page)
3676 + page_table[page].bytes_used);
3677 long size = free_bytes / N_WORD_BYTES;
3678 long i;
3679 for (i = 0; i < size; i++) {
3680 if (start_addr[i] != 0) {
3681 lose("free region not zero at %x\n", start_addr + i);
3689 /* External entry point for verify_zero_fill */
3690 void
3691 gencgc_verify_zero_fill(void)
3693 /* Flush the alloc regions updating the tables. */
3694 gc_alloc_update_all_page_tables();
3695 SHOW("verifying zero fill");
3696 verify_zero_fill();
3699 static void
3700 verify_dynamic_space(void)
3702 generation_index_t i;
3704 for (i = 0; i <= HIGHEST_NORMAL_GENERATION; i++)
3705 verify_generation(i);
3707 if (gencgc_enable_verify_zero_fill)
3708 verify_zero_fill();
3711 /* Write-protect all the dynamic boxed pages in the given generation. */
3712 static void
3713 write_protect_generation_pages(generation_index_t generation)
3715 page_index_t start;
3717 gc_assert(generation < SCRATCH_GENERATION);
3719 for (start = 0; start < last_free_page; start++) {
3720 if (protect_page_p(start, generation)) {
3721 void *page_start;
3722 page_index_t last;
3724 /* Note the page as protected in the page tables. */
3725 page_table[start].write_protected = 1;
3727 for (last = start + 1; last < last_free_page; last++) {
3728 if (!protect_page_p(last, generation))
3729 break;
3730 page_table[last].write_protected = 1;
3733 page_start = (void *)page_address(start);
3735 os_protect(page_start,
3736 npage_bytes(last - start),
3737 OS_VM_PROT_READ | OS_VM_PROT_EXECUTE);
3739 start = last;
3743 if (gencgc_verbose > 1) {
3744 FSHOW((stderr,
3745 "/write protected %d of %d pages in generation %d\n",
3746 count_write_protect_generation_pages(generation),
3747 count_generation_pages(generation),
3748 generation));
3752 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
3754 static void
3755 scavenge_control_stack()
3757 unsigned long control_stack_size;
3759 /* This is going to be a big problem when we try to port threads
3760 * to PPC... CLH */
3761 struct thread *th = arch_os_get_current_thread();
3762 lispobj *control_stack =
3763 (lispobj *)(th->control_stack_start);
3765 control_stack_size = current_control_stack_pointer - control_stack;
3766 scavenge(control_stack, control_stack_size);
3769 /* Scavenging Interrupt Contexts */
3771 static int boxed_registers[] = BOXED_REGISTERS;
3773 static void
3774 scavenge_interrupt_context(os_context_t * context)
3776 int i;
3778 #ifdef reg_LIP
3779 unsigned long lip;
3780 unsigned long lip_offset;
3781 int lip_register_pair;
3782 #endif
3783 unsigned long pc_code_offset;
3785 #ifdef ARCH_HAS_LINK_REGISTER
3786 unsigned long lr_code_offset;
3787 #endif
3788 #ifdef ARCH_HAS_NPC_REGISTER
3789 unsigned long npc_code_offset;
3790 #endif
3792 #ifdef reg_LIP
3793 /* Find the LIP's register pair and calculate it's offset */
3794 /* before we scavenge the context. */
3797 * I (RLT) think this is trying to find the boxed register that is
3798 * closest to the LIP address, without going past it. Usually, it's
3799 * reg_CODE or reg_LRA. But sometimes, nothing can be found.
3801 lip = *os_context_register_addr(context, reg_LIP);
3802 lip_offset = 0x7FFFFFFF;
3803 lip_register_pair = -1;
3804 for (i = 0; i < (sizeof(boxed_registers) / sizeof(int)); i++) {
3805 unsigned long reg;
3806 long offset;
3807 int index;
3809 index = boxed_registers[i];
3810 reg = *os_context_register_addr(context, index);
3811 if ((reg & ~((1L<<N_LOWTAG_BITS)-1)) <= lip) {
3812 offset = lip - reg;
3813 if (offset < lip_offset) {
3814 lip_offset = offset;
3815 lip_register_pair = index;
3819 #endif /* reg_LIP */
3821 /* Compute the PC's offset from the start of the CODE */
3822 /* register. */
3823 pc_code_offset = *os_context_pc_addr(context)
3824 - *os_context_register_addr(context, reg_CODE);
3825 #ifdef ARCH_HAS_NPC_REGISTER
3826 npc_code_offset = *os_context_npc_addr(context)
3827 - *os_context_register_addr(context, reg_CODE);
3828 #endif /* ARCH_HAS_NPC_REGISTER */
3830 #ifdef ARCH_HAS_LINK_REGISTER
3831 lr_code_offset =
3832 *os_context_lr_addr(context) -
3833 *os_context_register_addr(context, reg_CODE);
3834 #endif
3836 /* Scanvenge all boxed registers in the context. */
3837 for (i = 0; i < (sizeof(boxed_registers) / sizeof(int)); i++) {
3838 int index;
3839 lispobj foo;
3841 index = boxed_registers[i];
3842 foo = *os_context_register_addr(context, index);
3843 scavenge(&foo, 1);
3844 *os_context_register_addr(context, index) = foo;
3846 scavenge((lispobj*) &(*os_context_register_addr(context, index)), 1);
3849 #ifdef reg_LIP
3850 /* Fix the LIP */
3853 * But what happens if lip_register_pair is -1?
3854 * *os_context_register_addr on Solaris (see
3855 * solaris_register_address in solaris-os.c) will return
3856 * &context->uc_mcontext.gregs[2]. But gregs[2] is REG_nPC. Is
3857 * that what we really want? My guess is that that is not what we
3858 * want, so if lip_register_pair is -1, we don't touch reg_LIP at
3859 * all. But maybe it doesn't really matter if LIP is trashed?
3861 if (lip_register_pair >= 0) {
3862 *os_context_register_addr(context, reg_LIP) =
3863 *os_context_register_addr(context, lip_register_pair)
3864 + lip_offset;
3866 #endif /* reg_LIP */
3868 /* Fix the PC if it was in from space */
3869 if (from_space_p(*os_context_pc_addr(context)))
3870 *os_context_pc_addr(context) =
3871 *os_context_register_addr(context, reg_CODE) + pc_code_offset;
3873 #ifdef ARCH_HAS_LINK_REGISTER
3874 /* Fix the LR ditto; important if we're being called from
3875 * an assembly routine that expects to return using blr, otherwise
3876 * harmless */
3877 if (from_space_p(*os_context_lr_addr(context)))
3878 *os_context_lr_addr(context) =
3879 *os_context_register_addr(context, reg_CODE) + lr_code_offset;
3880 #endif
3882 #ifdef ARCH_HAS_NPC_REGISTER
3883 if (from_space_p(*os_context_npc_addr(context)))
3884 *os_context_npc_addr(context) =
3885 *os_context_register_addr(context, reg_CODE) + npc_code_offset;
3886 #endif /* ARCH_HAS_NPC_REGISTER */
3889 void
3890 scavenge_interrupt_contexts(void)
3892 int i, index;
3893 os_context_t *context;
3895 struct thread *th=arch_os_get_current_thread();
3897 index = fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,0));
3899 #if defined(DEBUG_PRINT_CONTEXT_INDEX)
3900 printf("Number of active contexts: %d\n", index);
3901 #endif
3903 for (i = 0; i < index; i++) {
3904 context = th->interrupt_contexts[i];
3905 scavenge_interrupt_context(context);
3909 #endif
3911 #if defined(LISP_FEATURE_SB_THREAD)
3912 static void
3913 preserve_context_registers (os_context_t *c)
3915 void **ptr;
3916 /* On Darwin the signal context isn't a contiguous block of memory,
3917 * so just preserve_pointering its contents won't be sufficient.
3919 #if defined(LISP_FEATURE_DARWIN)
3920 #if defined LISP_FEATURE_X86
3921 preserve_pointer((void*)*os_context_register_addr(c,reg_EAX));
3922 preserve_pointer((void*)*os_context_register_addr(c,reg_ECX));
3923 preserve_pointer((void*)*os_context_register_addr(c,reg_EDX));
3924 preserve_pointer((void*)*os_context_register_addr(c,reg_EBX));
3925 preserve_pointer((void*)*os_context_register_addr(c,reg_ESI));
3926 preserve_pointer((void*)*os_context_register_addr(c,reg_EDI));
3927 preserve_pointer((void*)*os_context_pc_addr(c));
3928 #elif defined LISP_FEATURE_X86_64
3929 preserve_pointer((void*)*os_context_register_addr(c,reg_RAX));
3930 preserve_pointer((void*)*os_context_register_addr(c,reg_RCX));
3931 preserve_pointer((void*)*os_context_register_addr(c,reg_RDX));
3932 preserve_pointer((void*)*os_context_register_addr(c,reg_RBX));
3933 preserve_pointer((void*)*os_context_register_addr(c,reg_RSI));
3934 preserve_pointer((void*)*os_context_register_addr(c,reg_RDI));
3935 preserve_pointer((void*)*os_context_register_addr(c,reg_R8));
3936 preserve_pointer((void*)*os_context_register_addr(c,reg_R9));
3937 preserve_pointer((void*)*os_context_register_addr(c,reg_R10));
3938 preserve_pointer((void*)*os_context_register_addr(c,reg_R11));
3939 preserve_pointer((void*)*os_context_register_addr(c,reg_R12));
3940 preserve_pointer((void*)*os_context_register_addr(c,reg_R13));
3941 preserve_pointer((void*)*os_context_register_addr(c,reg_R14));
3942 preserve_pointer((void*)*os_context_register_addr(c,reg_R15));
3943 preserve_pointer((void*)*os_context_pc_addr(c));
3944 #else
3945 #error "preserve_context_registers needs to be tweaked for non-x86 Darwin"
3946 #endif
3947 #endif
3948 for(ptr = ((void **)(c+1))-1; ptr>=(void **)c; ptr--) {
3949 preserve_pointer(*ptr);
3952 #endif
3954 /* Garbage collect a generation. If raise is 0 then the remains of the
3955 * generation are not raised to the next generation. */
3956 static void
3957 garbage_collect_generation(generation_index_t generation, int raise)
3959 unsigned long bytes_freed;
3960 page_index_t i;
3961 unsigned long static_space_size;
3962 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
3963 struct thread *th;
3964 #endif
3965 gc_assert(generation <= HIGHEST_NORMAL_GENERATION);
3967 /* The oldest generation can't be raised. */
3968 gc_assert((generation != HIGHEST_NORMAL_GENERATION) || (raise == 0));
3970 /* Check if weak hash tables were processed in the previous GC. */
3971 gc_assert(weak_hash_tables == NULL);
3973 /* Initialize the weak pointer list. */
3974 weak_pointers = NULL;
3976 #ifdef LUTEX_WIDETAG
3977 unmark_lutexes(generation);
3978 #endif
3980 /* When a generation is not being raised it is transported to a
3981 * temporary generation (NUM_GENERATIONS), and lowered when
3982 * done. Set up this new generation. There should be no pages
3983 * allocated to it yet. */
3984 if (!raise) {
3985 gc_assert(generations[SCRATCH_GENERATION].bytes_allocated == 0);
3988 /* Set the global src and dest. generations */
3989 from_space = generation;
3990 if (raise)
3991 new_space = generation+1;
3992 else
3993 new_space = SCRATCH_GENERATION;
3995 /* Change to a new space for allocation, resetting the alloc_start_page */
3996 gc_alloc_generation = new_space;
3997 generations[new_space].alloc_start_page = 0;
3998 generations[new_space].alloc_unboxed_start_page = 0;
3999 generations[new_space].alloc_large_start_page = 0;
4000 generations[new_space].alloc_large_unboxed_start_page = 0;
4002 /* Before any pointers are preserved, the dont_move flags on the
4003 * pages need to be cleared. */
4004 for (i = 0; i < last_free_page; i++)
4005 if(page_table[i].gen==from_space)
4006 page_table[i].dont_move = 0;
4008 /* Un-write-protect the old-space pages. This is essential for the
4009 * promoted pages as they may contain pointers into the old-space
4010 * which need to be scavenged. It also helps avoid unnecessary page
4011 * faults as forwarding pointers are written into them. They need to
4012 * be un-protected anyway before unmapping later. */
4013 unprotect_oldspace();
4015 /* Scavenge the stacks' conservative roots. */
4017 /* there are potentially two stacks for each thread: the main
4018 * stack, which may contain Lisp pointers, and the alternate stack.
4019 * We don't ever run Lisp code on the altstack, but it may
4020 * host a sigcontext with lisp objects in it */
4022 /* what we need to do: (1) find the stack pointer for the main
4023 * stack; scavenge it (2) find the interrupt context on the
4024 * alternate stack that might contain lisp values, and scavenge
4025 * that */
4027 /* we assume that none of the preceding applies to the thread that
4028 * initiates GC. If you ever call GC from inside an altstack
4029 * handler, you will lose. */
4031 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
4032 /* And if we're saving a core, there's no point in being conservative. */
4033 if (conservative_stack) {
4034 for_each_thread(th) {
4035 void **ptr;
4036 void **esp=(void **)-1;
4037 #ifdef LISP_FEATURE_SB_THREAD
4038 long i,free;
4039 if(th==arch_os_get_current_thread()) {
4040 /* Somebody is going to burn in hell for this, but casting
4041 * it in two steps shuts gcc up about strict aliasing. */
4042 esp = (void **)((void *)&raise);
4043 } else {
4044 void **esp1;
4045 free=fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,th));
4046 for(i=free-1;i>=0;i--) {
4047 os_context_t *c=th->interrupt_contexts[i];
4048 esp1 = (void **) *os_context_register_addr(c,reg_SP);
4049 if (esp1>=(void **)th->control_stack_start &&
4050 esp1<(void **)th->control_stack_end) {
4051 if(esp1<esp) esp=esp1;
4052 preserve_context_registers(c);
4056 #else
4057 esp = (void **)((void *)&raise);
4058 #endif
4059 for (ptr = ((void **)th->control_stack_end)-1; ptr >= esp; ptr--) {
4060 preserve_pointer(*ptr);
4064 #endif
4066 #ifdef QSHOW
4067 if (gencgc_verbose > 1) {
4068 long num_dont_move_pages = count_dont_move_pages();
4069 fprintf(stderr,
4070 "/non-movable pages due to conservative pointers = %d (%d bytes)\n",
4071 num_dont_move_pages,
4072 npage_bytes(num_dont_move_pages);
4074 #endif
4076 /* Scavenge all the rest of the roots. */
4078 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
4080 * If not x86, we need to scavenge the interrupt context(s) and the
4081 * control stack.
4083 scavenge_interrupt_contexts();
4084 scavenge_control_stack();
4085 #endif
4087 /* Scavenge the Lisp functions of the interrupt handlers, taking
4088 * care to avoid SIG_DFL and SIG_IGN. */
4089 for (i = 0; i < NSIG; i++) {
4090 union interrupt_handler handler = interrupt_handlers[i];
4091 if (!ARE_SAME_HANDLER(handler.c, SIG_IGN) &&
4092 !ARE_SAME_HANDLER(handler.c, SIG_DFL)) {
4093 scavenge((lispobj *)(interrupt_handlers + i), 1);
4096 /* Scavenge the binding stacks. */
4098 struct thread *th;
4099 for_each_thread(th) {
4100 long len= (lispobj *)get_binding_stack_pointer(th) -
4101 th->binding_stack_start;
4102 scavenge((lispobj *) th->binding_stack_start,len);
4103 #ifdef LISP_FEATURE_SB_THREAD
4104 /* do the tls as well */
4105 len=fixnum_value(SymbolValue(FREE_TLS_INDEX,0)) -
4106 (sizeof (struct thread))/(sizeof (lispobj));
4107 scavenge((lispobj *) (th+1),len);
4108 #endif
4112 /* The original CMU CL code had scavenge-read-only-space code
4113 * controlled by the Lisp-level variable
4114 * *SCAVENGE-READ-ONLY-SPACE*. It was disabled by default, and it
4115 * wasn't documented under what circumstances it was useful or
4116 * safe to turn it on, so it's been turned off in SBCL. If you
4117 * want/need this functionality, and can test and document it,
4118 * please submit a patch. */
4119 #if 0
4120 if (SymbolValue(SCAVENGE_READ_ONLY_SPACE) != NIL) {
4121 unsigned long read_only_space_size =
4122 (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER) -
4123 (lispobj*)READ_ONLY_SPACE_START;
4124 FSHOW((stderr,
4125 "/scavenge read only space: %d bytes\n",
4126 read_only_space_size * sizeof(lispobj)));
4127 scavenge( (lispobj *) READ_ONLY_SPACE_START, read_only_space_size);
4129 #endif
4131 /* Scavenge static space. */
4132 static_space_size =
4133 (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0) -
4134 (lispobj *)STATIC_SPACE_START;
4135 if (gencgc_verbose > 1) {
4136 FSHOW((stderr,
4137 "/scavenge static space: %d bytes\n",
4138 static_space_size * sizeof(lispobj)));
4140 scavenge( (lispobj *) STATIC_SPACE_START, static_space_size);
4142 /* All generations but the generation being GCed need to be
4143 * scavenged. The new_space generation needs special handling as
4144 * objects may be moved in - it is handled separately below. */
4145 scavenge_generations(generation+1, PSEUDO_STATIC_GENERATION);
4147 /* Finally scavenge the new_space generation. Keep going until no
4148 * more objects are moved into the new generation */
4149 scavenge_newspace_generation(new_space);
4151 /* FIXME: I tried reenabling this check when debugging unrelated
4152 * GC weirdness ca. sbcl-0.6.12.45, and it failed immediately.
4153 * Since the current GC code seems to work well, I'm guessing that
4154 * this debugging code is just stale, but I haven't tried to
4155 * figure it out. It should be figured out and then either made to
4156 * work or just deleted. */
4157 #define RESCAN_CHECK 0
4158 #if RESCAN_CHECK
4159 /* As a check re-scavenge the newspace once; no new objects should
4160 * be found. */
4162 long old_bytes_allocated = bytes_allocated;
4163 long bytes_allocated;
4165 /* Start with a full scavenge. */
4166 scavenge_newspace_generation_one_scan(new_space);
4168 /* Flush the current regions, updating the tables. */
4169 gc_alloc_update_all_page_tables();
4171 bytes_allocated = bytes_allocated - old_bytes_allocated;
4173 if (bytes_allocated != 0) {
4174 lose("Rescan of new_space allocated %d more bytes.\n",
4175 bytes_allocated);
4178 #endif
4180 scan_weak_hash_tables();
4181 scan_weak_pointers();
4183 /* Flush the current regions, updating the tables. */
4184 gc_alloc_update_all_page_tables();
4186 /* Free the pages in oldspace, but not those marked dont_move. */
4187 bytes_freed = free_oldspace();
4189 /* If the GC is not raising the age then lower the generation back
4190 * to its normal generation number */
4191 if (!raise) {
4192 for (i = 0; i < last_free_page; i++)
4193 if ((page_table[i].bytes_used != 0)
4194 && (page_table[i].gen == SCRATCH_GENERATION))
4195 page_table[i].gen = generation;
4196 gc_assert(generations[generation].bytes_allocated == 0);
4197 generations[generation].bytes_allocated =
4198 generations[SCRATCH_GENERATION].bytes_allocated;
4199 generations[SCRATCH_GENERATION].bytes_allocated = 0;
4202 /* Reset the alloc_start_page for generation. */
4203 generations[generation].alloc_start_page = 0;
4204 generations[generation].alloc_unboxed_start_page = 0;
4205 generations[generation].alloc_large_start_page = 0;
4206 generations[generation].alloc_large_unboxed_start_page = 0;
4208 if (generation >= verify_gens) {
4209 if (gencgc_verbose)
4210 SHOW("verifying");
4211 verify_gc();
4212 verify_dynamic_space();
4215 /* Set the new gc trigger for the GCed generation. */
4216 generations[generation].gc_trigger =
4217 generations[generation].bytes_allocated
4218 + generations[generation].bytes_consed_between_gc;
4220 if (raise)
4221 generations[generation].num_gc = 0;
4222 else
4223 ++generations[generation].num_gc;
4225 #ifdef LUTEX_WIDETAG
4226 reap_lutexes(generation);
4227 if (raise)
4228 move_lutexes(generation, generation+1);
4229 #endif
4232 /* Update last_free_page, then SymbolValue(ALLOCATION_POINTER). */
4233 long
4234 update_dynamic_space_free_pointer(void)
4236 page_index_t last_page = -1, i;
4238 for (i = 0; i < last_free_page; i++)
4239 if (page_allocated_p(i) && (page_table[i].bytes_used != 0))
4240 last_page = i;
4242 last_free_page = last_page+1;
4244 set_alloc_pointer((lispobj)(page_address(last_free_page)));
4245 return 0; /* dummy value: return something ... */
4248 static void
4249 remap_free_pages (page_index_t from, page_index_t to)
4251 page_index_t first_page, last_page;
4253 for (first_page = from; first_page <= to; first_page++) {
4254 if (page_allocated_p(first_page) ||
4255 (page_table[first_page].need_to_zero == 0)) {
4256 continue;
4259 last_page = first_page + 1;
4260 while (page_free_p(last_page) &&
4261 (last_page < to) &&
4262 (page_table[last_page].need_to_zero == 1)) {
4263 last_page++;
4266 /* There's a mysterious Solaris/x86 problem with using mmap
4267 * tricks for memory zeroing. See sbcl-devel thread
4268 * "Re: patch: standalone executable redux".
4270 #if defined(LISP_FEATURE_SUNOS)
4271 zero_pages(first_page, last_page-1);
4272 #else
4273 zero_pages_with_mmap(first_page, last_page-1);
4274 #endif
4276 first_page = last_page;
4280 generation_index_t small_generation_limit = 1;
4282 /* GC all generations newer than last_gen, raising the objects in each
4283 * to the next older generation - we finish when all generations below
4284 * last_gen are empty. Then if last_gen is due for a GC, or if
4285 * last_gen==NUM_GENERATIONS (the scratch generation? eh?) we GC that
4286 * too. The valid range for last_gen is: 0,1,...,NUM_GENERATIONS.
4288 * We stop collecting at gencgc_oldest_gen_to_gc, even if this is less than
4289 * last_gen (oh, and note that by default it is NUM_GENERATIONS-1) */
4290 void
4291 collect_garbage(generation_index_t last_gen)
4293 generation_index_t gen = 0, i;
4294 int raise;
4295 int gen_to_wp;
4296 /* The largest value of last_free_page seen since the time
4297 * remap_free_pages was called. */
4298 static page_index_t high_water_mark = 0;
4300 FSHOW((stderr, "/entering collect_garbage(%d)\n", last_gen));
4302 gc_active_p = 1;
4304 if (last_gen > HIGHEST_NORMAL_GENERATION+1) {
4305 FSHOW((stderr,
4306 "/collect_garbage: last_gen = %d, doing a level 0 GC\n",
4307 last_gen));
4308 last_gen = 0;
4311 /* Flush the alloc regions updating the tables. */
4312 gc_alloc_update_all_page_tables();
4314 /* Verify the new objects created by Lisp code. */
4315 if (pre_verify_gen_0) {
4316 FSHOW((stderr, "pre-checking generation 0\n"));
4317 verify_generation(0);
4320 if (gencgc_verbose > 1)
4321 print_generation_stats(0);
4323 do {
4324 /* Collect the generation. */
4326 if (gen >= gencgc_oldest_gen_to_gc) {
4327 /* Never raise the oldest generation. */
4328 raise = 0;
4329 } else {
4330 raise =
4331 (gen < last_gen)
4332 || (generations[gen].num_gc >= generations[gen].trigger_age);
4335 if (gencgc_verbose > 1) {
4336 FSHOW((stderr,
4337 "starting GC of generation %d with raise=%d alloc=%d trig=%d GCs=%d\n",
4338 gen,
4339 raise,
4340 generations[gen].bytes_allocated,
4341 generations[gen].gc_trigger,
4342 generations[gen].num_gc));
4345 /* If an older generation is being filled, then update its
4346 * memory age. */
4347 if (raise == 1) {
4348 generations[gen+1].cum_sum_bytes_allocated +=
4349 generations[gen+1].bytes_allocated;
4352 garbage_collect_generation(gen, raise);
4354 /* Reset the memory age cum_sum. */
4355 generations[gen].cum_sum_bytes_allocated = 0;
4357 if (gencgc_verbose > 1) {
4358 FSHOW((stderr, "GC of generation %d finished:\n", gen));
4359 print_generation_stats(0);
4362 gen++;
4363 } while ((gen <= gencgc_oldest_gen_to_gc)
4364 && ((gen < last_gen)
4365 || ((gen <= gencgc_oldest_gen_to_gc)
4366 && raise
4367 && (generations[gen].bytes_allocated
4368 > generations[gen].gc_trigger)
4369 && (gen_av_mem_age(gen)
4370 > generations[gen].min_av_mem_age))));
4372 /* Now if gen-1 was raised all generations before gen are empty.
4373 * If it wasn't raised then all generations before gen-1 are empty.
4375 * Now objects within this gen's pages cannot point to younger
4376 * generations unless they are written to. This can be exploited
4377 * by write-protecting the pages of gen; then when younger
4378 * generations are GCed only the pages which have been written
4379 * need scanning. */
4380 if (raise)
4381 gen_to_wp = gen;
4382 else
4383 gen_to_wp = gen - 1;
4385 /* There's not much point in WPing pages in generation 0 as it is
4386 * never scavenged (except promoted pages). */
4387 if ((gen_to_wp > 0) && enable_page_protection) {
4388 /* Check that they are all empty. */
4389 for (i = 0; i < gen_to_wp; i++) {
4390 if (generations[i].bytes_allocated)
4391 lose("trying to write-protect gen. %d when gen. %d nonempty\n",
4392 gen_to_wp, i);
4394 write_protect_generation_pages(gen_to_wp);
4397 /* Set gc_alloc() back to generation 0. The current regions should
4398 * be flushed after the above GCs. */
4399 gc_assert((boxed_region.free_pointer - boxed_region.start_addr) == 0);
4400 gc_alloc_generation = 0;
4402 /* Save the high-water mark before updating last_free_page */
4403 if (last_free_page > high_water_mark)
4404 high_water_mark = last_free_page;
4406 update_dynamic_space_free_pointer();
4408 auto_gc_trigger = bytes_allocated + bytes_consed_between_gcs;
4409 if(gencgc_verbose)
4410 fprintf(stderr,"Next gc when %ld bytes have been consed\n",
4411 auto_gc_trigger);
4413 /* If we did a big GC (arbitrarily defined as gen > 1), release memory
4414 * back to the OS.
4416 if (gen > small_generation_limit) {
4417 if (last_free_page > high_water_mark)
4418 high_water_mark = last_free_page;
4419 remap_free_pages(0, high_water_mark);
4420 high_water_mark = 0;
4423 gc_active_p = 0;
4425 SHOW("returning from collect_garbage");
4428 /* This is called by Lisp PURIFY when it is finished. All live objects
4429 * will have been moved to the RO and Static heaps. The dynamic space
4430 * will need a full re-initialization. We don't bother having Lisp
4431 * PURIFY flush the current gc_alloc() region, as the page_tables are
4432 * re-initialized, and every page is zeroed to be sure. */
4433 void
4434 gc_free_heap(void)
4436 page_index_t page;
4438 if (gencgc_verbose > 1)
4439 SHOW("entering gc_free_heap");
4441 for (page = 0; page < page_table_pages; page++) {
4442 /* Skip free pages which should already be zero filled. */
4443 if (page_allocated_p(page)) {
4444 void *page_start, *addr;
4446 /* Mark the page free. The other slots are assumed invalid
4447 * when it is a FREE_PAGE_FLAG and bytes_used is 0 and it
4448 * should not be write-protected -- except that the
4449 * generation is used for the current region but it sets
4450 * that up. */
4451 page_table[page].allocated = FREE_PAGE_FLAG;
4452 page_table[page].bytes_used = 0;
4454 #ifndef LISP_FEATURE_WIN32 /* Pages already zeroed on win32? Not sure
4455 * about this change. */
4456 /* Zero the page. */
4457 page_start = (void *)page_address(page);
4459 /* First, remove any write-protection. */
4460 os_protect(page_start, PAGE_BYTES, OS_VM_PROT_ALL);
4461 page_table[page].write_protected = 0;
4463 os_invalidate(page_start,PAGE_BYTES);
4464 addr = os_validate(page_start,PAGE_BYTES);
4465 if (addr == NULL || addr != page_start) {
4466 lose("gc_free_heap: page moved, 0x%08x ==> 0x%08x\n",
4467 page_start,
4468 addr);
4470 #else
4471 page_table[page].write_protected = 0;
4472 #endif
4473 } else if (gencgc_zero_check_during_free_heap) {
4474 /* Double-check that the page is zero filled. */
4475 long *page_start;
4476 page_index_t i;
4477 gc_assert(page_free_p(page));
4478 gc_assert(page_table[page].bytes_used == 0);
4479 page_start = (long *)page_address(page);
4480 for (i=0; i<1024; i++) {
4481 if (page_start[i] != 0) {
4482 lose("free region not zero at %x\n", page_start + i);
4488 bytes_allocated = 0;
4490 /* Initialize the generations. */
4491 for (page = 0; page < NUM_GENERATIONS; page++) {
4492 generations[page].alloc_start_page = 0;
4493 generations[page].alloc_unboxed_start_page = 0;
4494 generations[page].alloc_large_start_page = 0;
4495 generations[page].alloc_large_unboxed_start_page = 0;
4496 generations[page].bytes_allocated = 0;
4497 generations[page].gc_trigger = 2000000;
4498 generations[page].num_gc = 0;
4499 generations[page].cum_sum_bytes_allocated = 0;
4500 generations[page].lutexes = NULL;
4503 if (gencgc_verbose > 1)
4504 print_generation_stats(0);
4506 /* Initialize gc_alloc(). */
4507 gc_alloc_generation = 0;
4509 gc_set_region_empty(&boxed_region);
4510 gc_set_region_empty(&unboxed_region);
4512 last_free_page = 0;
4513 set_alloc_pointer((lispobj)((char *)heap_base));
4515 if (verify_after_free_heap) {
4516 /* Check whether purify has left any bad pointers. */
4517 FSHOW((stderr, "checking after free_heap\n"));
4518 verify_gc();
4522 void
4523 gc_init(void)
4525 page_index_t i;
4527 /* Compute the number of pages needed for the dynamic space.
4528 * Dynamic space size should be aligned on page size. */
4529 page_table_pages = dynamic_space_size/PAGE_BYTES;
4530 gc_assert(dynamic_space_size == npage_bytes(page_table_pages));
4532 page_table = calloc(page_table_pages, sizeof(struct page));
4533 gc_assert(page_table);
4535 gc_init_tables();
4536 scavtab[WEAK_POINTER_WIDETAG] = scav_weak_pointer;
4537 transother[SIMPLE_ARRAY_WIDETAG] = trans_boxed_large;
4539 #ifdef LUTEX_WIDETAG
4540 scavtab[LUTEX_WIDETAG] = scav_lutex;
4541 transother[LUTEX_WIDETAG] = trans_lutex;
4542 sizetab[LUTEX_WIDETAG] = size_lutex;
4543 #endif
4545 heap_base = (void*)DYNAMIC_SPACE_START;
4547 /* Initialize each page structure. */
4548 for (i = 0; i < page_table_pages; i++) {
4549 /* Initialize all pages as free. */
4550 page_table[i].allocated = FREE_PAGE_FLAG;
4551 page_table[i].bytes_used = 0;
4553 /* Pages are not write-protected at startup. */
4554 page_table[i].write_protected = 0;
4557 bytes_allocated = 0;
4559 /* Initialize the generations.
4561 * FIXME: very similar to code in gc_free_heap(), should be shared */
4562 for (i = 0; i < NUM_GENERATIONS; i++) {
4563 generations[i].alloc_start_page = 0;
4564 generations[i].alloc_unboxed_start_page = 0;
4565 generations[i].alloc_large_start_page = 0;
4566 generations[i].alloc_large_unboxed_start_page = 0;
4567 generations[i].bytes_allocated = 0;
4568 generations[i].gc_trigger = 2000000;
4569 generations[i].num_gc = 0;
4570 generations[i].cum_sum_bytes_allocated = 0;
4571 /* the tune-able parameters */
4572 generations[i].bytes_consed_between_gc = 2000000;
4573 generations[i].trigger_age = 1;
4574 generations[i].min_av_mem_age = 0.75;
4575 generations[i].lutexes = NULL;
4578 /* Initialize gc_alloc. */
4579 gc_alloc_generation = 0;
4580 gc_set_region_empty(&boxed_region);
4581 gc_set_region_empty(&unboxed_region);
4583 last_free_page = 0;
4586 /* Pick up the dynamic space from after a core load.
4588 * The ALLOCATION_POINTER points to the end of the dynamic space.
4591 static void
4592 gencgc_pickup_dynamic(void)
4594 page_index_t page = 0;
4595 void *alloc_ptr = (void *)get_alloc_pointer();
4596 lispobj *prev=(lispobj *)page_address(page);
4597 generation_index_t gen = PSEUDO_STATIC_GENERATION;
4598 do {
4599 lispobj *first,*ptr= (lispobj *)page_address(page);
4600 page_table[page].allocated = BOXED_PAGE_FLAG;
4601 page_table[page].gen = gen;
4602 page_table[page].bytes_used = PAGE_BYTES;
4603 page_table[page].large_object = 0;
4604 page_table[page].write_protected = 0;
4605 page_table[page].write_protected_cleared = 0;
4606 page_table[page].dont_move = 0;
4607 page_table[page].need_to_zero = 1;
4609 if (!gencgc_partial_pickup) {
4610 first=gc_search_space(prev,(ptr+2)-prev,ptr);
4611 if(ptr == first) prev=ptr;
4612 page_table[page].region_start_offset =
4613 page_address(page) - (void *)prev;
4615 page++;
4616 } while (page_address(page) < alloc_ptr);
4618 #ifdef LUTEX_WIDETAG
4619 /* Lutexes have been registered in generation 0 by coreparse, and
4620 * need to be moved to the right one manually.
4622 move_lutexes(0, PSEUDO_STATIC_GENERATION);
4623 #endif
4625 last_free_page = page;
4627 generations[gen].bytes_allocated = npage_bytes(page);
4628 bytes_allocated = npage_bytes(page);
4630 gc_alloc_update_all_page_tables();
4631 write_protect_generation_pages(gen);
4634 void
4635 gc_initialize_pointers(void)
4637 gencgc_pickup_dynamic();
4641 /* alloc(..) is the external interface for memory allocation. It
4642 * allocates to generation 0. It is not called from within the garbage
4643 * collector as it is only external uses that need the check for heap
4644 * size (GC trigger) and to disable the interrupts (interrupts are
4645 * always disabled during a GC).
4647 * The vops that call alloc(..) assume that the returned space is zero-filled.
4648 * (E.g. the most significant word of a 2-word bignum in MOVE-FROM-UNSIGNED.)
4650 * The check for a GC trigger is only performed when the current
4651 * region is full, so in most cases it's not needed. */
4653 static inline lispobj *
4654 general_alloc_internal(long nbytes, int page_type_flag, struct alloc_region *region,
4655 struct thread *thread)
4657 #ifndef LISP_FEATURE_WIN32
4658 lispobj alloc_signal;
4659 #endif
4660 void *new_obj;
4661 void *new_free_pointer;
4663 gc_assert(nbytes>0);
4665 /* Check for alignment allocation problems. */
4666 gc_assert((((unsigned long)region->free_pointer & LOWTAG_MASK) == 0)
4667 && ((nbytes & LOWTAG_MASK) == 0));
4669 /* Must be inside a PA section. */
4670 gc_assert(get_pseudo_atomic_atomic(thread));
4672 /* maybe we can do this quickly ... */
4673 new_free_pointer = region->free_pointer + nbytes;
4674 if (new_free_pointer <= region->end_addr) {
4675 new_obj = (void*)(region->free_pointer);
4676 region->free_pointer = new_free_pointer;
4677 return(new_obj); /* yup */
4680 /* we have to go the long way around, it seems. Check whether we
4681 * should GC in the near future
4683 if (auto_gc_trigger && bytes_allocated > auto_gc_trigger) {
4684 /* Don't flood the system with interrupts if the need to gc is
4685 * already noted. This can happen for example when SUB-GC
4686 * allocates or after a gc triggered in a WITHOUT-GCING. */
4687 if (SymbolValue(GC_PENDING,thread) == NIL) {
4688 /* set things up so that GC happens when we finish the PA
4689 * section */
4690 SetSymbolValue(GC_PENDING,T,thread);
4691 if (SymbolValue(GC_INHIBIT,thread) == NIL)
4692 set_pseudo_atomic_interrupted(thread);
4695 new_obj = gc_alloc_with_region(nbytes, page_type_flag, region, 0);
4697 #ifndef LISP_FEATURE_WIN32
4698 alloc_signal = SymbolValue(ALLOC_SIGNAL,thread);
4699 if ((alloc_signal & FIXNUM_TAG_MASK) == 0) {
4700 if ((signed long) alloc_signal <= 0) {
4701 SetSymbolValue(ALLOC_SIGNAL, T, thread);
4702 #ifdef LISP_FEATURE_SB_THREAD
4703 kill_thread_safely(thread->os_thread, SIGPROF);
4704 #else
4705 raise(SIGPROF);
4706 #endif
4707 } else {
4708 SetSymbolValue(ALLOC_SIGNAL,
4709 alloc_signal - (1 << N_FIXNUM_TAG_BITS),
4710 thread);
4713 #endif
4715 return (new_obj);
4718 lispobj *
4719 general_alloc(long nbytes, int page_type_flag)
4721 struct thread *thread = arch_os_get_current_thread();
4722 /* Select correct region, and call general_alloc_internal with it.
4723 * For other then boxed allocation we must lock first, since the
4724 * region is shared. */
4725 if (BOXED_PAGE_FLAG & page_type_flag) {
4726 #ifdef LISP_FEATURE_SB_THREAD
4727 struct alloc_region *region = (thread ? &(thread->alloc_region) : &boxed_region);
4728 #else
4729 struct alloc_region *region = &boxed_region;
4730 #endif
4731 return general_alloc_internal(nbytes, page_type_flag, region, thread);
4732 } else if (UNBOXED_PAGE_FLAG == page_type_flag) {
4733 lispobj * obj;
4734 gc_assert(0 == thread_mutex_lock(&allocation_lock));
4735 obj = general_alloc_internal(nbytes, page_type_flag, &unboxed_region, thread);
4736 gc_assert(0 == thread_mutex_unlock(&allocation_lock));
4737 return obj;
4738 } else {
4739 lose("bad page type flag: %d", page_type_flag);
4743 lispobj *
4744 alloc(long nbytes)
4746 return general_alloc(nbytes, BOXED_PAGE_FLAG);
4750 * shared support for the OS-dependent signal handlers which
4751 * catch GENCGC-related write-protect violations
4753 void unhandled_sigmemoryfault(void* addr);
4755 /* Depending on which OS we're running under, different signals might
4756 * be raised for a violation of write protection in the heap. This
4757 * function factors out the common generational GC magic which needs
4758 * to invoked in this case, and should be called from whatever signal
4759 * handler is appropriate for the OS we're running under.
4761 * Return true if this signal is a normal generational GC thing that
4762 * we were able to handle, or false if it was abnormal and control
4763 * should fall through to the general SIGSEGV/SIGBUS/whatever logic. */
4766 gencgc_handle_wp_violation(void* fault_addr)
4768 page_index_t page_index = find_page_index(fault_addr);
4770 #ifdef QSHOW_SIGNALS
4771 FSHOW((stderr, "heap WP violation? fault_addr=%x, page_index=%d\n",
4772 fault_addr, page_index));
4773 #endif
4775 /* Check whether the fault is within the dynamic space. */
4776 if (page_index == (-1)) {
4778 /* It can be helpful to be able to put a breakpoint on this
4779 * case to help diagnose low-level problems. */
4780 unhandled_sigmemoryfault(fault_addr);
4782 /* not within the dynamic space -- not our responsibility */
4783 return 0;
4785 } else {
4786 if (page_table[page_index].write_protected) {
4787 /* Unprotect the page. */
4788 os_protect(page_address(page_index), PAGE_BYTES, OS_VM_PROT_ALL);
4789 page_table[page_index].write_protected_cleared = 1;
4790 page_table[page_index].write_protected = 0;
4791 } else {
4792 /* The only acceptable reason for this signal on a heap
4793 * access is that GENCGC write-protected the page.
4794 * However, if two CPUs hit a wp page near-simultaneously,
4795 * we had better not have the second one lose here if it
4796 * does this test after the first one has already set wp=0
4798 if(page_table[page_index].write_protected_cleared != 1)
4799 lose("fault in heap page %d not marked as write-protected\nboxed_region.first_page: %d, boxed_region.last_page %d\n",
4800 page_index, boxed_region.first_page,
4801 boxed_region.last_page);
4803 /* Don't worry, we can handle it. */
4804 return 1;
4807 /* This is to be called when we catch a SIGSEGV/SIGBUS, determine that
4808 * it's not just a case of the program hitting the write barrier, and
4809 * are about to let Lisp deal with it. It's basically just a
4810 * convenient place to set a gdb breakpoint. */
4811 void
4812 unhandled_sigmemoryfault(void *addr)
4815 void gc_alloc_update_all_page_tables(void)
4817 /* Flush the alloc regions updating the tables. */
4818 struct thread *th;
4819 for_each_thread(th)
4820 gc_alloc_update_page_tables(BOXED_PAGE_FLAG, &th->alloc_region);
4821 gc_alloc_update_page_tables(UNBOXED_PAGE_FLAG, &unboxed_region);
4822 gc_alloc_update_page_tables(BOXED_PAGE_FLAG, &boxed_region);
4825 void
4826 gc_set_region_empty(struct alloc_region *region)
4828 region->first_page = 0;
4829 region->last_page = -1;
4830 region->start_addr = page_address(0);
4831 region->free_pointer = page_address(0);
4832 region->end_addr = page_address(0);
4835 static void
4836 zero_all_free_pages()
4838 page_index_t i;
4840 for (i = 0; i < last_free_page; i++) {
4841 if (page_free_p(i)) {
4842 #ifdef READ_PROTECT_FREE_PAGES
4843 os_protect(page_address(i),
4844 PAGE_BYTES,
4845 OS_VM_PROT_ALL);
4846 #endif
4847 zero_pages(i, i);
4852 /* Things to do before doing a final GC before saving a core (without
4853 * purify).
4855 * + Pages in large_object pages aren't moved by the GC, so we need to
4856 * unset that flag from all pages.
4857 * + The pseudo-static generation isn't normally collected, but it seems
4858 * reasonable to collect it at least when saving a core. So move the
4859 * pages to a normal generation.
4861 static void
4862 prepare_for_final_gc ()
4864 page_index_t i;
4865 for (i = 0; i < last_free_page; i++) {
4866 page_table[i].large_object = 0;
4867 if (page_table[i].gen == PSEUDO_STATIC_GENERATION) {
4868 int used = page_table[i].bytes_used;
4869 page_table[i].gen = HIGHEST_NORMAL_GENERATION;
4870 generations[PSEUDO_STATIC_GENERATION].bytes_allocated -= used;
4871 generations[HIGHEST_NORMAL_GENERATION].bytes_allocated += used;
4877 /* Do a non-conservative GC, and then save a core with the initial
4878 * function being set to the value of the static symbol
4879 * SB!VM:RESTART-LISP-FUNCTION */
4880 void
4881 gc_and_save(char *filename, boolean prepend_runtime,
4882 boolean save_runtime_options)
4884 FILE *file;
4885 void *runtime_bytes = NULL;
4886 size_t runtime_size;
4888 file = prepare_to_save(filename, prepend_runtime, &runtime_bytes,
4889 &runtime_size);
4890 if (file == NULL)
4891 return;
4893 conservative_stack = 0;
4895 /* The filename might come from Lisp, and be moved by the now
4896 * non-conservative GC. */
4897 filename = strdup(filename);
4899 /* Collect twice: once into relatively high memory, and then back
4900 * into low memory. This compacts the retained data into the lower
4901 * pages, minimizing the size of the core file.
4903 prepare_for_final_gc();
4904 gencgc_alloc_start_page = last_free_page;
4905 collect_garbage(HIGHEST_NORMAL_GENERATION+1);
4907 prepare_for_final_gc();
4908 gencgc_alloc_start_page = -1;
4909 collect_garbage(HIGHEST_NORMAL_GENERATION+1);
4911 if (prepend_runtime)
4912 save_runtime_to_filehandle(file, runtime_bytes, runtime_size);
4914 /* The dumper doesn't know that pages need to be zeroed before use. */
4915 zero_all_free_pages();
4916 save_to_filehandle(file, filename, SymbolValue(RESTART_LISP_FUNCTION,0),
4917 prepend_runtime, save_runtime_options);
4918 /* Oops. Save still managed to fail. Since we've mangled the stack
4919 * beyond hope, there's not much we can do.
4920 * (beyond FUNCALLing RESTART_LISP_FUNCTION, but I suspect that's
4921 * going to be rather unsatisfactory too... */
4922 lose("Attempt to save core after non-conservative GC failed.\n");