1.0.27.46: Fix build on systems with "src" in the path.
[sbcl/tcr.git] / src / compiler / srctran.lisp
blobfc0b639d89bcfa0b3b3557eeda5c957e431298e3
1 ;;;; This file contains macro-like source transformations which
2 ;;;; convert uses of certain functions into the canonical form desired
3 ;;;; within the compiler. FIXME: and other IR1 transforms and stuff.
5 ;;;; This software is part of the SBCL system. See the README file for
6 ;;;; more information.
7 ;;;;
8 ;;;; This software is derived from the CMU CL system, which was
9 ;;;; written at Carnegie Mellon University and released into the
10 ;;;; public domain. The software is in the public domain and is
11 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
12 ;;;; files for more information.
14 (in-package "SB!C")
16 ;;; Convert into an IF so that IF optimizations will eliminate redundant
17 ;;; negations.
18 (define-source-transform not (x) `(if ,x nil t))
19 (define-source-transform null (x) `(if ,x nil t))
21 ;;; ENDP is just NULL with a LIST assertion. The assertion will be
22 ;;; optimized away when SAFETY optimization is low; hopefully that
23 ;;; is consistent with ANSI's "should return an error".
24 (define-source-transform endp (x) `(null (the list ,x)))
26 ;;; We turn IDENTITY into PROG1 so that it is obvious that it just
27 ;;; returns the first value of its argument. Ditto for VALUES with one
28 ;;; arg.
29 (define-source-transform identity (x) `(prog1 ,x))
30 (define-source-transform values (x) `(prog1 ,x))
32 ;;; Bind the value and make a closure that returns it.
33 (define-source-transform constantly (value)
34 (with-unique-names (rest n-value)
35 `(let ((,n-value ,value))
36 (lambda (&rest ,rest)
37 (declare (ignore ,rest))
38 ,n-value))))
40 ;;; If the function has a known number of arguments, then return a
41 ;;; lambda with the appropriate fixed number of args. If the
42 ;;; destination is a FUNCALL, then do the &REST APPLY thing, and let
43 ;;; MV optimization figure things out.
44 (deftransform complement ((fun) * * :node node)
45 "open code"
46 (multiple-value-bind (min max)
47 (fun-type-nargs (lvar-type fun))
48 (cond
49 ((and min (eql min max))
50 (let ((dums (make-gensym-list min)))
51 `#'(lambda ,dums (not (funcall fun ,@dums)))))
52 ((awhen (node-lvar node)
53 (let ((dest (lvar-dest it)))
54 (and (combination-p dest)
55 (eq (combination-fun dest) it))))
56 '#'(lambda (&rest args)
57 (not (apply fun args))))
59 (give-up-ir1-transform
60 "The function doesn't have a fixed argument count.")))))
62 ;;;; list hackery
64 ;;; Translate CxR into CAR/CDR combos.
65 (defun source-transform-cxr (form)
66 (if (/= (length form) 2)
67 (values nil t)
68 (let* ((name (car form))
69 (string (symbol-name
70 (etypecase name
71 (symbol name)
72 (leaf (leaf-source-name name))))))
73 (do ((i (- (length string) 2) (1- i))
74 (res (cadr form)
75 `(,(ecase (char string i)
76 (#\A 'car)
77 (#\D 'cdr))
78 ,res)))
79 ((zerop i) res)))))
81 ;;; Make source transforms to turn CxR forms into combinations of CAR
82 ;;; and CDR. ANSI specifies that everything up to 4 A/D operations is
83 ;;; defined.
84 (/show0 "about to set CxR source transforms")
85 (loop for i of-type index from 2 upto 4 do
86 ;; Iterate over BUF = all names CxR where x = an I-element
87 ;; string of #\A or #\D characters.
88 (let ((buf (make-string (+ 2 i))))
89 (setf (aref buf 0) #\C
90 (aref buf (1+ i)) #\R)
91 (dotimes (j (ash 2 i))
92 (declare (type index j))
93 (dotimes (k i)
94 (declare (type index k))
95 (setf (aref buf (1+ k))
96 (if (logbitp k j) #\A #\D)))
97 (setf (info :function :source-transform (intern buf))
98 #'source-transform-cxr))))
99 (/show0 "done setting CxR source transforms")
101 ;;; Turn FIRST..FOURTH and REST into the obvious synonym, assuming
102 ;;; whatever is right for them is right for us. FIFTH..TENTH turn into
103 ;;; Nth, which can be expanded into a CAR/CDR later on if policy
104 ;;; favors it.
105 (define-source-transform first (x) `(car ,x))
106 (define-source-transform rest (x) `(cdr ,x))
107 (define-source-transform second (x) `(cadr ,x))
108 (define-source-transform third (x) `(caddr ,x))
109 (define-source-transform fourth (x) `(cadddr ,x))
110 (define-source-transform fifth (x) `(nth 4 ,x))
111 (define-source-transform sixth (x) `(nth 5 ,x))
112 (define-source-transform seventh (x) `(nth 6 ,x))
113 (define-source-transform eighth (x) `(nth 7 ,x))
114 (define-source-transform ninth (x) `(nth 8 ,x))
115 (define-source-transform tenth (x) `(nth 9 ,x))
117 ;;; LIST with one arg is an extremely common operation (at least inside
118 ;;; SBCL itself); translate it to CONS to take advantage of common
119 ;;; allocation routines.
120 (define-source-transform list (&rest args)
121 (case (length args)
122 (1 `(cons ,(first args) nil))
123 (t (values nil t))))
125 ;;; And similarly for LIST*.
126 (define-source-transform list* (arg &rest others)
127 (cond ((not others) arg)
128 ((not (cdr others)) `(cons ,arg ,(car others)))
129 (t (values nil t))))
131 (defoptimizer (list* derive-type) ((arg &rest args))
132 (if args
133 (specifier-type 'cons)
134 (lvar-type arg)))
136 ;;; Translate RPLACx to LET and SETF.
137 (define-source-transform rplaca (x y)
138 (once-only ((n-x x))
139 `(progn
140 (setf (car ,n-x) ,y)
141 ,n-x)))
142 (define-source-transform rplacd (x y)
143 (once-only ((n-x x))
144 `(progn
145 (setf (cdr ,n-x) ,y)
146 ,n-x)))
148 (define-source-transform nth (n l) `(car (nthcdr ,n ,l)))
150 (deftransform last ((list &optional n) (t &optional t))
151 (let ((c (constant-lvar-p n)))
152 (cond ((or (not n)
153 (and c (eql 1 (lvar-value n))))
154 '(%last1 list))
155 ((and c (eql 0 (lvar-value n)))
156 '(%last0 list))
158 (let ((type (lvar-type n)))
159 (cond ((csubtypep type (specifier-type 'fixnum))
160 '(%lastn/fixnum list n))
161 ((csubtypep type (specifier-type 'bignum))
162 '(%lastn/bignum list n))
164 (give-up-ir1-transform "second argument type too vague"))))))))
166 (define-source-transform gethash (&rest args)
167 (case (length args)
168 (2 `(sb!impl::gethash3 ,@args nil))
169 (3 `(sb!impl::gethash3 ,@args))
170 (t (values nil t))))
171 (define-source-transform get (&rest args)
172 (case (length args)
173 (2 `(sb!impl::get2 ,@args))
174 (3 `(sb!impl::get3 ,@args))
175 (t (values nil t))))
177 (defvar *default-nthcdr-open-code-limit* 6)
178 (defvar *extreme-nthcdr-open-code-limit* 20)
180 (deftransform nthcdr ((n l) (unsigned-byte t) * :node node)
181 "convert NTHCDR to CAxxR"
182 (unless (constant-lvar-p n)
183 (give-up-ir1-transform))
184 (let ((n (lvar-value n)))
185 (when (> n
186 (if (policy node (and (= speed 3) (= space 0)))
187 *extreme-nthcdr-open-code-limit*
188 *default-nthcdr-open-code-limit*))
189 (give-up-ir1-transform))
191 (labels ((frob (n)
192 (if (zerop n)
194 `(cdr ,(frob (1- n))))))
195 (frob n))))
197 ;;;; arithmetic and numerology
199 (define-source-transform plusp (x) `(> ,x 0))
200 (define-source-transform minusp (x) `(< ,x 0))
201 (define-source-transform zerop (x) `(= ,x 0))
203 (define-source-transform 1+ (x) `(+ ,x 1))
204 (define-source-transform 1- (x) `(- ,x 1))
206 (define-source-transform oddp (x) `(logtest ,x 1))
207 (define-source-transform evenp (x) `(not (logtest ,x 1)))
209 ;;; Note that all the integer division functions are available for
210 ;;; inline expansion.
212 (macrolet ((deffrob (fun)
213 `(define-source-transform ,fun (x &optional (y nil y-p))
214 (declare (ignore y))
215 (if y-p
216 (values nil t)
217 `(,',fun ,x 1)))))
218 (deffrob truncate)
219 (deffrob round)
220 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
221 (deffrob floor)
222 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
223 (deffrob ceiling))
225 ;;; This used to be a source transform (hence the lack of restrictions
226 ;;; on the argument types), but we make it a regular transform so that
227 ;;; the VM has a chance to see the bare LOGTEST and potentiall choose
228 ;;; to implement it differently. --njf, 06-02-2006
229 (deftransform logtest ((x y) * *)
230 `(not (zerop (logand x y))))
232 (deftransform logbitp
233 ((index integer) (unsigned-byte (or (signed-byte #.sb!vm:n-word-bits)
234 (unsigned-byte #.sb!vm:n-word-bits))))
235 `(if (>= index #.sb!vm:n-word-bits)
236 (minusp integer)
237 (not (zerop (logand integer (ash 1 index))))))
239 (define-source-transform byte (size position)
240 `(cons ,size ,position))
241 (define-source-transform byte-size (spec) `(car ,spec))
242 (define-source-transform byte-position (spec) `(cdr ,spec))
243 (define-source-transform ldb-test (bytespec integer)
244 `(not (zerop (mask-field ,bytespec ,integer))))
246 ;;; With the ratio and complex accessors, we pick off the "identity"
247 ;;; case, and use a primitive to handle the cell access case.
248 (define-source-transform numerator (num)
249 (once-only ((n-num `(the rational ,num)))
250 `(if (ratiop ,n-num)
251 (%numerator ,n-num)
252 ,n-num)))
253 (define-source-transform denominator (num)
254 (once-only ((n-num `(the rational ,num)))
255 `(if (ratiop ,n-num)
256 (%denominator ,n-num)
257 1)))
259 ;;;; interval arithmetic for computing bounds
260 ;;;;
261 ;;;; This is a set of routines for operating on intervals. It
262 ;;;; implements a simple interval arithmetic package. Although SBCL
263 ;;;; has an interval type in NUMERIC-TYPE, we choose to use our own
264 ;;;; for two reasons:
265 ;;;;
266 ;;;; 1. This package is simpler than NUMERIC-TYPE.
267 ;;;;
268 ;;;; 2. It makes debugging much easier because you can just strip
269 ;;;; out these routines and test them independently of SBCL. (This is a
270 ;;;; big win!)
271 ;;;;
272 ;;;; One disadvantage is a probable increase in consing because we
273 ;;;; have to create these new interval structures even though
274 ;;;; numeric-type has everything we want to know. Reason 2 wins for
275 ;;;; now.
277 ;;; Support operations that mimic real arithmetic comparison
278 ;;; operators, but imposing a total order on the floating points such
279 ;;; that negative zeros are strictly less than positive zeros.
280 (macrolet ((def (name op)
281 `(defun ,name (x y)
282 (declare (real x y))
283 (if (and (floatp x) (floatp y) (zerop x) (zerop y))
284 (,op (float-sign x) (float-sign y))
285 (,op x y)))))
286 (def signed-zero->= >=)
287 (def signed-zero-> >)
288 (def signed-zero-= =)
289 (def signed-zero-< <)
290 (def signed-zero-<= <=))
292 ;;; The basic interval type. It can handle open and closed intervals.
293 ;;; A bound is open if it is a list containing a number, just like
294 ;;; Lisp says. NIL means unbounded.
295 (defstruct (interval (:constructor %make-interval)
296 (:copier nil))
297 low high)
299 (defun make-interval (&key low high)
300 (labels ((normalize-bound (val)
301 (cond #-sb-xc-host
302 ((and (floatp val)
303 (float-infinity-p val))
304 ;; Handle infinities.
305 nil)
306 ((or (numberp val)
307 (eq val nil))
308 ;; Handle any closed bounds.
309 val)
310 ((listp val)
311 ;; We have an open bound. Normalize the numeric
312 ;; bound. If the normalized bound is still a number
313 ;; (not nil), keep the bound open. Otherwise, the
314 ;; bound is really unbounded, so drop the openness.
315 (let ((new-val (normalize-bound (first val))))
316 (when new-val
317 ;; The bound exists, so keep it open still.
318 (list new-val))))
320 (error "unknown bound type in MAKE-INTERVAL")))))
321 (%make-interval :low (normalize-bound low)
322 :high (normalize-bound high))))
324 ;;; Given a number X, create a form suitable as a bound for an
325 ;;; interval. Make the bound open if OPEN-P is T. NIL remains NIL.
326 #!-sb-fluid (declaim (inline set-bound))
327 (defun set-bound (x open-p)
328 (if (and x open-p) (list x) x))
330 ;;; Apply the function F to a bound X. If X is an open bound, then
331 ;;; the result will be open. IF X is NIL, the result is NIL.
332 (defun bound-func (f x)
333 (declare (type function f))
334 (and x
335 (with-float-traps-masked (:underflow :overflow :inexact :divide-by-zero)
336 ;; With these traps masked, we might get things like infinity
337 ;; or negative infinity returned. Check for this and return
338 ;; NIL to indicate unbounded.
339 (let ((y (funcall f (type-bound-number x))))
340 (if (and (floatp y)
341 (float-infinity-p y))
343 (set-bound y (consp x)))))))
345 (defun safe-double-coercion-p (x)
346 (or (typep x 'double-float)
347 (<= most-negative-double-float x most-positive-double-float)))
349 (defun safe-single-coercion-p (x)
350 (or (typep x 'single-float)
351 ;; Fix for bug 420, and related issues: during type derivation we often
352 ;; end up deriving types for both
354 ;; (some-op <int> <single>)
355 ;; and
356 ;; (some-op (coerce <int> 'single-float) <single>)
358 ;; or other equivalent transformed forms. The problem with this is that
359 ;; on some platforms like x86 (+ <int> <single>) is on the machine level
360 ;; equivalent of
362 ;; (coerce (+ (coerce <int> 'double-float)
363 ;; (coerce <single> 'double-float))
364 ;; 'single-float)
366 ;; so if the result of (coerce <int> 'single-float) is not exact, the
367 ;; derived types for the transformed forms will have an empty
368 ;; intersection -- which in turn means that the compiler will conclude
369 ;; that the call never returns, and all hell breaks lose when it *does*
370 ;; return at runtime. (This affects not just +, but other operators are
371 ;; well.)
372 (and (not (typep x `(or (integer * (,most-negative-exactly-single-float-fixnum))
373 (integer (,most-positive-exactly-single-float-fixnum) *))))
374 (<= most-negative-single-float x most-positive-single-float))))
376 ;;; Apply a binary operator OP to two bounds X and Y. The result is
377 ;;; NIL if either is NIL. Otherwise bound is computed and the result
378 ;;; is open if either X or Y is open.
380 ;;; FIXME: only used in this file, not needed in target runtime
382 ;;; ANSI contaigon specifies coercion to floating point if one of the
383 ;;; arguments is floating point. Here we should check to be sure that
384 ;;; the other argument is within the bounds of that floating point
385 ;;; type.
387 (defmacro safely-binop (op x y)
388 `(cond
389 ((typep ,x 'double-float)
390 (when (safe-double-coercion-p ,y)
391 (,op ,x ,y)))
392 ((typep ,y 'double-float)
393 (when (safe-double-coercion-p ,x)
394 (,op ,x ,y)))
395 ((typep ,x 'single-float)
396 (when (safe-single-coercion-p ,y)
397 (,op ,x ,y)))
398 ((typep ,y 'single-float)
399 (when (safe-single-coercion-p ,x)
400 (,op ,x ,y)))
401 (t (,op ,x ,y))))
403 (defmacro bound-binop (op x y)
404 `(and ,x ,y
405 (with-float-traps-masked (:underflow :overflow :inexact :divide-by-zero)
406 (set-bound (safely-binop ,op (type-bound-number ,x)
407 (type-bound-number ,y))
408 (or (consp ,x) (consp ,y))))))
410 (defun coerce-for-bound (val type)
411 (if (consp val)
412 (list (coerce-for-bound (car val) type))
413 (cond
414 ((subtypep type 'double-float)
415 (if (<= most-negative-double-float val most-positive-double-float)
416 (coerce val type)))
417 ((or (subtypep type 'single-float) (subtypep type 'float))
418 ;; coerce to float returns a single-float
419 (if (<= most-negative-single-float val most-positive-single-float)
420 (coerce val type)))
421 (t (coerce val type)))))
423 (defun coerce-and-truncate-floats (val type)
424 (when val
425 (if (consp val)
426 (list (coerce-and-truncate-floats (car val) type))
427 (cond
428 ((subtypep type 'double-float)
429 (if (<= most-negative-double-float val most-positive-double-float)
430 (coerce val type)
431 (if (< val most-negative-double-float)
432 most-negative-double-float most-positive-double-float)))
433 ((or (subtypep type 'single-float) (subtypep type 'float))
434 ;; coerce to float returns a single-float
435 (if (<= most-negative-single-float val most-positive-single-float)
436 (coerce val type)
437 (if (< val most-negative-single-float)
438 most-negative-single-float most-positive-single-float)))
439 (t (coerce val type))))))
441 ;;; Convert a numeric-type object to an interval object.
442 (defun numeric-type->interval (x)
443 (declare (type numeric-type x))
444 (make-interval :low (numeric-type-low x)
445 :high (numeric-type-high x)))
447 (defun type-approximate-interval (type)
448 (declare (type ctype type))
449 (let ((types (prepare-arg-for-derive-type type))
450 (result nil))
451 (dolist (type types)
452 (let ((type (if (member-type-p type)
453 (convert-member-type type)
454 type)))
455 (unless (numeric-type-p type)
456 (return-from type-approximate-interval nil))
457 (let ((interval (numeric-type->interval type)))
458 (setq result
459 (if result
460 (interval-approximate-union result interval)
461 interval)))))
462 result))
464 (defun copy-interval-limit (limit)
465 (if (numberp limit)
466 limit
467 (copy-list limit)))
469 (defun copy-interval (x)
470 (declare (type interval x))
471 (make-interval :low (copy-interval-limit (interval-low x))
472 :high (copy-interval-limit (interval-high x))))
474 ;;; Given a point P contained in the interval X, split X into two
475 ;;; interval at the point P. If CLOSE-LOWER is T, then the left
476 ;;; interval contains P. If CLOSE-UPPER is T, the right interval
477 ;;; contains P. You can specify both to be T or NIL.
478 (defun interval-split (p x &optional close-lower close-upper)
479 (declare (type number p)
480 (type interval x))
481 (list (make-interval :low (copy-interval-limit (interval-low x))
482 :high (if close-lower p (list p)))
483 (make-interval :low (if close-upper (list p) p)
484 :high (copy-interval-limit (interval-high x)))))
486 ;;; Return the closure of the interval. That is, convert open bounds
487 ;;; to closed bounds.
488 (defun interval-closure (x)
489 (declare (type interval x))
490 (make-interval :low (type-bound-number (interval-low x))
491 :high (type-bound-number (interval-high x))))
493 ;;; For an interval X, if X >= POINT, return '+. If X <= POINT, return
494 ;;; '-. Otherwise return NIL.
495 (defun interval-range-info (x &optional (point 0))
496 (declare (type interval x))
497 (let ((lo (interval-low x))
498 (hi (interval-high x)))
499 (cond ((and lo (signed-zero->= (type-bound-number lo) point))
501 ((and hi (signed-zero->= point (type-bound-number hi)))
504 nil))))
506 ;;; Test to see whether the interval X is bounded. HOW determines the
507 ;;; test, and should be either ABOVE, BELOW, or BOTH.
508 (defun interval-bounded-p (x how)
509 (declare (type interval x))
510 (ecase how
511 (above
512 (interval-high x))
513 (below
514 (interval-low x))
515 (both
516 (and (interval-low x) (interval-high x)))))
518 ;;; See whether the interval X contains the number P, taking into
519 ;;; account that the interval might not be closed.
520 (defun interval-contains-p (p x)
521 (declare (type number p)
522 (type interval x))
523 ;; Does the interval X contain the number P? This would be a lot
524 ;; easier if all intervals were closed!
525 (let ((lo (interval-low x))
526 (hi (interval-high x)))
527 (cond ((and lo hi)
528 ;; The interval is bounded
529 (if (and (signed-zero-<= (type-bound-number lo) p)
530 (signed-zero-<= p (type-bound-number hi)))
531 ;; P is definitely in the closure of the interval.
532 ;; We just need to check the end points now.
533 (cond ((signed-zero-= p (type-bound-number lo))
534 (numberp lo))
535 ((signed-zero-= p (type-bound-number hi))
536 (numberp hi))
537 (t t))
538 nil))
540 ;; Interval with upper bound
541 (if (signed-zero-< p (type-bound-number hi))
543 (and (numberp hi) (signed-zero-= p hi))))
545 ;; Interval with lower bound
546 (if (signed-zero-> p (type-bound-number lo))
548 (and (numberp lo) (signed-zero-= p lo))))
550 ;; Interval with no bounds
551 t))))
553 ;;; Determine whether two intervals X and Y intersect. Return T if so.
554 ;;; If CLOSED-INTERVALS-P is T, the treat the intervals as if they
555 ;;; were closed. Otherwise the intervals are treated as they are.
557 ;;; Thus if X = [0, 1) and Y = (1, 2), then they do not intersect
558 ;;; because no element in X is in Y. However, if CLOSED-INTERVALS-P
559 ;;; is T, then they do intersect because we use the closure of X = [0,
560 ;;; 1] and Y = [1, 2] to determine intersection.
561 (defun interval-intersect-p (x y &optional closed-intervals-p)
562 (declare (type interval x y))
563 (and (interval-intersection/difference (if closed-intervals-p
564 (interval-closure x)
566 (if closed-intervals-p
567 (interval-closure y)
571 ;;; Are the two intervals adjacent? That is, is there a number
572 ;;; between the two intervals that is not an element of either
573 ;;; interval? If so, they are not adjacent. For example [0, 1) and
574 ;;; [1, 2] are adjacent but [0, 1) and (1, 2] are not because 1 lies
575 ;;; between both intervals.
576 (defun interval-adjacent-p (x y)
577 (declare (type interval x y))
578 (flet ((adjacent (lo hi)
579 ;; Check to see whether lo and hi are adjacent. If either is
580 ;; nil, they can't be adjacent.
581 (when (and lo hi (= (type-bound-number lo) (type-bound-number hi)))
582 ;; The bounds are equal. They are adjacent if one of
583 ;; them is closed (a number). If both are open (consp),
584 ;; then there is a number that lies between them.
585 (or (numberp lo) (numberp hi)))))
586 (or (adjacent (interval-low y) (interval-high x))
587 (adjacent (interval-low x) (interval-high y)))))
589 ;;; Compute the intersection and difference between two intervals.
590 ;;; Two values are returned: the intersection and the difference.
592 ;;; Let the two intervals be X and Y, and let I and D be the two
593 ;;; values returned by this function. Then I = X intersect Y. If I
594 ;;; is NIL (the empty set), then D is X union Y, represented as the
595 ;;; list of X and Y. If I is not the empty set, then D is (X union Y)
596 ;;; - I, which is a list of two intervals.
598 ;;; For example, let X = [1,5] and Y = [-1,3). Then I = [1,3) and D =
599 ;;; [-1,1) union [3,5], which is returned as a list of two intervals.
600 (defun interval-intersection/difference (x y)
601 (declare (type interval x y))
602 (let ((x-lo (interval-low x))
603 (x-hi (interval-high x))
604 (y-lo (interval-low y))
605 (y-hi (interval-high y)))
606 (labels
607 ((opposite-bound (p)
608 ;; If p is an open bound, make it closed. If p is a closed
609 ;; bound, make it open.
610 (if (listp p)
611 (first p)
612 (list p)))
613 (test-number (p int bound)
614 ;; Test whether P is in the interval.
615 (let ((pn (type-bound-number p)))
616 (when (interval-contains-p pn (interval-closure int))
617 ;; Check for endpoints.
618 (let* ((lo (interval-low int))
619 (hi (interval-high int))
620 (lon (type-bound-number lo))
621 (hin (type-bound-number hi)))
622 (cond
623 ;; Interval may be a point.
624 ((and lon hin (= lon hin pn))
625 (and (numberp p) (numberp lo) (numberp hi)))
626 ;; Point matches the low end.
627 ;; [P] [P,?} => TRUE [P] (P,?} => FALSE
628 ;; (P [P,?} => TRUE P) [P,?} => FALSE
629 ;; (P (P,?} => TRUE P) (P,?} => FALSE
630 ((and lon (= pn lon))
631 (or (and (numberp p) (numberp lo))
632 (and (consp p) (eq :low bound))))
633 ;; [P] {?,P] => TRUE [P] {?,P) => FALSE
634 ;; P) {?,P] => TRUE (P {?,P] => FALSE
635 ;; P) {?,P) => TRUE (P {?,P) => FALSE
636 ((and hin (= pn hin))
637 (or (and (numberp p) (numberp hi))
638 (and (consp p) (eq :high bound))))
639 ;; Not an endpoint, all is well.
641 t))))))
642 (test-lower-bound (p int)
643 ;; P is a lower bound of an interval.
644 (if p
645 (test-number p int :low)
646 (not (interval-bounded-p int 'below))))
647 (test-upper-bound (p int)
648 ;; P is an upper bound of an interval.
649 (if p
650 (test-number p int :high)
651 (not (interval-bounded-p int 'above)))))
652 (let ((x-lo-in-y (test-lower-bound x-lo y))
653 (x-hi-in-y (test-upper-bound x-hi y))
654 (y-lo-in-x (test-lower-bound y-lo x))
655 (y-hi-in-x (test-upper-bound y-hi x)))
656 (cond ((or x-lo-in-y x-hi-in-y y-lo-in-x y-hi-in-x)
657 ;; Intervals intersect. Let's compute the intersection
658 ;; and the difference.
659 (multiple-value-bind (lo left-lo left-hi)
660 (cond (x-lo-in-y (values x-lo y-lo (opposite-bound x-lo)))
661 (y-lo-in-x (values y-lo x-lo (opposite-bound y-lo))))
662 (multiple-value-bind (hi right-lo right-hi)
663 (cond (x-hi-in-y
664 (values x-hi (opposite-bound x-hi) y-hi))
665 (y-hi-in-x
666 (values y-hi (opposite-bound y-hi) x-hi)))
667 (values (make-interval :low lo :high hi)
668 (list (make-interval :low left-lo
669 :high left-hi)
670 (make-interval :low right-lo
671 :high right-hi))))))
673 (values nil (list x y))))))))
675 ;;; If intervals X and Y intersect, return a new interval that is the
676 ;;; union of the two. If they do not intersect, return NIL.
677 (defun interval-merge-pair (x y)
678 (declare (type interval x y))
679 ;; If x and y intersect or are adjacent, create the union.
680 ;; Otherwise return nil
681 (when (or (interval-intersect-p x y)
682 (interval-adjacent-p x y))
683 (flet ((select-bound (x1 x2 min-op max-op)
684 (let ((x1-val (type-bound-number x1))
685 (x2-val (type-bound-number x2)))
686 (cond ((and x1 x2)
687 ;; Both bounds are finite. Select the right one.
688 (cond ((funcall min-op x1-val x2-val)
689 ;; x1 is definitely better.
691 ((funcall max-op x1-val x2-val)
692 ;; x2 is definitely better.
695 ;; Bounds are equal. Select either
696 ;; value and make it open only if
697 ;; both were open.
698 (set-bound x1-val (and (consp x1) (consp x2))))))
700 ;; At least one bound is not finite. The
701 ;; non-finite bound always wins.
702 nil)))))
703 (let* ((x-lo (copy-interval-limit (interval-low x)))
704 (x-hi (copy-interval-limit (interval-high x)))
705 (y-lo (copy-interval-limit (interval-low y)))
706 (y-hi (copy-interval-limit (interval-high y))))
707 (make-interval :low (select-bound x-lo y-lo #'< #'>)
708 :high (select-bound x-hi y-hi #'> #'<))))))
710 ;;; return the minimal interval, containing X and Y
711 (defun interval-approximate-union (x y)
712 (cond ((interval-merge-pair x y))
713 ((interval-< x y)
714 (make-interval :low (copy-interval-limit (interval-low x))
715 :high (copy-interval-limit (interval-high y))))
717 (make-interval :low (copy-interval-limit (interval-low y))
718 :high (copy-interval-limit (interval-high x))))))
720 ;;; basic arithmetic operations on intervals. We probably should do
721 ;;; true interval arithmetic here, but it's complicated because we
722 ;;; have float and integer types and bounds can be open or closed.
724 ;;; the negative of an interval
725 (defun interval-neg (x)
726 (declare (type interval x))
727 (make-interval :low (bound-func #'- (interval-high x))
728 :high (bound-func #'- (interval-low x))))
730 ;;; Add two intervals.
731 (defun interval-add (x y)
732 (declare (type interval x y))
733 (make-interval :low (bound-binop + (interval-low x) (interval-low y))
734 :high (bound-binop + (interval-high x) (interval-high y))))
736 ;;; Subtract two intervals.
737 (defun interval-sub (x y)
738 (declare (type interval x y))
739 (make-interval :low (bound-binop - (interval-low x) (interval-high y))
740 :high (bound-binop - (interval-high x) (interval-low y))))
742 ;;; Multiply two intervals.
743 (defun interval-mul (x y)
744 (declare (type interval x y))
745 (flet ((bound-mul (x y)
746 (cond ((or (null x) (null y))
747 ;; Multiply by infinity is infinity
748 nil)
749 ((or (and (numberp x) (zerop x))
750 (and (numberp y) (zerop y)))
751 ;; Multiply by closed zero is special. The result
752 ;; is always a closed bound. But don't replace this
753 ;; with zero; we want the multiplication to produce
754 ;; the correct signed zero, if needed. Use SIGNUM
755 ;; to avoid trying to multiply huge bignums with 0.0.
756 (* (signum (type-bound-number x)) (signum (type-bound-number y))))
757 ((or (and (floatp x) (float-infinity-p x))
758 (and (floatp y) (float-infinity-p y)))
759 ;; Infinity times anything is infinity
760 nil)
762 ;; General multiply. The result is open if either is open.
763 (bound-binop * x y)))))
764 (let ((x-range (interval-range-info x))
765 (y-range (interval-range-info y)))
766 (cond ((null x-range)
767 ;; Split x into two and multiply each separately
768 (destructuring-bind (x- x+) (interval-split 0 x t t)
769 (interval-merge-pair (interval-mul x- y)
770 (interval-mul x+ y))))
771 ((null y-range)
772 ;; Split y into two and multiply each separately
773 (destructuring-bind (y- y+) (interval-split 0 y t t)
774 (interval-merge-pair (interval-mul x y-)
775 (interval-mul x y+))))
776 ((eq x-range '-)
777 (interval-neg (interval-mul (interval-neg x) y)))
778 ((eq y-range '-)
779 (interval-neg (interval-mul x (interval-neg y))))
780 ((and (eq x-range '+) (eq y-range '+))
781 ;; If we are here, X and Y are both positive.
782 (make-interval
783 :low (bound-mul (interval-low x) (interval-low y))
784 :high (bound-mul (interval-high x) (interval-high y))))
786 (bug "excluded case in INTERVAL-MUL"))))))
788 ;;; Divide two intervals.
789 (defun interval-div (top bot)
790 (declare (type interval top bot))
791 (flet ((bound-div (x y y-low-p)
792 ;; Compute x/y
793 (cond ((null y)
794 ;; Divide by infinity means result is 0. However,
795 ;; we need to watch out for the sign of the result,
796 ;; to correctly handle signed zeros. We also need
797 ;; to watch out for positive or negative infinity.
798 (if (floatp (type-bound-number x))
799 (if y-low-p
800 (- (float-sign (type-bound-number x) 0.0))
801 (float-sign (type-bound-number x) 0.0))
803 ((zerop (type-bound-number y))
804 ;; Divide by zero means result is infinity
805 nil)
806 ((and (numberp x) (zerop x))
807 ;; Zero divided by anything is zero.
810 (bound-binop / x y)))))
811 (let ((top-range (interval-range-info top))
812 (bot-range (interval-range-info bot)))
813 (cond ((null bot-range)
814 ;; The denominator contains zero, so anything goes!
815 (make-interval :low nil :high nil))
816 ((eq bot-range '-)
817 ;; Denominator is negative so flip the sign, compute the
818 ;; result, and flip it back.
819 (interval-neg (interval-div top (interval-neg bot))))
820 ((null top-range)
821 ;; Split top into two positive and negative parts, and
822 ;; divide each separately
823 (destructuring-bind (top- top+) (interval-split 0 top t t)
824 (interval-merge-pair (interval-div top- bot)
825 (interval-div top+ bot))))
826 ((eq top-range '-)
827 ;; Top is negative so flip the sign, divide, and flip the
828 ;; sign of the result.
829 (interval-neg (interval-div (interval-neg top) bot)))
830 ((and (eq top-range '+) (eq bot-range '+))
831 ;; the easy case
832 (make-interval
833 :low (bound-div (interval-low top) (interval-high bot) t)
834 :high (bound-div (interval-high top) (interval-low bot) nil)))
836 (bug "excluded case in INTERVAL-DIV"))))))
838 ;;; Apply the function F to the interval X. If X = [a, b], then the
839 ;;; result is [f(a), f(b)]. It is up to the user to make sure the
840 ;;; result makes sense. It will if F is monotonic increasing (or
841 ;;; non-decreasing).
842 (defun interval-func (f x)
843 (declare (type function f)
844 (type interval x))
845 (let ((lo (bound-func f (interval-low x)))
846 (hi (bound-func f (interval-high x))))
847 (make-interval :low lo :high hi)))
849 ;;; Return T if X < Y. That is every number in the interval X is
850 ;;; always less than any number in the interval Y.
851 (defun interval-< (x y)
852 (declare (type interval x y))
853 ;; X < Y only if X is bounded above, Y is bounded below, and they
854 ;; don't overlap.
855 (when (and (interval-bounded-p x 'above)
856 (interval-bounded-p y 'below))
857 ;; Intervals are bounded in the appropriate way. Make sure they
858 ;; don't overlap.
859 (let ((left (interval-high x))
860 (right (interval-low y)))
861 (cond ((> (type-bound-number left)
862 (type-bound-number right))
863 ;; The intervals definitely overlap, so result is NIL.
864 nil)
865 ((< (type-bound-number left)
866 (type-bound-number right))
867 ;; The intervals definitely don't touch, so result is T.
870 ;; Limits are equal. Check for open or closed bounds.
871 ;; Don't overlap if one or the other are open.
872 (or (consp left) (consp right)))))))
874 ;;; Return T if X >= Y. That is, every number in the interval X is
875 ;;; always greater than any number in the interval Y.
876 (defun interval->= (x y)
877 (declare (type interval x y))
878 ;; X >= Y if lower bound of X >= upper bound of Y
879 (when (and (interval-bounded-p x 'below)
880 (interval-bounded-p y 'above))
881 (>= (type-bound-number (interval-low x))
882 (type-bound-number (interval-high y)))))
884 ;;; Return T if X = Y.
885 (defun interval-= (x y)
886 (declare (type interval x y))
887 (and (interval-bounded-p x 'both)
888 (interval-bounded-p y 'both)
889 (flet ((bound (v)
890 (if (numberp v)
892 ;; Open intervals cannot be =
893 (return-from interval-= nil))))
894 ;; Both intervals refer to the same point
895 (= (bound (interval-high x)) (bound (interval-low x))
896 (bound (interval-high y)) (bound (interval-low y))))))
898 ;;; Return T if X /= Y
899 (defun interval-/= (x y)
900 (not (interval-intersect-p x y)))
902 ;;; Return an interval that is the absolute value of X. Thus, if
903 ;;; X = [-1 10], the result is [0, 10].
904 (defun interval-abs (x)
905 (declare (type interval x))
906 (case (interval-range-info x)
908 (copy-interval x))
910 (interval-neg x))
912 (destructuring-bind (x- x+) (interval-split 0 x t t)
913 (interval-merge-pair (interval-neg x-) x+)))))
915 ;;; Compute the square of an interval.
916 (defun interval-sqr (x)
917 (declare (type interval x))
918 (interval-func (lambda (x) (* x x))
919 (interval-abs x)))
921 ;;;; numeric DERIVE-TYPE methods
923 ;;; a utility for defining derive-type methods of integer operations. If
924 ;;; the types of both X and Y are integer types, then we compute a new
925 ;;; integer type with bounds determined Fun when applied to X and Y.
926 ;;; Otherwise, we use NUMERIC-CONTAGION.
927 (defun derive-integer-type-aux (x y fun)
928 (declare (type function fun))
929 (if (and (numeric-type-p x) (numeric-type-p y)
930 (eq (numeric-type-class x) 'integer)
931 (eq (numeric-type-class y) 'integer)
932 (eq (numeric-type-complexp x) :real)
933 (eq (numeric-type-complexp y) :real))
934 (multiple-value-bind (low high) (funcall fun x y)
935 (make-numeric-type :class 'integer
936 :complexp :real
937 :low low
938 :high high))
939 (numeric-contagion x y)))
941 (defun derive-integer-type (x y fun)
942 (declare (type lvar x y) (type function fun))
943 (let ((x (lvar-type x))
944 (y (lvar-type y)))
945 (derive-integer-type-aux x y fun)))
947 ;;; simple utility to flatten a list
948 (defun flatten-list (x)
949 (labels ((flatten-and-append (tree list)
950 (cond ((null tree) list)
951 ((atom tree) (cons tree list))
952 (t (flatten-and-append
953 (car tree) (flatten-and-append (cdr tree) list))))))
954 (flatten-and-append x nil)))
956 ;;; Take some type of lvar and massage it so that we get a list of the
957 ;;; constituent types. If ARG is *EMPTY-TYPE*, return NIL to indicate
958 ;;; failure.
959 (defun prepare-arg-for-derive-type (arg)
960 (flet ((listify (arg)
961 (typecase arg
962 (numeric-type
963 (list arg))
964 (union-type
965 (union-type-types arg))
967 (list arg)))))
968 (unless (eq arg *empty-type*)
969 ;; Make sure all args are some type of numeric-type. For member
970 ;; types, convert the list of members into a union of equivalent
971 ;; single-element member-type's.
972 (let ((new-args nil))
973 (dolist (arg (listify arg))
974 (if (member-type-p arg)
975 ;; Run down the list of members and convert to a list of
976 ;; member types.
977 (mapc-member-type-members
978 (lambda (member)
979 (push (if (numberp member)
980 (make-member-type :members (list member))
981 *empty-type*)
982 new-args))
983 arg)
984 (push arg new-args)))
985 (unless (member *empty-type* new-args)
986 new-args)))))
988 ;;; Convert from the standard type convention for which -0.0 and 0.0
989 ;;; are equal to an intermediate convention for which they are
990 ;;; considered different which is more natural for some of the
991 ;;; optimisers.
992 (defun convert-numeric-type (type)
993 (declare (type numeric-type type))
994 ;;; Only convert real float interval delimiters types.
995 (if (eq (numeric-type-complexp type) :real)
996 (let* ((lo (numeric-type-low type))
997 (lo-val (type-bound-number lo))
998 (lo-float-zero-p (and lo (floatp lo-val) (= lo-val 0.0)))
999 (hi (numeric-type-high type))
1000 (hi-val (type-bound-number hi))
1001 (hi-float-zero-p (and hi (floatp hi-val) (= hi-val 0.0))))
1002 (if (or lo-float-zero-p hi-float-zero-p)
1003 (make-numeric-type
1004 :class (numeric-type-class type)
1005 :format (numeric-type-format type)
1006 :complexp :real
1007 :low (if lo-float-zero-p
1008 (if (consp lo)
1009 (list (float 0.0 lo-val))
1010 (float (load-time-value (make-unportable-float :single-float-negative-zero)) lo-val))
1012 :high (if hi-float-zero-p
1013 (if (consp hi)
1014 (list (float (load-time-value (make-unportable-float :single-float-negative-zero)) hi-val))
1015 (float 0.0 hi-val))
1016 hi))
1017 type))
1018 ;; Not real float.
1019 type))
1021 ;;; Convert back from the intermediate convention for which -0.0 and
1022 ;;; 0.0 are considered different to the standard type convention for
1023 ;;; which and equal.
1024 (defun convert-back-numeric-type (type)
1025 (declare (type numeric-type type))
1026 ;;; Only convert real float interval delimiters types.
1027 (if (eq (numeric-type-complexp type) :real)
1028 (let* ((lo (numeric-type-low type))
1029 (lo-val (type-bound-number lo))
1030 (lo-float-zero-p
1031 (and lo (floatp lo-val) (= lo-val 0.0)
1032 (float-sign lo-val)))
1033 (hi (numeric-type-high type))
1034 (hi-val (type-bound-number hi))
1035 (hi-float-zero-p
1036 (and hi (floatp hi-val) (= hi-val 0.0)
1037 (float-sign hi-val))))
1038 (cond
1039 ;; (float +0.0 +0.0) => (member 0.0)
1040 ;; (float -0.0 -0.0) => (member -0.0)
1041 ((and lo-float-zero-p hi-float-zero-p)
1042 ;; shouldn't have exclusive bounds here..
1043 (aver (and (not (consp lo)) (not (consp hi))))
1044 (if (= lo-float-zero-p hi-float-zero-p)
1045 ;; (float +0.0 +0.0) => (member 0.0)
1046 ;; (float -0.0 -0.0) => (member -0.0)
1047 (specifier-type `(member ,lo-val))
1048 ;; (float -0.0 +0.0) => (float 0.0 0.0)
1049 ;; (float +0.0 -0.0) => (float 0.0 0.0)
1050 (make-numeric-type :class (numeric-type-class type)
1051 :format (numeric-type-format type)
1052 :complexp :real
1053 :low hi-val
1054 :high hi-val)))
1055 (lo-float-zero-p
1056 (cond
1057 ;; (float -0.0 x) => (float 0.0 x)
1058 ((and (not (consp lo)) (minusp lo-float-zero-p))
1059 (make-numeric-type :class (numeric-type-class type)
1060 :format (numeric-type-format type)
1061 :complexp :real
1062 :low (float 0.0 lo-val)
1063 :high hi))
1064 ;; (float (+0.0) x) => (float (0.0) x)
1065 ((and (consp lo) (plusp lo-float-zero-p))
1066 (make-numeric-type :class (numeric-type-class type)
1067 :format (numeric-type-format type)
1068 :complexp :real
1069 :low (list (float 0.0 lo-val))
1070 :high hi))
1072 ;; (float +0.0 x) => (or (member 0.0) (float (0.0) x))
1073 ;; (float (-0.0) x) => (or (member 0.0) (float (0.0) x))
1074 (list (make-member-type :members (list (float 0.0 lo-val)))
1075 (make-numeric-type :class (numeric-type-class type)
1076 :format (numeric-type-format type)
1077 :complexp :real
1078 :low (list (float 0.0 lo-val))
1079 :high hi)))))
1080 (hi-float-zero-p
1081 (cond
1082 ;; (float x +0.0) => (float x 0.0)
1083 ((and (not (consp hi)) (plusp hi-float-zero-p))
1084 (make-numeric-type :class (numeric-type-class type)
1085 :format (numeric-type-format type)
1086 :complexp :real
1087 :low lo
1088 :high (float 0.0 hi-val)))
1089 ;; (float x (-0.0)) => (float x (0.0))
1090 ((and (consp hi) (minusp hi-float-zero-p))
1091 (make-numeric-type :class (numeric-type-class type)
1092 :format (numeric-type-format type)
1093 :complexp :real
1094 :low lo
1095 :high (list (float 0.0 hi-val))))
1097 ;; (float x (+0.0)) => (or (member -0.0) (float x (0.0)))
1098 ;; (float x -0.0) => (or (member -0.0) (float x (0.0)))
1099 (list (make-member-type :members (list (float (load-time-value (make-unportable-float :single-float-negative-zero)) hi-val)))
1100 (make-numeric-type :class (numeric-type-class type)
1101 :format (numeric-type-format type)
1102 :complexp :real
1103 :low lo
1104 :high (list (float 0.0 hi-val)))))))
1106 type)))
1107 ;; not real float
1108 type))
1110 ;;; Convert back a possible list of numeric types.
1111 (defun convert-back-numeric-type-list (type-list)
1112 (typecase type-list
1113 (list
1114 (let ((results '()))
1115 (dolist (type type-list)
1116 (if (numeric-type-p type)
1117 (let ((result (convert-back-numeric-type type)))
1118 (if (listp result)
1119 (setf results (append results result))
1120 (push result results)))
1121 (push type results)))
1122 results))
1123 (numeric-type
1124 (convert-back-numeric-type type-list))
1125 (union-type
1126 (convert-back-numeric-type-list (union-type-types type-list)))
1128 type-list)))
1130 ;;; FIXME: MAKE-CANONICAL-UNION-TYPE and CONVERT-MEMBER-TYPE probably
1131 ;;; belong in the kernel's type logic, invoked always, instead of in
1132 ;;; the compiler, invoked only during some type optimizations. (In
1133 ;;; fact, as of 0.pre8.100 or so they probably are, under
1134 ;;; MAKE-MEMBER-TYPE, so probably this code can be deleted)
1136 ;;; Take a list of types and return a canonical type specifier,
1137 ;;; combining any MEMBER types together. If both positive and negative
1138 ;;; MEMBER types are present they are converted to a float type.
1139 ;;; XXX This would be far simpler if the type-union methods could handle
1140 ;;; member/number unions.
1141 (defun make-canonical-union-type (type-list)
1142 (let ((xset (alloc-xset))
1143 (fp-zeroes '())
1144 (misc-types '()))
1145 (dolist (type type-list)
1146 (cond ((member-type-p type)
1147 (mapc-member-type-members
1148 (lambda (member)
1149 (if (fp-zero-p member)
1150 (unless (member member fp-zeroes)
1151 (pushnew member fp-zeroes))
1152 (add-to-xset member xset)))
1153 type))
1155 (push type misc-types))))
1156 (if (and (xset-empty-p xset) (not fp-zeroes))
1157 (apply #'type-union misc-types)
1158 (apply #'type-union (make-member-type :xset xset :fp-zeroes fp-zeroes) misc-types))))
1160 ;;; Convert a member type with a single member to a numeric type.
1161 (defun convert-member-type (arg)
1162 (let* ((members (member-type-members arg))
1163 (member (first members))
1164 (member-type (type-of member)))
1165 (aver (not (rest members)))
1166 (specifier-type (cond ((typep member 'integer)
1167 `(integer ,member ,member))
1168 ((memq member-type '(short-float single-float
1169 double-float long-float))
1170 `(,member-type ,member ,member))
1172 member-type)))))
1174 ;;; This is used in defoptimizers for computing the resulting type of
1175 ;;; a function.
1177 ;;; Given the lvar ARG, derive the resulting type using the
1178 ;;; DERIVE-FUN. DERIVE-FUN takes exactly one argument which is some
1179 ;;; "atomic" lvar type like numeric-type or member-type (containing
1180 ;;; just one element). It should return the resulting type, which can
1181 ;;; be a list of types.
1183 ;;; For the case of member types, if a MEMBER-FUN is given it is
1184 ;;; called to compute the result otherwise the member type is first
1185 ;;; converted to a numeric type and the DERIVE-FUN is called.
1186 (defun one-arg-derive-type (arg derive-fun member-fun
1187 &optional (convert-type t))
1188 (declare (type function derive-fun)
1189 (type (or null function) member-fun))
1190 (let ((arg-list (prepare-arg-for-derive-type (lvar-type arg))))
1191 (when arg-list
1192 (flet ((deriver (x)
1193 (typecase x
1194 (member-type
1195 (if member-fun
1196 (with-float-traps-masked
1197 (:underflow :overflow :divide-by-zero)
1198 (specifier-type
1199 `(eql ,(funcall member-fun
1200 (first (member-type-members x))))))
1201 ;; Otherwise convert to a numeric type.
1202 (let ((result-type-list
1203 (funcall derive-fun (convert-member-type x))))
1204 (if convert-type
1205 (convert-back-numeric-type-list result-type-list)
1206 result-type-list))))
1207 (numeric-type
1208 (if convert-type
1209 (convert-back-numeric-type-list
1210 (funcall derive-fun (convert-numeric-type x)))
1211 (funcall derive-fun x)))
1213 *universal-type*))))
1214 ;; Run down the list of args and derive the type of each one,
1215 ;; saving all of the results in a list.
1216 (let ((results nil))
1217 (dolist (arg arg-list)
1218 (let ((result (deriver arg)))
1219 (if (listp result)
1220 (setf results (append results result))
1221 (push result results))))
1222 (if (rest results)
1223 (make-canonical-union-type results)
1224 (first results)))))))
1226 ;;; Same as ONE-ARG-DERIVE-TYPE, except we assume the function takes
1227 ;;; two arguments. DERIVE-FUN takes 3 args in this case: the two
1228 ;;; original args and a third which is T to indicate if the two args
1229 ;;; really represent the same lvar. This is useful for deriving the
1230 ;;; type of things like (* x x), which should always be positive. If
1231 ;;; we didn't do this, we wouldn't be able to tell.
1232 (defun two-arg-derive-type (arg1 arg2 derive-fun fun
1233 &optional (convert-type t))
1234 (declare (type function derive-fun fun))
1235 (flet ((deriver (x y same-arg)
1236 (cond ((and (member-type-p x) (member-type-p y))
1237 (let* ((x (first (member-type-members x)))
1238 (y (first (member-type-members y)))
1239 (result (ignore-errors
1240 (with-float-traps-masked
1241 (:underflow :overflow :divide-by-zero
1242 :invalid)
1243 (funcall fun x y)))))
1244 (cond ((null result) *empty-type*)
1245 ((and (floatp result) (float-nan-p result))
1246 (make-numeric-type :class 'float
1247 :format (type-of result)
1248 :complexp :real))
1250 (specifier-type `(eql ,result))))))
1251 ((and (member-type-p x) (numeric-type-p y))
1252 (let* ((x (convert-member-type x))
1253 (y (if convert-type (convert-numeric-type y) y))
1254 (result (funcall derive-fun x y same-arg)))
1255 (if convert-type
1256 (convert-back-numeric-type-list result)
1257 result)))
1258 ((and (numeric-type-p x) (member-type-p y))
1259 (let* ((x (if convert-type (convert-numeric-type x) x))
1260 (y (convert-member-type y))
1261 (result (funcall derive-fun x y same-arg)))
1262 (if convert-type
1263 (convert-back-numeric-type-list result)
1264 result)))
1265 ((and (numeric-type-p x) (numeric-type-p y))
1266 (let* ((x (if convert-type (convert-numeric-type x) x))
1267 (y (if convert-type (convert-numeric-type y) y))
1268 (result (funcall derive-fun x y same-arg)))
1269 (if convert-type
1270 (convert-back-numeric-type-list result)
1271 result)))
1273 *universal-type*))))
1274 (let ((same-arg (same-leaf-ref-p arg1 arg2))
1275 (a1 (prepare-arg-for-derive-type (lvar-type arg1)))
1276 (a2 (prepare-arg-for-derive-type (lvar-type arg2))))
1277 (when (and a1 a2)
1278 (let ((results nil))
1279 (if same-arg
1280 ;; Since the args are the same LVARs, just run down the
1281 ;; lists.
1282 (dolist (x a1)
1283 (let ((result (deriver x x same-arg)))
1284 (if (listp result)
1285 (setf results (append results result))
1286 (push result results))))
1287 ;; Try all pairwise combinations.
1288 (dolist (x a1)
1289 (dolist (y a2)
1290 (let ((result (or (deriver x y same-arg)
1291 (numeric-contagion x y))))
1292 (if (listp result)
1293 (setf results (append results result))
1294 (push result results))))))
1295 (if (rest results)
1296 (make-canonical-union-type results)
1297 (first results)))))))
1299 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1300 (progn
1301 (defoptimizer (+ derive-type) ((x y))
1302 (derive-integer-type
1304 #'(lambda (x y)
1305 (flet ((frob (x y)
1306 (if (and x y)
1307 (+ x y)
1308 nil)))
1309 (values (frob (numeric-type-low x) (numeric-type-low y))
1310 (frob (numeric-type-high x) (numeric-type-high y)))))))
1312 (defoptimizer (- derive-type) ((x y))
1313 (derive-integer-type
1315 #'(lambda (x y)
1316 (flet ((frob (x y)
1317 (if (and x y)
1318 (- x y)
1319 nil)))
1320 (values (frob (numeric-type-low x) (numeric-type-high y))
1321 (frob (numeric-type-high x) (numeric-type-low y)))))))
1323 (defoptimizer (* derive-type) ((x y))
1324 (derive-integer-type
1326 #'(lambda (x y)
1327 (let ((x-low (numeric-type-low x))
1328 (x-high (numeric-type-high x))
1329 (y-low (numeric-type-low y))
1330 (y-high (numeric-type-high y)))
1331 (cond ((not (and x-low y-low))
1332 (values nil nil))
1333 ((or (minusp x-low) (minusp y-low))
1334 (if (and x-high y-high)
1335 (let ((max (* (max (abs x-low) (abs x-high))
1336 (max (abs y-low) (abs y-high)))))
1337 (values (- max) max))
1338 (values nil nil)))
1340 (values (* x-low y-low)
1341 (if (and x-high y-high)
1342 (* x-high y-high)
1343 nil))))))))
1345 (defoptimizer (/ derive-type) ((x y))
1346 (numeric-contagion (lvar-type x) (lvar-type y)))
1348 ) ; PROGN
1350 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1351 (progn
1352 (defun +-derive-type-aux (x y same-arg)
1353 (if (and (numeric-type-real-p x)
1354 (numeric-type-real-p y))
1355 (let ((result
1356 (if same-arg
1357 (let ((x-int (numeric-type->interval x)))
1358 (interval-add x-int x-int))
1359 (interval-add (numeric-type->interval x)
1360 (numeric-type->interval y))))
1361 (result-type (numeric-contagion x y)))
1362 ;; If the result type is a float, we need to be sure to coerce
1363 ;; the bounds into the correct type.
1364 (when (eq (numeric-type-class result-type) 'float)
1365 (setf result (interval-func
1366 #'(lambda (x)
1367 (coerce-for-bound x (or (numeric-type-format result-type)
1368 'float)))
1369 result)))
1370 (make-numeric-type
1371 :class (if (and (eq (numeric-type-class x) 'integer)
1372 (eq (numeric-type-class y) 'integer))
1373 ;; The sum of integers is always an integer.
1374 'integer
1375 (numeric-type-class result-type))
1376 :format (numeric-type-format result-type)
1377 :low (interval-low result)
1378 :high (interval-high result)))
1379 ;; general contagion
1380 (numeric-contagion x y)))
1382 (defoptimizer (+ derive-type) ((x y))
1383 (two-arg-derive-type x y #'+-derive-type-aux #'+))
1385 (defun --derive-type-aux (x y same-arg)
1386 (if (and (numeric-type-real-p x)
1387 (numeric-type-real-p y))
1388 (let ((result
1389 ;; (- X X) is always 0.
1390 (if same-arg
1391 (make-interval :low 0 :high 0)
1392 (interval-sub (numeric-type->interval x)
1393 (numeric-type->interval y))))
1394 (result-type (numeric-contagion x y)))
1395 ;; If the result type is a float, we need to be sure to coerce
1396 ;; the bounds into the correct type.
1397 (when (eq (numeric-type-class result-type) 'float)
1398 (setf result (interval-func
1399 #'(lambda (x)
1400 (coerce-for-bound x (or (numeric-type-format result-type)
1401 'float)))
1402 result)))
1403 (make-numeric-type
1404 :class (if (and (eq (numeric-type-class x) 'integer)
1405 (eq (numeric-type-class y) 'integer))
1406 ;; The difference of integers is always an integer.
1407 'integer
1408 (numeric-type-class result-type))
1409 :format (numeric-type-format result-type)
1410 :low (interval-low result)
1411 :high (interval-high result)))
1412 ;; general contagion
1413 (numeric-contagion x y)))
1415 (defoptimizer (- derive-type) ((x y))
1416 (two-arg-derive-type x y #'--derive-type-aux #'-))
1418 (defun *-derive-type-aux (x y same-arg)
1419 (if (and (numeric-type-real-p x)
1420 (numeric-type-real-p y))
1421 (let ((result
1422 ;; (* X X) is always positive, so take care to do it right.
1423 (if same-arg
1424 (interval-sqr (numeric-type->interval x))
1425 (interval-mul (numeric-type->interval x)
1426 (numeric-type->interval y))))
1427 (result-type (numeric-contagion x y)))
1428 ;; If the result type is a float, we need to be sure to coerce
1429 ;; the bounds into the correct type.
1430 (when (eq (numeric-type-class result-type) 'float)
1431 (setf result (interval-func
1432 #'(lambda (x)
1433 (coerce-for-bound x (or (numeric-type-format result-type)
1434 'float)))
1435 result)))
1436 (make-numeric-type
1437 :class (if (and (eq (numeric-type-class x) 'integer)
1438 (eq (numeric-type-class y) 'integer))
1439 ;; The product of integers is always an integer.
1440 'integer
1441 (numeric-type-class result-type))
1442 :format (numeric-type-format result-type)
1443 :low (interval-low result)
1444 :high (interval-high result)))
1445 (numeric-contagion x y)))
1447 (defoptimizer (* derive-type) ((x y))
1448 (two-arg-derive-type x y #'*-derive-type-aux #'*))
1450 (defun /-derive-type-aux (x y same-arg)
1451 (if (and (numeric-type-real-p x)
1452 (numeric-type-real-p y))
1453 (let ((result
1454 ;; (/ X X) is always 1, except if X can contain 0. In
1455 ;; that case, we shouldn't optimize the division away
1456 ;; because we want 0/0 to signal an error.
1457 (if (and same-arg
1458 (not (interval-contains-p
1459 0 (interval-closure (numeric-type->interval y)))))
1460 (make-interval :low 1 :high 1)
1461 (interval-div (numeric-type->interval x)
1462 (numeric-type->interval y))))
1463 (result-type (numeric-contagion x y)))
1464 ;; If the result type is a float, we need to be sure to coerce
1465 ;; the bounds into the correct type.
1466 (when (eq (numeric-type-class result-type) 'float)
1467 (setf result (interval-func
1468 #'(lambda (x)
1469 (coerce-for-bound x (or (numeric-type-format result-type)
1470 'float)))
1471 result)))
1472 (make-numeric-type :class (numeric-type-class result-type)
1473 :format (numeric-type-format result-type)
1474 :low (interval-low result)
1475 :high (interval-high result)))
1476 (numeric-contagion x y)))
1478 (defoptimizer (/ derive-type) ((x y))
1479 (two-arg-derive-type x y #'/-derive-type-aux #'/))
1481 ) ; PROGN
1483 (defun ash-derive-type-aux (n-type shift same-arg)
1484 (declare (ignore same-arg))
1485 ;; KLUDGE: All this ASH optimization is suppressed under CMU CL for
1486 ;; some bignum cases because as of version 2.4.6 for Debian and 18d,
1487 ;; CMU CL blows up on (ASH 1000000000 -100000000000) (i.e. ASH of
1488 ;; two bignums yielding zero) and it's hard to avoid that
1489 ;; calculation in here.
1490 #+(and cmu sb-xc-host)
1491 (when (and (or (typep (numeric-type-low n-type) 'bignum)
1492 (typep (numeric-type-high n-type) 'bignum))
1493 (or (typep (numeric-type-low shift) 'bignum)
1494 (typep (numeric-type-high shift) 'bignum)))
1495 (return-from ash-derive-type-aux *universal-type*))
1496 (flet ((ash-outer (n s)
1497 (when (and (fixnump s)
1498 (<= s 64)
1499 (> s sb!xc:most-negative-fixnum))
1500 (ash n s)))
1501 ;; KLUDGE: The bare 64's here should be related to
1502 ;; symbolic machine word size values somehow.
1504 (ash-inner (n s)
1505 (if (and (fixnump s)
1506 (> s sb!xc:most-negative-fixnum))
1507 (ash n (min s 64))
1508 (if (minusp n) -1 0))))
1509 (or (and (csubtypep n-type (specifier-type 'integer))
1510 (csubtypep shift (specifier-type 'integer))
1511 (let ((n-low (numeric-type-low n-type))
1512 (n-high (numeric-type-high n-type))
1513 (s-low (numeric-type-low shift))
1514 (s-high (numeric-type-high shift)))
1515 (make-numeric-type :class 'integer :complexp :real
1516 :low (when n-low
1517 (if (minusp n-low)
1518 (ash-outer n-low s-high)
1519 (ash-inner n-low s-low)))
1520 :high (when n-high
1521 (if (minusp n-high)
1522 (ash-inner n-high s-low)
1523 (ash-outer n-high s-high))))))
1524 *universal-type*)))
1526 (defoptimizer (ash derive-type) ((n shift))
1527 (two-arg-derive-type n shift #'ash-derive-type-aux #'ash))
1529 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1530 (macrolet ((frob (fun)
1531 `#'(lambda (type type2)
1532 (declare (ignore type2))
1533 (let ((lo (numeric-type-low type))
1534 (hi (numeric-type-high type)))
1535 (values (if hi (,fun hi) nil) (if lo (,fun lo) nil))))))
1537 (defoptimizer (%negate derive-type) ((num))
1538 (derive-integer-type num num (frob -))))
1540 (defun lognot-derive-type-aux (int)
1541 (derive-integer-type-aux int int
1542 (lambda (type type2)
1543 (declare (ignore type2))
1544 (let ((lo (numeric-type-low type))
1545 (hi (numeric-type-high type)))
1546 (values (if hi (lognot hi) nil)
1547 (if lo (lognot lo) nil)
1548 (numeric-type-class type)
1549 (numeric-type-format type))))))
1551 (defoptimizer (lognot derive-type) ((int))
1552 (lognot-derive-type-aux (lvar-type int)))
1554 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1555 (defoptimizer (%negate derive-type) ((num))
1556 (flet ((negate-bound (b)
1557 (and b
1558 (set-bound (- (type-bound-number b))
1559 (consp b)))))
1560 (one-arg-derive-type num
1561 (lambda (type)
1562 (modified-numeric-type
1563 type
1564 :low (negate-bound (numeric-type-high type))
1565 :high (negate-bound (numeric-type-low type))))
1566 #'-)))
1568 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1569 (defoptimizer (abs derive-type) ((num))
1570 (let ((type (lvar-type num)))
1571 (if (and (numeric-type-p type)
1572 (eq (numeric-type-class type) 'integer)
1573 (eq (numeric-type-complexp type) :real))
1574 (let ((lo (numeric-type-low type))
1575 (hi (numeric-type-high type)))
1576 (make-numeric-type :class 'integer :complexp :real
1577 :low (cond ((and hi (minusp hi))
1578 (abs hi))
1580 (max 0 lo))
1583 :high (if (and hi lo)
1584 (max (abs hi) (abs lo))
1585 nil)))
1586 (numeric-contagion type type))))
1588 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1589 (defun abs-derive-type-aux (type)
1590 (cond ((eq (numeric-type-complexp type) :complex)
1591 ;; The absolute value of a complex number is always a
1592 ;; non-negative float.
1593 (let* ((format (case (numeric-type-class type)
1594 ((integer rational) 'single-float)
1595 (t (numeric-type-format type))))
1596 (bound-format (or format 'float)))
1597 (make-numeric-type :class 'float
1598 :format format
1599 :complexp :real
1600 :low (coerce 0 bound-format)
1601 :high nil)))
1603 ;; The absolute value of a real number is a non-negative real
1604 ;; of the same type.
1605 (let* ((abs-bnd (interval-abs (numeric-type->interval type)))
1606 (class (numeric-type-class type))
1607 (format (numeric-type-format type))
1608 (bound-type (or format class 'real)))
1609 (make-numeric-type
1610 :class class
1611 :format format
1612 :complexp :real
1613 :low (coerce-and-truncate-floats (interval-low abs-bnd) bound-type)
1614 :high (coerce-and-truncate-floats
1615 (interval-high abs-bnd) bound-type))))))
1617 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1618 (defoptimizer (abs derive-type) ((num))
1619 (one-arg-derive-type num #'abs-derive-type-aux #'abs))
1621 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1622 (defoptimizer (truncate derive-type) ((number divisor))
1623 (let ((number-type (lvar-type number))
1624 (divisor-type (lvar-type divisor))
1625 (integer-type (specifier-type 'integer)))
1626 (if (and (numeric-type-p number-type)
1627 (csubtypep number-type integer-type)
1628 (numeric-type-p divisor-type)
1629 (csubtypep divisor-type integer-type))
1630 (let ((number-low (numeric-type-low number-type))
1631 (number-high (numeric-type-high number-type))
1632 (divisor-low (numeric-type-low divisor-type))
1633 (divisor-high (numeric-type-high divisor-type)))
1634 (values-specifier-type
1635 `(values ,(integer-truncate-derive-type number-low number-high
1636 divisor-low divisor-high)
1637 ,(integer-rem-derive-type number-low number-high
1638 divisor-low divisor-high))))
1639 *universal-type*)))
1641 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1642 (progn
1644 (defun rem-result-type (number-type divisor-type)
1645 ;; Figure out what the remainder type is. The remainder is an
1646 ;; integer if both args are integers; a rational if both args are
1647 ;; rational; and a float otherwise.
1648 (cond ((and (csubtypep number-type (specifier-type 'integer))
1649 (csubtypep divisor-type (specifier-type 'integer)))
1650 'integer)
1651 ((and (csubtypep number-type (specifier-type 'rational))
1652 (csubtypep divisor-type (specifier-type 'rational)))
1653 'rational)
1654 ((and (csubtypep number-type (specifier-type 'float))
1655 (csubtypep divisor-type (specifier-type 'float)))
1656 ;; Both are floats so the result is also a float, of
1657 ;; the largest type.
1658 (or (float-format-max (numeric-type-format number-type)
1659 (numeric-type-format divisor-type))
1660 'float))
1661 ((and (csubtypep number-type (specifier-type 'float))
1662 (csubtypep divisor-type (specifier-type 'rational)))
1663 ;; One of the arguments is a float and the other is a
1664 ;; rational. The remainder is a float of the same
1665 ;; type.
1666 (or (numeric-type-format number-type) 'float))
1667 ((and (csubtypep divisor-type (specifier-type 'float))
1668 (csubtypep number-type (specifier-type 'rational)))
1669 ;; One of the arguments is a float and the other is a
1670 ;; rational. The remainder is a float of the same
1671 ;; type.
1672 (or (numeric-type-format divisor-type) 'float))
1674 ;; Some unhandled combination. This usually means both args
1675 ;; are REAL so the result is a REAL.
1676 'real)))
1678 (defun truncate-derive-type-quot (number-type divisor-type)
1679 (let* ((rem-type (rem-result-type number-type divisor-type))
1680 (number-interval (numeric-type->interval number-type))
1681 (divisor-interval (numeric-type->interval divisor-type)))
1682 ;;(declare (type (member '(integer rational float)) rem-type))
1683 ;; We have real numbers now.
1684 (cond ((eq rem-type 'integer)
1685 ;; Since the remainder type is INTEGER, both args are
1686 ;; INTEGERs.
1687 (let* ((res (integer-truncate-derive-type
1688 (interval-low number-interval)
1689 (interval-high number-interval)
1690 (interval-low divisor-interval)
1691 (interval-high divisor-interval))))
1692 (specifier-type (if (listp res) res 'integer))))
1694 (let ((quot (truncate-quotient-bound
1695 (interval-div number-interval
1696 divisor-interval))))
1697 (specifier-type `(integer ,(or (interval-low quot) '*)
1698 ,(or (interval-high quot) '*))))))))
1700 (defun truncate-derive-type-rem (number-type divisor-type)
1701 (let* ((rem-type (rem-result-type number-type divisor-type))
1702 (number-interval (numeric-type->interval number-type))
1703 (divisor-interval (numeric-type->interval divisor-type))
1704 (rem (truncate-rem-bound number-interval divisor-interval)))
1705 ;;(declare (type (member '(integer rational float)) rem-type))
1706 ;; We have real numbers now.
1707 (cond ((eq rem-type 'integer)
1708 ;; Since the remainder type is INTEGER, both args are
1709 ;; INTEGERs.
1710 (specifier-type `(,rem-type ,(or (interval-low rem) '*)
1711 ,(or (interval-high rem) '*))))
1713 (multiple-value-bind (class format)
1714 (ecase rem-type
1715 (integer
1716 (values 'integer nil))
1717 (rational
1718 (values 'rational nil))
1719 ((or single-float double-float #!+long-float long-float)
1720 (values 'float rem-type))
1721 (float
1722 (values 'float nil))
1723 (real
1724 (values nil nil)))
1725 (when (member rem-type '(float single-float double-float
1726 #!+long-float long-float))
1727 (setf rem (interval-func #'(lambda (x)
1728 (coerce-for-bound x rem-type))
1729 rem)))
1730 (make-numeric-type :class class
1731 :format format
1732 :low (interval-low rem)
1733 :high (interval-high rem)))))))
1735 (defun truncate-derive-type-quot-aux (num div same-arg)
1736 (declare (ignore same-arg))
1737 (if (and (numeric-type-real-p num)
1738 (numeric-type-real-p div))
1739 (truncate-derive-type-quot num div)
1740 *empty-type*))
1742 (defun truncate-derive-type-rem-aux (num div same-arg)
1743 (declare (ignore same-arg))
1744 (if (and (numeric-type-real-p num)
1745 (numeric-type-real-p div))
1746 (truncate-derive-type-rem num div)
1747 *empty-type*))
1749 (defoptimizer (truncate derive-type) ((number divisor))
1750 (let ((quot (two-arg-derive-type number divisor
1751 #'truncate-derive-type-quot-aux #'truncate))
1752 (rem (two-arg-derive-type number divisor
1753 #'truncate-derive-type-rem-aux #'rem)))
1754 (when (and quot rem)
1755 (make-values-type :required (list quot rem)))))
1757 (defun ftruncate-derive-type-quot (number-type divisor-type)
1758 ;; The bounds are the same as for truncate. However, the first
1759 ;; result is a float of some type. We need to determine what that
1760 ;; type is. Basically it's the more contagious of the two types.
1761 (let ((q-type (truncate-derive-type-quot number-type divisor-type))
1762 (res-type (numeric-contagion number-type divisor-type)))
1763 (make-numeric-type :class 'float
1764 :format (numeric-type-format res-type)
1765 :low (numeric-type-low q-type)
1766 :high (numeric-type-high q-type))))
1768 (defun ftruncate-derive-type-quot-aux (n d same-arg)
1769 (declare (ignore same-arg))
1770 (if (and (numeric-type-real-p n)
1771 (numeric-type-real-p d))
1772 (ftruncate-derive-type-quot n d)
1773 *empty-type*))
1775 (defoptimizer (ftruncate derive-type) ((number divisor))
1776 (let ((quot
1777 (two-arg-derive-type number divisor
1778 #'ftruncate-derive-type-quot-aux #'ftruncate))
1779 (rem (two-arg-derive-type number divisor
1780 #'truncate-derive-type-rem-aux #'rem)))
1781 (when (and quot rem)
1782 (make-values-type :required (list quot rem)))))
1784 (defun %unary-truncate-derive-type-aux (number)
1785 (truncate-derive-type-quot number (specifier-type '(integer 1 1))))
1787 (defoptimizer (%unary-truncate derive-type) ((number))
1788 (one-arg-derive-type number
1789 #'%unary-truncate-derive-type-aux
1790 #'%unary-truncate))
1792 (defoptimizer (%unary-ftruncate derive-type) ((number))
1793 (let ((divisor (specifier-type '(integer 1 1))))
1794 (one-arg-derive-type number
1795 #'(lambda (n)
1796 (ftruncate-derive-type-quot-aux n divisor nil))
1797 #'%unary-ftruncate)))
1799 ;;; Define optimizers for FLOOR and CEILING.
1800 (macrolet
1801 ((def (name q-name r-name)
1802 (let ((q-aux (symbolicate q-name "-AUX"))
1803 (r-aux (symbolicate r-name "-AUX")))
1804 `(progn
1805 ;; Compute type of quotient (first) result.
1806 (defun ,q-aux (number-type divisor-type)
1807 (let* ((number-interval
1808 (numeric-type->interval number-type))
1809 (divisor-interval
1810 (numeric-type->interval divisor-type))
1811 (quot (,q-name (interval-div number-interval
1812 divisor-interval))))
1813 (specifier-type `(integer ,(or (interval-low quot) '*)
1814 ,(or (interval-high quot) '*)))))
1815 ;; Compute type of remainder.
1816 (defun ,r-aux (number-type divisor-type)
1817 (let* ((divisor-interval
1818 (numeric-type->interval divisor-type))
1819 (rem (,r-name divisor-interval))
1820 (result-type (rem-result-type number-type divisor-type)))
1821 (multiple-value-bind (class format)
1822 (ecase result-type
1823 (integer
1824 (values 'integer nil))
1825 (rational
1826 (values 'rational nil))
1827 ((or single-float double-float #!+long-float long-float)
1828 (values 'float result-type))
1829 (float
1830 (values 'float nil))
1831 (real
1832 (values nil nil)))
1833 (when (member result-type '(float single-float double-float
1834 #!+long-float long-float))
1835 ;; Make sure that the limits on the interval have
1836 ;; the right type.
1837 (setf rem (interval-func (lambda (x)
1838 (coerce-for-bound x result-type))
1839 rem)))
1840 (make-numeric-type :class class
1841 :format format
1842 :low (interval-low rem)
1843 :high (interval-high rem)))))
1844 ;; the optimizer itself
1845 (defoptimizer (,name derive-type) ((number divisor))
1846 (flet ((derive-q (n d same-arg)
1847 (declare (ignore same-arg))
1848 (if (and (numeric-type-real-p n)
1849 (numeric-type-real-p d))
1850 (,q-aux n d)
1851 *empty-type*))
1852 (derive-r (n d same-arg)
1853 (declare (ignore same-arg))
1854 (if (and (numeric-type-real-p n)
1855 (numeric-type-real-p d))
1856 (,r-aux n d)
1857 *empty-type*)))
1858 (let ((quot (two-arg-derive-type
1859 number divisor #'derive-q #',name))
1860 (rem (two-arg-derive-type
1861 number divisor #'derive-r #'mod)))
1862 (when (and quot rem)
1863 (make-values-type :required (list quot rem))))))))))
1865 (def floor floor-quotient-bound floor-rem-bound)
1866 (def ceiling ceiling-quotient-bound ceiling-rem-bound))
1868 ;;; Define optimizers for FFLOOR and FCEILING
1869 (macrolet ((def (name q-name r-name)
1870 (let ((q-aux (symbolicate "F" q-name "-AUX"))
1871 (r-aux (symbolicate r-name "-AUX")))
1872 `(progn
1873 ;; Compute type of quotient (first) result.
1874 (defun ,q-aux (number-type divisor-type)
1875 (let* ((number-interval
1876 (numeric-type->interval number-type))
1877 (divisor-interval
1878 (numeric-type->interval divisor-type))
1879 (quot (,q-name (interval-div number-interval
1880 divisor-interval)))
1881 (res-type (numeric-contagion number-type
1882 divisor-type)))
1883 (make-numeric-type
1884 :class (numeric-type-class res-type)
1885 :format (numeric-type-format res-type)
1886 :low (interval-low quot)
1887 :high (interval-high quot))))
1889 (defoptimizer (,name derive-type) ((number divisor))
1890 (flet ((derive-q (n d same-arg)
1891 (declare (ignore same-arg))
1892 (if (and (numeric-type-real-p n)
1893 (numeric-type-real-p d))
1894 (,q-aux n d)
1895 *empty-type*))
1896 (derive-r (n d same-arg)
1897 (declare (ignore same-arg))
1898 (if (and (numeric-type-real-p n)
1899 (numeric-type-real-p d))
1900 (,r-aux n d)
1901 *empty-type*)))
1902 (let ((quot (two-arg-derive-type
1903 number divisor #'derive-q #',name))
1904 (rem (two-arg-derive-type
1905 number divisor #'derive-r #'mod)))
1906 (when (and quot rem)
1907 (make-values-type :required (list quot rem))))))))))
1909 (def ffloor floor-quotient-bound floor-rem-bound)
1910 (def fceiling ceiling-quotient-bound ceiling-rem-bound))
1912 ;;; functions to compute the bounds on the quotient and remainder for
1913 ;;; the FLOOR function
1914 (defun floor-quotient-bound (quot)
1915 ;; Take the floor of the quotient and then massage it into what we
1916 ;; need.
1917 (let ((lo (interval-low quot))
1918 (hi (interval-high quot)))
1919 ;; Take the floor of the lower bound. The result is always a
1920 ;; closed lower bound.
1921 (setf lo (if lo
1922 (floor (type-bound-number lo))
1923 nil))
1924 ;; For the upper bound, we need to be careful.
1925 (setf hi
1926 (cond ((consp hi)
1927 ;; An open bound. We need to be careful here because
1928 ;; the floor of '(10.0) is 9, but the floor of
1929 ;; 10.0 is 10.
1930 (multiple-value-bind (q r) (floor (first hi))
1931 (if (zerop r)
1932 (1- q)
1933 q)))
1935 ;; A closed bound, so the answer is obvious.
1936 (floor hi))
1938 hi)))
1939 (make-interval :low lo :high hi)))
1940 (defun floor-rem-bound (div)
1941 ;; The remainder depends only on the divisor. Try to get the
1942 ;; correct sign for the remainder if we can.
1943 (case (interval-range-info div)
1945 ;; The divisor is always positive.
1946 (let ((rem (interval-abs div)))
1947 (setf (interval-low rem) 0)
1948 (when (and (numberp (interval-high rem))
1949 (not (zerop (interval-high rem))))
1950 ;; The remainder never contains the upper bound. However,
1951 ;; watch out for the case where the high limit is zero!
1952 (setf (interval-high rem) (list (interval-high rem))))
1953 rem))
1955 ;; The divisor is always negative.
1956 (let ((rem (interval-neg (interval-abs div))))
1957 (setf (interval-high rem) 0)
1958 (when (numberp (interval-low rem))
1959 ;; The remainder never contains the lower bound.
1960 (setf (interval-low rem) (list (interval-low rem))))
1961 rem))
1962 (otherwise
1963 ;; The divisor can be positive or negative. All bets off. The
1964 ;; magnitude of remainder is the maximum value of the divisor.
1965 (let ((limit (type-bound-number (interval-high (interval-abs div)))))
1966 ;; The bound never reaches the limit, so make the interval open.
1967 (make-interval :low (if limit
1968 (list (- limit))
1969 limit)
1970 :high (list limit))))))
1971 #| Test cases
1972 (floor-quotient-bound (make-interval :low 0.3 :high 10.3))
1973 => #S(INTERVAL :LOW 0 :HIGH 10)
1974 (floor-quotient-bound (make-interval :low 0.3 :high '(10.3)))
1975 => #S(INTERVAL :LOW 0 :HIGH 10)
1976 (floor-quotient-bound (make-interval :low 0.3 :high 10))
1977 => #S(INTERVAL :LOW 0 :HIGH 10)
1978 (floor-quotient-bound (make-interval :low 0.3 :high '(10)))
1979 => #S(INTERVAL :LOW 0 :HIGH 9)
1980 (floor-quotient-bound (make-interval :low '(0.3) :high 10.3))
1981 => #S(INTERVAL :LOW 0 :HIGH 10)
1982 (floor-quotient-bound (make-interval :low '(0.0) :high 10.3))
1983 => #S(INTERVAL :LOW 0 :HIGH 10)
1984 (floor-quotient-bound (make-interval :low '(-1.3) :high 10.3))
1985 => #S(INTERVAL :LOW -2 :HIGH 10)
1986 (floor-quotient-bound (make-interval :low '(-1.0) :high 10.3))
1987 => #S(INTERVAL :LOW -1 :HIGH 10)
1988 (floor-quotient-bound (make-interval :low -1.0 :high 10.3))
1989 => #S(INTERVAL :LOW -1 :HIGH 10)
1991 (floor-rem-bound (make-interval :low 0.3 :high 10.3))
1992 => #S(INTERVAL :LOW 0 :HIGH '(10.3))
1993 (floor-rem-bound (make-interval :low 0.3 :high '(10.3)))
1994 => #S(INTERVAL :LOW 0 :HIGH '(10.3))
1995 (floor-rem-bound (make-interval :low -10 :high -2.3))
1996 #S(INTERVAL :LOW (-10) :HIGH 0)
1997 (floor-rem-bound (make-interval :low 0.3 :high 10))
1998 => #S(INTERVAL :LOW 0 :HIGH '(10))
1999 (floor-rem-bound (make-interval :low '(-1.3) :high 10.3))
2000 => #S(INTERVAL :LOW '(-10.3) :HIGH '(10.3))
2001 (floor-rem-bound (make-interval :low '(-20.3) :high 10.3))
2002 => #S(INTERVAL :LOW (-20.3) :HIGH (20.3))
2005 ;;; same functions for CEILING
2006 (defun ceiling-quotient-bound (quot)
2007 ;; Take the ceiling of the quotient and then massage it into what we
2008 ;; need.
2009 (let ((lo (interval-low quot))
2010 (hi (interval-high quot)))
2011 ;; Take the ceiling of the upper bound. The result is always a
2012 ;; closed upper bound.
2013 (setf hi (if hi
2014 (ceiling (type-bound-number hi))
2015 nil))
2016 ;; For the lower bound, we need to be careful.
2017 (setf lo
2018 (cond ((consp lo)
2019 ;; An open bound. We need to be careful here because
2020 ;; the ceiling of '(10.0) is 11, but the ceiling of
2021 ;; 10.0 is 10.
2022 (multiple-value-bind (q r) (ceiling (first lo))
2023 (if (zerop r)
2024 (1+ q)
2025 q)))
2027 ;; A closed bound, so the answer is obvious.
2028 (ceiling lo))
2030 lo)))
2031 (make-interval :low lo :high hi)))
2032 (defun ceiling-rem-bound (div)
2033 ;; The remainder depends only on the divisor. Try to get the
2034 ;; correct sign for the remainder if we can.
2035 (case (interval-range-info div)
2037 ;; Divisor is always positive. The remainder is negative.
2038 (let ((rem (interval-neg (interval-abs div))))
2039 (setf (interval-high rem) 0)
2040 (when (and (numberp (interval-low rem))
2041 (not (zerop (interval-low rem))))
2042 ;; The remainder never contains the upper bound. However,
2043 ;; watch out for the case when the upper bound is zero!
2044 (setf (interval-low rem) (list (interval-low rem))))
2045 rem))
2047 ;; Divisor is always negative. The remainder is positive
2048 (let ((rem (interval-abs div)))
2049 (setf (interval-low rem) 0)
2050 (when (numberp (interval-high rem))
2051 ;; The remainder never contains the lower bound.
2052 (setf (interval-high rem) (list (interval-high rem))))
2053 rem))
2054 (otherwise
2055 ;; The divisor can be positive or negative. All bets off. The
2056 ;; magnitude of remainder is the maximum value of the divisor.
2057 (let ((limit (type-bound-number (interval-high (interval-abs div)))))
2058 ;; The bound never reaches the limit, so make the interval open.
2059 (make-interval :low (if limit
2060 (list (- limit))
2061 limit)
2062 :high (list limit))))))
2064 #| Test cases
2065 (ceiling-quotient-bound (make-interval :low 0.3 :high 10.3))
2066 => #S(INTERVAL :LOW 1 :HIGH 11)
2067 (ceiling-quotient-bound (make-interval :low 0.3 :high '(10.3)))
2068 => #S(INTERVAL :LOW 1 :HIGH 11)
2069 (ceiling-quotient-bound (make-interval :low 0.3 :high 10))
2070 => #S(INTERVAL :LOW 1 :HIGH 10)
2071 (ceiling-quotient-bound (make-interval :low 0.3 :high '(10)))
2072 => #S(INTERVAL :LOW 1 :HIGH 10)
2073 (ceiling-quotient-bound (make-interval :low '(0.3) :high 10.3))
2074 => #S(INTERVAL :LOW 1 :HIGH 11)
2075 (ceiling-quotient-bound (make-interval :low '(0.0) :high 10.3))
2076 => #S(INTERVAL :LOW 1 :HIGH 11)
2077 (ceiling-quotient-bound (make-interval :low '(-1.3) :high 10.3))
2078 => #S(INTERVAL :LOW -1 :HIGH 11)
2079 (ceiling-quotient-bound (make-interval :low '(-1.0) :high 10.3))
2080 => #S(INTERVAL :LOW 0 :HIGH 11)
2081 (ceiling-quotient-bound (make-interval :low -1.0 :high 10.3))
2082 => #S(INTERVAL :LOW -1 :HIGH 11)
2084 (ceiling-rem-bound (make-interval :low 0.3 :high 10.3))
2085 => #S(INTERVAL :LOW (-10.3) :HIGH 0)
2086 (ceiling-rem-bound (make-interval :low 0.3 :high '(10.3)))
2087 => #S(INTERVAL :LOW 0 :HIGH '(10.3))
2088 (ceiling-rem-bound (make-interval :low -10 :high -2.3))
2089 => #S(INTERVAL :LOW 0 :HIGH (10))
2090 (ceiling-rem-bound (make-interval :low 0.3 :high 10))
2091 => #S(INTERVAL :LOW (-10) :HIGH 0)
2092 (ceiling-rem-bound (make-interval :low '(-1.3) :high 10.3))
2093 => #S(INTERVAL :LOW (-10.3) :HIGH (10.3))
2094 (ceiling-rem-bound (make-interval :low '(-20.3) :high 10.3))
2095 => #S(INTERVAL :LOW (-20.3) :HIGH (20.3))
2098 (defun truncate-quotient-bound (quot)
2099 ;; For positive quotients, truncate is exactly like floor. For
2100 ;; negative quotients, truncate is exactly like ceiling. Otherwise,
2101 ;; it's the union of the two pieces.
2102 (case (interval-range-info quot)
2104 ;; just like FLOOR
2105 (floor-quotient-bound quot))
2107 ;; just like CEILING
2108 (ceiling-quotient-bound quot))
2109 (otherwise
2110 ;; Split the interval into positive and negative pieces, compute
2111 ;; the result for each piece and put them back together.
2112 (destructuring-bind (neg pos) (interval-split 0 quot t t)
2113 (interval-merge-pair (ceiling-quotient-bound neg)
2114 (floor-quotient-bound pos))))))
2116 (defun truncate-rem-bound (num div)
2117 ;; This is significantly more complicated than FLOOR or CEILING. We
2118 ;; need both the number and the divisor to determine the range. The
2119 ;; basic idea is to split the ranges of NUM and DEN into positive
2120 ;; and negative pieces and deal with each of the four possibilities
2121 ;; in turn.
2122 (case (interval-range-info num)
2124 (case (interval-range-info div)
2126 (floor-rem-bound div))
2128 (ceiling-rem-bound div))
2129 (otherwise
2130 (destructuring-bind (neg pos) (interval-split 0 div t t)
2131 (interval-merge-pair (truncate-rem-bound num neg)
2132 (truncate-rem-bound num pos))))))
2134 (case (interval-range-info div)
2136 (ceiling-rem-bound div))
2138 (floor-rem-bound div))
2139 (otherwise
2140 (destructuring-bind (neg pos) (interval-split 0 div t t)
2141 (interval-merge-pair (truncate-rem-bound num neg)
2142 (truncate-rem-bound num pos))))))
2143 (otherwise
2144 (destructuring-bind (neg pos) (interval-split 0 num t t)
2145 (interval-merge-pair (truncate-rem-bound neg div)
2146 (truncate-rem-bound pos div))))))
2147 ) ; PROGN
2149 ;;; Derive useful information about the range. Returns three values:
2150 ;;; - '+ if its positive, '- negative, or nil if it overlaps 0.
2151 ;;; - The abs of the minimal value (i.e. closest to 0) in the range.
2152 ;;; - The abs of the maximal value if there is one, or nil if it is
2153 ;;; unbounded.
2154 (defun numeric-range-info (low high)
2155 (cond ((and low (not (minusp low)))
2156 (values '+ low high))
2157 ((and high (not (plusp high)))
2158 (values '- (- high) (if low (- low) nil)))
2160 (values nil 0 (and low high (max (- low) high))))))
2162 (defun integer-truncate-derive-type
2163 (number-low number-high divisor-low divisor-high)
2164 ;; The result cannot be larger in magnitude than the number, but the
2165 ;; sign might change. If we can determine the sign of either the
2166 ;; number or the divisor, we can eliminate some of the cases.
2167 (multiple-value-bind (number-sign number-min number-max)
2168 (numeric-range-info number-low number-high)
2169 (multiple-value-bind (divisor-sign divisor-min divisor-max)
2170 (numeric-range-info divisor-low divisor-high)
2171 (when (and divisor-max (zerop divisor-max))
2172 ;; We've got a problem: guaranteed division by zero.
2173 (return-from integer-truncate-derive-type t))
2174 (when (zerop divisor-min)
2175 ;; We'll assume that they aren't going to divide by zero.
2176 (incf divisor-min))
2177 (cond ((and number-sign divisor-sign)
2178 ;; We know the sign of both.
2179 (if (eq number-sign divisor-sign)
2180 ;; Same sign, so the result will be positive.
2181 `(integer ,(if divisor-max
2182 (truncate number-min divisor-max)
2184 ,(if number-max
2185 (truncate number-max divisor-min)
2186 '*))
2187 ;; Different signs, the result will be negative.
2188 `(integer ,(if number-max
2189 (- (truncate number-max divisor-min))
2191 ,(if divisor-max
2192 (- (truncate number-min divisor-max))
2193 0))))
2194 ((eq divisor-sign '+)
2195 ;; The divisor is positive. Therefore, the number will just
2196 ;; become closer to zero.
2197 `(integer ,(if number-low
2198 (truncate number-low divisor-min)
2200 ,(if number-high
2201 (truncate number-high divisor-min)
2202 '*)))
2203 ((eq divisor-sign '-)
2204 ;; The divisor is negative. Therefore, the absolute value of
2205 ;; the number will become closer to zero, but the sign will also
2206 ;; change.
2207 `(integer ,(if number-high
2208 (- (truncate number-high divisor-min))
2210 ,(if number-low
2211 (- (truncate number-low divisor-min))
2212 '*)))
2213 ;; The divisor could be either positive or negative.
2214 (number-max
2215 ;; The number we are dividing has a bound. Divide that by the
2216 ;; smallest posible divisor.
2217 (let ((bound (truncate number-max divisor-min)))
2218 `(integer ,(- bound) ,bound)))
2220 ;; The number we are dividing is unbounded, so we can't tell
2221 ;; anything about the result.
2222 `integer)))))
2224 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2225 (defun integer-rem-derive-type
2226 (number-low number-high divisor-low divisor-high)
2227 (if (and divisor-low divisor-high)
2228 ;; We know the range of the divisor, and the remainder must be
2229 ;; smaller than the divisor. We can tell the sign of the
2230 ;; remainer if we know the sign of the number.
2231 (let ((divisor-max (1- (max (abs divisor-low) (abs divisor-high)))))
2232 `(integer ,(if (or (null number-low)
2233 (minusp number-low))
2234 (- divisor-max)
2236 ,(if (or (null number-high)
2237 (plusp number-high))
2238 divisor-max
2239 0)))
2240 ;; The divisor is potentially either very positive or very
2241 ;; negative. Therefore, the remainer is unbounded, but we might
2242 ;; be able to tell something about the sign from the number.
2243 `(integer ,(if (and number-low (not (minusp number-low)))
2244 ;; The number we are dividing is positive.
2245 ;; Therefore, the remainder must be positive.
2248 ,(if (and number-high (not (plusp number-high)))
2249 ;; The number we are dividing is negative.
2250 ;; Therefore, the remainder must be negative.
2252 '*))))
2254 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2255 (defoptimizer (random derive-type) ((bound &optional state))
2256 (let ((type (lvar-type bound)))
2257 (when (numeric-type-p type)
2258 (let ((class (numeric-type-class type))
2259 (high (numeric-type-high type))
2260 (format (numeric-type-format type)))
2261 (make-numeric-type
2262 :class class
2263 :format format
2264 :low (coerce 0 (or format class 'real))
2265 :high (cond ((not high) nil)
2266 ((eq class 'integer) (max (1- high) 0))
2267 ((or (consp high) (zerop high)) high)
2268 (t `(,high))))))))
2270 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2271 (defun random-derive-type-aux (type)
2272 (let ((class (numeric-type-class type))
2273 (high (numeric-type-high type))
2274 (format (numeric-type-format type)))
2275 (make-numeric-type
2276 :class class
2277 :format format
2278 :low (coerce 0 (or format class 'real))
2279 :high (cond ((not high) nil)
2280 ((eq class 'integer) (max (1- high) 0))
2281 ((or (consp high) (zerop high)) high)
2282 (t `(,high))))))
2284 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2285 (defoptimizer (random derive-type) ((bound &optional state))
2286 (one-arg-derive-type bound #'random-derive-type-aux nil))
2288 ;;;; DERIVE-TYPE methods for LOGAND, LOGIOR, and friends
2290 ;;; Return the maximum number of bits an integer of the supplied type
2291 ;;; can take up, or NIL if it is unbounded. The second (third) value
2292 ;;; is T if the integer can be positive (negative) and NIL if not.
2293 ;;; Zero counts as positive.
2294 (defun integer-type-length (type)
2295 (if (numeric-type-p type)
2296 (let ((min (numeric-type-low type))
2297 (max (numeric-type-high type)))
2298 (values (and min max (max (integer-length min) (integer-length max)))
2299 (or (null max) (not (minusp max)))
2300 (or (null min) (minusp min))))
2301 (values nil t t)))
2303 ;;; See _Hacker's Delight_, Henry S. Warren, Jr. pp 58-63 for an
2304 ;;; explanation of LOG{AND,IOR,XOR}-DERIVE-UNSIGNED-{LOW,HIGH}-BOUND.
2305 ;;; Credit also goes to Raymond Toy for writing (and debugging!) similar
2306 ;;; versions in CMUCL, from which these functions copy liberally.
2308 (defun logand-derive-unsigned-low-bound (x y)
2309 (let ((a (numeric-type-low x))
2310 (b (numeric-type-high x))
2311 (c (numeric-type-low y))
2312 (d (numeric-type-high y)))
2313 (loop for m = (ash 1 (integer-length (lognor a c))) then (ash m -1)
2314 until (zerop m) do
2315 (unless (zerop (logand m (lognot a) (lognot c)))
2316 (let ((temp (logandc2 (logior a m) (1- m))))
2317 (when (<= temp b)
2318 (setf a temp)
2319 (loop-finish))
2320 (setf temp (logandc2 (logior c m) (1- m)))
2321 (when (<= temp d)
2322 (setf c temp)
2323 (loop-finish))))
2324 finally (return (logand a c)))))
2326 (defun logand-derive-unsigned-high-bound (x y)
2327 (let ((a (numeric-type-low x))
2328 (b (numeric-type-high x))
2329 (c (numeric-type-low y))
2330 (d (numeric-type-high y)))
2331 (loop for m = (ash 1 (integer-length (logxor b d))) then (ash m -1)
2332 until (zerop m) do
2333 (cond
2334 ((not (zerop (logand b (lognot d) m)))
2335 (let ((temp (logior (logandc2 b m) (1- m))))
2336 (when (>= temp a)
2337 (setf b temp)
2338 (loop-finish))))
2339 ((not (zerop (logand (lognot b) d m)))
2340 (let ((temp (logior (logandc2 d m) (1- m))))
2341 (when (>= temp c)
2342 (setf d temp)
2343 (loop-finish)))))
2344 finally (return (logand b d)))))
2346 (defun logand-derive-type-aux (x y &optional same-leaf)
2347 (when same-leaf
2348 (return-from logand-derive-type-aux x))
2349 (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x)
2350 (declare (ignore x-pos))
2351 (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y)
2352 (declare (ignore y-pos))
2353 (if (not x-neg)
2354 ;; X must be positive.
2355 (if (not y-neg)
2356 ;; They must both be positive.
2357 (cond ((and (null x-len) (null y-len))
2358 (specifier-type 'unsigned-byte))
2359 ((null x-len)
2360 (specifier-type `(unsigned-byte* ,y-len)))
2361 ((null y-len)
2362 (specifier-type `(unsigned-byte* ,x-len)))
2364 (let ((low (logand-derive-unsigned-low-bound x y))
2365 (high (logand-derive-unsigned-high-bound x y)))
2366 (specifier-type `(integer ,low ,high)))))
2367 ;; X is positive, but Y might be negative.
2368 (cond ((null x-len)
2369 (specifier-type 'unsigned-byte))
2371 (specifier-type `(unsigned-byte* ,x-len)))))
2372 ;; X might be negative.
2373 (if (not y-neg)
2374 ;; Y must be positive.
2375 (cond ((null y-len)
2376 (specifier-type 'unsigned-byte))
2377 (t (specifier-type `(unsigned-byte* ,y-len))))
2378 ;; Either might be negative.
2379 (if (and x-len y-len)
2380 ;; The result is bounded.
2381 (specifier-type `(signed-byte ,(1+ (max x-len y-len))))
2382 ;; We can't tell squat about the result.
2383 (specifier-type 'integer)))))))
2385 (defun logior-derive-unsigned-low-bound (x y)
2386 (let ((a (numeric-type-low x))
2387 (b (numeric-type-high x))
2388 (c (numeric-type-low y))
2389 (d (numeric-type-high y)))
2390 (loop for m = (ash 1 (integer-length (logxor a c))) then (ash m -1)
2391 until (zerop m) do
2392 (cond
2393 ((not (zerop (logandc2 (logand c m) a)))
2394 (let ((temp (logand (logior a m) (1+ (lognot m)))))
2395 (when (<= temp b)
2396 (setf a temp)
2397 (loop-finish))))
2398 ((not (zerop (logandc2 (logand a m) c)))
2399 (let ((temp (logand (logior c m) (1+ (lognot m)))))
2400 (when (<= temp d)
2401 (setf c temp)
2402 (loop-finish)))))
2403 finally (return (logior a c)))))
2405 (defun logior-derive-unsigned-high-bound (x y)
2406 (let ((a (numeric-type-low x))
2407 (b (numeric-type-high x))
2408 (c (numeric-type-low y))
2409 (d (numeric-type-high y)))
2410 (loop for m = (ash 1 (integer-length (logand b d))) then (ash m -1)
2411 until (zerop m) do
2412 (unless (zerop (logand b d m))
2413 (let ((temp (logior (- b m) (1- m))))
2414 (when (>= temp a)
2415 (setf b temp)
2416 (loop-finish))
2417 (setf temp (logior (- d m) (1- m)))
2418 (when (>= temp c)
2419 (setf d temp)
2420 (loop-finish))))
2421 finally (return (logior b d)))))
2423 (defun logior-derive-type-aux (x y &optional same-leaf)
2424 (when same-leaf
2425 (return-from logior-derive-type-aux x))
2426 (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x)
2427 (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y)
2428 (cond
2429 ((and (not x-neg) (not y-neg))
2430 ;; Both are positive.
2431 (if (and x-len y-len)
2432 (let ((low (logior-derive-unsigned-low-bound x y))
2433 (high (logior-derive-unsigned-high-bound x y)))
2434 (specifier-type `(integer ,low ,high)))
2435 (specifier-type `(unsigned-byte* *))))
2436 ((not x-pos)
2437 ;; X must be negative.
2438 (if (not y-pos)
2439 ;; Both are negative. The result is going to be negative
2440 ;; and be the same length or shorter than the smaller.
2441 (if (and x-len y-len)
2442 ;; It's bounded.
2443 (specifier-type `(integer ,(ash -1 (min x-len y-len)) -1))
2444 ;; It's unbounded.
2445 (specifier-type '(integer * -1)))
2446 ;; X is negative, but we don't know about Y. The result
2447 ;; will be negative, but no more negative than X.
2448 (specifier-type
2449 `(integer ,(or (numeric-type-low x) '*)
2450 -1))))
2452 ;; X might be either positive or negative.
2453 (if (not y-pos)
2454 ;; But Y is negative. The result will be negative.
2455 (specifier-type
2456 `(integer ,(or (numeric-type-low y) '*)
2457 -1))
2458 ;; We don't know squat about either. It won't get any bigger.
2459 (if (and x-len y-len)
2460 ;; Bounded.
2461 (specifier-type `(signed-byte ,(1+ (max x-len y-len))))
2462 ;; Unbounded.
2463 (specifier-type 'integer))))))))
2465 (defun logxor-derive-unsigned-low-bound (x y)
2466 (let ((a (numeric-type-low x))
2467 (b (numeric-type-high x))
2468 (c (numeric-type-low y))
2469 (d (numeric-type-high y)))
2470 (loop for m = (ash 1 (integer-length (logxor a c))) then (ash m -1)
2471 until (zerop m) do
2472 (cond
2473 ((not (zerop (logandc2 (logand c m) a)))
2474 (let ((temp (logand (logior a m)
2475 (1+ (lognot m)))))
2476 (when (<= temp b)
2477 (setf a temp))))
2478 ((not (zerop (logandc2 (logand a m) c)))
2479 (let ((temp (logand (logior c m)
2480 (1+ (lognot m)))))
2481 (when (<= temp d)
2482 (setf c temp)))))
2483 finally (return (logxor a c)))))
2485 (defun logxor-derive-unsigned-high-bound (x y)
2486 (let ((a (numeric-type-low x))
2487 (b (numeric-type-high x))
2488 (c (numeric-type-low y))
2489 (d (numeric-type-high y)))
2490 (loop for m = (ash 1 (integer-length (logand b d))) then (ash m -1)
2491 until (zerop m) do
2492 (unless (zerop (logand b d m))
2493 (let ((temp (logior (- b m) (1- m))))
2494 (cond
2495 ((>= temp a) (setf b temp))
2496 (t (let ((temp (logior (- d m) (1- m))))
2497 (when (>= temp c)
2498 (setf d temp)))))))
2499 finally (return (logxor b d)))))
2501 (defun logxor-derive-type-aux (x y &optional same-leaf)
2502 (when same-leaf
2503 (return-from logxor-derive-type-aux (specifier-type '(eql 0))))
2504 (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x)
2505 (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y)
2506 (cond
2507 ((and (not x-neg) (not y-neg))
2508 ;; Both are positive
2509 (if (and x-len y-len)
2510 (let ((low (logxor-derive-unsigned-low-bound x y))
2511 (high (logxor-derive-unsigned-high-bound x y)))
2512 (specifier-type `(integer ,low ,high)))
2513 (specifier-type '(unsigned-byte* *))))
2514 ((and (not x-pos) (not y-pos))
2515 ;; Both are negative. The result will be positive, and as long
2516 ;; as the longer.
2517 (specifier-type `(unsigned-byte* ,(if (and x-len y-len)
2518 (max x-len y-len)
2519 '*))))
2520 ((or (and (not x-pos) (not y-neg))
2521 (and (not y-pos) (not x-neg)))
2522 ;; Either X is negative and Y is positive or vice-versa. The
2523 ;; result will be negative.
2524 (specifier-type `(integer ,(if (and x-len y-len)
2525 (ash -1 (max x-len y-len))
2527 -1)))
2528 ;; We can't tell what the sign of the result is going to be.
2529 ;; All we know is that we don't create new bits.
2530 ((and x-len y-len)
2531 (specifier-type `(signed-byte ,(1+ (max x-len y-len)))))
2533 (specifier-type 'integer))))))
2535 (macrolet ((deffrob (logfun)
2536 (let ((fun-aux (symbolicate logfun "-DERIVE-TYPE-AUX")))
2537 `(defoptimizer (,logfun derive-type) ((x y))
2538 (two-arg-derive-type x y #',fun-aux #',logfun)))))
2539 (deffrob logand)
2540 (deffrob logior)
2541 (deffrob logxor))
2543 (defoptimizer (logeqv derive-type) ((x y))
2544 (two-arg-derive-type x y (lambda (x y same-leaf)
2545 (lognot-derive-type-aux
2546 (logxor-derive-type-aux x y same-leaf)))
2547 #'logeqv))
2548 (defoptimizer (lognand derive-type) ((x y))
2549 (two-arg-derive-type x y (lambda (x y same-leaf)
2550 (lognot-derive-type-aux
2551 (logand-derive-type-aux x y same-leaf)))
2552 #'lognand))
2553 (defoptimizer (lognor derive-type) ((x y))
2554 (two-arg-derive-type x y (lambda (x y same-leaf)
2555 (lognot-derive-type-aux
2556 (logior-derive-type-aux x y same-leaf)))
2557 #'lognor))
2558 (defoptimizer (logandc1 derive-type) ((x y))
2559 (two-arg-derive-type x y (lambda (x y same-leaf)
2560 (if same-leaf
2561 (specifier-type '(eql 0))
2562 (logand-derive-type-aux
2563 (lognot-derive-type-aux x) y nil)))
2564 #'logandc1))
2565 (defoptimizer (logandc2 derive-type) ((x y))
2566 (two-arg-derive-type x y (lambda (x y same-leaf)
2567 (if same-leaf
2568 (specifier-type '(eql 0))
2569 (logand-derive-type-aux
2570 x (lognot-derive-type-aux y) nil)))
2571 #'logandc2))
2572 (defoptimizer (logorc1 derive-type) ((x y))
2573 (two-arg-derive-type x y (lambda (x y same-leaf)
2574 (if same-leaf
2575 (specifier-type '(eql -1))
2576 (logior-derive-type-aux
2577 (lognot-derive-type-aux x) y nil)))
2578 #'logorc1))
2579 (defoptimizer (logorc2 derive-type) ((x y))
2580 (two-arg-derive-type x y (lambda (x y same-leaf)
2581 (if same-leaf
2582 (specifier-type '(eql -1))
2583 (logior-derive-type-aux
2584 x (lognot-derive-type-aux y) nil)))
2585 #'logorc2))
2587 ;;;; miscellaneous derive-type methods
2589 (defoptimizer (integer-length derive-type) ((x))
2590 (let ((x-type (lvar-type x)))
2591 (when (numeric-type-p x-type)
2592 ;; If the X is of type (INTEGER LO HI), then the INTEGER-LENGTH
2593 ;; of X is (INTEGER (MIN lo hi) (MAX lo hi), basically. Be
2594 ;; careful about LO or HI being NIL, though. Also, if 0 is
2595 ;; contained in X, the lower bound is obviously 0.
2596 (flet ((null-or-min (a b)
2597 (and a b (min (integer-length a)
2598 (integer-length b))))
2599 (null-or-max (a b)
2600 (and a b (max (integer-length a)
2601 (integer-length b)))))
2602 (let* ((min (numeric-type-low x-type))
2603 (max (numeric-type-high x-type))
2604 (min-len (null-or-min min max))
2605 (max-len (null-or-max min max)))
2606 (when (ctypep 0 x-type)
2607 (setf min-len 0))
2608 (specifier-type `(integer ,(or min-len '*) ,(or max-len '*))))))))
2610 (defoptimizer (isqrt derive-type) ((x))
2611 (let ((x-type (lvar-type x)))
2612 (when (numeric-type-p x-type)
2613 (let* ((lo (numeric-type-low x-type))
2614 (hi (numeric-type-high x-type))
2615 (lo-res (if lo (isqrt lo) '*))
2616 (hi-res (if hi (isqrt hi) '*)))
2617 (specifier-type `(integer ,lo-res ,hi-res))))))
2619 (defoptimizer (char-code derive-type) ((char))
2620 (let ((type (type-intersection (lvar-type char) (specifier-type 'character))))
2621 (cond ((member-type-p type)
2622 (specifier-type
2623 `(member
2624 ,@(loop for member in (member-type-members type)
2625 when (characterp member)
2626 collect (char-code member)))))
2627 ((sb!kernel::character-set-type-p type)
2628 (specifier-type
2629 `(or
2630 ,@(loop for (low . high)
2631 in (character-set-type-pairs type)
2632 collect `(integer ,low ,high)))))
2633 ((csubtypep type (specifier-type 'base-char))
2634 (specifier-type
2635 `(mod ,base-char-code-limit)))
2637 (specifier-type
2638 `(mod ,char-code-limit))))))
2640 (defoptimizer (code-char derive-type) ((code))
2641 (let ((type (lvar-type code)))
2642 ;; FIXME: unions of integral ranges? It ought to be easier to do
2643 ;; this, given that CHARACTER-SET is basically an integral range
2644 ;; type. -- CSR, 2004-10-04
2645 (when (numeric-type-p type)
2646 (let* ((lo (numeric-type-low type))
2647 (hi (numeric-type-high type))
2648 (type (specifier-type `(character-set ((,lo . ,hi))))))
2649 (cond
2650 ;; KLUDGE: when running on the host, we lose a slight amount
2651 ;; of precision so that we don't have to "unparse" types
2652 ;; that formally we can't, such as (CHARACTER-SET ((0
2653 ;; . 0))). -- CSR, 2004-10-06
2654 #+sb-xc-host
2655 ((csubtypep type (specifier-type 'standard-char)) type)
2656 #+sb-xc-host
2657 ((csubtypep type (specifier-type 'base-char))
2658 (specifier-type 'base-char))
2659 #+sb-xc-host
2660 ((csubtypep type (specifier-type 'extended-char))
2661 (specifier-type 'extended-char))
2662 (t #+sb-xc-host (specifier-type 'character)
2663 #-sb-xc-host type))))))
2665 (defoptimizer (values derive-type) ((&rest values))
2666 (make-values-type :required (mapcar #'lvar-type values)))
2668 (defun signum-derive-type-aux (type)
2669 (if (eq (numeric-type-complexp type) :complex)
2670 (let* ((format (case (numeric-type-class type)
2671 ((integer rational) 'single-float)
2672 (t (numeric-type-format type))))
2673 (bound-format (or format 'float)))
2674 (make-numeric-type :class 'float
2675 :format format
2676 :complexp :complex
2677 :low (coerce -1 bound-format)
2678 :high (coerce 1 bound-format)))
2679 (let* ((interval (numeric-type->interval type))
2680 (range-info (interval-range-info interval))
2681 (contains-0-p (interval-contains-p 0 interval))
2682 (class (numeric-type-class type))
2683 (format (numeric-type-format type))
2684 (one (coerce 1 (or format class 'real)))
2685 (zero (coerce 0 (or format class 'real)))
2686 (minus-one (coerce -1 (or format class 'real)))
2687 (plus (make-numeric-type :class class :format format
2688 :low one :high one))
2689 (minus (make-numeric-type :class class :format format
2690 :low minus-one :high minus-one))
2691 ;; KLUDGE: here we have a fairly horrible hack to deal
2692 ;; with the schizophrenia in the type derivation engine.
2693 ;; The problem is that the type derivers reinterpret
2694 ;; numeric types as being exact; so (DOUBLE-FLOAT 0d0
2695 ;; 0d0) within the derivation mechanism doesn't include
2696 ;; -0d0. Ugh. So force it in here, instead.
2697 (zero (make-numeric-type :class class :format format
2698 :low (- zero) :high zero)))
2699 (case range-info
2700 (+ (if contains-0-p (type-union plus zero) plus))
2701 (- (if contains-0-p (type-union minus zero) minus))
2702 (t (type-union minus zero plus))))))
2704 (defoptimizer (signum derive-type) ((num))
2705 (one-arg-derive-type num #'signum-derive-type-aux nil))
2707 ;;;; byte operations
2708 ;;;;
2709 ;;;; We try to turn byte operations into simple logical operations.
2710 ;;;; First, we convert byte specifiers into separate size and position
2711 ;;;; arguments passed to internal %FOO functions. We then attempt to
2712 ;;;; transform the %FOO functions into boolean operations when the
2713 ;;;; size and position are constant and the operands are fixnums.
2715 (macrolet (;; Evaluate body with SIZE-VAR and POS-VAR bound to
2716 ;; expressions that evaluate to the SIZE and POSITION of
2717 ;; the byte-specifier form SPEC. We may wrap a let around
2718 ;; the result of the body to bind some variables.
2720 ;; If the spec is a BYTE form, then bind the vars to the
2721 ;; subforms. otherwise, evaluate SPEC and use the BYTE-SIZE
2722 ;; and BYTE-POSITION. The goal of this transformation is to
2723 ;; avoid consing up byte specifiers and then immediately
2724 ;; throwing them away.
2725 (with-byte-specifier ((size-var pos-var spec) &body body)
2726 (once-only ((spec `(macroexpand ,spec))
2727 (temp '(gensym)))
2728 `(if (and (consp ,spec)
2729 (eq (car ,spec) 'byte)
2730 (= (length ,spec) 3))
2731 (let ((,size-var (second ,spec))
2732 (,pos-var (third ,spec)))
2733 ,@body)
2734 (let ((,size-var `(byte-size ,,temp))
2735 (,pos-var `(byte-position ,,temp)))
2736 `(let ((,,temp ,,spec))
2737 ,,@body))))))
2739 (define-source-transform ldb (spec int)
2740 (with-byte-specifier (size pos spec)
2741 `(%ldb ,size ,pos ,int)))
2743 (define-source-transform dpb (newbyte spec int)
2744 (with-byte-specifier (size pos spec)
2745 `(%dpb ,newbyte ,size ,pos ,int)))
2747 (define-source-transform mask-field (spec int)
2748 (with-byte-specifier (size pos spec)
2749 `(%mask-field ,size ,pos ,int)))
2751 (define-source-transform deposit-field (newbyte spec int)
2752 (with-byte-specifier (size pos spec)
2753 `(%deposit-field ,newbyte ,size ,pos ,int))))
2755 (defoptimizer (%ldb derive-type) ((size posn num))
2756 (let ((size (lvar-type size)))
2757 (if (and (numeric-type-p size)
2758 (csubtypep size (specifier-type 'integer)))
2759 (let ((size-high (numeric-type-high size)))
2760 (if (and size-high (<= size-high sb!vm:n-word-bits))
2761 (specifier-type `(unsigned-byte* ,size-high))
2762 (specifier-type 'unsigned-byte)))
2763 *universal-type*)))
2765 (defoptimizer (%mask-field derive-type) ((size posn num))
2766 (let ((size (lvar-type size))
2767 (posn (lvar-type posn)))
2768 (if (and (numeric-type-p size)
2769 (csubtypep size (specifier-type 'integer))
2770 (numeric-type-p posn)
2771 (csubtypep posn (specifier-type 'integer)))
2772 (let ((size-high (numeric-type-high size))
2773 (posn-high (numeric-type-high posn)))
2774 (if (and size-high posn-high
2775 (<= (+ size-high posn-high) sb!vm:n-word-bits))
2776 (specifier-type `(unsigned-byte* ,(+ size-high posn-high)))
2777 (specifier-type 'unsigned-byte)))
2778 *universal-type*)))
2780 (defun %deposit-field-derive-type-aux (size posn int)
2781 (let ((size (lvar-type size))
2782 (posn (lvar-type posn))
2783 (int (lvar-type int)))
2784 (when (and (numeric-type-p size)
2785 (numeric-type-p posn)
2786 (numeric-type-p int))
2787 (let ((size-high (numeric-type-high size))
2788 (posn-high (numeric-type-high posn))
2789 (high (numeric-type-high int))
2790 (low (numeric-type-low int)))
2791 (when (and size-high posn-high high low
2792 ;; KLUDGE: we need this cutoff here, otherwise we
2793 ;; will merrily derive the type of %DPB as
2794 ;; (UNSIGNED-BYTE 1073741822), and then attempt to
2795 ;; canonicalize this type to (INTEGER 0 (1- (ASH 1
2796 ;; 1073741822))), with hilarious consequences. We
2797 ;; cutoff at 4*SB!VM:N-WORD-BITS to allow inference
2798 ;; over a reasonable amount of shifting, even on
2799 ;; the alpha/32 port, where N-WORD-BITS is 32 but
2800 ;; machine integers are 64-bits. -- CSR,
2801 ;; 2003-09-12
2802 (<= (+ size-high posn-high) (* 4 sb!vm:n-word-bits)))
2803 (let ((raw-bit-count (max (integer-length high)
2804 (integer-length low)
2805 (+ size-high posn-high))))
2806 (specifier-type
2807 (if (minusp low)
2808 `(signed-byte ,(1+ raw-bit-count))
2809 `(unsigned-byte* ,raw-bit-count)))))))))
2811 (defoptimizer (%dpb derive-type) ((newbyte size posn int))
2812 (%deposit-field-derive-type-aux size posn int))
2814 (defoptimizer (%deposit-field derive-type) ((newbyte size posn int))
2815 (%deposit-field-derive-type-aux size posn int))
2817 (deftransform %ldb ((size posn int)
2818 (fixnum fixnum integer)
2819 (unsigned-byte #.sb!vm:n-word-bits))
2820 "convert to inline logical operations"
2821 `(logand (ash int (- posn))
2822 (ash ,(1- (ash 1 sb!vm:n-word-bits))
2823 (- size ,sb!vm:n-word-bits))))
2825 (deftransform %mask-field ((size posn int)
2826 (fixnum fixnum integer)
2827 (unsigned-byte #.sb!vm:n-word-bits))
2828 "convert to inline logical operations"
2829 `(logand int
2830 (ash (ash ,(1- (ash 1 sb!vm:n-word-bits))
2831 (- size ,sb!vm:n-word-bits))
2832 posn)))
2834 ;;; Note: for %DPB and %DEPOSIT-FIELD, we can't use
2835 ;;; (OR (SIGNED-BYTE N) (UNSIGNED-BYTE N))
2836 ;;; as the result type, as that would allow result types that cover
2837 ;;; the range -2^(n-1) .. 1-2^n, instead of allowing result types of
2838 ;;; (UNSIGNED-BYTE N) and result types of (SIGNED-BYTE N).
2840 (deftransform %dpb ((new size posn int)
2842 (unsigned-byte #.sb!vm:n-word-bits))
2843 "convert to inline logical operations"
2844 `(let ((mask (ldb (byte size 0) -1)))
2845 (logior (ash (logand new mask) posn)
2846 (logand int (lognot (ash mask posn))))))
2848 (deftransform %dpb ((new size posn int)
2850 (signed-byte #.sb!vm:n-word-bits))
2851 "convert to inline logical operations"
2852 `(let ((mask (ldb (byte size 0) -1)))
2853 (logior (ash (logand new mask) posn)
2854 (logand int (lognot (ash mask posn))))))
2856 (deftransform %deposit-field ((new size posn int)
2858 (unsigned-byte #.sb!vm:n-word-bits))
2859 "convert to inline logical operations"
2860 `(let ((mask (ash (ldb (byte size 0) -1) posn)))
2861 (logior (logand new mask)
2862 (logand int (lognot mask)))))
2864 (deftransform %deposit-field ((new size posn int)
2866 (signed-byte #.sb!vm:n-word-bits))
2867 "convert to inline logical operations"
2868 `(let ((mask (ash (ldb (byte size 0) -1) posn)))
2869 (logior (logand new mask)
2870 (logand int (lognot mask)))))
2872 (defoptimizer (mask-signed-field derive-type) ((size x))
2873 (let ((size (lvar-type size)))
2874 (if (numeric-type-p size)
2875 (let ((size-high (numeric-type-high size)))
2876 (if (and size-high (<= 1 size-high sb!vm:n-word-bits))
2877 (specifier-type `(signed-byte ,size-high))
2878 *universal-type*))
2879 *universal-type*)))
2882 ;;; Modular functions
2884 ;;; (ldb (byte s 0) (foo x y ...)) =
2885 ;;; (ldb (byte s 0) (foo (ldb (byte s 0) x) y ...))
2887 ;;; and similar for other arguments.
2889 (defun make-modular-fun-type-deriver (prototype kind width signedp)
2890 (declare (ignore kind))
2891 #!-sb-fluid
2892 (binding* ((info (info :function :info prototype) :exit-if-null)
2893 (fun (fun-info-derive-type info) :exit-if-null)
2894 (mask-type (specifier-type
2895 (ecase signedp
2896 ((nil) (let ((mask (1- (ash 1 width))))
2897 `(integer ,mask ,mask)))
2898 ((t) `(signed-byte ,width))))))
2899 (lambda (call)
2900 (let ((res (funcall fun call)))
2901 (when res
2902 (if (eq signedp nil)
2903 (logand-derive-type-aux res mask-type))))))
2904 #!+sb-fluid
2905 (lambda (call)
2906 (binding* ((info (info :function :info prototype) :exit-if-null)
2907 (fun (fun-info-derive-type info) :exit-if-null)
2908 (res (funcall fun call) :exit-if-null)
2909 (mask-type (specifier-type
2910 (ecase signedp
2911 ((nil) (let ((mask (1- (ash 1 width))))
2912 `(integer ,mask ,mask)))
2913 ((t) `(signed-byte ,width))))))
2914 (if (eq signedp nil)
2915 (logand-derive-type-aux res mask-type)))))
2917 ;;; Try to recursively cut all uses of LVAR to WIDTH bits.
2919 ;;; For good functions, we just recursively cut arguments; their
2920 ;;; "goodness" means that the result will not increase (in the
2921 ;;; (unsigned-byte +infinity) sense). An ordinary modular function is
2922 ;;; replaced with the version, cutting its result to WIDTH or more
2923 ;;; bits. For most functions (e.g. for +) we cut all arguments; for
2924 ;;; others (e.g. for ASH) we have "optimizers", cutting only necessary
2925 ;;; arguments (maybe to a different width) and returning the name of a
2926 ;;; modular version, if it exists, or NIL. If we have changed
2927 ;;; anything, we need to flush old derived types, because they have
2928 ;;; nothing in common with the new code.
2929 (defun cut-to-width (lvar kind width signedp)
2930 (declare (type lvar lvar) (type (integer 0) width))
2931 (let ((type (specifier-type (if (zerop width)
2932 '(eql 0)
2933 `(,(ecase signedp
2934 ((nil) 'unsigned-byte)
2935 ((t) 'signed-byte))
2936 ,width)))))
2937 (labels ((reoptimize-node (node name)
2938 (setf (node-derived-type node)
2939 (fun-type-returns
2940 (info :function :type name)))
2941 (setf (lvar-%derived-type (node-lvar node)) nil)
2942 (setf (node-reoptimize node) t)
2943 (setf (block-reoptimize (node-block node)) t)
2944 (reoptimize-component (node-component node) :maybe))
2945 (cut-node (node &aux did-something)
2946 (when (and (not (block-delete-p (node-block node)))
2947 (combination-p node)
2948 (eq (basic-combination-kind node) :known))
2949 (let* ((fun-ref (lvar-use (combination-fun node)))
2950 (fun-name (leaf-source-name (ref-leaf fun-ref)))
2951 (modular-fun (find-modular-version fun-name kind signedp width)))
2952 (when (and modular-fun
2953 (not (and (eq fun-name 'logand)
2954 (csubtypep
2955 (single-value-type (node-derived-type node))
2956 type))))
2957 (binding* ((name (etypecase modular-fun
2958 ((eql :good) fun-name)
2959 (modular-fun-info
2960 (modular-fun-info-name modular-fun))
2961 (function
2962 (funcall modular-fun node width)))
2963 :exit-if-null))
2964 (unless (eql modular-fun :good)
2965 (setq did-something t)
2966 (change-ref-leaf
2967 fun-ref
2968 (find-free-fun name "in a strange place"))
2969 (setf (combination-kind node) :full))
2970 (unless (functionp modular-fun)
2971 (dolist (arg (basic-combination-args node))
2972 (when (cut-lvar arg)
2973 (setq did-something t))))
2974 (when did-something
2975 (reoptimize-node node name))
2976 did-something)))))
2977 (cut-lvar (lvar &aux did-something)
2978 (do-uses (node lvar)
2979 (when (cut-node node)
2980 (setq did-something t)))
2981 did-something))
2982 (cut-lvar lvar))))
2984 (defun best-modular-version (width signedp)
2985 ;; 1. exact width-matched :untagged
2986 ;; 2. >/>= width-matched :tagged
2987 ;; 3. >/>= width-matched :untagged
2988 (let* ((uuwidths (modular-class-widths *untagged-unsigned-modular-class*))
2989 (uswidths (modular-class-widths *untagged-signed-modular-class*))
2990 (uwidths (merge 'list uuwidths uswidths #'< :key #'car))
2991 (twidths (modular-class-widths *tagged-modular-class*)))
2992 (let ((exact (find (cons width signedp) uwidths :test #'equal)))
2993 (when exact
2994 (return-from best-modular-version (values width :untagged signedp))))
2995 (flet ((inexact-match (w)
2996 (cond
2997 ((eq signedp (cdr w)) (<= width (car w)))
2998 ((eq signedp nil) (< width (car w))))))
2999 (let ((tgt (find-if #'inexact-match twidths)))
3000 (when tgt
3001 (return-from best-modular-version
3002 (values (car tgt) :tagged (cdr tgt)))))
3003 (let ((ugt (find-if #'inexact-match uwidths)))
3004 (when ugt
3005 (return-from best-modular-version
3006 (values (car ugt) :untagged (cdr ugt))))))))
3008 (defoptimizer (logand optimizer) ((x y) node)
3009 (let ((result-type (single-value-type (node-derived-type node))))
3010 (when (numeric-type-p result-type)
3011 (let ((low (numeric-type-low result-type))
3012 (high (numeric-type-high result-type)))
3013 (when (and (numberp low)
3014 (numberp high)
3015 (>= low 0))
3016 (let ((width (integer-length high)))
3017 (multiple-value-bind (w kind signedp)
3018 (best-modular-version width nil)
3019 (when w
3020 ;; FIXME: This should be (CUT-TO-WIDTH NODE KIND WIDTH SIGNEDP).
3021 (cut-to-width x kind width signedp)
3022 (cut-to-width y kind width signedp)
3023 nil ; After fixing above, replace with T.
3024 ))))))))
3026 (defoptimizer (mask-signed-field optimizer) ((width x) node)
3027 (let ((result-type (single-value-type (node-derived-type node))))
3028 (when (numeric-type-p result-type)
3029 (let ((low (numeric-type-low result-type))
3030 (high (numeric-type-high result-type)))
3031 (when (and (numberp low) (numberp high))
3032 (let ((width (max (integer-length high) (integer-length low))))
3033 (multiple-value-bind (w kind)
3034 (best-modular-version width t)
3035 (when w
3036 ;; FIXME: This should be (CUT-TO-WIDTH NODE KIND WIDTH T).
3037 (cut-to-width x kind width t)
3038 nil ; After fixing above, replace with T.
3039 ))))))))
3041 ;;; miscellanous numeric transforms
3043 ;;; If a constant appears as the first arg, swap the args.
3044 (deftransform commutative-arg-swap ((x y) * * :defun-only t :node node)
3045 (if (and (constant-lvar-p x)
3046 (not (constant-lvar-p y)))
3047 `(,(lvar-fun-name (basic-combination-fun node))
3049 ,(lvar-value x))
3050 (give-up-ir1-transform)))
3052 (dolist (x '(= char= + * logior logand logxor))
3053 (%deftransform x '(function * *) #'commutative-arg-swap
3054 "place constant arg last"))
3056 ;;; Handle the case of a constant BOOLE-CODE.
3057 (deftransform boole ((op x y) * *)
3058 "convert to inline logical operations"
3059 (unless (constant-lvar-p op)
3060 (give-up-ir1-transform "BOOLE code is not a constant."))
3061 (let ((control (lvar-value op)))
3062 (case control
3063 (#.sb!xc:boole-clr 0)
3064 (#.sb!xc:boole-set -1)
3065 (#.sb!xc:boole-1 'x)
3066 (#.sb!xc:boole-2 'y)
3067 (#.sb!xc:boole-c1 '(lognot x))
3068 (#.sb!xc:boole-c2 '(lognot y))
3069 (#.sb!xc:boole-and '(logand x y))
3070 (#.sb!xc:boole-ior '(logior x y))
3071 (#.sb!xc:boole-xor '(logxor x y))
3072 (#.sb!xc:boole-eqv '(logeqv x y))
3073 (#.sb!xc:boole-nand '(lognand x y))
3074 (#.sb!xc:boole-nor '(lognor x y))
3075 (#.sb!xc:boole-andc1 '(logandc1 x y))
3076 (#.sb!xc:boole-andc2 '(logandc2 x y))
3077 (#.sb!xc:boole-orc1 '(logorc1 x y))
3078 (#.sb!xc:boole-orc2 '(logorc2 x y))
3080 (abort-ir1-transform "~S is an illegal control arg to BOOLE."
3081 control)))))
3083 ;;;; converting special case multiply/divide to shifts
3085 ;;; If arg is a constant power of two, turn * into a shift.
3086 (deftransform * ((x y) (integer integer) *)
3087 "convert x*2^k to shift"
3088 (unless (constant-lvar-p y)
3089 (give-up-ir1-transform))
3090 (let* ((y (lvar-value y))
3091 (y-abs (abs y))
3092 (len (1- (integer-length y-abs))))
3093 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
3094 (give-up-ir1-transform))
3095 (if (minusp y)
3096 `(- (ash x ,len))
3097 `(ash x ,len))))
3099 ;;; If arg is a constant power of two, turn FLOOR into a shift and
3100 ;;; mask. If CEILING, add in (1- (ABS Y)), do FLOOR and correct a
3101 ;;; remainder.
3102 (flet ((frob (y ceil-p)
3103 (unless (constant-lvar-p y)
3104 (give-up-ir1-transform))
3105 (let* ((y (lvar-value y))
3106 (y-abs (abs y))
3107 (len (1- (integer-length y-abs))))
3108 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
3109 (give-up-ir1-transform))
3110 (let ((shift (- len))
3111 (mask (1- y-abs))
3112 (delta (if ceil-p (* (signum y) (1- y-abs)) 0)))
3113 `(let ((x (+ x ,delta)))
3114 ,(if (minusp y)
3115 `(values (ash (- x) ,shift)
3116 (- (- (logand (- x) ,mask)) ,delta))
3117 `(values (ash x ,shift)
3118 (- (logand x ,mask) ,delta))))))))
3119 (deftransform floor ((x y) (integer integer) *)
3120 "convert division by 2^k to shift"
3121 (frob y nil))
3122 (deftransform ceiling ((x y) (integer integer) *)
3123 "convert division by 2^k to shift"
3124 (frob y t)))
3126 ;;; Do the same for MOD.
3127 (deftransform mod ((x y) (integer integer) *)
3128 "convert remainder mod 2^k to LOGAND"
3129 (unless (constant-lvar-p y)
3130 (give-up-ir1-transform))
3131 (let* ((y (lvar-value y))
3132 (y-abs (abs y))
3133 (len (1- (integer-length y-abs))))
3134 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
3135 (give-up-ir1-transform))
3136 (let ((mask (1- y-abs)))
3137 (if (minusp y)
3138 `(- (logand (- x) ,mask))
3139 `(logand x ,mask)))))
3141 ;;; If arg is a constant power of two, turn TRUNCATE into a shift and mask.
3142 (deftransform truncate ((x y) (integer integer))
3143 "convert division by 2^k to shift"
3144 (unless (constant-lvar-p y)
3145 (give-up-ir1-transform))
3146 (let* ((y (lvar-value y))
3147 (y-abs (abs y))
3148 (len (1- (integer-length y-abs))))
3149 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
3150 (give-up-ir1-transform))
3151 (let* ((shift (- len))
3152 (mask (1- y-abs)))
3153 `(if (minusp x)
3154 (values ,(if (minusp y)
3155 `(ash (- x) ,shift)
3156 `(- (ash (- x) ,shift)))
3157 (- (logand (- x) ,mask)))
3158 (values ,(if (minusp y)
3159 `(ash (- ,mask x) ,shift)
3160 `(ash x ,shift))
3161 (logand x ,mask))))))
3163 ;;; And the same for REM.
3164 (deftransform rem ((x y) (integer integer) *)
3165 "convert remainder mod 2^k to LOGAND"
3166 (unless (constant-lvar-p y)
3167 (give-up-ir1-transform))
3168 (let* ((y (lvar-value y))
3169 (y-abs (abs y))
3170 (len (1- (integer-length y-abs))))
3171 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
3172 (give-up-ir1-transform))
3173 (let ((mask (1- y-abs)))
3174 `(if (minusp x)
3175 (- (logand (- x) ,mask))
3176 (logand x ,mask)))))
3178 ;;;; arithmetic and logical identity operation elimination
3180 ;;; Flush calls to various arith functions that convert to the
3181 ;;; identity function or a constant.
3182 (macrolet ((def (name identity result)
3183 `(deftransform ,name ((x y) (* (constant-arg (member ,identity))) *)
3184 "fold identity operations"
3185 ',result)))
3186 (def ash 0 x)
3187 (def logand -1 x)
3188 (def logand 0 0)
3189 (def logior 0 x)
3190 (def logior -1 -1)
3191 (def logxor -1 (lognot x))
3192 (def logxor 0 x))
3194 (deftransform logand ((x y) (* (constant-arg t)) *)
3195 "fold identity operation"
3196 (let ((y (lvar-value y)))
3197 (unless (and (plusp y)
3198 (= y (1- (ash 1 (integer-length y)))))
3199 (give-up-ir1-transform))
3200 (unless (csubtypep (lvar-type x)
3201 (specifier-type `(integer 0 ,y)))
3202 (give-up-ir1-transform))
3203 'x))
3205 (deftransform mask-signed-field ((size x) ((constant-arg t) *) *)
3206 "fold identity operation"
3207 (let ((size (lvar-value size)))
3208 (unless (csubtypep (lvar-type x) (specifier-type `(signed-byte ,size)))
3209 (give-up-ir1-transform))
3210 'x))
3212 ;;; These are restricted to rationals, because (- 0 0.0) is 0.0, not -0.0, and
3213 ;;; (* 0 -4.0) is -0.0.
3214 (deftransform - ((x y) ((constant-arg (member 0)) rational) *)
3215 "convert (- 0 x) to negate"
3216 '(%negate y))
3217 (deftransform * ((x y) (rational (constant-arg (member 0))) *)
3218 "convert (* x 0) to 0"
3221 ;;; Return T if in an arithmetic op including lvars X and Y, the
3222 ;;; result type is not affected by the type of X. That is, Y is at
3223 ;;; least as contagious as X.
3224 #+nil
3225 (defun not-more-contagious (x y)
3226 (declare (type continuation x y))
3227 (let ((x (lvar-type x))
3228 (y (lvar-type y)))
3229 (values (type= (numeric-contagion x y)
3230 (numeric-contagion y y)))))
3231 ;;; Patched version by Raymond Toy. dtc: Should be safer although it
3232 ;;; XXX needs more work as valid transforms are missed; some cases are
3233 ;;; specific to particular transform functions so the use of this
3234 ;;; function may need a re-think.
3235 (defun not-more-contagious (x y)
3236 (declare (type lvar x y))
3237 (flet ((simple-numeric-type (num)
3238 (and (numeric-type-p num)
3239 ;; Return non-NIL if NUM is integer, rational, or a float
3240 ;; of some type (but not FLOAT)
3241 (case (numeric-type-class num)
3242 ((integer rational)
3244 (float
3245 (numeric-type-format num))
3247 nil)))))
3248 (let ((x (lvar-type x))
3249 (y (lvar-type y)))
3250 (if (and (simple-numeric-type x)
3251 (simple-numeric-type y))
3252 (values (type= (numeric-contagion x y)
3253 (numeric-contagion y y)))))))
3255 ;;; Fold (+ x 0).
3257 ;;; If y is not constant, not zerop, or is contagious, or a positive
3258 ;;; float +0.0 then give up.
3259 (deftransform + ((x y) (t (constant-arg t)) *)
3260 "fold zero arg"
3261 (let ((val (lvar-value y)))
3262 (unless (and (zerop val)
3263 (not (and (floatp val) (plusp (float-sign val))))
3264 (not-more-contagious y x))
3265 (give-up-ir1-transform)))
3268 ;;; Fold (- x 0).
3270 ;;; If y is not constant, not zerop, or is contagious, or a negative
3271 ;;; float -0.0 then give up.
3272 (deftransform - ((x y) (t (constant-arg t)) *)
3273 "fold zero arg"
3274 (let ((val (lvar-value y)))
3275 (unless (and (zerop val)
3276 (not (and (floatp val) (minusp (float-sign val))))
3277 (not-more-contagious y x))
3278 (give-up-ir1-transform)))
3281 ;;; Fold (OP x +/-1)
3282 (macrolet ((def (name result minus-result)
3283 `(deftransform ,name ((x y) (t (constant-arg real)) *)
3284 "fold identity operations"
3285 (let ((val (lvar-value y)))
3286 (unless (and (= (abs val) 1)
3287 (not-more-contagious y x))
3288 (give-up-ir1-transform))
3289 (if (minusp val) ',minus-result ',result)))))
3290 (def * x (%negate x))
3291 (def / x (%negate x))
3292 (def expt x (/ 1 x)))
3294 ;;; Fold (expt x n) into multiplications for small integral values of
3295 ;;; N; convert (expt x 1/2) to sqrt.
3296 (deftransform expt ((x y) (t (constant-arg real)) *)
3297 "recode as multiplication or sqrt"
3298 (let ((val (lvar-value y)))
3299 ;; If Y would cause the result to be promoted to the same type as
3300 ;; Y, we give up. If not, then the result will be the same type
3301 ;; as X, so we can replace the exponentiation with simple
3302 ;; multiplication and division for small integral powers.
3303 (unless (not-more-contagious y x)
3304 (give-up-ir1-transform))
3305 (cond ((zerop val)
3306 (let ((x-type (lvar-type x)))
3307 (cond ((csubtypep x-type (specifier-type '(or rational
3308 (complex rational))))
3310 ((csubtypep x-type (specifier-type 'real))
3311 `(if (rationalp x)
3313 (float 1 x)))
3314 ((csubtypep x-type (specifier-type 'complex))
3315 ;; both parts are float
3316 `(1+ (* x ,val)))
3317 (t (give-up-ir1-transform)))))
3318 ((= val 2) '(* x x))
3319 ((= val -2) '(/ (* x x)))
3320 ((= val 3) '(* x x x))
3321 ((= val -3) '(/ (* x x x)))
3322 ((= val 1/2) '(sqrt x))
3323 ((= val -1/2) '(/ (sqrt x)))
3324 (t (give-up-ir1-transform)))))
3326 ;;; KLUDGE: Shouldn't (/ 0.0 0.0), etc. cause exceptions in these
3327 ;;; transformations?
3328 ;;; Perhaps we should have to prove that the denominator is nonzero before
3329 ;;; doing them? -- WHN 19990917
3330 (macrolet ((def (name)
3331 `(deftransform ,name ((x y) ((constant-arg (integer 0 0)) integer)
3333 "fold zero arg"
3334 0)))
3335 (def ash)
3336 (def /))
3338 (macrolet ((def (name)
3339 `(deftransform ,name ((x y) ((constant-arg (integer 0 0)) integer)
3341 "fold zero arg"
3342 '(values 0 0))))
3343 (def truncate)
3344 (def round)
3345 (def floor)
3346 (def ceiling))
3348 ;;;; character operations
3350 (deftransform char-equal ((a b) (base-char base-char))
3351 "open code"
3352 '(let* ((ac (char-code a))
3353 (bc (char-code b))
3354 (sum (logxor ac bc)))
3355 (or (zerop sum)
3356 (when (eql sum #x20)
3357 (let ((sum (+ ac bc)))
3358 (or (and (> sum 161) (< sum 213))
3359 (and (> sum 415) (< sum 461))
3360 (and (> sum 463) (< sum 477))))))))
3362 (deftransform char-upcase ((x) (base-char))
3363 "open code"
3364 '(let ((n-code (char-code x)))
3365 (if (or (and (> n-code #o140) ; Octal 141 is #\a.
3366 (< n-code #o173)) ; Octal 172 is #\z.
3367 (and (> n-code #o337)
3368 (< n-code #o367))
3369 (and (> n-code #o367)
3370 (< n-code #o377)))
3371 (code-char (logxor #x20 n-code))
3372 x)))
3374 (deftransform char-downcase ((x) (base-char))
3375 "open code"
3376 '(let ((n-code (char-code x)))
3377 (if (or (and (> n-code 64) ; 65 is #\A.
3378 (< n-code 91)) ; 90 is #\Z.
3379 (and (> n-code 191)
3380 (< n-code 215))
3381 (and (> n-code 215)
3382 (< n-code 223)))
3383 (code-char (logxor #x20 n-code))
3384 x)))
3386 ;;;; equality predicate transforms
3388 ;;; Return true if X and Y are lvars whose only use is a
3389 ;;; reference to the same leaf, and the value of the leaf cannot
3390 ;;; change.
3391 (defun same-leaf-ref-p (x y)
3392 (declare (type lvar x y))
3393 (let ((x-use (principal-lvar-use x))
3394 (y-use (principal-lvar-use y)))
3395 (and (ref-p x-use)
3396 (ref-p y-use)
3397 (eq (ref-leaf x-use) (ref-leaf y-use))
3398 (constant-reference-p x-use))))
3400 ;;; If X and Y are the same leaf, then the result is true. Otherwise,
3401 ;;; if there is no intersection between the types of the arguments,
3402 ;;; then the result is definitely false.
3403 (deftransform simple-equality-transform ((x y) * *
3404 :defun-only t)
3405 (cond
3406 ((same-leaf-ref-p x y) t)
3407 ((not (types-equal-or-intersect (lvar-type x) (lvar-type y)))
3408 nil)
3409 (t (give-up-ir1-transform))))
3411 (macrolet ((def (x)
3412 `(%deftransform ',x '(function * *) #'simple-equality-transform)))
3413 (def eq)
3414 (def char=))
3416 ;;; This is similar to SIMPLE-EQUALITY-TRANSFORM, except that we also
3417 ;;; try to convert to a type-specific predicate or EQ:
3418 ;;; -- If both args are characters, convert to CHAR=. This is better than
3419 ;;; just converting to EQ, since CHAR= may have special compilation
3420 ;;; strategies for non-standard representations, etc.
3421 ;;; -- If either arg is definitely a fixnum, we check to see if X is
3422 ;;; constant and if so, put X second. Doing this results in better
3423 ;;; code from the backend, since the backend assumes that any constant
3424 ;;; argument comes second.
3425 ;;; -- If either arg is definitely not a number or a fixnum, then we
3426 ;;; can compare with EQ.
3427 ;;; -- Otherwise, we try to put the arg we know more about second. If X
3428 ;;; is constant then we put it second. If X is a subtype of Y, we put
3429 ;;; it second. These rules make it easier for the back end to match
3430 ;;; these interesting cases.
3431 (deftransform eql ((x y) * * :node node)
3432 "convert to simpler equality predicate"
3433 (let ((x-type (lvar-type x))
3434 (y-type (lvar-type y))
3435 (char-type (specifier-type 'character)))
3436 (flet ((fixnum-type-p (type)
3437 (csubtypep type (specifier-type 'fixnum))))
3438 (cond
3439 ((same-leaf-ref-p x y) t)
3440 ((not (types-equal-or-intersect x-type y-type))
3441 nil)
3442 ((and (csubtypep x-type char-type)
3443 (csubtypep y-type char-type))
3444 '(char= x y))
3445 ((or (fixnum-type-p x-type) (fixnum-type-p y-type))
3446 (commutative-arg-swap node))
3447 ((or (eq-comparable-type-p x-type) (eq-comparable-type-p y-type))
3448 '(eq x y))
3449 ((and (not (constant-lvar-p y))
3450 (or (constant-lvar-p x)
3451 (and (csubtypep x-type y-type)
3452 (not (csubtypep y-type x-type)))))
3453 '(eql y x))
3455 (give-up-ir1-transform))))))
3457 ;;; similarly to the EQL transform above, we attempt to constant-fold
3458 ;;; or convert to a simpler predicate: mostly we have to be careful
3459 ;;; with strings and bit-vectors.
3460 (deftransform equal ((x y) * *)
3461 "convert to simpler equality predicate"
3462 (let ((x-type (lvar-type x))
3463 (y-type (lvar-type y))
3464 (string-type (specifier-type 'string))
3465 (bit-vector-type (specifier-type 'bit-vector)))
3466 (cond
3467 ((same-leaf-ref-p x y) t)
3468 ((and (csubtypep x-type string-type)
3469 (csubtypep y-type string-type))
3470 '(string= x y))
3471 ((and (csubtypep x-type bit-vector-type)
3472 (csubtypep y-type bit-vector-type))
3473 '(bit-vector-= x y))
3474 ;; if at least one is not a string, and at least one is not a
3475 ;; bit-vector, then we can reason from types.
3476 ((and (not (and (types-equal-or-intersect x-type string-type)
3477 (types-equal-or-intersect y-type string-type)))
3478 (not (and (types-equal-or-intersect x-type bit-vector-type)
3479 (types-equal-or-intersect y-type bit-vector-type)))
3480 (not (types-equal-or-intersect x-type y-type)))
3481 nil)
3482 (t (give-up-ir1-transform)))))
3484 ;;; Convert to EQL if both args are rational and complexp is specified
3485 ;;; and the same for both.
3486 (deftransform = ((x y) (number number) *)
3487 "open code"
3488 (let ((x-type (lvar-type x))
3489 (y-type (lvar-type y)))
3490 (cond ((or (and (csubtypep x-type (specifier-type 'float))
3491 (csubtypep y-type (specifier-type 'float)))
3492 (and (csubtypep x-type (specifier-type '(complex float)))
3493 (csubtypep y-type (specifier-type '(complex float)))))
3494 ;; They are both floats. Leave as = so that -0.0 is
3495 ;; handled correctly.
3496 (give-up-ir1-transform))
3497 ((or (and (csubtypep x-type (specifier-type 'rational))
3498 (csubtypep y-type (specifier-type 'rational)))
3499 (and (csubtypep x-type
3500 (specifier-type '(complex rational)))
3501 (csubtypep y-type
3502 (specifier-type '(complex rational)))))
3503 ;; They are both rationals and complexp is the same.
3504 ;; Convert to EQL.
3505 '(eql x y))
3507 (give-up-ir1-transform
3508 "The operands might not be the same type.")))))
3510 (defun maybe-float-lvar-p (lvar)
3511 (neq *empty-type* (type-intersection (specifier-type 'float)
3512 (lvar-type lvar))))
3514 (flet ((maybe-invert (node op inverted x y)
3515 ;; Don't invert if either argument can be a float (NaNs)
3516 (cond
3517 ((or (maybe-float-lvar-p x) (maybe-float-lvar-p y))
3518 (delay-ir1-transform node :constraint)
3519 `(or (,op x y) (= x y)))
3521 `(if (,inverted x y) nil t)))))
3522 (deftransform >= ((x y) (number number) * :node node)
3523 "invert or open code"
3524 (maybe-invert node '> '< x y))
3525 (deftransform <= ((x y) (number number) * :node node)
3526 "invert or open code"
3527 (maybe-invert node '< '> x y)))
3529 ;;; See whether we can statically determine (< X Y) using type
3530 ;;; information. If X's high bound is < Y's low, then X < Y.
3531 ;;; Similarly, if X's low is >= to Y's high, the X >= Y (so return
3532 ;;; NIL). If not, at least make sure any constant arg is second.
3533 (macrolet ((def (name inverse reflexive-p surely-true surely-false)
3534 `(deftransform ,name ((x y))
3535 "optimize using intervals"
3536 (if (and (same-leaf-ref-p x y)
3537 ;; For non-reflexive functions we don't need
3538 ;; to worry about NaNs: (non-ref-op NaN NaN) => false,
3539 ;; but with reflexive ones we don't know...
3540 ,@(when reflexive-p
3541 '((and (not (maybe-float-lvar-p x))
3542 (not (maybe-float-lvar-p y))))))
3543 ,reflexive-p
3544 (let ((ix (or (type-approximate-interval (lvar-type x))
3545 (give-up-ir1-transform)))
3546 (iy (or (type-approximate-interval (lvar-type y))
3547 (give-up-ir1-transform))))
3548 (cond (,surely-true
3550 (,surely-false
3551 nil)
3552 ((and (constant-lvar-p x)
3553 (not (constant-lvar-p y)))
3554 `(,',inverse y x))
3556 (give-up-ir1-transform))))))))
3557 (def = = t (interval-= ix iy) (interval-/= ix iy))
3558 (def /= /= nil (interval-/= ix iy) (interval-= ix iy))
3559 (def < > nil (interval-< ix iy) (interval->= ix iy))
3560 (def > < nil (interval-< iy ix) (interval->= iy ix))
3561 (def <= >= t (interval->= iy ix) (interval-< iy ix))
3562 (def >= <= t (interval->= ix iy) (interval-< ix iy)))
3564 (defun ir1-transform-char< (x y first second inverse)
3565 (cond
3566 ((same-leaf-ref-p x y) nil)
3567 ;; If we had interval representation of character types, as we
3568 ;; might eventually have to to support 2^21 characters, then here
3569 ;; we could do some compile-time computation as in transforms for
3570 ;; < above. -- CSR, 2003-07-01
3571 ((and (constant-lvar-p first)
3572 (not (constant-lvar-p second)))
3573 `(,inverse y x))
3574 (t (give-up-ir1-transform))))
3576 (deftransform char< ((x y) (character character) *)
3577 (ir1-transform-char< x y x y 'char>))
3579 (deftransform char> ((x y) (character character) *)
3580 (ir1-transform-char< y x x y 'char<))
3582 ;;;; converting N-arg comparisons
3583 ;;;;
3584 ;;;; We convert calls to N-arg comparison functions such as < into
3585 ;;;; two-arg calls. This transformation is enabled for all such
3586 ;;;; comparisons in this file. If any of these predicates are not
3587 ;;;; open-coded, then the transformation should be removed at some
3588 ;;;; point to avoid pessimization.
3590 ;;; This function is used for source transformation of N-arg
3591 ;;; comparison functions other than inequality. We deal both with
3592 ;;; converting to two-arg calls and inverting the sense of the test,
3593 ;;; if necessary. If the call has two args, then we pass or return a
3594 ;;; negated test as appropriate. If it is a degenerate one-arg call,
3595 ;;; then we transform to code that returns true. Otherwise, we bind
3596 ;;; all the arguments and expand into a bunch of IFs.
3597 (defun multi-compare (predicate args not-p type &optional force-two-arg-p)
3598 (let ((nargs (length args)))
3599 (cond ((< nargs 1) (values nil t))
3600 ((= nargs 1) `(progn (the ,type ,@args) t))
3601 ((= nargs 2)
3602 (if not-p
3603 `(if (,predicate ,(first args) ,(second args)) nil t)
3604 (if force-two-arg-p
3605 `(,predicate ,(first args) ,(second args))
3606 (values nil t))))
3608 (do* ((i (1- nargs) (1- i))
3609 (last nil current)
3610 (current (gensym) (gensym))
3611 (vars (list current) (cons current vars))
3612 (result t (if not-p
3613 `(if (,predicate ,current ,last)
3614 nil ,result)
3615 `(if (,predicate ,current ,last)
3616 ,result nil))))
3617 ((zerop i)
3618 `((lambda ,vars (declare (type ,type ,@vars)) ,result)
3619 ,@args)))))))
3621 (define-source-transform = (&rest args) (multi-compare '= args nil 'number))
3622 (define-source-transform < (&rest args) (multi-compare '< args nil 'real))
3623 (define-source-transform > (&rest args) (multi-compare '> args nil 'real))
3624 ;;; We cannot do the inversion for >= and <= here, since both
3625 ;;; (< NaN X) and (> NaN X)
3626 ;;; are false, and we don't have type-inforation available yet. The
3627 ;;; deftransforms for two-argument versions of >= and <= takes care of
3628 ;;; the inversion to > and < when possible.
3629 (define-source-transform <= (&rest args) (multi-compare '<= args nil 'real))
3630 (define-source-transform >= (&rest args) (multi-compare '>= args nil 'real))
3632 (define-source-transform char= (&rest args) (multi-compare 'char= args nil
3633 'character))
3634 (define-source-transform char< (&rest args) (multi-compare 'char< args nil
3635 'character))
3636 (define-source-transform char> (&rest args) (multi-compare 'char> args nil
3637 'character))
3638 (define-source-transform char<= (&rest args) (multi-compare 'char> args t
3639 'character))
3640 (define-source-transform char>= (&rest args) (multi-compare 'char< args t
3641 'character))
3643 (define-source-transform char-equal (&rest args)
3644 (multi-compare 'sb!impl::two-arg-char-equal args nil 'character t))
3645 (define-source-transform char-lessp (&rest args)
3646 (multi-compare 'sb!impl::two-arg-char-lessp args nil 'character t))
3647 (define-source-transform char-greaterp (&rest args)
3648 (multi-compare 'sb!impl::two-arg-char-greaterp args nil 'character t))
3649 (define-source-transform char-not-greaterp (&rest args)
3650 (multi-compare 'sb!impl::two-arg-char-greaterp args t 'character t))
3651 (define-source-transform char-not-lessp (&rest args)
3652 (multi-compare 'sb!impl::two-arg-char-lessp args t 'character t))
3654 ;;; This function does source transformation of N-arg inequality
3655 ;;; functions such as /=. This is similar to MULTI-COMPARE in the <3
3656 ;;; arg cases. If there are more than two args, then we expand into
3657 ;;; the appropriate n^2 comparisons only when speed is important.
3658 (declaim (ftype (function (symbol list t) *) multi-not-equal))
3659 (defun multi-not-equal (predicate args type)
3660 (let ((nargs (length args)))
3661 (cond ((< nargs 1) (values nil t))
3662 ((= nargs 1) `(progn (the ,type ,@args) t))
3663 ((= nargs 2)
3664 `(if (,predicate ,(first args) ,(second args)) nil t))
3665 ((not (policy *lexenv*
3666 (and (>= speed space)
3667 (>= speed compilation-speed))))
3668 (values nil t))
3670 (let ((vars (make-gensym-list nargs)))
3671 (do ((var vars next)
3672 (next (cdr vars) (cdr next))
3673 (result t))
3674 ((null next)
3675 `((lambda ,vars (declare (type ,type ,@vars)) ,result)
3676 ,@args))
3677 (let ((v1 (first var)))
3678 (dolist (v2 next)
3679 (setq result `(if (,predicate ,v1 ,v2) nil ,result))))))))))
3681 (define-source-transform /= (&rest args)
3682 (multi-not-equal '= args 'number))
3683 (define-source-transform char/= (&rest args)
3684 (multi-not-equal 'char= args 'character))
3685 (define-source-transform char-not-equal (&rest args)
3686 (multi-not-equal 'char-equal args 'character))
3688 ;;; Expand MAX and MIN into the obvious comparisons.
3689 (define-source-transform max (arg0 &rest rest)
3690 (once-only ((arg0 arg0))
3691 (if (null rest)
3692 `(values (the real ,arg0))
3693 `(let ((maxrest (max ,@rest)))
3694 (if (>= ,arg0 maxrest) ,arg0 maxrest)))))
3695 (define-source-transform min (arg0 &rest rest)
3696 (once-only ((arg0 arg0))
3697 (if (null rest)
3698 `(values (the real ,arg0))
3699 `(let ((minrest (min ,@rest)))
3700 (if (<= ,arg0 minrest) ,arg0 minrest)))))
3702 ;;;; converting N-arg arithmetic functions
3703 ;;;;
3704 ;;;; N-arg arithmetic and logic functions are associated into two-arg
3705 ;;;; versions, and degenerate cases are flushed.
3707 ;;; Left-associate FIRST-ARG and MORE-ARGS using FUNCTION.
3708 (declaim (ftype (function (symbol t list) list) associate-args))
3709 (defun associate-args (function first-arg more-args)
3710 (let ((next (rest more-args))
3711 (arg (first more-args)))
3712 (if (null next)
3713 `(,function ,first-arg ,arg)
3714 (associate-args function `(,function ,first-arg ,arg) next))))
3716 ;;; Do source transformations for transitive functions such as +.
3717 ;;; One-arg cases are replaced with the arg and zero arg cases with
3718 ;;; the identity. ONE-ARG-RESULT-TYPE is, if non-NIL, the type to
3719 ;;; ensure (with THE) that the argument in one-argument calls is.
3720 (defun source-transform-transitive (fun args identity
3721 &optional one-arg-result-type)
3722 (declare (symbol fun) (list args))
3723 (case (length args)
3724 (0 identity)
3725 (1 (if one-arg-result-type
3726 `(values (the ,one-arg-result-type ,(first args)))
3727 `(values ,(first args))))
3728 (2 (values nil t))
3730 (associate-args fun (first args) (rest args)))))
3732 (define-source-transform + (&rest args)
3733 (source-transform-transitive '+ args 0 'number))
3734 (define-source-transform * (&rest args)
3735 (source-transform-transitive '* args 1 'number))
3736 (define-source-transform logior (&rest args)
3737 (source-transform-transitive 'logior args 0 'integer))
3738 (define-source-transform logxor (&rest args)
3739 (source-transform-transitive 'logxor args 0 'integer))
3740 (define-source-transform logand (&rest args)
3741 (source-transform-transitive 'logand args -1 'integer))
3742 (define-source-transform logeqv (&rest args)
3743 (source-transform-transitive 'logeqv args -1 'integer))
3745 ;;; Note: we can't use SOURCE-TRANSFORM-TRANSITIVE for GCD and LCM
3746 ;;; because when they are given one argument, they return its absolute
3747 ;;; value.
3749 (define-source-transform gcd (&rest args)
3750 (case (length args)
3751 (0 0)
3752 (1 `(abs (the integer ,(first args))))
3753 (2 (values nil t))
3754 (t (associate-args 'gcd (first args) (rest args)))))
3756 (define-source-transform lcm (&rest args)
3757 (case (length args)
3758 (0 1)
3759 (1 `(abs (the integer ,(first args))))
3760 (2 (values nil t))
3761 (t (associate-args 'lcm (first args) (rest args)))))
3763 ;;; Do source transformations for intransitive n-arg functions such as
3764 ;;; /. With one arg, we form the inverse. With two args we pass.
3765 ;;; Otherwise we associate into two-arg calls.
3766 (declaim (ftype (function (symbol list t)
3767 (values list &optional (member nil t)))
3768 source-transform-intransitive))
3769 (defun source-transform-intransitive (function args inverse)
3770 (case (length args)
3771 ((0 2) (values nil t))
3772 (1 `(,@inverse ,(first args)))
3773 (t (associate-args function (first args) (rest args)))))
3775 (define-source-transform - (&rest args)
3776 (source-transform-intransitive '- args '(%negate)))
3777 (define-source-transform / (&rest args)
3778 (source-transform-intransitive '/ args '(/ 1)))
3780 ;;;; transforming APPLY
3782 ;;; We convert APPLY into MULTIPLE-VALUE-CALL so that the compiler
3783 ;;; only needs to understand one kind of variable-argument call. It is
3784 ;;; more efficient to convert APPLY to MV-CALL than MV-CALL to APPLY.
3785 (define-source-transform apply (fun arg &rest more-args)
3786 (let ((args (cons arg more-args)))
3787 `(multiple-value-call ,fun
3788 ,@(mapcar (lambda (x)
3789 `(values ,x))
3790 (butlast args))
3791 (values-list ,(car (last args))))))
3793 ;;;; transforming FORMAT
3794 ;;;;
3795 ;;;; If the control string is a compile-time constant, then replace it
3796 ;;;; with a use of the FORMATTER macro so that the control string is
3797 ;;;; ``compiled.'' Furthermore, if the destination is either a stream
3798 ;;;; or T and the control string is a function (i.e. FORMATTER), then
3799 ;;;; convert the call to FORMAT to just a FUNCALL of that function.
3801 ;;; for compile-time argument count checking.
3803 ;;; FIXME II: In some cases, type information could be correlated; for
3804 ;;; instance, ~{ ... ~} requires a list argument, so if the lvar-type
3805 ;;; of a corresponding argument is known and does not intersect the
3806 ;;; list type, a warning could be signalled.
3807 (defun check-format-args (string args fun)
3808 (declare (type string string))
3809 (unless (typep string 'simple-string)
3810 (setq string (coerce string 'simple-string)))
3811 (multiple-value-bind (min max)
3812 (handler-case (sb!format:%compiler-walk-format-string string args)
3813 (sb!format:format-error (c)
3814 (compiler-warn "~A" c)))
3815 (when min
3816 (let ((nargs (length args)))
3817 (cond
3818 ((< nargs min)
3819 (warn 'format-too-few-args-warning
3820 :format-control
3821 "Too few arguments (~D) to ~S ~S: requires at least ~D."
3822 :format-arguments (list nargs fun string min)))
3823 ((> nargs max)
3824 (warn 'format-too-many-args-warning
3825 :format-control
3826 "Too many arguments (~D) to ~S ~S: uses at most ~D."
3827 :format-arguments (list nargs fun string max))))))))
3829 (defoptimizer (format optimizer) ((dest control &rest args))
3830 (when (constant-lvar-p control)
3831 (let ((x (lvar-value control)))
3832 (when (stringp x)
3833 (check-format-args x args 'format)))))
3835 ;;; We disable this transform in the cross-compiler to save memory in
3836 ;;; the target image; most of the uses of FORMAT in the compiler are for
3837 ;;; error messages, and those don't need to be particularly fast.
3838 #+sb-xc
3839 (deftransform format ((dest control &rest args) (t simple-string &rest t) *
3840 :policy (>= speed space))
3841 (unless (constant-lvar-p control)
3842 (give-up-ir1-transform "The control string is not a constant."))
3843 (let ((arg-names (make-gensym-list (length args))))
3844 `(lambda (dest control ,@arg-names)
3845 (declare (ignore control))
3846 (format dest (formatter ,(lvar-value control)) ,@arg-names))))
3848 (deftransform format ((stream control &rest args) (stream function &rest t))
3849 (let ((arg-names (make-gensym-list (length args))))
3850 `(lambda (stream control ,@arg-names)
3851 (funcall control stream ,@arg-names)
3852 nil)))
3854 (deftransform format ((tee control &rest args) ((member t) function &rest t))
3855 (let ((arg-names (make-gensym-list (length args))))
3856 `(lambda (tee control ,@arg-names)
3857 (declare (ignore tee))
3858 (funcall control *standard-output* ,@arg-names)
3859 nil)))
3861 (deftransform pathname ((pathspec) (pathname) *)
3862 'pathspec)
3864 (deftransform pathname ((pathspec) (string) *)
3865 '(values (parse-namestring pathspec)))
3867 (macrolet
3868 ((def (name)
3869 `(defoptimizer (,name optimizer) ((control &rest args))
3870 (when (constant-lvar-p control)
3871 (let ((x (lvar-value control)))
3872 (when (stringp x)
3873 (check-format-args x args ',name)))))))
3874 (def error)
3875 (def warn)
3876 #+sb-xc-host ; Only we should be using these
3877 (progn
3878 (def style-warn)
3879 (def compiler-error)
3880 (def compiler-warn)
3881 (def compiler-style-warn)
3882 (def compiler-notify)
3883 (def maybe-compiler-notify)
3884 (def bug)))
3886 (defoptimizer (cerror optimizer) ((report control &rest args))
3887 (when (and (constant-lvar-p control)
3888 (constant-lvar-p report))
3889 (let ((x (lvar-value control))
3890 (y (lvar-value report)))
3891 (when (and (stringp x) (stringp y))
3892 (multiple-value-bind (min1 max1)
3893 (handler-case
3894 (sb!format:%compiler-walk-format-string x args)
3895 (sb!format:format-error (c)
3896 (compiler-warn "~A" c)))
3897 (when min1
3898 (multiple-value-bind (min2 max2)
3899 (handler-case
3900 (sb!format:%compiler-walk-format-string y args)
3901 (sb!format:format-error (c)
3902 (compiler-warn "~A" c)))
3903 (when min2
3904 (let ((nargs (length args)))
3905 (cond
3906 ((< nargs (min min1 min2))
3907 (warn 'format-too-few-args-warning
3908 :format-control
3909 "Too few arguments (~D) to ~S ~S ~S: ~
3910 requires at least ~D."
3911 :format-arguments
3912 (list nargs 'cerror y x (min min1 min2))))
3913 ((> nargs (max max1 max2))
3914 (warn 'format-too-many-args-warning
3915 :format-control
3916 "Too many arguments (~D) to ~S ~S ~S: ~
3917 uses at most ~D."
3918 :format-arguments
3919 (list nargs 'cerror y x (max max1 max2))))))))))))))
3921 (defoptimizer (coerce derive-type) ((value type))
3922 (cond
3923 ((constant-lvar-p type)
3924 ;; This branch is essentially (RESULT-TYPE-SPECIFIER-NTH-ARG 2),
3925 ;; but dealing with the niggle that complex canonicalization gets
3926 ;; in the way: (COERCE 1 'COMPLEX) returns 1, which is not of
3927 ;; type COMPLEX.
3928 (let* ((specifier (lvar-value type))
3929 (result-typeoid (careful-specifier-type specifier)))
3930 (cond
3931 ((null result-typeoid) nil)
3932 ((csubtypep result-typeoid (specifier-type 'number))
3933 ;; the difficult case: we have to cope with ANSI 12.1.5.3
3934 ;; Rule of Canonical Representation for Complex Rationals,
3935 ;; which is a truly nasty delivery to field.
3936 (cond
3937 ((csubtypep result-typeoid (specifier-type 'real))
3938 ;; cleverness required here: it would be nice to deduce
3939 ;; that something of type (INTEGER 2 3) coerced to type
3940 ;; DOUBLE-FLOAT should return (DOUBLE-FLOAT 2.0d0 3.0d0).
3941 ;; FLOAT gets its own clause because it's implemented as
3942 ;; a UNION-TYPE, so we don't catch it in the NUMERIC-TYPE
3943 ;; logic below.
3944 result-typeoid)
3945 ((and (numeric-type-p result-typeoid)
3946 (eq (numeric-type-complexp result-typeoid) :real))
3947 ;; FIXME: is this clause (a) necessary or (b) useful?
3948 result-typeoid)
3949 ((or (csubtypep result-typeoid
3950 (specifier-type '(complex single-float)))
3951 (csubtypep result-typeoid
3952 (specifier-type '(complex double-float)))
3953 #!+long-float
3954 (csubtypep result-typeoid
3955 (specifier-type '(complex long-float))))
3956 ;; float complex types are never canonicalized.
3957 result-typeoid)
3959 ;; if it's not a REAL, or a COMPLEX FLOAToid, it's
3960 ;; probably just a COMPLEX or equivalent. So, in that
3961 ;; case, we will return a complex or an object of the
3962 ;; provided type if it's rational:
3963 (type-union result-typeoid
3964 (type-intersection (lvar-type value)
3965 (specifier-type 'rational))))))
3966 (t result-typeoid))))
3968 ;; OK, the result-type argument isn't constant. However, there
3969 ;; are common uses where we can still do better than just
3970 ;; *UNIVERSAL-TYPE*: e.g. (COERCE X (ARRAY-ELEMENT-TYPE Y)),
3971 ;; where Y is of a known type. See messages on cmucl-imp
3972 ;; 2001-02-14 and sbcl-devel 2002-12-12. We only worry here
3973 ;; about types that can be returned by (ARRAY-ELEMENT-TYPE Y), on
3974 ;; the basis that it's unlikely that other uses are both
3975 ;; time-critical and get to this branch of the COND (non-constant
3976 ;; second argument to COERCE). -- CSR, 2002-12-16
3977 (let ((value-type (lvar-type value))
3978 (type-type (lvar-type type)))
3979 (labels
3980 ((good-cons-type-p (cons-type)
3981 ;; Make sure the cons-type we're looking at is something
3982 ;; we're prepared to handle which is basically something
3983 ;; that array-element-type can return.
3984 (or (and (member-type-p cons-type)
3985 (eql 1 (member-type-size cons-type))
3986 (null (first (member-type-members cons-type))))
3987 (let ((car-type (cons-type-car-type cons-type)))
3988 (and (member-type-p car-type)
3989 (eql 1 (member-type-members car-type))
3990 (let ((elt (first (member-type-members car-type))))
3991 (or (symbolp elt)
3992 (numberp elt)
3993 (and (listp elt)
3994 (numberp (first elt)))))
3995 (good-cons-type-p (cons-type-cdr-type cons-type))))))
3996 (unconsify-type (good-cons-type)
3997 ;; Convert the "printed" respresentation of a cons
3998 ;; specifier into a type specifier. That is, the
3999 ;; specifier (CONS (EQL SIGNED-BYTE) (CONS (EQL 16)
4000 ;; NULL)) is converted to (SIGNED-BYTE 16).
4001 (cond ((or (null good-cons-type)
4002 (eq good-cons-type 'null))
4003 nil)
4004 ((and (eq (first good-cons-type) 'cons)
4005 (eq (first (second good-cons-type)) 'member))
4006 `(,(second (second good-cons-type))
4007 ,@(unconsify-type (caddr good-cons-type))))))
4008 (coerceable-p (part)
4009 ;; Can the value be coerced to the given type? Coerce is
4010 ;; complicated, so we don't handle every possible case
4011 ;; here---just the most common and easiest cases:
4013 ;; * Any REAL can be coerced to a FLOAT type.
4014 ;; * Any NUMBER can be coerced to a (COMPLEX
4015 ;; SINGLE/DOUBLE-FLOAT).
4017 ;; FIXME I: we should also be able to deal with characters
4018 ;; here.
4020 ;; FIXME II: I'm not sure that anything is necessary
4021 ;; here, at least while COMPLEX is not a specialized
4022 ;; array element type in the system. Reasoning: if
4023 ;; something cannot be coerced to the requested type, an
4024 ;; error will be raised (and so any downstream compiled
4025 ;; code on the assumption of the returned type is
4026 ;; unreachable). If something can, then it will be of
4027 ;; the requested type, because (by assumption) COMPLEX
4028 ;; (and other difficult types like (COMPLEX INTEGER)
4029 ;; aren't specialized types.
4030 (let ((coerced-type (careful-specifier-type part)))
4031 (when coerced-type
4032 (or (and (csubtypep coerced-type (specifier-type 'float))
4033 (csubtypep value-type (specifier-type 'real)))
4034 (and (csubtypep coerced-type
4035 (specifier-type `(or (complex single-float)
4036 (complex double-float))))
4037 (csubtypep value-type (specifier-type 'number)))))))
4038 (process-types (type)
4039 ;; FIXME: This needs some work because we should be able
4040 ;; to derive the resulting type better than just the
4041 ;; type arg of coerce. That is, if X is (INTEGER 10
4042 ;; 20), then (COERCE X 'DOUBLE-FLOAT) should say
4043 ;; (DOUBLE-FLOAT 10d0 20d0) instead of just
4044 ;; double-float.
4045 (cond ((member-type-p type)
4046 (block punt
4047 (let (members)
4048 (mapc-member-type-members
4049 (lambda (member)
4050 (if (coerceable-p member)
4051 (push member members)
4052 (return-from punt *universal-type*)))
4053 type)
4054 (specifier-type `(or ,@members)))))
4055 ((and (cons-type-p type)
4056 (good-cons-type-p type))
4057 (let ((c-type (unconsify-type (type-specifier type))))
4058 (if (coerceable-p c-type)
4059 (specifier-type c-type)
4060 *universal-type*)))
4062 *universal-type*))))
4063 (cond ((union-type-p type-type)
4064 (apply #'type-union (mapcar #'process-types
4065 (union-type-types type-type))))
4066 ((or (member-type-p type-type)
4067 (cons-type-p type-type))
4068 (process-types type-type))
4070 *universal-type*)))))))
4072 (defoptimizer (compile derive-type) ((nameoid function))
4073 (when (csubtypep (lvar-type nameoid)
4074 (specifier-type 'null))
4075 (values-specifier-type '(values function boolean boolean))))
4077 ;;; FIXME: Maybe also STREAM-ELEMENT-TYPE should be given some loving
4078 ;;; treatment along these lines? (See discussion in COERCE DERIVE-TYPE
4079 ;;; optimizer, above).
4080 (defoptimizer (array-element-type derive-type) ((array))
4081 (let ((array-type (lvar-type array)))
4082 (labels ((consify (list)
4083 (if (endp list)
4084 '(eql nil)
4085 `(cons (eql ,(car list)) ,(consify (rest list)))))
4086 (get-element-type (a)
4087 (let ((element-type
4088 (type-specifier (array-type-specialized-element-type a))))
4089 (cond ((eq element-type '*)
4090 (specifier-type 'type-specifier))
4091 ((symbolp element-type)
4092 (make-member-type :members (list element-type)))
4093 ((consp element-type)
4094 (specifier-type (consify element-type)))
4096 (error "can't understand type ~S~%" element-type))))))
4097 (labels ((recurse (type)
4098 (cond ((array-type-p type)
4099 (get-element-type type))
4100 ((union-type-p type)
4101 (apply #'type-union
4102 (mapcar #'recurse (union-type-types type))))
4104 *universal-type*))))
4105 (recurse array-type)))))
4107 (define-source-transform sb!impl::sort-vector (vector start end predicate key)
4108 ;; Like CMU CL, we use HEAPSORT. However, other than that, this code
4109 ;; isn't really related to the CMU CL code, since instead of trying
4110 ;; to generalize the CMU CL code to allow START and END values, this
4111 ;; code has been written from scratch following Chapter 7 of
4112 ;; _Introduction to Algorithms_ by Corman, Rivest, and Shamir.
4113 `(macrolet ((%index (x) `(truly-the index ,x))
4114 (%parent (i) `(ash ,i -1))
4115 (%left (i) `(%index (ash ,i 1)))
4116 (%right (i) `(%index (1+ (ash ,i 1))))
4117 (%heapify (i)
4118 `(do* ((i ,i)
4119 (left (%left i) (%left i)))
4120 ((> left current-heap-size))
4121 (declare (type index i left))
4122 (let* ((i-elt (%elt i))
4123 (i-key (funcall keyfun i-elt))
4124 (left-elt (%elt left))
4125 (left-key (funcall keyfun left-elt)))
4126 (multiple-value-bind (large large-elt large-key)
4127 (if (funcall ,',predicate i-key left-key)
4128 (values left left-elt left-key)
4129 (values i i-elt i-key))
4130 (let ((right (%right i)))
4131 (multiple-value-bind (largest largest-elt)
4132 (if (> right current-heap-size)
4133 (values large large-elt)
4134 (let* ((right-elt (%elt right))
4135 (right-key (funcall keyfun right-elt)))
4136 (if (funcall ,',predicate large-key right-key)
4137 (values right right-elt)
4138 (values large large-elt))))
4139 (cond ((= largest i)
4140 (return))
4142 (setf (%elt i) largest-elt
4143 (%elt largest) i-elt
4144 i largest)))))))))
4145 (%sort-vector (keyfun &optional (vtype 'vector))
4146 `(macrolet (;; KLUDGE: In SBCL ca. 0.6.10, I had
4147 ;; trouble getting type inference to
4148 ;; propagate all the way through this
4149 ;; tangled mess of inlining. The TRULY-THE
4150 ;; here works around that. -- WHN
4151 (%elt (i)
4152 `(aref (truly-the ,',vtype ,',',vector)
4153 (%index (+ (%index ,i) start-1)))))
4154 (let (;; Heaps prefer 1-based addressing.
4155 (start-1 (1- ,',start))
4156 (current-heap-size (- ,',end ,',start))
4157 (keyfun ,keyfun))
4158 (declare (type (integer -1 #.(1- sb!xc:most-positive-fixnum))
4159 start-1))
4160 (declare (type index current-heap-size))
4161 (declare (type function keyfun))
4162 (loop for i of-type index
4163 from (ash current-heap-size -1) downto 1 do
4164 (%heapify i))
4165 (loop
4166 (when (< current-heap-size 2)
4167 (return))
4168 (rotatef (%elt 1) (%elt current-heap-size))
4169 (decf current-heap-size)
4170 (%heapify 1))))))
4171 (if (typep ,vector 'simple-vector)
4172 ;; (VECTOR T) is worth optimizing for, and SIMPLE-VECTOR is
4173 ;; what we get from (VECTOR T) inside WITH-ARRAY-DATA.
4174 (if (null ,key)
4175 ;; Special-casing the KEY=NIL case lets us avoid some
4176 ;; function calls.
4177 (%sort-vector #'identity simple-vector)
4178 (%sort-vector ,key simple-vector))
4179 ;; It's hard to anticipate many speed-critical applications for
4180 ;; sorting vector types other than (VECTOR T), so we just lump
4181 ;; them all together in one slow dynamically typed mess.
4182 (locally
4183 (declare (optimize (speed 2) (space 2) (inhibit-warnings 3)))
4184 (%sort-vector (or ,key #'identity))))))
4186 ;;;; debuggers' little helpers
4188 ;;; for debugging when transforms are behaving mysteriously,
4189 ;;; e.g. when debugging a problem with an ASH transform
4190 ;;; (defun foo (&optional s)
4191 ;;; (sb-c::/report-lvar s "S outside WHEN")
4192 ;;; (when (and (integerp s) (> s 3))
4193 ;;; (sb-c::/report-lvar s "S inside WHEN")
4194 ;;; (let ((bound (ash 1 (1- s))))
4195 ;;; (sb-c::/report-lvar bound "BOUND")
4196 ;;; (let ((x (- bound))
4197 ;;; (y (1- bound)))
4198 ;;; (sb-c::/report-lvar x "X")
4199 ;;; (sb-c::/report-lvar x "Y"))
4200 ;;; `(integer ,(- bound) ,(1- bound)))))
4201 ;;; (The DEFTRANSFORM doesn't do anything but report at compile time,
4202 ;;; and the function doesn't do anything at all.)
4203 #!+sb-show
4204 (progn
4205 (defknown /report-lvar (t t) null)
4206 (deftransform /report-lvar ((x message) (t t))
4207 (format t "~%/in /REPORT-LVAR~%")
4208 (format t "/(LVAR-TYPE X)=~S~%" (lvar-type x))
4209 (when (constant-lvar-p x)
4210 (format t "/(LVAR-VALUE X)=~S~%" (lvar-value x)))
4211 (format t "/MESSAGE=~S~%" (lvar-value message))
4212 (give-up-ir1-transform "not a real transform"))
4213 (defun /report-lvar (x message)
4214 (declare (ignore x message))))
4217 ;;;; Transforms for internal compiler utilities
4219 ;;; If QUALITY-NAME is constant and a valid name, don't bother
4220 ;;; checking that it's still valid at run-time.
4221 (deftransform policy-quality ((policy quality-name)
4222 (t symbol))
4223 (unless (and (constant-lvar-p quality-name)
4224 (policy-quality-name-p (lvar-value quality-name)))
4225 (give-up-ir1-transform))
4226 '(%policy-quality policy quality-name))