1.0.22.22: (SETF FIND-CLASSOID) to drop DEFTYPE lambda-lists and source-locations
[sbcl/tcr.git] / src / code / seq.lisp
blobc76c58673d955f7675657c0450e2170152b4295f
1 ;;;; generic SEQUENCEs
2 ;;;;
3 ;;;; KLUDGE: comment from original CMU CL source:
4 ;;;; Be careful when modifying code. A lot of the structure of the
5 ;;;; code is affected by the fact that compiler transforms use the
6 ;;;; lower level support functions. If transforms are written for
7 ;;;; some sequence operation, note how the END argument is handled
8 ;;;; in other operations with transforms.
10 ;;;; This software is part of the SBCL system. See the README file for
11 ;;;; more information.
12 ;;;;
13 ;;;; This software is derived from the CMU CL system, which was
14 ;;;; written at Carnegie Mellon University and released into the
15 ;;;; public domain. The software is in the public domain and is
16 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
17 ;;;; files for more information.
19 (in-package "SB!IMPL")
21 ;;;; utilities
23 (defun %check-generic-sequence-bounds (seq start end)
24 (let ((length (sb!sequence:length seq)))
25 (if (<= 0 start (or end length) length)
26 (or end length)
27 (sequence-bounding-indices-bad-error seq start end))))
29 (eval-when (:compile-toplevel :load-toplevel :execute)
31 (defparameter *sequence-keyword-info*
32 ;; (name default supplied-p adjustment new-type)
33 `((count nil
34 nil
35 (etypecase count
36 (null (1- most-positive-fixnum))
37 (fixnum (max 0 count))
38 (integer (if (minusp count)
40 (1- most-positive-fixnum))))
41 (mod #.sb!xc:most-positive-fixnum))
42 ,@(mapcan (lambda (names)
43 (destructuring-bind (start end length sequence) names
44 (list
45 `(,start
47 nil
48 (if (<= 0 ,start ,length)
49 ,start
50 (sequence-bounding-indices-bad-error ,sequence ,start ,end))
51 index)
52 `(,end
53 nil
54 nil
55 (if (or (null ,end) (<= ,start ,end ,length))
56 ;; Defaulting of NIL is done inside the
57 ;; bodies, for ease of sharing with compiler
58 ;; transforms.
60 ;; FIXME: defend against non-number non-NIL
61 ;; stuff?
62 ,end
63 (sequence-bounding-indices-bad-error ,sequence ,start ,end))
64 (or null index)))))
65 '((start end length sequence)
66 (start1 end1 length1 sequence1)
67 (start2 end2 length2 sequence2)))
68 (key nil
69 nil
70 (and key (%coerce-callable-to-fun key))
71 (or null function))
72 (test #'eql
73 nil
74 (%coerce-callable-to-fun test)
75 function)
76 (test-not nil
77 nil
78 (and test-not (%coerce-callable-to-fun test-not))
79 (or null function))
82 (sb!xc:defmacro define-sequence-traverser (name args &body body)
83 (multiple-value-bind (body declarations docstring)
84 (parse-body body :doc-string-allowed t)
85 (collect ((new-args) (new-declarations) (adjustments))
86 (dolist (arg args)
87 (case arg
88 ;; FIXME: make this robust. And clean.
89 ((sequence)
90 (new-args arg)
91 (adjustments '(length (length sequence)))
92 (new-declarations '(type index length)))
93 ((sequence1)
94 (new-args arg)
95 (adjustments '(length1 (length sequence1)))
96 (new-declarations '(type index length1)))
97 ((sequence2)
98 (new-args arg)
99 (adjustments '(length2 (length sequence2)))
100 (new-declarations '(type index length2)))
101 ((function predicate)
102 (new-args arg)
103 (adjustments `(,arg (%coerce-callable-to-fun ,arg))))
104 (t (let ((info (cdr (assoc arg *sequence-keyword-info*))))
105 (cond (info
106 (destructuring-bind (default supplied-p adjuster type) info
107 (new-args `(,arg ,default ,@(when supplied-p (list supplied-p))))
108 (adjustments `(,arg ,adjuster))
109 (new-declarations `(type ,type ,arg))))
110 (t (new-args arg)))))))
111 `(defun ,name ,(new-args)
112 ,@(when docstring (list docstring))
113 ,@declarations
114 (let* (,@(adjustments))
115 (declare ,@(new-declarations))
116 ,@body)))))
118 ;;; SEQ-DISPATCH does an efficient type-dispatch on the given SEQUENCE.
120 ;;; FIXME: It might be worth making three cases here, LIST,
121 ;;; SIMPLE-VECTOR, and VECTOR, instead of the current LIST and VECTOR.
122 ;;; It tends to make code run faster but be bigger; some benchmarking
123 ;;; is needed to decide.
124 (sb!xc:defmacro seq-dispatch
125 (sequence list-form array-form &optional other-form)
126 `(if (listp ,sequence)
127 (let ((,sequence (truly-the list ,sequence)))
128 (declare (ignorable ,sequence))
129 ,list-form)
130 ,@(if other-form
131 `((if (arrayp ,sequence)
132 (let ((,sequence (truly-the vector ,sequence)))
133 (declare (ignorable ,sequence))
134 ,array-form)
135 ,other-form))
136 `((let ((,sequence (truly-the vector ,sequence)))
137 (declare (ignorable ,sequence))
138 ,array-form)))))
140 (sb!xc:defmacro %make-sequence-like (sequence length)
141 #!+sb-doc
142 "Return a sequence of the same type as SEQUENCE and the given LENGTH."
143 `(seq-dispatch ,sequence
144 (make-list ,length)
145 (make-array ,length :element-type (array-element-type ,sequence))
146 (sb!sequence:make-sequence-like ,sequence ,length)))
148 (sb!xc:defmacro bad-sequence-type-error (type-spec)
149 `(error 'simple-type-error
150 :datum ,type-spec
151 :expected-type '(satisfies is-a-valid-sequence-type-specifier-p)
152 :format-control "~S is a bad type specifier for sequences."
153 :format-arguments (list ,type-spec)))
155 (sb!xc:defmacro sequence-type-length-mismatch-error (type length)
156 `(error 'simple-type-error
157 :datum ,length
158 :expected-type (cond ((array-type-p ,type)
159 `(eql ,(car (array-type-dimensions ,type))))
160 ((type= ,type (specifier-type 'null))
161 '(eql 0))
162 ((cons-type-p ,type)
163 '(integer 1))
164 (t (bug "weird type in S-T-L-M-ERROR")))
165 ;; FIXME: this format control causes ugly printing. There's
166 ;; probably some ~<~@:_~> incantation that would make it
167 ;; nicer. -- CSR, 2002-10-18
168 :format-control "The length requested (~S) does not match the type restriction in ~S."
169 :format-arguments (list ,length (type-specifier ,type))))
171 (sb!xc:defmacro sequence-type-too-hairy (type-spec)
172 ;; FIXME: Should this be a BUG? I'm inclined to think not; there are
173 ;; words that give some but not total support to this position in
174 ;; ANSI. Essentially, we are justified in throwing this on
175 ;; e.g. '(OR SIMPLE-VECTOR (VECTOR FIXNUM)), but maybe not (by ANSI)
176 ;; on '(CONS * (CONS * NULL)) -- CSR, 2002-10-18
178 ;; On the other hand, I'm not sure it deserves to be a type-error,
179 ;; either. -- bem, 2005-08-10
180 `(error 'simple-program-error
181 :format-control "~S is too hairy for sequence functions."
182 :format-arguments (list ,type-spec)))
183 ) ; EVAL-WHEN
185 (defun is-a-valid-sequence-type-specifier-p (type)
186 (let ((type (specifier-type type)))
187 (or (csubtypep type (specifier-type 'list))
188 (csubtypep type (specifier-type 'vector)))))
190 ;;; It's possible with some sequence operations to declare the length
191 ;;; of a result vector, and to be safe, we really ought to verify that
192 ;;; the actual result has the declared length.
193 (defun vector-of-checked-length-given-length (vector declared-length)
194 (declare (type vector vector))
195 (declare (type index declared-length))
196 (let ((actual-length (length vector)))
197 (unless (= actual-length declared-length)
198 (error 'simple-type-error
199 :datum vector
200 :expected-type `(vector ,declared-length)
201 :format-control
202 "Vector length (~W) doesn't match declared length (~W)."
203 :format-arguments (list actual-length declared-length))))
204 vector)
205 (defun sequence-of-checked-length-given-type (sequence result-type)
206 (let ((ctype (specifier-type result-type)))
207 (if (not (array-type-p ctype))
208 sequence
209 (let ((declared-length (first (array-type-dimensions ctype))))
210 (if (eq declared-length '*)
211 sequence
212 (vector-of-checked-length-given-length sequence
213 declared-length))))))
215 (declaim (ftype (function (sequence index) nil) signal-index-too-large-error))
216 (defun signal-index-too-large-error (sequence index)
217 (let* ((length (length sequence))
218 (max-index (and (plusp length)
219 (1- length))))
220 (error 'index-too-large-error
221 :datum index
222 :expected-type (if max-index
223 `(integer 0 ,max-index)
224 ;; This seems silly, is there something better?
225 '(integer 0 (0))))))
227 (defun sequence-bounding-indices-bad-error (sequence start end)
228 (let ((size (length sequence)))
229 (error 'bounding-indices-bad-error
230 :datum (cons start end)
231 :expected-type `(cons (integer 0 ,size)
232 (integer ,start ,size))
233 :object sequence)))
235 (defun array-bounding-indices-bad-error (array start end)
236 (let ((size (array-total-size array)))
237 (error 'bounding-indices-bad-error
238 :datum (cons start end)
239 :expected-type `(cons (integer 0 ,size)
240 (integer ,start ,size))
241 :object array)))
243 (defun elt (sequence index)
244 #!+sb-doc "Return the element of SEQUENCE specified by INDEX."
245 (seq-dispatch sequence
246 (do ((count index (1- count))
247 (list sequence (cdr list)))
248 ((= count 0)
249 (if (endp list)
250 (signal-index-too-large-error sequence index)
251 (car list)))
252 (declare (type (integer 0) count)))
253 (progn
254 (when (>= index (length sequence))
255 (signal-index-too-large-error sequence index))
256 (aref sequence index))
257 (sb!sequence:elt sequence index)))
259 (defun %setelt (sequence index newval)
260 #!+sb-doc "Store NEWVAL as the component of SEQUENCE specified by INDEX."
261 (seq-dispatch sequence
262 (do ((count index (1- count))
263 (seq sequence))
264 ((= count 0) (rplaca seq newval) newval)
265 (declare (fixnum count))
266 (if (atom (cdr seq))
267 (signal-index-too-large-error sequence index)
268 (setq seq (cdr seq))))
269 (progn
270 (when (>= index (length sequence))
271 (signal-index-too-large-error sequence index))
272 (setf (aref sequence index) newval))
273 (setf (sb!sequence:elt sequence index) newval)))
275 (defun length (sequence)
276 #!+sb-doc "Return an integer that is the length of SEQUENCE."
277 (seq-dispatch sequence
278 (length sequence)
279 (length sequence)
280 (sb!sequence:length sequence)))
282 (defun make-sequence (type length &key (initial-element nil iep))
283 #!+sb-doc
284 "Return a sequence of the given TYPE and LENGTH, with elements initialized
285 to INITIAL-ELEMENT."
286 (declare (fixnum length))
287 (let* ((adjusted-type
288 (typecase type
289 (atom (cond
290 ((eq type 'string) '(vector character))
291 ((eq type 'simple-string) '(simple-array character (*)))
292 (t type)))
293 (cons (cond
294 ((eq (car type) 'string) `(vector character ,@(cdr type)))
295 ((eq (car type) 'simple-string)
296 `(simple-array character ,(if (cdr type)
297 (cdr type)
298 '(*))))
299 (t type)))
300 (t type)))
301 (type (specifier-type adjusted-type)))
302 (cond ((csubtypep type (specifier-type 'list))
303 (cond
304 ((type= type (specifier-type 'list))
305 (make-list length :initial-element initial-element))
306 ((eq type *empty-type*)
307 (bad-sequence-type-error nil))
308 ((type= type (specifier-type 'null))
309 (if (= length 0)
310 'nil
311 (sequence-type-length-mismatch-error type length)))
312 ((cons-type-p type)
313 (multiple-value-bind (min exactp)
314 (sb!kernel::cons-type-length-info type)
315 (if exactp
316 (unless (= length min)
317 (sequence-type-length-mismatch-error type length))
318 (unless (>= length min)
319 (sequence-type-length-mismatch-error type length)))
320 (make-list length :initial-element initial-element)))
321 ;; We'll get here for e.g. (OR NULL (CONS INTEGER *)),
322 ;; which may seem strange and non-ideal, but then I'd say
323 ;; it was stranger to feed that type in to MAKE-SEQUENCE.
324 (t (sequence-type-too-hairy (type-specifier type)))))
325 ((csubtypep type (specifier-type 'vector))
326 (cond
327 (;; is it immediately obvious what the result type is?
328 (typep type 'array-type)
329 (progn
330 (aver (= (length (array-type-dimensions type)) 1))
331 (let* ((etype (type-specifier
332 (array-type-specialized-element-type type)))
333 (etype (if (eq etype '*) t etype))
334 (type-length (car (array-type-dimensions type))))
335 (unless (or (eq type-length '*)
336 (= type-length length))
337 (sequence-type-length-mismatch-error type length))
338 ;; FIXME: These calls to MAKE-ARRAY can't be
339 ;; open-coded, as the :ELEMENT-TYPE argument isn't
340 ;; constant. Probably we ought to write a
341 ;; DEFTRANSFORM for MAKE-SEQUENCE. -- CSR,
342 ;; 2002-07-22
343 (if iep
344 (make-array length :element-type etype
345 :initial-element initial-element)
346 (make-array length :element-type etype)))))
347 (t (sequence-type-too-hairy (type-specifier type)))))
348 ((and (csubtypep type (specifier-type 'sequence))
349 (find-class adjusted-type nil))
350 (let* ((class (find-class adjusted-type nil)))
351 (unless (sb!mop:class-finalized-p class)
352 (sb!mop:finalize-inheritance class))
353 (if iep
354 (sb!sequence:make-sequence-like
355 (sb!mop:class-prototype class) length
356 :initial-element initial-element)
357 (sb!sequence:make-sequence-like
358 (sb!mop:class-prototype class) length))))
359 (t (bad-sequence-type-error (type-specifier type))))))
361 ;;;; SUBSEQ
362 ;;;;
363 ;;;; The support routines for SUBSEQ are used by compiler transforms,
364 ;;;; so we worry about dealing with END being supplied or defaulting
365 ;;;; to NIL at this level.
367 (defun string-subseq* (sequence start end)
368 (with-array-data ((data sequence)
369 (start start)
370 (end end)
371 :force-inline t
372 :check-fill-pointer t)
373 (declare (optimize (speed 3) (safety 0)))
374 (string-dispatch ((simple-array character (*))
375 (simple-array base-char (*))
376 (vector nil))
377 data
378 (subseq data start end))))
380 (defun vector-subseq* (sequence start end)
381 (declare (type vector sequence))
382 (declare (type index start)
383 (type (or null index) end))
384 (with-array-data ((data sequence)
385 (start start)
386 (end end)
387 :check-fill-pointer t
388 :force-inline t)
389 (let* ((copy (%make-sequence-like sequence (- end start)))
390 (setter (!find-data-vector-setter copy))
391 (reffer (!find-data-vector-reffer data)))
392 (declare (optimize (speed 3) (safety 0)))
393 (do ((old-index start (1+ old-index))
394 (new-index 0 (1+ new-index)))
395 ((= old-index end) copy)
396 (declare (index old-index new-index))
397 (funcall setter copy new-index
398 (funcall reffer data old-index))))))
400 (defun list-subseq* (sequence start end)
401 (declare (type list sequence)
402 (type unsigned-byte start)
403 (type (or null unsigned-byte) end))
404 (flet ((oops ()
405 (sequence-bounding-indices-bad-error sequence start end)))
406 (let ((pointer sequence))
407 (unless (zerop start)
408 ;; If START > 0 the list cannot be empty. So CDR down to
409 ;; it START-1 times, check that we still have something, then
410 ;; CDR the final time.
412 ;; If START was zero, the list may be empty if END is NIL or
413 ;; also zero.
414 (when (> start 1)
415 (setf pointer (nthcdr (1- start) pointer)))
416 (if pointer
417 (pop pointer)
418 (oops)))
419 (if end
420 (let ((n (- end start)))
421 (declare (integer n))
422 (when (minusp n)
423 (oops))
424 (when (plusp n)
425 (let* ((head (list nil))
426 (tail head))
427 (macrolet ((pop-one ()
428 `(let ((tmp (list (pop pointer))))
429 (setf (cdr tail) tmp
430 tail tmp))))
431 ;; Bignum case
432 (loop until (fixnump n)
433 do (pop-one)
434 (decf n))
435 ;; Fixnum case, but leave last element, so we should
436 ;; still have something left in the sequence.
437 (let ((m (1- n)))
438 (declare (fixnum m))
439 (loop repeat m
440 do (pop-one)))
441 (unless pointer
442 (oops))
443 ;; OK, pop the last one.
444 (pop-one)
445 (cdr head)))))
446 (loop while pointer
447 collect (pop pointer))))))
449 (defun subseq (sequence start &optional end)
450 #!+sb-doc
451 "Return a copy of a subsequence of SEQUENCE starting with element number
452 START and continuing to the end of SEQUENCE or the optional END."
453 (seq-dispatch sequence
454 (list-subseq* sequence start end)
455 (vector-subseq* sequence start end)
456 (sb!sequence:subseq sequence start end)))
458 ;;;; COPY-SEQ
460 (defun copy-seq (sequence)
461 #!+sb-doc "Return a copy of SEQUENCE which is EQUAL to SEQUENCE but not EQ."
462 (seq-dispatch sequence
463 (list-copy-seq* sequence)
464 (vector-subseq* sequence 0 nil)
465 (sb!sequence:copy-seq sequence)))
467 (defun list-copy-seq* (sequence)
468 (!copy-list-macro sequence :check-proper-list t))
470 ;;;; FILL
472 (defun list-fill* (sequence item start end)
473 (declare (type list sequence)
474 (type unsigned-byte start)
475 (type (or null unsigned-byte) end))
476 (flet ((oops ()
477 (sequence-bounding-indices-bad-error sequence start end)))
478 (let ((pointer sequence))
479 (unless (zerop start)
480 ;; If START > 0 the list cannot be empty. So CDR down to it
481 ;; START-1 times, check that we still have something, then CDR
482 ;; the final time.
484 ;; If START was zero, the list may be empty if END is NIL or
485 ;; also zero.
486 (unless (= start 1)
487 (setf pointer (nthcdr (1- start) pointer)))
488 (if pointer
489 (pop pointer)
490 (oops)))
491 (if end
492 (let ((n (- end start)))
493 (declare (integer n))
494 (when (minusp n)
495 (oops))
496 (when (plusp n)
497 (loop repeat n
498 do (setf pointer (cdr (rplaca pointer item))))))
499 (loop while pointer
500 do (setf pointer (cdr (rplaca pointer item)))))))
501 sequence)
503 (defun vector-fill* (sequence item start end)
504 (with-array-data ((data sequence)
505 (start start)
506 (end end)
507 :force-inline t
508 :check-fill-pointer t)
509 (let ((setter (!find-data-vector-setter data)))
510 (declare (optimize (speed 3) (safety 0)))
511 (do ((index start (1+ index)))
512 ((= index end) sequence)
513 (declare (index index))
514 (funcall setter data index item)))))
516 (defun string-fill* (sequence item start end)
517 (declare (string sequence))
518 (with-array-data ((data sequence)
519 (start start)
520 (end end)
521 :force-inline t
522 :check-fill-pointer t)
523 (macrolet ((frob ()
524 `(locally (declare (optimize (safety 0) (speed 3)))
525 (do ((i start (1+ i)))
526 ((= i end) sequence)
527 (declare (index i))
528 (setf (aref data i) item)))))
529 (etypecase data
530 #!+sb-unicode
531 ((simple-array character (*))
532 (let ((item (locally (declare (optimize (safety 3)))
533 (the character item))))
534 (frob)))
535 ((simple-array base-char (*))
536 (let ((item (locally (declare (optimize (safety 3)))
537 (the base-char item))))
538 (frob)))))))
540 (defun fill (sequence item &key (start 0) end)
541 #!+sb-doc
542 "Replace the specified elements of SEQUENCE with ITEM."
543 (seq-dispatch sequence
544 (list-fill* sequence item start end)
545 (vector-fill* sequence item start end)
546 (sb!sequence:fill sequence item
547 :start start
548 :end (%check-generic-sequence-bounds sequence start end))))
550 ;;;; REPLACE
552 (eval-when (:compile-toplevel :execute)
554 ;;; If we are copying around in the same vector, be careful not to copy the
555 ;;; same elements over repeatedly. We do this by copying backwards.
556 (sb!xc:defmacro mumble-replace-from-mumble ()
557 `(if (and (eq target-sequence source-sequence) (> target-start source-start))
558 (let ((nelts (min (- target-end target-start)
559 (- source-end source-start))))
560 (do ((target-index (+ (the fixnum target-start) (the fixnum nelts) -1)
561 (1- target-index))
562 (source-index (+ (the fixnum source-start) (the fixnum nelts) -1)
563 (1- source-index)))
564 ((= target-index (the fixnum (1- target-start))) target-sequence)
565 (declare (fixnum target-index source-index))
566 ;; disable bounds checking
567 (declare (optimize (safety 0)))
568 (setf (aref target-sequence target-index)
569 (aref source-sequence source-index))))
570 (do ((target-index target-start (1+ target-index))
571 (source-index source-start (1+ source-index)))
572 ((or (= target-index (the fixnum target-end))
573 (= source-index (the fixnum source-end)))
574 target-sequence)
575 (declare (fixnum target-index source-index))
576 ;; disable bounds checking
577 (declare (optimize (safety 0)))
578 (setf (aref target-sequence target-index)
579 (aref source-sequence source-index)))))
581 (sb!xc:defmacro list-replace-from-list ()
582 `(if (and (eq target-sequence source-sequence) (> target-start source-start))
583 (let ((new-elts (subseq source-sequence source-start
584 (+ (the fixnum source-start)
585 (the fixnum
586 (min (- (the fixnum target-end)
587 (the fixnum target-start))
588 (- (the fixnum source-end)
589 (the fixnum source-start))))))))
590 (do ((n new-elts (cdr n))
591 (o (nthcdr target-start target-sequence) (cdr o)))
592 ((null n) target-sequence)
593 (rplaca o (car n))))
594 (do ((target-index target-start (1+ target-index))
595 (source-index source-start (1+ source-index))
596 (target-sequence-ref (nthcdr target-start target-sequence)
597 (cdr target-sequence-ref))
598 (source-sequence-ref (nthcdr source-start source-sequence)
599 (cdr source-sequence-ref)))
600 ((or (= target-index (the fixnum target-end))
601 (= source-index (the fixnum source-end))
602 (null target-sequence-ref) (null source-sequence-ref))
603 target-sequence)
604 (declare (fixnum target-index source-index))
605 (rplaca target-sequence-ref (car source-sequence-ref)))))
607 (sb!xc:defmacro list-replace-from-mumble ()
608 `(do ((target-index target-start (1+ target-index))
609 (source-index source-start (1+ source-index))
610 (target-sequence-ref (nthcdr target-start target-sequence)
611 (cdr target-sequence-ref)))
612 ((or (= target-index (the fixnum target-end))
613 (= source-index (the fixnum source-end))
614 (null target-sequence-ref))
615 target-sequence)
616 (declare (fixnum source-index target-index))
617 (rplaca target-sequence-ref (aref source-sequence source-index))))
619 (sb!xc:defmacro mumble-replace-from-list ()
620 `(do ((target-index target-start (1+ target-index))
621 (source-index source-start (1+ source-index))
622 (source-sequence (nthcdr source-start source-sequence)
623 (cdr source-sequence)))
624 ((or (= target-index (the fixnum target-end))
625 (= source-index (the fixnum source-end))
626 (null source-sequence))
627 target-sequence)
628 (declare (fixnum target-index source-index))
629 (setf (aref target-sequence target-index) (car source-sequence))))
631 ) ; EVAL-WHEN
633 ;;;; The support routines for REPLACE are used by compiler transforms, so we
634 ;;;; worry about dealing with END being supplied or defaulting to NIL
635 ;;;; at this level.
637 (defun list-replace-from-list* (target-sequence source-sequence target-start
638 target-end source-start source-end)
639 (when (null target-end) (setq target-end (length target-sequence)))
640 (when (null source-end) (setq source-end (length source-sequence)))
641 (list-replace-from-list))
643 (defun list-replace-from-vector* (target-sequence source-sequence target-start
644 target-end source-start source-end)
645 (when (null target-end) (setq target-end (length target-sequence)))
646 (when (null source-end) (setq source-end (length source-sequence)))
647 (list-replace-from-mumble))
649 (defun vector-replace-from-list* (target-sequence source-sequence target-start
650 target-end source-start source-end)
651 (when (null target-end) (setq target-end (length target-sequence)))
652 (when (null source-end) (setq source-end (length source-sequence)))
653 (mumble-replace-from-list))
655 (defun vector-replace-from-vector* (target-sequence source-sequence
656 target-start target-end source-start
657 source-end)
658 (when (null target-end) (setq target-end (length target-sequence)))
659 (when (null source-end) (setq source-end (length source-sequence)))
660 (mumble-replace-from-mumble))
662 #!+sb-unicode
663 (defun simple-character-string-replace-from-simple-character-string*
664 (target-sequence source-sequence
665 target-start target-end source-start source-end)
666 (declare (type (simple-array character (*)) target-sequence source-sequence))
667 (when (null target-end) (setq target-end (length target-sequence)))
668 (when (null source-end) (setq source-end (length source-sequence)))
669 (mumble-replace-from-mumble))
671 (define-sequence-traverser replace
672 (sequence1 sequence2 &rest args &key start1 end1 start2 end2)
673 #!+sb-doc
674 "The target sequence is destructively modified by copying successive
675 elements into it from the source sequence."
676 (declare (truly-dynamic-extent args))
677 (let* (;; KLUDGE: absent either rewriting FOO-REPLACE-FROM-BAR, or
678 ;; excessively polluting DEFINE-SEQUENCE-TRAVERSER, we rebind
679 ;; these things here so that legacy code gets the names it's
680 ;; expecting. We could use &AUX instead :-/.
681 (target-sequence sequence1)
682 (source-sequence sequence2)
683 (target-start start1)
684 (source-start start2)
685 (target-end (or end1 length1))
686 (source-end (or end2 length2)))
687 (seq-dispatch target-sequence
688 (seq-dispatch source-sequence
689 (list-replace-from-list)
690 (list-replace-from-mumble)
691 (apply #'sb!sequence:replace sequence1 sequence2 args))
692 (seq-dispatch source-sequence
693 (mumble-replace-from-list)
694 (mumble-replace-from-mumble)
695 (apply #'sb!sequence:replace sequence1 sequence2 args))
696 (apply #'sb!sequence:replace sequence1 sequence2 args))))
698 ;;;; REVERSE
700 (eval-when (:compile-toplevel :execute)
702 (sb!xc:defmacro vector-reverse (sequence)
703 `(let ((length (length ,sequence)))
704 (declare (fixnum length))
705 (do ((forward-index 0 (1+ forward-index))
706 (backward-index (1- length) (1- backward-index))
707 (new-sequence (%make-sequence-like sequence length)))
708 ((= forward-index length) new-sequence)
709 (declare (fixnum forward-index backward-index))
710 (setf (aref new-sequence forward-index)
711 (aref ,sequence backward-index)))))
713 (sb!xc:defmacro list-reverse-macro (sequence)
714 `(do ((new-list ()))
715 ((endp ,sequence) new-list)
716 (push (pop ,sequence) new-list)))
718 ) ; EVAL-WHEN
720 (defun reverse (sequence)
721 #!+sb-doc
722 "Return a new sequence containing the same elements but in reverse order."
723 (seq-dispatch sequence
724 (list-reverse* sequence)
725 (vector-reverse* sequence)
726 (sb!sequence:reverse sequence)))
728 ;;; internal frobs
730 (defun list-reverse* (sequence)
731 (list-reverse-macro sequence))
733 (defun vector-reverse* (sequence)
734 (vector-reverse sequence))
736 ;;;; NREVERSE
738 (eval-when (:compile-toplevel :execute)
740 (sb!xc:defmacro vector-nreverse (sequence)
741 `(let ((length (length (the vector ,sequence))))
742 (when (>= length 2)
743 (do ((left-index 0 (1+ left-index))
744 (right-index (1- length) (1- right-index)))
745 ((<= right-index left-index))
746 (declare (type index left-index right-index))
747 (rotatef (aref ,sequence left-index)
748 (aref ,sequence right-index))))
749 ,sequence))
751 (sb!xc:defmacro list-nreverse-macro (list)
752 `(do ((1st (cdr ,list) (if (endp 1st) 1st (cdr 1st)))
753 (2nd ,list 1st)
754 (3rd '() 2nd))
755 ((atom 2nd) 3rd)
756 (rplacd 2nd 3rd)))
758 ) ; EVAL-WHEN
760 (defun list-nreverse* (sequence)
761 (list-nreverse-macro sequence))
763 (defun vector-nreverse* (sequence)
764 (vector-nreverse sequence))
766 (defun nreverse (sequence)
767 #!+sb-doc
768 "Return a sequence of the same elements in reverse order; the argument
769 is destroyed."
770 (seq-dispatch sequence
771 (list-nreverse* sequence)
772 (vector-nreverse* sequence)
773 (sb!sequence:nreverse sequence)))
775 ;;;; CONCATENATE
777 (defmacro sb!sequence:dosequence ((e sequence &optional return) &body body)
778 (multiple-value-bind (forms decls) (parse-body body :doc-string-allowed nil)
779 (let ((s sequence)
780 (sequence (gensym "SEQUENCE")))
781 `(block nil
782 (let ((,sequence ,s))
783 (seq-dispatch ,sequence
784 (dolist (,e ,sequence ,return) ,@body)
785 (dovector (,e ,sequence ,return) ,@body)
786 (multiple-value-bind (state limit from-end step endp elt)
787 (sb!sequence:make-sequence-iterator ,sequence)
788 (do ((state state (funcall step ,sequence state from-end)))
789 ((funcall endp ,sequence state limit from-end)
790 (let ((,e nil))
791 ,@(filter-dolist-declarations decls)
793 ,return))
794 (let ((,e (funcall elt ,sequence state)))
795 ,@decls
796 (tagbody
797 ,@forms))))))))))
799 (eval-when (:compile-toplevel :execute)
801 (sb!xc:defmacro concatenate-to-list (sequences)
802 `(let ((result (list nil)))
803 (do ((sequences ,sequences (cdr sequences))
804 (splice result))
805 ((null sequences) (cdr result))
806 (let ((sequence (car sequences)))
807 (sb!sequence:dosequence (e sequence)
808 (setq splice (cdr (rplacd splice (list e)))))))))
810 (sb!xc:defmacro concatenate-to-mumble (output-type-spec sequences)
811 `(do ((seqs ,sequences (cdr seqs))
812 (total-length 0)
813 (lengths ()))
814 ((null seqs)
815 (do ((sequences ,sequences (cdr sequences))
816 (lengths lengths (cdr lengths))
817 (index 0)
818 (result (make-sequence ,output-type-spec total-length)))
819 ((= index total-length) result)
820 (declare (fixnum index))
821 (let ((sequence (car sequences)))
822 (sb!sequence:dosequence (e sequence)
823 (setf (aref result index) e)
824 (incf index)))))
825 (let ((length (length (car seqs))))
826 (declare (fixnum length))
827 (setq lengths (nconc lengths (list length)))
828 (setq total-length (+ total-length length)))))
830 ) ; EVAL-WHEN
832 (defun concatenate (output-type-spec &rest sequences)
833 #!+sb-doc
834 "Return a new sequence of all the argument sequences concatenated together
835 which shares no structure with the original argument sequences of the
836 specified OUTPUT-TYPE-SPEC."
837 (let ((type (specifier-type output-type-spec)))
838 (cond
839 ((csubtypep type (specifier-type 'list))
840 (cond
841 ((type= type (specifier-type 'list))
842 (apply #'concat-to-list* sequences))
843 ((eq type *empty-type*)
844 (bad-sequence-type-error nil))
845 ((type= type (specifier-type 'null))
846 (if (every (lambda (x) (or (null x)
847 (and (vectorp x) (= (length x) 0))))
848 sequences)
849 'nil
850 (sequence-type-length-mismatch-error
851 type
852 ;; FIXME: circular list issues.
853 (reduce #'+ sequences :key #'length))))
854 ((cons-type-p type)
855 (multiple-value-bind (min exactp)
856 (sb!kernel::cons-type-length-info type)
857 (let ((length (reduce #'+ sequences :key #'length)))
858 (if exactp
859 (unless (= length min)
860 (sequence-type-length-mismatch-error type length))
861 (unless (>= length min)
862 (sequence-type-length-mismatch-error type length)))
863 (apply #'concat-to-list* sequences))))
864 (t (sequence-type-too-hairy (type-specifier type)))))
865 ((csubtypep type (specifier-type 'vector))
866 (apply #'concat-to-simple* output-type-spec sequences))
867 ((and (csubtypep type (specifier-type 'sequence))
868 (find-class output-type-spec nil))
869 (coerce (apply #'concat-to-simple* 'vector sequences) output-type-spec))
871 (bad-sequence-type-error output-type-spec)))))
873 ;;; internal frobs
874 ;;; FIXME: These are weird. They're never called anywhere except in
875 ;;; CONCATENATE. It seems to me that the macros ought to just
876 ;;; be expanded directly in CONCATENATE, or in CONCATENATE-STRING
877 ;;; and CONCATENATE-LIST variants. Failing that, these ought to be local
878 ;;; functions (FLET).
879 (defun concat-to-list* (&rest sequences)
880 (concatenate-to-list sequences))
881 (defun concat-to-simple* (type &rest sequences)
882 (concatenate-to-mumble type sequences))
884 ;;;; MAP and MAP-INTO
886 ;;; helper functions to handle arity-1 subcases of MAP
887 (declaim (ftype (function (function sequence) list) %map-list-arity-1))
888 (declaim (ftype (function (function sequence) simple-vector)
889 %map-simple-vector-arity-1))
890 (defun %map-to-list-arity-1 (fun sequence)
891 (let ((reversed-result nil)
892 (really-fun (%coerce-callable-to-fun fun)))
893 (sb!sequence:dosequence (element sequence)
894 (push (funcall really-fun element)
895 reversed-result))
896 (nreverse reversed-result)))
897 (defun %map-to-simple-vector-arity-1 (fun sequence)
898 (let ((result (make-array (length sequence)))
899 (index 0)
900 (really-fun (%coerce-callable-to-fun fun)))
901 (declare (type index index))
902 (sb!sequence:dosequence (element sequence)
903 (setf (aref result index)
904 (funcall really-fun element))
905 (incf index))
906 result))
907 (defun %map-for-effect-arity-1 (fun sequence)
908 (let ((really-fun (%coerce-callable-to-fun fun)))
909 (sb!sequence:dosequence (element sequence)
910 (funcall really-fun element)))
911 nil)
913 (declaim (maybe-inline %map-for-effect))
914 (defun %map-for-effect (fun sequences)
915 (declare (type function fun) (type list sequences))
916 (let ((%sequences sequences)
917 (%iters (mapcar (lambda (s)
918 (seq-dispatch s
921 (multiple-value-list
922 (sb!sequence:make-sequence-iterator s))))
923 sequences))
924 (%apply-args (make-list (length sequences))))
925 ;; this is almost efficient (except in the general case where we
926 ;; trampoline to MAKE-SEQUENCE-ITERATOR; if we had DX allocation
927 ;; of MAKE-LIST, the whole of %MAP would be cons-free.
928 (declare (type list %sequences %iters %apply-args))
929 (loop
930 (do ((in-sequences %sequences (cdr in-sequences))
931 (in-iters %iters (cdr in-iters))
932 (in-apply-args %apply-args (cdr in-apply-args)))
933 ((null in-sequences) (apply fun %apply-args))
934 (let ((i (car in-iters)))
935 (declare (type (or list index) i))
936 (cond
937 ((listp (car in-sequences))
938 (if (null i)
939 (return-from %map-for-effect nil)
940 (setf (car in-apply-args) (car i)
941 (car in-iters) (cdr i))))
942 ((typep i 'index)
943 (let ((v (the vector (car in-sequences))))
944 (if (>= i (length v))
945 (return-from %map-for-effect nil)
946 (setf (car in-apply-args) (aref v i)
947 (car in-iters) (1+ i)))))
949 (destructuring-bind (state limit from-end step endp elt &rest ignore)
951 (declare (type function step endp elt)
952 (ignore ignore))
953 (let ((s (car in-sequences)))
954 (if (funcall endp s state limit from-end)
955 (return-from %map-for-effect nil)
956 (progn
957 (setf (car in-apply-args) (funcall elt s state))
958 (setf (caar in-iters) (funcall step s state from-end)))))))))))))
959 (defun %map-to-list (fun sequences)
960 (declare (type function fun)
961 (type list sequences))
962 (let ((result nil))
963 (flet ((f (&rest args)
964 (declare (truly-dynamic-extent args))
965 (push (apply fun args) result)))
966 (declare (truly-dynamic-extent #'f))
967 (%map-for-effect #'f sequences))
968 (nreverse result)))
969 (defun %map-to-vector (output-type-spec fun sequences)
970 (declare (type function fun)
971 (type list sequences))
972 (let ((min-len 0))
973 (flet ((f (&rest args)
974 (declare (truly-dynamic-extent args))
975 (declare (ignore args))
976 (incf min-len)))
977 (declare (truly-dynamic-extent #'f))
978 (%map-for-effect #'f sequences))
979 (let ((result (make-sequence output-type-spec min-len))
980 (i 0))
981 (declare (type (simple-array * (*)) result))
982 (flet ((f (&rest args)
983 (declare (truly-dynamic-extent args))
984 (setf (aref result i) (apply fun args))
985 (incf i)))
986 (declare (truly-dynamic-extent #'f))
987 (%map-for-effect #'f sequences))
988 result)))
989 (defun %map-to-sequence (result-type fun sequences)
990 (declare (type function fun)
991 (type list sequences))
992 (let ((min-len 0))
993 (flet ((f (&rest args)
994 (declare (truly-dynamic-extent args))
995 (declare (ignore args))
996 (incf min-len)))
997 (declare (truly-dynamic-extent #'f))
998 (%map-for-effect #'f sequences))
999 (let ((result (make-sequence result-type min-len)))
1000 (multiple-value-bind (state limit from-end step endp elt setelt)
1001 (sb!sequence:make-sequence-iterator result)
1002 (declare (ignore limit endp elt))
1003 (flet ((f (&rest args)
1004 (declare (truly-dynamic-extent args))
1005 (funcall setelt (apply fun args) result state)
1006 (setq state (funcall step result state from-end))))
1007 (declare (truly-dynamic-extent #'f))
1008 (%map-for-effect #'f sequences)))
1009 result)))
1011 ;;; %MAP is just MAP without the final just-to-be-sure check that
1012 ;;; length of the output sequence matches any length specified
1013 ;;; in RESULT-TYPE.
1014 (defun %map (result-type function first-sequence &rest more-sequences)
1015 (let ((really-fun (%coerce-callable-to-fun function))
1016 (type (specifier-type result-type)))
1017 ;; Handle one-argument MAP NIL specially, using ETYPECASE to turn
1018 ;; it into something which can be DEFTRANSFORMed away. (It's
1019 ;; fairly important to handle this case efficiently, since
1020 ;; quantifiers like SOME are transformed into this case, and since
1021 ;; there's no consing overhead to dwarf our inefficiency.)
1022 (if (and (null more-sequences)
1023 (null result-type))
1024 (%map-for-effect-arity-1 really-fun first-sequence)
1025 ;; Otherwise, use the industrial-strength full-generality
1026 ;; approach, consing O(N-ARGS) temporary storage (which can have
1027 ;; DYNAMIC-EXTENT), then using O(N-ARGS * RESULT-LENGTH) time.
1028 (let ((sequences (cons first-sequence more-sequences)))
1029 (cond
1030 ((eq type *empty-type*) (%map-for-effect really-fun sequences))
1031 ((csubtypep type (specifier-type 'list))
1032 (%map-to-list really-fun sequences))
1033 ((csubtypep type (specifier-type 'vector))
1034 (%map-to-vector result-type really-fun sequences))
1035 ((and (csubtypep type (specifier-type 'sequence))
1036 (find-class result-type nil))
1037 (%map-to-sequence result-type really-fun sequences))
1039 (bad-sequence-type-error result-type)))))))
1041 (defun map (result-type function first-sequence &rest more-sequences)
1042 (apply #'%map
1043 result-type
1044 function
1045 first-sequence
1046 more-sequences))
1048 ;;; KLUDGE: MAP has been rewritten substantially since the fork from
1049 ;;; CMU CL in order to give reasonable performance, but this
1050 ;;; implementation of MAP-INTO still has the same problems as the old
1051 ;;; MAP code. Ideally, MAP-INTO should be rewritten to be efficient in
1052 ;;; the same way that the corresponding cases of MAP have been
1053 ;;; rewritten. Instead of doing it now, though, it's easier to wait
1054 ;;; until we have DYNAMIC-EXTENT, at which time it should become
1055 ;;; extremely easy to define a reasonably efficient MAP-INTO in terms
1056 ;;; of (MAP NIL ..). -- WHN 20000920
1057 (defun map-into (result-sequence function &rest sequences)
1058 (let* ((fp-result
1059 (and (arrayp result-sequence)
1060 (array-has-fill-pointer-p result-sequence)))
1061 (len (apply #'min
1062 (if fp-result
1063 (array-dimension result-sequence 0)
1064 (length result-sequence))
1065 (mapcar #'length sequences))))
1067 (when fp-result
1068 (setf (fill-pointer result-sequence) len))
1070 (let ((really-fun (%coerce-callable-to-fun function)))
1071 (dotimes (index len)
1072 (setf (elt result-sequence index)
1073 (apply really-fun
1074 (mapcar (lambda (seq) (elt seq index))
1075 sequences))))))
1076 result-sequence)
1078 ;;;; quantifiers
1080 ;;; We borrow the logic from (MAP NIL ..) to handle iteration over
1081 ;;; arbitrary sequence arguments, both in the full call case and in
1082 ;;; the open code case.
1083 (macrolet ((defquantifier (name found-test found-result
1084 &key doc (unfound-result (not found-result)))
1085 `(progn
1086 ;; KLUDGE: It would be really nice if we could simply
1087 ;; do something like this
1088 ;; (declaim (inline ,name))
1089 ;; (defun ,name (pred first-seq &rest more-seqs)
1090 ;; ,doc
1091 ;; (flet ((map-me (&rest rest)
1092 ;; (let ((pred-value (apply pred rest)))
1093 ;; (,found-test pred-value
1094 ;; (return-from ,name
1095 ;; ,found-result)))))
1096 ;; (declare (inline map-me))
1097 ;; (apply #'map nil #'map-me first-seq more-seqs)
1098 ;; ,unfound-result))
1099 ;; but Python doesn't seem to be smart enough about
1100 ;; inlining and APPLY to recognize that it can use
1101 ;; the DEFTRANSFORM for MAP in the resulting inline
1102 ;; expansion. I don't have any appetite for deep
1103 ;; compiler hacking right now, so I'll just work
1104 ;; around the apparent problem by using a compiler
1105 ;; macro instead. -- WHN 20000410
1106 (defun ,name (pred first-seq &rest more-seqs)
1107 #!+sb-doc ,doc
1108 (flet ((map-me (&rest rest)
1109 (let ((pred-value (apply pred rest)))
1110 (,found-test pred-value
1111 (return-from ,name
1112 ,found-result)))))
1113 (declare (inline map-me))
1114 (apply #'map nil #'map-me first-seq more-seqs)
1115 ,unfound-result))
1116 ;; KLUDGE: It would be more obviously correct -- but
1117 ;; also significantly messier -- for PRED-VALUE to be
1118 ;; a gensym. However, a private symbol really does
1119 ;; seem to be good enough; and anyway the really
1120 ;; obviously correct solution is to make Python smart
1121 ;; enough that we can use an inline function instead
1122 ;; of a compiler macro (as above). -- WHN 20000410
1124 ;; FIXME: The DEFINE-COMPILER-MACRO here can be
1125 ;; important for performance, and it'd be good to have
1126 ;; it be visible throughout the compilation of all the
1127 ;; target SBCL code. That could be done by defining
1128 ;; SB-XC:DEFINE-COMPILER-MACRO and using it here,
1129 ;; moving this DEFQUANTIFIER stuff (and perhaps other
1130 ;; inline definitions in seq.lisp as well) into a new
1131 ;; seq.lisp, and moving remaining target-only stuff
1132 ;; from the old seq.lisp into target-seq.lisp.
1133 (define-compiler-macro ,name (pred first-seq &rest more-seqs)
1134 (let ((elements (make-gensym-list (1+ (length more-seqs))))
1135 (blockname (gensym "BLOCK")))
1136 (once-only ((pred pred))
1137 `(block ,blockname
1138 (map nil
1139 (lambda (,@elements)
1140 (let ((pred-value (funcall ,pred ,@elements)))
1141 (,',found-test pred-value
1142 (return-from ,blockname
1143 ,',found-result))))
1144 ,first-seq
1145 ,@more-seqs)
1146 ,',unfound-result)))))))
1147 (defquantifier some when pred-value :unfound-result nil :doc
1148 "Apply PREDICATE to the 0-indexed elements of the sequences, then
1149 possibly to those with index 1, and so on. Return the first
1150 non-NIL value encountered, or NIL if the end of any sequence is reached.")
1151 (defquantifier every unless nil :doc
1152 "Apply PREDICATE to the 0-indexed elements of the sequences, then
1153 possibly to those with index 1, and so on. Return NIL as soon
1154 as any invocation of PREDICATE returns NIL, or T if every invocation
1155 is non-NIL.")
1156 (defquantifier notany when nil :doc
1157 "Apply PREDICATE to the 0-indexed elements of the sequences, then
1158 possibly to those with index 1, and so on. Return NIL as soon
1159 as any invocation of PREDICATE returns a non-NIL value, or T if the end
1160 of any sequence is reached.")
1161 (defquantifier notevery unless t :doc
1162 "Apply PREDICATE to 0-indexed elements of the sequences, then
1163 possibly to those with index 1, and so on. Return T as soon
1164 as any invocation of PREDICATE returns NIL, or NIL if every invocation
1165 is non-NIL."))
1167 ;;;; REDUCE
1169 (eval-when (:compile-toplevel :execute)
1171 (sb!xc:defmacro mumble-reduce (function
1172 sequence
1174 start
1176 initial-value
1177 ref)
1178 `(do ((index ,start (1+ index))
1179 (value ,initial-value))
1180 ((>= index ,end) value)
1181 (setq value (funcall ,function value
1182 (apply-key ,key (,ref ,sequence index))))))
1184 (sb!xc:defmacro mumble-reduce-from-end (function
1185 sequence
1187 start
1189 initial-value
1190 ref)
1191 `(do ((index (1- ,end) (1- index))
1192 (value ,initial-value)
1193 (terminus (1- ,start)))
1194 ((<= index terminus) value)
1195 (setq value (funcall ,function
1196 (apply-key ,key (,ref ,sequence index))
1197 value))))
1199 (sb!xc:defmacro list-reduce (function
1200 sequence
1202 start
1204 initial-value
1205 ivp)
1206 `(let ((sequence (nthcdr ,start ,sequence)))
1207 (do ((count (if ,ivp ,start (1+ ,start))
1208 (1+ count))
1209 (sequence (if ,ivp sequence (cdr sequence))
1210 (cdr sequence))
1211 (value (if ,ivp ,initial-value (apply-key ,key (car sequence)))
1212 (funcall ,function value (apply-key ,key (car sequence)))))
1213 ((>= count ,end) value))))
1215 (sb!xc:defmacro list-reduce-from-end (function
1216 sequence
1218 start
1220 initial-value
1221 ivp)
1222 `(let ((sequence (nthcdr (- (length ,sequence) ,end)
1223 (reverse ,sequence))))
1224 (do ((count (if ,ivp ,start (1+ ,start))
1225 (1+ count))
1226 (sequence (if ,ivp sequence (cdr sequence))
1227 (cdr sequence))
1228 (value (if ,ivp ,initial-value (apply-key ,key (car sequence)))
1229 (funcall ,function (apply-key ,key (car sequence)) value)))
1230 ((>= count ,end) value))))
1232 ) ; EVAL-WHEN
1234 (define-sequence-traverser reduce (function sequence &rest args &key key
1235 from-end start end (initial-value nil ivp))
1236 (declare (type index start))
1237 (declare (truly-dynamic-extent args))
1238 (let ((start start)
1239 (end (or end length)))
1240 (declare (type index start end))
1241 (seq-dispatch sequence
1242 (if (= end start)
1243 (if ivp initial-value (funcall function))
1244 (if from-end
1245 (list-reduce-from-end function sequence key start end
1246 initial-value ivp)
1247 (list-reduce function sequence key start end
1248 initial-value ivp)))
1249 (if (= end start)
1250 (if ivp initial-value (funcall function))
1251 (if from-end
1252 (progn
1253 (when (not ivp)
1254 (setq end (1- (the fixnum end)))
1255 (setq initial-value (apply-key key (aref sequence end))))
1256 (mumble-reduce-from-end function sequence key start end
1257 initial-value aref))
1258 (progn
1259 (when (not ivp)
1260 (setq initial-value (apply-key key (aref sequence start)))
1261 (setq start (1+ start)))
1262 (mumble-reduce function sequence key start end
1263 initial-value aref))))
1264 (apply #'sb!sequence:reduce function sequence args))))
1266 ;;;; DELETE
1268 (eval-when (:compile-toplevel :execute)
1270 (sb!xc:defmacro mumble-delete (pred)
1271 `(do ((index start (1+ index))
1272 (jndex start)
1273 (number-zapped 0))
1274 ((or (= index (the fixnum end)) (= number-zapped count))
1275 (do ((index index (1+ index)) ; Copy the rest of the vector.
1276 (jndex jndex (1+ jndex)))
1277 ((= index (the fixnum length))
1278 (shrink-vector sequence jndex))
1279 (declare (fixnum index jndex))
1280 (setf (aref sequence jndex) (aref sequence index))))
1281 (declare (fixnum index jndex number-zapped))
1282 (setf (aref sequence jndex) (aref sequence index))
1283 (if ,pred
1284 (incf number-zapped)
1285 (incf jndex))))
1287 (sb!xc:defmacro mumble-delete-from-end (pred)
1288 `(do ((index (1- (the fixnum end)) (1- index)) ; Find the losers.
1289 (number-zapped 0)
1290 (losers ())
1291 this-element
1292 (terminus (1- start)))
1293 ((or (= index terminus) (= number-zapped count))
1294 (do ((losers losers) ; Delete the losers.
1295 (index start (1+ index))
1296 (jndex start))
1297 ((or (null losers) (= index (the fixnum end)))
1298 (do ((index index (1+ index)) ; Copy the rest of the vector.
1299 (jndex jndex (1+ jndex)))
1300 ((= index (the fixnum length))
1301 (shrink-vector sequence jndex))
1302 (declare (fixnum index jndex))
1303 (setf (aref sequence jndex) (aref sequence index))))
1304 (declare (fixnum index jndex))
1305 (setf (aref sequence jndex) (aref sequence index))
1306 (if (= index (the fixnum (car losers)))
1307 (pop losers)
1308 (incf jndex))))
1309 (declare (fixnum index number-zapped terminus))
1310 (setq this-element (aref sequence index))
1311 (when ,pred
1312 (incf number-zapped)
1313 (push index losers))))
1315 (sb!xc:defmacro normal-mumble-delete ()
1316 `(mumble-delete
1317 (if test-not
1318 (not (funcall test-not item (apply-key key (aref sequence index))))
1319 (funcall test item (apply-key key (aref sequence index))))))
1321 (sb!xc:defmacro normal-mumble-delete-from-end ()
1322 `(mumble-delete-from-end
1323 (if test-not
1324 (not (funcall test-not item (apply-key key this-element)))
1325 (funcall test item (apply-key key this-element)))))
1327 (sb!xc:defmacro list-delete (pred)
1328 `(let ((handle (cons nil sequence)))
1329 (do ((current (nthcdr start sequence) (cdr current))
1330 (previous (nthcdr start handle))
1331 (index start (1+ index))
1332 (number-zapped 0))
1333 ((or (= index (the fixnum end)) (= number-zapped count))
1334 (cdr handle))
1335 (declare (fixnum index number-zapped))
1336 (cond (,pred
1337 (rplacd previous (cdr current))
1338 (incf number-zapped))
1340 (setq previous (cdr previous)))))))
1342 (sb!xc:defmacro list-delete-from-end (pred)
1343 `(let* ((reverse (nreverse (the list sequence)))
1344 (handle (cons nil reverse)))
1345 (do ((current (nthcdr (- (the fixnum length) (the fixnum end)) reverse)
1346 (cdr current))
1347 (previous (nthcdr (- (the fixnum length) (the fixnum end)) handle))
1348 (index start (1+ index))
1349 (number-zapped 0))
1350 ((or (= index (the fixnum end)) (= number-zapped count))
1351 (nreverse (cdr handle)))
1352 (declare (fixnum index number-zapped))
1353 (cond (,pred
1354 (rplacd previous (cdr current))
1355 (incf number-zapped))
1357 (setq previous (cdr previous)))))))
1359 (sb!xc:defmacro normal-list-delete ()
1360 '(list-delete
1361 (if test-not
1362 (not (funcall test-not item (apply-key key (car current))))
1363 (funcall test item (apply-key key (car current))))))
1365 (sb!xc:defmacro normal-list-delete-from-end ()
1366 '(list-delete-from-end
1367 (if test-not
1368 (not (funcall test-not item (apply-key key (car current))))
1369 (funcall test item (apply-key key (car current))))))
1371 ) ; EVAL-WHEN
1373 (define-sequence-traverser delete
1374 (item sequence &rest args &key from-end test test-not start
1375 end count key)
1376 #!+sb-doc
1377 "Return a sequence formed by destructively removing the specified ITEM from
1378 the given SEQUENCE."
1379 (declare (fixnum start))
1380 (declare (truly-dynamic-extent args))
1381 (let ((end (or end length)))
1382 (declare (type index end))
1383 (seq-dispatch sequence
1384 (if from-end
1385 (normal-list-delete-from-end)
1386 (normal-list-delete))
1387 (if from-end
1388 (normal-mumble-delete-from-end)
1389 (normal-mumble-delete))
1390 (apply #'sb!sequence:delete item sequence args))))
1392 (eval-when (:compile-toplevel :execute)
1394 (sb!xc:defmacro if-mumble-delete ()
1395 `(mumble-delete
1396 (funcall predicate (apply-key key (aref sequence index)))))
1398 (sb!xc:defmacro if-mumble-delete-from-end ()
1399 `(mumble-delete-from-end
1400 (funcall predicate (apply-key key this-element))))
1402 (sb!xc:defmacro if-list-delete ()
1403 '(list-delete
1404 (funcall predicate (apply-key key (car current)))))
1406 (sb!xc:defmacro if-list-delete-from-end ()
1407 '(list-delete-from-end
1408 (funcall predicate (apply-key key (car current)))))
1410 ) ; EVAL-WHEN
1412 (define-sequence-traverser delete-if
1413 (predicate sequence &rest args &key from-end start key end count)
1414 #!+sb-doc
1415 "Return a sequence formed by destructively removing the elements satisfying
1416 the specified PREDICATE from the given SEQUENCE."
1417 (declare (fixnum start))
1418 (declare (truly-dynamic-extent args))
1419 (let ((end (or end length)))
1420 (declare (type index end))
1421 (seq-dispatch sequence
1422 (if from-end
1423 (if-list-delete-from-end)
1424 (if-list-delete))
1425 (if from-end
1426 (if-mumble-delete-from-end)
1427 (if-mumble-delete))
1428 (apply #'sb!sequence:delete-if predicate sequence args))))
1430 (eval-when (:compile-toplevel :execute)
1432 (sb!xc:defmacro if-not-mumble-delete ()
1433 `(mumble-delete
1434 (not (funcall predicate (apply-key key (aref sequence index))))))
1436 (sb!xc:defmacro if-not-mumble-delete-from-end ()
1437 `(mumble-delete-from-end
1438 (not (funcall predicate (apply-key key this-element)))))
1440 (sb!xc:defmacro if-not-list-delete ()
1441 '(list-delete
1442 (not (funcall predicate (apply-key key (car current))))))
1444 (sb!xc:defmacro if-not-list-delete-from-end ()
1445 '(list-delete-from-end
1446 (not (funcall predicate (apply-key key (car current))))))
1448 ) ; EVAL-WHEN
1450 (define-sequence-traverser delete-if-not
1451 (predicate sequence &rest args &key from-end start end key count)
1452 #!+sb-doc
1453 "Return a sequence formed by destructively removing the elements not
1454 satisfying the specified PREDICATE from the given SEQUENCE."
1455 (declare (fixnum start))
1456 (declare (truly-dynamic-extent args))
1457 (let ((end (or end length)))
1458 (declare (type index end))
1459 (seq-dispatch sequence
1460 (if from-end
1461 (if-not-list-delete-from-end)
1462 (if-not-list-delete))
1463 (if from-end
1464 (if-not-mumble-delete-from-end)
1465 (if-not-mumble-delete))
1466 (apply #'sb!sequence:delete-if-not predicate sequence args))))
1468 ;;;; REMOVE
1470 (eval-when (:compile-toplevel :execute)
1472 ;;; MUMBLE-REMOVE-MACRO does not include (removes) each element that
1473 ;;; satisfies the predicate.
1474 (sb!xc:defmacro mumble-remove-macro (bump left begin finish right pred)
1475 `(do ((index ,begin (,bump index))
1476 (result
1477 (do ((index ,left (,bump index))
1478 (result (%make-sequence-like sequence length)))
1479 ((= index (the fixnum ,begin)) result)
1480 (declare (fixnum index))
1481 (setf (aref result index) (aref sequence index))))
1482 (new-index ,begin)
1483 (number-zapped 0)
1484 (this-element))
1485 ((or (= index (the fixnum ,finish))
1486 (= number-zapped count))
1487 (do ((index index (,bump index))
1488 (new-index new-index (,bump new-index)))
1489 ((= index (the fixnum ,right)) (%shrink-vector result new-index))
1490 (declare (fixnum index new-index))
1491 (setf (aref result new-index) (aref sequence index))))
1492 (declare (fixnum index new-index number-zapped))
1493 (setq this-element (aref sequence index))
1494 (cond (,pred (incf number-zapped))
1495 (t (setf (aref result new-index) this-element)
1496 (setq new-index (,bump new-index))))))
1498 (sb!xc:defmacro mumble-remove (pred)
1499 `(mumble-remove-macro 1+ 0 start end length ,pred))
1501 (sb!xc:defmacro mumble-remove-from-end (pred)
1502 `(let ((sequence (copy-seq sequence)))
1503 (mumble-delete-from-end ,pred)))
1505 (sb!xc:defmacro normal-mumble-remove ()
1506 `(mumble-remove
1507 (if test-not
1508 (not (funcall test-not item (apply-key key this-element)))
1509 (funcall test item (apply-key key this-element)))))
1511 (sb!xc:defmacro normal-mumble-remove-from-end ()
1512 `(mumble-remove-from-end
1513 (if test-not
1514 (not (funcall test-not item (apply-key key this-element)))
1515 (funcall test item (apply-key key this-element)))))
1517 (sb!xc:defmacro if-mumble-remove ()
1518 `(mumble-remove (funcall predicate (apply-key key this-element))))
1520 (sb!xc:defmacro if-mumble-remove-from-end ()
1521 `(mumble-remove-from-end (funcall predicate (apply-key key this-element))))
1523 (sb!xc:defmacro if-not-mumble-remove ()
1524 `(mumble-remove (not (funcall predicate (apply-key key this-element)))))
1526 (sb!xc:defmacro if-not-mumble-remove-from-end ()
1527 `(mumble-remove-from-end
1528 (not (funcall predicate (apply-key key this-element)))))
1530 ;;; LIST-REMOVE-MACRO does not include (removes) each element that satisfies
1531 ;;; the predicate.
1532 (sb!xc:defmacro list-remove-macro (pred reverse?)
1533 `(let* ((sequence ,(if reverse?
1534 '(reverse (the list sequence))
1535 'sequence))
1536 (%start ,(if reverse? '(- length end) 'start))
1537 (%end ,(if reverse? '(- length start) 'end))
1538 (splice (list nil))
1539 (results (do ((index 0 (1+ index))
1540 (before-start splice))
1541 ((= index (the fixnum %start)) before-start)
1542 (declare (fixnum index))
1543 (setq splice
1544 (cdr (rplacd splice (list (pop sequence))))))))
1545 (do ((index %start (1+ index))
1546 (this-element)
1547 (number-zapped 0))
1548 ((or (= index (the fixnum %end)) (= number-zapped count))
1549 (do ((index index (1+ index)))
1550 ((null sequence)
1551 ,(if reverse?
1552 '(nreverse (the list (cdr results)))
1553 '(cdr results)))
1554 (declare (fixnum index))
1555 (setq splice (cdr (rplacd splice (list (pop sequence)))))))
1556 (declare (fixnum index number-zapped))
1557 (setq this-element (pop sequence))
1558 (if ,pred
1559 (setq number-zapped (1+ number-zapped))
1560 (setq splice (cdr (rplacd splice (list this-element))))))))
1562 (sb!xc:defmacro list-remove (pred)
1563 `(list-remove-macro ,pred nil))
1565 (sb!xc:defmacro list-remove-from-end (pred)
1566 `(list-remove-macro ,pred t))
1568 (sb!xc:defmacro normal-list-remove ()
1569 `(list-remove
1570 (if test-not
1571 (not (funcall test-not item (apply-key key this-element)))
1572 (funcall test item (apply-key key this-element)))))
1574 (sb!xc:defmacro normal-list-remove-from-end ()
1575 `(list-remove-from-end
1576 (if test-not
1577 (not (funcall test-not item (apply-key key this-element)))
1578 (funcall test item (apply-key key this-element)))))
1580 (sb!xc:defmacro if-list-remove ()
1581 `(list-remove
1582 (funcall predicate (apply-key key this-element))))
1584 (sb!xc:defmacro if-list-remove-from-end ()
1585 `(list-remove-from-end
1586 (funcall predicate (apply-key key this-element))))
1588 (sb!xc:defmacro if-not-list-remove ()
1589 `(list-remove
1590 (not (funcall predicate (apply-key key this-element)))))
1592 (sb!xc:defmacro if-not-list-remove-from-end ()
1593 `(list-remove-from-end
1594 (not (funcall predicate (apply-key key this-element)))))
1596 ) ; EVAL-WHEN
1598 (define-sequence-traverser remove
1599 (item sequence &rest args &key from-end test test-not start
1600 end count key)
1601 #!+sb-doc
1602 "Return a copy of SEQUENCE with elements satisfying the test (default is
1603 EQL) with ITEM removed."
1604 (declare (fixnum start))
1605 (declare (truly-dynamic-extent args))
1606 (let ((end (or end length)))
1607 (declare (type index end))
1608 (seq-dispatch sequence
1609 (if from-end
1610 (normal-list-remove-from-end)
1611 (normal-list-remove))
1612 (if from-end
1613 (normal-mumble-remove-from-end)
1614 (normal-mumble-remove))
1615 (apply #'sb!sequence:remove item sequence args))))
1617 (define-sequence-traverser remove-if
1618 (predicate sequence &rest args &key from-end start end count key)
1619 #!+sb-doc
1620 "Return a copy of sequence with elements satisfying PREDICATE removed."
1621 (declare (fixnum start))
1622 (declare (truly-dynamic-extent args))
1623 (let ((end (or end length)))
1624 (declare (type index end))
1625 (seq-dispatch sequence
1626 (if from-end
1627 (if-list-remove-from-end)
1628 (if-list-remove))
1629 (if from-end
1630 (if-mumble-remove-from-end)
1631 (if-mumble-remove))
1632 (apply #'sb!sequence:remove-if predicate sequence args))))
1634 (define-sequence-traverser remove-if-not
1635 (predicate sequence &rest args &key from-end start end count key)
1636 #!+sb-doc
1637 "Return a copy of sequence with elements not satisfying PREDICATE removed."
1638 (declare (fixnum start))
1639 (declare (truly-dynamic-extent args))
1640 (let ((end (or end length)))
1641 (declare (type index end))
1642 (seq-dispatch sequence
1643 (if from-end
1644 (if-not-list-remove-from-end)
1645 (if-not-list-remove))
1646 (if from-end
1647 (if-not-mumble-remove-from-end)
1648 (if-not-mumble-remove))
1649 (apply #'sb!sequence:remove-if-not predicate sequence args))))
1651 ;;;; REMOVE-DUPLICATES
1653 ;;; Remove duplicates from a list. If from-end, remove the later duplicates,
1654 ;;; not the earlier ones. Thus if we check from-end we don't copy an item
1655 ;;; if we look into the already copied structure (from after :start) and see
1656 ;;; the item. If we check from beginning we check into the rest of the
1657 ;;; original list up to the :end marker (this we have to do by running a
1658 ;;; do loop down the list that far and using our test.
1659 (defun list-remove-duplicates* (list test test-not start end key from-end)
1660 (declare (fixnum start))
1661 (let* ((result (list ())) ; Put a marker on the beginning to splice with.
1662 (splice result)
1663 (current list)
1664 (end (or end (length list)))
1665 (hash (and (> (- end start) 20)
1666 test
1667 (not key)
1668 (not test-not)
1669 (or (eql test #'eql)
1670 (eql test #'eq)
1671 (eql test #'equal)
1672 (eql test #'equalp))
1673 (make-hash-table :test test :size (- end start)))))
1674 (do ((index 0 (1+ index)))
1675 ((= index start))
1676 (declare (fixnum index))
1677 (setq splice (cdr (rplacd splice (list (car current)))))
1678 (setq current (cdr current)))
1679 (if hash
1680 (do ((index start (1+ index)))
1681 ((or (and end (= index (the fixnum end)))
1682 (atom current)))
1683 (declare (fixnum index))
1684 ;; The hash table contains links from values that are
1685 ;; already in result to the cons cell *preceding* theirs
1686 ;; in the list. That is, for each value v in the list,
1687 ;; v and (cadr (gethash v hash)) are equal under TEST.
1688 (let ((prev (gethash (car current) hash)))
1689 (cond
1690 ((not prev)
1691 (setf (gethash (car current) hash) splice)
1692 (setq splice (cdr (rplacd splice (list (car current))))))
1693 ((not from-end)
1694 (let* ((old (cdr prev))
1695 (next (cdr old)))
1696 (if next
1697 (let ((next-val (car next)))
1698 ;; (assert (eq (gethash next-val hash) old))
1699 (setf (cdr prev) next
1700 (gethash next-val hash) prev
1701 (gethash (car current) hash) splice
1702 splice (cdr (rplacd splice (list (car current))))))
1703 (setf (car old) (car current)))))))
1704 (setq current (cdr current)))
1705 (do ((index start (1+ index)))
1706 ((or (and end (= index (the fixnum end)))
1707 (atom current)))
1708 (declare (fixnum index))
1709 (if (or (and from-end
1710 (not (if test-not
1711 (member (apply-key key (car current))
1712 (nthcdr (1+ start) result)
1713 :test-not test-not
1714 :key key)
1715 (member (apply-key key (car current))
1716 (nthcdr (1+ start) result)
1717 :test test
1718 :key key))))
1719 (and (not from-end)
1720 (not (do ((it (apply-key key (car current)))
1721 (l (cdr current) (cdr l))
1722 (i (1+ index) (1+ i)))
1723 ((or (atom l) (and end (= i (the fixnum end))))
1725 (declare (fixnum i))
1726 (if (if test-not
1727 (not (funcall test-not
1729 (apply-key key (car l))))
1730 (funcall test it (apply-key key (car l))))
1731 (return t))))))
1732 (setq splice (cdr (rplacd splice (list (car current))))))
1733 (setq current (cdr current))))
1734 (do ()
1735 ((atom current))
1736 (setq splice (cdr (rplacd splice (list (car current)))))
1737 (setq current (cdr current)))
1738 (cdr result)))
1740 (defun vector-remove-duplicates* (vector test test-not start end key from-end
1741 &optional (length (length vector)))
1742 (declare (vector vector) (fixnum start length))
1743 (when (null end) (setf end (length vector)))
1744 (let ((result (%make-sequence-like vector length))
1745 (index 0)
1746 (jndex start))
1747 (declare (fixnum index jndex))
1748 (do ()
1749 ((= index start))
1750 (setf (aref result index) (aref vector index))
1751 (setq index (1+ index)))
1752 (do ((elt))
1753 ((= index end))
1754 (setq elt (aref vector index))
1755 (unless (or (and from-end
1756 (if test-not
1757 (position (apply-key key elt) result
1758 :start start :end jndex
1759 :test-not test-not :key key)
1760 (position (apply-key key elt) result
1761 :start start :end jndex
1762 :test test :key key)))
1763 (and (not from-end)
1764 (if test-not
1765 (position (apply-key key elt) vector
1766 :start (1+ index) :end end
1767 :test-not test-not :key key)
1768 (position (apply-key key elt) vector
1769 :start (1+ index) :end end
1770 :test test :key key))))
1771 (setf (aref result jndex) elt)
1772 (setq jndex (1+ jndex)))
1773 (setq index (1+ index)))
1774 (do ()
1775 ((= index length))
1776 (setf (aref result jndex) (aref vector index))
1777 (setq index (1+ index))
1778 (setq jndex (1+ jndex)))
1779 (%shrink-vector result jndex)))
1781 (define-sequence-traverser remove-duplicates
1782 (sequence &rest args &key test test-not start end from-end key)
1783 #!+sb-doc
1784 "The elements of SEQUENCE are compared pairwise, and if any two match,
1785 the one occurring earlier is discarded, unless FROM-END is true, in
1786 which case the one later in the sequence is discarded. The resulting
1787 sequence is returned.
1789 The :TEST-NOT argument is deprecated."
1790 (declare (fixnum start))
1791 (declare (truly-dynamic-extent args))
1792 (seq-dispatch sequence
1793 (if sequence
1794 (list-remove-duplicates* sequence test test-not
1795 start end key from-end))
1796 (vector-remove-duplicates* sequence test test-not start end key from-end)
1797 (apply #'sb!sequence:remove-duplicates sequence args)))
1799 ;;;; DELETE-DUPLICATES
1801 (defun list-delete-duplicates* (list test test-not key from-end start end)
1802 (declare (fixnum start))
1803 (let ((handle (cons nil list)))
1804 (do ((current (nthcdr start list) (cdr current))
1805 (previous (nthcdr start handle))
1806 (index start (1+ index)))
1807 ((or (and end (= index (the fixnum end))) (null current))
1808 (cdr handle))
1809 (declare (fixnum index))
1810 (if (do ((x (if from-end
1811 (nthcdr (1+ start) handle)
1812 (cdr current))
1813 (cdr x))
1814 (i (1+ index) (1+ i)))
1815 ((or (null x)
1816 (and (not from-end) end (= i (the fixnum end)))
1817 (eq x current))
1818 nil)
1819 (declare (fixnum i))
1820 (if (if test-not
1821 (not (funcall test-not
1822 (apply-key key (car current))
1823 (apply-key key (car x))))
1824 (funcall test
1825 (apply-key key (car current))
1826 (apply-key key (car x))))
1827 (return t)))
1828 (rplacd previous (cdr current))
1829 (setq previous (cdr previous))))))
1831 (defun vector-delete-duplicates* (vector test test-not key from-end start end
1832 &optional (length (length vector)))
1833 (declare (vector vector) (fixnum start length))
1834 (when (null end) (setf end (length vector)))
1835 (do ((index start (1+ index))
1836 (jndex start))
1837 ((= index end)
1838 (do ((index index (1+ index)) ; copy the rest of the vector
1839 (jndex jndex (1+ jndex)))
1840 ((= index length)
1841 (shrink-vector vector jndex))
1842 (setf (aref vector jndex) (aref vector index))))
1843 (declare (fixnum index jndex))
1844 (setf (aref vector jndex) (aref vector index))
1845 (unless (if test-not
1846 (position (apply-key key (aref vector index)) vector :key key
1847 :start (if from-end start (1+ index))
1848 :end (if from-end jndex end)
1849 :test-not test-not)
1850 (position (apply-key key (aref vector index)) vector :key key
1851 :start (if from-end start (1+ index))
1852 :end (if from-end jndex end)
1853 :test test))
1854 (setq jndex (1+ jndex)))))
1856 (define-sequence-traverser delete-duplicates
1857 (sequence &rest args &key test test-not start end from-end key)
1858 #!+sb-doc
1859 "The elements of SEQUENCE are examined, and if any two match, one is
1860 discarded. The resulting sequence, which may be formed by destroying the
1861 given sequence, is returned.
1863 The :TEST-NOT argument is deprecated."
1864 (declare (truly-dynamic-extent args))
1865 (seq-dispatch sequence
1866 (if sequence
1867 (list-delete-duplicates* sequence test test-not
1868 key from-end start end))
1869 (vector-delete-duplicates* sequence test test-not key from-end start end)
1870 (apply #'sb!sequence:delete-duplicates sequence args)))
1872 ;;;; SUBSTITUTE
1874 (defun list-substitute* (pred new list start end count key test test-not old)
1875 (declare (fixnum start end count))
1876 (let* ((result (list nil))
1878 (splice result)
1879 (list list)) ; Get a local list for a stepper.
1880 (do ((index 0 (1+ index)))
1881 ((= index start))
1882 (declare (fixnum index))
1883 (setq splice (cdr (rplacd splice (list (car list)))))
1884 (setq list (cdr list)))
1885 (do ((index start (1+ index)))
1886 ((or (= index end) (null list) (= count 0)))
1887 (declare (fixnum index))
1888 (setq elt (car list))
1889 (setq splice
1890 (cdr (rplacd splice
1891 (list
1892 (cond
1893 ((case pred
1894 (normal
1895 (if test-not
1896 (not
1897 (funcall test-not old (apply-key key elt)))
1898 (funcall test old (apply-key key elt))))
1899 (if (funcall test (apply-key key elt)))
1900 (if-not (not (funcall test (apply-key key elt)))))
1901 (decf count)
1902 new)
1903 (t elt))))))
1904 (setq list (cdr list)))
1905 (do ()
1906 ((null list))
1907 (setq splice (cdr (rplacd splice (list (car list)))))
1908 (setq list (cdr list)))
1909 (cdr result)))
1911 ;;; Replace old with new in sequence moving from left to right by incrementer
1912 ;;; on each pass through the loop. Called by all three substitute functions.
1913 (defun vector-substitute* (pred new sequence incrementer left right length
1914 start end count key test test-not old)
1915 (declare (fixnum start count end incrementer right))
1916 (let ((result (%make-sequence-like sequence length))
1917 (index left))
1918 (declare (fixnum index))
1919 (do ()
1920 ((= index start))
1921 (setf (aref result index) (aref sequence index))
1922 (setq index (+ index incrementer)))
1923 (do ((elt))
1924 ((or (= index end) (= count 0)))
1925 (setq elt (aref sequence index))
1926 (setf (aref result index)
1927 (cond ((case pred
1928 (normal
1929 (if test-not
1930 (not (funcall test-not old (apply-key key elt)))
1931 (funcall test old (apply-key key elt))))
1932 (if (funcall test (apply-key key elt)))
1933 (if-not (not (funcall test (apply-key key elt)))))
1934 (setq count (1- count))
1935 new)
1936 (t elt)))
1937 (setq index (+ index incrementer)))
1938 (do ()
1939 ((= index right))
1940 (setf (aref result index) (aref sequence index))
1941 (setq index (+ index incrementer)))
1942 result))
1944 (eval-when (:compile-toplevel :execute)
1946 (sb!xc:defmacro subst-dispatch (pred)
1947 `(seq-dispatch sequence
1948 (if from-end
1949 (nreverse (list-substitute* ,pred
1951 (reverse sequence)
1952 (- (the fixnum length)
1953 (the fixnum end))
1954 (- (the fixnum length)
1955 (the fixnum start))
1956 count key test test-not old))
1957 (list-substitute* ,pred
1958 new sequence start end count key test test-not
1959 old))
1960 (if from-end
1961 (vector-substitute* ,pred new sequence -1 (1- (the fixnum length))
1962 -1 length (1- (the fixnum end))
1963 (1- (the fixnum start))
1964 count key test test-not old)
1965 (vector-substitute* ,pred new sequence 1 0 length length
1966 start end count key test test-not old))
1967 ;; FIXME: wow, this is an odd way to implement the dispatch. PRED
1968 ;; here is (QUOTE [NORMAL|IF|IF-NOT]). Not only is this pretty
1969 ;; pointless, but also LIST-SUBSTITUTE* and VECTOR-SUBSTITUTE*
1970 ;; dispatch once per element on PRED's run-time identity.
1971 ,(ecase (cadr pred)
1972 ((normal) `(apply #'sb!sequence:substitute new old sequence args))
1973 ((if) `(apply #'sb!sequence:substitute-if new predicate sequence args))
1974 ((if-not) `(apply #'sb!sequence:substitute-if-not new predicate sequence args)))))
1975 ) ; EVAL-WHEN
1977 (define-sequence-traverser substitute
1978 (new old sequence &rest args &key from-end test test-not
1979 start count end key)
1980 #!+sb-doc
1981 "Return a sequence of the same kind as SEQUENCE with the same elements,
1982 except that all elements equal to OLD are replaced with NEW."
1983 (declare (fixnum start))
1984 (declare (truly-dynamic-extent args))
1985 (let ((end (or end length)))
1986 (declare (type index end))
1987 (subst-dispatch 'normal)))
1989 ;;;; SUBSTITUTE-IF, SUBSTITUTE-IF-NOT
1991 (define-sequence-traverser substitute-if
1992 (new predicate sequence &rest args &key from-end start end count key)
1993 #!+sb-doc
1994 "Return a sequence of the same kind as SEQUENCE with the same elements
1995 except that all elements satisfying the PRED are replaced with NEW."
1996 (declare (truly-dynamic-extent args))
1997 (declare (fixnum start))
1998 (let ((end (or end length))
1999 (test predicate)
2000 (test-not nil)
2001 old)
2002 (declare (type index length end))
2003 (subst-dispatch 'if)))
2005 (define-sequence-traverser substitute-if-not
2006 (new predicate sequence &rest args &key from-end start end count key)
2007 #!+sb-doc
2008 "Return a sequence of the same kind as SEQUENCE with the same elements
2009 except that all elements not satisfying the PRED are replaced with NEW."
2010 (declare (truly-dynamic-extent args))
2011 (declare (fixnum start))
2012 (let ((end (or end length))
2013 (test predicate)
2014 (test-not nil)
2015 old)
2016 (declare (type index length end))
2017 (subst-dispatch 'if-not)))
2019 ;;;; NSUBSTITUTE
2021 (define-sequence-traverser nsubstitute
2022 (new old sequence &rest args &key from-end test test-not
2023 end count key start)
2024 #!+sb-doc
2025 "Return a sequence of the same kind as SEQUENCE with the same elements
2026 except that all elements equal to OLD are replaced with NEW. SEQUENCE
2027 may be destructively modified."
2028 (declare (fixnum start))
2029 (declare (truly-dynamic-extent args))
2030 (let ((end (or end length)))
2031 (seq-dispatch sequence
2032 (if from-end
2033 (let ((length (length sequence)))
2034 (nreverse (nlist-substitute*
2035 new old (nreverse (the list sequence))
2036 test test-not (- length end) (- length start)
2037 count key)))
2038 (nlist-substitute* new old sequence
2039 test test-not start end count key))
2040 (if from-end
2041 (nvector-substitute* new old sequence -1
2042 test test-not (1- end) (1- start) count key)
2043 (nvector-substitute* new old sequence 1
2044 test test-not start end count key))
2045 (apply #'sb!sequence:nsubstitute new old sequence args))))
2047 (defun nlist-substitute* (new old sequence test test-not start end count key)
2048 (declare (fixnum start count end))
2049 (do ((list (nthcdr start sequence) (cdr list))
2050 (index start (1+ index)))
2051 ((or (= index end) (null list) (= count 0)) sequence)
2052 (declare (fixnum index))
2053 (when (if test-not
2054 (not (funcall test-not old (apply-key key (car list))))
2055 (funcall test old (apply-key key (car list))))
2056 (rplaca list new)
2057 (setq count (1- count)))))
2059 (defun nvector-substitute* (new old sequence incrementer
2060 test test-not start end count key)
2061 (declare (fixnum start incrementer count end))
2062 (do ((index start (+ index incrementer)))
2063 ((or (= index end) (= count 0)) sequence)
2064 (declare (fixnum index))
2065 (when (if test-not
2066 (not (funcall test-not
2068 (apply-key key (aref sequence index))))
2069 (funcall test old (apply-key key (aref sequence index))))
2070 (setf (aref sequence index) new)
2071 (setq count (1- count)))))
2073 ;;;; NSUBSTITUTE-IF, NSUBSTITUTE-IF-NOT
2075 (define-sequence-traverser nsubstitute-if
2076 (new predicate sequence &rest args &key from-end start end count key)
2077 #!+sb-doc
2078 "Return a sequence of the same kind as SEQUENCE with the same elements
2079 except that all elements satisfying PREDICATE are replaced with NEW.
2080 SEQUENCE may be destructively modified."
2081 (declare (fixnum start))
2082 (declare (truly-dynamic-extent args))
2083 (let ((end (or end length)))
2084 (declare (fixnum end))
2085 (seq-dispatch sequence
2086 (if from-end
2087 (let ((length (length sequence)))
2088 (nreverse (nlist-substitute-if*
2089 new predicate (nreverse (the list sequence))
2090 (- length end) (- length start) count key)))
2091 (nlist-substitute-if* new predicate sequence
2092 start end count key))
2093 (if from-end
2094 (nvector-substitute-if* new predicate sequence -1
2095 (1- end) (1- start) count key)
2096 (nvector-substitute-if* new predicate sequence 1
2097 start end count key))
2098 (apply #'sb!sequence:nsubstitute-if new predicate sequence args))))
2100 (defun nlist-substitute-if* (new test sequence start end count key)
2101 (declare (fixnum end))
2102 (do ((list (nthcdr start sequence) (cdr list))
2103 (index start (1+ index)))
2104 ((or (= index end) (null list) (= count 0)) sequence)
2105 (when (funcall test (apply-key key (car list)))
2106 (rplaca list new)
2107 (setq count (1- count)))))
2109 (defun nvector-substitute-if* (new test sequence incrementer
2110 start end count key)
2111 (do ((index start (+ index incrementer)))
2112 ((or (= index end) (= count 0)) sequence)
2113 (when (funcall test (apply-key key (aref sequence index)))
2114 (setf (aref sequence index) new)
2115 (setq count (1- count)))))
2117 (define-sequence-traverser nsubstitute-if-not
2118 (new predicate sequence &rest args &key from-end start end count key)
2119 #!+sb-doc
2120 "Return a sequence of the same kind as SEQUENCE with the same elements
2121 except that all elements not satisfying PREDICATE are replaced with NEW.
2122 SEQUENCE may be destructively modified."
2123 (declare (fixnum start))
2124 (declare (truly-dynamic-extent args))
2125 (let ((end (or end length)))
2126 (declare (fixnum end))
2127 (seq-dispatch sequence
2128 (if from-end
2129 (let ((length (length sequence)))
2130 (nreverse (nlist-substitute-if-not*
2131 new predicate (nreverse (the list sequence))
2132 (- length end) (- length start) count key)))
2133 (nlist-substitute-if-not* new predicate sequence
2134 start end count key))
2135 (if from-end
2136 (nvector-substitute-if-not* new predicate sequence -1
2137 (1- end) (1- start) count key)
2138 (nvector-substitute-if-not* new predicate sequence 1
2139 start end count key))
2140 (apply #'sb!sequence:nsubstitute-if-not new predicate sequence args))))
2142 (defun nlist-substitute-if-not* (new test sequence start end count key)
2143 (declare (fixnum end))
2144 (do ((list (nthcdr start sequence) (cdr list))
2145 (index start (1+ index)))
2146 ((or (= index end) (null list) (= count 0)) sequence)
2147 (when (not (funcall test (apply-key key (car list))))
2148 (rplaca list new)
2149 (decf count))))
2151 (defun nvector-substitute-if-not* (new test sequence incrementer
2152 start end count key)
2153 (do ((index start (+ index incrementer)))
2154 ((or (= index end) (= count 0)) sequence)
2155 (when (not (funcall test (apply-key key (aref sequence index))))
2156 (setf (aref sequence index) new)
2157 (decf count))))
2159 ;;;; FIND, POSITION, and their -IF and -IF-NOT variants
2161 (defun effective-find-position-test (test test-not)
2162 (effective-find-position-test test test-not))
2163 (defun effective-find-position-key (key)
2164 (effective-find-position-key key))
2166 ;;; shared guts of out-of-line FIND, POSITION, FIND-IF, and POSITION-IF
2167 (macrolet (;; shared logic for defining %FIND-POSITION and
2168 ;; %FIND-POSITION-IF in terms of various inlineable cases
2169 ;; of the expression defined in FROB and VECTOR*-FROB
2170 (frobs ()
2171 `(seq-dispatch sequence-arg
2172 (frob sequence-arg from-end)
2173 (with-array-data ((sequence sequence-arg :offset-var offset)
2174 (start start)
2175 (end end)
2176 :check-fill-pointer t)
2177 (multiple-value-bind (f p)
2178 (macrolet ((frob2 () '(if from-end
2179 (frob sequence t)
2180 (frob sequence nil))))
2181 (typecase sequence
2182 #!+sb-unicode
2183 ((simple-array character (*)) (frob2))
2184 ((simple-array base-char (*)) (frob2))
2185 (t (vector*-frob sequence))))
2186 (declare (type (or index null) p))
2187 (values f (and p (the index (- p offset)))))))))
2188 (defun %find-position (item sequence-arg from-end start end key test)
2189 (macrolet ((frob (sequence from-end)
2190 `(%find-position item ,sequence
2191 ,from-end start end key test))
2192 (vector*-frob (sequence)
2193 `(%find-position-vector-macro item ,sequence
2194 from-end start end key test)))
2195 (frobs)))
2196 (defun %find-position-if (predicate sequence-arg from-end start end key)
2197 (macrolet ((frob (sequence from-end)
2198 `(%find-position-if predicate ,sequence
2199 ,from-end start end key))
2200 (vector*-frob (sequence)
2201 `(%find-position-if-vector-macro predicate ,sequence
2202 from-end start end key)))
2203 (frobs)))
2204 (defun %find-position-if-not (predicate sequence-arg from-end start end key)
2205 (macrolet ((frob (sequence from-end)
2206 `(%find-position-if-not predicate ,sequence
2207 ,from-end start end key))
2208 (vector*-frob (sequence)
2209 `(%find-position-if-not-vector-macro predicate ,sequence
2210 from-end start end key)))
2211 (frobs))))
2213 (defun find
2214 (item sequence &rest args &key from-end (start 0) end key test test-not)
2215 (declare (truly-dynamic-extent args))
2216 (seq-dispatch sequence
2217 (nth-value 0 (%find-position
2218 item sequence from-end start end
2219 (effective-find-position-key key)
2220 (effective-find-position-test test test-not)))
2221 (nth-value 0 (%find-position
2222 item sequence from-end start end
2223 (effective-find-position-key key)
2224 (effective-find-position-test test test-not)))
2225 (apply #'sb!sequence:find item sequence args)))
2226 (defun position
2227 (item sequence &rest args &key from-end (start 0) end key test test-not)
2228 (declare (truly-dynamic-extent args))
2229 (seq-dispatch sequence
2230 (nth-value 1 (%find-position
2231 item sequence from-end start end
2232 (effective-find-position-key key)
2233 (effective-find-position-test test test-not)))
2234 (nth-value 1 (%find-position
2235 item sequence from-end start end
2236 (effective-find-position-key key)
2237 (effective-find-position-test test test-not)))
2238 (apply #'sb!sequence:position item sequence args)))
2240 (defun find-if (predicate sequence &rest args &key from-end (start 0) end key)
2241 (declare (truly-dynamic-extent args))
2242 (seq-dispatch sequence
2243 (nth-value 0 (%find-position-if
2244 (%coerce-callable-to-fun predicate)
2245 sequence from-end start end
2246 (effective-find-position-key key)))
2247 (nth-value 0 (%find-position-if
2248 (%coerce-callable-to-fun predicate)
2249 sequence from-end start end
2250 (effective-find-position-key key)))
2251 (apply #'sb!sequence:find-if predicate sequence args)))
2252 (defun position-if
2253 (predicate sequence &rest args &key from-end (start 0) end key)
2254 (declare (truly-dynamic-extent args))
2255 (seq-dispatch sequence
2256 (nth-value 1 (%find-position-if
2257 (%coerce-callable-to-fun predicate)
2258 sequence from-end start end
2259 (effective-find-position-key key)))
2260 (nth-value 1 (%find-position-if
2261 (%coerce-callable-to-fun predicate)
2262 sequence from-end start end
2263 (effective-find-position-key key)))
2264 (apply #'sb!sequence:position-if predicate sequence args)))
2266 (defun find-if-not
2267 (predicate sequence &rest args &key from-end (start 0) end key)
2268 (declare (truly-dynamic-extent args))
2269 (seq-dispatch sequence
2270 (nth-value 0 (%find-position-if-not
2271 (%coerce-callable-to-fun predicate)
2272 sequence from-end start end
2273 (effective-find-position-key key)))
2274 (nth-value 0 (%find-position-if-not
2275 (%coerce-callable-to-fun predicate)
2276 sequence from-end start end
2277 (effective-find-position-key key)))
2278 (apply #'sb!sequence:find-if-not predicate sequence args)))
2279 (defun position-if-not
2280 (predicate sequence &rest args &key from-end (start 0) end key)
2281 (declare (truly-dynamic-extent args))
2282 (seq-dispatch sequence
2283 (nth-value 1 (%find-position-if-not
2284 (%coerce-callable-to-fun predicate)
2285 sequence from-end start end
2286 (effective-find-position-key key)))
2287 (nth-value 1 (%find-position-if-not
2288 (%coerce-callable-to-fun predicate)
2289 sequence from-end start end
2290 (effective-find-position-key key)))
2291 (apply #'sb!sequence:position-if-not predicate sequence args)))
2293 ;;;; COUNT-IF, COUNT-IF-NOT, and COUNT
2295 (eval-when (:compile-toplevel :execute)
2297 (sb!xc:defmacro vector-count-if (notp from-end-p predicate sequence)
2298 (let ((next-index (if from-end-p '(1- index) '(1+ index)))
2299 (pred `(funcall ,predicate (apply-key key (aref ,sequence index)))))
2300 `(let ((%start ,(if from-end-p '(1- end) 'start))
2301 (%end ,(if from-end-p '(1- start) 'end)))
2302 (do ((index %start ,next-index)
2303 (count 0))
2304 ((= index (the fixnum %end)) count)
2305 (declare (fixnum index count))
2306 (,(if notp 'unless 'when) ,pred
2307 (setq count (1+ count)))))))
2309 (sb!xc:defmacro list-count-if (notp from-end-p predicate sequence)
2310 (let ((pred `(funcall ,predicate (apply-key key (pop sequence)))))
2311 `(let ((%start ,(if from-end-p '(- length end) 'start))
2312 (%end ,(if from-end-p '(- length start) 'end))
2313 (sequence ,(if from-end-p '(reverse sequence) 'sequence)))
2314 (do ((sequence (nthcdr %start ,sequence))
2315 (index %start (1+ index))
2316 (count 0))
2317 ((or (= index (the fixnum %end)) (null sequence)) count)
2318 (declare (fixnum index count))
2319 (,(if notp 'unless 'when) ,pred
2320 (setq count (1+ count)))))))
2323 ) ; EVAL-WHEN
2325 (define-sequence-traverser count-if
2326 (pred sequence &rest args &key from-end start end key)
2327 #!+sb-doc
2328 "Return the number of elements in SEQUENCE satisfying PRED(el)."
2329 (declare (fixnum start))
2330 (declare (truly-dynamic-extent args))
2331 (let ((end (or end length))
2332 (pred (%coerce-callable-to-fun pred)))
2333 (declare (type index end))
2334 (seq-dispatch sequence
2335 (if from-end
2336 (list-count-if nil t pred sequence)
2337 (list-count-if nil nil pred sequence))
2338 (if from-end
2339 (vector-count-if nil t pred sequence)
2340 (vector-count-if nil nil pred sequence))
2341 (apply #'sb!sequence:count-if pred sequence args))))
2343 (define-sequence-traverser count-if-not
2344 (pred sequence &rest args &key from-end start end key)
2345 #!+sb-doc
2346 "Return the number of elements in SEQUENCE not satisfying TEST(el)."
2347 (declare (fixnum start))
2348 (declare (truly-dynamic-extent args))
2349 (let ((end (or end length))
2350 (pred (%coerce-callable-to-fun pred)))
2351 (declare (type index end))
2352 (seq-dispatch sequence
2353 (if from-end
2354 (list-count-if t t pred sequence)
2355 (list-count-if t nil pred sequence))
2356 (if from-end
2357 (vector-count-if t t pred sequence)
2358 (vector-count-if t nil pred sequence))
2359 (apply #'sb!sequence:count-if-not pred sequence args))))
2361 (define-sequence-traverser count
2362 (item sequence &rest args &key from-end start end
2363 key (test #'eql test-p) (test-not nil test-not-p))
2364 #!+sb-doc
2365 "Return the number of elements in SEQUENCE satisfying a test with ITEM,
2366 which defaults to EQL."
2367 (declare (fixnum start))
2368 (declare (truly-dynamic-extent args))
2369 (when (and test-p test-not-p)
2370 ;; ANSI Common Lisp has left the behavior in this situation unspecified.
2371 ;; (CLHS 17.2.1)
2372 (error ":TEST and :TEST-NOT are both present."))
2373 (let ((end (or end length)))
2374 (declare (type index end))
2375 (let ((%test (if test-not-p
2376 (lambda (x)
2377 (not (funcall test-not item x)))
2378 (lambda (x)
2379 (funcall test item x)))))
2380 (seq-dispatch sequence
2381 (if from-end
2382 (list-count-if nil t %test sequence)
2383 (list-count-if nil nil %test sequence))
2384 (if from-end
2385 (vector-count-if nil t %test sequence)
2386 (vector-count-if nil nil %test sequence))
2387 (apply #'sb!sequence:count item sequence args)))))
2389 ;;;; MISMATCH
2391 (eval-when (:compile-toplevel :execute)
2393 (sb!xc:defmacro match-vars (&rest body)
2394 `(let ((inc (if from-end -1 1))
2395 (start1 (if from-end (1- (the fixnum end1)) start1))
2396 (start2 (if from-end (1- (the fixnum end2)) start2))
2397 (end1 (if from-end (1- (the fixnum start1)) end1))
2398 (end2 (if from-end (1- (the fixnum start2)) end2)))
2399 (declare (fixnum inc start1 start2 end1 end2))
2400 ,@body))
2402 (sb!xc:defmacro matchify-list ((sequence start length end) &body body)
2403 (declare (ignore end)) ;; ### Should END be used below?
2404 `(let ((,sequence (if from-end
2405 (nthcdr (- (the fixnum ,length) (the fixnum ,start) 1)
2406 (reverse (the list ,sequence)))
2407 (nthcdr ,start ,sequence))))
2408 (declare (type list ,sequence))
2409 ,@body))
2411 ) ; EVAL-WHEN
2413 (eval-when (:compile-toplevel :execute)
2415 (sb!xc:defmacro if-mismatch (elt1 elt2)
2416 `(cond ((= (the fixnum index1) (the fixnum end1))
2417 (return (if (= (the fixnum index2) (the fixnum end2))
2419 (if from-end
2420 (1+ (the fixnum index1))
2421 (the fixnum index1)))))
2422 ((= (the fixnum index2) (the fixnum end2))
2423 (return (if from-end (1+ (the fixnum index1)) index1)))
2424 (test-not
2425 (if (funcall test-not (apply-key key ,elt1) (apply-key key ,elt2))
2426 (return (if from-end (1+ (the fixnum index1)) index1))))
2427 (t (if (not (funcall test (apply-key key ,elt1)
2428 (apply-key key ,elt2)))
2429 (return (if from-end (1+ (the fixnum index1)) index1))))))
2431 (sb!xc:defmacro mumble-mumble-mismatch ()
2432 `(do ((index1 start1 (+ index1 (the fixnum inc)))
2433 (index2 start2 (+ index2 (the fixnum inc))))
2434 (())
2435 (declare (fixnum index1 index2))
2436 (if-mismatch (aref sequence1 index1) (aref sequence2 index2))))
2438 (sb!xc:defmacro mumble-list-mismatch ()
2439 `(do ((index1 start1 (+ index1 (the fixnum inc)))
2440 (index2 start2 (+ index2 (the fixnum inc))))
2441 (())
2442 (declare (fixnum index1 index2))
2443 (if-mismatch (aref sequence1 index1) (pop sequence2))))
2445 (sb!xc:defmacro list-mumble-mismatch ()
2446 `(do ((index1 start1 (+ index1 (the fixnum inc)))
2447 (index2 start2 (+ index2 (the fixnum inc))))
2448 (())
2449 (declare (fixnum index1 index2))
2450 (if-mismatch (pop sequence1) (aref sequence2 index2))))
2452 (sb!xc:defmacro list-list-mismatch ()
2453 `(do ((sequence1 sequence1)
2454 (sequence2 sequence2)
2455 (index1 start1 (+ index1 (the fixnum inc)))
2456 (index2 start2 (+ index2 (the fixnum inc))))
2457 (())
2458 (declare (fixnum index1 index2))
2459 (if-mismatch (pop sequence1) (pop sequence2))))
2461 ) ; EVAL-WHEN
2463 (define-sequence-traverser mismatch
2464 (sequence1 sequence2 &rest args &key from-end test test-not
2465 start1 end1 start2 end2 key)
2466 #!+sb-doc
2467 "The specified subsequences of SEQUENCE1 and SEQUENCE2 are compared
2468 element-wise. If they are of equal length and match in every element, the
2469 result is NIL. Otherwise, the result is a non-negative integer, the index
2470 within SEQUENCE1 of the leftmost position at which they fail to match; or,
2471 if one is shorter than and a matching prefix of the other, the index within
2472 SEQUENCE1 beyond the last position tested is returned. If a non-NIL
2473 :FROM-END argument is given, then one plus the index of the rightmost
2474 position in which the sequences differ is returned."
2475 (declare (fixnum start1 start2))
2476 (declare (truly-dynamic-extent args))
2477 (let* ((end1 (or end1 length1))
2478 (end2 (or end2 length2)))
2479 (declare (type index end1 end2))
2480 (match-vars
2481 (seq-dispatch sequence1
2482 (seq-dispatch sequence2
2483 (matchify-list (sequence1 start1 length1 end1)
2484 (matchify-list (sequence2 start2 length2 end2)
2485 (list-list-mismatch)))
2486 (matchify-list (sequence1 start1 length1 end1)
2487 (list-mumble-mismatch))
2488 (apply #'sb!sequence:mismatch sequence1 sequence2 args))
2489 (seq-dispatch sequence2
2490 (matchify-list (sequence2 start2 length2 end2)
2491 (mumble-list-mismatch))
2492 (mumble-mumble-mismatch)
2493 (apply #'sb!sequence:mismatch sequence1 sequence2 args))
2494 (apply #'sb!sequence:mismatch sequence1 sequence2 args)))))
2496 ;;; search comparison functions
2498 (eval-when (:compile-toplevel :execute)
2500 ;;; Compare two elements and return if they don't match.
2501 (sb!xc:defmacro compare-elements (elt1 elt2)
2502 `(if test-not
2503 (if (funcall test-not (apply-key key ,elt1) (apply-key key ,elt2))
2504 (return nil)
2506 (if (not (funcall test (apply-key key ,elt1) (apply-key key ,elt2)))
2507 (return nil)
2508 t)))
2510 (sb!xc:defmacro search-compare-list-list (main sub)
2511 `(do ((main ,main (cdr main))
2512 (jndex start1 (1+ jndex))
2513 (sub (nthcdr start1 ,sub) (cdr sub)))
2514 ((or (endp main) (endp sub) (<= end1 jndex))
2516 (declare (type (integer 0) jndex))
2517 (compare-elements (car sub) (car main))))
2519 (sb!xc:defmacro search-compare-list-vector (main sub)
2520 `(do ((main ,main (cdr main))
2521 (index start1 (1+ index)))
2522 ((or (endp main) (= index end1)) t)
2523 (compare-elements (aref ,sub index) (car main))))
2525 (sb!xc:defmacro search-compare-vector-list (main sub index)
2526 `(do ((sub (nthcdr start1 ,sub) (cdr sub))
2527 (jndex start1 (1+ jndex))
2528 (index ,index (1+ index)))
2529 ((or (<= end1 jndex) (endp sub)) t)
2530 (declare (type (integer 0) jndex))
2531 (compare-elements (car sub) (aref ,main index))))
2533 (sb!xc:defmacro search-compare-vector-vector (main sub index)
2534 `(do ((index ,index (1+ index))
2535 (sub-index start1 (1+ sub-index)))
2536 ((= sub-index end1) t)
2537 (compare-elements (aref ,sub sub-index) (aref ,main index))))
2539 (sb!xc:defmacro search-compare (main-type main sub index)
2540 (if (eq main-type 'list)
2541 `(seq-dispatch ,sub
2542 (search-compare-list-list ,main ,sub)
2543 (search-compare-list-vector ,main ,sub)
2544 ;; KLUDGE: just hack it together so that it works
2545 (return-from search (apply #'sb!sequence:search sequence1 sequence2 args)))
2546 `(seq-dispatch ,sub
2547 (search-compare-vector-list ,main ,sub ,index)
2548 (search-compare-vector-vector ,main ,sub ,index)
2549 (return-from search (apply #'sb!sequence:search sequence1 sequence2 args)))))
2551 ) ; EVAL-WHEN
2553 ;;;; SEARCH
2555 (eval-when (:compile-toplevel :execute)
2557 (sb!xc:defmacro list-search (main sub)
2558 `(do ((main (nthcdr start2 ,main) (cdr main))
2559 (index2 start2 (1+ index2))
2560 (terminus (- end2 (the (integer 0) (- end1 start1))))
2561 (last-match ()))
2562 ((> index2 terminus) last-match)
2563 (declare (type (integer 0) index2))
2564 (if (search-compare list main ,sub index2)
2565 (if from-end
2566 (setq last-match index2)
2567 (return index2)))))
2569 (sb!xc:defmacro vector-search (main sub)
2570 `(do ((index2 start2 (1+ index2))
2571 (terminus (- end2 (the (integer 0) (- end1 start1))))
2572 (last-match ()))
2573 ((> index2 terminus) last-match)
2574 (declare (type (integer 0) index2))
2575 (if (search-compare vector ,main ,sub index2)
2576 (if from-end
2577 (setq last-match index2)
2578 (return index2)))))
2580 ) ; EVAL-WHEN
2582 (define-sequence-traverser search
2583 (sequence1 sequence2 &rest args &key
2584 from-end test test-not start1 end1 start2 end2 key)
2585 (declare (fixnum start1 start2))
2586 (declare (truly-dynamic-extent args))
2587 (let ((end1 (or end1 length1))
2588 (end2 (or end2 length2)))
2589 (seq-dispatch sequence2
2590 (list-search sequence2 sequence1)
2591 (vector-search sequence2 sequence1)
2592 (apply #'sb!sequence:search sequence1 sequence2 args))))
2594 ;;; FIXME: this was originally in array.lisp; it might be better to
2595 ;;; put it back there, and make DOSEQUENCE and SEQ-DISPATCH be in
2596 ;;; a new early-seq.lisp file.
2597 (defun fill-data-vector (vector dimensions initial-contents)
2598 (let ((index 0))
2599 (labels ((frob (axis dims contents)
2600 (cond ((null dims)
2601 (setf (aref vector index) contents)
2602 (incf index))
2604 (unless (typep contents 'sequence)
2605 (error "malformed :INITIAL-CONTENTS: ~S is not a ~
2606 sequence, but ~W more layer~:P needed."
2607 contents
2608 (- (length dimensions) axis)))
2609 (unless (= (length contents) (car dims))
2610 (error "malformed :INITIAL-CONTENTS: Dimension of ~
2611 axis ~W is ~W, but ~S is ~W long."
2612 axis (car dims) contents (length contents)))
2613 (sb!sequence:dosequence (content contents)
2614 (frob (1+ axis) (cdr dims) content))))))
2615 (frob 0 dimensions initial-contents))))