1.0.6.13: minor fix to the compiler's interval-arithmetic
[sbcl/simd.git] / src / compiler / srctran.lisp
blob359e2f317680cadbfadb9420d22cc363cdbbbdb8
1 ;;;; This file contains macro-like source transformations which
2 ;;;; convert uses of certain functions into the canonical form desired
3 ;;;; within the compiler. FIXME: and other IR1 transforms and stuff.
5 ;;;; This software is part of the SBCL system. See the README file for
6 ;;;; more information.
7 ;;;;
8 ;;;; This software is derived from the CMU CL system, which was
9 ;;;; written at Carnegie Mellon University and released into the
10 ;;;; public domain. The software is in the public domain and is
11 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
12 ;;;; files for more information.
14 (in-package "SB!C")
16 ;;; Convert into an IF so that IF optimizations will eliminate redundant
17 ;;; negations.
18 (define-source-transform not (x) `(if ,x nil t))
19 (define-source-transform null (x) `(if ,x nil t))
21 ;;; ENDP is just NULL with a LIST assertion. The assertion will be
22 ;;; optimized away when SAFETY optimization is low; hopefully that
23 ;;; is consistent with ANSI's "should return an error".
24 (define-source-transform endp (x) `(null (the list ,x)))
26 ;;; We turn IDENTITY into PROG1 so that it is obvious that it just
27 ;;; returns the first value of its argument. Ditto for VALUES with one
28 ;;; arg.
29 (define-source-transform identity (x) `(prog1 ,x))
30 (define-source-transform values (x) `(prog1 ,x))
32 ;;; Bind the value and make a closure that returns it.
33 (define-source-transform constantly (value)
34 (with-unique-names (rest n-value)
35 `(let ((,n-value ,value))
36 (lambda (&rest ,rest)
37 (declare (ignore ,rest))
38 ,n-value))))
40 ;;; If the function has a known number of arguments, then return a
41 ;;; lambda with the appropriate fixed number of args. If the
42 ;;; destination is a FUNCALL, then do the &REST APPLY thing, and let
43 ;;; MV optimization figure things out.
44 (deftransform complement ((fun) * * :node node)
45 "open code"
46 (multiple-value-bind (min max)
47 (fun-type-nargs (lvar-type fun))
48 (cond
49 ((and min (eql min max))
50 (let ((dums (make-gensym-list min)))
51 `#'(lambda ,dums (not (funcall fun ,@dums)))))
52 ((awhen (node-lvar node)
53 (let ((dest (lvar-dest it)))
54 (and (combination-p dest)
55 (eq (combination-fun dest) it))))
56 '#'(lambda (&rest args)
57 (not (apply fun args))))
59 (give-up-ir1-transform
60 "The function doesn't have a fixed argument count.")))))
62 ;;;; list hackery
64 ;;; Translate CxR into CAR/CDR combos.
65 (defun source-transform-cxr (form)
66 (if (/= (length form) 2)
67 (values nil t)
68 (let* ((name (car form))
69 (string (symbol-name
70 (etypecase name
71 (symbol name)
72 (leaf (leaf-source-name name))))))
73 (do ((i (- (length string) 2) (1- i))
74 (res (cadr form)
75 `(,(ecase (char string i)
76 (#\A 'car)
77 (#\D 'cdr))
78 ,res)))
79 ((zerop i) res)))))
81 ;;; Make source transforms to turn CxR forms into combinations of CAR
82 ;;; and CDR. ANSI specifies that everything up to 4 A/D operations is
83 ;;; defined.
84 (/show0 "about to set CxR source transforms")
85 (loop for i of-type index from 2 upto 4 do
86 ;; Iterate over BUF = all names CxR where x = an I-element
87 ;; string of #\A or #\D characters.
88 (let ((buf (make-string (+ 2 i))))
89 (setf (aref buf 0) #\C
90 (aref buf (1+ i)) #\R)
91 (dotimes (j (ash 2 i))
92 (declare (type index j))
93 (dotimes (k i)
94 (declare (type index k))
95 (setf (aref buf (1+ k))
96 (if (logbitp k j) #\A #\D)))
97 (setf (info :function :source-transform (intern buf))
98 #'source-transform-cxr))))
99 (/show0 "done setting CxR source transforms")
101 ;;; Turn FIRST..FOURTH and REST into the obvious synonym, assuming
102 ;;; whatever is right for them is right for us. FIFTH..TENTH turn into
103 ;;; Nth, which can be expanded into a CAR/CDR later on if policy
104 ;;; favors it.
105 (define-source-transform first (x) `(car ,x))
106 (define-source-transform rest (x) `(cdr ,x))
107 (define-source-transform second (x) `(cadr ,x))
108 (define-source-transform third (x) `(caddr ,x))
109 (define-source-transform fourth (x) `(cadddr ,x))
110 (define-source-transform fifth (x) `(nth 4 ,x))
111 (define-source-transform sixth (x) `(nth 5 ,x))
112 (define-source-transform seventh (x) `(nth 6 ,x))
113 (define-source-transform eighth (x) `(nth 7 ,x))
114 (define-source-transform ninth (x) `(nth 8 ,x))
115 (define-source-transform tenth (x) `(nth 9 ,x))
117 ;;; LIST with one arg is an extremely common operation (at least inside
118 ;;; SBCL itself); translate it to CONS to take advantage of common
119 ;;; allocation routines.
120 (define-source-transform list (&rest args)
121 (case (length args)
122 (1 `(cons ,(first args) nil))
123 (t (values nil t))))
125 ;;; And similarly for LIST*.
126 (define-source-transform list* (&rest args)
127 (case (length args)
128 (2 `(cons ,(first args) ,(second args)))
129 (t (values nil t))))
131 ;;; Translate RPLACx to LET and SETF.
132 (define-source-transform rplaca (x y)
133 (once-only ((n-x x))
134 `(progn
135 (setf (car ,n-x) ,y)
136 ,n-x)))
137 (define-source-transform rplacd (x y)
138 (once-only ((n-x x))
139 `(progn
140 (setf (cdr ,n-x) ,y)
141 ,n-x)))
143 (define-source-transform nth (n l) `(car (nthcdr ,n ,l)))
145 (define-source-transform last (x) `(sb!impl::last1 ,x))
146 (define-source-transform gethash (&rest args)
147 (case (length args)
148 (2 `(sb!impl::gethash2 ,@args))
149 (3 `(sb!impl::gethash3 ,@args))
150 (t (values nil t))))
151 (define-source-transform get (&rest args)
152 (case (length args)
153 (2 `(sb!impl::get2 ,@args))
154 (3 `(sb!impl::get3 ,@args))
155 (t (values nil t))))
157 (defvar *default-nthcdr-open-code-limit* 6)
158 (defvar *extreme-nthcdr-open-code-limit* 20)
160 (deftransform nthcdr ((n l) (unsigned-byte t) * :node node)
161 "convert NTHCDR to CAxxR"
162 (unless (constant-lvar-p n)
163 (give-up-ir1-transform))
164 (let ((n (lvar-value n)))
165 (when (> n
166 (if (policy node (and (= speed 3) (= space 0)))
167 *extreme-nthcdr-open-code-limit*
168 *default-nthcdr-open-code-limit*))
169 (give-up-ir1-transform))
171 (labels ((frob (n)
172 (if (zerop n)
174 `(cdr ,(frob (1- n))))))
175 (frob n))))
177 ;;;; arithmetic and numerology
179 (define-source-transform plusp (x) `(> ,x 0))
180 (define-source-transform minusp (x) `(< ,x 0))
181 (define-source-transform zerop (x) `(= ,x 0))
183 (define-source-transform 1+ (x) `(+ ,x 1))
184 (define-source-transform 1- (x) `(- ,x 1))
186 (define-source-transform oddp (x) `(logtest ,x 1))
187 (define-source-transform evenp (x) `(not (logtest ,x 1)))
189 ;;; Note that all the integer division functions are available for
190 ;;; inline expansion.
192 (macrolet ((deffrob (fun)
193 `(define-source-transform ,fun (x &optional (y nil y-p))
194 (declare (ignore y))
195 (if y-p
196 (values nil t)
197 `(,',fun ,x 1)))))
198 (deffrob truncate)
199 (deffrob round)
200 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
201 (deffrob floor)
202 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
203 (deffrob ceiling))
205 ;;; This used to be a source transform (hence the lack of restrictions
206 ;;; on the argument types), but we make it a regular transform so that
207 ;;; the VM has a chance to see the bare LOGTEST and potentiall choose
208 ;;; to implement it differently. --njf, 06-02-2006
209 (deftransform logtest ((x y) * *)
210 `(not (zerop (logand x y))))
212 (deftransform logbitp
213 ((index integer) (unsigned-byte (or (signed-byte #.sb!vm:n-word-bits)
214 (unsigned-byte #.sb!vm:n-word-bits))))
215 `(if (>= index #.sb!vm:n-word-bits)
216 (minusp integer)
217 (not (zerop (logand integer (ash 1 index))))))
219 (define-source-transform byte (size position)
220 `(cons ,size ,position))
221 (define-source-transform byte-size (spec) `(car ,spec))
222 (define-source-transform byte-position (spec) `(cdr ,spec))
223 (define-source-transform ldb-test (bytespec integer)
224 `(not (zerop (mask-field ,bytespec ,integer))))
226 ;;; With the ratio and complex accessors, we pick off the "identity"
227 ;;; case, and use a primitive to handle the cell access case.
228 (define-source-transform numerator (num)
229 (once-only ((n-num `(the rational ,num)))
230 `(if (ratiop ,n-num)
231 (%numerator ,n-num)
232 ,n-num)))
233 (define-source-transform denominator (num)
234 (once-only ((n-num `(the rational ,num)))
235 `(if (ratiop ,n-num)
236 (%denominator ,n-num)
237 1)))
239 ;;;; interval arithmetic for computing bounds
240 ;;;;
241 ;;;; This is a set of routines for operating on intervals. It
242 ;;;; implements a simple interval arithmetic package. Although SBCL
243 ;;;; has an interval type in NUMERIC-TYPE, we choose to use our own
244 ;;;; for two reasons:
245 ;;;;
246 ;;;; 1. This package is simpler than NUMERIC-TYPE.
247 ;;;;
248 ;;;; 2. It makes debugging much easier because you can just strip
249 ;;;; out these routines and test them independently of SBCL. (This is a
250 ;;;; big win!)
251 ;;;;
252 ;;;; One disadvantage is a probable increase in consing because we
253 ;;;; have to create these new interval structures even though
254 ;;;; numeric-type has everything we want to know. Reason 2 wins for
255 ;;;; now.
257 ;;; Support operations that mimic real arithmetic comparison
258 ;;; operators, but imposing a total order on the floating points such
259 ;;; that negative zeros are strictly less than positive zeros.
260 (macrolet ((def (name op)
261 `(defun ,name (x y)
262 (declare (real x y))
263 (if (and (floatp x) (floatp y) (zerop x) (zerop y))
264 (,op (float-sign x) (float-sign y))
265 (,op x y)))))
266 (def signed-zero->= >=)
267 (def signed-zero-> >)
268 (def signed-zero-= =)
269 (def signed-zero-< <)
270 (def signed-zero-<= <=))
272 ;;; The basic interval type. It can handle open and closed intervals.
273 ;;; A bound is open if it is a list containing a number, just like
274 ;;; Lisp says. NIL means unbounded.
275 (defstruct (interval (:constructor %make-interval)
276 (:copier nil))
277 low high)
279 (defun make-interval (&key low high)
280 (labels ((normalize-bound (val)
281 (cond #-sb-xc-host
282 ((and (floatp val)
283 (float-infinity-p val))
284 ;; Handle infinities.
285 nil)
286 ((or (numberp val)
287 (eq val nil))
288 ;; Handle any closed bounds.
289 val)
290 ((listp val)
291 ;; We have an open bound. Normalize the numeric
292 ;; bound. If the normalized bound is still a number
293 ;; (not nil), keep the bound open. Otherwise, the
294 ;; bound is really unbounded, so drop the openness.
295 (let ((new-val (normalize-bound (first val))))
296 (when new-val
297 ;; The bound exists, so keep it open still.
298 (list new-val))))
300 (error "unknown bound type in MAKE-INTERVAL")))))
301 (%make-interval :low (normalize-bound low)
302 :high (normalize-bound high))))
304 ;;; Given a number X, create a form suitable as a bound for an
305 ;;; interval. Make the bound open if OPEN-P is T. NIL remains NIL.
306 #!-sb-fluid (declaim (inline set-bound))
307 (defun set-bound (x open-p)
308 (if (and x open-p) (list x) x))
310 ;;; Apply the function F to a bound X. If X is an open bound, then
311 ;;; the result will be open. IF X is NIL, the result is NIL.
312 (defun bound-func (f x)
313 (declare (type function f))
314 (and x
315 (with-float-traps-masked (:underflow :overflow :inexact :divide-by-zero)
316 ;; With these traps masked, we might get things like infinity
317 ;; or negative infinity returned. Check for this and return
318 ;; NIL to indicate unbounded.
319 (let ((y (funcall f (type-bound-number x))))
320 (if (and (floatp y)
321 (float-infinity-p y))
323 (set-bound y (consp x)))))))
325 ;;; Apply a binary operator OP to two bounds X and Y. The result is
326 ;;; NIL if either is NIL. Otherwise bound is computed and the result
327 ;;; is open if either X or Y is open.
329 ;;; FIXME: only used in this file, not needed in target runtime
331 ;;; ANSI contaigon specifies coercion to floating point if one of the
332 ;;; arguments is floating point. Here we should check to be sure that
333 ;;; the other argument is within the bounds of that floating point
334 ;;; type.
336 (defmacro safely-binop (op x y)
337 `(cond
338 ((typep ,x 'single-float)
339 (if (or (typep ,y 'single-float)
340 (<= most-negative-single-float ,y most-positive-single-float))
341 (,op ,x ,y)))
342 ((typep ,x 'double-float)
343 (if (or (typep ,y 'double-float)
344 (<= most-negative-double-float ,y most-positive-double-float))
345 (,op ,x ,y)))
346 ((typep ,y 'single-float)
347 (if (<= most-negative-single-float ,x most-positive-single-float)
348 (,op ,x ,y)))
349 ((typep ,y 'double-float)
350 (if (<= most-negative-double-float ,x most-positive-double-float)
351 (,op ,x ,y)))
352 (t (,op ,x ,y))))
354 (defmacro bound-binop (op x y)
355 `(and ,x ,y
356 (with-float-traps-masked (:underflow :overflow :inexact :divide-by-zero)
357 (set-bound (safely-binop ,op (type-bound-number ,x)
358 (type-bound-number ,y))
359 (or (consp ,x) (consp ,y))))))
361 (defun coerce-for-bound (val type)
362 (if (consp val)
363 (list (coerce-for-bound (car val) type))
364 (cond
365 ((subtypep type 'double-float)
366 (if (<= most-negative-double-float val most-positive-double-float)
367 (coerce val type)))
368 ((or (subtypep type 'single-float) (subtypep type 'float))
369 ;; coerce to float returns a single-float
370 (if (<= most-negative-single-float val most-positive-single-float)
371 (coerce val type)))
372 (t (coerce val type)))))
374 (defun coerce-and-truncate-floats (val type)
375 (when val
376 (if (consp val)
377 (list (coerce-and-truncate-floats (car val) type))
378 (cond
379 ((subtypep type 'double-float)
380 (if (<= most-negative-double-float val most-positive-double-float)
381 (coerce val type)
382 (if (< val most-negative-double-float)
383 most-negative-double-float most-positive-double-float)))
384 ((or (subtypep type 'single-float) (subtypep type 'float))
385 ;; coerce to float returns a single-float
386 (if (<= most-negative-single-float val most-positive-single-float)
387 (coerce val type)
388 (if (< val most-negative-single-float)
389 most-negative-single-float most-positive-single-float)))
390 (t (coerce val type))))))
392 ;;; Convert a numeric-type object to an interval object.
393 (defun numeric-type->interval (x)
394 (declare (type numeric-type x))
395 (make-interval :low (numeric-type-low x)
396 :high (numeric-type-high x)))
398 (defun type-approximate-interval (type)
399 (declare (type ctype type))
400 (let ((types (prepare-arg-for-derive-type type))
401 (result nil))
402 (dolist (type types)
403 (let ((type (if (member-type-p type)
404 (convert-member-type type)
405 type)))
406 (unless (numeric-type-p type)
407 (return-from type-approximate-interval nil))
408 (let ((interval (numeric-type->interval type)))
409 (setq result
410 (if result
411 (interval-approximate-union result interval)
412 interval)))))
413 result))
415 (defun copy-interval-limit (limit)
416 (if (numberp limit)
417 limit
418 (copy-list limit)))
420 (defun copy-interval (x)
421 (declare (type interval x))
422 (make-interval :low (copy-interval-limit (interval-low x))
423 :high (copy-interval-limit (interval-high x))))
425 ;;; Given a point P contained in the interval X, split X into two
426 ;;; interval at the point P. If CLOSE-LOWER is T, then the left
427 ;;; interval contains P. If CLOSE-UPPER is T, the right interval
428 ;;; contains P. You can specify both to be T or NIL.
429 (defun interval-split (p x &optional close-lower close-upper)
430 (declare (type number p)
431 (type interval x))
432 (list (make-interval :low (copy-interval-limit (interval-low x))
433 :high (if close-lower p (list p)))
434 (make-interval :low (if close-upper (list p) p)
435 :high (copy-interval-limit (interval-high x)))))
437 ;;; Return the closure of the interval. That is, convert open bounds
438 ;;; to closed bounds.
439 (defun interval-closure (x)
440 (declare (type interval x))
441 (make-interval :low (type-bound-number (interval-low x))
442 :high (type-bound-number (interval-high x))))
444 ;;; For an interval X, if X >= POINT, return '+. If X <= POINT, return
445 ;;; '-. Otherwise return NIL.
446 (defun interval-range-info (x &optional (point 0))
447 (declare (type interval x))
448 (let ((lo (interval-low x))
449 (hi (interval-high x)))
450 (cond ((and lo (signed-zero->= (type-bound-number lo) point))
452 ((and hi (signed-zero->= point (type-bound-number hi)))
455 nil))))
457 ;;; Test to see whether the interval X is bounded. HOW determines the
458 ;;; test, and should be either ABOVE, BELOW, or BOTH.
459 (defun interval-bounded-p (x how)
460 (declare (type interval x))
461 (ecase how
462 (above
463 (interval-high x))
464 (below
465 (interval-low x))
466 (both
467 (and (interval-low x) (interval-high x)))))
469 ;;; See whether the interval X contains the number P, taking into
470 ;;; account that the interval might not be closed.
471 (defun interval-contains-p (p x)
472 (declare (type number p)
473 (type interval x))
474 ;; Does the interval X contain the number P? This would be a lot
475 ;; easier if all intervals were closed!
476 (let ((lo (interval-low x))
477 (hi (interval-high x)))
478 (cond ((and lo hi)
479 ;; The interval is bounded
480 (if (and (signed-zero-<= (type-bound-number lo) p)
481 (signed-zero-<= p (type-bound-number hi)))
482 ;; P is definitely in the closure of the interval.
483 ;; We just need to check the end points now.
484 (cond ((signed-zero-= p (type-bound-number lo))
485 (numberp lo))
486 ((signed-zero-= p (type-bound-number hi))
487 (numberp hi))
488 (t t))
489 nil))
491 ;; Interval with upper bound
492 (if (signed-zero-< p (type-bound-number hi))
494 (and (numberp hi) (signed-zero-= p hi))))
496 ;; Interval with lower bound
497 (if (signed-zero-> p (type-bound-number lo))
499 (and (numberp lo) (signed-zero-= p lo))))
501 ;; Interval with no bounds
502 t))))
504 ;;; Determine whether two intervals X and Y intersect. Return T if so.
505 ;;; If CLOSED-INTERVALS-P is T, the treat the intervals as if they
506 ;;; were closed. Otherwise the intervals are treated as they are.
508 ;;; Thus if X = [0, 1) and Y = (1, 2), then they do not intersect
509 ;;; because no element in X is in Y. However, if CLOSED-INTERVALS-P
510 ;;; is T, then they do intersect because we use the closure of X = [0,
511 ;;; 1] and Y = [1, 2] to determine intersection.
512 (defun interval-intersect-p (x y &optional closed-intervals-p)
513 (declare (type interval x y))
514 (and (interval-intersection/difference (if closed-intervals-p
515 (interval-closure x)
517 (if closed-intervals-p
518 (interval-closure y)
522 ;;; Are the two intervals adjacent? That is, is there a number
523 ;;; between the two intervals that is not an element of either
524 ;;; interval? If so, they are not adjacent. For example [0, 1) and
525 ;;; [1, 2] are adjacent but [0, 1) and (1, 2] are not because 1 lies
526 ;;; between both intervals.
527 (defun interval-adjacent-p (x y)
528 (declare (type interval x y))
529 (flet ((adjacent (lo hi)
530 ;; Check to see whether lo and hi are adjacent. If either is
531 ;; nil, they can't be adjacent.
532 (when (and lo hi (= (type-bound-number lo) (type-bound-number hi)))
533 ;; The bounds are equal. They are adjacent if one of
534 ;; them is closed (a number). If both are open (consp),
535 ;; then there is a number that lies between them.
536 (or (numberp lo) (numberp hi)))))
537 (or (adjacent (interval-low y) (interval-high x))
538 (adjacent (interval-low x) (interval-high y)))))
540 ;;; Compute the intersection and difference between two intervals.
541 ;;; Two values are returned: the intersection and the difference.
543 ;;; Let the two intervals be X and Y, and let I and D be the two
544 ;;; values returned by this function. Then I = X intersect Y. If I
545 ;;; is NIL (the empty set), then D is X union Y, represented as the
546 ;;; list of X and Y. If I is not the empty set, then D is (X union Y)
547 ;;; - I, which is a list of two intervals.
549 ;;; For example, let X = [1,5] and Y = [-1,3). Then I = [1,3) and D =
550 ;;; [-1,1) union [3,5], which is returned as a list of two intervals.
551 (defun interval-intersection/difference (x y)
552 (declare (type interval x y))
553 (let ((x-lo (interval-low x))
554 (x-hi (interval-high x))
555 (y-lo (interval-low y))
556 (y-hi (interval-high y)))
557 (labels
558 ((opposite-bound (p)
559 ;; If p is an open bound, make it closed. If p is a closed
560 ;; bound, make it open.
561 (if (listp p)
562 (first p)
563 (list p)))
564 (test-number (p int bound)
565 ;; Test whether P is in the interval.
566 (let ((pn (type-bound-number p)))
567 (when (interval-contains-p pn (interval-closure int))
568 ;; Check for endpoints.
569 (let* ((lo (interval-low int))
570 (hi (interval-high int))
571 (lon (type-bound-number lo))
572 (hin (type-bound-number hi)))
573 (cond
574 ;; Interval may be a point.
575 ((and lon hin (= lon hin pn))
576 (and (numberp p) (numberp lo) (numberp hi)))
577 ;; Point matches the low end.
578 ;; [P] [P,?} => TRUE [P] (P,?} => FALSE
579 ;; (P [P,?} => TRUE P) [P,?} => FALSE
580 ;; (P (P,?} => TRUE P) (P,?} => FALSE
581 ((and lon (= pn lon))
582 (or (and (numberp p) (numberp lo))
583 (and (consp p) (eq :low bound))))
584 ;; [P] {?,P] => TRUE [P] {?,P) => FALSE
585 ;; P) {?,P] => TRUE (P {?,P] => FALSE
586 ;; P) {?,P) => TRUE (P {?,P) => FALSE
587 ((and hin (= pn hin))
588 (or (and (numberp p) (numberp hi))
589 (and (consp p) (eq :high bound))))
590 ;; Not an endpoint, all is well.
592 t))))))
593 (test-lower-bound (p int)
594 ;; P is a lower bound of an interval.
595 (if p
596 (test-number p int :low)
597 (not (interval-bounded-p int 'below))))
598 (test-upper-bound (p int)
599 ;; P is an upper bound of an interval.
600 (if p
601 (test-number p int :high)
602 (not (interval-bounded-p int 'above)))))
603 (let ((x-lo-in-y (test-lower-bound x-lo y))
604 (x-hi-in-y (test-upper-bound x-hi y))
605 (y-lo-in-x (test-lower-bound y-lo x))
606 (y-hi-in-x (test-upper-bound y-hi x)))
607 (cond ((or x-lo-in-y x-hi-in-y y-lo-in-x y-hi-in-x)
608 ;; Intervals intersect. Let's compute the intersection
609 ;; and the difference.
610 (multiple-value-bind (lo left-lo left-hi)
611 (cond (x-lo-in-y (values x-lo y-lo (opposite-bound x-lo)))
612 (y-lo-in-x (values y-lo x-lo (opposite-bound y-lo))))
613 (multiple-value-bind (hi right-lo right-hi)
614 (cond (x-hi-in-y
615 (values x-hi (opposite-bound x-hi) y-hi))
616 (y-hi-in-x
617 (values y-hi (opposite-bound y-hi) x-hi)))
618 (values (make-interval :low lo :high hi)
619 (list (make-interval :low left-lo
620 :high left-hi)
621 (make-interval :low right-lo
622 :high right-hi))))))
624 (values nil (list x y))))))))
626 ;;; If intervals X and Y intersect, return a new interval that is the
627 ;;; union of the two. If they do not intersect, return NIL.
628 (defun interval-merge-pair (x y)
629 (declare (type interval x y))
630 ;; If x and y intersect or are adjacent, create the union.
631 ;; Otherwise return nil
632 (when (or (interval-intersect-p x y)
633 (interval-adjacent-p x y))
634 (flet ((select-bound (x1 x2 min-op max-op)
635 (let ((x1-val (type-bound-number x1))
636 (x2-val (type-bound-number x2)))
637 (cond ((and x1 x2)
638 ;; Both bounds are finite. Select the right one.
639 (cond ((funcall min-op x1-val x2-val)
640 ;; x1 is definitely better.
642 ((funcall max-op x1-val x2-val)
643 ;; x2 is definitely better.
646 ;; Bounds are equal. Select either
647 ;; value and make it open only if
648 ;; both were open.
649 (set-bound x1-val (and (consp x1) (consp x2))))))
651 ;; At least one bound is not finite. The
652 ;; non-finite bound always wins.
653 nil)))))
654 (let* ((x-lo (copy-interval-limit (interval-low x)))
655 (x-hi (copy-interval-limit (interval-high x)))
656 (y-lo (copy-interval-limit (interval-low y)))
657 (y-hi (copy-interval-limit (interval-high y))))
658 (make-interval :low (select-bound x-lo y-lo #'< #'>)
659 :high (select-bound x-hi y-hi #'> #'<))))))
661 ;;; return the minimal interval, containing X and Y
662 (defun interval-approximate-union (x y)
663 (cond ((interval-merge-pair x y))
664 ((interval-< x y)
665 (make-interval :low (copy-interval-limit (interval-low x))
666 :high (copy-interval-limit (interval-high y))))
668 (make-interval :low (copy-interval-limit (interval-low y))
669 :high (copy-interval-limit (interval-high x))))))
671 ;;; basic arithmetic operations on intervals. We probably should do
672 ;;; true interval arithmetic here, but it's complicated because we
673 ;;; have float and integer types and bounds can be open or closed.
675 ;;; the negative of an interval
676 (defun interval-neg (x)
677 (declare (type interval x))
678 (make-interval :low (bound-func #'- (interval-high x))
679 :high (bound-func #'- (interval-low x))))
681 ;;; Add two intervals.
682 (defun interval-add (x y)
683 (declare (type interval x y))
684 (make-interval :low (bound-binop + (interval-low x) (interval-low y))
685 :high (bound-binop + (interval-high x) (interval-high y))))
687 ;;; Subtract two intervals.
688 (defun interval-sub (x y)
689 (declare (type interval x y))
690 (make-interval :low (bound-binop - (interval-low x) (interval-high y))
691 :high (bound-binop - (interval-high x) (interval-low y))))
693 ;;; Multiply two intervals.
694 (defun interval-mul (x y)
695 (declare (type interval x y))
696 (flet ((bound-mul (x y)
697 (cond ((or (null x) (null y))
698 ;; Multiply by infinity is infinity
699 nil)
700 ((or (and (numberp x) (zerop x))
701 (and (numberp y) (zerop y)))
702 ;; Multiply by closed zero is special. The result
703 ;; is always a closed bound. But don't replace this
704 ;; with zero; we want the multiplication to produce
705 ;; the correct signed zero, if needed. Use SIGNUM
706 ;; to avoid trying to multiply huge bignums with 0.0.
707 (* (signum (type-bound-number x)) (signum (type-bound-number y))))
708 ((or (and (floatp x) (float-infinity-p x))
709 (and (floatp y) (float-infinity-p y)))
710 ;; Infinity times anything is infinity
711 nil)
713 ;; General multiply. The result is open if either is open.
714 (bound-binop * x y)))))
715 (let ((x-range (interval-range-info x))
716 (y-range (interval-range-info y)))
717 (cond ((null x-range)
718 ;; Split x into two and multiply each separately
719 (destructuring-bind (x- x+) (interval-split 0 x t t)
720 (interval-merge-pair (interval-mul x- y)
721 (interval-mul x+ y))))
722 ((null y-range)
723 ;; Split y into two and multiply each separately
724 (destructuring-bind (y- y+) (interval-split 0 y t t)
725 (interval-merge-pair (interval-mul x y-)
726 (interval-mul x y+))))
727 ((eq x-range '-)
728 (interval-neg (interval-mul (interval-neg x) y)))
729 ((eq y-range '-)
730 (interval-neg (interval-mul x (interval-neg y))))
731 ((and (eq x-range '+) (eq y-range '+))
732 ;; If we are here, X and Y are both positive.
733 (make-interval
734 :low (bound-mul (interval-low x) (interval-low y))
735 :high (bound-mul (interval-high x) (interval-high y))))
737 (bug "excluded case in INTERVAL-MUL"))))))
739 ;;; Divide two intervals.
740 (defun interval-div (top bot)
741 (declare (type interval top bot))
742 (flet ((bound-div (x y y-low-p)
743 ;; Compute x/y
744 (cond ((null y)
745 ;; Divide by infinity means result is 0. However,
746 ;; we need to watch out for the sign of the result,
747 ;; to correctly handle signed zeros. We also need
748 ;; to watch out for positive or negative infinity.
749 (if (floatp (type-bound-number x))
750 (if y-low-p
751 (- (float-sign (type-bound-number x) 0.0))
752 (float-sign (type-bound-number x) 0.0))
754 ((zerop (type-bound-number y))
755 ;; Divide by zero means result is infinity
756 nil)
757 ((and (numberp x) (zerop x))
758 ;; Zero divided by anything is zero.
761 (bound-binop / x y)))))
762 (let ((top-range (interval-range-info top))
763 (bot-range (interval-range-info bot)))
764 (cond ((null bot-range)
765 ;; The denominator contains zero, so anything goes!
766 (make-interval :low nil :high nil))
767 ((eq bot-range '-)
768 ;; Denominator is negative so flip the sign, compute the
769 ;; result, and flip it back.
770 (interval-neg (interval-div top (interval-neg bot))))
771 ((null top-range)
772 ;; Split top into two positive and negative parts, and
773 ;; divide each separately
774 (destructuring-bind (top- top+) (interval-split 0 top t t)
775 (interval-merge-pair (interval-div top- bot)
776 (interval-div top+ bot))))
777 ((eq top-range '-)
778 ;; Top is negative so flip the sign, divide, and flip the
779 ;; sign of the result.
780 (interval-neg (interval-div (interval-neg top) bot)))
781 ((and (eq top-range '+) (eq bot-range '+))
782 ;; the easy case
783 (make-interval
784 :low (bound-div (interval-low top) (interval-high bot) t)
785 :high (bound-div (interval-high top) (interval-low bot) nil)))
787 (bug "excluded case in INTERVAL-DIV"))))))
789 ;;; Apply the function F to the interval X. If X = [a, b], then the
790 ;;; result is [f(a), f(b)]. It is up to the user to make sure the
791 ;;; result makes sense. It will if F is monotonic increasing (or
792 ;;; non-decreasing).
793 (defun interval-func (f x)
794 (declare (type function f)
795 (type interval x))
796 (let ((lo (bound-func f (interval-low x)))
797 (hi (bound-func f (interval-high x))))
798 (make-interval :low lo :high hi)))
800 ;;; Return T if X < Y. That is every number in the interval X is
801 ;;; always less than any number in the interval Y.
802 (defun interval-< (x y)
803 (declare (type interval x y))
804 ;; X < Y only if X is bounded above, Y is bounded below, and they
805 ;; don't overlap.
806 (when (and (interval-bounded-p x 'above)
807 (interval-bounded-p y 'below))
808 ;; Intervals are bounded in the appropriate way. Make sure they
809 ;; don't overlap.
810 (let ((left (interval-high x))
811 (right (interval-low y)))
812 (cond ((> (type-bound-number left)
813 (type-bound-number right))
814 ;; The intervals definitely overlap, so result is NIL.
815 nil)
816 ((< (type-bound-number left)
817 (type-bound-number right))
818 ;; The intervals definitely don't touch, so result is T.
821 ;; Limits are equal. Check for open or closed bounds.
822 ;; Don't overlap if one or the other are open.
823 (or (consp left) (consp right)))))))
825 ;;; Return T if X >= Y. That is, every number in the interval X is
826 ;;; always greater than any number in the interval Y.
827 (defun interval->= (x y)
828 (declare (type interval x y))
829 ;; X >= Y if lower bound of X >= upper bound of Y
830 (when (and (interval-bounded-p x 'below)
831 (interval-bounded-p y 'above))
832 (>= (type-bound-number (interval-low x))
833 (type-bound-number (interval-high y)))))
835 ;;; Return T if X = Y.
836 (defun interval-= (x y)
837 (declare (type interval x y))
838 (and (interval-bounded-p x 'both)
839 (interval-bounded-p y 'both)
840 (flet ((bound (v)
841 (if (numberp v)
843 ;; Open intervals cannot be =
844 (return-from interval-= nil))))
845 ;; Both intervals refer to the same point
846 (= (bound (interval-high x)) (bound (interval-low x))
847 (bound (interval-high y)) (bound (interval-low y))))))
849 ;;; Return T if X /= Y
850 (defun interval-/= (x y)
851 (not (interval-intersect-p x y)))
853 ;;; Return an interval that is the absolute value of X. Thus, if
854 ;;; X = [-1 10], the result is [0, 10].
855 (defun interval-abs (x)
856 (declare (type interval x))
857 (case (interval-range-info x)
859 (copy-interval x))
861 (interval-neg x))
863 (destructuring-bind (x- x+) (interval-split 0 x t t)
864 (interval-merge-pair (interval-neg x-) x+)))))
866 ;;; Compute the square of an interval.
867 (defun interval-sqr (x)
868 (declare (type interval x))
869 (interval-func (lambda (x) (* x x))
870 (interval-abs x)))
872 ;;;; numeric DERIVE-TYPE methods
874 ;;; a utility for defining derive-type methods of integer operations. If
875 ;;; the types of both X and Y are integer types, then we compute a new
876 ;;; integer type with bounds determined Fun when applied to X and Y.
877 ;;; Otherwise, we use NUMERIC-CONTAGION.
878 (defun derive-integer-type-aux (x y fun)
879 (declare (type function fun))
880 (if (and (numeric-type-p x) (numeric-type-p y)
881 (eq (numeric-type-class x) 'integer)
882 (eq (numeric-type-class y) 'integer)
883 (eq (numeric-type-complexp x) :real)
884 (eq (numeric-type-complexp y) :real))
885 (multiple-value-bind (low high) (funcall fun x y)
886 (make-numeric-type :class 'integer
887 :complexp :real
888 :low low
889 :high high))
890 (numeric-contagion x y)))
892 (defun derive-integer-type (x y fun)
893 (declare (type lvar x y) (type function fun))
894 (let ((x (lvar-type x))
895 (y (lvar-type y)))
896 (derive-integer-type-aux x y fun)))
898 ;;; simple utility to flatten a list
899 (defun flatten-list (x)
900 (labels ((flatten-and-append (tree list)
901 (cond ((null tree) list)
902 ((atom tree) (cons tree list))
903 (t (flatten-and-append
904 (car tree) (flatten-and-append (cdr tree) list))))))
905 (flatten-and-append x nil)))
907 ;;; Take some type of lvar and massage it so that we get a list of the
908 ;;; constituent types. If ARG is *EMPTY-TYPE*, return NIL to indicate
909 ;;; failure.
910 (defun prepare-arg-for-derive-type (arg)
911 (flet ((listify (arg)
912 (typecase arg
913 (numeric-type
914 (list arg))
915 (union-type
916 (union-type-types arg))
918 (list arg)))))
919 (unless (eq arg *empty-type*)
920 ;; Make sure all args are some type of numeric-type. For member
921 ;; types, convert the list of members into a union of equivalent
922 ;; single-element member-type's.
923 (let ((new-args nil))
924 (dolist (arg (listify arg))
925 (if (member-type-p arg)
926 ;; Run down the list of members and convert to a list of
927 ;; member types.
928 (dolist (member (member-type-members arg))
929 (push (if (numberp member)
930 (make-member-type :members (list member))
931 *empty-type*)
932 new-args))
933 (push arg new-args)))
934 (unless (member *empty-type* new-args)
935 new-args)))))
937 ;;; Convert from the standard type convention for which -0.0 and 0.0
938 ;;; are equal to an intermediate convention for which they are
939 ;;; considered different which is more natural for some of the
940 ;;; optimisers.
941 (defun convert-numeric-type (type)
942 (declare (type numeric-type type))
943 ;;; Only convert real float interval delimiters types.
944 (if (eq (numeric-type-complexp type) :real)
945 (let* ((lo (numeric-type-low type))
946 (lo-val (type-bound-number lo))
947 (lo-float-zero-p (and lo (floatp lo-val) (= lo-val 0.0)))
948 (hi (numeric-type-high type))
949 (hi-val (type-bound-number hi))
950 (hi-float-zero-p (and hi (floatp hi-val) (= hi-val 0.0))))
951 (if (or lo-float-zero-p hi-float-zero-p)
952 (make-numeric-type
953 :class (numeric-type-class type)
954 :format (numeric-type-format type)
955 :complexp :real
956 :low (if lo-float-zero-p
957 (if (consp lo)
958 (list (float 0.0 lo-val))
959 (float (load-time-value (make-unportable-float :single-float-negative-zero)) lo-val))
961 :high (if hi-float-zero-p
962 (if (consp hi)
963 (list (float (load-time-value (make-unportable-float :single-float-negative-zero)) hi-val))
964 (float 0.0 hi-val))
965 hi))
966 type))
967 ;; Not real float.
968 type))
970 ;;; Convert back from the intermediate convention for which -0.0 and
971 ;;; 0.0 are considered different to the standard type convention for
972 ;;; which and equal.
973 (defun convert-back-numeric-type (type)
974 (declare (type numeric-type type))
975 ;;; Only convert real float interval delimiters types.
976 (if (eq (numeric-type-complexp type) :real)
977 (let* ((lo (numeric-type-low type))
978 (lo-val (type-bound-number lo))
979 (lo-float-zero-p
980 (and lo (floatp lo-val) (= lo-val 0.0)
981 (float-sign lo-val)))
982 (hi (numeric-type-high type))
983 (hi-val (type-bound-number hi))
984 (hi-float-zero-p
985 (and hi (floatp hi-val) (= hi-val 0.0)
986 (float-sign hi-val))))
987 (cond
988 ;; (float +0.0 +0.0) => (member 0.0)
989 ;; (float -0.0 -0.0) => (member -0.0)
990 ((and lo-float-zero-p hi-float-zero-p)
991 ;; shouldn't have exclusive bounds here..
992 (aver (and (not (consp lo)) (not (consp hi))))
993 (if (= lo-float-zero-p hi-float-zero-p)
994 ;; (float +0.0 +0.0) => (member 0.0)
995 ;; (float -0.0 -0.0) => (member -0.0)
996 (specifier-type `(member ,lo-val))
997 ;; (float -0.0 +0.0) => (float 0.0 0.0)
998 ;; (float +0.0 -0.0) => (float 0.0 0.0)
999 (make-numeric-type :class (numeric-type-class type)
1000 :format (numeric-type-format type)
1001 :complexp :real
1002 :low hi-val
1003 :high hi-val)))
1004 (lo-float-zero-p
1005 (cond
1006 ;; (float -0.0 x) => (float 0.0 x)
1007 ((and (not (consp lo)) (minusp lo-float-zero-p))
1008 (make-numeric-type :class (numeric-type-class type)
1009 :format (numeric-type-format type)
1010 :complexp :real
1011 :low (float 0.0 lo-val)
1012 :high hi))
1013 ;; (float (+0.0) x) => (float (0.0) x)
1014 ((and (consp lo) (plusp lo-float-zero-p))
1015 (make-numeric-type :class (numeric-type-class type)
1016 :format (numeric-type-format type)
1017 :complexp :real
1018 :low (list (float 0.0 lo-val))
1019 :high hi))
1021 ;; (float +0.0 x) => (or (member 0.0) (float (0.0) x))
1022 ;; (float (-0.0) x) => (or (member 0.0) (float (0.0) x))
1023 (list (make-member-type :members (list (float 0.0 lo-val)))
1024 (make-numeric-type :class (numeric-type-class type)
1025 :format (numeric-type-format type)
1026 :complexp :real
1027 :low (list (float 0.0 lo-val))
1028 :high hi)))))
1029 (hi-float-zero-p
1030 (cond
1031 ;; (float x +0.0) => (float x 0.0)
1032 ((and (not (consp hi)) (plusp hi-float-zero-p))
1033 (make-numeric-type :class (numeric-type-class type)
1034 :format (numeric-type-format type)
1035 :complexp :real
1036 :low lo
1037 :high (float 0.0 hi-val)))
1038 ;; (float x (-0.0)) => (float x (0.0))
1039 ((and (consp hi) (minusp hi-float-zero-p))
1040 (make-numeric-type :class (numeric-type-class type)
1041 :format (numeric-type-format type)
1042 :complexp :real
1043 :low lo
1044 :high (list (float 0.0 hi-val))))
1046 ;; (float x (+0.0)) => (or (member -0.0) (float x (0.0)))
1047 ;; (float x -0.0) => (or (member -0.0) (float x (0.0)))
1048 (list (make-member-type :members (list (float -0.0 hi-val)))
1049 (make-numeric-type :class (numeric-type-class type)
1050 :format (numeric-type-format type)
1051 :complexp :real
1052 :low lo
1053 :high (list (float 0.0 hi-val)))))))
1055 type)))
1056 ;; not real float
1057 type))
1059 ;;; Convert back a possible list of numeric types.
1060 (defun convert-back-numeric-type-list (type-list)
1061 (typecase type-list
1062 (list
1063 (let ((results '()))
1064 (dolist (type type-list)
1065 (if (numeric-type-p type)
1066 (let ((result (convert-back-numeric-type type)))
1067 (if (listp result)
1068 (setf results (append results result))
1069 (push result results)))
1070 (push type results)))
1071 results))
1072 (numeric-type
1073 (convert-back-numeric-type type-list))
1074 (union-type
1075 (convert-back-numeric-type-list (union-type-types type-list)))
1077 type-list)))
1079 ;;; FIXME: MAKE-CANONICAL-UNION-TYPE and CONVERT-MEMBER-TYPE probably
1080 ;;; belong in the kernel's type logic, invoked always, instead of in
1081 ;;; the compiler, invoked only during some type optimizations. (In
1082 ;;; fact, as of 0.pre8.100 or so they probably are, under
1083 ;;; MAKE-MEMBER-TYPE, so probably this code can be deleted)
1085 ;;; Take a list of types and return a canonical type specifier,
1086 ;;; combining any MEMBER types together. If both positive and negative
1087 ;;; MEMBER types are present they are converted to a float type.
1088 ;;; XXX This would be far simpler if the type-union methods could handle
1089 ;;; member/number unions.
1090 (defun make-canonical-union-type (type-list)
1091 (let ((members '())
1092 (misc-types '()))
1093 (dolist (type type-list)
1094 (if (member-type-p type)
1095 (setf members (union members (member-type-members type)))
1096 (push type misc-types)))
1097 #!+long-float
1098 (when (null (set-difference `(,(load-time-value (make-unportable-float :long-float-negative-zero)) 0.0l0) members))
1099 (push (specifier-type '(long-float 0.0l0 0.0l0)) misc-types)
1100 (setf members (set-difference members `(,(load-time-value (make-unportable-float :long-float-negative-zero)) 0.0l0))))
1101 (when (null (set-difference `(,(load-time-value (make-unportable-float :double-float-negative-zero)) 0.0d0) members))
1102 (push (specifier-type '(double-float 0.0d0 0.0d0)) misc-types)
1103 (setf members (set-difference members `(,(load-time-value (make-unportable-float :double-float-negative-zero)) 0.0d0))))
1104 (when (null (set-difference `(,(load-time-value (make-unportable-float :single-float-negative-zero)) 0.0f0) members))
1105 (push (specifier-type '(single-float 0.0f0 0.0f0)) misc-types)
1106 (setf members (set-difference members `(,(load-time-value (make-unportable-float :single-float-negative-zero)) 0.0f0))))
1107 (if members
1108 (apply #'type-union (make-member-type :members members) misc-types)
1109 (apply #'type-union misc-types))))
1111 ;;; Convert a member type with a single member to a numeric type.
1112 (defun convert-member-type (arg)
1113 (let* ((members (member-type-members arg))
1114 (member (first members))
1115 (member-type (type-of member)))
1116 (aver (not (rest members)))
1117 (specifier-type (cond ((typep member 'integer)
1118 `(integer ,member ,member))
1119 ((memq member-type '(short-float single-float
1120 double-float long-float))
1121 `(,member-type ,member ,member))
1123 member-type)))))
1125 ;;; This is used in defoptimizers for computing the resulting type of
1126 ;;; a function.
1128 ;;; Given the lvar ARG, derive the resulting type using the
1129 ;;; DERIVE-FUN. DERIVE-FUN takes exactly one argument which is some
1130 ;;; "atomic" lvar type like numeric-type or member-type (containing
1131 ;;; just one element). It should return the resulting type, which can
1132 ;;; be a list of types.
1134 ;;; For the case of member types, if a MEMBER-FUN is given it is
1135 ;;; called to compute the result otherwise the member type is first
1136 ;;; converted to a numeric type and the DERIVE-FUN is called.
1137 (defun one-arg-derive-type (arg derive-fun member-fun
1138 &optional (convert-type t))
1139 (declare (type function derive-fun)
1140 (type (or null function) member-fun))
1141 (let ((arg-list (prepare-arg-for-derive-type (lvar-type arg))))
1142 (when arg-list
1143 (flet ((deriver (x)
1144 (typecase x
1145 (member-type
1146 (if member-fun
1147 (with-float-traps-masked
1148 (:underflow :overflow :divide-by-zero)
1149 (specifier-type
1150 `(eql ,(funcall member-fun
1151 (first (member-type-members x))))))
1152 ;; Otherwise convert to a numeric type.
1153 (let ((result-type-list
1154 (funcall derive-fun (convert-member-type x))))
1155 (if convert-type
1156 (convert-back-numeric-type-list result-type-list)
1157 result-type-list))))
1158 (numeric-type
1159 (if convert-type
1160 (convert-back-numeric-type-list
1161 (funcall derive-fun (convert-numeric-type x)))
1162 (funcall derive-fun x)))
1164 *universal-type*))))
1165 ;; Run down the list of args and derive the type of each one,
1166 ;; saving all of the results in a list.
1167 (let ((results nil))
1168 (dolist (arg arg-list)
1169 (let ((result (deriver arg)))
1170 (if (listp result)
1171 (setf results (append results result))
1172 (push result results))))
1173 (if (rest results)
1174 (make-canonical-union-type results)
1175 (first results)))))))
1177 ;;; Same as ONE-ARG-DERIVE-TYPE, except we assume the function takes
1178 ;;; two arguments. DERIVE-FUN takes 3 args in this case: the two
1179 ;;; original args and a third which is T to indicate if the two args
1180 ;;; really represent the same lvar. This is useful for deriving the
1181 ;;; type of things like (* x x), which should always be positive. If
1182 ;;; we didn't do this, we wouldn't be able to tell.
1183 (defun two-arg-derive-type (arg1 arg2 derive-fun fun
1184 &optional (convert-type t))
1185 (declare (type function derive-fun fun))
1186 (flet ((deriver (x y same-arg)
1187 (cond ((and (member-type-p x) (member-type-p y))
1188 (let* ((x (first (member-type-members x)))
1189 (y (first (member-type-members y)))
1190 (result (ignore-errors
1191 (with-float-traps-masked
1192 (:underflow :overflow :divide-by-zero
1193 :invalid)
1194 (funcall fun x y)))))
1195 (cond ((null result) *empty-type*)
1196 ((and (floatp result) (float-nan-p result))
1197 (make-numeric-type :class 'float
1198 :format (type-of result)
1199 :complexp :real))
1201 (specifier-type `(eql ,result))))))
1202 ((and (member-type-p x) (numeric-type-p y))
1203 (let* ((x (convert-member-type x))
1204 (y (if convert-type (convert-numeric-type y) y))
1205 (result (funcall derive-fun x y same-arg)))
1206 (if convert-type
1207 (convert-back-numeric-type-list result)
1208 result)))
1209 ((and (numeric-type-p x) (member-type-p y))
1210 (let* ((x (if convert-type (convert-numeric-type x) x))
1211 (y (convert-member-type y))
1212 (result (funcall derive-fun x y same-arg)))
1213 (if convert-type
1214 (convert-back-numeric-type-list result)
1215 result)))
1216 ((and (numeric-type-p x) (numeric-type-p y))
1217 (let* ((x (if convert-type (convert-numeric-type x) x))
1218 (y (if convert-type (convert-numeric-type y) y))
1219 (result (funcall derive-fun x y same-arg)))
1220 (if convert-type
1221 (convert-back-numeric-type-list result)
1222 result)))
1224 *universal-type*))))
1225 (let ((same-arg (same-leaf-ref-p arg1 arg2))
1226 (a1 (prepare-arg-for-derive-type (lvar-type arg1)))
1227 (a2 (prepare-arg-for-derive-type (lvar-type arg2))))
1228 (when (and a1 a2)
1229 (let ((results nil))
1230 (if same-arg
1231 ;; Since the args are the same LVARs, just run down the
1232 ;; lists.
1233 (dolist (x a1)
1234 (let ((result (deriver x x same-arg)))
1235 (if (listp result)
1236 (setf results (append results result))
1237 (push result results))))
1238 ;; Try all pairwise combinations.
1239 (dolist (x a1)
1240 (dolist (y a2)
1241 (let ((result (or (deriver x y same-arg)
1242 (numeric-contagion x y))))
1243 (if (listp result)
1244 (setf results (append results result))
1245 (push result results))))))
1246 (if (rest results)
1247 (make-canonical-union-type results)
1248 (first results)))))))
1250 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1251 (progn
1252 (defoptimizer (+ derive-type) ((x y))
1253 (derive-integer-type
1255 #'(lambda (x y)
1256 (flet ((frob (x y)
1257 (if (and x y)
1258 (+ x y)
1259 nil)))
1260 (values (frob (numeric-type-low x) (numeric-type-low y))
1261 (frob (numeric-type-high x) (numeric-type-high y)))))))
1263 (defoptimizer (- derive-type) ((x y))
1264 (derive-integer-type
1266 #'(lambda (x y)
1267 (flet ((frob (x y)
1268 (if (and x y)
1269 (- x y)
1270 nil)))
1271 (values (frob (numeric-type-low x) (numeric-type-high y))
1272 (frob (numeric-type-high x) (numeric-type-low y)))))))
1274 (defoptimizer (* derive-type) ((x y))
1275 (derive-integer-type
1277 #'(lambda (x y)
1278 (let ((x-low (numeric-type-low x))
1279 (x-high (numeric-type-high x))
1280 (y-low (numeric-type-low y))
1281 (y-high (numeric-type-high y)))
1282 (cond ((not (and x-low y-low))
1283 (values nil nil))
1284 ((or (minusp x-low) (minusp y-low))
1285 (if (and x-high y-high)
1286 (let ((max (* (max (abs x-low) (abs x-high))
1287 (max (abs y-low) (abs y-high)))))
1288 (values (- max) max))
1289 (values nil nil)))
1291 (values (* x-low y-low)
1292 (if (and x-high y-high)
1293 (* x-high y-high)
1294 nil))))))))
1296 (defoptimizer (/ derive-type) ((x y))
1297 (numeric-contagion (lvar-type x) (lvar-type y)))
1299 ) ; PROGN
1301 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1302 (progn
1303 (defun +-derive-type-aux (x y same-arg)
1304 (if (and (numeric-type-real-p x)
1305 (numeric-type-real-p y))
1306 (let ((result
1307 (if same-arg
1308 (let ((x-int (numeric-type->interval x)))
1309 (interval-add x-int x-int))
1310 (interval-add (numeric-type->interval x)
1311 (numeric-type->interval y))))
1312 (result-type (numeric-contagion x y)))
1313 ;; If the result type is a float, we need to be sure to coerce
1314 ;; the bounds into the correct type.
1315 (when (eq (numeric-type-class result-type) 'float)
1316 (setf result (interval-func
1317 #'(lambda (x)
1318 (coerce-for-bound x (or (numeric-type-format result-type)
1319 'float)))
1320 result)))
1321 (make-numeric-type
1322 :class (if (and (eq (numeric-type-class x) 'integer)
1323 (eq (numeric-type-class y) 'integer))
1324 ;; The sum of integers is always an integer.
1325 'integer
1326 (numeric-type-class result-type))
1327 :format (numeric-type-format result-type)
1328 :low (interval-low result)
1329 :high (interval-high result)))
1330 ;; general contagion
1331 (numeric-contagion x y)))
1333 (defoptimizer (+ derive-type) ((x y))
1334 (two-arg-derive-type x y #'+-derive-type-aux #'+))
1336 (defun --derive-type-aux (x y same-arg)
1337 (if (and (numeric-type-real-p x)
1338 (numeric-type-real-p y))
1339 (let ((result
1340 ;; (- X X) is always 0.
1341 (if same-arg
1342 (make-interval :low 0 :high 0)
1343 (interval-sub (numeric-type->interval x)
1344 (numeric-type->interval y))))
1345 (result-type (numeric-contagion x y)))
1346 ;; If the result type is a float, we need to be sure to coerce
1347 ;; the bounds into the correct type.
1348 (when (eq (numeric-type-class result-type) 'float)
1349 (setf result (interval-func
1350 #'(lambda (x)
1351 (coerce-for-bound x (or (numeric-type-format result-type)
1352 'float)))
1353 result)))
1354 (make-numeric-type
1355 :class (if (and (eq (numeric-type-class x) 'integer)
1356 (eq (numeric-type-class y) 'integer))
1357 ;; The difference of integers is always an integer.
1358 'integer
1359 (numeric-type-class result-type))
1360 :format (numeric-type-format result-type)
1361 :low (interval-low result)
1362 :high (interval-high result)))
1363 ;; general contagion
1364 (numeric-contagion x y)))
1366 (defoptimizer (- derive-type) ((x y))
1367 (two-arg-derive-type x y #'--derive-type-aux #'-))
1369 (defun *-derive-type-aux (x y same-arg)
1370 (if (and (numeric-type-real-p x)
1371 (numeric-type-real-p y))
1372 (let ((result
1373 ;; (* X X) is always positive, so take care to do it right.
1374 (if same-arg
1375 (interval-sqr (numeric-type->interval x))
1376 (interval-mul (numeric-type->interval x)
1377 (numeric-type->interval y))))
1378 (result-type (numeric-contagion x y)))
1379 ;; If the result type is a float, we need to be sure to coerce
1380 ;; the bounds into the correct type.
1381 (when (eq (numeric-type-class result-type) 'float)
1382 (setf result (interval-func
1383 #'(lambda (x)
1384 (coerce-for-bound x (or (numeric-type-format result-type)
1385 'float)))
1386 result)))
1387 (make-numeric-type
1388 :class (if (and (eq (numeric-type-class x) 'integer)
1389 (eq (numeric-type-class y) 'integer))
1390 ;; The product of integers is always an integer.
1391 'integer
1392 (numeric-type-class result-type))
1393 :format (numeric-type-format result-type)
1394 :low (interval-low result)
1395 :high (interval-high result)))
1396 (numeric-contagion x y)))
1398 (defoptimizer (* derive-type) ((x y))
1399 (two-arg-derive-type x y #'*-derive-type-aux #'*))
1401 (defun /-derive-type-aux (x y same-arg)
1402 (if (and (numeric-type-real-p x)
1403 (numeric-type-real-p y))
1404 (let ((result
1405 ;; (/ X X) is always 1, except if X can contain 0. In
1406 ;; that case, we shouldn't optimize the division away
1407 ;; because we want 0/0 to signal an error.
1408 (if (and same-arg
1409 (not (interval-contains-p
1410 0 (interval-closure (numeric-type->interval y)))))
1411 (make-interval :low 1 :high 1)
1412 (interval-div (numeric-type->interval x)
1413 (numeric-type->interval y))))
1414 (result-type (numeric-contagion x y)))
1415 ;; If the result type is a float, we need to be sure to coerce
1416 ;; the bounds into the correct type.
1417 (when (eq (numeric-type-class result-type) 'float)
1418 (setf result (interval-func
1419 #'(lambda (x)
1420 (coerce-for-bound x (or (numeric-type-format result-type)
1421 'float)))
1422 result)))
1423 (make-numeric-type :class (numeric-type-class result-type)
1424 :format (numeric-type-format result-type)
1425 :low (interval-low result)
1426 :high (interval-high result)))
1427 (numeric-contagion x y)))
1429 (defoptimizer (/ derive-type) ((x y))
1430 (two-arg-derive-type x y #'/-derive-type-aux #'/))
1432 ) ; PROGN
1434 (defun ash-derive-type-aux (n-type shift same-arg)
1435 (declare (ignore same-arg))
1436 ;; KLUDGE: All this ASH optimization is suppressed under CMU CL for
1437 ;; some bignum cases because as of version 2.4.6 for Debian and 18d,
1438 ;; CMU CL blows up on (ASH 1000000000 -100000000000) (i.e. ASH of
1439 ;; two bignums yielding zero) and it's hard to avoid that
1440 ;; calculation in here.
1441 #+(and cmu sb-xc-host)
1442 (when (and (or (typep (numeric-type-low n-type) 'bignum)
1443 (typep (numeric-type-high n-type) 'bignum))
1444 (or (typep (numeric-type-low shift) 'bignum)
1445 (typep (numeric-type-high shift) 'bignum)))
1446 (return-from ash-derive-type-aux *universal-type*))
1447 (flet ((ash-outer (n s)
1448 (when (and (fixnump s)
1449 (<= s 64)
1450 (> s sb!xc:most-negative-fixnum))
1451 (ash n s)))
1452 ;; KLUDGE: The bare 64's here should be related to
1453 ;; symbolic machine word size values somehow.
1455 (ash-inner (n s)
1456 (if (and (fixnump s)
1457 (> s sb!xc:most-negative-fixnum))
1458 (ash n (min s 64))
1459 (if (minusp n) -1 0))))
1460 (or (and (csubtypep n-type (specifier-type 'integer))
1461 (csubtypep shift (specifier-type 'integer))
1462 (let ((n-low (numeric-type-low n-type))
1463 (n-high (numeric-type-high n-type))
1464 (s-low (numeric-type-low shift))
1465 (s-high (numeric-type-high shift)))
1466 (make-numeric-type :class 'integer :complexp :real
1467 :low (when n-low
1468 (if (minusp n-low)
1469 (ash-outer n-low s-high)
1470 (ash-inner n-low s-low)))
1471 :high (when n-high
1472 (if (minusp n-high)
1473 (ash-inner n-high s-low)
1474 (ash-outer n-high s-high))))))
1475 *universal-type*)))
1477 (defoptimizer (ash derive-type) ((n shift))
1478 (two-arg-derive-type n shift #'ash-derive-type-aux #'ash))
1480 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1481 (macrolet ((frob (fun)
1482 `#'(lambda (type type2)
1483 (declare (ignore type2))
1484 (let ((lo (numeric-type-low type))
1485 (hi (numeric-type-high type)))
1486 (values (if hi (,fun hi) nil) (if lo (,fun lo) nil))))))
1488 (defoptimizer (%negate derive-type) ((num))
1489 (derive-integer-type num num (frob -))))
1491 (defun lognot-derive-type-aux (int)
1492 (derive-integer-type-aux int int
1493 (lambda (type type2)
1494 (declare (ignore type2))
1495 (let ((lo (numeric-type-low type))
1496 (hi (numeric-type-high type)))
1497 (values (if hi (lognot hi) nil)
1498 (if lo (lognot lo) nil)
1499 (numeric-type-class type)
1500 (numeric-type-format type))))))
1502 (defoptimizer (lognot derive-type) ((int))
1503 (lognot-derive-type-aux (lvar-type int)))
1505 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1506 (defoptimizer (%negate derive-type) ((num))
1507 (flet ((negate-bound (b)
1508 (and b
1509 (set-bound (- (type-bound-number b))
1510 (consp b)))))
1511 (one-arg-derive-type num
1512 (lambda (type)
1513 (modified-numeric-type
1514 type
1515 :low (negate-bound (numeric-type-high type))
1516 :high (negate-bound (numeric-type-low type))))
1517 #'-)))
1519 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1520 (defoptimizer (abs derive-type) ((num))
1521 (let ((type (lvar-type num)))
1522 (if (and (numeric-type-p type)
1523 (eq (numeric-type-class type) 'integer)
1524 (eq (numeric-type-complexp type) :real))
1525 (let ((lo (numeric-type-low type))
1526 (hi (numeric-type-high type)))
1527 (make-numeric-type :class 'integer :complexp :real
1528 :low (cond ((and hi (minusp hi))
1529 (abs hi))
1531 (max 0 lo))
1534 :high (if (and hi lo)
1535 (max (abs hi) (abs lo))
1536 nil)))
1537 (numeric-contagion type type))))
1539 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1540 (defun abs-derive-type-aux (type)
1541 (cond ((eq (numeric-type-complexp type) :complex)
1542 ;; The absolute value of a complex number is always a
1543 ;; non-negative float.
1544 (let* ((format (case (numeric-type-class type)
1545 ((integer rational) 'single-float)
1546 (t (numeric-type-format type))))
1547 (bound-format (or format 'float)))
1548 (make-numeric-type :class 'float
1549 :format format
1550 :complexp :real
1551 :low (coerce 0 bound-format)
1552 :high nil)))
1554 ;; The absolute value of a real number is a non-negative real
1555 ;; of the same type.
1556 (let* ((abs-bnd (interval-abs (numeric-type->interval type)))
1557 (class (numeric-type-class type))
1558 (format (numeric-type-format type))
1559 (bound-type (or format class 'real)))
1560 (make-numeric-type
1561 :class class
1562 :format format
1563 :complexp :real
1564 :low (coerce-and-truncate-floats (interval-low abs-bnd) bound-type)
1565 :high (coerce-and-truncate-floats
1566 (interval-high abs-bnd) bound-type))))))
1568 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1569 (defoptimizer (abs derive-type) ((num))
1570 (one-arg-derive-type num #'abs-derive-type-aux #'abs))
1572 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1573 (defoptimizer (truncate derive-type) ((number divisor))
1574 (let ((number-type (lvar-type number))
1575 (divisor-type (lvar-type divisor))
1576 (integer-type (specifier-type 'integer)))
1577 (if (and (numeric-type-p number-type)
1578 (csubtypep number-type integer-type)
1579 (numeric-type-p divisor-type)
1580 (csubtypep divisor-type integer-type))
1581 (let ((number-low (numeric-type-low number-type))
1582 (number-high (numeric-type-high number-type))
1583 (divisor-low (numeric-type-low divisor-type))
1584 (divisor-high (numeric-type-high divisor-type)))
1585 (values-specifier-type
1586 `(values ,(integer-truncate-derive-type number-low number-high
1587 divisor-low divisor-high)
1588 ,(integer-rem-derive-type number-low number-high
1589 divisor-low divisor-high))))
1590 *universal-type*)))
1592 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1593 (progn
1595 (defun rem-result-type (number-type divisor-type)
1596 ;; Figure out what the remainder type is. The remainder is an
1597 ;; integer if both args are integers; a rational if both args are
1598 ;; rational; and a float otherwise.
1599 (cond ((and (csubtypep number-type (specifier-type 'integer))
1600 (csubtypep divisor-type (specifier-type 'integer)))
1601 'integer)
1602 ((and (csubtypep number-type (specifier-type 'rational))
1603 (csubtypep divisor-type (specifier-type 'rational)))
1604 'rational)
1605 ((and (csubtypep number-type (specifier-type 'float))
1606 (csubtypep divisor-type (specifier-type 'float)))
1607 ;; Both are floats so the result is also a float, of
1608 ;; the largest type.
1609 (or (float-format-max (numeric-type-format number-type)
1610 (numeric-type-format divisor-type))
1611 'float))
1612 ((and (csubtypep number-type (specifier-type 'float))
1613 (csubtypep divisor-type (specifier-type 'rational)))
1614 ;; One of the arguments is a float and the other is a
1615 ;; rational. The remainder is a float of the same
1616 ;; type.
1617 (or (numeric-type-format number-type) 'float))
1618 ((and (csubtypep divisor-type (specifier-type 'float))
1619 (csubtypep number-type (specifier-type 'rational)))
1620 ;; One of the arguments is a float and the other is a
1621 ;; rational. The remainder is a float of the same
1622 ;; type.
1623 (or (numeric-type-format divisor-type) 'float))
1625 ;; Some unhandled combination. This usually means both args
1626 ;; are REAL so the result is a REAL.
1627 'real)))
1629 (defun truncate-derive-type-quot (number-type divisor-type)
1630 (let* ((rem-type (rem-result-type number-type divisor-type))
1631 (number-interval (numeric-type->interval number-type))
1632 (divisor-interval (numeric-type->interval divisor-type)))
1633 ;;(declare (type (member '(integer rational float)) rem-type))
1634 ;; We have real numbers now.
1635 (cond ((eq rem-type 'integer)
1636 ;; Since the remainder type is INTEGER, both args are
1637 ;; INTEGERs.
1638 (let* ((res (integer-truncate-derive-type
1639 (interval-low number-interval)
1640 (interval-high number-interval)
1641 (interval-low divisor-interval)
1642 (interval-high divisor-interval))))
1643 (specifier-type (if (listp res) res 'integer))))
1645 (let ((quot (truncate-quotient-bound
1646 (interval-div number-interval
1647 divisor-interval))))
1648 (specifier-type `(integer ,(or (interval-low quot) '*)
1649 ,(or (interval-high quot) '*))))))))
1651 (defun truncate-derive-type-rem (number-type divisor-type)
1652 (let* ((rem-type (rem-result-type number-type divisor-type))
1653 (number-interval (numeric-type->interval number-type))
1654 (divisor-interval (numeric-type->interval divisor-type))
1655 (rem (truncate-rem-bound number-interval divisor-interval)))
1656 ;;(declare (type (member '(integer rational float)) rem-type))
1657 ;; We have real numbers now.
1658 (cond ((eq rem-type 'integer)
1659 ;; Since the remainder type is INTEGER, both args are
1660 ;; INTEGERs.
1661 (specifier-type `(,rem-type ,(or (interval-low rem) '*)
1662 ,(or (interval-high rem) '*))))
1664 (multiple-value-bind (class format)
1665 (ecase rem-type
1666 (integer
1667 (values 'integer nil))
1668 (rational
1669 (values 'rational nil))
1670 ((or single-float double-float #!+long-float long-float)
1671 (values 'float rem-type))
1672 (float
1673 (values 'float nil))
1674 (real
1675 (values nil nil)))
1676 (when (member rem-type '(float single-float double-float
1677 #!+long-float long-float))
1678 (setf rem (interval-func #'(lambda (x)
1679 (coerce-for-bound x rem-type))
1680 rem)))
1681 (make-numeric-type :class class
1682 :format format
1683 :low (interval-low rem)
1684 :high (interval-high rem)))))))
1686 (defun truncate-derive-type-quot-aux (num div same-arg)
1687 (declare (ignore same-arg))
1688 (if (and (numeric-type-real-p num)
1689 (numeric-type-real-p div))
1690 (truncate-derive-type-quot num div)
1691 *empty-type*))
1693 (defun truncate-derive-type-rem-aux (num div same-arg)
1694 (declare (ignore same-arg))
1695 (if (and (numeric-type-real-p num)
1696 (numeric-type-real-p div))
1697 (truncate-derive-type-rem num div)
1698 *empty-type*))
1700 (defoptimizer (truncate derive-type) ((number divisor))
1701 (let ((quot (two-arg-derive-type number divisor
1702 #'truncate-derive-type-quot-aux #'truncate))
1703 (rem (two-arg-derive-type number divisor
1704 #'truncate-derive-type-rem-aux #'rem)))
1705 (when (and quot rem)
1706 (make-values-type :required (list quot rem)))))
1708 (defun ftruncate-derive-type-quot (number-type divisor-type)
1709 ;; The bounds are the same as for truncate. However, the first
1710 ;; result is a float of some type. We need to determine what that
1711 ;; type is. Basically it's the more contagious of the two types.
1712 (let ((q-type (truncate-derive-type-quot number-type divisor-type))
1713 (res-type (numeric-contagion number-type divisor-type)))
1714 (make-numeric-type :class 'float
1715 :format (numeric-type-format res-type)
1716 :low (numeric-type-low q-type)
1717 :high (numeric-type-high q-type))))
1719 (defun ftruncate-derive-type-quot-aux (n d same-arg)
1720 (declare (ignore same-arg))
1721 (if (and (numeric-type-real-p n)
1722 (numeric-type-real-p d))
1723 (ftruncate-derive-type-quot n d)
1724 *empty-type*))
1726 (defoptimizer (ftruncate derive-type) ((number divisor))
1727 (let ((quot
1728 (two-arg-derive-type number divisor
1729 #'ftruncate-derive-type-quot-aux #'ftruncate))
1730 (rem (two-arg-derive-type number divisor
1731 #'truncate-derive-type-rem-aux #'rem)))
1732 (when (and quot rem)
1733 (make-values-type :required (list quot rem)))))
1735 (defun %unary-truncate-derive-type-aux (number)
1736 (truncate-derive-type-quot number (specifier-type '(integer 1 1))))
1738 (defoptimizer (%unary-truncate derive-type) ((number))
1739 (one-arg-derive-type number
1740 #'%unary-truncate-derive-type-aux
1741 #'%unary-truncate))
1743 (defoptimizer (%unary-ftruncate derive-type) ((number))
1744 (let ((divisor (specifier-type '(integer 1 1))))
1745 (one-arg-derive-type number
1746 #'(lambda (n)
1747 (ftruncate-derive-type-quot-aux n divisor nil))
1748 #'%unary-ftruncate)))
1750 ;;; Define optimizers for FLOOR and CEILING.
1751 (macrolet
1752 ((def (name q-name r-name)
1753 (let ((q-aux (symbolicate q-name "-AUX"))
1754 (r-aux (symbolicate r-name "-AUX")))
1755 `(progn
1756 ;; Compute type of quotient (first) result.
1757 (defun ,q-aux (number-type divisor-type)
1758 (let* ((number-interval
1759 (numeric-type->interval number-type))
1760 (divisor-interval
1761 (numeric-type->interval divisor-type))
1762 (quot (,q-name (interval-div number-interval
1763 divisor-interval))))
1764 (specifier-type `(integer ,(or (interval-low quot) '*)
1765 ,(or (interval-high quot) '*)))))
1766 ;; Compute type of remainder.
1767 (defun ,r-aux (number-type divisor-type)
1768 (let* ((divisor-interval
1769 (numeric-type->interval divisor-type))
1770 (rem (,r-name divisor-interval))
1771 (result-type (rem-result-type number-type divisor-type)))
1772 (multiple-value-bind (class format)
1773 (ecase result-type
1774 (integer
1775 (values 'integer nil))
1776 (rational
1777 (values 'rational nil))
1778 ((or single-float double-float #!+long-float long-float)
1779 (values 'float result-type))
1780 (float
1781 (values 'float nil))
1782 (real
1783 (values nil nil)))
1784 (when (member result-type '(float single-float double-float
1785 #!+long-float long-float))
1786 ;; Make sure that the limits on the interval have
1787 ;; the right type.
1788 (setf rem (interval-func (lambda (x)
1789 (coerce-for-bound x result-type))
1790 rem)))
1791 (make-numeric-type :class class
1792 :format format
1793 :low (interval-low rem)
1794 :high (interval-high rem)))))
1795 ;; the optimizer itself
1796 (defoptimizer (,name derive-type) ((number divisor))
1797 (flet ((derive-q (n d same-arg)
1798 (declare (ignore same-arg))
1799 (if (and (numeric-type-real-p n)
1800 (numeric-type-real-p d))
1801 (,q-aux n d)
1802 *empty-type*))
1803 (derive-r (n d same-arg)
1804 (declare (ignore same-arg))
1805 (if (and (numeric-type-real-p n)
1806 (numeric-type-real-p d))
1807 (,r-aux n d)
1808 *empty-type*)))
1809 (let ((quot (two-arg-derive-type
1810 number divisor #'derive-q #',name))
1811 (rem (two-arg-derive-type
1812 number divisor #'derive-r #'mod)))
1813 (when (and quot rem)
1814 (make-values-type :required (list quot rem))))))))))
1816 (def floor floor-quotient-bound floor-rem-bound)
1817 (def ceiling ceiling-quotient-bound ceiling-rem-bound))
1819 ;;; Define optimizers for FFLOOR and FCEILING
1820 (macrolet ((def (name q-name r-name)
1821 (let ((q-aux (symbolicate "F" q-name "-AUX"))
1822 (r-aux (symbolicate r-name "-AUX")))
1823 `(progn
1824 ;; Compute type of quotient (first) result.
1825 (defun ,q-aux (number-type divisor-type)
1826 (let* ((number-interval
1827 (numeric-type->interval number-type))
1828 (divisor-interval
1829 (numeric-type->interval divisor-type))
1830 (quot (,q-name (interval-div number-interval
1831 divisor-interval)))
1832 (res-type (numeric-contagion number-type
1833 divisor-type)))
1834 (make-numeric-type
1835 :class (numeric-type-class res-type)
1836 :format (numeric-type-format res-type)
1837 :low (interval-low quot)
1838 :high (interval-high quot))))
1840 (defoptimizer (,name derive-type) ((number divisor))
1841 (flet ((derive-q (n d same-arg)
1842 (declare (ignore same-arg))
1843 (if (and (numeric-type-real-p n)
1844 (numeric-type-real-p d))
1845 (,q-aux n d)
1846 *empty-type*))
1847 (derive-r (n d same-arg)
1848 (declare (ignore same-arg))
1849 (if (and (numeric-type-real-p n)
1850 (numeric-type-real-p d))
1851 (,r-aux n d)
1852 *empty-type*)))
1853 (let ((quot (two-arg-derive-type
1854 number divisor #'derive-q #',name))
1855 (rem (two-arg-derive-type
1856 number divisor #'derive-r #'mod)))
1857 (when (and quot rem)
1858 (make-values-type :required (list quot rem))))))))))
1860 (def ffloor floor-quotient-bound floor-rem-bound)
1861 (def fceiling ceiling-quotient-bound ceiling-rem-bound))
1863 ;;; functions to compute the bounds on the quotient and remainder for
1864 ;;; the FLOOR function
1865 (defun floor-quotient-bound (quot)
1866 ;; Take the floor of the quotient and then massage it into what we
1867 ;; need.
1868 (let ((lo (interval-low quot))
1869 (hi (interval-high quot)))
1870 ;; Take the floor of the lower bound. The result is always a
1871 ;; closed lower bound.
1872 (setf lo (if lo
1873 (floor (type-bound-number lo))
1874 nil))
1875 ;; For the upper bound, we need to be careful.
1876 (setf hi
1877 (cond ((consp hi)
1878 ;; An open bound. We need to be careful here because
1879 ;; the floor of '(10.0) is 9, but the floor of
1880 ;; 10.0 is 10.
1881 (multiple-value-bind (q r) (floor (first hi))
1882 (if (zerop r)
1883 (1- q)
1884 q)))
1886 ;; A closed bound, so the answer is obvious.
1887 (floor hi))
1889 hi)))
1890 (make-interval :low lo :high hi)))
1891 (defun floor-rem-bound (div)
1892 ;; The remainder depends only on the divisor. Try to get the
1893 ;; correct sign for the remainder if we can.
1894 (case (interval-range-info div)
1896 ;; The divisor is always positive.
1897 (let ((rem (interval-abs div)))
1898 (setf (interval-low rem) 0)
1899 (when (and (numberp (interval-high rem))
1900 (not (zerop (interval-high rem))))
1901 ;; The remainder never contains the upper bound. However,
1902 ;; watch out for the case where the high limit is zero!
1903 (setf (interval-high rem) (list (interval-high rem))))
1904 rem))
1906 ;; The divisor is always negative.
1907 (let ((rem (interval-neg (interval-abs div))))
1908 (setf (interval-high rem) 0)
1909 (when (numberp (interval-low rem))
1910 ;; The remainder never contains the lower bound.
1911 (setf (interval-low rem) (list (interval-low rem))))
1912 rem))
1913 (otherwise
1914 ;; The divisor can be positive or negative. All bets off. The
1915 ;; magnitude of remainder is the maximum value of the divisor.
1916 (let ((limit (type-bound-number (interval-high (interval-abs div)))))
1917 ;; The bound never reaches the limit, so make the interval open.
1918 (make-interval :low (if limit
1919 (list (- limit))
1920 limit)
1921 :high (list limit))))))
1922 #| Test cases
1923 (floor-quotient-bound (make-interval :low 0.3 :high 10.3))
1924 => #S(INTERVAL :LOW 0 :HIGH 10)
1925 (floor-quotient-bound (make-interval :low 0.3 :high '(10.3)))
1926 => #S(INTERVAL :LOW 0 :HIGH 10)
1927 (floor-quotient-bound (make-interval :low 0.3 :high 10))
1928 => #S(INTERVAL :LOW 0 :HIGH 10)
1929 (floor-quotient-bound (make-interval :low 0.3 :high '(10)))
1930 => #S(INTERVAL :LOW 0 :HIGH 9)
1931 (floor-quotient-bound (make-interval :low '(0.3) :high 10.3))
1932 => #S(INTERVAL :LOW 0 :HIGH 10)
1933 (floor-quotient-bound (make-interval :low '(0.0) :high 10.3))
1934 => #S(INTERVAL :LOW 0 :HIGH 10)
1935 (floor-quotient-bound (make-interval :low '(-1.3) :high 10.3))
1936 => #S(INTERVAL :LOW -2 :HIGH 10)
1937 (floor-quotient-bound (make-interval :low '(-1.0) :high 10.3))
1938 => #S(INTERVAL :LOW -1 :HIGH 10)
1939 (floor-quotient-bound (make-interval :low -1.0 :high 10.3))
1940 => #S(INTERVAL :LOW -1 :HIGH 10)
1942 (floor-rem-bound (make-interval :low 0.3 :high 10.3))
1943 => #S(INTERVAL :LOW 0 :HIGH '(10.3))
1944 (floor-rem-bound (make-interval :low 0.3 :high '(10.3)))
1945 => #S(INTERVAL :LOW 0 :HIGH '(10.3))
1946 (floor-rem-bound (make-interval :low -10 :high -2.3))
1947 #S(INTERVAL :LOW (-10) :HIGH 0)
1948 (floor-rem-bound (make-interval :low 0.3 :high 10))
1949 => #S(INTERVAL :LOW 0 :HIGH '(10))
1950 (floor-rem-bound (make-interval :low '(-1.3) :high 10.3))
1951 => #S(INTERVAL :LOW '(-10.3) :HIGH '(10.3))
1952 (floor-rem-bound (make-interval :low '(-20.3) :high 10.3))
1953 => #S(INTERVAL :LOW (-20.3) :HIGH (20.3))
1956 ;;; same functions for CEILING
1957 (defun ceiling-quotient-bound (quot)
1958 ;; Take the ceiling of the quotient and then massage it into what we
1959 ;; need.
1960 (let ((lo (interval-low quot))
1961 (hi (interval-high quot)))
1962 ;; Take the ceiling of the upper bound. The result is always a
1963 ;; closed upper bound.
1964 (setf hi (if hi
1965 (ceiling (type-bound-number hi))
1966 nil))
1967 ;; For the lower bound, we need to be careful.
1968 (setf lo
1969 (cond ((consp lo)
1970 ;; An open bound. We need to be careful here because
1971 ;; the ceiling of '(10.0) is 11, but the ceiling of
1972 ;; 10.0 is 10.
1973 (multiple-value-bind (q r) (ceiling (first lo))
1974 (if (zerop r)
1975 (1+ q)
1976 q)))
1978 ;; A closed bound, so the answer is obvious.
1979 (ceiling lo))
1981 lo)))
1982 (make-interval :low lo :high hi)))
1983 (defun ceiling-rem-bound (div)
1984 ;; The remainder depends only on the divisor. Try to get the
1985 ;; correct sign for the remainder if we can.
1986 (case (interval-range-info div)
1988 ;; Divisor is always positive. The remainder is negative.
1989 (let ((rem (interval-neg (interval-abs div))))
1990 (setf (interval-high rem) 0)
1991 (when (and (numberp (interval-low rem))
1992 (not (zerop (interval-low rem))))
1993 ;; The remainder never contains the upper bound. However,
1994 ;; watch out for the case when the upper bound is zero!
1995 (setf (interval-low rem) (list (interval-low rem))))
1996 rem))
1998 ;; Divisor is always negative. The remainder is positive
1999 (let ((rem (interval-abs div)))
2000 (setf (interval-low rem) 0)
2001 (when (numberp (interval-high rem))
2002 ;; The remainder never contains the lower bound.
2003 (setf (interval-high rem) (list (interval-high rem))))
2004 rem))
2005 (otherwise
2006 ;; The divisor can be positive or negative. All bets off. The
2007 ;; magnitude of remainder is the maximum value of the divisor.
2008 (let ((limit (type-bound-number (interval-high (interval-abs div)))))
2009 ;; The bound never reaches the limit, so make the interval open.
2010 (make-interval :low (if limit
2011 (list (- limit))
2012 limit)
2013 :high (list limit))))))
2015 #| Test cases
2016 (ceiling-quotient-bound (make-interval :low 0.3 :high 10.3))
2017 => #S(INTERVAL :LOW 1 :HIGH 11)
2018 (ceiling-quotient-bound (make-interval :low 0.3 :high '(10.3)))
2019 => #S(INTERVAL :LOW 1 :HIGH 11)
2020 (ceiling-quotient-bound (make-interval :low 0.3 :high 10))
2021 => #S(INTERVAL :LOW 1 :HIGH 10)
2022 (ceiling-quotient-bound (make-interval :low 0.3 :high '(10)))
2023 => #S(INTERVAL :LOW 1 :HIGH 10)
2024 (ceiling-quotient-bound (make-interval :low '(0.3) :high 10.3))
2025 => #S(INTERVAL :LOW 1 :HIGH 11)
2026 (ceiling-quotient-bound (make-interval :low '(0.0) :high 10.3))
2027 => #S(INTERVAL :LOW 1 :HIGH 11)
2028 (ceiling-quotient-bound (make-interval :low '(-1.3) :high 10.3))
2029 => #S(INTERVAL :LOW -1 :HIGH 11)
2030 (ceiling-quotient-bound (make-interval :low '(-1.0) :high 10.3))
2031 => #S(INTERVAL :LOW 0 :HIGH 11)
2032 (ceiling-quotient-bound (make-interval :low -1.0 :high 10.3))
2033 => #S(INTERVAL :LOW -1 :HIGH 11)
2035 (ceiling-rem-bound (make-interval :low 0.3 :high 10.3))
2036 => #S(INTERVAL :LOW (-10.3) :HIGH 0)
2037 (ceiling-rem-bound (make-interval :low 0.3 :high '(10.3)))
2038 => #S(INTERVAL :LOW 0 :HIGH '(10.3))
2039 (ceiling-rem-bound (make-interval :low -10 :high -2.3))
2040 => #S(INTERVAL :LOW 0 :HIGH (10))
2041 (ceiling-rem-bound (make-interval :low 0.3 :high 10))
2042 => #S(INTERVAL :LOW (-10) :HIGH 0)
2043 (ceiling-rem-bound (make-interval :low '(-1.3) :high 10.3))
2044 => #S(INTERVAL :LOW (-10.3) :HIGH (10.3))
2045 (ceiling-rem-bound (make-interval :low '(-20.3) :high 10.3))
2046 => #S(INTERVAL :LOW (-20.3) :HIGH (20.3))
2049 (defun truncate-quotient-bound (quot)
2050 ;; For positive quotients, truncate is exactly like floor. For
2051 ;; negative quotients, truncate is exactly like ceiling. Otherwise,
2052 ;; it's the union of the two pieces.
2053 (case (interval-range-info quot)
2055 ;; just like FLOOR
2056 (floor-quotient-bound quot))
2058 ;; just like CEILING
2059 (ceiling-quotient-bound quot))
2060 (otherwise
2061 ;; Split the interval into positive and negative pieces, compute
2062 ;; the result for each piece and put them back together.
2063 (destructuring-bind (neg pos) (interval-split 0 quot t t)
2064 (interval-merge-pair (ceiling-quotient-bound neg)
2065 (floor-quotient-bound pos))))))
2067 (defun truncate-rem-bound (num div)
2068 ;; This is significantly more complicated than FLOOR or CEILING. We
2069 ;; need both the number and the divisor to determine the range. The
2070 ;; basic idea is to split the ranges of NUM and DEN into positive
2071 ;; and negative pieces and deal with each of the four possibilities
2072 ;; in turn.
2073 (case (interval-range-info num)
2075 (case (interval-range-info div)
2077 (floor-rem-bound div))
2079 (ceiling-rem-bound div))
2080 (otherwise
2081 (destructuring-bind (neg pos) (interval-split 0 div t t)
2082 (interval-merge-pair (truncate-rem-bound num neg)
2083 (truncate-rem-bound num pos))))))
2085 (case (interval-range-info div)
2087 (ceiling-rem-bound div))
2089 (floor-rem-bound div))
2090 (otherwise
2091 (destructuring-bind (neg pos) (interval-split 0 div t t)
2092 (interval-merge-pair (truncate-rem-bound num neg)
2093 (truncate-rem-bound num pos))))))
2094 (otherwise
2095 (destructuring-bind (neg pos) (interval-split 0 num t t)
2096 (interval-merge-pair (truncate-rem-bound neg div)
2097 (truncate-rem-bound pos div))))))
2098 ) ; PROGN
2100 ;;; Derive useful information about the range. Returns three values:
2101 ;;; - '+ if its positive, '- negative, or nil if it overlaps 0.
2102 ;;; - The abs of the minimal value (i.e. closest to 0) in the range.
2103 ;;; - The abs of the maximal value if there is one, or nil if it is
2104 ;;; unbounded.
2105 (defun numeric-range-info (low high)
2106 (cond ((and low (not (minusp low)))
2107 (values '+ low high))
2108 ((and high (not (plusp high)))
2109 (values '- (- high) (if low (- low) nil)))
2111 (values nil 0 (and low high (max (- low) high))))))
2113 (defun integer-truncate-derive-type
2114 (number-low number-high divisor-low divisor-high)
2115 ;; The result cannot be larger in magnitude than the number, but the
2116 ;; sign might change. If we can determine the sign of either the
2117 ;; number or the divisor, we can eliminate some of the cases.
2118 (multiple-value-bind (number-sign number-min number-max)
2119 (numeric-range-info number-low number-high)
2120 (multiple-value-bind (divisor-sign divisor-min divisor-max)
2121 (numeric-range-info divisor-low divisor-high)
2122 (when (and divisor-max (zerop divisor-max))
2123 ;; We've got a problem: guaranteed division by zero.
2124 (return-from integer-truncate-derive-type t))
2125 (when (zerop divisor-min)
2126 ;; We'll assume that they aren't going to divide by zero.
2127 (incf divisor-min))
2128 (cond ((and number-sign divisor-sign)
2129 ;; We know the sign of both.
2130 (if (eq number-sign divisor-sign)
2131 ;; Same sign, so the result will be positive.
2132 `(integer ,(if divisor-max
2133 (truncate number-min divisor-max)
2135 ,(if number-max
2136 (truncate number-max divisor-min)
2137 '*))
2138 ;; Different signs, the result will be negative.
2139 `(integer ,(if number-max
2140 (- (truncate number-max divisor-min))
2142 ,(if divisor-max
2143 (- (truncate number-min divisor-max))
2144 0))))
2145 ((eq divisor-sign '+)
2146 ;; The divisor is positive. Therefore, the number will just
2147 ;; become closer to zero.
2148 `(integer ,(if number-low
2149 (truncate number-low divisor-min)
2151 ,(if number-high
2152 (truncate number-high divisor-min)
2153 '*)))
2154 ((eq divisor-sign '-)
2155 ;; The divisor is negative. Therefore, the absolute value of
2156 ;; the number will become closer to zero, but the sign will also
2157 ;; change.
2158 `(integer ,(if number-high
2159 (- (truncate number-high divisor-min))
2161 ,(if number-low
2162 (- (truncate number-low divisor-min))
2163 '*)))
2164 ;; The divisor could be either positive or negative.
2165 (number-max
2166 ;; The number we are dividing has a bound. Divide that by the
2167 ;; smallest posible divisor.
2168 (let ((bound (truncate number-max divisor-min)))
2169 `(integer ,(- bound) ,bound)))
2171 ;; The number we are dividing is unbounded, so we can't tell
2172 ;; anything about the result.
2173 `integer)))))
2175 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2176 (defun integer-rem-derive-type
2177 (number-low number-high divisor-low divisor-high)
2178 (if (and divisor-low divisor-high)
2179 ;; We know the range of the divisor, and the remainder must be
2180 ;; smaller than the divisor. We can tell the sign of the
2181 ;; remainer if we know the sign of the number.
2182 (let ((divisor-max (1- (max (abs divisor-low) (abs divisor-high)))))
2183 `(integer ,(if (or (null number-low)
2184 (minusp number-low))
2185 (- divisor-max)
2187 ,(if (or (null number-high)
2188 (plusp number-high))
2189 divisor-max
2190 0)))
2191 ;; The divisor is potentially either very positive or very
2192 ;; negative. Therefore, the remainer is unbounded, but we might
2193 ;; be able to tell something about the sign from the number.
2194 `(integer ,(if (and number-low (not (minusp number-low)))
2195 ;; The number we are dividing is positive.
2196 ;; Therefore, the remainder must be positive.
2199 ,(if (and number-high (not (plusp number-high)))
2200 ;; The number we are dividing is negative.
2201 ;; Therefore, the remainder must be negative.
2203 '*))))
2205 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2206 (defoptimizer (random derive-type) ((bound &optional state))
2207 (let ((type (lvar-type bound)))
2208 (when (numeric-type-p type)
2209 (let ((class (numeric-type-class type))
2210 (high (numeric-type-high type))
2211 (format (numeric-type-format type)))
2212 (make-numeric-type
2213 :class class
2214 :format format
2215 :low (coerce 0 (or format class 'real))
2216 :high (cond ((not high) nil)
2217 ((eq class 'integer) (max (1- high) 0))
2218 ((or (consp high) (zerop high)) high)
2219 (t `(,high))))))))
2221 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2222 (defun random-derive-type-aux (type)
2223 (let ((class (numeric-type-class type))
2224 (high (numeric-type-high type))
2225 (format (numeric-type-format type)))
2226 (make-numeric-type
2227 :class class
2228 :format format
2229 :low (coerce 0 (or format class 'real))
2230 :high (cond ((not high) nil)
2231 ((eq class 'integer) (max (1- high) 0))
2232 ((or (consp high) (zerop high)) high)
2233 (t `(,high))))))
2235 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2236 (defoptimizer (random derive-type) ((bound &optional state))
2237 (one-arg-derive-type bound #'random-derive-type-aux nil))
2239 ;;;; DERIVE-TYPE methods for LOGAND, LOGIOR, and friends
2241 ;;; Return the maximum number of bits an integer of the supplied type
2242 ;;; can take up, or NIL if it is unbounded. The second (third) value
2243 ;;; is T if the integer can be positive (negative) and NIL if not.
2244 ;;; Zero counts as positive.
2245 (defun integer-type-length (type)
2246 (if (numeric-type-p type)
2247 (let ((min (numeric-type-low type))
2248 (max (numeric-type-high type)))
2249 (values (and min max (max (integer-length min) (integer-length max)))
2250 (or (null max) (not (minusp max)))
2251 (or (null min) (minusp min))))
2252 (values nil t t)))
2254 ;;; See _Hacker's Delight_, Henry S. Warren, Jr. pp 58-63 for an
2255 ;;; explanation of LOG{AND,IOR,XOR}-DERIVE-UNSIGNED-{LOW,HIGH}-BOUND.
2256 ;;; Credit also goes to Raymond Toy for writing (and debugging!) similar
2257 ;;; versions in CMUCL, from which these functions copy liberally.
2259 (defun logand-derive-unsigned-low-bound (x y)
2260 (let ((a (numeric-type-low x))
2261 (b (numeric-type-high x))
2262 (c (numeric-type-low y))
2263 (d (numeric-type-high y)))
2264 (loop for m = (ash 1 (integer-length (lognor a c))) then (ash m -1)
2265 until (zerop m) do
2266 (unless (zerop (logand m (lognot a) (lognot c)))
2267 (let ((temp (logandc2 (logior a m) (1- m))))
2268 (when (<= temp b)
2269 (setf a temp)
2270 (loop-finish))
2271 (setf temp (logandc2 (logior c m) (1- m)))
2272 (when (<= temp d)
2273 (setf c temp)
2274 (loop-finish))))
2275 finally (return (logand a c)))))
2277 (defun logand-derive-unsigned-high-bound (x y)
2278 (let ((a (numeric-type-low x))
2279 (b (numeric-type-high x))
2280 (c (numeric-type-low y))
2281 (d (numeric-type-high y)))
2282 (loop for m = (ash 1 (integer-length (logxor b d))) then (ash m -1)
2283 until (zerop m) do
2284 (cond
2285 ((not (zerop (logand b (lognot d) m)))
2286 (let ((temp (logior (logandc2 b m) (1- m))))
2287 (when (>= temp a)
2288 (setf b temp)
2289 (loop-finish))))
2290 ((not (zerop (logand (lognot b) d m)))
2291 (let ((temp (logior (logandc2 d m) (1- m))))
2292 (when (>= temp c)
2293 (setf d temp)
2294 (loop-finish)))))
2295 finally (return (logand b d)))))
2297 (defun logand-derive-type-aux (x y &optional same-leaf)
2298 (when same-leaf
2299 (return-from logand-derive-type-aux x))
2300 (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x)
2301 (declare (ignore x-pos))
2302 (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y)
2303 (declare (ignore y-pos))
2304 (if (not x-neg)
2305 ;; X must be positive.
2306 (if (not y-neg)
2307 ;; They must both be positive.
2308 (cond ((and (null x-len) (null y-len))
2309 (specifier-type 'unsigned-byte))
2310 ((null x-len)
2311 (specifier-type `(unsigned-byte* ,y-len)))
2312 ((null y-len)
2313 (specifier-type `(unsigned-byte* ,x-len)))
2315 (let ((low (logand-derive-unsigned-low-bound x y))
2316 (high (logand-derive-unsigned-high-bound x y)))
2317 (specifier-type `(integer ,low ,high)))))
2318 ;; X is positive, but Y might be negative.
2319 (cond ((null x-len)
2320 (specifier-type 'unsigned-byte))
2322 (specifier-type `(unsigned-byte* ,x-len)))))
2323 ;; X might be negative.
2324 (if (not y-neg)
2325 ;; Y must be positive.
2326 (cond ((null y-len)
2327 (specifier-type 'unsigned-byte))
2328 (t (specifier-type `(unsigned-byte* ,y-len))))
2329 ;; Either might be negative.
2330 (if (and x-len y-len)
2331 ;; The result is bounded.
2332 (specifier-type `(signed-byte ,(1+ (max x-len y-len))))
2333 ;; We can't tell squat about the result.
2334 (specifier-type 'integer)))))))
2336 (defun logior-derive-unsigned-low-bound (x y)
2337 (let ((a (numeric-type-low x))
2338 (b (numeric-type-high x))
2339 (c (numeric-type-low y))
2340 (d (numeric-type-high y)))
2341 (loop for m = (ash 1 (integer-length (logxor a c))) then (ash m -1)
2342 until (zerop m) do
2343 (cond
2344 ((not (zerop (logandc2 (logand c m) a)))
2345 (let ((temp (logand (logior a m) (1+ (lognot m)))))
2346 (when (<= temp b)
2347 (setf a temp)
2348 (loop-finish))))
2349 ((not (zerop (logandc2 (logand a m) c)))
2350 (let ((temp (logand (logior c m) (1+ (lognot m)))))
2351 (when (<= temp d)
2352 (setf c temp)
2353 (loop-finish)))))
2354 finally (return (logior a c)))))
2356 (defun logior-derive-unsigned-high-bound (x y)
2357 (let ((a (numeric-type-low x))
2358 (b (numeric-type-high x))
2359 (c (numeric-type-low y))
2360 (d (numeric-type-high y)))
2361 (loop for m = (ash 1 (integer-length (logand b d))) then (ash m -1)
2362 until (zerop m) do
2363 (unless (zerop (logand b d m))
2364 (let ((temp (logior (- b m) (1- m))))
2365 (when (>= temp a)
2366 (setf b temp)
2367 (loop-finish))
2368 (setf temp (logior (- d m) (1- m)))
2369 (when (>= temp c)
2370 (setf d temp)
2371 (loop-finish))))
2372 finally (return (logior b d)))))
2374 (defun logior-derive-type-aux (x y &optional same-leaf)
2375 (when same-leaf
2376 (return-from logior-derive-type-aux x))
2377 (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x)
2378 (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y)
2379 (cond
2380 ((and (not x-neg) (not y-neg))
2381 ;; Both are positive.
2382 (if (and x-len y-len)
2383 (let ((low (logior-derive-unsigned-low-bound x y))
2384 (high (logior-derive-unsigned-high-bound x y)))
2385 (specifier-type `(integer ,low ,high)))
2386 (specifier-type `(unsigned-byte* *))))
2387 ((not x-pos)
2388 ;; X must be negative.
2389 (if (not y-pos)
2390 ;; Both are negative. The result is going to be negative
2391 ;; and be the same length or shorter than the smaller.
2392 (if (and x-len y-len)
2393 ;; It's bounded.
2394 (specifier-type `(integer ,(ash -1 (min x-len y-len)) -1))
2395 ;; It's unbounded.
2396 (specifier-type '(integer * -1)))
2397 ;; X is negative, but we don't know about Y. The result
2398 ;; will be negative, but no more negative than X.
2399 (specifier-type
2400 `(integer ,(or (numeric-type-low x) '*)
2401 -1))))
2403 ;; X might be either positive or negative.
2404 (if (not y-pos)
2405 ;; But Y is negative. The result will be negative.
2406 (specifier-type
2407 `(integer ,(or (numeric-type-low y) '*)
2408 -1))
2409 ;; We don't know squat about either. It won't get any bigger.
2410 (if (and x-len y-len)
2411 ;; Bounded.
2412 (specifier-type `(signed-byte ,(1+ (max x-len y-len))))
2413 ;; Unbounded.
2414 (specifier-type 'integer))))))))
2416 (defun logxor-derive-unsigned-low-bound (x y)
2417 (let ((a (numeric-type-low x))
2418 (b (numeric-type-high x))
2419 (c (numeric-type-low y))
2420 (d (numeric-type-high y)))
2421 (loop for m = (ash 1 (integer-length (logxor a c))) then (ash m -1)
2422 until (zerop m) do
2423 (cond
2424 ((not (zerop (logandc2 (logand c m) a)))
2425 (let ((temp (logand (logior a m)
2426 (1+ (lognot m)))))
2427 (when (<= temp b)
2428 (setf a temp))))
2429 ((not (zerop (logandc2 (logand a m) c)))
2430 (let ((temp (logand (logior c m)
2431 (1+ (lognot m)))))
2432 (when (<= temp d)
2433 (setf c temp)))))
2434 finally (return (logxor a c)))))
2436 (defun logxor-derive-unsigned-high-bound (x y)
2437 (let ((a (numeric-type-low x))
2438 (b (numeric-type-high x))
2439 (c (numeric-type-low y))
2440 (d (numeric-type-high y)))
2441 (loop for m = (ash 1 (integer-length (logand b d))) then (ash m -1)
2442 until (zerop m) do
2443 (unless (zerop (logand b d m))
2444 (let ((temp (logior (- b m) (1- m))))
2445 (cond
2446 ((>= temp a) (setf b temp))
2447 (t (let ((temp (logior (- d m) (1- m))))
2448 (when (>= temp c)
2449 (setf d temp)))))))
2450 finally (return (logxor b d)))))
2452 (defun logxor-derive-type-aux (x y &optional same-leaf)
2453 (when same-leaf
2454 (return-from logxor-derive-type-aux (specifier-type '(eql 0))))
2455 (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x)
2456 (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y)
2457 (cond
2458 ((and (not x-neg) (not y-neg))
2459 ;; Both are positive
2460 (if (and x-len y-len)
2461 (let ((low (logxor-derive-unsigned-low-bound x y))
2462 (high (logxor-derive-unsigned-high-bound x y)))
2463 (specifier-type `(integer ,low ,high)))
2464 (specifier-type '(unsigned-byte* *))))
2465 ((and (not x-pos) (not y-pos))
2466 ;; Both are negative. The result will be positive, and as long
2467 ;; as the longer.
2468 (specifier-type `(unsigned-byte* ,(if (and x-len y-len)
2469 (max x-len y-len)
2470 '*))))
2471 ((or (and (not x-pos) (not y-neg))
2472 (and (not y-pos) (not x-neg)))
2473 ;; Either X is negative and Y is positive or vice-versa. The
2474 ;; result will be negative.
2475 (specifier-type `(integer ,(if (and x-len y-len)
2476 (ash -1 (max x-len y-len))
2478 -1)))
2479 ;; We can't tell what the sign of the result is going to be.
2480 ;; All we know is that we don't create new bits.
2481 ((and x-len y-len)
2482 (specifier-type `(signed-byte ,(1+ (max x-len y-len)))))
2484 (specifier-type 'integer))))))
2486 (macrolet ((deffrob (logfun)
2487 (let ((fun-aux (symbolicate logfun "-DERIVE-TYPE-AUX")))
2488 `(defoptimizer (,logfun derive-type) ((x y))
2489 (two-arg-derive-type x y #',fun-aux #',logfun)))))
2490 (deffrob logand)
2491 (deffrob logior)
2492 (deffrob logxor))
2494 (defoptimizer (logeqv derive-type) ((x y))
2495 (two-arg-derive-type x y (lambda (x y same-leaf)
2496 (lognot-derive-type-aux
2497 (logxor-derive-type-aux x y same-leaf)))
2498 #'logeqv))
2499 (defoptimizer (lognand derive-type) ((x y))
2500 (two-arg-derive-type x y (lambda (x y same-leaf)
2501 (lognot-derive-type-aux
2502 (logand-derive-type-aux x y same-leaf)))
2503 #'lognand))
2504 (defoptimizer (lognor derive-type) ((x y))
2505 (two-arg-derive-type x y (lambda (x y same-leaf)
2506 (lognot-derive-type-aux
2507 (logior-derive-type-aux x y same-leaf)))
2508 #'lognor))
2509 (defoptimizer (logandc1 derive-type) ((x y))
2510 (two-arg-derive-type x y (lambda (x y same-leaf)
2511 (if same-leaf
2512 (specifier-type '(eql 0))
2513 (logand-derive-type-aux
2514 (lognot-derive-type-aux x) y nil)))
2515 #'logandc1))
2516 (defoptimizer (logandc2 derive-type) ((x y))
2517 (two-arg-derive-type x y (lambda (x y same-leaf)
2518 (if same-leaf
2519 (specifier-type '(eql 0))
2520 (logand-derive-type-aux
2521 x (lognot-derive-type-aux y) nil)))
2522 #'logandc2))
2523 (defoptimizer (logorc1 derive-type) ((x y))
2524 (two-arg-derive-type x y (lambda (x y same-leaf)
2525 (if same-leaf
2526 (specifier-type '(eql -1))
2527 (logior-derive-type-aux
2528 (lognot-derive-type-aux x) y nil)))
2529 #'logorc1))
2530 (defoptimizer (logorc2 derive-type) ((x y))
2531 (two-arg-derive-type x y (lambda (x y same-leaf)
2532 (if same-leaf
2533 (specifier-type '(eql -1))
2534 (logior-derive-type-aux
2535 x (lognot-derive-type-aux y) nil)))
2536 #'logorc2))
2538 ;;;; miscellaneous derive-type methods
2540 (defoptimizer (integer-length derive-type) ((x))
2541 (let ((x-type (lvar-type x)))
2542 (when (numeric-type-p x-type)
2543 ;; If the X is of type (INTEGER LO HI), then the INTEGER-LENGTH
2544 ;; of X is (INTEGER (MIN lo hi) (MAX lo hi), basically. Be
2545 ;; careful about LO or HI being NIL, though. Also, if 0 is
2546 ;; contained in X, the lower bound is obviously 0.
2547 (flet ((null-or-min (a b)
2548 (and a b (min (integer-length a)
2549 (integer-length b))))
2550 (null-or-max (a b)
2551 (and a b (max (integer-length a)
2552 (integer-length b)))))
2553 (let* ((min (numeric-type-low x-type))
2554 (max (numeric-type-high x-type))
2555 (min-len (null-or-min min max))
2556 (max-len (null-or-max min max)))
2557 (when (ctypep 0 x-type)
2558 (setf min-len 0))
2559 (specifier-type `(integer ,(or min-len '*) ,(or max-len '*))))))))
2561 (defoptimizer (isqrt derive-type) ((x))
2562 (let ((x-type (lvar-type x)))
2563 (when (numeric-type-p x-type)
2564 (let* ((lo (numeric-type-low x-type))
2565 (hi (numeric-type-high x-type))
2566 (lo-res (if lo (isqrt lo) '*))
2567 (hi-res (if hi (isqrt hi) '*)))
2568 (specifier-type `(integer ,lo-res ,hi-res))))))
2570 (defoptimizer (code-char derive-type) ((code))
2571 (let ((type (lvar-type code)))
2572 ;; FIXME: unions of integral ranges? It ought to be easier to do
2573 ;; this, given that CHARACTER-SET is basically an integral range
2574 ;; type. -- CSR, 2004-10-04
2575 (when (numeric-type-p type)
2576 (let* ((lo (numeric-type-low type))
2577 (hi (numeric-type-high type))
2578 (type (specifier-type `(character-set ((,lo . ,hi))))))
2579 (cond
2580 ;; KLUDGE: when running on the host, we lose a slight amount
2581 ;; of precision so that we don't have to "unparse" types
2582 ;; that formally we can't, such as (CHARACTER-SET ((0
2583 ;; . 0))). -- CSR, 2004-10-06
2584 #+sb-xc-host
2585 ((csubtypep type (specifier-type 'standard-char)) type)
2586 #+sb-xc-host
2587 ((csubtypep type (specifier-type 'base-char))
2588 (specifier-type 'base-char))
2589 #+sb-xc-host
2590 ((csubtypep type (specifier-type 'extended-char))
2591 (specifier-type 'extended-char))
2592 (t #+sb-xc-host (specifier-type 'character)
2593 #-sb-xc-host type))))))
2595 (defoptimizer (values derive-type) ((&rest values))
2596 (make-values-type :required (mapcar #'lvar-type values)))
2598 (defun signum-derive-type-aux (type)
2599 (if (eq (numeric-type-complexp type) :complex)
2600 (let* ((format (case (numeric-type-class type)
2601 ((integer rational) 'single-float)
2602 (t (numeric-type-format type))))
2603 (bound-format (or format 'float)))
2604 (make-numeric-type :class 'float
2605 :format format
2606 :complexp :complex
2607 :low (coerce -1 bound-format)
2608 :high (coerce 1 bound-format)))
2609 (let* ((interval (numeric-type->interval type))
2610 (range-info (interval-range-info interval))
2611 (contains-0-p (interval-contains-p 0 interval))
2612 (class (numeric-type-class type))
2613 (format (numeric-type-format type))
2614 (one (coerce 1 (or format class 'real)))
2615 (zero (coerce 0 (or format class 'real)))
2616 (minus-one (coerce -1 (or format class 'real)))
2617 (plus (make-numeric-type :class class :format format
2618 :low one :high one))
2619 (minus (make-numeric-type :class class :format format
2620 :low minus-one :high minus-one))
2621 ;; KLUDGE: here we have a fairly horrible hack to deal
2622 ;; with the schizophrenia in the type derivation engine.
2623 ;; The problem is that the type derivers reinterpret
2624 ;; numeric types as being exact; so (DOUBLE-FLOAT 0d0
2625 ;; 0d0) within the derivation mechanism doesn't include
2626 ;; -0d0. Ugh. So force it in here, instead.
2627 (zero (make-numeric-type :class class :format format
2628 :low (- zero) :high zero)))
2629 (case range-info
2630 (+ (if contains-0-p (type-union plus zero) plus))
2631 (- (if contains-0-p (type-union minus zero) minus))
2632 (t (type-union minus zero plus))))))
2634 (defoptimizer (signum derive-type) ((num))
2635 (one-arg-derive-type num #'signum-derive-type-aux nil))
2637 ;;;; byte operations
2638 ;;;;
2639 ;;;; We try to turn byte operations into simple logical operations.
2640 ;;;; First, we convert byte specifiers into separate size and position
2641 ;;;; arguments passed to internal %FOO functions. We then attempt to
2642 ;;;; transform the %FOO functions into boolean operations when the
2643 ;;;; size and position are constant and the operands are fixnums.
2645 (macrolet (;; Evaluate body with SIZE-VAR and POS-VAR bound to
2646 ;; expressions that evaluate to the SIZE and POSITION of
2647 ;; the byte-specifier form SPEC. We may wrap a let around
2648 ;; the result of the body to bind some variables.
2650 ;; If the spec is a BYTE form, then bind the vars to the
2651 ;; subforms. otherwise, evaluate SPEC and use the BYTE-SIZE
2652 ;; and BYTE-POSITION. The goal of this transformation is to
2653 ;; avoid consing up byte specifiers and then immediately
2654 ;; throwing them away.
2655 (with-byte-specifier ((size-var pos-var spec) &body body)
2656 (once-only ((spec `(macroexpand ,spec))
2657 (temp '(gensym)))
2658 `(if (and (consp ,spec)
2659 (eq (car ,spec) 'byte)
2660 (= (length ,spec) 3))
2661 (let ((,size-var (second ,spec))
2662 (,pos-var (third ,spec)))
2663 ,@body)
2664 (let ((,size-var `(byte-size ,,temp))
2665 (,pos-var `(byte-position ,,temp)))
2666 `(let ((,,temp ,,spec))
2667 ,,@body))))))
2669 (define-source-transform ldb (spec int)
2670 (with-byte-specifier (size pos spec)
2671 `(%ldb ,size ,pos ,int)))
2673 (define-source-transform dpb (newbyte spec int)
2674 (with-byte-specifier (size pos spec)
2675 `(%dpb ,newbyte ,size ,pos ,int)))
2677 (define-source-transform mask-field (spec int)
2678 (with-byte-specifier (size pos spec)
2679 `(%mask-field ,size ,pos ,int)))
2681 (define-source-transform deposit-field (newbyte spec int)
2682 (with-byte-specifier (size pos spec)
2683 `(%deposit-field ,newbyte ,size ,pos ,int))))
2685 (defoptimizer (%ldb derive-type) ((size posn num))
2686 (let ((size (lvar-type size)))
2687 (if (and (numeric-type-p size)
2688 (csubtypep size (specifier-type 'integer)))
2689 (let ((size-high (numeric-type-high size)))
2690 (if (and size-high (<= size-high sb!vm:n-word-bits))
2691 (specifier-type `(unsigned-byte* ,size-high))
2692 (specifier-type 'unsigned-byte)))
2693 *universal-type*)))
2695 (defoptimizer (%mask-field derive-type) ((size posn num))
2696 (let ((size (lvar-type size))
2697 (posn (lvar-type posn)))
2698 (if (and (numeric-type-p size)
2699 (csubtypep size (specifier-type 'integer))
2700 (numeric-type-p posn)
2701 (csubtypep posn (specifier-type 'integer)))
2702 (let ((size-high (numeric-type-high size))
2703 (posn-high (numeric-type-high posn)))
2704 (if (and size-high posn-high
2705 (<= (+ size-high posn-high) sb!vm:n-word-bits))
2706 (specifier-type `(unsigned-byte* ,(+ size-high posn-high)))
2707 (specifier-type 'unsigned-byte)))
2708 *universal-type*)))
2710 (defun %deposit-field-derive-type-aux (size posn int)
2711 (let ((size (lvar-type size))
2712 (posn (lvar-type posn))
2713 (int (lvar-type int)))
2714 (when (and (numeric-type-p size)
2715 (numeric-type-p posn)
2716 (numeric-type-p int))
2717 (let ((size-high (numeric-type-high size))
2718 (posn-high (numeric-type-high posn))
2719 (high (numeric-type-high int))
2720 (low (numeric-type-low int)))
2721 (when (and size-high posn-high high low
2722 ;; KLUDGE: we need this cutoff here, otherwise we
2723 ;; will merrily derive the type of %DPB as
2724 ;; (UNSIGNED-BYTE 1073741822), and then attempt to
2725 ;; canonicalize this type to (INTEGER 0 (1- (ASH 1
2726 ;; 1073741822))), with hilarious consequences. We
2727 ;; cutoff at 4*SB!VM:N-WORD-BITS to allow inference
2728 ;; over a reasonable amount of shifting, even on
2729 ;; the alpha/32 port, where N-WORD-BITS is 32 but
2730 ;; machine integers are 64-bits. -- CSR,
2731 ;; 2003-09-12
2732 (<= (+ size-high posn-high) (* 4 sb!vm:n-word-bits)))
2733 (let ((raw-bit-count (max (integer-length high)
2734 (integer-length low)
2735 (+ size-high posn-high))))
2736 (specifier-type
2737 (if (minusp low)
2738 `(signed-byte ,(1+ raw-bit-count))
2739 `(unsigned-byte* ,raw-bit-count)))))))))
2741 (defoptimizer (%dpb derive-type) ((newbyte size posn int))
2742 (%deposit-field-derive-type-aux size posn int))
2744 (defoptimizer (%deposit-field derive-type) ((newbyte size posn int))
2745 (%deposit-field-derive-type-aux size posn int))
2747 (deftransform %ldb ((size posn int)
2748 (fixnum fixnum integer)
2749 (unsigned-byte #.sb!vm:n-word-bits))
2750 "convert to inline logical operations"
2751 `(logand (ash int (- posn))
2752 (ash ,(1- (ash 1 sb!vm:n-word-bits))
2753 (- size ,sb!vm:n-word-bits))))
2755 (deftransform %mask-field ((size posn int)
2756 (fixnum fixnum integer)
2757 (unsigned-byte #.sb!vm:n-word-bits))
2758 "convert to inline logical operations"
2759 `(logand int
2760 (ash (ash ,(1- (ash 1 sb!vm:n-word-bits))
2761 (- size ,sb!vm:n-word-bits))
2762 posn)))
2764 ;;; Note: for %DPB and %DEPOSIT-FIELD, we can't use
2765 ;;; (OR (SIGNED-BYTE N) (UNSIGNED-BYTE N))
2766 ;;; as the result type, as that would allow result types that cover
2767 ;;; the range -2^(n-1) .. 1-2^n, instead of allowing result types of
2768 ;;; (UNSIGNED-BYTE N) and result types of (SIGNED-BYTE N).
2770 (deftransform %dpb ((new size posn int)
2772 (unsigned-byte #.sb!vm:n-word-bits))
2773 "convert to inline logical operations"
2774 `(let ((mask (ldb (byte size 0) -1)))
2775 (logior (ash (logand new mask) posn)
2776 (logand int (lognot (ash mask posn))))))
2778 (deftransform %dpb ((new size posn int)
2780 (signed-byte #.sb!vm:n-word-bits))
2781 "convert to inline logical operations"
2782 `(let ((mask (ldb (byte size 0) -1)))
2783 (logior (ash (logand new mask) posn)
2784 (logand int (lognot (ash mask posn))))))
2786 (deftransform %deposit-field ((new size posn int)
2788 (unsigned-byte #.sb!vm:n-word-bits))
2789 "convert to inline logical operations"
2790 `(let ((mask (ash (ldb (byte size 0) -1) posn)))
2791 (logior (logand new mask)
2792 (logand int (lognot mask)))))
2794 (deftransform %deposit-field ((new size posn int)
2796 (signed-byte #.sb!vm:n-word-bits))
2797 "convert to inline logical operations"
2798 `(let ((mask (ash (ldb (byte size 0) -1) posn)))
2799 (logior (logand new mask)
2800 (logand int (lognot mask)))))
2802 (defoptimizer (mask-signed-field derive-type) ((size x))
2803 (let ((size (lvar-type size)))
2804 (if (numeric-type-p size)
2805 (let ((size-high (numeric-type-high size)))
2806 (if (and size-high (<= 1 size-high sb!vm:n-word-bits))
2807 (specifier-type `(signed-byte ,size-high))
2808 *universal-type*))
2809 *universal-type*)))
2812 ;;; Modular functions
2814 ;;; (ldb (byte s 0) (foo x y ...)) =
2815 ;;; (ldb (byte s 0) (foo (ldb (byte s 0) x) y ...))
2817 ;;; and similar for other arguments.
2819 (defun make-modular-fun-type-deriver (prototype class width)
2820 #!-sb-fluid
2821 (binding* ((info (info :function :info prototype) :exit-if-null)
2822 (fun (fun-info-derive-type info) :exit-if-null)
2823 (mask-type (specifier-type
2824 (ecase class
2825 (:unsigned (let ((mask (1- (ash 1 width))))
2826 `(integer ,mask ,mask)))
2827 (:signed `(signed-byte ,width))))))
2828 (lambda (call)
2829 (let ((res (funcall fun call)))
2830 (when res
2831 (if (eq class :unsigned)
2832 (logand-derive-type-aux res mask-type))))))
2833 #!+sb-fluid
2834 (lambda (call)
2835 (binding* ((info (info :function :info prototype) :exit-if-null)
2836 (fun (fun-info-derive-type info) :exit-if-null)
2837 (res (funcall fun call) :exit-if-null)
2838 (mask-type (specifier-type
2839 (ecase class
2840 (:unsigned (let ((mask (1- (ash 1 width))))
2841 `(integer ,mask ,mask)))
2842 (:signed `(signed-byte ,width))))))
2843 (if (eq class :unsigned)
2844 (logand-derive-type-aux res mask-type)))))
2846 ;;; Try to recursively cut all uses of LVAR to WIDTH bits.
2848 ;;; For good functions, we just recursively cut arguments; their
2849 ;;; "goodness" means that the result will not increase (in the
2850 ;;; (unsigned-byte +infinity) sense). An ordinary modular function is
2851 ;;; replaced with the version, cutting its result to WIDTH or more
2852 ;;; bits. For most functions (e.g. for +) we cut all arguments; for
2853 ;;; others (e.g. for ASH) we have "optimizers", cutting only necessary
2854 ;;; arguments (maybe to a different width) and returning the name of a
2855 ;;; modular version, if it exists, or NIL. If we have changed
2856 ;;; anything, we need to flush old derived types, because they have
2857 ;;; nothing in common with the new code.
2858 (defun cut-to-width (lvar class width)
2859 (declare (type lvar lvar) (type (integer 0) width))
2860 (let ((type (specifier-type (if (zerop width)
2861 '(eql 0)
2862 `(,(ecase class (:unsigned 'unsigned-byte)
2863 (:signed 'signed-byte))
2864 ,width)))))
2865 (labels ((reoptimize-node (node name)
2866 (setf (node-derived-type node)
2867 (fun-type-returns
2868 (info :function :type name)))
2869 (setf (lvar-%derived-type (node-lvar node)) nil)
2870 (setf (node-reoptimize node) t)
2871 (setf (block-reoptimize (node-block node)) t)
2872 (reoptimize-component (node-component node) :maybe))
2873 (cut-node (node &aux did-something)
2874 (when (and (not (block-delete-p (node-block node)))
2875 (combination-p node)
2876 (eq (basic-combination-kind node) :known))
2877 (let* ((fun-ref (lvar-use (combination-fun node)))
2878 (fun-name (leaf-source-name (ref-leaf fun-ref)))
2879 (modular-fun (find-modular-version fun-name class width)))
2880 (when (and modular-fun
2881 (not (and (eq fun-name 'logand)
2882 (csubtypep
2883 (single-value-type (node-derived-type node))
2884 type))))
2885 (binding* ((name (etypecase modular-fun
2886 ((eql :good) fun-name)
2887 (modular-fun-info
2888 (modular-fun-info-name modular-fun))
2889 (function
2890 (funcall modular-fun node width)))
2891 :exit-if-null))
2892 (unless (eql modular-fun :good)
2893 (setq did-something t)
2894 (change-ref-leaf
2895 fun-ref
2896 (find-free-fun name "in a strange place"))
2897 (setf (combination-kind node) :full))
2898 (unless (functionp modular-fun)
2899 (dolist (arg (basic-combination-args node))
2900 (when (cut-lvar arg)
2901 (setq did-something t))))
2902 (when did-something
2903 (reoptimize-node node name))
2904 did-something)))))
2905 (cut-lvar (lvar &aux did-something)
2906 (do-uses (node lvar)
2907 (when (cut-node node)
2908 (setq did-something t)))
2909 did-something))
2910 (cut-lvar lvar))))
2912 (defoptimizer (logand optimizer) ((x y) node)
2913 (let ((result-type (single-value-type (node-derived-type node))))
2914 (when (numeric-type-p result-type)
2915 (let ((low (numeric-type-low result-type))
2916 (high (numeric-type-high result-type)))
2917 (when (and (numberp low)
2918 (numberp high)
2919 (>= low 0))
2920 (let ((width (integer-length high)))
2921 (when (some (lambda (x) (<= width x))
2922 (modular-class-widths *unsigned-modular-class*))
2923 ;; FIXME: This should be (CUT-TO-WIDTH NODE WIDTH).
2924 (cut-to-width x :unsigned width)
2925 (cut-to-width y :unsigned width)
2926 nil ; After fixing above, replace with T.
2927 )))))))
2929 (defoptimizer (mask-signed-field optimizer) ((width x) node)
2930 (let ((result-type (single-value-type (node-derived-type node))))
2931 (when (numeric-type-p result-type)
2932 (let ((low (numeric-type-low result-type))
2933 (high (numeric-type-high result-type)))
2934 (when (and (numberp low) (numberp high))
2935 (let ((width (max (integer-length high) (integer-length low))))
2936 (when (some (lambda (x) (<= width x))
2937 (modular-class-widths *signed-modular-class*))
2938 ;; FIXME: This should be (CUT-TO-WIDTH NODE WIDTH).
2939 (cut-to-width x :signed width)
2940 nil ; After fixing above, replace with T.
2941 )))))))
2943 ;;; miscellanous numeric transforms
2945 ;;; If a constant appears as the first arg, swap the args.
2946 (deftransform commutative-arg-swap ((x y) * * :defun-only t :node node)
2947 (if (and (constant-lvar-p x)
2948 (not (constant-lvar-p y)))
2949 `(,(lvar-fun-name (basic-combination-fun node))
2951 ,(lvar-value x))
2952 (give-up-ir1-transform)))
2954 (dolist (x '(= char= + * logior logand logxor))
2955 (%deftransform x '(function * *) #'commutative-arg-swap
2956 "place constant arg last"))
2958 ;;; Handle the case of a constant BOOLE-CODE.
2959 (deftransform boole ((op x y) * *)
2960 "convert to inline logical operations"
2961 (unless (constant-lvar-p op)
2962 (give-up-ir1-transform "BOOLE code is not a constant."))
2963 (let ((control (lvar-value op)))
2964 (case control
2965 (#.sb!xc:boole-clr 0)
2966 (#.sb!xc:boole-set -1)
2967 (#.sb!xc:boole-1 'x)
2968 (#.sb!xc:boole-2 'y)
2969 (#.sb!xc:boole-c1 '(lognot x))
2970 (#.sb!xc:boole-c2 '(lognot y))
2971 (#.sb!xc:boole-and '(logand x y))
2972 (#.sb!xc:boole-ior '(logior x y))
2973 (#.sb!xc:boole-xor '(logxor x y))
2974 (#.sb!xc:boole-eqv '(logeqv x y))
2975 (#.sb!xc:boole-nand '(lognand x y))
2976 (#.sb!xc:boole-nor '(lognor x y))
2977 (#.sb!xc:boole-andc1 '(logandc1 x y))
2978 (#.sb!xc:boole-andc2 '(logandc2 x y))
2979 (#.sb!xc:boole-orc1 '(logorc1 x y))
2980 (#.sb!xc:boole-orc2 '(logorc2 x y))
2982 (abort-ir1-transform "~S is an illegal control arg to BOOLE."
2983 control)))))
2985 ;;;; converting special case multiply/divide to shifts
2987 ;;; If arg is a constant power of two, turn * into a shift.
2988 (deftransform * ((x y) (integer integer) *)
2989 "convert x*2^k to shift"
2990 (unless (constant-lvar-p y)
2991 (give-up-ir1-transform))
2992 (let* ((y (lvar-value y))
2993 (y-abs (abs y))
2994 (len (1- (integer-length y-abs))))
2995 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
2996 (give-up-ir1-transform))
2997 (if (minusp y)
2998 `(- (ash x ,len))
2999 `(ash x ,len))))
3001 ;;; If arg is a constant power of two, turn FLOOR into a shift and
3002 ;;; mask. If CEILING, add in (1- (ABS Y)), do FLOOR and correct a
3003 ;;; remainder.
3004 (flet ((frob (y ceil-p)
3005 (unless (constant-lvar-p y)
3006 (give-up-ir1-transform))
3007 (let* ((y (lvar-value y))
3008 (y-abs (abs y))
3009 (len (1- (integer-length y-abs))))
3010 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
3011 (give-up-ir1-transform))
3012 (let ((shift (- len))
3013 (mask (1- y-abs))
3014 (delta (if ceil-p (* (signum y) (1- y-abs)) 0)))
3015 `(let ((x (+ x ,delta)))
3016 ,(if (minusp y)
3017 `(values (ash (- x) ,shift)
3018 (- (- (logand (- x) ,mask)) ,delta))
3019 `(values (ash x ,shift)
3020 (- (logand x ,mask) ,delta))))))))
3021 (deftransform floor ((x y) (integer integer) *)
3022 "convert division by 2^k to shift"
3023 (frob y nil))
3024 (deftransform ceiling ((x y) (integer integer) *)
3025 "convert division by 2^k to shift"
3026 (frob y t)))
3028 ;;; Do the same for MOD.
3029 (deftransform mod ((x y) (integer integer) *)
3030 "convert remainder mod 2^k to LOGAND"
3031 (unless (constant-lvar-p y)
3032 (give-up-ir1-transform))
3033 (let* ((y (lvar-value y))
3034 (y-abs (abs y))
3035 (len (1- (integer-length y-abs))))
3036 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
3037 (give-up-ir1-transform))
3038 (let ((mask (1- y-abs)))
3039 (if (minusp y)
3040 `(- (logand (- x) ,mask))
3041 `(logand x ,mask)))))
3043 ;;; If arg is a constant power of two, turn TRUNCATE into a shift and mask.
3044 (deftransform truncate ((x y) (integer integer))
3045 "convert division by 2^k to shift"
3046 (unless (constant-lvar-p y)
3047 (give-up-ir1-transform))
3048 (let* ((y (lvar-value y))
3049 (y-abs (abs y))
3050 (len (1- (integer-length y-abs))))
3051 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
3052 (give-up-ir1-transform))
3053 (let* ((shift (- len))
3054 (mask (1- y-abs)))
3055 `(if (minusp x)
3056 (values ,(if (minusp y)
3057 `(ash (- x) ,shift)
3058 `(- (ash (- x) ,shift)))
3059 (- (logand (- x) ,mask)))
3060 (values ,(if (minusp y)
3061 `(ash (- ,mask x) ,shift)
3062 `(ash x ,shift))
3063 (logand x ,mask))))))
3065 ;;; And the same for REM.
3066 (deftransform rem ((x y) (integer integer) *)
3067 "convert remainder mod 2^k to LOGAND"
3068 (unless (constant-lvar-p y)
3069 (give-up-ir1-transform))
3070 (let* ((y (lvar-value y))
3071 (y-abs (abs y))
3072 (len (1- (integer-length y-abs))))
3073 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
3074 (give-up-ir1-transform))
3075 (let ((mask (1- y-abs)))
3076 `(if (minusp x)
3077 (- (logand (- x) ,mask))
3078 (logand x ,mask)))))
3080 ;;;; arithmetic and logical identity operation elimination
3082 ;;; Flush calls to various arith functions that convert to the
3083 ;;; identity function or a constant.
3084 (macrolet ((def (name identity result)
3085 `(deftransform ,name ((x y) (* (constant-arg (member ,identity))) *)
3086 "fold identity operations"
3087 ',result)))
3088 (def ash 0 x)
3089 (def logand -1 x)
3090 (def logand 0 0)
3091 (def logior 0 x)
3092 (def logior -1 -1)
3093 (def logxor -1 (lognot x))
3094 (def logxor 0 x))
3096 (deftransform logand ((x y) (* (constant-arg t)) *)
3097 "fold identity operation"
3098 (let ((y (lvar-value y)))
3099 (unless (and (plusp y)
3100 (= y (1- (ash 1 (integer-length y)))))
3101 (give-up-ir1-transform))
3102 (unless (csubtypep (lvar-type x)
3103 (specifier-type `(integer 0 ,y)))
3104 (give-up-ir1-transform))
3105 'x))
3107 (deftransform mask-signed-field ((size x) ((constant-arg t) *) *)
3108 "fold identity operation"
3109 (let ((size (lvar-value size)))
3110 (unless (csubtypep (lvar-type x) (specifier-type `(signed-byte ,size)))
3111 (give-up-ir1-transform))
3112 'x))
3114 ;;; These are restricted to rationals, because (- 0 0.0) is 0.0, not -0.0, and
3115 ;;; (* 0 -4.0) is -0.0.
3116 (deftransform - ((x y) ((constant-arg (member 0)) rational) *)
3117 "convert (- 0 x) to negate"
3118 '(%negate y))
3119 (deftransform * ((x y) (rational (constant-arg (member 0))) *)
3120 "convert (* x 0) to 0"
3123 ;;; Return T if in an arithmetic op including lvars X and Y, the
3124 ;;; result type is not affected by the type of X. That is, Y is at
3125 ;;; least as contagious as X.
3126 #+nil
3127 (defun not-more-contagious (x y)
3128 (declare (type continuation x y))
3129 (let ((x (lvar-type x))
3130 (y (lvar-type y)))
3131 (values (type= (numeric-contagion x y)
3132 (numeric-contagion y y)))))
3133 ;;; Patched version by Raymond Toy. dtc: Should be safer although it
3134 ;;; XXX needs more work as valid transforms are missed; some cases are
3135 ;;; specific to particular transform functions so the use of this
3136 ;;; function may need a re-think.
3137 (defun not-more-contagious (x y)
3138 (declare (type lvar x y))
3139 (flet ((simple-numeric-type (num)
3140 (and (numeric-type-p num)
3141 ;; Return non-NIL if NUM is integer, rational, or a float
3142 ;; of some type (but not FLOAT)
3143 (case (numeric-type-class num)
3144 ((integer rational)
3146 (float
3147 (numeric-type-format num))
3149 nil)))))
3150 (let ((x (lvar-type x))
3151 (y (lvar-type y)))
3152 (if (and (simple-numeric-type x)
3153 (simple-numeric-type y))
3154 (values (type= (numeric-contagion x y)
3155 (numeric-contagion y y)))))))
3157 ;;; Fold (+ x 0).
3159 ;;; If y is not constant, not zerop, or is contagious, or a positive
3160 ;;; float +0.0 then give up.
3161 (deftransform + ((x y) (t (constant-arg t)) *)
3162 "fold zero arg"
3163 (let ((val (lvar-value y)))
3164 (unless (and (zerop val)
3165 (not (and (floatp val) (plusp (float-sign val))))
3166 (not-more-contagious y x))
3167 (give-up-ir1-transform)))
3170 ;;; Fold (- x 0).
3172 ;;; If y is not constant, not zerop, or is contagious, or a negative
3173 ;;; float -0.0 then give up.
3174 (deftransform - ((x y) (t (constant-arg t)) *)
3175 "fold zero arg"
3176 (let ((val (lvar-value y)))
3177 (unless (and (zerop val)
3178 (not (and (floatp val) (minusp (float-sign val))))
3179 (not-more-contagious y x))
3180 (give-up-ir1-transform)))
3183 ;;; Fold (OP x +/-1)
3184 (macrolet ((def (name result minus-result)
3185 `(deftransform ,name ((x y) (t (constant-arg real)) *)
3186 "fold identity operations"
3187 (let ((val (lvar-value y)))
3188 (unless (and (= (abs val) 1)
3189 (not-more-contagious y x))
3190 (give-up-ir1-transform))
3191 (if (minusp val) ',minus-result ',result)))))
3192 (def * x (%negate x))
3193 (def / x (%negate x))
3194 (def expt x (/ 1 x)))
3196 ;;; Fold (expt x n) into multiplications for small integral values of
3197 ;;; N; convert (expt x 1/2) to sqrt.
3198 (deftransform expt ((x y) (t (constant-arg real)) *)
3199 "recode as multiplication or sqrt"
3200 (let ((val (lvar-value y)))
3201 ;; If Y would cause the result to be promoted to the same type as
3202 ;; Y, we give up. If not, then the result will be the same type
3203 ;; as X, so we can replace the exponentiation with simple
3204 ;; multiplication and division for small integral powers.
3205 (unless (not-more-contagious y x)
3206 (give-up-ir1-transform))
3207 (cond ((zerop val)
3208 (let ((x-type (lvar-type x)))
3209 (cond ((csubtypep x-type (specifier-type '(or rational
3210 (complex rational))))
3212 ((csubtypep x-type (specifier-type 'real))
3213 `(if (rationalp x)
3215 (float 1 x)))
3216 ((csubtypep x-type (specifier-type 'complex))
3217 ;; both parts are float
3218 `(1+ (* x ,val)))
3219 (t (give-up-ir1-transform)))))
3220 ((= val 2) '(* x x))
3221 ((= val -2) '(/ (* x x)))
3222 ((= val 3) '(* x x x))
3223 ((= val -3) '(/ (* x x x)))
3224 ((= val 1/2) '(sqrt x))
3225 ((= val -1/2) '(/ (sqrt x)))
3226 (t (give-up-ir1-transform)))))
3228 ;;; KLUDGE: Shouldn't (/ 0.0 0.0), etc. cause exceptions in these
3229 ;;; transformations?
3230 ;;; Perhaps we should have to prove that the denominator is nonzero before
3231 ;;; doing them? -- WHN 19990917
3232 (macrolet ((def (name)
3233 `(deftransform ,name ((x y) ((constant-arg (integer 0 0)) integer)
3235 "fold zero arg"
3236 0)))
3237 (def ash)
3238 (def /))
3240 (macrolet ((def (name)
3241 `(deftransform ,name ((x y) ((constant-arg (integer 0 0)) integer)
3243 "fold zero arg"
3244 '(values 0 0))))
3245 (def truncate)
3246 (def round)
3247 (def floor)
3248 (def ceiling))
3250 ;;;; character operations
3252 (deftransform char-equal ((a b) (base-char base-char))
3253 "open code"
3254 '(let* ((ac (char-code a))
3255 (bc (char-code b))
3256 (sum (logxor ac bc)))
3257 (or (zerop sum)
3258 (when (eql sum #x20)
3259 (let ((sum (+ ac bc)))
3260 (or (and (> sum 161) (< sum 213))
3261 (and (> sum 415) (< sum 461))
3262 (and (> sum 463) (< sum 477))))))))
3264 (deftransform char-upcase ((x) (base-char))
3265 "open code"
3266 '(let ((n-code (char-code x)))
3267 (if (or (and (> n-code #o140) ; Octal 141 is #\a.
3268 (< n-code #o173)) ; Octal 172 is #\z.
3269 (and (> n-code #o337)
3270 (< n-code #o367))
3271 (and (> n-code #o367)
3272 (< n-code #o377)))
3273 (code-char (logxor #x20 n-code))
3274 x)))
3276 (deftransform char-downcase ((x) (base-char))
3277 "open code"
3278 '(let ((n-code (char-code x)))
3279 (if (or (and (> n-code 64) ; 65 is #\A.
3280 (< n-code 91)) ; 90 is #\Z.
3281 (and (> n-code 191)
3282 (< n-code 215))
3283 (and (> n-code 215)
3284 (< n-code 223)))
3285 (code-char (logxor #x20 n-code))
3286 x)))
3288 ;;;; equality predicate transforms
3290 ;;; Return true if X and Y are lvars whose only use is a
3291 ;;; reference to the same leaf, and the value of the leaf cannot
3292 ;;; change.
3293 (defun same-leaf-ref-p (x y)
3294 (declare (type lvar x y))
3295 (let ((x-use (principal-lvar-use x))
3296 (y-use (principal-lvar-use y)))
3297 (and (ref-p x-use)
3298 (ref-p y-use)
3299 (eq (ref-leaf x-use) (ref-leaf y-use))
3300 (constant-reference-p x-use))))
3302 ;;; If X and Y are the same leaf, then the result is true. Otherwise,
3303 ;;; if there is no intersection between the types of the arguments,
3304 ;;; then the result is definitely false.
3305 (deftransform simple-equality-transform ((x y) * *
3306 :defun-only t)
3307 (cond
3308 ((same-leaf-ref-p x y) t)
3309 ((not (types-equal-or-intersect (lvar-type x) (lvar-type y)))
3310 nil)
3311 (t (give-up-ir1-transform))))
3313 (macrolet ((def (x)
3314 `(%deftransform ',x '(function * *) #'simple-equality-transform)))
3315 (def eq)
3316 (def char=))
3318 ;;; This is similar to SIMPLE-EQUALITY-TRANSFORM, except that we also
3319 ;;; try to convert to a type-specific predicate or EQ:
3320 ;;; -- If both args are characters, convert to CHAR=. This is better than
3321 ;;; just converting to EQ, since CHAR= may have special compilation
3322 ;;; strategies for non-standard representations, etc.
3323 ;;; -- If either arg is definitely a fixnum, we check to see if X is
3324 ;;; constant and if so, put X second. Doing this results in better
3325 ;;; code from the backend, since the backend assumes that any constant
3326 ;;; argument comes second.
3327 ;;; -- If either arg is definitely not a number or a fixnum, then we
3328 ;;; can compare with EQ.
3329 ;;; -- Otherwise, we try to put the arg we know more about second. If X
3330 ;;; is constant then we put it second. If X is a subtype of Y, we put
3331 ;;; it second. These rules make it easier for the back end to match
3332 ;;; these interesting cases.
3333 (deftransform eql ((x y) * * :node node)
3334 "convert to simpler equality predicate"
3335 (let ((x-type (lvar-type x))
3336 (y-type (lvar-type y))
3337 (char-type (specifier-type 'character)))
3338 (flet ((simple-type-p (type)
3339 (csubtypep type (specifier-type '(or fixnum (not number)))))
3340 (fixnum-type-p (type)
3341 (csubtypep type (specifier-type 'fixnum))))
3342 (cond
3343 ((same-leaf-ref-p x y) t)
3344 ((not (types-equal-or-intersect x-type y-type))
3345 nil)
3346 ((and (csubtypep x-type char-type)
3347 (csubtypep y-type char-type))
3348 '(char= x y))
3349 ((or (fixnum-type-p x-type) (fixnum-type-p y-type))
3350 (commutative-arg-swap node))
3351 ((or (simple-type-p x-type) (simple-type-p y-type))
3352 '(eq x y))
3353 ((and (not (constant-lvar-p y))
3354 (or (constant-lvar-p x)
3355 (and (csubtypep x-type y-type)
3356 (not (csubtypep y-type x-type)))))
3357 '(eql y x))
3359 (give-up-ir1-transform))))))
3361 ;;; similarly to the EQL transform above, we attempt to constant-fold
3362 ;;; or convert to a simpler predicate: mostly we have to be careful
3363 ;;; with strings and bit-vectors.
3364 (deftransform equal ((x y) * *)
3365 "convert to simpler equality predicate"
3366 (let ((x-type (lvar-type x))
3367 (y-type (lvar-type y))
3368 (string-type (specifier-type 'string))
3369 (bit-vector-type (specifier-type 'bit-vector)))
3370 (cond
3371 ((same-leaf-ref-p x y) t)
3372 ((and (csubtypep x-type string-type)
3373 (csubtypep y-type string-type))
3374 '(string= x y))
3375 ((and (csubtypep x-type bit-vector-type)
3376 (csubtypep y-type bit-vector-type))
3377 '(bit-vector-= x y))
3378 ;; if at least one is not a string, and at least one is not a
3379 ;; bit-vector, then we can reason from types.
3380 ((and (not (and (types-equal-or-intersect x-type string-type)
3381 (types-equal-or-intersect y-type string-type)))
3382 (not (and (types-equal-or-intersect x-type bit-vector-type)
3383 (types-equal-or-intersect y-type bit-vector-type)))
3384 (not (types-equal-or-intersect x-type y-type)))
3385 nil)
3386 (t (give-up-ir1-transform)))))
3388 ;;; Convert to EQL if both args are rational and complexp is specified
3389 ;;; and the same for both.
3390 (deftransform = ((x y) (number number) *)
3391 "open code"
3392 (let ((x-type (lvar-type x))
3393 (y-type (lvar-type y)))
3394 (cond ((or (and (csubtypep x-type (specifier-type 'float))
3395 (csubtypep y-type (specifier-type 'float)))
3396 (and (csubtypep x-type (specifier-type '(complex float)))
3397 (csubtypep y-type (specifier-type '(complex float)))))
3398 ;; They are both floats. Leave as = so that -0.0 is
3399 ;; handled correctly.
3400 (give-up-ir1-transform))
3401 ((or (and (csubtypep x-type (specifier-type 'rational))
3402 (csubtypep y-type (specifier-type 'rational)))
3403 (and (csubtypep x-type
3404 (specifier-type '(complex rational)))
3405 (csubtypep y-type
3406 (specifier-type '(complex rational)))))
3407 ;; They are both rationals and complexp is the same.
3408 ;; Convert to EQL.
3409 '(eql x y))
3411 (give-up-ir1-transform
3412 "The operands might not be the same type.")))))
3414 (defun maybe-float-lvar-p (lvar)
3415 (neq *empty-type* (type-intersection (specifier-type 'float)
3416 (lvar-type lvar))))
3418 (flet ((maybe-invert (node op inverted x y)
3419 ;; Don't invert if either argument can be a float (NaNs)
3420 (cond
3421 ((or (maybe-float-lvar-p x) (maybe-float-lvar-p y))
3422 (delay-ir1-transform node :constraint)
3423 `(or (,op x y) (= x y)))
3425 `(if (,inverted x y) nil t)))))
3426 (deftransform >= ((x y) (number number) * :node node)
3427 "invert or open code"
3428 (maybe-invert node '> '< x y))
3429 (deftransform <= ((x y) (number number) * :node node)
3430 "invert or open code"
3431 (maybe-invert node '< '> x y)))
3433 ;;; See whether we can statically determine (< X Y) using type
3434 ;;; information. If X's high bound is < Y's low, then X < Y.
3435 ;;; Similarly, if X's low is >= to Y's high, the X >= Y (so return
3436 ;;; NIL). If not, at least make sure any constant arg is second.
3437 (macrolet ((def (name inverse reflexive-p surely-true surely-false)
3438 `(deftransform ,name ((x y))
3439 "optimize using intervals"
3440 (if (and (same-leaf-ref-p x y)
3441 ;; For non-reflexive functions we don't need
3442 ;; to worry about NaNs: (non-ref-op NaN NaN) => false,
3443 ;; but with reflexive ones we don't know...
3444 ,@(when reflexive-p
3445 '((and (not (maybe-float-lvar-p x))
3446 (not (maybe-float-lvar-p y))))))
3447 ,reflexive-p
3448 (let ((ix (or (type-approximate-interval (lvar-type x))
3449 (give-up-ir1-transform)))
3450 (iy (or (type-approximate-interval (lvar-type y))
3451 (give-up-ir1-transform))))
3452 (cond (,surely-true
3454 (,surely-false
3455 nil)
3456 ((and (constant-lvar-p x)
3457 (not (constant-lvar-p y)))
3458 `(,',inverse y x))
3460 (give-up-ir1-transform))))))))
3461 (def = = t (interval-= ix iy) (interval-/= ix iy))
3462 (def /= /= nil (interval-/= ix iy) (interval-= ix iy))
3463 (def < > nil (interval-< ix iy) (interval->= ix iy))
3464 (def > < nil (interval-< iy ix) (interval->= iy ix))
3465 (def <= >= t (interval->= iy ix) (interval-< iy ix))
3466 (def >= <= t (interval->= ix iy) (interval-< ix iy)))
3468 (defun ir1-transform-char< (x y first second inverse)
3469 (cond
3470 ((same-leaf-ref-p x y) nil)
3471 ;; If we had interval representation of character types, as we
3472 ;; might eventually have to to support 2^21 characters, then here
3473 ;; we could do some compile-time computation as in transforms for
3474 ;; < above. -- CSR, 2003-07-01
3475 ((and (constant-lvar-p first)
3476 (not (constant-lvar-p second)))
3477 `(,inverse y x))
3478 (t (give-up-ir1-transform))))
3480 (deftransform char< ((x y) (character character) *)
3481 (ir1-transform-char< x y x y 'char>))
3483 (deftransform char> ((x y) (character character) *)
3484 (ir1-transform-char< y x x y 'char<))
3486 ;;;; converting N-arg comparisons
3487 ;;;;
3488 ;;;; We convert calls to N-arg comparison functions such as < into
3489 ;;;; two-arg calls. This transformation is enabled for all such
3490 ;;;; comparisons in this file. If any of these predicates are not
3491 ;;;; open-coded, then the transformation should be removed at some
3492 ;;;; point to avoid pessimization.
3494 ;;; This function is used for source transformation of N-arg
3495 ;;; comparison functions other than inequality. We deal both with
3496 ;;; converting to two-arg calls and inverting the sense of the test,
3497 ;;; if necessary. If the call has two args, then we pass or return a
3498 ;;; negated test as appropriate. If it is a degenerate one-arg call,
3499 ;;; then we transform to code that returns true. Otherwise, we bind
3500 ;;; all the arguments and expand into a bunch of IFs.
3501 (defun multi-compare (predicate args not-p type &optional force-two-arg-p)
3502 (let ((nargs (length args)))
3503 (cond ((< nargs 1) (values nil t))
3504 ((= nargs 1) `(progn (the ,type ,@args) t))
3505 ((= nargs 2)
3506 (if not-p
3507 `(if (,predicate ,(first args) ,(second args)) nil t)
3508 (if force-two-arg-p
3509 `(,predicate ,(first args) ,(second args))
3510 (values nil t))))
3512 (do* ((i (1- nargs) (1- i))
3513 (last nil current)
3514 (current (gensym) (gensym))
3515 (vars (list current) (cons current vars))
3516 (result t (if not-p
3517 `(if (,predicate ,current ,last)
3518 nil ,result)
3519 `(if (,predicate ,current ,last)
3520 ,result nil))))
3521 ((zerop i)
3522 `((lambda ,vars (declare (type ,type ,@vars)) ,result)
3523 ,@args)))))))
3525 (define-source-transform = (&rest args) (multi-compare '= args nil 'number))
3526 (define-source-transform < (&rest args) (multi-compare '< args nil 'real))
3527 (define-source-transform > (&rest args) (multi-compare '> args nil 'real))
3528 ;;; We cannot do the inversion for >= and <= here, since both
3529 ;;; (< NaN X) and (> NaN X)
3530 ;;; are false, and we don't have type-inforation available yet. The
3531 ;;; deftransforms for two-argument versions of >= and <= takes care of
3532 ;;; the inversion to > and < when possible.
3533 (define-source-transform <= (&rest args) (multi-compare '<= args nil 'real))
3534 (define-source-transform >= (&rest args) (multi-compare '>= args nil 'real))
3536 (define-source-transform char= (&rest args) (multi-compare 'char= args nil
3537 'character))
3538 (define-source-transform char< (&rest args) (multi-compare 'char< args nil
3539 'character))
3540 (define-source-transform char> (&rest args) (multi-compare 'char> args nil
3541 'character))
3542 (define-source-transform char<= (&rest args) (multi-compare 'char> args t
3543 'character))
3544 (define-source-transform char>= (&rest args) (multi-compare 'char< args t
3545 'character))
3547 (define-source-transform char-equal (&rest args)
3548 (multi-compare 'sb!impl::two-arg-char-equal args nil 'character t))
3549 (define-source-transform char-lessp (&rest args)
3550 (multi-compare 'sb!impl::two-arg-char-lessp args nil 'character t))
3551 (define-source-transform char-greaterp (&rest args)
3552 (multi-compare 'sb!impl::two-arg-char-greaterp args nil 'character t))
3553 (define-source-transform char-not-greaterp (&rest args)
3554 (multi-compare 'sb!impl::two-arg-char-greaterp args t 'character t))
3555 (define-source-transform char-not-lessp (&rest args)
3556 (multi-compare 'sb!impl::two-arg-char-lessp args t 'character t))
3558 ;;; This function does source transformation of N-arg inequality
3559 ;;; functions such as /=. This is similar to MULTI-COMPARE in the <3
3560 ;;; arg cases. If there are more than two args, then we expand into
3561 ;;; the appropriate n^2 comparisons only when speed is important.
3562 (declaim (ftype (function (symbol list t) *) multi-not-equal))
3563 (defun multi-not-equal (predicate args type)
3564 (let ((nargs (length args)))
3565 (cond ((< nargs 1) (values nil t))
3566 ((= nargs 1) `(progn (the ,type ,@args) t))
3567 ((= nargs 2)
3568 `(if (,predicate ,(first args) ,(second args)) nil t))
3569 ((not (policy *lexenv*
3570 (and (>= speed space)
3571 (>= speed compilation-speed))))
3572 (values nil t))
3574 (let ((vars (make-gensym-list nargs)))
3575 (do ((var vars next)
3576 (next (cdr vars) (cdr next))
3577 (result t))
3578 ((null next)
3579 `((lambda ,vars (declare (type ,type ,@vars)) ,result)
3580 ,@args))
3581 (let ((v1 (first var)))
3582 (dolist (v2 next)
3583 (setq result `(if (,predicate ,v1 ,v2) nil ,result))))))))))
3585 (define-source-transform /= (&rest args)
3586 (multi-not-equal '= args 'number))
3587 (define-source-transform char/= (&rest args)
3588 (multi-not-equal 'char= args 'character))
3589 (define-source-transform char-not-equal (&rest args)
3590 (multi-not-equal 'char-equal args 'character))
3592 ;;; Expand MAX and MIN into the obvious comparisons.
3593 (define-source-transform max (arg0 &rest rest)
3594 (once-only ((arg0 arg0))
3595 (if (null rest)
3596 `(values (the real ,arg0))
3597 `(let ((maxrest (max ,@rest)))
3598 (if (>= ,arg0 maxrest) ,arg0 maxrest)))))
3599 (define-source-transform min (arg0 &rest rest)
3600 (once-only ((arg0 arg0))
3601 (if (null rest)
3602 `(values (the real ,arg0))
3603 `(let ((minrest (min ,@rest)))
3604 (if (<= ,arg0 minrest) ,arg0 minrest)))))
3606 ;;;; converting N-arg arithmetic functions
3607 ;;;;
3608 ;;;; N-arg arithmetic and logic functions are associated into two-arg
3609 ;;;; versions, and degenerate cases are flushed.
3611 ;;; Left-associate FIRST-ARG and MORE-ARGS using FUNCTION.
3612 (declaim (ftype (function (symbol t list) list) associate-args))
3613 (defun associate-args (function first-arg more-args)
3614 (let ((next (rest more-args))
3615 (arg (first more-args)))
3616 (if (null next)
3617 `(,function ,first-arg ,arg)
3618 (associate-args function `(,function ,first-arg ,arg) next))))
3620 ;;; Do source transformations for transitive functions such as +.
3621 ;;; One-arg cases are replaced with the arg and zero arg cases with
3622 ;;; the identity. ONE-ARG-RESULT-TYPE is, if non-NIL, the type to
3623 ;;; ensure (with THE) that the argument in one-argument calls is.
3624 (defun source-transform-transitive (fun args identity
3625 &optional one-arg-result-type)
3626 (declare (symbol fun) (list args))
3627 (case (length args)
3628 (0 identity)
3629 (1 (if one-arg-result-type
3630 `(values (the ,one-arg-result-type ,(first args)))
3631 `(values ,(first args))))
3632 (2 (values nil t))
3634 (associate-args fun (first args) (rest args)))))
3636 (define-source-transform + (&rest args)
3637 (source-transform-transitive '+ args 0 'number))
3638 (define-source-transform * (&rest args)
3639 (source-transform-transitive '* args 1 'number))
3640 (define-source-transform logior (&rest args)
3641 (source-transform-transitive 'logior args 0 'integer))
3642 (define-source-transform logxor (&rest args)
3643 (source-transform-transitive 'logxor args 0 'integer))
3644 (define-source-transform logand (&rest args)
3645 (source-transform-transitive 'logand args -1 'integer))
3646 (define-source-transform logeqv (&rest args)
3647 (source-transform-transitive 'logeqv args -1 'integer))
3649 ;;; Note: we can't use SOURCE-TRANSFORM-TRANSITIVE for GCD and LCM
3650 ;;; because when they are given one argument, they return its absolute
3651 ;;; value.
3653 (define-source-transform gcd (&rest args)
3654 (case (length args)
3655 (0 0)
3656 (1 `(abs (the integer ,(first args))))
3657 (2 (values nil t))
3658 (t (associate-args 'gcd (first args) (rest args)))))
3660 (define-source-transform lcm (&rest args)
3661 (case (length args)
3662 (0 1)
3663 (1 `(abs (the integer ,(first args))))
3664 (2 (values nil t))
3665 (t (associate-args 'lcm (first args) (rest args)))))
3667 ;;; Do source transformations for intransitive n-arg functions such as
3668 ;;; /. With one arg, we form the inverse. With two args we pass.
3669 ;;; Otherwise we associate into two-arg calls.
3670 (declaim (ftype (function (symbol list t)
3671 (values list &optional (member nil t)))
3672 source-transform-intransitive))
3673 (defun source-transform-intransitive (function args inverse)
3674 (case (length args)
3675 ((0 2) (values nil t))
3676 (1 `(,@inverse ,(first args)))
3677 (t (associate-args function (first args) (rest args)))))
3679 (define-source-transform - (&rest args)
3680 (source-transform-intransitive '- args '(%negate)))
3681 (define-source-transform / (&rest args)
3682 (source-transform-intransitive '/ args '(/ 1)))
3684 ;;;; transforming APPLY
3686 ;;; We convert APPLY into MULTIPLE-VALUE-CALL so that the compiler
3687 ;;; only needs to understand one kind of variable-argument call. It is
3688 ;;; more efficient to convert APPLY to MV-CALL than MV-CALL to APPLY.
3689 (define-source-transform apply (fun arg &rest more-args)
3690 (let ((args (cons arg more-args)))
3691 `(multiple-value-call ,fun
3692 ,@(mapcar (lambda (x)
3693 `(values ,x))
3694 (butlast args))
3695 (values-list ,(car (last args))))))
3697 ;;;; transforming FORMAT
3698 ;;;;
3699 ;;;; If the control string is a compile-time constant, then replace it
3700 ;;;; with a use of the FORMATTER macro so that the control string is
3701 ;;;; ``compiled.'' Furthermore, if the destination is either a stream
3702 ;;;; or T and the control string is a function (i.e. FORMATTER), then
3703 ;;;; convert the call to FORMAT to just a FUNCALL of that function.
3705 ;;; for compile-time argument count checking.
3707 ;;; FIXME II: In some cases, type information could be correlated; for
3708 ;;; instance, ~{ ... ~} requires a list argument, so if the lvar-type
3709 ;;; of a corresponding argument is known and does not intersect the
3710 ;;; list type, a warning could be signalled.
3711 (defun check-format-args (string args fun)
3712 (declare (type string string))
3713 (unless (typep string 'simple-string)
3714 (setq string (coerce string 'simple-string)))
3715 (multiple-value-bind (min max)
3716 (handler-case (sb!format:%compiler-walk-format-string string args)
3717 (sb!format:format-error (c)
3718 (compiler-warn "~A" c)))
3719 (when min
3720 (let ((nargs (length args)))
3721 (cond
3722 ((< nargs min)
3723 (warn 'format-too-few-args-warning
3724 :format-control
3725 "Too few arguments (~D) to ~S ~S: requires at least ~D."
3726 :format-arguments (list nargs fun string min)))
3727 ((> nargs max)
3728 (warn 'format-too-many-args-warning
3729 :format-control
3730 "Too many arguments (~D) to ~S ~S: uses at most ~D."
3731 :format-arguments (list nargs fun string max))))))))
3733 (defoptimizer (format optimizer) ((dest control &rest args))
3734 (when (constant-lvar-p control)
3735 (let ((x (lvar-value control)))
3736 (when (stringp x)
3737 (check-format-args x args 'format)))))
3739 ;;; We disable this transform in the cross-compiler to save memory in
3740 ;;; the target image; most of the uses of FORMAT in the compiler are for
3741 ;;; error messages, and those don't need to be particularly fast.
3742 #+sb-xc
3743 (deftransform format ((dest control &rest args) (t simple-string &rest t) *
3744 :policy (> speed space))
3745 (unless (constant-lvar-p control)
3746 (give-up-ir1-transform "The control string is not a constant."))
3747 (let ((arg-names (make-gensym-list (length args))))
3748 `(lambda (dest control ,@arg-names)
3749 (declare (ignore control))
3750 (format dest (formatter ,(lvar-value control)) ,@arg-names))))
3752 (deftransform format ((stream control &rest args) (stream function &rest t) *
3753 :policy (> speed space))
3754 (let ((arg-names (make-gensym-list (length args))))
3755 `(lambda (stream control ,@arg-names)
3756 (funcall control stream ,@arg-names)
3757 nil)))
3759 (deftransform format ((tee control &rest args) ((member t) function &rest t) *
3760 :policy (> speed space))
3761 (let ((arg-names (make-gensym-list (length args))))
3762 `(lambda (tee control ,@arg-names)
3763 (declare (ignore tee))
3764 (funcall control *standard-output* ,@arg-names)
3765 nil)))
3767 (deftransform pathname ((pathspec) (pathname) *)
3768 'pathspec)
3770 (deftransform pathname ((pathspec) (string) *)
3771 '(values (parse-namestring pathspec)))
3773 (macrolet
3774 ((def (name)
3775 `(defoptimizer (,name optimizer) ((control &rest args))
3776 (when (constant-lvar-p control)
3777 (let ((x (lvar-value control)))
3778 (when (stringp x)
3779 (check-format-args x args ',name)))))))
3780 (def error)
3781 (def warn)
3782 #+sb-xc-host ; Only we should be using these
3783 (progn
3784 (def style-warn)
3785 (def compiler-error)
3786 (def compiler-warn)
3787 (def compiler-style-warn)
3788 (def compiler-notify)
3789 (def maybe-compiler-notify)
3790 (def bug)))
3792 (defoptimizer (cerror optimizer) ((report control &rest args))
3793 (when (and (constant-lvar-p control)
3794 (constant-lvar-p report))
3795 (let ((x (lvar-value control))
3796 (y (lvar-value report)))
3797 (when (and (stringp x) (stringp y))
3798 (multiple-value-bind (min1 max1)
3799 (handler-case
3800 (sb!format:%compiler-walk-format-string x args)
3801 (sb!format:format-error (c)
3802 (compiler-warn "~A" c)))
3803 (when min1
3804 (multiple-value-bind (min2 max2)
3805 (handler-case
3806 (sb!format:%compiler-walk-format-string y args)
3807 (sb!format:format-error (c)
3808 (compiler-warn "~A" c)))
3809 (when min2
3810 (let ((nargs (length args)))
3811 (cond
3812 ((< nargs (min min1 min2))
3813 (warn 'format-too-few-args-warning
3814 :format-control
3815 "Too few arguments (~D) to ~S ~S ~S: ~
3816 requires at least ~D."
3817 :format-arguments
3818 (list nargs 'cerror y x (min min1 min2))))
3819 ((> nargs (max max1 max2))
3820 (warn 'format-too-many-args-warning
3821 :format-control
3822 "Too many arguments (~D) to ~S ~S ~S: ~
3823 uses at most ~D."
3824 :format-arguments
3825 (list nargs 'cerror y x (max max1 max2))))))))))))))
3827 (defoptimizer (coerce derive-type) ((value type))
3828 (cond
3829 ((constant-lvar-p type)
3830 ;; This branch is essentially (RESULT-TYPE-SPECIFIER-NTH-ARG 2),
3831 ;; but dealing with the niggle that complex canonicalization gets
3832 ;; in the way: (COERCE 1 'COMPLEX) returns 1, which is not of
3833 ;; type COMPLEX.
3834 (let* ((specifier (lvar-value type))
3835 (result-typeoid (careful-specifier-type specifier)))
3836 (cond
3837 ((null result-typeoid) nil)
3838 ((csubtypep result-typeoid (specifier-type 'number))
3839 ;; the difficult case: we have to cope with ANSI 12.1.5.3
3840 ;; Rule of Canonical Representation for Complex Rationals,
3841 ;; which is a truly nasty delivery to field.
3842 (cond
3843 ((csubtypep result-typeoid (specifier-type 'real))
3844 ;; cleverness required here: it would be nice to deduce
3845 ;; that something of type (INTEGER 2 3) coerced to type
3846 ;; DOUBLE-FLOAT should return (DOUBLE-FLOAT 2.0d0 3.0d0).
3847 ;; FLOAT gets its own clause because it's implemented as
3848 ;; a UNION-TYPE, so we don't catch it in the NUMERIC-TYPE
3849 ;; logic below.
3850 result-typeoid)
3851 ((and (numeric-type-p result-typeoid)
3852 (eq (numeric-type-complexp result-typeoid) :real))
3853 ;; FIXME: is this clause (a) necessary or (b) useful?
3854 result-typeoid)
3855 ((or (csubtypep result-typeoid
3856 (specifier-type '(complex single-float)))
3857 (csubtypep result-typeoid
3858 (specifier-type '(complex double-float)))
3859 #!+long-float
3860 (csubtypep result-typeoid
3861 (specifier-type '(complex long-float))))
3862 ;; float complex types are never canonicalized.
3863 result-typeoid)
3865 ;; if it's not a REAL, or a COMPLEX FLOAToid, it's
3866 ;; probably just a COMPLEX or equivalent. So, in that
3867 ;; case, we will return a complex or an object of the
3868 ;; provided type if it's rational:
3869 (type-union result-typeoid
3870 (type-intersection (lvar-type value)
3871 (specifier-type 'rational))))))
3872 (t result-typeoid))))
3874 ;; OK, the result-type argument isn't constant. However, there
3875 ;; are common uses where we can still do better than just
3876 ;; *UNIVERSAL-TYPE*: e.g. (COERCE X (ARRAY-ELEMENT-TYPE Y)),
3877 ;; where Y is of a known type. See messages on cmucl-imp
3878 ;; 2001-02-14 and sbcl-devel 2002-12-12. We only worry here
3879 ;; about types that can be returned by (ARRAY-ELEMENT-TYPE Y), on
3880 ;; the basis that it's unlikely that other uses are both
3881 ;; time-critical and get to this branch of the COND (non-constant
3882 ;; second argument to COERCE). -- CSR, 2002-12-16
3883 (let ((value-type (lvar-type value))
3884 (type-type (lvar-type type)))
3885 (labels
3886 ((good-cons-type-p (cons-type)
3887 ;; Make sure the cons-type we're looking at is something
3888 ;; we're prepared to handle which is basically something
3889 ;; that array-element-type can return.
3890 (or (and (member-type-p cons-type)
3891 (null (rest (member-type-members cons-type)))
3892 (null (first (member-type-members cons-type))))
3893 (let ((car-type (cons-type-car-type cons-type)))
3894 (and (member-type-p car-type)
3895 (null (rest (member-type-members car-type)))
3896 (or (symbolp (first (member-type-members car-type)))
3897 (numberp (first (member-type-members car-type)))
3898 (and (listp (first (member-type-members
3899 car-type)))
3900 (numberp (first (first (member-type-members
3901 car-type))))))
3902 (good-cons-type-p (cons-type-cdr-type cons-type))))))
3903 (unconsify-type (good-cons-type)
3904 ;; Convert the "printed" respresentation of a cons
3905 ;; specifier into a type specifier. That is, the
3906 ;; specifier (CONS (EQL SIGNED-BYTE) (CONS (EQL 16)
3907 ;; NULL)) is converted to (SIGNED-BYTE 16).
3908 (cond ((or (null good-cons-type)
3909 (eq good-cons-type 'null))
3910 nil)
3911 ((and (eq (first good-cons-type) 'cons)
3912 (eq (first (second good-cons-type)) 'member))
3913 `(,(second (second good-cons-type))
3914 ,@(unconsify-type (caddr good-cons-type))))))
3915 (coerceable-p (c-type)
3916 ;; Can the value be coerced to the given type? Coerce is
3917 ;; complicated, so we don't handle every possible case
3918 ;; here---just the most common and easiest cases:
3920 ;; * Any REAL can be coerced to a FLOAT type.
3921 ;; * Any NUMBER can be coerced to a (COMPLEX
3922 ;; SINGLE/DOUBLE-FLOAT).
3924 ;; FIXME I: we should also be able to deal with characters
3925 ;; here.
3927 ;; FIXME II: I'm not sure that anything is necessary
3928 ;; here, at least while COMPLEX is not a specialized
3929 ;; array element type in the system. Reasoning: if
3930 ;; something cannot be coerced to the requested type, an
3931 ;; error will be raised (and so any downstream compiled
3932 ;; code on the assumption of the returned type is
3933 ;; unreachable). If something can, then it will be of
3934 ;; the requested type, because (by assumption) COMPLEX
3935 ;; (and other difficult types like (COMPLEX INTEGER)
3936 ;; aren't specialized types.
3937 (let ((coerced-type c-type))
3938 (or (and (subtypep coerced-type 'float)
3939 (csubtypep value-type (specifier-type 'real)))
3940 (and (subtypep coerced-type
3941 '(or (complex single-float)
3942 (complex double-float)))
3943 (csubtypep value-type (specifier-type 'number))))))
3944 (process-types (type)
3945 ;; FIXME: This needs some work because we should be able
3946 ;; to derive the resulting type better than just the
3947 ;; type arg of coerce. That is, if X is (INTEGER 10
3948 ;; 20), then (COERCE X 'DOUBLE-FLOAT) should say
3949 ;; (DOUBLE-FLOAT 10d0 20d0) instead of just
3950 ;; double-float.
3951 (cond ((member-type-p type)
3952 (let ((members (member-type-members type)))
3953 (if (every #'coerceable-p members)
3954 (specifier-type `(or ,@members))
3955 *universal-type*)))
3956 ((and (cons-type-p type)
3957 (good-cons-type-p type))
3958 (let ((c-type (unconsify-type (type-specifier type))))
3959 (if (coerceable-p c-type)
3960 (specifier-type c-type)
3961 *universal-type*)))
3963 *universal-type*))))
3964 (cond ((union-type-p type-type)
3965 (apply #'type-union (mapcar #'process-types
3966 (union-type-types type-type))))
3967 ((or (member-type-p type-type)
3968 (cons-type-p type-type))
3969 (process-types type-type))
3971 *universal-type*)))))))
3973 (defoptimizer (compile derive-type) ((nameoid function))
3974 (when (csubtypep (lvar-type nameoid)
3975 (specifier-type 'null))
3976 (values-specifier-type '(values function boolean boolean))))
3978 ;;; FIXME: Maybe also STREAM-ELEMENT-TYPE should be given some loving
3979 ;;; treatment along these lines? (See discussion in COERCE DERIVE-TYPE
3980 ;;; optimizer, above).
3981 (defoptimizer (array-element-type derive-type) ((array))
3982 (let ((array-type (lvar-type array)))
3983 (labels ((consify (list)
3984 (if (endp list)
3985 '(eql nil)
3986 `(cons (eql ,(car list)) ,(consify (rest list)))))
3987 (get-element-type (a)
3988 (let ((element-type
3989 (type-specifier (array-type-specialized-element-type a))))
3990 (cond ((eq element-type '*)
3991 (specifier-type 'type-specifier))
3992 ((symbolp element-type)
3993 (make-member-type :members (list element-type)))
3994 ((consp element-type)
3995 (specifier-type (consify element-type)))
3997 (error "can't understand type ~S~%" element-type))))))
3998 (cond ((array-type-p array-type)
3999 (get-element-type array-type))
4000 ((union-type-p array-type)
4001 (apply #'type-union
4002 (mapcar #'get-element-type (union-type-types array-type))))
4004 *universal-type*)))))
4006 ;;; Like CMU CL, we use HEAPSORT. However, other than that, this code
4007 ;;; isn't really related to the CMU CL code, since instead of trying
4008 ;;; to generalize the CMU CL code to allow START and END values, this
4009 ;;; code has been written from scratch following Chapter 7 of
4010 ;;; _Introduction to Algorithms_ by Corman, Rivest, and Shamir.
4011 (define-source-transform sb!impl::sort-vector (vector start end predicate key)
4012 ;; Like CMU CL, we use HEAPSORT. However, other than that, this code
4013 ;; isn't really related to the CMU CL code, since instead of trying
4014 ;; to generalize the CMU CL code to allow START and END values, this
4015 ;; code has been written from scratch following Chapter 7 of
4016 ;; _Introduction to Algorithms_ by Corman, Rivest, and Shamir.
4017 `(macrolet ((%index (x) `(truly-the index ,x))
4018 (%parent (i) `(ash ,i -1))
4019 (%left (i) `(%index (ash ,i 1)))
4020 (%right (i) `(%index (1+ (ash ,i 1))))
4021 (%heapify (i)
4022 `(do* ((i ,i)
4023 (left (%left i) (%left i)))
4024 ((> left current-heap-size))
4025 (declare (type index i left))
4026 (let* ((i-elt (%elt i))
4027 (i-key (funcall keyfun i-elt))
4028 (left-elt (%elt left))
4029 (left-key (funcall keyfun left-elt)))
4030 (multiple-value-bind (large large-elt large-key)
4031 (if (funcall ,',predicate i-key left-key)
4032 (values left left-elt left-key)
4033 (values i i-elt i-key))
4034 (let ((right (%right i)))
4035 (multiple-value-bind (largest largest-elt)
4036 (if (> right current-heap-size)
4037 (values large large-elt)
4038 (let* ((right-elt (%elt right))
4039 (right-key (funcall keyfun right-elt)))
4040 (if (funcall ,',predicate large-key right-key)
4041 (values right right-elt)
4042 (values large large-elt))))
4043 (cond ((= largest i)
4044 (return))
4046 (setf (%elt i) largest-elt
4047 (%elt largest) i-elt
4048 i largest)))))))))
4049 (%sort-vector (keyfun &optional (vtype 'vector))
4050 `(macrolet (;; KLUDGE: In SBCL ca. 0.6.10, I had
4051 ;; trouble getting type inference to
4052 ;; propagate all the way through this
4053 ;; tangled mess of inlining. The TRULY-THE
4054 ;; here works around that. -- WHN
4055 (%elt (i)
4056 `(aref (truly-the ,',vtype ,',',vector)
4057 (%index (+ (%index ,i) start-1)))))
4058 (let (;; Heaps prefer 1-based addressing.
4059 (start-1 (1- ,',start))
4060 (current-heap-size (- ,',end ,',start))
4061 (keyfun ,keyfun))
4062 (declare (type (integer -1 #.(1- most-positive-fixnum))
4063 start-1))
4064 (declare (type index current-heap-size))
4065 (declare (type function keyfun))
4066 (loop for i of-type index
4067 from (ash current-heap-size -1) downto 1 do
4068 (%heapify i))
4069 (loop
4070 (when (< current-heap-size 2)
4071 (return))
4072 (rotatef (%elt 1) (%elt current-heap-size))
4073 (decf current-heap-size)
4074 (%heapify 1))))))
4075 (if (typep ,vector 'simple-vector)
4076 ;; (VECTOR T) is worth optimizing for, and SIMPLE-VECTOR is
4077 ;; what we get from (VECTOR T) inside WITH-ARRAY-DATA.
4078 (if (null ,key)
4079 ;; Special-casing the KEY=NIL case lets us avoid some
4080 ;; function calls.
4081 (%sort-vector #'identity simple-vector)
4082 (%sort-vector ,key simple-vector))
4083 ;; It's hard to anticipate many speed-critical applications for
4084 ;; sorting vector types other than (VECTOR T), so we just lump
4085 ;; them all together in one slow dynamically typed mess.
4086 (locally
4087 (declare (optimize (speed 2) (space 2) (inhibit-warnings 3)))
4088 (%sort-vector (or ,key #'identity))))))
4090 ;;;; debuggers' little helpers
4092 ;;; for debugging when transforms are behaving mysteriously,
4093 ;;; e.g. when debugging a problem with an ASH transform
4094 ;;; (defun foo (&optional s)
4095 ;;; (sb-c::/report-lvar s "S outside WHEN")
4096 ;;; (when (and (integerp s) (> s 3))
4097 ;;; (sb-c::/report-lvar s "S inside WHEN")
4098 ;;; (let ((bound (ash 1 (1- s))))
4099 ;;; (sb-c::/report-lvar bound "BOUND")
4100 ;;; (let ((x (- bound))
4101 ;;; (y (1- bound)))
4102 ;;; (sb-c::/report-lvar x "X")
4103 ;;; (sb-c::/report-lvar x "Y"))
4104 ;;; `(integer ,(- bound) ,(1- bound)))))
4105 ;;; (The DEFTRANSFORM doesn't do anything but report at compile time,
4106 ;;; and the function doesn't do anything at all.)
4107 #!+sb-show
4108 (progn
4109 (defknown /report-lvar (t t) null)
4110 (deftransform /report-lvar ((x message) (t t))
4111 (format t "~%/in /REPORT-LVAR~%")
4112 (format t "/(LVAR-TYPE X)=~S~%" (lvar-type x))
4113 (when (constant-lvar-p x)
4114 (format t "/(LVAR-VALUE X)=~S~%" (lvar-value x)))
4115 (format t "/MESSAGE=~S~%" (lvar-value message))
4116 (give-up-ir1-transform "not a real transform"))
4117 (defun /report-lvar (x message)
4118 (declare (ignore x message))))
4121 ;;;; Transforms for internal compiler utilities
4123 ;;; If QUALITY-NAME is constant and a valid name, don't bother
4124 ;;; checking that it's still valid at run-time.
4125 (deftransform policy-quality ((policy quality-name)
4126 (t symbol))
4127 (unless (and (constant-lvar-p quality-name)
4128 (policy-quality-name-p (lvar-value quality-name)))
4129 (give-up-ir1-transform))
4130 `(let* ((acons (assoc quality-name policy))
4131 (result (or (cdr acons) 1)))
4132 result))